

Kubernetes Cookbook

Learn how to automate and manage your Linux containers
and improve the overall performance of your system

Hideto Saito

Hui-Chuan Chloe Lee

Ke-Jou Carol Hsu

BIRMINGHAM - MUMBAI

Kubernetes Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-006-3

www.packtpub.com

www.packtpub.com

Credits

Authors
Hideto Saito

Hui-Chuan Chloe Lee

Ke-Jou Carol Hsu

Reviewer
Matt Ma

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Divya Poojari

Content Development Editor
Sachin Karnani

Technical Editor
Pranav Kukreti

Copy Editor
Akshata Lobo

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Authors

Hideto Saito has around 20 years of experience in the computer industry. In 1998, while
working for Sun Microsystems Japan, he was impressed with Solaris OS, OPENSTEP, and Sun
Ultra Enterprise 10000 (AKA StarFire). Then, he decided to pursue the UNIX and MacOS X
operation systems.

In 2006, he relocated to Southern California as a software engineer to develop products and
services running on Linux and MacOS X. He was especially renowned for his quick Objective-C
code when he was drunk.

He is also an enthusiast of Japanese anime, drama, and motor sports, and loves Japanese
Otaku culture.

There were a lot of difficulties while writing this book. I believe it was the
busiest moment in my life. But I was lucky to have two talented friends,
Chloe and Carol, to support this project. I hope I have a chance to work
with them again.

Lastly, I appreciate my wife and children for their support. Their support and
understanding brings me success and happiness.

Hui-Chuan Chloe Lee has worked in the software industry for over 5 years. She has a
master's degree in CS from the National Taiwan University and is an AWS-certified associate
solution architect. Chloe is also a technology enthusiast who has extended interest and
experiences in different topics, such as application development, container technology,
and Continuous Delivery.

In her free time, she enjoys reading, traveling, and spending time with the people she loves.

This book is dedicated to the people I love. I feel so lucky enough to have
you all in my life. Without your support, this would never happen.

Especially, thanks to the other two amazing coauthors, Hideto and Carol,
for your suggestions and guidance along the way.

Ke-Jou Carol Hsu is an engineer at Trend Micro. As a developer working in the Data
Center Service group, Carol helps to write programs for deploying or managing internal-facing
systems. She has both a bachelor's and a master's degree from the National Tsing Hua
University. While studying and doing research, Carol focused on the area of high performance
computing and virtualization technology. The experience made her more and more interested
in system software, especially distributed systems and cloud environments.

Many thanks to my family and friends! You covered most of the house
chores and job duties. Sometimes, you just bore my bad temper caused by
the pressure while writing. Thanks to all of you! I am good to come back to
my original life now!

For the other two authors, Hideto and Chloe, you are definitely the ones I
truly appreciate. You guys know both the hard times and the happy hours
during the writing of this book. Without your guide and support, it would
have been impossible for me to finish this book at such a rapid pace and
still come out with this careful, creative work. Looking forward to another
cooperation in a short time.

About the Reviewer

Matt Ma is a multitalented and highly motivated full stack software engineer. He is
a JavaScript ninja with over 8 years of experience. He has won over two dozen of CSS
awards, Webby awards, and other web development awards. He is proud of being a Node.js
contributor, a certified MongoDB developer, and an earlier adopter of Docker and Kubernetes.

Matt Ma have over 6 years of Linux experience. He is a long-time user of Ubuntu and CentOS.
He uses an open source lightweight operating system, such as CoreOS, and systemd init
daemon along with its eco-system tools. He advocates the microservices architecture.

When he is not working, he likes to go to the beach or a rock concert, hike, or spend time
with his wife and two kids.

He likes meeting new people at conferences and meetups. You can find him on Twitter
(@bigmabig) or GitHub (https://github.com/mattma). Drop him a line or just say
hi to him.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface	 iii
Chapter 1: Building Your Own Kubernetes	 1

Introduction	 1
Exploring architecture	 1
Preparing your environment	 8
Building datastore	 13
Creating an overlay network	 22
Configuring master	 33
Configuring nodes	 41
Run your first container in Kubernetes	 49

Chapter 2: Walking through Kubernetes Concepts	 57
Introduction	 57
An overview of Kubernetes control	 58
Working with pods	 61
Working with a replication controller	 67
Working with services	 76
Working with volumes	 87
Working with secrets	 104
Working with names	 109
Working with namespaces	 114
Working with labels and selectors	 121

Chapter 3: Playing with Containers	 129
Introduction	 129
Scaling your containers	 129
Updating live containers	 133
Forwarding container ports	 140
Ensuring flexible usage of your containers	 154
Working with configuration files	 164

ii

Table of Contents

Chapter 4: Building a High Availability Cluster	 173
Introduction	 173
Clustering etcd	 173
Building multiple masters	 181

Chapter 5: Building a Continuous Delivery Pipeline	 193
Introduction	 193
Moving monolithic to microservices	 193
Integrating with Jenkins	 207
Working with the private Docker registry	 216
Setting up the Continuous Delivery pipeline	 222

Chapter 6: Building Kubernetes on AWS	 235
Introduction	 235
Building the Kubernetes infrastructure in AWS	 236
Managing applications using AWS OpsWorks	 245
Auto-deploying Kubernetes through Chef recipes	 253
Using AWS CloudFormation for fast provisioning	 269

Chapter 7: Advanced Cluster Administration	 291
Introduction	 291
Advanced settings in kubeconfig	 292
Setting resource in nodes	 298
Playing with WebUI	 304
Working with a RESTful API	 308
Authentication and authorization	 313

Chapter 8: Logging and Monitoring	 321
Introduction	 321
Collecting application logs	 321
Working with Kubernetes logs	 332
Working with etcd log	 336
Monitoring master and node	 340

Index	 353

iii

Preface
Docker has been getting popular in recent years. It makes application deployment so efficient,
we could easily build, ship, and run the application containers everywhere. With the trend
of microservices, many people built a lot of services wrapped and deployed by containers,
so container management and orchestration became a problem. Kubernetes solves this.
However, building Kubernetes can be complex. Setting up Kubernetes nodes and control
planes can be cumbersome. Furthermore, many people want leverage and integrate it with
their own Continuous Delivery pipeline, but getting to know the whole story and making
it work well can be time-consuming.

This is a practical guide that provides you step-by-step tips and examples to help you build and
run your own Kubernetes cluster with the required components. This helpful guide will then
lead you to understand how to deploy your application and services using the command line
and a configuration file. You will also get a deep understanding of how to scale and update live
containers and how to do port forwarding and network routing in Kubernetes. Next, you will
learn how to build a robust high availability cluster with the book's hands-on examples. Finally,
you will build and integrate the Continuous Delivery pipeline with Jenkins and Docker registry
and learn how to build your own cluster in the cloud automatically. The book will also cover
important topics about logging and monitoring.

What this book covers
Chapter 1, Building Your Own Kubernetes, explains how to build Kubernetes from scratch and
run our very first container in it.

Chapter 2, Walking through Kubernetes Concepts, covers the basic and advance concepts we
need to know before utilizing Kubernetes. Then, you will learn how to combine them to provide
a suitable environment for running our applications.

Preface

iv

Chapter 3, Playing with Containers, talks about how to scale your containers up and down and
perform rolling update in order to provide better availability for your applications. Furthermore,
you will learn how to run on-demand containers for handling different usages in the real world.
It will also provide information on how to write a configuration file to make the deployment
all together.

Chapter 4, Building a High Availability Cluster, will cover information on how to build High
Availability Kubernetes master and etcd, which will act as an important datastore. This will
prevent Kubernetes from becoming a single point of failure.

Chapter 5, Building a Continuous Delivery Pipeline, will talk about how to integrate Kubernetes
with an existing Continuous Delivery pipeline, and the best application type for utilizing
Kubernetes.

Chapter 6, Building Kubernetes on AWS, will show how to build Kubernetes step by step on
AWS. You will also learn how to build it automatically from scratch.

Chapter 7, Advanced Cluster Administration, covers multicluster and resource management.
You will learn how to use native WebUI and RESTful APIs to make audit and administration
easier. It will include sections on setting up the authentication and authorization for your
clusters.

Chapter 8, Logging and Monitoring, will explain how to collect Kubernetes, etcd, and even our
application logs using ELK (Elasticsearch, Logstash, and Kibana). You will also learn how to
integrate Heapster, influxDB, and Grafana to monitor your Kubernetes cluster.

What you need for this book
Throughout the book, we have used at least three servers with a Linux-based OS to build
all the components in Kubernetes. You could use one system to install all of them at the
beginning. As for the scalability point of view, we recommend you to start with three servers
in order to scale out the components independently.

Who this book is for
If you've been playing with Docker containers for a while and wanted to orchestrate your
containers in a modern way, this book is the right choice for you. This book is for those who
already understand Docker and container technology and want to explore more for a better
way to orchestrate, manage, and deploy containers. This book is perfect for going beyond
a single container and working with container clusters, learning how to build your own
Kubernetes, and making it work seamlessly with your Continuous Delivery pipeline.

Preface

v

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "On the
Kubernetes master, we could use kubectl run to create a certain number of containers."

Preface

vi

A block of code is set as follows:

[Unit]
Description=Etcd Server
After=network.target

Any command-line input or output is written as follows:

$ cat /etc/etcd/etcd.conf

ETCD_NAME=myhappy-etcd

ETCD_DATA_DIR="/var/lib/etcd/myhappy.etcd"

ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:8080"

ETCD_ADVERTISE_CLIENT_URLS="http://localhost:8080"

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "After you finish the project
configurations, you can click on Save and then click on Build Now to check the result."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.packtpub.com/authors

Preface

vii

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Kubernetes-Cookbook. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Kubernetes-Cookbook
https://github.com/PacktPublishing/Kubernetes-Cookbook
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

Preface

viii

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Building Your Own

Kubernetes

In this chapter, we will cover the following topics:

ff Exploring architecture

ff Preparing your environment

ff Building datastore

ff Creating an overlay network

ff Configuring master

ff Configuring nodes

ff Running your first container in Kubernetes

Introduction
Welcome to the journey of Kubernetes! In this very first section, you will learn how to build
your own Kubernetes cluster. Along with understanding each component and connecting them
together, you will learn how to run your first container on Kubernetes. Holding a Kubernetes
cluster will help you continue the study in the chapters ahead.

Exploring architecture
Kubernetes is an open source container management tool. It is a Go-Lang based (https://
golang.org), lightweight, and portable application. You can set up a Kubernetes cluster
on a Linux-based OS to deploy, manage, and scale the Docker container applications on
multiple hosts.

https://golang.org
https://golang.org

Building Your Own Kubernetes

2

Getting ready
Kubernetes is constructed using several components, as follows:

ff Kubernetes master

ff Kubernetes nodes

ff etcd

ff Overlay network (flannel)

These components are connected via network, as shown in the following screenshot:

The preceding image can be summarized as follows:

ff Kubernetes master connects to etcd via HTTP or HTTPS to store the data. It also
connects flannel to access the container application.

ff Kubernetes nodes connect to the Kubernetes master via HTTP or HTTPS to get a
command and report the status.

ff Kubernetes nodes use an overlay network (for example, flannel) to make a
connection of their container applications.

How to do it…
In this section, we are going to explain the features of Kubernetes master and nodes;
both of them realize the main functions of the Kubernetes system.

Kubernetes master
Kubernetes master is the main component of Kubernetes cluster. It serves several
functionalities, such as the following items:

ff Authorization and authentication

ff RESTful API entry point

Chapter 1

3

ff Container deployment scheduler to the Kubernetes nodes

ff Scaling and replicating the controller

ff Read and store the configuration

ff Command Line Interface

The next image shows how master daemons worked together to fulfill the mentioned
functionalities:

There are several daemon processes that make the Kubernetes master's functionality, such
as kube-apiserver, kube-scheduler, and kube-controller-manager. Hypercube wrapper
launched all of them.

In addition, the Kubernetes Command Line Interface kubectl can control the Kubernetes
master functionality.

API server (kube-apiserver)
The API server provides an HTTP- or HTTPS-based RESTful API, which is the hub between
Kubernetes components, such as kubectl, scheduler, replication controller, etcd datastore,
and kubelet and kube-proxy, which runs on Kubernetes nodes and so on.

Scheduler (kube-scheduler)
Scheduler helps to choose which container runs by which nodes. It is a simple algorithm that
defines the priority to dispatch and bind containers to nodes, for example:

ff CPU

ff Memory

ff How many containers are running?

Building Your Own Kubernetes

4

Controller manager (kube-controller-manager)
Controller manager performs cluster operations. For example:

ff Manages Kubernetes nodes

ff Creates and updates the Kubernetes internal information

ff Attempts to change the current status to the desired status

Command Line Interface (kubectl)
After you install Kubernetes master, you can use the Kubernetes Command Line Interface
kubectl to control the Kubernetes cluster. For example, kubectl get cs returns the status
of each component. Also, kubectl get nodes returns a list of Kubernetes nodes:

//see the ComponentStatuses

kubectl get cs

NAME STATUS MESSAGE ERROR

controller-manager Healthy ok nil

scheduler Healthy ok nil

etcd-0 Healthy {"health": "true"} nil

//see the nodes

kubectl get nodes

NAME LABELS STATUS AGE

kub-node1 kubernetes.io/hostname=kub-node1 Ready 26d

kub-node2 kubernetes.io/hostname=kub-node2 Ready 26d

Kubernetes node
Kubernetes node is a slave node in the Kubernetes cluster. It is controlled by Kubernetes
master to run the container application using Docker (http://docker.com) or rkt
(http://coreos.com/rkt/docs/latest/) in this book; we will use the Docker
container runtime as the default engine.

Node or slave?
The terminology of slave is used in the computer industry to represent the
cluster worker node; however, it is also associated with discrimination. The
Kubernetes project uses node instead.

Chapter 1

5

The following image displays the role and tasks of daemon processes in node:

Node also has multiple daemon processes, named kubelet and kube-proxy, to support
its functionalities.

kubelet
kubelet is the main process on Kubernetes node that communicates with Kubernetes master
to handle the following operations:

ff Periodically access the API Controller to check and report

ff Perform container operations

ff Runs the HTTP server to provide simple APIs

Proxy (kube-proxy)
Proxy handles the network proxy and load balancer for each container. It performs to change
the Linux iptables rules (nat table) to control TCP and UDP packets across the containers.

After starting the kube-proxy daemon, it will configure iptables rules; you can see
iptables -t nat -L or iptables -t nat -S to check the nat table rules, as follows:

 //the result will be vary and dynamically changed by kube-proxy

sudo iptables -t nat -S

-P PREROUTING ACCEPT

-P INPUT ACCEPT

-P OUTPUT ACCEPT

-P POSTROUTING ACCEPT

-N DOCKER

-N FLANNEL

-N KUBE-NODEPORT-CONTAINER

-N KUBE-NODEPORT-HOST

-N KUBE-PORTALS-CONTAINER

-N KUBE-PORTALS-HOST

Building Your Own Kubernetes

6

-A PREROUTING -m comment --comment "handle ClusterIPs; NOTE: this must be
before the NodePort rules" -j KUBE-PORTALS-CONTAINER

-A PREROUTING -m addrtype --dst-type LOCAL -m comment --comment "handle
service NodePorts; NOTE: this must be the last rule in the chain" -j
KUBE-NODEPORT-CONTAINER

-A PREROUTING -m addrtype --dst-type LOCAL -j DOCKER

-A OUTPUT -m comment --comment "handle ClusterIPs; NOTE: this must be
before the NodePort rules" -j KUBE-PORTALS-HOST

-A OUTPUT -m addrtype --dst-type LOCAL -m comment --comment "handle
service NodePorts; NOTE: this must be the last rule in the chain" -j
KUBE-NODEPORT-HOST

-A OUTPUT ! -d 127.0.0.0/8 -m addrtype --dst-type LOCAL -j DOCKER

-A POSTROUTING -s 192.168.90.0/24 ! -o docker0 -j MASQUERADE

-A POSTROUTING -s 192.168.0.0/16 -j FLANNEL

-A FLANNEL -d 192.168.0.0/16 -j ACCEPT

-A FLANNEL ! -d 224.0.0.0/4 -j MASQUERADE

How it works…
There are two more components to complement the Kubernetes nodes' functionalities,
the datastore etcd and the overlay network flannel. You can learn how they support the
Kubernetes system in the following paragraphs.

etcd
The etcd (https://coreos.com/etcd/) is the distributed key-value datastore. It can be
accessed via the RESTful API to perform the CRUD operation over the network. Kubernetes
uses etcd as the main datastore.

You can explore the Kubernetes configuration and status in etcd (/registry) using the curl
command as follows:

//example: etcd server is 10.0.0.1 and default port is 2379

curl -L "http://10.0.0.1:2379/v2/keys/registry"

{"action":"get","node":{"key":"/registry","dir":true,"nodes":[{"key":"/
registry/namespaces","dir":true,"modifiedIndex":15,"createdIndex":15},{"k
ey":"/registry/serviceaccounts","dir":true,"modifiedIndex":16,"createdInd
ex":16},{"key":"/registry/services","dir":true,"modifiedIndex":17,"create
dIndex":17},{"key":"/registry/ranges","dir":true,"modifiedIndex":76,"crea
tedIndex":76},{"key":"/registry/nodes","dir":true,"modifiedIndex":740,"cr
eatedIndex":740},{"key":"/registry/pods","dir":true,"modifiedIndex":794,"
createdIndex":794},{"key":"/registry/controllers","dir":true,"modifiedInd
ex":810,"createdIndex":810},{"key":"/registry/events","dir":true,"modifie
dIndex":6,"createdIndex":6}],"modifiedIndex":6,"createdIndex":6}}

Chapter 1

7

Overlay network
Network communication between containers is the most difficult part. Because when you
start to run the Docker, an IP address will be assigned dynamically; the container application
needs to know the peer's IP address and port number.

If the container's network communication is only within the single host, you can use the
Docker link to generate the environment variable to discover the peer. However, Kubernetes
usually works as a cluster and ambassador pattern or overlay network could help to connect
every node. Kubernetes uses overlay network to manage multiple containers' communication.

For overlay network, Kubernetes has several options, but using flannel is the easier solution.

Flannel
Flannel also uses etcd to configure the settings and store the status. You can also perform
the curl command to explore the configuration (/coreos.com/network) and status,
as follows:

//overlay network CIDR is 192.168.0.0/16

curl -L "http://10.0.0.1:2379/v2/keys/coreos.com/network/config"

{"action":"get","node":{"key":"/coreos.com/network/config","value":"{
\"Network\": \"192.168.0.0/16\" }","modifiedIndex":144913,"createdInd
ex":144913}}

//Kubernetes assigns some subnets to containers

curl -L "http://10.0.0.1:2379/v2/keys/coreos.com/network/subnets"

{"action":"get","node":{"key":"/coreos.com/network/subnets","dir":true,"n
odes":[{"key":"/coreos.com/network/subnets/192.168.90.0-24","value":"{\"
PublicIP\":\"10.97.217.158\"}","expiration":"2015-11-05T08:16:21.9957499
71Z","ttl":38993,"modifiedIndex":388599,"createdIndex":388599},{"key":"/
coreos.com/network/subnets/192.168.76.0-24","value":"{\"PublicIP\":\"10.9
7.217.148\"}","expiration":"2015-11-05T04:32:45.528111606Z","ttl":25576,"
modifiedIndex":385909,"createdIndex":385909},{"key":"/coreos.com/network/
subnets/192.168.40.0-24","value":"{\"PublicIP\":\"10.97.217.51\"}","expir
ation":"2015-11-05T15:18:27.335916533Z","ttl":64318,"modifiedIndex":3936-
75,"createdIndex":393675}],"modifiedIndex":79,"createdIndex":79}}

See also
This section describes the basic architecture and methodology of Kubernetes and related
components. Understanding Kubernetes is not easy, but a step-by-step lesson on how to
setup, configure, and manage Kubernetes is really fun.

Building Your Own Kubernetes

8

The following recipes describe how to install and configure related components:

ff Building datastore

ff Creating an overlay network

ff Configuring master

ff Configuring nodes

Preparing your environment
Before heading to the journey of building our own cluster, we have to prepare the environment
in order to build the following components:

There are different solutions of creating such a Kubernetes cluster, for example:

ff Local-machine solutions that include:

�� Docker-based

�� Vagrant

�� Linux machine

ff Hosted solution that includes:

�� Google Container Engine

ff Custom solutions

A local-machine solution is suitable if we just want to build a development environment or
do the proof of concept quickly. By using Docker (https://www.docker.com) or Vagrant
(https://www.vagrantup.com), we could easily build the desired environment in one
single machine; however, it is not practical if we want to build a production environment. A
hosted solution is the easiest starting point if we want to build it in the cloud.

https://www.vagrantup.com

Chapter 1

9

Google Container Engine, which has been used by Google for many years, has the
comprehensive support naturally and we do not need to care much about the installation and
setting. Kubernetes can also run on different cloud and on-premises VMs by custom solutions.
We will build the Kubernetes clusters from scratch on Linux-based virtual machines (CentOS
7.1) in the following chapters. The solution is suitable for any Linux machines in both cloud
and on-premises environments.

Getting ready
It is recommended if you have at least four Linux servers for master, etcd, and two nodes.
If you want to build it as a high availability cluster, more servers for each component are
preferred. We will build three types of servers in the following sections:

ff Kubernetes master

ff Kubernetes node

ff etcd

Flannel will not be located in one machine, which is required in all the nodes. Communication
between containers and services are powered by flannel, which is an etcd backend overlay
network for containers.

Hardware resource
The hardware spec of each component is suggested in the following table. Please note that it
might cause a longer response time when manipulating the cluster if the amount of requests
between the API server and etcd is large. In a normal situation, increasing resources can
resolve this problem:

Component Spec Kubernetes master etcd
CPU Count 1 1
Memory GB 2G 2G

For the nodes, the default maximum number of pods in one node is 40. However, a node
capacity is configurable when adding a node. You have to measure how many resources you
might need for the hosted services and applications to decide how many nodes should be
there with a certain spec and with proper monitoring in production workload.

Building Your Own Kubernetes

10

Check out your node capacity in node

In your master, you could install jq by yum install jq and use kubectl
get nodes -o json | jq '.items[] | {name: .metadata.
name, capacity: .status.capacity}' to check the capacity of
each node, including CPU, memory, and the maximum capacity of pods:
// check out your node capacity
$ kubectl get nodes -o json | jq '.items[] | {name:
.metadata.name, capacity: .status.capacity}'
{
 "name": "kub-node1",
 "capacity": {
 "cpu": "1",
 "memory": "1021536Ki",
 "pods": "40"
 }
}
{
 "name": "kub-node2",
 "capacity": {
 "cpu": "1",
 "memory": "1021536Ki",
 "pods": "40"
 }
}

Operating system
The OS of nodes could be various, but the kernel version must be 3.10 or later. Following are
the OSs that are using kernel 3.10+:

ff CentOS 7 or later

ff RHEL 7 or later

ff Ubuntu Vivid 15.04 / Ubuntu Trusty 14.04 (LTS) / Ubuntu Saucy 13.10

Chapter 1

11

Beware of the Linux kernel version
Docker requires that your kernel must be 3.10 at minimum on CentOS or Red
Hat Enterprise Linux, 3.13 kernel version on Ubuntu Precise 12.04 (LTS). It
will cause data loss or kernel panic sometimes if using unsupported kernels.
It is recommended you fully update the system before building Kubernetes.
You can use uname -r to check the kernel you're currently using. For more
information on checking the kernel version, please refer to http://www.
linfo.org/find_kernel_version.html.

How to do it…
To ensure each component works perfectly in Kubernetes cluster, we must install the correct
packages on each machine of master, node, and etcd.

Kubernetes master
Kubernetes master should be installed on a Linux-based OS. For the examples listed in this
book, we will use CentOS 7.1 as an OS. There are two packages required in master:

ff Kubernetes

ff Flannel (optional)

ff iptables (at least 1.4.11+ is preferred)

Kubernetes (https://github.com/kubernetes/kubernetes/releases) has a couple
of fast-paced releases. Flannel daemon is optional in master; if you would like to launch
Kubernetes UI, flannel (https://github.com/coreos/flannel/releases) is required.
Otherwise, Kubernetes UI will be failed to access via https://<kubernetes-master>/ui.

Beware of iptables version
Kubernetes uses iptables to implement service proxy. iptables with version
1.4.11+ is recommended on Kubernetes. Otherwise, iptables rules might be
out of control and keep increasing. You can use yum info iptables to
check the current version of iptables.

http://www.linfo.org/find_kernel_version.html
http://www.linfo.org/find_kernel_version.html
https://github.com/kubernetes/kubernetes/releases
https://github.com/coreos/flannel/releases
https://<kubernetes-master>/ui

Building Your Own Kubernetes

12

Kubernetes nodes
On Kubernetes nodes, we have to prepare the following:

ff Kubernetes

ff Flannel daemon

ff Docker (at least 1.6.2+ is preferred)

ff iptables (at least 1.4.11+ is preferred)

Beware of Docker version and dependencies

Sometimes, you'll get an unknown error when using the incompatible Docker
version, such as target image is not found. You can always use the docker
version command to check the current version you've installed. The
recommended versions we tested are at least 1.7.1+. Before building the
cluster, you can start the service by using the service docker start
command and make sure it can be contacted using docker ps.
Docker has different package names and dependency packages in
Linux distributions. In Ubuntu, you could use curl -sSL https://
get.docker.com/ | sh. For more information, check out the
Docker installation document (http://docs.docker.com/v1.8/
installation) to find your preferred Linux OS.

etcd
etcd, which is a distributed reliable key-value store for shared configurations and service
discovery, is powered by CoreOS. The release page is https://github.com/coreos/
etcd/releases. The prerequisite we need is just the etcd package.

See also
After preparing the environment, it is time to build up your Kubernetes. Check out the
following recipes for that:

ff Building datastore

ff Creating an overlay network

ff Configuring master

ff Configuring nodes

ff The Setting resource in nodes recipe in Chapter 7, Advanced Cluster Administration

ff The Monitoring master and node recipe in Chapter 8, Logging and Monitoring

http://docs.docker.com/v1.8/installation
http://docs.docker.com/v1.8/installation
https://github.com/coreos/etcd/releases
https://github.com/coreos/etcd/releases

Chapter 1

13

Building datastore
In order to persist the Kubernetes cluster information, we need to set up datastore.
Kubernetes uses etcd as a standard datastore. This section will guide you to build the
etcd server.

How to do it…
The etcd database requires Linux OS; some Linux distributions provide the etcd package and
some don't. This section describes how to install etcd.

Red Hat Enterprise Linux 7 or CentOS 7
Red Hat Enterprise Linux (RHEL) 7, CentOS 7 or later has an official package for etcd. You can
install via the yum command, as follows:

//it will perform to install etcd package on RHEL/CentOS Linux

sudo yum update -y

sudo yum install etcd

Ubuntu Linux 15.10 Wily Werewolf
Ubuntu 15.10 or later has an official package for etcd as well. You can install via the apt-get
command as follows:

//it will perform to install etcd package on Ubuntu Linux

sudo apt-get update -y

sudo apt-get install etcd

Other Linux
If you are using a different Linux version, such as Amazon Linux, you can download a binary
from the official website and install it as follows.

Building Your Own Kubernetes

14

Download a binary
etcd is provided via https://github.com/coreos/etcd/releases. OS X (darwin-
amd64), Linux, Windows binary, and source code are available for download.

Note that there are no 32-bit binaries provided due to the Go
runtime issue. You must prepare a 64-bit Linux OS.

On your Linux machine, use the curl command to download the etcd-v2.2.1-linux-
amd64.tar.gz binary:

// follow redirection(-L) and use remote name (-O)

curl -L -O https://github.com/coreos/etcd/releases/download/v2.2.1/etcd-
v2.2.1-linux-amd64.tar.gz

Chapter 1

15

Creating a user
Due to security reasons, create a local user and group that can own etcd packages:

1.	 Run the following useradd command:
//options

// create group(-U), home directory(-d), and create it(-m)

// name in GCOS field (-c), login shell(-s)

$ sudo useradd -U -d /var/lib/etcd -m -c "etcd user" -s /sbin/
nologin etcd

2.	 You can check /etc/passwd to see whether creating etcd user has created
a user or not:
//search etcd user on /etc/passwd, uid and gid is vary

$ grep etcd /etc/passwd

etcd:x:997:995:etcd user:/var/lib/etcd:/sbin/nologin

You can delete a user any time; type sudo userdel -r etcd to delete
etcd user.

Install etcd
1.	 After downloading an etcd binary, use the tar command to extract files:

$ tar xf etcd-v2.2.1-linux-amd64.tar.gz

$ cd etcd-v2.2.1-linux-amd64

//use ls command to see that there are documentation and binaries

$ ls

Documentation README-etcdctl.md README.md etcd etcdctl

2.	 There are etcd daemon and etcdctl command that need to be copied to
/usr/local/bin. Also, create /etc/etcd/etcd.conf as a setting file:

$ sudo cp etcd etcdctl /usr/local/bin/

//create etcd.conf

$ sudo mkdir -p /etc/etcd/

$ sudo touch /etc/etcd/etcd.conf

$ sudo chown -R etcd:etcd /etc/etcd

Building Your Own Kubernetes

16

How it works…
Let's test run the etcd daemon to explorer the etcd functionalities. Type the etcd command
with the name and data-dir argument as follows:

//for the testing purpose, create data file under /tmp

$ etcd --name happy-etcd --data-dir /tmp/happy.etcd &

Then, you will see several output logs as follows:

Now, you can try to use the etcdctl command to access etcd and to load and store the data
as follows:

//set value "hello world" to the key /my/happy/data

$ etcdctl set /my/happy/data "hello world"

//get value for key /my/happy/data

$ etcdctl get /my/happy/data

hello world

Chapter 1

17

In addition, by default, etcd opens TCP port 2379 to access the RESTful API, so you may also
try to use an HTTP client, such as the curl command to access data as follows:

//get value for key /my/happy/data using cURL

$ curl -L http://localhost:2379/v2/keys/my/happy/data

{"action":"get","node":{"key":"/my/happy/data","value":"hello world","mod
ifiedIndex":4,"createdIndex":4}}

//set value "My Happy world" to the key /my/happy/data using cURL

$ curl http://127.0.0.1:2379/v2/keys/my/happy/data -XPUT -d value="My
Happy world"

//get value for key /my/happy/data using etcdctl

$ etcdctl get /my/happy/data

My Happy world

Okay! Now, you can delete the key using the curl command as follows:

$ curl http://127.0.0.1:2379/v2/keys/my?recursive=true -XDELETE

//no more data returned afterword

$ curl http://127.0.0.1:2379/v2/keys/my/happy/data

{"errorCode":100,"message":"Key not found","cause":"/my","index":10}

$ curl http://127.0.0.1:2379/v2/keys/my/happy

{"errorCode":100,"message":"Key not found","cause":"/my","index":10}

$ curl http://127.0.0.1:2379/v2/keys/my

{"errorCode":100,"message":"Key not found","cause":"/my","index":10}

Auto startup script
Based on your Linux, either systemd or init, there are different ways to make an auto
startup script.

If you are not sure, check the process ID 1 on your system. Type ps -P 1 to see the process
name as follows:

//This Linux is systemd based

$ ps -P 1

 PID PSR TTY STAT TIME COMMAND

Building Your Own Kubernetes

18

 1 0 ? Ss 0:03 /usr/lib/systemd/systemd --switched-root –
system

//This Linux is init based

ps -P 1

 PID PSR TTY STAT TIME COMMAND

 1 0 ? Ss 0:01 /sbin/init

Startup script (systemd)
If you are using systemd-based Linux, such as RHEL 7, CentOS 7, Ubuntu 15.4 or later, you
need to prepare the /usr/lib/systemd/system/etcd.service file as follows:

[Unit]
Description=Etcd Server
After=network.target

[Service]
Type=simple
WorkingDirectory=/var/lib/etcd/
EnvironmentFile=/etc/etcd/etcd.conf
User=etcd
ExecStart=/usr/local/bin/etcd

[Install]
WantedBy=multi-user.target

After that, register to systemd using the systemctl command as follows:

sudo systemctl enable etcd

Then, you restart the system or type sudo systemctl start etcd to launch the etcd
daemon. You may check the etcd service status using sudo systemctl status -l etcd.

Startup script (init)
If you are using the init-based Linux, such as Amazon Linux, use the traditional way to prepare
the /etc/init.d/etcd script as follows:

#!/bin/bash
#
etcd This shell script takes care of starting and stopping etcd
#
chkconfig: - 60 74
description: etcd

BEGIN INIT INFO
Provides: etcd

Chapter 1

19

Required-Start: $network $local_fs $remote_fs
Required-Stop: $network $local_fs $remote_fs
Should-Start: $syslog $named ntpdate
Should-Stop: $syslog $named
Short-Description: start and stop etcd
Description: etcd
END INIT INFO

Source function library.
. /etc/init.d/functions

Source networking configuration.
. /etc/sysconfig/network

prog=/usr/local/bin/etcd
etcd_conf=/etc/etcd/etcd.conf
lockfile=/var/lock/subsys/`basename $prog`
hostname=`hostname`

start() {
 # Start daemon.
. $etcd_conf
 echo -n $"Starting $prog: "
 daemon --user=etcd $prog > /var/log/etcd.log 2>&1 &
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch $lockfile
 return $RETVAL
}
stop() {
 ["$EUID" != "0"] && exit 4
 echo -n $"Shutting down $prog: "
 killproc $prog
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f $lockfile
 return $RETVAL
}

See how we were called.
case "$1" in
 start)
 start
 ;;

Building Your Own Kubernetes

20

 stop)
 stop
 ;;
 status)
 status $prog
 ;;
 restart)
 stop
 start
 ;;
 reload)
 exit 3
 ;;
 *)
 echo $"Usage: $0 {start|stop|status|restart|reload}"
 exit 2
esac

After that, register to init script using the chkconfig command as follows:

//set file permission correctly

$ sudo chmod 755 /etc/init.d/etcd

$ sudo chown root:root /etc/init.d/etcd

//auto start when boot Linux

$ sudo chkconfig --add etcd

$ sudo chkconfig etcd on

Then, you restart the system or type /etc/init.d/etcd start to launch the
etcd daemon.

Configuration
There is the file /etc/etcd/etcd.conf to change the configuration of etcd, such as data
file path and TCP port number.

The minimal configuration is as follows:

NAME Mean Example Note
ETCD_NAME Instance name myhappy-etcd

ETCD_DATA_DIR Data file path /var/lib/etcd/
myhappy.etcd

File path must be owned
by etcd user

Chapter 1

21

NAME Mean Example Note
ETCD_LISTEN_
CLIENT_URLS

TCP port
number

http://0.0.0.0:8080 Specifying 0.0.0.0,
binds all IP address,
otherwise use localhost
to accept only same
machine

ETCD_ADVERTISE_
CLIENT_URLS

Advertise this
etcd URL to
other cluster
instances

http://
localhost:8080

Use for clustering
configuration

Note that you need to use the export directive if you want to use the init-based Linux in order
to set environment variables as follows:

$ cat /etc/etcd/etcd.conf

export ETCD_NAME=myhappy-etcd

export ETCD_DATA_DIR="/var/lib/etcd/myhappy.etcd"

export ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:8080"

export ETCD_ADVERTISE_CLIENT_URLS="http://localhost:8080"

On the other hand, systemd-based Linux doesn't need the export directive as follows:

$ cat /etc/etcd/etcd.conf

ETCD_NAME=myhappy-etcd

ETCD_DATA_DIR="/var/lib/etcd/myhappy.etcd"

ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:8080"

ETCD_ADVERTISE_CLIENT_URLS="http://localhost:8080"

See also
This section described how to configure etcd. It is easy and simple to operate via the RESTful
API, but powerful. However, there's a need to be aware of its security and availability. The
following recipes will describe how to ensure that etcd is secure and robust:

ff Exploring architecture

ff The Clustering etcd recipe in Chapter 4, Building a High Availability Cluster

ff The Authentication and authorization recipe in Chapter 7, Advanced Cluster
Administration

ff The Working with etcd log recipe in Chapter 8, Logging and Monitoring

Building Your Own Kubernetes

22

Creating an overlay network
Kubernetes abstracts the networking to enable communication between containers across
nodes. The basic unit to make it possible is named pod, which is the smallest deployment
unit in Kubernetes with a shared context in a containerized environment. Containers within a
pod can communicate with others by port with the localhost. Kubernetes will deploy the pods
across the nodes.

Then, how do pods talk to each other?

Kubernetes allocates each pod an IP address in a shared networking namespace so that pods
can communicate with other pods across the network. There are a couple of ways to achieve
the implementation. The easiest and across the platform way will be using flannel.

Flannel gives each host an IP subnet, which can be accepted by Docker and allocate the IPs to
individual containers. Flannel uses etcd to store the IP mapping information, and has a couple
of backend choices for forwarding the packets. The easiest backend choice would be using
TUN device to encapsulate IP fragment in a UDP packet. The port is 8285 by default.

Flannel also supports in-kernel VXLAN as backend to encapsulate the packets. It might
provide better performance than UDP backend while it is not running in user space. Another
popular choice is using the advanced routing rule upon Google Cloud Engine (https://
cloud.google.com/compute/docs/networking#routing). We'll use both UDP and
VXLAN as examples in this section.

Flanneld is the agent of flannel used to watch the information from etcd, allocate the subnet
lease on each host, and route the packets. What we will do in this section is let flanneld be
up and running and allocate a subnet for each host.

If you're struggling to find out which backend should be used, here is a
simple performance test between UDP and VXLAN. We use qperf (http://
linux.die.net/man/1/qperf) to measure packet transfer performance
between containers. TCP streaming one way bandwidth through UDP is 0.3x
slower than VXLAN when there are some loads on the hosts. If you prefer
building Kubernetes on the cloud, GCP is the easiest choice.

Getting ready
Before installing flannel, be sure you have the etcd endpoint. Flannel needs etcd as its
datastore. If Docker is running, stop the Docker service first and delete docker0, which
is a virtual bridge created by Docker:

Stop docker service

$ service docker stop

https://cloud.google.com/compute/docs/networking#routing
https://cloud.google.com/compute/docs/networking#routing
http://linux.die.net/man/1/qperf
http://linux.die.net/man/1/qperf

Chapter 1

23

delete docker0

$ ip link delete docker0

Installation
Using the etcdctl command we learned in the previous section on the etcd instance, insert
the desired configuration into etcd with the key /coreos.com/network/config:

Configuration Key Description
Network IPv4 network for flannel to allocate to entire virtual

network
SubnetLen The subnet prefix length to each host, default is 24.

SubnetMin The beginning of IP range for flannel subnet allocation

SubnetMax The end of IP range for flannel subnet allocation

Backend Backend choices for forwarding the packets. Default is
udp.

insert desired CIDR for the overlay network Flannel creates

$ etcdctl set /coreos.com/network/config '{ "Network": "192.168.0.0/16"
}'

Flannel will assign the IP address within 192.168.0.0/16 for overlay network with /24 for
each host by default, but you could also overwrite its default setting and insert into etcd:

$ cat flannel-config-udp.json

{

 "Network": "192.168.0.0/16",

 "SubnetLen": 28,

 "SubnetMin": "192.168.10.0",

 "SubnetMax": "192.168.99.0",

 "Backend": {

 "Type": "udp",

 "Port": 7890

 }

}

Use the etcdctl command to insert the flannel-config-udp.json configuration:

insert the key by json file

$ etcdctl set /coreos.com/network/config < flannel-config-udp.json

Building Your Own Kubernetes

24

Then, flannel will allocate to each host with /28 subnet and only issue the subnets within
192.168.10.0 and 192.168.99.0. Backend will be still udp and the default port will be
changed from 8285 to 7890.

We could also use VXLAN to encapsulate the packets and use etcdctl to insert the
configuration:

$ cat flannel-config-vxlan.json

{

 "Network": "192.168.0.0/16",

 "SubnetLen": 24,

 "Backend": {

 "Type": "vxlan",

 "VNI": 1

 }

}

insert the key by json file

$ etcdctl set /coreos.com/network/config < flannel-config-vxlan.json

You might be able to see the configuration you get using etcdctl:

$ etcdctl get /coreos.com/network/config

{

 "Network": "192.168.0.0/16",

 "SubnetLen": 24,

 "Backend": {

 "Type": "vxlan",

 "VNI": 1

 }

}

CentOS 7 or Red Hat Enterprise Linux 7
RHEL 7, CentOS 7, or later have an official package for flannel. You can install them via the
yum command:

install flannel package

$ sudo yum install flannel

Chapter 1

25

After the installation, we have to configure the etcd server in order to use the flannel service:

$ cat /etc/sysconfig/flanneld

Flanneld configuration options

etcd url location. Point this to the server where etcd runs

FLANNEL_ETCD="<your etcd server>"

etcd config key. This is the configuration key that flannel queries

For address range assignment

FLANNEL_ETCD_KEY="/coreos.com/network"

Any additional options that you want to pass

#FLANNEL_OPTIONS=""

We should always keep flanneld up and running all the time when we boot up the server.
Using systemctl could do the trick:

Enable flanneld service by default

$ sudo systemctl enable flanneld

start flanneld

$ sudo service flanneld start

check if the service is running

$ sudo service flannel status

Other Linux options
You can always download a binary as an alternative. The CoreOS flannel official release page
is here: https://github.com/coreos/flannel/releases. Choose the packages with
the Latest release tag; it will always include the latest bug fixes:

download flannel package

$ curl -L -O https://github.com/coreos/flannel/releases/download/v0.5.5/
flannel-0.5.5-linux-amd64.tar.gz

extract the package

$ tar zxvf flannel-0.5.5-linux-amd64.tar.gz

copy flanneld to $PATH

$ sudo cp flannel-0.5.5/flanneld /usr/local/bin

https://github.com/coreos/flannel/releases

Building Your Own Kubernetes

26

If you use a startup script (systemd) in the etcd section, you might probably choose the same
way to describe flanneld:

$ cat /usr/lib/systemd/system/flanneld.service

[Unit]

Description=Flanneld overlay address etcd agent

Wants=etcd.service

After=etcd.service

Before=docker.service

[Service]

Type=notify

EnvironmentFile=/etc/sysconfig/flanneld

EnvironmentFile=-/etc/sysconfig/docker-network

ExecStart=/usr/bin/flanneld -etcd-endpoints=${FLANNEL_ETCD} -etcd-
prefix=${FLANNEL_ETCD_KEY} $FLANNEL_OPTIONS

Restart=on-failure

RestartSec=5s

[Install]

WantedBy=multi-user.target

Then, enable the service on bootup using sudo systemctl enable flanneld.

Alternatively, you could use a startup script (init) under /etc/init.d/flanneld if you're
using an init-based Linux:

#!/bin/bash

flanneld This shell script takes care of starting and stopping
flanneld
#

Source function library.
. /etc/init.d/functions

Source networking configuration.
. /etc/sysconfig/network

prog=/usr/local/bin/flanneld
lockfile=/var/lock/subsys/`basename $prog`

Chapter 1

27

After you have sourced and set the variables, you should implement start, stop status, and
restart for the service. The only thing you need to take care of is to ensure to add the etcd
endpoint into the configuration when the daemon starts:

start() {
 # Start daemon.
 echo -n $"Starting $prog: "
 daemon $prog \
 --etcd-endpoints=="<your etcd server>" \
 -ip-masq=true \
 > /var/log/flanneld.log 2>&1 &
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch $lockfile
 return $RETVAL
}

stop() {
 ["$EUID" != "0"] && exit 4
 echo -n $"Shutting down $prog: "
 killproc $prog
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f $lockfile
 return $RETVAL
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 status)
 status $prog
 ;;
 restart|force-reload)
 stop
 start
 ;;
 try-restart|condrestart)
 if status $prog > /dev/null; then
 stop

Building Your Own Kubernetes

28

 start
 fi
 ;;
 reload)
 exit 3
 ;;
 *)
 echo $"Usage: $0 {start|stop|status|restart|try-restart|force-
reload}"
 exit 2
esac

If flannel gets stuck when starting up
Check out your etcd endpoint is accessible and the key listed in FLANNEL_
ETCD_KEY exists:
FLANNEL_ETCD_KEY="/coreos.com/network/config"
$ curl -L http://<etcd endpoint>:2379/v2/keys/coreos.com/
network/config

You could also check out flannel logs using sudo journalctl -u
flanneld.

After the flannel service starts, you should be able to see a file in /run/flannel/subnet.
env and the flannel0 bridge in ifconfig.

How to do it…
To ensure flannel works well and transmits the packets from the Docker virtual interface,
we need to integrate it with Docker.

Flannel networking configuration
1.	 After flanneld is up and running, use the ifconfig or ip commands to see

whether there is a flannel0 virtual bridge in the interface:
check current ipv4 range

$ ip a | grep flannel | grep inet

 inet 192.168.50.0/16 scope global flannel0

We can see from the preceding example, the subnet lease of flannel0 is
192.168.50.0/16.

Chapter 1

29

2.	 Whenever your flanneld service starts, flannel will acquire the subnet lease and
save in etcd and then write out the environment variable file in /run/flannel/
subnet.env by default, or you could change the default path using the --subnet-
file parameter when launching it:
check out flannel subnet configuration on this host

$ cat /run/flannel/subnet.env

FLANNEL_SUBNET=192.168.50.1/24

FLANNEL_MTU=1472

FLANNEL_IPMASQ=true

Integrating with Docker
There are a couple of parameters that are supported by the Docker daemon. In /run/
flannel/subnet.env, flannel already allocated one subnet with the suggested MTU
and IPMASQ settings. The corresponding parameters in Docker are:

Parameters Meaning
--bip="" Specify network bridge IP (docker0)
--mtu=0 Set the container network MTU (for docker0 and

veth)
--ip-masq=true (Optional) Enable IP masquerading

1.	 We could use the variables listed in /run/flannel/subnet.env into the Docker
daemon:
import the environment variables from subnet.env

$. /run/flannel/subnet.env

launch docker daemon with flannel information

$ docker -d --bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}

Or if your docker version is 1.8 or higher, use subcommand
daemon instead

$ docker daemon --bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}

2.	 Alternatively, you can also specify them into OPTIONS of /etc/sysconfig/
docker, which is the Docker configuration file in CentOS:
in the file - /etc/sysconfig/docker

set the variables into OPTIONS

$ OPTIONS="--bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU} --ip-
masq=${FLANNEL_IPMASQ}"

Building Your Own Kubernetes

30

In the preceding example, specify ${FLANNEL_SUBNET} is replaced by
192.168.50.1/24 and ${FLANNEL_MTU} is 1472 in the /etc/sysconfig/
docker.

3.	 Start Docker using service docker start and type ifconfig; you might
be able to see the virtual network device docker0 and its allocated IP address
from flannel.

How it works…
There are two virtual bridges named flannel0 and docker0 that are created in the previous
steps. Let's take a look at their IP range using the ip command:

checkout IPv4 network in local

$ ip -4 a | grep inet

 inet 127.0.0.1/8 scope host lo

 inet 10.42.1.171/24 brd 10.42.21.255 scope global dynamic ens160

 inet 192.168.50.0/16 scope global flannel0

 inet 192.168.50.1/24 scope global docker0

Host IP address is 10.42.1.171/24, flannel0 is 192.168.50.0/16, docker0 is
192.168.50.1/24, and the route is set for the full flat IP range:

check the route

$ route -n

Destination Gateway Genmask Flags Metric Ref Use
Iface

0.0.0.0 10.42.1.1 0.0.0.0 UG 100 0 0
ens160

192.168.0.0 0.0.0.0 255.255.0.0 U 0 0 0
flannel0

192.168.50.0 0.0.0.0 255.255.255.0 U 0 0 0
docker0

Let's go a little bit deeper to see how etcd stores flannel subnet information. You could retrieve
the network configuration by using the etcdctl command in etcd:

get network config

$ etcdctl get /coreos.com/network/config

{ "Network": "192.168.0.0/16" }

show all the subnet leases

$ etcdctl ls /coreos.com/network/subnets

/coreos.com/network/subnets/192.168.50.0-24

Chapter 1

31

The preceding example shows that the network CIDR is 192.168.0.0/16. There is one
subnet lease. Check the value of the key; it's exactly the IP address of eth0 on the host:

show the value of the key of `/coreos.com/network/
subnets/192.168.50.0-24`

$ etcdctl get /coreos.com/network/subnets/192.168.50.0-24

{"PublicIP":"10.42.1.171"}

If you're using other backend solutions rather than simple UDP, you might see more
configuration as follows:

show the value when using different backend

$ etcdctl get /coreos.com/network/subnets/192.168.50.0-24

{"PublicIP":"10.97.1.171","BackendType":"vxlan","BackendData":{"VtepMAC":
"ee:ce:55:32:65:ce"}}

Following is an illustration about how a packet from Pod1 goes through the overlay network
to Pod4. As we discussed before, every pod will have its own IP address and the packet is
encapsulated so that pod IPs are routable. The packet from Pod1 will go through the veth
(virtual network interface) device that connects to docker0, and routes to flannel0. The traffic
is encapsulated by flanneld and sent to the host (10.42.1.172) of the target pod.

Building Your Own Kubernetes

32

Let's perform a simple test by running two individual containers to see whether flannel works
well. Assume we have two hosts (10.42.1.171 and 10.42.1.172) with different subnets,
which are allocated by Flannel with the same etcd backend, and have launched Docker run by
docker run -it ubuntu /bin/bash in each host:

Container 1 on host 1 (10.42.1.171) Container 2 on host 2 (10.42.1.172)
root@0cd2a2f73d8e:/# ifconfig eth0
eth0 Link encap:Ethernet
HWaddr 02:42:c0:a8:3a:08
 inet addr:192.168.50.2
Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr:
fe80::42:c0ff:fea8:3a08/64
Scope:Link
 UP BROADCAST RUNNING
MULTICAST MTU:8951 Metric:1
 RX packets:8 errors:0
dropped:0 overruns:0 frame:0
 TX packets:8 errors:0
dropped:0 overruns:0 carrier:0
 collisions:0
txqueuelen:0
 RX bytes:648 (648.0 B)
TX bytes:648 (648.0 B)
root@0cd2a2f73d8e:/# ping
192.168.65.2
PING 192.168.4.10 (192.168.4.10)
56(84) bytes of data.
64 bytes from 192.168.4.10: icmp_
seq=2 ttl=62 time=0.967 ms
64 bytes from 192.168.4.10: icmp_
seq=3 ttl=62 time=1.00 ms

root@619b3ae36d77:/# ifconfig eth0
eth0 Link encap:Ethernet
HWaddr 02:42:c0:a8:04:0a
 inet addr:192.168.65.2
Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr:
fe80::42:c0ff:fea8:40a/64
Scope:Link
 UP BROADCAST RUNNING
MULTICAST MTU:8973 Metric:1
 RX packets:8 errors:0
dropped:0 overruns:0 frame:0
 TX packets:8 errors:0
dropped:0 overruns:0 carrier:0
 collisions:0
txqueuelen:0
 RX bytes:648 (648.0 B)
TX bytes:648 (648.0 B)

We can see that two containers can communicate with each other using ping. Let's observe
the packet using tcpdump in host2, which is a command-line tool that can help dump traffic
on a network:

install tcpdump in container

$ yum install -y tcpdump

observe the UDP traffic from host2

$ tcpdump host 10.42.1.172 and udp

11:20:10.324392 IP 10.42.1.171.52293 > 10.42.1.172.6177: UDP, length 106

11:20:10.324468 IP 10.42.1.172.47081 > 10.42.1.171.6177: UDP, length 106

Chapter 1

33

11:20:11.324639 IP 10.42.1.171.52293 > 10.42.1.172.6177: UDP, length 106

11:20:11.324717 IP 10.42.1.172.47081 > 10.42.1.171.6177: UDP, length 106

The traffic between the containers are encapsulated in UDP through port 6177 using flanneld.

See also
After setting up and understanding the overlay network, we have a good understanding of how
flannel acts in Kubernetes. Check out the following recipes:

ff The Working with pods, Working with services recipes in Chapter 2, Walking through
Kubernetes Concepts

ff The Forwarding container ports recipe in Chapter 3, Playing with Containers

ff The Authentication and authorization recipe in Chapter 7, Advanced Cluster
Administration

Configuring master
The master node of Kubernetes works as the control center of containers. The duties of which
are taken charge by the master include serving as a portal to end users, assigning tasks to
nodes, and gathering information. In this recipe, we will see how to set up Kubernetes master.
There are three daemon processes on master:

ff API Server

ff Scheduler

ff Controller Manager

We can either start them using the wrapper command, hyperkube, or individually start them
as daemons. Both the solutions are covered in this section.

Getting ready
Before deploying the master node, make sure you have the etcd endpoint ready, which
acts like the datastore of Kubernetes. You have to check whether it is accessible and also
configured with the overlay network Classless Inter-Domain Routing (CIDR https://
en.wikipedia.org/wiki/Classless_Inter-Domain_Routing). It is possible
to check it using the following command line:

// Check both etcd connection and CIDR setting

$ curl -L <etcd endpoint URL>/v2/keys/coreos.com/network/config

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Building Your Own Kubernetes

34

If connection is successful, but the etcd configuration has no expected CIDR value, you can
push value through curl as well:

$ curl -L <etcd endpoint URL>/v2/keys/coreos.com/network/config -XPUT -d
value="{ \"Network\": \"<CIDR of overlay network>\" }"

Besides this, please record the following items: the URL of etcd endpoint,
the port exposed by etcd endpoint, and the CIDR of the overlay network.
You will need them while configuring master's services.

How to do it…
In order to build up a master, we propose the following steps for installing the source code,
starting with the daemons and then doing verification. Follow the procedure and you'll get
a practical master eventually.

Installation
Here, we offer two kinds of installation procedures:

ff One is a RHEL-based OS with package manager; master daemons are controlled
by systemd

ff The other one is for other Linux distributions; we build up master with binary files
and service init scripts

CentOS 7 or Red Hat Enterprise Linux 7
1.	 RHEL 7, CentOS 7, or later have an official package for Kubernetes. You can install

them via the yum command:
// install Kubernetes master package

yum install kubernetes-master kubernetes-client

The kubernetes-master package contains master daemons, while kubernetes-
client installs a tool called kubectl, which is the Command Line Interface for
communicating with the Kubernetes system. Since the master node is served as an
endpoint for requests, with kubectl installed, users can easily control container
applications and the environment through commands.

Chapter 1

35

CentOS 7's RPM of Kubernetes
There are five Kubernetes RPMs (the .rpm files, https://
en.wikipedia.org/wiki/RPM_Package_Manager) for
different functionalities: kubernetes, kubernetes-master,
kubernetes-client, kubernetes-node, and kubernetes-
unit-test.
The first one, kubernetes, is just like a hyperlink to the following
three items. You will install kubernetes-master, kubernetes-
client, and kubernetes-node at once. The one named
kubernetes-node is for node installation. And the last one,
kubernetes-unit-test contains not only testing scripts, but also
Kubernetes template examples.

2.	 Here are the files after yum install:
// profiles as environment variables for services

ls /etc/kubernetes/

apiserver config controller-manager scheduler

// systemd files

ls /usr/lib/systemd/system/kube-*

/usr/lib/systemd/system/kube-apiserver.service /usr/lib/
systemd/system/kube-scheduler.service

/usr/lib/systemd/system/kube-controller-manager.service

3.	 Next, we will leave the systemd files as the original ones and modify the values in
the configuration files under the directory /etc/kubernetes to build a connection
with etcd. The file named config is a shared environment file for several Kubernetes
daemon processes. For basic settings, simply change items in apiserver:
cat /etc/kubernetes/apiserver

###

kubernetes system config

#

The following values are used to configure the kube-apiserver

#

The address on the local server to listen to.

KUBE_API_ADDRESS="--address=0.0.0.0"

The port on the local server to listen on.

KUBE_API_PORT="--insecure-port=8080"

https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager

Building Your Own Kubernetes

36

Port nodes listen on

KUBELET_PORT="--kubelet_port=10250"

Comma separated list of nodes in the etcd cluster

KUBE_ETCD_SERVERS="--etcd_servers=<etcd endpoint URL>:<etcd
exposed port>"

Address range to use for services

KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=<CIDR of
overlay network>"

default admission control policies

KUBE_ADMISSION_CONTROL="--admission_control=NamespaceLifecycle,Nam
espaceExists,LimitRanger,SecurityContextDeny,ServiceAccount,Resour
ceQuota"

Add your own!

KUBE_API_ARGS="--cluster_name=<your cluster name>"

4.	 Then, start the daemon kube-apiserver, kube-scheduler, and kube-
controller-manager one by one; the command systemctl can help for
management. Be aware that kube-apiserver should always start first, since
kube-scheduler and kube-controller-manager connect to the Kubernetes
API server when they start running:

// start services

systemctl start kube-apiserver

systemctl start kube-scheduler

systemctl start kube-controller-manager

// enable services for starting automatically while server boots
up.

systemctl enable kube-apiserver

systemctl enable kube-scheduler

systemctl enable kube-controller-manager

Adding daemon dependency
1.	 Although systemd does not return error messages without the API server running,

both kube-scheduler and kube-controller-manager get connection errors
and do not provide regular services:
$ sudo systemctl status kube-scheduler -l—output=cat kube-
scheduler.service - Kubernetes Scheduler Plugin

Chapter 1

37

 Loaded: loaded (/usr/lib/systemd/system/kube-scheduler.service;
enabled)

 Active: active (running) since Thu 2015-11-19 07:21:57 UTC;
5min ago

 Docs: https://github.com/GoogleCloudPlatform/kubernetes

 Main PID: 2984 (kube-scheduler)

 CGroup: /system.slice/kube-scheduler.service

 └─2984 /usr/bin/kube-scheduler—logtostderr=true—v=0
--master=127.0.0.1:8080

E1119 07:27:05.471102 2984 reflector.go:136] Failed
to list *api.Node: Get http://127.0.0.1:8080/api/v1/
nodes?fieldSelector=spec.unschedulable%3Dfalse: dial tcp
127.0.0.1:8080: connection refused

2.	 Therefore, in order to prevent the starting order to affect performance, you can add
two settings under the section of systemd.unit in /usr/lib/systemd/system/
kube-scheduler and /usr/lib/systemd/system/kube-controller-
manager:
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=kube-apiserver.service
Wants=kube-apiserver.service

With the preceding settings, we can make sure kube-apiserver is the first started
daemon.

3.	 Furthermore, if you expect the scheduler and the controller manager to always
be running along with a healthy API server, which means if kube-apiserver is
stopped, kube-scheduler and kube-controller-manager will be stopped as
well; you can change systemd.unit item Wants to Requires, as follows:
Requires=kube-apiserver.service

Requires has more strict restrictions. In case the daemon kube-apiserver
has crashed, kube-scheduler and kube-controller-manager would also
be stopped. On the other hand, configuration with Requires is hard for debugging
master installation. It is recommended that you enable this parameter once you
make sure every setting is correct.

Building Your Own Kubernetes

38

Other Linux options
It is also possible that we download a binary file for installation. The official website for the
latest release is here: https://github.com/kubernetes/kubernetes/releases:

1.	 We are going to install the version tagged as Latest release and start all the
daemons with the wrapper command hyperkube:
// download Kubernetes package

curl -L -O https://github.com/GoogleCloudPlatform/kubernetes/
releases/download/v1.1.2/kubernetes.tar.gz

// extract the tarball to specific local, here we put it under /
opt. the KUBE_HOME would be /opt/kubernetes

tar zxvf kubernetes.tar.gz -C /opt/

// copy all binary files to system directory

cp /opt/kubernetes/server/bin/* /usr/local/bin/

2.	 The next step is to create a startup script (init), which would cover three master
daemons and start them individually:
cat /etc/init.d/kubernetes-master

#!/bin/bash

#

This shell script takes care of starting and stopping kubernetes
master

Source function library.

. /etc/init.d/functions

Source networking configuration.

. /etc/sysconfig/network

prog=/usr/local/bin/hyperkube

lockfile=/var/lock/subsys/`basename $prog`

hostname=`hostname`

logfile=/var/log/kubernetes.log

CLUSTER_NAME="<your cluster name>"

https://github.com/kubernetes/kubernetes/releases

Chapter 1

39

ETCD_SERVERS="<etcd endpoint URL>:<etcd exposed port>"

CLUSTER_IP_RANGE="<CIDR of overlay network>"

MASTER="127.0.0.1:8080"

3.	 To manage your Kubernetes settings more easily and clearly, we will put the
declaration of changeable variables at the beginning of this init script. Please
double-check the etcd URL and overlay network CIDR to confirm that they are the
same as your previous installation:
start() {

 # Start daemon.
 echo $"Starting apiserver: "
 daemon $prog apiserver \
 --service-cluster-ip-range=${CLUSTER_IP_RANGE} \
 --port=8080 \
 --address=0.0.0.0 \
 --etcd_servers=${ETCD_SERVERS} \
 --cluster_name=${CLUSTER_NAME} \
 > ${logfile}_apiserver 2>&1 &

 echo $"Starting controller-manager: "
 daemon $prog controller-manager \
 --master=${MASTER} \
 > ${logfile}_controller-manager 2>&1 &

 echo $"Starting scheduler: "
 daemon $prog scheduler \
 --master=${MASTER} \
 > ${logfile}_scheduler 2>&1 &

 RETVAL=$?
 [$RETVAL -eq 0] && touch $lockfile
 return $RETVAL
}

stop() {
 ["$EUID" != "0"] && exit 4
 echo -n $"Shutting down $prog: "
 killproc $prog
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f $lockfile
 return $RETVAL
}

Building Your Own Kubernetes

40

4.	 Next, feel free to attach the following lines as the last part in the script for general
service usage:
See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 status)
 status $prog
 ;;
 restart|force-reload)
 stop
 start
 ;;
 try-restart|condrestart)
 if status $prog > /dev/null; then
 stop
 start
 fi
 ;;
 reload)
 exit 3
 ;;
 *)
 echo $"Usage: $0 {start|stop|status|restart|try-restart|force-
reload}"
 exit 2
esac

5.	 Now, it is good to start the service named kubernetes-master:
$sudo service kubernetes-master start

At the time of writing this book, the latest version of Kubernetes was 1.1.2.
So, we will use 1.1.2 in the examples for most of the chapters.

Verification
1.	 After starting all the three daemons of the master node, you can verify whether they

are running properly by checking the service status. Both the commands, systemd
and service, are able to get the logs:
systemd status <service name>

Chapter 1

41

2.	 For a more detailed log in history, you can use the command journalctl:
journalctl -u <service name> --no-pager --full

Once you find a line showing Started... in the output, you can confirm that the
service setup has passed the verification.

3.	 Additionally, the dominant command in Kubernetes, kubectl, can begin the
operation:
// check Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"0.3", GitVersion:"v
1.0.3.34+b9a88a7d0e357b", GitCommit:"b9a88a7d0e357be2174011dd2b127
038c6ea8929", GitTreeState:"clean"}

Server Version: version.Info{Major:"1", Minor:"0.3", GitVersion:"v
1.0.3.34+b9a88a7d0e357b", GitCommit:"b9a88a7d0e357be2174011dd2b127
038c6ea8929", GitTreeState:"clean"}

See also
From the recipe, you know how to create your own Kubernetes master. You can also check out
the following recipes:

ff Exploring architecture

ff Configuring nodes

ff The Building multiple masters recipe in Chapter 4, Building a High Availability Cluster

ff The Building the Kubernetes infrastructure in AWS recipe in Chapter 6, Building
Kubernetes on AWS

ff The Authentication and authorization recipe in Chapter 7, Advanced Cluster
Administration

Configuring nodes
Node is the slave in the Kubernetes cluster. In order to let master take a node under its
supervision, node installs an agent called kubelet for registering itself to a specific master.
After registering, daemon kubelet also handles container operations and reports resource
utilities and container statuses to the master. The other daemon running on the node is
kube-proxy, which manages TCP/UDP packets between containers. In this section, we will
show you how to configure a node.

Building Your Own Kubernetes

42

Getting ready
Since node is the worker of Kubernetes and the most important duty is running containers,
you have to make sure that Docker and flanneld are installed at the beginning. Kubernetes
relies on Docker helping applications to run in containers. And through flanneld, the pods
on separated nodes can communicate with each other.

After you have installed both the daemons, according to the file /run/flannel/subnet.
env, the network interface docker0 should be underneath the same LAN as flannel0:

cat /run/flannel/subnet.env

FLANNEL_SUBNET=192.168.31.1/24

FLANNEL_MTU=8973

FLANNEL_IPMASQ=true

// check the LAN of both flanneld0 and docker0

ifconfig docker0 ; ifconfig flannel0

docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 inet 192.168.31.1 netmask 255.255.255.0 broadcast 0.0.0.0

 ether 02:42:6e:b9:a7:51 txqueuelen 0 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

flannel0: flags=81<UP,POINTOPOINT,RUNNING> mtu 8973

 inet 192.168.31.0 netmask 255.255.0.0 destination 192.168.11.0

 unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
txqueuelen 500 (UNSPEC)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

If docker0 is in a different CIDR range, you may take the following service scripts as a
reference for a reliable Docker service setup:

cat /etc/sysconfig/docker

/etc/sysconfig/docker

#

Other arguments to pass to the docker daemon process

Chapter 1

43

These will be parsed by the sysv initscript and appended

to the arguments list passed to docker -d, or docker daemon where
docker version is 1.8 or higher

. /run/flannel/subnet.env

other_args="--bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}"

DOCKER_CERT_PATH=/etc/docker

Alternatively, by way of systemd, the configuration also originally handles the dependency:

$ cat /etc/systemd/system/docker.service.requires/flanneld.service

[Unit]

Description=Flanneld overlay address etcd agent

After=network.target

Before=docker.service

[Service]

Type=notify

EnvironmentFile=/etc/sysconfig/flanneld

EnvironmentFile=-/etc/sysconfig/docker-network

ExecStart=/usr/bin/flanneld -etcd-endpoints=${FLANNEL_ETCD} -etcd-
prefix=${FLANNEL_ETCD_KEY} $FLANNEL_OPTIONS

ExecStartPost=/usr/libexec/flannel/mk-docker-opts.sh -k DOCKER_NETWORK_
OPTIONS -d /run/flannel/docker

[Install]

RequiredBy=docker.service

$ cat /run/flannel/docker

DOCKER_OPT_BIP="--bip=192.168.31.1/24"

DOCKER_OPT_MTU="--mtu=8973"

DOCKER_NETWORK_OPTIONS=" --bip=192.168.31.1/24 --mtu=8973 "

Once you have modified the Docker service script to a correct one, stop the Docker service,
clean its network interface, and start it again.

For more details on the flanneld setup and Docker integration, please refer to the recipe
Creating an overlay network.

You can even configure a master to the node; just install the necessary daemons.

Building Your Own Kubernetes

44

How to do it…
Once you verify that Docker and flanneld are good to go on your node host, continue to install
the Kubernetes package for the node. We'll cover both RPM and tarball setup.

Installation
This will be the same as the Kubernetes master installation, Linux OS having the command
line tool yum, the package management utility, can easily install the node package. On the
other hand, we are also able to install the latest version through downloading a tarball file and
copy binary files to the specified system directory, which is suitable for every Linux distribution.
You can try either of the solutions for your deployment.

CentOS 7 or Red Hat Enterprise Linux 7
1.	 First, we will install the package kubernetes-node, which is what we need for

the node:
// install kubernetes node package

$ yum install kubernetes-node

The package kubernetes-node includes two daemon processes, kubelet and
kube-proxy.

2.	 We need to modify two configuration files to access the master node:
cat /etc/kubernetes/config

###

kubernetes system config

#

The following values are used to configure various aspects of
all

kubernetes services, including

#

kube-apiserver.service

kube-controller-manager.service

kube-scheduler.service

kubelet.service

kube-proxy.service

logging to stderr means we get it in the systemd journal

KUBE_LOGTOSTDERR="--logtostderr=true"

Chapter 1

45

journal message level, 0 is debug

KUBE_LOG_LEVEL="--v=0"

Should this cluster be allowed to run privileged docker
containers

KUBE_ALLOW_PRIV="--allow_privileged=false"

How the controller-manager, scheduler, and proxy find the
apiserver

KUBE_MASTER="--master=<master endpoint>:8080"

3.	 In the configuration file, we will change the master location argument to the
machine's URL/IP, where you installed master. If you specified another exposed
port for the API server, remember to update it as well, instead of port 8080:
cat /etc/kubernetes/kubelet

###

kubernetes kubelet (node) config

The address for the info server to serve on (set to 0.0.0.0 or
"" for all interfaces)

KUBELET_ADDRESS="--address=0.0.0.0"

The port for the info server to serve on

KUBELET_PORT="--port=10250"

You may leave this blank to use the actual hostname

KUBELET_HOSTNAME="--hostname_override=127.0.0.1"

location of the api-server

KUBELET_API_SERVER="--api_servers=<master endpoint>:8080"

Add your own!

KUBELET_ARGS=""

We open the kubelet address for all the interfaces and attached master location.

Building Your Own Kubernetes

46

4.	 Then, it is good to start services using the command systemd. There is no
dependency between kubelet and kube-proxy:
// start services

systemctl start kubelet

systemctl start kube-proxy

// enable services for starting automatically while server boots
up.

systemctl enable kubelet

systemctl enable kube-proxy

// check the status of services

systemctl status kubelet

systemctl status kube-proxy

Other Linux options
1.	 We can also download the latest Kubernetes binary files and write a customized

service init script for node configuration. The tarball of Kubernetes' latest updates will
be released at https://github.com/kubernetes/kubernetes/releases:
// download Kubernetes package

curl -L -O https://github.com/GoogleCloudPlatform/kubernetes/
releases/download/v1.1.2/kubernetes.tar.gz

// extract the tarball to specific local, here we put it under /
opt. the KUBE_HOME would be /opt/kubernetes

tar zxvf kubernetes.tar.gz -C /opt/

// copy all binary files to system directory

cp /opt/kubernetes/server/bin/* /usr/local/bin/

2.	 Next, a file named kubernetes-node is created under /etc/init.d with the
following content:
cat /etc/init.d/kubernetes-node

#!/bin/bash

#

kubernetes This shell script takes care of starting and
stopping kubernetes

Source function library.

. /etc/init.d/functions

https://github.com/kubernetes/kubernetes/releases

Chapter 1

47

Source networking configuration.

. /etc/sysconfig/network

prog=/usr/local/bin/hyperkube

lockfile=/var/lock/subsys/`basename $prog`

MASTER_SERVER="<master endpoint>"

hostname=`hostname`

logfile=/var/log/kubernetes.log

3.	 Be sure to provide the master URL/IP for accessing the Kubernetes API server. If
you're trying to install a node package on the master host as well, which means make
master also work as a node, the API server should work on the local host. If so,
you can attach localhost or 127.0.0.1 at <master endpoint>:
start() {
 # Start daemon.
 echo $"Starting kubelet: "
 daemon $prog kubelet \
 --api_servers=http://${MASTER_SERVER}:8080 \
 --v=2 \
 --address=0.0.0.0 \
 --enable_server \
 --hostname_override=${hostname} \
 > ${logfile}_kubelet 2>&1 &

 echo $"Starting proxy: "
 daemon $prog proxy \
 --master=http://${MASTER_SERVER}:8080 \
 --v=2 \
 > ${logfile}_proxy 2>&1 &

 RETVAL=$?
 [$RETVAL -eq 0] && touch $lockfile
 return $RETVAL
}
stop() {
 ["$EUID" != "0"] && exit 4
 echo -n $"Shutting down $prog: "
 killproc $prog
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f $lockfile
 return $RETVAL
}

Building Your Own Kubernetes

48

4.	 The following lines are for general daemon management, attaching them in the script
to get the functionalities:
See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 status)
 status $prog
 ;;
 restart|force-reload)
 stop
 start
 ;;
 try-restart|condrestart)
 if status $prog > /dev/null; then
 stop
 start
 fi
 ;;
 reload)
 exit 3
 ;;
 *)
 echo $"Usage: $0 {start|stop|status|restart|try-restart|force-
reload}"
 exit 2
esac

5.	 Now, you can start the service with the name of your init script:
service kubernetes-node start

Verification
In order to check whether a node is well-configured, the straightforward way would be to check
it from the master side:

// push command at master

kubelet get nodes

NAME LABELS
STATUS

ip-10-97-217-56.sdi.trendnet.org kubernetes.io/
hostname=ip-10-97-217-56.sdi.trendnet.org Ready

Chapter 1

49

See also
It is also recommended to read the recipes about the architecture of the cluster and system
environment. Since the Kubernetes node is like a worker, who receives tasks and listens to
the others; they should be built after the other components. It is good for you to get more
familiar with the whole system before building up nodes. Furthermore, you can also manage
the resource in nodes. Please check the following recipes for more information:

ff Exploring architecture

ff Preparing your environment

ff The Setting resource in nodes recipe in Chapter 7, Advanced Cluster Administration

Run your first container in Kubernetes
Congratulations! You've built your own Kubernetes cluster in the previous sections. Now,
let's get on with running your very first container nginx (http://nginx.org/), which is
an open source reverse proxy server, load balancer, and web server.

Getting ready
Before we start running the first container in Kubernetes, it's better to check whether every
component works as expected. Please follow these steps on master to check whether the
environment is ready to use:

1.	 Check whether the Kubernetes components are running:
check component status are all healthy

$ kubectl get cs

NAME STATUS MESSAGE ERROR

controller-manager Healthy ok nil

scheduler Healthy ok nil

etcd-0 Healthy {"health": "true"} nil

If any one of the components is not running, check out the
settings in the previous sections. Restart the related services,
such as service kube-apiserver start.

2.	 Check the master status:
Check master is running

$ kubectl cluster-info

Kubernetes master is running at http://localhost:8080

http://nginx.org/

Building Your Own Kubernetes

50

If the Kubernetes master is not running, restart the service using service
kubernetes-master start or /etc/init.d/kubernetes-master
start.

3.	 Check whether all the nodes are ready:
check nodes are all Ready

$ kubectl get nodes

NAME LABELS STATUS

kub-node1 kubernetes.io/hostname=kub-node1 Ready

kub-node2 kubernetes.io/hostname=kub-node2 Ready

If one node is expected as Ready but is NotReady, go to that node to
restart Docker and the node service using service docker start and
service kubernetes-node start.

Before we go to the next section, make sure the nodes are accessible to the Docker registry.
We will use the nginx image from Docker Hub (https://hub.docker.com/) as an example.
If you want to run your own application, be sure to dockerize it first! What you need to do
for your custom application is to write a Dockerfile (https://docs.docker.com/v1.8/
reference/builder), build, and push it into the public/private Docker registry.

Test your node connectivity with the public/private Docker registry
On your node, try docker pull nginx to test whether you can pull the
image from Docker Hub. If you're behind a proxy, please add HTTP_PROXY
into your Docker configuration file (normally, in /etc/sysconfig/docker).
If you want to run the image from the private repository in Docker Hub, using
docker login on the node to place your credential in ~/.docker/
config.json, copy the credentials into /var/lib/kubelet/.
dockercfg in the json format and restart Docker:
put the credential of docker registry
$ cat /var/lib/kubelet/.dockercfg

{
 "<docker registry endpoint>": {
 "auth": "SAMPLEAUTH=",
 "email": "noreply@sample.com"
 }
}

If you're using your own private registry, specify INSECURE_REGISTRY in the
Docker configuration file.

https://hub.docker.com/
https://docs.docker.com/v1.8/reference/builder
https://docs.docker.com/v1.8/reference/builder
/var/lib/kubelet/.dockercfg
/var/lib/kubelet/.dockercfg

Chapter 1

51

How to do it…
We will use the official Docker image of nginx as an example. The image is prebuilt in Docker
Hub (https://hub.docker.com/_/nginx/).

Many official and public images are available on Docker Hub so that you do not need to build
it from scratch. Just pull it and set up your custom setting on top of it.

Running an HTTP server (nginx)
1.	 On the Kubernetes master, we could use kubectl run to create a certain number

of containers. The Kubernetes master will then schedule the pods for the nodes
to run:
$ kubectl run <replication controller name> --image=<image name>
--replicas=<number of replicas> [--port=<exposing port>]

2.	 The following example will create two replicas with the name my-first-nginx from
the nginx image and expose port 80. We could deploy one or more containers in what
is referred to as a pod. In this case, we will deploy one container per pod. Just like
a normal Docker behavior, if the nginx image doesn't exist in local, it will pull it from
Docker Hub by default:
Pull the nginx image and run with 2 replicas, and expose the
container port 80

$ kubectl run my-first-nginx --image=nginx --replicas=2 --port=80

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS

my-first-nginx my-first-nginx nginx run=my-first-nginx
2

The name of replication controller <my-first-nginx> cannot be duplicate
The resource (pods, services, replication controllers, and so on) in one
Kubernetes namespace cannot be duplicate. If you run the preceding
command twice, the following error will pop up:
Error from server: replicationControllers "my-first-
nginx" already exists

3.	 Let's get and see the current status of all the pods using kubectl get pods.
Normally, the status of the pods will hold on Pending for a while, since it takes
some time for the nodes to pull the image from Docker Hub:
get all pods

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

https://hub.docker.com/_/nginx/

Building Your Own Kubernetes

52

my-first-nginx-nzygc 1/1 Running 0 1m

my-first-nginx-yd84h 1/1 Running 0 1m

If the pod status is not running for a long time
You could always use kubectl get pods to check the current status
of the pods and kubectl describe pods $pod_name to check the
detailed information of a pod. If you make a typo of the image name, you
might get the Image not found error message, and if you are pulling
the images from a private repository or registry without proper credentials
setting, you might get the Authentication error message. If you get
the Pending status for a long time and check out the node capacity, make
sure you don't run too many replicas that exceed the node capacity described
in the Preparing your environment section. If there are other unexpected error
messages, you could either stop the pods or the entire replication controller
to force master to schedule the tasks again.

4.	 After waiting a few seconds, there are two pods running with the Running status:
get replication controllers

$ kubectl get rc

CONTROLLER CONTAINER(S) IMAGE
(S) SELECTOR
REPLICAS

my-first-nginx my-first-nginx nginx
run=my-first-nginx

2

Exposing the port for external access
We might also want to create an external IP address for the nginx replication controller. On
cloud providers, which support an external load balancer (such as Google Compute Engine)
using the LoadBalancer type, will provision a load balancer for external access. On the other
hand, you can still expose the port by creating a Kubernetes service as follows, even though
you're not running on the platforms that support an external load balancer. We'll describe
how to access this externally later:

expose port 80 for replication controller named my-first-nginx

$ kubectl expose rc my-first-nginx --port=80 --type=LoadBalancer

NAME LABELS SELECTOR IP(S)
PORT(S)

my-first-nginx run=my-first-nginx run=my-first-nginx 80/
TCP

Chapter 1

53

We can see the service status we just created:

get all services

$ kubectl get service

NAME LABELS
SELECTOR
IP(S) PORT(S)

my-first-nginx run=my-first-nginx
run=my-first-nginx
192.168.61.150 80/TCP

Congratulations! You just ran your first container with a Kubernetes pod and exposed port 80
with the Kubernetes service.

Stopping the application
We could stop the application using commands such as the stop replication controller and
service. Before this, we suggest you read through the following introduction first to understand
more about how it works:

stop replication controller named my-first-nginx

$ kubectl stop rc my-first-nginx

replicationcontrollers/my-first-nginx

stop service named my-first-nginx

$ kubectl stop service my-first-nginx

services/my-first-nginx

How it works…
Let's take a look at the insight of the service using describe in the kubectl command.
We will create one Kubernetes service with the type LoadBalancer, which will dispatch
the traffic into two Endpoints 192.168.50.4 and 192.168.50.5 with port 80:

$ kubectl describe service my-first-nginx

Name: my-first-nginx

Namespace: default

Labels: run=my-first-nginx

Selector: run=my-first-nginx

Type: LoadBalancer

IP: 192.168.61.150

Port: <unnamed> 80/TCP

Building Your Own Kubernetes

54

NodePort: <unnamed> 32697/TCP

Endpoints: 192.168.50.4:80,192.168.50.5:80

Session Affinity: None

No events.

Port here is an abstract service port, which will allow any other resources to access the service
within the cluster. The nodePort will be indicating the external port for allowing external access.
The targetPort is the port the container allows traffic into; by default, it will be the same with
Port. The illustration is as follows. External access will access service with nodePort. Service
acts as a load balancer to dispatch the traffic to the pod using Port 80. The pod will then pass
through the traffic into the corresponding container using targetPort 80:

In any nodes or master (if your master has flannel installed), you should be able to access the
nginx service using ClusterIP 192.168.61.150 with port 80:

curl from service IP

$ curl 192.168.61.150:80

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

Chapter 1

55

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed
and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

It will be the same result if we curl to the target port of the pod directly:

curl from endpoint

$ curl 192.168.50.4:80

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

Building Your Own Kubernetes

56

<p>If you see this page, the nginx web server is successfully installed
and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

If you'd like to try out external access, use your browser to access the external IP address.
Please note that the external IP address depends on which environment you're running in.

In Google Compute Engine, you could access it via a ClusterIP with proper firewall rules setting:

$ curl http://<clusterIP>

In a custom environment, such as on a premise datacenter, you could go through the IP
address of nodes to access to:

$ curl http://<nodeIP>:<nodePort>

You should be able to see the following page using a web browser:

See also
We have run our very first container in this section. Now:

ff To explore more of the concepts in Kubernetes, refer to Chapter 2, Walking through
Kubernetes Concepts

57

2
Walking through

Kubernetes Concepts

In this chapter, we will cover:

ff An overview of Kubernetes control

ff Working with pods

ff Working with a replication controller

ff Working with services

ff Working with volumes

ff Working with secrets

ff Working with names

ff Working with namespaces

ff Working with labels and selectors

Introduction
In this chapter, we will start by creating different kinds of resources on the Kubernetes
system. To realize your application in a microservices structure, reading the recipes in this
chapter will be a good start to understanding the concepts of the Kubernetes resources and
consolidating them. After you deploy applications in Kubernetes, you can work on its scalable
and efficient container management, and also fulfill the DevOps delivering procedure of
microservices.

Walking through Kubernetes Concepts

58

An overview of Kubernetes control
Working with Kubernetes is quite easy, using either Command Line Interface (CLI) or
API (RESTful). This section will describe Kubernetes control by CLI. The CLI we used in
this chapter is version 1.1.3.

Getting ready
After you install Kubernetes master, you can run a kubectl command as follows. It shows the
kubectl and Kubernetes master versions (both 1.1.3).

% kubectl version

Client Version: version.Info{Major:"1", Minor:"1", GitVersion:"v1.1.3",
GitCommit:"6a81b50c7e97bbe0ade075de55ab4fa34f049dc2",
GitTreeState:"clean"}

Server Version: version.Info{Major:"1", Minor:"1", GitVersion:"v1.1.3",
GitCommit:"6a81b50c7e97bbe0ade075de55ab4fa34f049dc2",
GitTreeState:"clean"}

How to do it…
kubectl connects the Kubernetes API server using RESTful API. By default it attempts
to access the localhost, otherwise you need to specify the API server address using the
--server parameter. Therefore, it is recommended to use kubectl on the API server
machine for practice.

If you use kubectl over the network, you need to consider
authentication and authorization for the API server. See
Chapter 7, Advanced Cluster Administration.

How it works…
kubectl is the only command for Kubernetes clusters, and it controls the Kubernetes
cluster manager. Find more information at http://kubernetes.io/docs/user-guide/
kubectl-overview/. Any container, or Kubernetes cluster operation, can be performed by
a kubectl command.

In addition, kubectl allows the inputting of information by either the command line's optional
arguments, or by file (use -f option), but it is highly recommended to use file, because you
can maintain the Kubernetes cluster as code:

kubectl [command] [TYPE] [NAME] [flags]

http://kubernetes.io/docs/user-guide/kubectl-overview/
http://kubernetes.io/docs/user-guide/kubectl-overview/

Chapter 2

59

The attributes of the preceding command are explained as follows:

ff command: Specifies the operation that you want to perform on one or more
resources.

ff TYPE: Specifies the resource type. Resource types are case-sensitive and you can
specify the singular, plural, or abbreviated forms.

ff NAME: Specifies the name of the resource. Names are case-sensitive. If the name
is omitted, details for all resources are displayed.

ff flags: Specifies optional flags.

For example, if you want to launch nginx, you can use the kubectl run command as
the following:

/usr/local/bin/kubectl run my-first-nginx --image=nginx

replicationcontroller "my-first-nginx"

However, you can write either a YAML file or a JSON file to perform similar operations. For
example, the YAML format is as follows:

cat nginx.yaml

apiVersion: v1

kind: ReplicationController

metadata:

 name: my-first-nginx

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: my-first-nginx

 image: nginx

Then specify the create -f option to execute the kubectl command as follows:

kubectl create -f nginx.yaml

replicationcontroller "my-first-nginx" created

Walking through Kubernetes Concepts

60

If you want to see the status of the replication controller, type the kubectl get command
as follows:

kubectl get replicationcontrollers

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

my-first-nginx my-first-nginx nginx app=nginx 1 12s

If you also want the support abbreviation, type the following:

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

my-first-nginx my-first-nginx nginx app=nginx 1 1m

If you want to delete these resources, type the kubectl delete command as follows:

kubectl delete rc my-first-nginx

replicationcontroller "my-first-nginx" deleted

The kubectl command supports many kinds of sub-commands, use -h option to see the
details, for example:

//display whole sub command options

kubectl -h

//display sub command "get" options

kubectl get -h

//display sub command "run" options

kubectl run -h

See also
This recipe describes how to use the kubectl command to control the Kubernetes cluster.
The following recipes describe how to set up Kubernetes components:

ff The Building datastore, Creating an overlay network, Configuring master, and
Configuring nodes recipes in Chapter 1, Building Your Own Kubernetes

Chapter 2

61

Working with pods
The pod is a group of one or more containers and the smallest deployable unit in Kubernetes.
Pods are always co-located and co-scheduled, and run in a shared context. Each pod is
isolated by the following Linux namespaces:

ff Process ID (PID) namespace

ff Network namespace

ff Interprocess Communication (IPC) namespace

ff Unix Time Sharing (UTS) namespace

In a pre-container world, they would have been executed on the same physical or
virtual machine.

It is useful to construct your own application stack pod (for example, web server and
database) that are mixed by different Docker images.

Getting ready
You must have a Kubernetes cluster and make sure that the Kubernetes node has
accessibility to the Docker Hub (https://hub.docker.com) in order to download
Docker images. You can simulate downloading a Docker image by using the docker
pull command as follows:

//run as root on node machine

docker pull centos

latest: Pulling from centos

47d44cb6f252: Pull complete

168a69b62202: Pull complete

812e9d9d677f: Pull complete

4234bfdd88f8: Pull complete

ce20c473cd8a: Pull complete

Digest: sha256:c96eeb93f2590858b9e1396e808d817fa0ba4076c68b59395445cb95
7b524408

Status: Downloaded newer image for centos:latest

Walking through Kubernetes Concepts

62

How to do it…
1.	 Log in to the Kubernetes master machine and prepare the following YAML file. It

defines the launch nginx container and the CentOS container.

2.	 The nginx container opens the HTTP port (TCP/80). On the other hand, the CentOS
container attempts to access the localhost:80 every three seconds using the
curl command:
cat my-first-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-first-pod

spec:

 containers:

 - name: my-nginx

 image: nginx

 - name: my-centos

 image: centos

 command: ["/bin/sh", "-c", "while : ;do curl http://
localhost:80/; sleep 3; done"]

3.	 Then, execute the kubectl create command to launch my-first-pod
as follows:
kubectl create -f my-first-pod.yaml

pod "my-first-pod" created

It takes between a few seconds and minutes, depending on the network bandwidth
to the Docker Hub and Kubernetes nodes spec.

4.	 You can check kubectl get pods to see the status as follows:
//still downloading Docker images (0/2)

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-first-pod 0/2 Running 0 6s

//it also supports shorthand format as "po"

kubectl get po

Chapter 2

63

NAME READY STATUS RESTARTS AGE

my-first-pod 0/2 Running 0 7s

//my-first-pod is running (2/2)

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-first-pod 2/2 Running 0 8s

Now both the nginx container (my-nginx) and the CentOS container (my-centos)
are ready.

5.	 Let's check whether the CentOS container can access nginx or not. You can check the
stdout (standard output) by using the kubectl logs command and specifying the
CentOS container (my-centos) as follows:
//it shows last 30 lines output (--tail=30)

kubectl logs my-first-pod -c my-centos --tail=30

</body>

</html>

 % Total % Received % Xferd Average Speed Time Time
Time Current

 Dload Upload Total Spent
Left Speed

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

Walking through Kubernetes Concepts

64

<p>If you see this page, the nginx web server is successfully
installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

100 612 100 612 0 0 4059 0 --:--:-- --:--:--
--:--:-- 4080

As you can see, the pod links two different containers, nginx and CentOS into the
same Linux namespace.

How it works…
When launching a pod, the Kubernetes scheduler dispatches to the kubelet process to handle
all the operations to launch both nginx and CentOS containers.

If you have two or more nodes, you can check the -o wide option to find a node which runs
a pod:

//it indicates Node ip-10-96-219-25 runs my-first-pod

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE NODE

my-first-pod 2/2 Running 0 2m ip-10-96-219-25

Log in to that node, then you can check the docker ps command to see the running
containers as follows:

docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

b7eb8d0925b2 centos "/
bin/sh -c 'while : 2 minutes ago Up 2 minutes
k8s_my-centos.704bf394_my-first-pod_default_a3b78651-a061-11e5-a7fb-
06676ae2a427_f8b61e2b

Chapter 2

65

55d987322f53 nginx "nginx
-g 'daemon of 2 minutes ago Up 2 minutes
k8s_my-nginx.608bdf36_my-first-pod_default_a3b78651-a061-11e5-a7fb-
06676ae2a427_10cc491a

a90c8d2d40ee gcr.io/google_containers/pause:0.8.0 "/pause"
2 minutes ago Up 2 minutes k8s_
POD.6d00e006_my-first-pod_default_a3b78651-a061-11e5-a7fb-06676ae2a427_
dfaf502a

You may notice that three containers – CentOS, nginx and pause – are running instead of
two. Because each pod we need to keep belongs to a particular Linux namespace, if both the
CentOS and nginx containers die, the namespace will also destroyed. Therefore, the pause
container just remains in the pod to maintain Linux namespaces.

Let's launch a second pod, rename it as my-second-pod and run the kubectl create
command as follows:

//just replace the name from my-first-pod to my-second-pod

cat my-first-pod.yaml | sed -e 's/my-first-pod/my-second-pod/' > my-
second.pod.yaml

cat my-second.pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-second-pod

spec:

 containers:

 - name: my-nginx

 image: nginx

 - name: my-centos

 image: centos

 command: ["/bin/sh", "-c", "while : ;do curl http://localhost:80/;
sleep 3; done"]

kubectl create -f my-second.pod.yaml

pod "my-second-pod" created

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-first-pod 2/2 Running 0 49m

my-second-pod 2/2 Running 0 5m

Walking through Kubernetes Concepts

66

If you have two or more nodes, my-second-pod was probably launched by another node,
because the Kubernetes scheduler chose the most suitable node.

Note that, if you would like to deploy more of the same pod, consider using a
replication controller instead.

After your testing, you can run the kubectl delete command to delete your pod from the
Kubernetes cluster:

//running both my-first-pod and my-second-pod

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-first-pod 2/2 Running 0 49m

my-second-pod 2/2 Running 0 5m

//delete my-second-pod

kubectl delete pod my-second-pod

pod "my-second-pod" deleted

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-first-pod 2/2 Running 0 54m

//delete my-first-pod

kubectl delete pod my-first-pod

pod "my-first-pod" deleted

kubectl get pods

NAME READY STATUS RESTARTS AGE

See also
This recipe described how to control pods. It is the basic component and operation
of Kubernetes. The following recipes will describe advanced operation of pods using
a replication controller, services and so on:

ff Working with a replication controller

ff Working with services

ff Working with labels and selectors

Chapter 2

67

Working with a replication controller
A replication controller is a term for API objects in Kubernetes that refers to pod replicas. The
idea is to be able to control a set of pods' behaviors. The replication controller ensures that
the pods, in a user-specified number, are running all the time. If some pods in the replication
controller crash and terminate, the system will recreate pods with the original configurations
on healthy nodes automatically, and keep a certain amount of processes continuously
running. According to this feature, no matter whether you need replicas of pods or not, you
can always shield the pods with the replication controller for autorecovery. In this recipe,
you're going to learn how to manage your pods by using the replication controller:

The replication controller usually handles a tier of applications. As you see in the preceding
image, we launch a replication controller with three pod replicas. Some mechanism details
are listed as follows:

ff The daemon in the master is called the controller manager and helps to maintain the
resource running in its desired state. For example, the desired state of the replication
controller in the previous image is three pod replicas.

ff The daemon scheduler in the master takes charge of assigning tasks to
healthy nodes.

ff The selector of the replication controller is used for deciding which pods it covers. If
the key-value pairs in the pod's label include all items in the selector of the replication
controller, this pod belongs to this replication controller. As you will see, the previous
image shows three pods are under the charge of the replication controller. Since the
selector is covered and labelled project and role, the pod with the different minor
version number, (Pod 2), could still be one of the members.

Walking through Kubernetes Concepts

68

Getting ready
We demonstrated the management of the replication controller in the Kubernetes master,
when we installed the Kubernetes client package. Please login to the master first and make
sure your environment is able to create replication controllers.

The evaluation of replication controller creation from the master
You can verify whether your Kubernetes master is a practical one through
checking the following items:
Check whether the daemons are running or not. There should be three
working daemon processes on the master node: apiserver, scheduler
and controller-manager.
Check the command kubectl exists and is workable. Try the command
kubectl get componentstatuses or kubectl get cs, so you can
verify not only the components' status but also the feasibility of kubectl.
Check the nodes are ready to work. You can check them by the command
kubectl get nodes for their status.
In case some of the preceding items are invalid, please refer to Chapter 1,
Building Your Own Kubernetes for proper guidelines of the installation.

How to do it…
A replication controller can be created directly through CLI, or through a template file. We
will express the former solution in this section. For template one, please refer to the recipe
Working with configuration files in Chapter 3, Playing with Containers.

Creating a replication controller
To create replication controllers, we use the subcommand run after kubectl. The basic
command pattern looks like the following:

// kubectl run <REPLICATION CONTROLLER NAME> --images=<IMAGE NAME>
[OPTIONAL_FLAGS]

kubectl run my-first-rc --image=nginx

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS

my-first-rc my-first-rc nginx run=my-first-rc 1

Chapter 2

69

This simple command is creating a replication controller by image nginx from the Docker Hub
(https://hub.docker.com). The name, my-first-rc, must be unique in all replication
controllers. Without specified number of replicas, the system will only build one pod as its
default value. There are more optional flags you may integrate together to create a qualified
replication controller:

--Flag=[Default Value] Description Example

--replicas=1 The number of pod replicas --replicas=3

--port=-1 The exposed port of the container --port=80

--hostport=-1 The host port mapping for the
container port. Make sure that
if using the flag, you do not run
multiple pod replicas on a node in
order to avoid port conflicts.

--hostport=8080

--labels="" Key-value pairs as the labels for
pods. Separate each pair with a
comma.

--labels="ProductName=
HappyCloud,ProductionSt
ate=staging,ProjectOwn
er=Amy"

--command[=false] After the container boots up, run
a different command through this
flag. Two dashed lines append the
flag as segmentation.

--command -- /myapp/
run.py -o logfile

--env=[] Set environment variables in
containers. This flag could be
used multiple times in a single
command.

--env="USERNAME=amy"
--env="PASSWD=pa$$w0rd"

--overrides="" Use this flag to override some
generated objects of the system in
JSON format. The JSON value uses
a single quote to escape the double
quote. The field apiVersion is
necessary.

For detailed items and
requirements, please refer to the
Working with configuration files
recipe in Chapter 3, Playing with
Containers.

--overrides='
{"apiVersion": "v1"}'

Walking through Kubernetes Concepts

70

--Flag=[Default Value] Description Example

--limits="" The upper limit of resource usage in
the container. You can specify how
much CPU and memory could be
used. The unit of CPU is the number
of cores in the format NUMBERm. m
indicates milli (10-3). The unit of
memory is byte. Please also check
--requests.

--limits="cpu=1000m,
memory=512Mi"

--requests="" The minimum requirement of
resource for container. The rule of
value is the same as --limits.

--requests="cpu=250m,
memory=256Mi"

--dry-run[=false] Display object configuration without
sending it out for being created.

--dry-run

--attach[=false] For the replication controller, your
terminal will attach to one of the
replicas, and view the runtime
log coming from the program.
The default is to attach the first
container in the pod, in the same
way as Dockers attach. Some
logs from the system show the
container's pending status.

--attach

-i ,
--stdin[=false]

Enable the interactive mode of the
container. The replica must be 1.

-i

--tty=[false] Allocate a tty (new controlling
terminal) to each container.
You must enable the interactive
mode by attaching the flag -i or
--stdin.

--tty

The subcommand run will create a replication controller by default because of the flag
--restart, which is preset as Always, meaning that the generated objects will always
be triggered and run to meet the desired numbers of the replication controller.

For example, you can launch a replication controller, and then add new features or modify
configurations:

// Run a replication controller with some flags for Nginx nodes. Try to
verify the settings with "--dry-run" first!

kubectl run nginx-rc-test --image=nginx --labels="Owner=Amy,ProductionS
tate=test" --replicas=2 --port=80 --dry-run

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS

Chapter 2

71

nginx-rc-test nginx-rc-test nginx Owner=Amy,ProductionState=te
st 2

// Send out the request

kubectl run nginx-rc --image=nginx --labels="Owner=Amy,ProductionState=
test" --replicas=2 --port=80

// Try to override container name while generating, which name is the
same as the name of replication controller in default

kubectl run nginx-rc-override --image=nginx --overrides='{"apiVer
sion":"v1","spec":{"template":{"spec": {"containers":[{"name": "k8s-
nginx","image":"nginx"}]}}}}'

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS

nginx-rc-override k8s-nginx nginx run=nginx-rc-override 1

//Interact with container after create a pod in replication controller

kubectl run nginx-bash --image=nginx --tty -i --command -- /bin/bash

Waiting for pod to be scheduled

Waiting for pod default/nginx-bash-916y6 to be running, status is
Running, pod ready: false

Waiting for pod default/nginx-bash-916y6 to be running, status is
Running, pod ready: false

ls

bin dev home lib64	 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr

root@nginx-bash-916y6:/#

Getting information of a replication controller
After we create a replication controller, the subcommand get and describe can help us
to capture the information and pod status. In the CLI of Kubernetes, we usually use the
abbreviation rc for resource type, instead of the full name replication controller:

First, we can check any replication controller in the system:

// Use subcommand "get" to list replication controllers

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

check-rc-1 check-rc-1 nginx run=check-rc-1 5 7m

check-rc-2 check-rc-2 nginx app=nginx 2 6m

Walking through Kubernetes Concepts

72

As it displays, the special column items are SELECTOR and REPLICAS. The selector must be
the pods' labels, which indicate that the pods are controlled by this replication controller. We
may specify the selector by the flag --labels while creating the replication controller with
kubectl run. The default selector assigned to the replication controller, created by CLI,
is in the form of run=<REPLICATION CONTROLLER NAME>:

// We can also get status of pod through selector/labels

kubectl get pod -l app=nginx

NAME READY STATUS RESTARTS AGE

check-rc-2-95851 1/1 Running 0 6m

check-rc-2-mjezz 1/1 Running 0 6m

Furthermore, the subcommand describe helps users to get detailed items and logs of the
resources:

kubectl describe rc check-rc-2

Name: check-rc-2

Namespace: default

Image(s): nginx

Selector: app=nginx

Labels: app=nginx

Replicas: 2 current / 2 desired

Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed

No volumes.

Events:

 FirstSeen LastSeen Count From SubobjectPath Reason
Message

 ───────── ──────── ───── ──── ───────────── ──────
───────

 6m 6m 1 {replication-controller } SuccessfulCreate
Created pod: check-rc-2-95851

 6m 6m 1 {replication-controller } SuccessfulCreate Created
pod: check-rc-2-mjezz

Changing the configuration of a replication controller
The subcommands known as edit, patch and replace can help to update live replication
controllers. All these three change the settings by way of a configuration file. Here we just take
edit for example.

Chapter 2

73

The subcommand edit lets users modify resource configuration through the editor.
Try to update your replication controller through the command kubectl edit
rc/<REPLICATION CONTROLLER NAME> (to change to another resource type, you can
change rc, for example, po, svc, ns), you will access this via the default editor with a YAML
configuration file, except for resource type and resource name. Take a look at the Working
with configuration files recipe in Chapter 3, Playing with Containers for reference, and try to
change the other values:

// Try to update your by subcommand edit

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

test-edit test-edit nginx run=test-edit 1 5m

kubectl edit rc/test-edit

replicationcontroller "test-edit" edited

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

test-edit nginx-rc nginx app=nginx,run=after-edit 3
7m

Removing a replication controller
In order to remove replication controllers from the system, you can rely on the subcommand
delete. The similar subcommand stop is deprecated and covered by delete, so we just
introduce delete here. While we use delete to remove the resource, it removes the target
objects forcefully and ignores any requests for the target objects at the same time:

// A replication controller that we want to remove has 5 replicas

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

test-delete test-delete nginx run=test-delete 5 19s

kubectl get pod

NAME READY STATUS RESTARTS AGE

test-delete-g4xyy 1/1 Running 0 34s

test-delete-px9z6 1/1 Running 0 34s

test-delete-vctnk 1/1 Running 0 34s

test-delete-vsikc 1/1 Running 0 34s

test-delete-ye07h 1/1 Running 0 34s

// timing the response of "delete" and check the state of pod directly

time kubectl delete rc test-delete && kubectl get pod

replicationcontroller "test-delete" deleted

real 0m2.028s

user 0m0.014s

sys 0m0.007s

Walking through Kubernetes Concepts

74

NAME READY STATUS RESTARTS AGE

test-delete-g4xyy 1/1 Terminating 0 1m

test-delete-px9z6 0/1 Terminating 0 1m

test-delete-vctnk 1/1 Terminating 0 1m

test-delete-vsikc 0/1 Terminating 0 1m

test-delete-ye07h 1/1 Terminating 0 1m

We find that the response time is quite short and the effect is also instantaneous.

Removing pods from the replication controller
It is impossible to remove or scale down the replication controller by deleting
pods on it, because while a pod is removed, the replication controller is out
of its desired status, and the controller manager will ask it to create another
one. This concept is shown in the following commands:
// Check replication controller and pod first

kubectl get rc,pod

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

test-delete-pod test-delete-pod nginx run=test-
delete-pod 3 12s

NAME READY STATUS RESTARTS
AGE

test-delete-pod-8hooh 1/1 Running 0
14s

test-delete-pod-jwthw 1/1 Running 0
14s

test-delete-pod-oxngk 1/1 Running 0
14s

// Remove certain pod and check pod status to see what
happen

kubectl delete pod test-delete-pod-8hooh && kubectl get
pod

NAME READY STATUS RESTARTS
AGE

test-delete-pod-8hooh 0/1 Terminating 0
1m

test-delete-pod-8nryo 0/1 Running 0
3s

test-delete-pod-jwthw 1/1 Running 0
1m

test-delete-pod-oxngk 1/1 Running 0
1m

Chapter 2

75

How it works…
The replication controller defines a set of pods by a pod template and labels. As you know
from previous sections, the replication controller only manages the pods by their labels. It
is possible that the pod template and the configuration of the pod, are different. And it also
means that standalone pods can be added into a controller's group by label modification.
According to the following commands and results, let's evaluate this concept on selectors
and labels:

// Two pod existed in system already, they have the same label app=nginx

kubectl get pod -L app -L owner

NAME READY STATUS RESTARTS AGE APP OWNER

web-app1 1/1 Running 0 6m nginx Amy

web-app2 1/1 Running 0 6m nginx Bob

Then, we create a three-pod replication controller with the selector app=nginx:

kubectl run rc-wo-create-all --replicas=3 --image=nginx
--labels="app=nginx"

replicationcontroller "rc-wo-create-all" created

We can find that the replication controller meets the desired state of three pods but only
needs to boot one pod. The pod web-app1 and web-app2 are now controlled by running
rc-wo-create-all:

kubectl get pod -L app -L owner

NAME READY STATUS RESTARTS AGE APP
OWNER

rc-wo-create-all-jojve 1/1 Running 0 5s nginx
<none>

web-app1 1/1 Running 0 7m nginx
Amy

web-app2 1/1 Running 0 7m nginx
Bob

kubectl describe rc rc-wo-create-all

Name: rc-wo-create-all

Namespace: default

Image(s): nginx

Selector: app=nginx

Labels: app=nginx

Replicas: 3 current / 3 desired

Walking through Kubernetes Concepts

76

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

No volumes.

Events:

 FirstSeen LastSeen Count From SubobjectPath Reason
Message

 ───────── ──────── ───── ──── ───────────── ──────
───────

 1m 1m 1 {replication-controller } SuccessfulCreate Created
pod: rc-wo-create-all-jojve

See also
In this chapter, there are some recipes for getting more ideas about the replication controller:

ff Working with pods

ff Working with services

ff Working with labels and selectors

ff The Working with configuration files recipe in Chapter 3, Playing with Containers

Working with services
The network service is an application that receives requests and provides a solution. Clients
access the service by a network connection. They don't have to know the architecture of the
service or how it runs. The only thing that clients have to verify is whether the end point of
the service is contactable, and then follow its usage policy to solve problems. The Kubernetes
service has similar ideas. It is not necessary to understand every pod before reaching
their functionalities. For components outside the Kubernetes system, they just access the
Kubernetes service with an exposed network port to communicate with running pods. It is
not necessary to be aware of the containers' IPs and ports. Therefore, we can fulfill a zero
downtime update for our container programs without struggling:

Chapter 2

77

The preceding image shows the basic structure of the service and realizes the following
concepts:

ff As with the replication controller, the service directs the pods that have labels
containing the service's selector. In other words, the pods selected by the service
are based on their labels.

ff The load of requests sent to the services will distribute to four pods.

ff The replication controller ensures that the number of running pods meets its desired
state. It monitors the pods for the service, making sure someone will take over duties
from the service.

In this recipe, you will learn how to create services along with your pods.

Getting ready
Prior to applying services, it is important to verify whether all your nodes in the system are
running kube-proxy. Daemon kube-proxy works as a network proxy in node. It helps
to reflect service settings like IPs or ports on each node. To check whether kube-proxy is
enabled or not, you can inspect the status of the daemon or search running processes on the
node with a specific name:

// check the status of service kube-proxy

service kube-proxy status

or

// Check processes on each node, and focus on kube-proxy

// grep "kube-proxy" or "hyperkube proxy"

ps aux | grep "kube-proxy"

For demonstration in later sections, you can also install a private network environment on the
master node. The daemons related to the network settings are flanneld and kube-proxy.
It is easier for you to do the operation and verification on a single machine. Otherwise, please
verify Kubernetes services on a node, which by default, has an internal network ready.

How to do it…
We can define and create a new Kubernetes service through the CLI or a configuration file. Here
we are going to explain how to deploy the services by command. The subcommands expose
and describe are utilized in the following commands for various scenarios. The version of
Kubernetes we used in this recipe is 1.1.3. For file-format creation, please go to Working with
configuration files recipe in Chapter 3, Playing with Containers for a detailed discussion.

Walking through Kubernetes Concepts

78

When creating services, there are two configurations with which we have to take care: one
is the label, the other is the port. As the following image indicates, the service and pod have
their own key-value pair labels and ports. Be assured to use correct tags for these settings:

To create a service like this one, push the following command:

kubectl expose pod <POD_NAME> --labels="Name=Amy-log-service" --selecto
r="App=LogParser,Owner=Amy" --port=8080 --target-port=80

The --labels tag expose in the subcommand is for labeling the services with key-value
pairs. It is used to mark the services. For defining the selector of the service, use tag
--selector. Without setting the selector for service, the selector would be the same as
the labels of resource. In the preceding image, the selector would have an addition label:
Version=1.0.

To expose the service port, we send out a port number with the tag --port in the
subcommand expose. The service will take the container port number as its exposed port
if no specific number is assigned. On the other hand, the tag --target-port points out
the container port for service. While the target port is different from the exposed port of the
container, users will get an empty response. At the same time, if we only assign the service
port, the target port will copy it. Taking the previous image as an example, the traffic will be
directed to container port 8080 supposing we don't use the tag --target-port, which
brings out a refused connection error.

Chapter 2

79

Creating services for different resources
You can attach a service to a pod, a replication controller and an endpoint outside the
Kubernetes system, or even another service. We will show you these, one by one, in the next
pages. The service creation is in the format: kubectl expose RESOURCE_TYPE RESOURCE_
NAME [TAGS] or kubectl expose -f CONFIGURATION_FILE [TAGS]. Simply put,
the resource types pod, replication controller and service are supported by the subcommand
expose. So is the configuration file which follows the type limitation.

Creating a service for a pod
The pods shielded by the service need to contain labels, because the service takes this as a
necessary condition based on the selector:

// Create a pod, and add labels to it for the selector of service.

kubectl run nginx-pod --image=nginx --port=80 --restart="Never"
--labels="app=nginx"

pod "nginx-pod" created

kubectl expose pod nginx-pod --port=8000 --target-port=80
--name="service-pod"

service "service-pod" exposed

The abbreviation of Kubernetes resources
While managing resources through CLI, you can type their abbreviations
instead of the full names to save time and avoid typing errors.

Resource type Abbreviated alias
Componentstatuses cs

Events ev

Endpoints ep

Horizontalpodautoscaler hpa

Limitranges limits

Nodes no

Namespaces ns

Pods po

Persistentvolumes pv

Persistentvolumesclaims pvc

Resourcequotas qotas

Replicationcontrollers rc

Services svc

Ingress ing

Walking through Kubernetes Concepts

80

// "svc" is the abbreviation of service

kubectl get svc service-pod

NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE

service-pod 192.168.195.195 <none> 8000/TCP app=nginx 11s

As you see in these commands, we open a service with port 8000 exposed. The reason why
we specify the container port is so that the service doesn't take 8000 as the container port,
by default. To verify whether the service is workable or not, go ahead with the following
command in an internal network environment (which has been installed with the Kubernetes
cluster CIDR).

// accessing by services CLUSTER_IP and PORT

curl 192.168.195.195:8000

Creating a service for the replication controller and adding an
external IP
A replication controller is the ideal resource type for a service. For pods supervised by the
replication controller, the Kubernetes system has a controller manager to look over the
lifecycle of them. It is also helpful for updating the version or state of program by binding
existing services to another replication controller:

// Create a replication controller with container port 80 exposed

kubectl run nginx-rc --image=nginx --port=80 --replicas=2

replicationcontroller "nginx-rc" created

kubectl expose rc nginx-rc --name="service-rc" --external-ip="<USER_
SPECIFIED_IP>"

service "service-rc" exposed

In this case, we can provide the service with another IP address, which doesn't need to be
inside the cluster network. The tag --external-ip of the subcommand expose can realize
this static IP requirement. Be aware that the user-specified IP address could be contacted, for
example, with the master node public IP:

// EXTERNAL_IP has Value shown on

kubectl get svc service-rc

NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE

service-rc 192.168.126.5 <USER_SPECIFIED_IP> 80/TCP run=nginx-rc
4s

Chapter 2

81

Now, you can verify the service by 192.168.126.5:80 or <USER_SPECIFIED_IP>:80:

// Take a look of service in details

kubectl describe svc service-rc

Name: service-rc

Namespace: default

Labels: run=nginx-rc

Selector: run=nginx-rc

Type: ClusterIP

IP: 192.168.126.5

Port: <unnamed> 80/TCP

Endpoints: 192.168.45.3:80,192.168.47.2:80

Session Affinity: None

No events.

You will find that the label and selector of a service is the default of the replication controller.
In addition, there are multiple endpoints, which are replicas of the replication controller,
available for dealing with requests from the service.

Creating a no-selector service for an endpoint
First, you should have an endpoint with an IP address. For example, we can generate an
individual container in an instance, where it is located outside our Kubernetes system
but is still contactable:

// Create an nginx server on another instance with IP address <FOREIGN_
IP>

docker run -d -p 80:80 nginx

2a17909eca39a543ca46213839fc5f47c4b5c78083f0b067b2df334013f62002

docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

2a17909eca39 nginx "nginx -g
'daemon off" 21 seconds ago Up 20 seconds 0.0.0.0:80->80/
tcp, 443/tcp goofy_brown

Then, in the master, we can create a Kubernetes endpoint by using the configuration file. The
endpoint is named service-foreign-ep. We could configure multiple IP addresses and
ports in the template:

cat nginx-ep.json

{

 "kind": "Endpoints",

Walking through Kubernetes Concepts

82

 "apiVersion": "v1",

 "metadata": {

 "name": "service-foreign-ep"

 },

 "subsets": [

 {

 "addresses": [

 { "ip": "<FOREIGN_IP>" }

],

 "ports": [

 { "port": 80 }

]

 }

]

}

kubectl create -f nginx-ep.json

endpoints "service-foreign-ep" created

kubectl get ep service-foreign-ep

NAME ENDPOINTS AGE

service-foreign-ep <FOREIGN_IP>:80 16s

As mentioned in the previous section, we can start a service for a resource-configured
template with the subcommand expose. However, the CLI is unable to support exposing
an endpoint in the file format:

// Give it a try!

kubectl expose -f nginx-ep.json

error: invalid resource provided: Endpoints, only a replication
controller, service or pod is accepted

Therefore, we create the service through a configuration file:

cat service-ep.json

{

 "kind": "Service",

 "apiVersion": "v1",

 "metadata": {

 "name": "service-foreign-ep"

 },

Chapter 2

83

 "spec": {

 "ports": [

 {

 "protocol": "TCP",

 "port": 80,

 "targetPort" : 80

 }

]

 }

}

The most important thing of all is that there is no selector defined in the template. This is
quite reasonable since the endpoints are not in the Kubernetes system. The relationship
between endpoints and service is built up by resource name. As you can see, the name
of the service must be identical to the name of the endpoint:

kubectl create -f service-ep.json

service "service-foreign-ep" created

// Check the details in service

kubectl describe svc service-foreign-ep

Name: service-ep

Namespace: default

Labels: <none>

Selector: <none>

Type: ClusterIP

IP: 192.168.234.21

Port: <unnamed> 80/TCP

Endpoints: <FOREIGN_IP>:80

Session Affinity: None

No events.

Finally, the no-selector service is created for the external endpoint. Verify the result with
<FOREIGN_IP>:80.

Walking through Kubernetes Concepts

84

Creating a service with session affinity based on another service
Through the subcommand expose, we can also copy the settings of one service to
another:

// Check the service we created for replication controller in previous
section

kubectl describe svc service-rc

Name: service-rc

Namespace: default

Labels: run=nginx-rc

Selector: run=nginx-rc

Type: ClusterIP

IP: 192.168.126.5

Port: <unnamed> 80/TCP

Endpoints: 192.168.45.3:80,192.168.47.2:80

Session Affinity: None

No events.

//Create a new service with different name and service port

kubectl expose svc service-rc --port=8080 --target-port=80
--name=service-2nd --session-affinity="ClientIP"

service "service-2nd" exposed

The new service named service-2nd is reset with service port 8080 and session affinity
is enabled:

kubectl describe svc service-2nd

Name: service-2nd

Namespace: default

Labels: run=nginx-rc

Selector: run=nginx-rc

Type: ClusterIP

IP: 192.168.129.65

Port: <unnamed> 8080/TCP

Endpoints: 192.168.45.3:80,192.168.47.2:80

Session Affinity: ClientIP

No events.

Chapter 2

85

Currently, the ClientIP is the only valued setting for the tag --session-affinity. While
session affinity to the ClientIP is enabled, instead of round robin, the request of which
endpoint the service should be sent to would be decided by the ClientIP. For example,
if the requests from the client in the CIDR range 192.168.45.0/24 are sent to service
service-2nd, they will be transferred to the endpoint 192.168.45.3:80.

Creating a service in a different type
There are three types of service: ClusterIP, NodePort and LoadBalancer:

By default, every service is created as a ClusterIP type. The service in the ClusterIP type
would be assigned an internal IP address randomly. For the NodePort type, it covers the
ClusterIP's feature, and also allows the user to expose services on each node with the same
port. The LoadBalancer is on the top of the other two types. The LoadBalancer service would
be exposed internally and on the node. Besides this, if your cloud provider supports external
load balancing servers, you can bind the load balancer IP to the service and this will become
another exposing point.

Creating a service in NodePort type
Next, we are going to show you how to create a NodePort service. The tag --type in the
subcommand expose helps to define the service type:

// Create a service with type NodePort, attaching to the replication
controller we created before

kubectl expose rc nginx-rc --name=service-nodeport --type="NodePort"

service "service-nodeport" exposed

kubectl describe svc service-nodeport

Name: service-nodeport

Namespace: default

Labels: run=nginx-rc

Walking through Kubernetes Concepts

86

Selector: run=nginx-rc

Type: NodePort

IP: 192.168.57.90

Port: <unnamed> 80/TCP

NodePort: <unnamed> 31841/TCP

Endpoints: 192.168.45.3:80,192.168.47.2:80

Session Affinity: None

No events.

In the preceding case, the network port 31841 exposed on a node is randomly assigned by
the system; the default port range is 30000 to 32767. Notice that the port is exposed on
every node in the system, so it is fine to access the service through <NODE_IP>:31841,
for example, through the domain name of a node, like kube-node1:31841.

Deleting a service
You can simply work with the subcommand delete in cases where you want to stop
a service:

kubectl delete svc <SERVICE_NAME>

service "<SERVICE_NAME>" deleted

How it works…
The main actors in the Kubernetes system that perform the service environment are flanneld
and kube-proxy. Daemon flanneld builds up a cluster network by allocating a subnet lease out
of a preconfigured address space, and storing the network configuration in etcd, while kube-
proxy directs the endpoints of services and pods.

See also
To get the best use of services, the following recipes are suggested to be read as well:

ff Working with a replication controller

ff Working with labels and selectors

ff The Working with configuration files recipe in Chapter 3, Playing with Containers

ff The Moving monolithic to microservices recipe in Chapter 5, Building a Continuous
Delivery Pipeline

Chapter 2

87

Working with volumes
Files in a container are ephemeral. When the container is terminated, the files are gone.
Docker has introduced data volumes and data volume containers to help us manage the
data by mounting from the host disk directory or from other containers. However, when it
comes to a container cluster, it is hard to manage volumes across hosts and their lifetime
by using Docker.

Kubernetes introduces volume, which lives with a pod across container restarts. It supports
the following different types of network disks:

ff emptyDir

ff hostPath

ff nfs

ff iscsi

ff flocker

ff glusterfs

ff rbd

ff gitRepo

ff awsElasticBlockStore

ff gcePersistentDisk

ff secret

ff downwardAPI

In this section, we'll walk through the details of emptyDir, hostPath, nfs and glusterfs. Secret,
which is used to store credentials, will be introduced in the next section. Most of them have
similar Kubernetes syntax with a different backend.

Getting ready
The storage providers are required when you start to use volume in Kubernetes except for
emptyDir, which will be erased when the pod is removed. For other storage providers, folders,
servers or clusters have to be built before using them in the pod definition.

Walking through Kubernetes Concepts

88

Different volume types have different storage providers:

Volume Type Storage Provider
emptyDir Local host
hostPath Local host
nfs NFS server
iscsi iSCSI target provider
flocker Flocker cluster
glusterfs GlusterFS cluster
rbd Ceph cluster
gitRepo Git repository
awsElasticBlockStore AWS EBS
gcePersistentDisk GCE persistent disk
secret Kubernetes configuration file
downwardAPI Kubernetes pod information

How to do it…
Volumes are defined in the volumes section of the pod definition with a unique name. Each
type of volume has a different configuration to be set. Once you define the volumes, you can
mount them in the volumeMounts section in container spec. volumeMounts.name and
volumeMounts.mountPath are required, which indicate the name of the volumes you
defined and the mount path inside the container.

We'll use the Kubernetes configuration file with the YAML format to create a pod with volumes
in the following examples.

emptyDir
emptyDir is the simplest volume type, which will create an empty volume for containers
in the same pod to share. When the pod is removed, the files in emptyDir will be erased
as well. emptyDir is created when a pod is created. In the following configuration file, we'll
create a pod running Ubuntu with commands to sleep for 3600 seconds. As you can see, one
volume is defined in the volumes section with name data, and the volumes will be mounted
under /data-mount path in the Ubuntu container:

// configuration file of emptyDir volume

cat emptyDir.yaml

apiVersion: v1

kind: Pod

metadata:

Chapter 2

89

 name: ubuntu

labels:

 name: ubuntu

spec:

 containers:

 -

 image: ubuntu

 command:

 - sleep

 - "3600"

 imagePullPolicy: IfNotPresent

 name: ubuntu

 volumeMounts:

 -

 mountPath: /data-mount

 name: data

 volumes:

 -

 name: data

 emptyDir: {}

// create pod by configuration file emptyDir.yaml

kubectl create -f emptyDir.yaml

Check which node the pod is running on
By using the kubectl describe pod <Pod name> | grep
Node command you could check which node the pod is running on.

After the pod is running, you could use docker inspect <container ID> on the target
node and you could see the detailed mount points inside your container:

 "Mounts": [

 {

 "Source": "/var/lib/kubelet/pods/<id>/volumes/kubernetes.
io~empty-dir/data",

 "Destination": "/data-mount",

 "Mode": "",

Walking through Kubernetes Concepts

90

 "RW": true

 },

 ...

]

Here, you can see Kubernetes simply create an empty folder with the path /var/lib/
kubelet/pods/<id>/volumes/kubernetes.io~empty-dir/<volumeMount name>
for the pod to use. If you create a pod with more than one container, all of them will mount
the same destination /data-mount with the same source.

emptyDir could be mounted as tmpfs if we set the emptyDir.medium setting to Memory
in the previous configuration file emptyDir.yaml:

 volumes:

 -

 name: data

 emptyDir:

 medium: Memory

We could also check the Volumes information by kubectl describe pods ubuntu
to see whether it's set successfully:

kubectl describe pods ubuntu

Name: ubuntu

Namespace: default

Image(s): ubuntu

Node: ip-10-96-219-192/

Status: Running

...

Volumes:

 data:

 Type: EmptyDir (a temporary directory that shares a pod's lifetime)

 Medium: Memory

hostPath
hostPath acts as data volume in Docker. The local folder on a node listed in hostPath
will be mounted into the pod. Since the pod can run on any nodes, read/write functions
happening in the volume could explicitly exist in the node on which the pod is running. In
Kubernetes, however, the pod should not be node-aware. Please note that configuration and
files might be different on different nodes when using hostPath. Therefore, the same pod,
created by same command or configuration file, might act differently on different nodes.

Chapter 2

91

By using hostPath, you're able to read and write the files between containers and local host
disks of nodes. What we need for volume definition is for hostPath.path to specify the
target mounted folder on the node:

// configuration file of hostPath volume

cat hostPath.yaml

apiVersion: v1

kind: Pod

metadata:

 name: ubuntu

spec:

 containers:

 -

 image: ubuntu

 command:

 - sleep

 - "3600"

 imagePullPolicy: IfNotPresent

 name: ubuntu

 volumeMounts:

 -

 mountPath: /data-mount

 name: data

 volumes:

 -

 name: data

 hostPath:

 path: /target/path/on/host

Using docker inspect to check the volume details, you will see the volume on the host is
mounted in /data-mount destination:

 "Mounts": [

 {

 "Source": "/target/path/on/host",

 "Destination": "/data-mount",

 "Mode": "",

 "RW": true

Walking through Kubernetes Concepts

92

 },

 ...

]

Touching a file to validate that the volume is mounted successfully
Using kubectl exec <pod name> <command> you could run the
command inside a pod. In this case, if we run kubectl exec ubuntu
touch /data-mount/sample, we should be able to see one empty file
named sample under /target/path/on/host.

nfs
You can mount the Network File System (NFS) to your pod as a nfs volume. Multiple
pods can mount and share the files in the same nfs volume. The data stored in the nfs
volume will be persistent across the pod's lifetime. You have to create your own NFS server
before using nfs volume, and make sure that the nfs-utils package is installed on the
Kubernetes nodes.

Checking that the nfs server works before you go
You should check out that the /etc/exports file has proper sharing
parameters and directory, and is using the mount -t nfs <nfs
server>:<share name> <local mounted point> command to
check whether it could be mounted locally.

The configuration file of a volume type with nfs is similar to others, but the nfs.server and
nfs.path are required in the volume definition to specify NFS server information, and the
path mounting from. nfs.readOnly is an optional field for specifying whether the volume is
read-only or not (default is false):

// configuration file of nfs volume

cat nfs.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nfs

spec:

 containers:

 -

 name: nfs

Chapter 2

93

 image: ubuntu

 volumeMounts:

 - name: nfs

 mountPath: "/data-mount"

 volumes:

 - name: nfs

 nfs:

 server: <your nfs server>

 path: "/"

After you run kubectl create -f nfs.yaml, you can describe your pod by using
kubectl describe <pod name> to check the mounting status. If it's mounted
successfully, it should show conditions. It's ready if it shows true and the target nfs
you have mounted:

Conditions:

 Type Status

 Ready True

Volumes:

 nfs:

 Type: NFS (an NFS mount that lasts the lifetime of a pod)

 Server: <your nfs server>

 Path: /

 ReadOnly: false

If we inspect the container by using the Docker command, you will see the volume information
in the Mounts section:

 "Mounts": [

 {

 "Source": "/var/lib/kubelet/pods/<id>/volumes/kubernetes.
io~nfs/nfs",

 "Destination": "/data-mount",

 "Mode": "",

 "RW": true

 },

 ...

]

Walking through Kubernetes Concepts

94

Actually, Kubernetes just mounts your <nfs server>:<share name> into /var/lib/
kubelet/pods/<id>/volumes/kubernetes.io~nfs/nfs and then mounts it into a
container as its destination in the /data-mount. You could also use kubectl exec to
touch the file, as the previous tip mentions, to test whether it's perfectly mounted.

glusterfs
GlusterFS (https://www.gluster.org) is a scalable network-attached storage file
system. The glusterfs volume type allows you mount the GlusterFS volume into your pod.
Just like NFS volume, the data in the GlusterFS volume is persistent across the pod's lifetime.
If the pod is terminated, the data is still accessible in the GlusterFS volume. You should build
a GlusterFS system before using a GlusterFS volume.

Checking GlusterFS works before you go
By using gluster volume info on GlusterFS servers, you can
see currently available volumes. By using mount -t glusterfs
<glusterfs server>:/<volume name> <local mounted
point> locally, you can check whether the GlusterFS system can be
successfully mounted.

Since the volume replica in GlusterFS must be greater than 1, let's assume we have two
replicas in servers gfs1 and gfs2 and the volume name is gvol.

First, we need to create an endpoint acting as a bridge for gfs1 and gfs2:

cat gfs-endpoint.yaml

kind: Endpoints

apiVersion: v1

metadata:

 name: glusterfs-cluster

subsets:

 -

 addresses:

 -

 ip: <gfs1 server ip>

 ports:

 -

 port: 1

 -

 addresses:

 -

Chapter 2

95

 ip: <gfs2 server ip>

 ports:

 -

 port: 1

// create endpoints

kubectl create -f gfs-endpoint.yaml

Then we could use kubectl get endpoints to check the endpoint is created properly:

kubectl get endpoints

NAME ENDPOINTS AGE

glusterfs-cluster <gfs1>:1,<gfs2>:1 12m

After that, we should be able to create the pod with the GlusterFS volume by glusterfs.
yaml. The parameters of the glusterfs volume definition are glusterfs.endpoints,
which specify the endpoint name we just created, and the glusterfs.path which is the
volume name gvol. glusterfs.readOnly and is used to set whether the volume is
mounted in read-only mode:

cat glusterfs.yaml

apiVersion: v1

kind: Pod

metadata:

 name: ubuntu

spec:

 containers:

 -

 image: ubuntu

 command:

 - sleep

 - "3600"

 imagePullPolicy: IfNotPresent

 name: ubuntu

 volumeMounts:

 -

 mountPath: /data-mount

 name: data

Walking through Kubernetes Concepts

96

 volumes:

 -

 name: data

 glusterfs:

 endpoints: glusterfs-cluster

 path: gvol

Let's check the volume setting by kubectl describe:

Volumes:

 data:

 Type: Glusterfs (a Glusterfs mount on the host that shares a pod's
lifetime)

 EndpointsName: glusterfs-cluster

 Path: gvol

 ReadOnly: false

Using docker inspect you should be able to see the mounted source is /var/lib/
kubelet/pods/<id>/volumes/kubernetes.io~glusterfs/data to the destination
/data-mount.

iscsi
The iscsi volume is used to mount the existing iSCSI to your pod. Unlike nfs volume, the
iscsi volume is only allowed to be mounted in a single container in read-write mode. The
data will be persisted across the pod's lifecycle:

Field Name Field Definition
targetPortal IP Address of iSCSI target portal
Iqn IQN of the target portal
Lun Target LUN for mounting
fsType File system type on LUN
readOnly Specify read-only or not, default is false

flocker
Flocker is an open-source container data volume manager. The flocker volume will be
moved to the target node when the container moves. Before using Flocker with Kubernetes,
the Flocker cluster (Flocker control service, Flocker dataset agent, Flocker container agent)
is required. Flocker's official website (https://docs.clusterhq.com/en/1.8.0/
install/index.html) has detailed installation instructions.

https://docs.clusterhq.com/en/1.8.0/install/index.html
https://docs.clusterhq.com/en/1.8.0/install/index.html

Chapter 2

97

After you get your Flocker cluster ready, create a dataset and specify the dataset name in the
Flocker volume definition in the Kubernetes configuration file:

Field Name Field Definition
datasetName Target dataset name in Flocker

rbd
Ceph RADOS Block Device (http://docs.ceph.com/docs/master/rbd/rbd/) could
be mounted into your pod by using rbd volume. You need to install Ceph before using the rbd
volume. The definition of rbd volume support is secret in order to keep authentication secrets:

Field Name Field Definition Default Value
monitors Cepth monitors
pool The name of RADOS pool rbd

image The image name rbd created
user RADOS user name admin

keyring The path of keyring, will be overwritten if
secret name is provided

/etc/ceph/
keyring

secretName Secret name
fsType File system type
readOnly Specify read-only or not False

gitRepo
The gitRepo volume will mount as an empty dictionary and Git clone a repository with
certain revision in a pod for you to use:

Field Name Field Definition
repository Your Git repository with SSH or HTTPS
Revision The revision of repository
readOnly Specify read-only or not

http://docs.ceph.com/docs/master/rbd/rbd

Walking through Kubernetes Concepts

98

awsElasticBlockStore
awsElasticBlockStore volume mounts an AWS EBS volume into a pod. In order to use it,
you have to have your pod running on AWS EC2 with the same availability zone with EBS. For
now, EBS only supports attaching to an EC2 in nature, so it means you cannot attach a single
EBS volume to multiple EC2 instances:

Field Name Field Definition
volumeID EBS volume info - aws://<availability-

zone>/<volume-id>

fsType File system type
readOnly Specify read-only or not

gcePersistentDisk
Similar to awsElasticBlockStore, the pod using the gcePersistentDisk volume must
be running on GCE with the same project and zone. The gcePersistentDisk supports only
a single writer when readOnly = false:

Field Name Field Definition
pdName GCE persistent disk name
fsType File system type
readOnly Specify read-only or not

downwardAPI
The downwardAPI volume is a Kubernetes volume plugin with the ability to save some
pod information in a plain text file into a container. The current supporting metadata of
the downwardAPI volume is:

ff metadata.annotations

ff metadata.namespace

ff metadata.name

ff metadata.labels

The definition of the downwardAPI is a list of items. An item contains a path and fieldRef.
Kubernetes will then dump the specified metadata listed in the fieldRef to a file named
path under mountPath and mount the <volume name> into the destination you specified:

 {
 "Source": "/var/lib/kubelet/pods/<id>/volumes/kubernetes.
io~downward-api/<volume name>",
 "Destination": "/tmp",
 "Mode": "",

Chapter 2

99

 "RW": true
 }

For the IP of the pod, using the environment variable to propagate in the pod spec would be
much easier:

spec:
 containers:
 - name: envsample-pod-info
 env:
 - name: MY_POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

For more examples, look at the sample folder in Kubernetes GitHub (https://github.
com/kubernetes/kubernetes/tree/master/docs/user-guide/downward-api)
which contains more examples for both environment variables and downwardAPI volume.

There's more…
In previous cases, the user needed to know the details of the storage provider. Kubernetes
provides PersistentVolume (PV) to abstract the details of the storage provider and storage
consumer. Kubernetes currently supports the PV types as follows:

ff GCEPersistentDisk

ff AWSElasticBlockStore

ff NFS

ff iSCSI

ff RBD (Ceph Block Device)

ff GlusterFS

ff HostPath (not workable in multi-node cluster)

https://github.com/kubernetes/kubernetes/tree/master/docs/user-guide/downward-api
https://github.com/kubernetes/kubernetes/tree/master/docs/user-guide/downward-api

Walking through Kubernetes Concepts

100

PersistentVolume
The illustration of persistent volume is shown in the following graph. At first, administrator
provisions the specification of a PersistentVolume. Second, they provision consumer
requests for storage by PersistentVolumeClaim. Finally, the pod mounts the volume
by the reference of the PersistentVolumeClaim:

The administrator needs to provision and allocate the persistent volume first.

Here is an example using NFS:

// example of PV with NFS

cat pv.yaml

 apiVersion: v1

 kind: PersistentVolume

 metadata:

 name: pvnfs01

 spec:

 capacity:

 storage: 3Gi

 accessModes:

 - ReadWriteOnce

 nfs:

 path: /

 server: <your nfs server>

 persistentVolumeReclaimPolicy: Recycle

Chapter 2

101

// create the pv

kubectl create -f pv.yaml

persistentvolume "pvnfs01" created

We can see there are three parameters here: capacity, accessModes and
persistentVolumeReclaimPolicy. capacity is the size of this PV. accessModes
is based on the capability of the storage provider, and can be set to a specific mode
during provision. For example, NFS supports multiple readers and writers simultaneously,
thus we could specify the accessModes as ReadWriteOnce, ReadOnlyMany or
ReadWriteMany. The accessModes of one volume could be set to one mode at a time.
persistentVolumeReclaimPolicy is used to define the behavior when PV is released.
Currently, the supported policy is Retain and Recycle for nfs and hostPath. You have to
clean the volume by yourself in Retain mode; on the other hand, Kubernetes will scrub the
volume in Recycle mode.

PV is a resource like node. We could use kubectl get pv to see current provisioned PVs:

// list current PVs

kubectl get pv

NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE

pvnfs01 <none> 3Gi RWO Bound default/pvclaim01
37m

Next, we will need to bind PersistentVolume with PersistentVolumeClaim in order
to mount it as a volume into the pod:

// example of PersistentVolumeClaim

cat claim.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvclaim01

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

// create the claim

kubectl create -f claim.yaml

Walking through Kubernetes Concepts

102

persistentvolumeclaim "pvclaim01" created

// list the PersistentVolumeClaim (pvc)

kubectl get pvc

NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE

pvclaim01 <none> Bound pvnfs01 3Gi RWO 59m

The constraints of accessModes and storage could be set in the
PersistentVolumeClaim. If the claim is bound successfully, its status will turn to Bound;
conversely, if the status is Unbound, it means that currently no PV matches the requests.

Then we are able to mount the PV as a volume by using PersistentVolumeClaim:

// example of mounting into Pod

cat nginx.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx

 labels:

 project: pilot

 environment: staging

 tier: frontend

spec:

 containers:

 -

 image: nginx

 imagePullPolicy: IfNotPresent

 name: nginx

 volumeMounts:

 - name: pv

 mountPath: "/usr/share/nginx/html"

 ports:

 - containerPort: 80

 volumes:

 - name: pv

 persistentVolumeClaim:

 claimName: "pvclaim01"

Chapter 2

103

// create the pod

kubectl create -f nginx.yaml

pod "nginx" created

The syntax is similar to the other volume type. Just add the claimName of the
persistentVolumeClaim in the volume definition. We are all set! Let's check
the details to see whether we have mounted it successfully:

// check the details of a pod

kubectl describe pod nginx

...

Volumes:

 pv:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim
in the same namespace)

 ClaimName: pvclaim01

 ReadOnly: false

...

We can see that we have a volume mounted in the pod nginx with type pv pvclaim01. Use
docker inspect to see how it is mounted:

 "Mounts": [

 {

 "Source": "/var/lib/kubelet/pods/<id>/volumes/kubernetes.
io~nfs/pvnfs01",

 "Destination": "/usr/share/nginx/html",

 "Mode": "",

 "RW": true

 },

 ...

]

Kubernetes mounts /var/lib/kubelet/pods/<id>/volumes/kubernetes.io~nfs/<
persistentvolume name> into the destination in the pod.

See also
Volumes are put in container specs in pods or replication controllers. Check out the following
recipes to jog your memory:

ff Working with pods

ff Working with a replication controller

Walking through Kubernetes Concepts

104

Working with secrets
Kubernetes secrets manage information in key-value formats with the value encoded. With
secrets, users don't have to set values in the configuration file or type them in CLI. When
secrets are used properly, they can reduce the risk of credential leak and make our resource
configurations more organized.

Currently, there are three types of secret:

ff Opaque: https://en.wikipedia.org/wiki/Opaque_data_type

ff Service account token

ff Docker authentication

Opaque is the default type. We will put service account tokens and the authentication of
Docker in the remark part.

Getting ready
Before using our credentials with secrets, some precautions must be taken First, secrets
have a 1 MB size limitation. It works fine for defining several key-value pairs in a single secret.
But, be aware that the total size should not exceed 1 MB. Next, secret acts like a volume for
containers, so secrets should be created prior to dependent pods.

How to do it…
We can only generate secrets by using configuration files. In this recipe, we will deliver a
simple template file and focus on the functionality. For various template designs, please take
a look at the Working with configuration files recipe in Chapter 3, Playing with Containers.

Creating a secret
The configuration file of secrets contains secret type and data:

// A simple file for configuring secret

cat secret-test.json

{

 "kind": "Secret",

 "apiVersion": "v1",

 "metadata": {

 "name": "secret-test"

 },

 "type": "Opaque",

https://en.wikipedia.org/wiki/Opaque_data_type

Chapter 2

105

 "data": {

 "username": "YW15Cg==",

 "password": " UGEkJHcwcmQhCg=="

 }

}

The secret type Opaque is the default one, which simply indicates that the data is not shown.
The other types, service account token and Docker authentication, are applied when using the
values kubernetes.io/service-account-token and kubernetes.io/dockercfg at
the type item stage, respectively.

The data username and password are customized keys. Their corresponding values are
base64-encoded string. You can get your encoded value through these pipe commands:

echo "amy" | base64

YW15Cg==

The resource annotation and management of secrets is similar to other resource types. Feel
free to create a secret and check its status by using common subcommands:

kubectl create -f secret-test.json

secret "secret-test" created

kubectl get secret

NAME TYPE DATA AGE

secret-test Opaque 2 39s

kubectl describe secret secret-test

Name: secret-test

Namespace: default

Labels: <none>

Annotations: <none>

Type: Opaque

Data

====

password: 10 bytes

username: 4 bytes

As you can see, although secret hides the information, we can get the amount of data, the
data name and also the size of the value.

Walking through Kubernetes Concepts

106

Picking up secret in the container
In order to let the pod get the secret information, secret data is mounted as a file in the
container. The key-value pair data will be shown in plain-text file format, which takes a key
name as the file name and the decoded value as the file content. Therefore, we create the
pod by configuration file, where the container's mounting volume is pointed to secret:

cat pod-secret.json

{

 "kind": "Pod",

 "apiVersion": "v1",

 "metadata": {

 "name": "pod-with-secret"

 },

 "spec": {

 "volumes": [

 {

 "name": "secret-volume",

 "secret": {

 "secretName": "secret-test"

 }

 }

],

 "containers": [

 {

 "name": "secret-test-pod",

 "image": "nginx",

 "volumeMounts": [

 {

 "name": "secret-volume",

 "readOnly": true,

 "mountPath": "/tmp/secret-volume"

 }

]

 }

]

 }

}

Chapter 2

107

For the previous template, we defined a volume called secret-volume which includes
physical files with the content of the secret secret-test; the containers' mounting point
is also defined along with the location, where to put secret files, and bound with secret-
volume. In this case, the container could access secrets in its local file system by using
/tmp/secrets/<SECRET_KEY>.

To verify the content is decrypted for the usage of the container program, let's take a look at
the specific container on the node:

// login to node and enable bash process with new tty

docker exec -it <CONTAINER_ID> bash

root@pod-with-secret:/# ls /tmp/secrets/

password username

root@pod-with-secret:/# cat /tmp/secrets/password

Pa$$w0rd!

root@pod-with-secret:/# cat /tmp/secrets/username

amy

Deleting a secret
Secret, like other resources, can be stopped by the subcommand delete. Both methods,
deleting according to configuration file or deleting by resource name are workable:

kubectl delete -f secret-test.json

secret "secret-test" deleted

How it works…
In order to reduce the risk of leaking the secrets' content, the Kubernetes system never saves
the data of secrets on disk. Instead, secrets are stored in the memory. For a more accurate
statement, the Kubernetes API server pushes secret to the node on which the demanded
container is running. The node stores the data in tmpfs, which will be flashed if the container
is destroyed.

Go and check the node, which has container with secrets running on it:

// check the disk

df -h --type=tmpfs

Filesystem Size Used Avail Use% Mounted on

tmpfs 920M 0 920M 0% /dev/shm

tmpfs 920M 17M 903M 2% /run

tmpfs 920M 0 920M 0% /sys/fs/cgroup

tmpfs 184M 0 184M 0% /run/user/2007

tmpfs 920M 8.0K 920M 1% /var/lib/kubelet/pods/2edd4eb4-
b39e-11e5-9663-0200e755981f/volumes/kubernetes.io~secret/secret-volume

Walking through Kubernetes Concepts

108

Furthermore, I suggest that you avoid creating a large-size secret or many small-size secrets.
Since secrets are kept in the memory of nodes, reducing the total size of secrets could help
to save resources and maintain good performance.

There's more…
In the previous sections, secret is configured in the default service account. The service
account can make processes in containers in contact with the API server. You could have
different authentication by creating different service accounts.

Let's see how many service accounts we currently have:

$ kubectl get serviceaccounts

NAME SECRETS AGE

default 0 18d

Kubernetes will create a default service account. Let's see how to create our own one:

example of service account creation

$ cat serviceaccount.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: test-account

create service account named test-account

$ kubectl create -f serviceaccount.yaml

serviceaccount "test-account" created

After creation, let's list the accounts by kubectl:

$ kubectl get serviceaccounts

NAME SECRETS AGE

default 0 18d

test-account 0 37s

We can see there is a new service account named test-account in the list now.

Each service account could have its own API token, image pull secrets and mountable secrets.

Similarly, we could delete the service account by using kubectl:

$ kubectl delete serviceaccount test-account

serviceaccount "test-account" deleted

Chapter 2

109

On the other hand, Docker authentication can also be saved as a secret data for pulling
images. We will discuss the usage in Working with the private Docker registry recipe in
Chapter 5, Building a Continuous Delivery Pipeline.

See also
ff The Working with configuration files recipe in Chapter 3, Playing with Containers

ff The Moving monolithic to microservices, Working with the private Docker registry
recipes in Chapter 5, Building a Continuous Delivery Pipeline

ff The Advanced settings in kubeconfig recipe in Chapter 7, Advanced Cluster
Administration

Working with names
When you create any Kubernetes objects such as a pod, replication controller and service,
you can assign a name to it. The names in Kubernetes are spatially unique, which means
you cannot assign the same name in the pods.

Getting ready
Kubernetes allows us to assign a name with the following restrictions:

ff Up to 253 characters

ff Lowercase of alphabet and numeric characters

ff May contain special characters in the middle but only dash (-) and dot (.)

How to do it…
The following example is the pod definition that assigns the pod name as my-pod, to the
container name as my-container, you can successfully create it as follows:

cat my-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container

 image: nginx

Walking through Kubernetes Concepts

110

kubectl create -f my-pod.yaml

pod "my-pod" created

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-pod 0/1 Running 0 4s

You can use the kubectl describe command to see the container name my-container
as follows:

kubectl describe pod my-pod

Name: my-pod

Namespace: default

Image(s): nginx

Node: ip-10-96-219-25/10.96.219.25

Start Time: Wed, 16 Dec 2015 00:46:33 +0000

Labels: <none>

Status: Running

Reason:

Message:

IP: 192.168.34.35

Replication Controllers: <none>

Containers:

 my-container:

 Container ID: docker://5501d115703e334ae44c1541b990a7e22ce4f310226ea
fea206594e4c85c90d9

 Image: nginx

 Image ID: docker://6ffc02088cb870652eca9ccd4c4fb582f75b29af2879792
ed09bb46fd1c898ef

 State: Running

 Started: Wed, 16 Dec 2015 00:46:34 +0000

 Ready: True

 Restart Count: 0

 Environment Variables:

On the other hand, the following example contains two containers, but assigns the same
name as my-container, therefore the kubectl command returns an error and can't
create the pod.

//delete previous pods

kubectl delete pods --all

Chapter 2

111

pod "my-pod" deleted

cat duplicate.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container

 image: nginx

 - name: my-container

 image: centos

 command: ["/bin/sh", "-c", "while : ;do curl http://localhost:80/;
sleep 3; done"]

kubectl create -f duplicate.yaml

The Pod "my-pod" is invalid.

spec.containers[1].name: duplicate value 'my-container'

You can add the -validate flag
For example: kubectl create -f duplicate.yaml -validate
Use a schema to validate the input before sending it

In another example, the YAML contains a replication controller and service, both of which
are using the same name my-nginx, but it is successfully created because the replication
controller and service are different:

cat nginx.yaml

apiVersion: v1

kind: ReplicationController

metadata:

 name: my-nginx

spec:

 replicas: 2

 selector:

 sel : my-selector

 template:

Walking through Kubernetes Concepts

112

 metadata:

 labels:

 sel : my-selector

 spec:

 containers:

 - name: my-container

 image: nginx

apiVersion: v1

kind: Service

metadata:

 name: my-nginx

spec:

 ports:

 - protocol: TCP

 port: 80

 nodePort: 30080

 type: NodePort

 selector:

 sel: my-selector

kubectl create -f nginx.yaml

replicationcontroller "my-nginx" created

service "my-nginx" created

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

my-nginx my-container nginx sel=my-selector 2 8s

kubectl get service

NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE

kubernetes 192.168.0.1 <none> 443/TCP <none>
6d

my-nginx 192.168.38.134 nodes 80/TCP sel=my-selector
14s

Chapter 2

113

How it works…
Name is just a unique identifier, all naming conventions are good, however it is recommended
to look up and identify the container image. For example:

ff memcached-pod1

ff haproxy.us-west

ff my-project1.mysql

On the other hand, the following examples do not work because of Kubernetes restrictions:

ff Memcache-pod1 (contains uppercase)

ff haproxy.us_west (contains underscore)

ff my-project1.mysql. (dot in the last)

Note that Kubernetes supports a label that allows to assign a key=value style identifier. It also
allows duplication. Therefore, if you want to assign something like the information below, use
a label instead:

ff environment (for example: staging, production)

ff version (for example: v1.2)

ff application role (for example: frontend, worker)

In addition, Kubernetes also supports namespaces which have isolated namespaces. This
means that you can use the same name in different namespaces (for example: nginx).
Therefore, if you want to assign just an application name, use namespaces instead.

See also
This section described how to assign and find the name of objects. This is just a basic
methodology, but Kubernetes has more powerful naming tools such as namespace and
selectors to manage clusters:

ff Working with pods

ff Working with a replication controller

ff Working with services

ff Working with namespaces

ff Working with labels and selectors

Walking through Kubernetes Concepts

114

Working with namespaces
The name of a resource is a unique identifier within a namespace in the Kubernetes cluster.
Using a Kubernetes namespace could isolate namespaces for different environments in the
same cluster. It gives you the flexibility of creating an isolated environment and partitioning
resources to different projects and teams.

Pods, services, replication controllers are contained in a certain namespace. Some resources,
such as nodes and PVs, do not belong to any namespace.

Getting ready
By default, Kubernetes has created a namespace named default. All the objects created
without specifying namespaces will be put into default namespaces. You could use kubectl
to list namespaces:

// check all namespaces

kubectl get namespaces

NAME LABELS STATUS AGE

default <none> Active 8d

Kubernetes will also create another initial namespace called kube-system for locating
Kubernetes system objects, such as a Kubernetes UI pod.

The name of a namespace must be a DNS label and follow the following rules:

ff At most 63 characters

ff Matching regex [a-z0-9]([-a-z0-9]*[a-z0-9])

How to do it…
1.	 After selecting our desired name, let's create a namespace named new-namespace

by using the configuration file:
cat newNamespace.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: new-namespace

// create the resource by kubectl

kubectl create -f newNamespace.yaml

Chapter 2

115

2.	 After the namespace is created successfully, list the namespace again:
// list namespaces

kubectl get namespaces

NAME LABELS STATUS AGE

default <none> Active 8d

new-namespace <none> Active 12m

You can see now that we have two namespaces.

3.	 Let's run the nginx replication controller described in Chapter 1, Building Your Own
Kubernetes in a new namespace:
// run a nginx RC in namespace=new-namespace

kubectl run nginx --image=nginx --namespace=new-namespace

4.	 Then let's list the pods:
kubectl get pods

NAME READY STATUS
RESTARTS AGE

5.	 There are no pods running! Let's run again with the --namespace parameter:
// to list pods in all namespaces

kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE

new-namespace nginx-ns0ig 1/1 Running 0 17m

// to get pods from new-namespace

kubectl get pods --namespace=new-namespace

NAME READY STATUS RESTARTS AGE

nginx-ns0ig 1/1 Running 0 18m

We can see our pods now.

6.	 By default, if you don't specify any namespace in the command line, Kubernetes will
create the resources in the default namespace. If you want to create resources by
configuration file, just simply specify it when doing kubectl create:
kubectl create -f myResource.yaml --namespace=new-namespace

Walking through Kubernetes Concepts

116

Changing the default namespace
It is possible to switch the default namespace in Kubernetes:

1.	 Find your current context:
kubectl config view | grep current-context

current-context: ""

It reveals that we don't have any context setting now.

2.	 No matter whether there is current context or not, using set-context could create
a new one or overwrite the existing one:
kubectl config set-context <current context or new context name>
--namespace=new-namespace

3.	 After setting the context with a new namespace, we can check the current
configuration:
kubectl config view

apiVersion: v1

clusters: []

contexts:

- context:

 cluster: ""

 namespace: new-namespace

 user: ""

 name: new-context

current-context: ""

kind: Config

preferences: {}

users: []

We can see the namespace is set properly in the contexts section.

4.	 Switch the context to the one we just created:
kubectl config use-context new-context

5.	 Then check the current context again:
kubectl config view | grep current-context

current-context: new-context

We can see that current-context is new-context now.

Chapter 2

117

6.	 Let's list the current pods again. There's no need to specify the Namespace
parameter, as we can list the pods in new-namespace:
kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-ns0ig 1/1 Running 0 54m

7.	 Namespace is listed in the pod description as well:
kubectl describe pod nginx-ns0ig

Name: nginx-ns0ig

Namespace: new-namespace

Image(s): nginx

Node: ip-10-96-219-156/10.96.219.156

Start Time: Sun, 20 Dec 2015 15:03:40 +0000

Labels: run=nginx

Status: Running

Deleting a namespace
1.	 Using kubectl delete could delete the resources including the namespace.

Deleting a namespace will erase all the resources under that namespace:
kubectl delete namespaces new-namespace

namespace "new-namespace" deleted

2.	 After the namespace is deleted, our nginx pod is gone:
kubectl get pods

NAME READY STATUS RESTARTS AGE

3.	 However, the default namespace in the context is still set as new-namespace:
kubectl config view | grep current-context

current-context: new-context

Will it be a problem?

4.	 Let's run an nginx replication controller again.
kubectl run nginx --image=nginx

Error from server: namespaces "new-namespace" not found

It will try to create an nginx replication controller and replica pod in the current
namespace we just deleted. Kubernetes will throw out an error if the namespace
is not found.

Walking through Kubernetes Concepts

118

5.	 Let's switch back to the default namespace.
kubectl config set-context new-context --namespace=""

context "new-context" set.

6.	 Let's run an nginx again.
kubectl run nginx --image=nginx

replicationcontroller "nginx" created

Does it real run in default namespace? Let's describe the pod.

kubectl describe pods nginx-ymqeh

Name: nginx-ymqeh

Namespace: default

Image(s): nginx

Node: ip-10-96-219-156/10.96.219.156

Start Time: Sun, 20 Dec 2015 16:13:33 +0000

Labels: run=nginx

Status: Running

...

We can see the pod is currently running in Namespace: default. Everything
looks fine.

There's more…
Sometimes you'll need to limit the resource quota for each team by distinguishing the
namespace. After you create a new namespace, the details look like this:

$ kubectl describe namespaces new-namespace

Name: new-namespace

Labels: <none>

Status: Active

No resource quota.

No resource limits.

Resource quota and limits are not set by default. Kubernetes supports constraint for a
container or pod. LimitRanger in the Kubernetes API server has to be enabled before
setting the constraint. You could either use a command line or configuration file to enable it:

// using command line-

kube-apiserver --admission-control=LimitRanger

Chapter 2

119

// using configuration file

cat /etc/kubernetes/apiserver

...

default admission control policies

KUBE_ADMISSION_CONTROL="--admission_control=NamespaceLifecycle,NamespaceE
xists,LimitRanger,SecurityContextDeny,ResourceQuota"

...

The following is a good example for creating a limit in a namespace.

We will then limit the resources in a pod with the values 2 as max and 200m as min for cpu,
and 1Gi as max and 6Mi as min for memory. For the container, the cpu is limited between
100m - 2 and the memory is between 3Mi - 1Gi. If the max is set, then you have to specify the
limit in the pod/container spec during the resource creation; if the min is set then the request
has to be specified during the pod/container creation. The default and defaultRequest
section in LimitRange is used to specify the default limit and request in the container spec:

cat limits.yaml

apiVersion: v1

kind: LimitRange

metadata:

 name: limits

 namespace: new-namespace

spec:

 limits:

 - max:

 cpu: "2"

 memory: 1Gi

 min:

 cpu: 200m

 memory: 6Mi

 type: Pod

 - default:

 cpu: 300m

 memory: 200Mi

 defaultRequest:

 cpu: 200m

 memory: 100Mi

Walking through Kubernetes Concepts

120

 max:

 cpu: "2"

 memory: 1Gi

 min:

 cpu: 100m

 memory: 3Mi

 type: Container

// create LimitRange

kubectl create -f limits.yaml

limitrange "limits" created

After the LimitRange is created, we can list these down just like with any other resource:

// list LimitRange

kubectl get LimitRange --namespace=new-namespace

NAME AGE

limits 22m

When you describe the new namespace you will now be able to see the constraint:

kubectl describe namespace new-namespace

Name: new-namespace

Labels: <none>

Status: Active

No resource quota.

Resource Limits

 Type Resource Min Max Request Limit Limit/Request

 ---- -------- --- --- ------- ----- -------------

 Pod memory 6Mi 1Gi - - -

 Pod cpu 200m 2 - - -

 Container cpu 100m 2 200m 300m -

 Container memory 3Mi 1Gi 100Mi 200Mi -

All the pods and containers created in this namespace have to follow the resource limits listed
here. If the definitions violate the rule, a validation error will be thrown accordingly.

Chapter 2

121

Deleting LimitRange
We could delete the LimitRange resource via:

kubectl delete LimitRange <limit name> --namespace=<namespace>

Here, the limit name is limits and the namespace is new-namespace. After that when you
describe the namespace, the constraint is gone:

kubectl describe namespace <namespace>

Name: new-namespace

Labels: <none>

Status: Active

No resource quota.

No resource limits.

See also
Many resources are running under a namespace, check out the following recipes:

ff Working with pods

ff Working with names

ff The Setting resource in nodes recipe in Chapter 7, Advanced Cluster Administration

Working with labels and selectors
Labels are a set of key/value pairs, which are attached to object metadata. We could use
labels to select, organize and group objects, such as pods, replication controllers and
services. Labels are not necessarily unique. Objects could carry the same set of labels.

Label selectors are used to query objects via labels. Current supported selector types are:

ff Equality-based label selector

ff Set-based label selector

ff Empty label selector

ff Null label selector

Walking through Kubernetes Concepts

122

An equality-based label selector is a set of equality requirements, which could filter labels
by equal or non-equal operation. A set-based label selector is used to filter labels by a set of
values, and currently supports in and notin operators. When a label value matches the
values in the in operator, it will be returned by the selector; conversely, if a label value does
not match the values in the notin operator, it will be returned. Empty label selectors select
all objects and null labels select no objects. Selectors are combinable. Kubernetes will return
the objects that match all the requirements in selectors.

Getting ready
Before you get to set labels into the objects, you should consider the valid naming convention
of key and value.

A valid key should follow these rules:

ff A name with an optional prefix, separated by a slash.

ff A prefix must be a DNS subdomain, separated by dots, no longer than 253 characters.

ff A name must be less than 63 characters with the combination of [a-z0-9A-Z] and
dashes, underscores and dots. Note that symbols are illegal if put at the beginning
and the end.

A valid value should follow the following rules:

ff A name must be less than 63 characters with the combination of [a-z0-9A-Z] and
dashes, underscores and dots. Note that symbols are illegal if put at the beginning
and the end.

You should also consider the purpose, too. For example, we have a service in the pilot project
under different development environments which contain multiple tiers. Then we could make
our labels:

ff project: pilot

ff environment: development, environment: staging, environment:
production

ff tier: frontend, tier: backend

How to do it…
Let's try to create an nginx pod with the previous labels in both a staging and production
environment:

1.	 We will create the same staging for pod and production as that for the replication
controller (RC):
cat staging-nginx.yaml

apiVersion: v1

Chapter 2

123

kind: Pod

metadata:

 name: nginx

 labels:

 project: pilot

 environment: staging

 tier: frontend

spec:

 containers:

 -

 image: nginx

 imagePullPolicy: IfNotPresent

 name: nginx

 ports:

 - containerPort: 80

// create the pod via configuration file

kubectl create -f staging-nginx.yaml

pod "nginx" created

2.	 Let's see the details of the pod:
kubectl describe pod nginx

Name: nginx

Namespace: default

Image(s): nginx

Node: ip-10-96-219-231/

Start Time: Sun, 27 Dec 2015 18:12:31 +0000

Labels: environment=staging,project=pilot,tier=frotend

Status: Running

...

We could then see the labels in the pod description as environment=staging,pro
ject=pilot,tier=frontend.

Good. We have a staging pod now.

Walking through Kubernetes Concepts

124

3.	 Now, get on with creating the RC for a production environment by using the command
line:
$ kubectl run nginx-prod --image=nginx --replicas=2 --port=80 --la
bels="environment=production,project=pilot,tier=frontend"

This will then create an RC named nginx-prod with two replicas, an opened port
80, and with the labels environment=production,project=pilot,tier=fron
tend.

4.	 We can see that we currently have a total three pods here. One pod is created for
staging, the other two are for production:
kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 8s

nginx-prod-50345 1/1 Running 0 19s

nginx-prod-pilb4 1/1 Running 0 19s

5.	 Let's get some filters for the selecting pods. For example, if I wanted to select
production pods in the pilot project:
kubectl get pods -l "project=pilot,environment=production"

NAME READY STATUS RESTARTS AGE

nginx-prod-50345 1/1 Running 0 9m

nginx-prod-pilb4 1/1 Running 0 9m

By adding -l followed by key/value pairs as filter requirements, we could see the
desired pods.

Linking service with a replication controller by using label
selectors
Service in Kubernetes is used to expose the port and for load-balancing:

1.	 In some cases, you'll need to add a service in front of the replication controller
in order to expose the port to the outside world or balance the load. We will use
the configuration file to create services for the staging pod and command line for
production pods in the following example:
// example of exposing staging pod

cat staging-nginx-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: nginx

Chapter 2

125

 labels:

 project: pilot

 environment: staging

 tier: frontend

spec:

 ports:

 -

 protocol: TCP

 port: 80

 targetPort: 80

 selector:

 project: pilot

 environment: staging

 tier: frontend

 type: LoadBalancer

// create the service by configuration file

kubectl create -f staging-nginx-service.yaml

service "nginx" created

2.	 Using kubectl describe to describe the details of the service:
// describe service

kubectl describe service nginx

Name: nginx

Namespace: default

Labels: environment=staging,project=pilot,tier=frontend

Selector: environment=staging,project=pilot,tier=frontend

Type: LoadBalancer

IP:	 192.168.167.68

Port: <unnamed> 80/TCP

Endpoints: 192.168.80.28:80

Session Affinity: None

No events.

Using curl for the ClusterIP could return the welcome page of nginx.

Walking through Kubernetes Concepts

126

3.	 Next, let's add the service for RC with label selectors:
// add service for nginx-prod RC

kubectl expose rc nginx-prod --port=80 --type=LoadBalancer --sel
ector="project=pilot,environment=production,tier=frontend"

4.	 Using kubectl describe to describe the details of service:
kubectl describe service nginx-prod

Name: nginx-prod

Namespace: default

Labels: environment=production,project=pilot,tier=frontend

Selector: environment=production,project=pilot,tier=frontend

Type: LoadBalancer

IP: 192.168.200.173

Port: <unnamed> 80/TCP

NodePort: <unnamed> 32336/TCP

Endpoints: 192.168.80.31:80,192.168.80.32:80

Session Affinity: None

No events.

When we use curl 192.168.200.173, we can see the welcome page of nginx just
like the staging one.

It will return a Connection reset by peer error if you specify the empty
pod set by the selector.

There's more…
In some cases, we might want to tag the resources with some values just for reference in the
programs or tools. The non-identifying tags could use annotations instead, which are able
to use structured or unstructured data. Unlike labels, annotations are not for querying and
selecting. The following example will show you how to add an annotation into a pod and how
to leverage them inside the container by downward API:

cat annotation-sample.yaml

apiVersion: v1

kind: Pod

metadata:

 name: annotation-sample

Chapter 2

127

 labels:

 project: pilot

 environment: staging

 annotations:

 git: 6328af0064b3db8b913bc613876a97187afe8e19

 build: "20"

spec:

 containers:

 -

 image: busybox

 imagePullPolicy: IfNotPresent

 name: busybox

 command: ["sleep", "3600"]

You could then use downward API, which we discussed in volumes, to access annotations
in containers:

cat annotation-sample-downward.yaml

apiVersion: v1

kind: Pod

metadata:

 name: annotation-sample

 labels:

 project: pilot

 environment: staging

 annotations:

 git: 6328af0064b3db8b913bc613876a97187afe8e19

 build: "20"

spec:

 containers:

 -

 image: busybox

 imagePullPolicy: IfNotPresent

 name: busybox

 command: ["sh", "-c", "while true; do if [[-e /etc/annotations]];
then cat /etc/annotations; fi; sleep 5; done"]

Walking through Kubernetes Concepts

128

 volumeMounts:

 - name: podinfo

 mountPath: /etc

volumes:

 - name: podinfo

 downwardAPI:

 items:

 - path: "annotations"

 fieldRef:

 fieldPath: metadata.annotations

In this way, metadata.annotations will be exposed in the container as a file format under
/etc/annotations. We could also check the pod logs are printing out the file content
into stdout:

// check the logs we print in command section

kubectl logs -f annotation-sample

build="20"

git="6328af0064b3db8b913bc613876a97187afe8e19"

kubernetes.io/config.seen="2015-12-28T12:23:33.154911056Z"

kubernetes.io/config.source="api"

See also
You can practice labels and selectors through the following recipes:

ff Working with pods

ff Working with a replication controller

ff Working with services

ff Working with volumes

ff The Working with configuration files recipe in Chapter 3, Playing with Containers

129

3
Playing with Containers

In this chapter, we will cover the following topics:

ff Scaling your containers

ff Updating live containers

ff Forwarding container ports

ff Ensuring flexible usage of your containers

ff Working with configuration files

Introduction
Talking about container management, you need to know some differences to compare it
with application package management, such as rpm/dpkg, because you can run multiple
containers on the same machine. You also need to care of the network port conflicts. This
chapter covers how to update, scale, and launch the container application using Kubernetes.

Scaling your containers
Kubernetes has a scheduler to assign the container to the right node. In addition, you can
easily scale out and scale down the number of containers. The Kubernetes scaling function
will conduct the replication controller to adjust the number of containers.

Playing with Containers

130

Getting ready
Prepare the following YAML file, which is a simple replication controller to launch two nginx
containers. Also, service will expose the TCP port 30080:

cat nginx-rc-svc.yaml

apiVersion: v1

kind: ReplicationController

metadata:

 name: my-nginx

spec:

 replicas: 2

 selector:

 sel : my-selector

 template:

 metadata:

 labels:

 sel : my-selector

 spec:

 containers:

 - name: my-container

 image: nginx

apiVersion: v1

kind: Service

metadata:

name: my-nginx

spec:

 ports:

 - protocol: TCP

 port: 80

 nodePort: 30080

 type: NodePort

 selector:

 sel: my-selector

Chapter 3

131

NodePort will bind all the Kubernetes nodes; therefore, make sure
NodePort is not used by other processes.

Use the kubectl command to create resources as follows:

kubectl create -f nginx-service.yaml

replicationcontroller "my-nginx" created

service "my-nginx" created

Wait for a moment to completely launch two nginx containers as follows:

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-nginx-iarzy 1/1 Running 0 7m

my-nginx-ulkvh 1/1 Running 0 7m

kubectl get services

NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE

kubernetes 192.168.0.1 <none> 443/TCP <none>
44d

my-nginx 192.168.95.244 nodes 80/TCP sel=my-selector
7m

How to do it…
Kubernetes has a command that changes the number of replicas for service:

1.	 Type the kubectl scale command as follows to specify the desired replicas:
kubectl scale --replicas=4 rc my-nginx

replicationcontroller "my-nginx" scaled

This example indicates that the replication controller, which is named my-nginx,
changes the replicas to 4.

Playing with Containers

132

2.	 Type kubectl get pods to confirm the result as follows:
kubectl get pods

NAME READY STATUS RESTARTS AGE

my-nginx-iarzy 1/1 Running 0 20m

my-nginx-r5lnq 1/1 Running 0 1m

my-nginx-uhe8r 1/1 Running 0 1m

my-nginx-ulkvh 1/1 Running 0 20m

How it works…
The kubectl scale feature can change the number of replicas; not only increase, but also
decrease. For example, you can change back to two replicas as follows:

kubectl scale --replicas=2 rc my-nginx

replicationcontroller "my-nginx" scaled

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-nginx-iarzy 0/1 Terminating 0 40m

my-nginx-r5lnq 1/1 Running 0 21m

my-nginx-uhe8r 1/1 Running 0 21m

my-nginx-ulkvh 0/1 Terminating 0 40m

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-nginx-r5lnq 1/1 Running 0 25m

my-nginx-uhe8r 1/1 Running 0 25m

There is an option --current-replicas that specifies the expected current replicas. If it
doesn't match, Kubernetes doesn't perform the scale function as follows:

//abort scaling, because current replica is 2, not 3

kubectl scale --current-replicas=3 --replicas=4

rc my-nginx

Expected replicas to be 3, was 2

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-nginx-r5lnq 1/1 Running 0 27m

my-nginx-uhe8r 1/1 Running 0 27m

Chapter 3

133

It will help prevent human error. By default, --current-replicas equals -1, which means
bypass to check the current number of replicas:

//no matter current number of replicas, performs to change to 4

kubectl scale --current-replicas=-1 --replicas=4

 rc my-nginx

replicationcontroller "my-nginx" scaled

kubectl get pods

NAME READY STATUS RESTARTS AGE

my-nginx-dimxj 1/1 Running 0 5s

my-nginx-eem3a 1/1 Running 0 5s

my-nginx-r5lnq 1/1 Running 0 35m

my-nginx-uhe8r 1/1 Running 0 35m

See also
This recipe described how to change the number of pods using the scaling option by the
replication controller. It is useful to scale up and scale down your application quickly.
To know more about how to update your container, refer to the following recipes:

ff Updating live containers

ff Ensuring flexible usage of your containers

Updating live containers
For the benefit of containers, we can easily publish new programs by executing the latest
image, and reduce the headache of environment setup. But, what about publishing the
program on running containers? Using native Docker commands, we have to stop the running
containers prior to booting up new ones with the latest images and the same configurations.
There is a simple and efficient zero-downtime method to update your program in the
Kubernetes system. It is called rolling-update. We will show this solution to you in this recipe.

Getting ready
Rolling-update works on the units of the replication controller. The effect is to create new
pods one by one to replace the old one. The new pods in the target replication controller are
attached to the original labels. Therefore, if any service exposes this replication controller, it
will take over the newly created pods directly.

Playing with Containers

134

For a later demonstration, we are going to update a new nginx image. In addition to this, we
are going to make sure that nodes get your customized image, pushing it to Docker Hub, the
public Docker registry, or private registry.

For example, you can create the image by writing your own Dockerfile:

$ cat Dockerfile

FROM nginx

RUN echo "Happy Programming!" > /usr/share/nginx/html/index.html

In this Docker image, we changed the content of the default index.html page. Then, you
can build your image and push it with the following commands:

// push to Docker Hub

$ docker build -t <DOCKERHUB_ACCOUNT>/common-nginx . && docker push
<DOCKERHUB_ACCOUNT>/common-nginx

// Or, you can also push to your private docker registry

$ docker build -t <RESITRY_NAME>/common-nginx . && docker push <RESITRY_
NAME>/common-nginx

To add nodes' access authentications of the private Docker registry, please take the Working
with the private Docker registry recipe in Chapter 5, Building a Continuous Delivery Pipeline,
as a reference.

How to do it…
You'll now learn how to publish a Docker image. The following steps will help you successfully
publish a Docker image:

1.	 At the beginning, create a pair of replication controller and service for rolling-update
testing. As shown in the following statement, a replication controller with five replicas
will be created. The nginx program exposed port 80 to the container, while the
Kubernetes service transferred the port to 8080 in the internal network:
// Create a replication controller named nginx-rc

kubectl run nginx-rc --image=nginx --replicas=5 --port=80 --labe
ls="User=Amy,App=Web,State=Testing"

replicationcontroller "nginx-rc" created

// Create a service supporting nginx-rc

kubectl expose rc nginx-rc --port=8080 --target-port=80
--name="nginx-service"

service "nginx-service" exposed

kubectl get service nginx-service

Chapter 3

135

NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE

nginx-service 192.168.163.46 <none> 8080/TCP App=Web,
State=Testing,User=Amy 35s

You can evaluate whether the components work fine or not by examining
<POD_IP>:80 and <CLUSTER_IP>:8080.

2.	 Now, we are good to move on to the container update step! The Kubernetes
subcommand rolling-update helps to keep the live replication controller up to
date. In the following command, users have to specify the name of the replication
controller and the new image. Here, we will use the image that is being uploaded to
Docker Hub:
kubectl rolling-update nginx-rc --image=<DOCKERHUB_ACCOUNT>/
common-nginx

Created nginx-rc-b6610813702bab5ad49d4aadd2e5b375

Scaling up nginx-rc-b6610813702bab5ad49d4aadd2e5b375 from 0 to 5,
scaling down nginx-rc from 5 to 0 (keep 5 pods available, don't
exceed 6 pods)

Scaling nginx-rc-b6610813702bab5ad49d4aadd2e5b375 up to 1

3.	 You may see that the process is hanging. Because rolling-update will start a
single new pod at a time and wait for a period of time; the default is one minute to
stop an old pod and create a second new pod. From this idea, while updating, there
always is one more pod on the serving, one more pod than the desired state of
the replication controller. In this case, there would be six pods. While updating the
replication controller, please access another terminal for a brand-new process.

4.	 Check the state of the replication controller for more concepts:
kubectl get rc

CONTROLLER CONTAINER(S) IMA
GE(S) SELECTOR
REPLICAS AGE

nginx-rc nginx-rc ngi
nx App=Web,S
tate=Testing,User=Amy,deployment=313da350dea9227b89b4f0340699a388
5 1m

nginx-rc-b6610813702bab5ad49d4aadd2e5b375 nginx-
rc <DOCKERHUB_ACCOUNT>/common-nginx
App=Web,State=Testing,User=Amy,deployment=b6610813702bab5ad49d4aad
d2e5b375 1 16s

Playing with Containers

136

5.	 As you will find, the system creates an almost identical replication controller with
a postfix name. A new label key deployment is added to both the replication
controllers for discriminating. On the other hand, new nginx-rc is attached to the
other original labels. Service will also take care of the new pods at the same time:
// Check service nginx-service while updating

kubectl describe service nginx-service

Name: nginx-service

Namespace: default

Labels: App=Web,State=Testing,User=Amy

Selector: App=Web,State=Testing,User=Amy

Type: ClusterIP

IP: 192.168.163.46

Port: <unnamed> 8080/TCP

Endpoints: 192.168.15.5:80,192.168.15.6:80,192.168.15.7:80 + 3
more...

Session Affinity: None

No events.

There are six endpoints of pods covered by nginx-service, which is supported by
the definition of rolling-update.

6.	 Go back to the console running the update process. After it completes the update,
you can find procedures as follows:
Created nginx-rc-b6610813702bab5ad49d4aadd2e5b375

Scaling up nginx-rc-b6610813702bab5ad49d4aadd2e5b375 from 0 to 5,
scaling down nginx-rc from 5 to 0 (keep 5 pods available, don't
exceed 6 pods)

Scaling nginx-rc-b6610813702bab5ad49d4aadd2e5b375 up to 1

Scaling nginx-rc down to 4

Scaling nginx-rc-b6610813702bab5ad49d4aadd2e5b375 up to 2

Scaling nginx-rc down to 3

Scaling nginx-rc-b6610813702bab5ad49d4aadd2e5b375 up to 3

Scaling nginx-rc down to 2

Scaling nginx-rc-b6610813702bab5ad49d4aadd2e5b375 up to 4

Scaling nginx-rc down to 1

Chapter 3

137

Scaling nginx-rc-b6610813702bab5ad49d4aadd2e5b375 up to 5

Scaling nginx-rc down to 0

Update succeeded. Deleting old controller: nginx-rc

Renaming nginx-rc-b6610813702bab5ad49d4aadd2e5b375 to nginx-rc

replicationcontroller "nginx-rc" rolling updated

Old nginx-rc is gradually taken out of service by scaling down.

7.	 At the final steps of the update, the new replication controller is scaled up to five pods
to meet the desired state and replace the old one eventually:
// Take a look a current replication controller

// The new label "deployment" is remained after update

kubectl get rc nginx-rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

nginx-rc nginx-rc <DOCKERHUB_ACCOUNT>/common-nginx App
=Web,State=Testing,User=Amy,deployment=b6610813702bab5ad49d4aadd2e
5b375 5 40s

8.	 Checking service with ClusterIP and port, we can now have all our pods in the
replication controller updated:
curl 192.168.163.46:8080

Happy Programming!

9.	 According to the previous demonstration, it costs about five minutes to publish a new
Docker image. It is because the updating time is set to one minute by default for the
procedure of scaling up and down. It is possible for you to have a faster or slower
pace of update by counting on the tag --update-period. The valid time units are
ns, us, ms, s, m, and h. For example, --update-period=1m0s:
// Try on this one!

kubectl rolling-update <REPLICATION_CONTROLLER_NAME>
--image=<IMAGE_NAME> --update-period=10s

Playing with Containers

138

How it works…
In this section, we will discuss rolling-update in detail. How about renewing a replication
controller with N seconds as the period of updating? See the following image:

The previous image indicates each step of the updating procedure. We may get some
important ideas from rolling-update:

ff Each pod in both the replication controllers has a new label, but an unequal value to
point out the difference. Besides, the other labels are the same, so service can still
cover both the replication controllers by selectors while updating.

ff We would spend # pod in replication controller * update period time for migrating a
new configuration.

ff For zero-downtime updating, the total number of pods covered by the service should
meet the desired state. For example, in the preceding image, there should be always
three pods running at a time for the service.

ff Rolling-update procedure doesn't assure users when the newly created pod, in
HAPPY-RC-<HashKey2>, is in running state. That's why we need an update period.
After a period of time, N seconds in the preceding case, a new pod should be ready
to take the place of an old pod. Then, it is good to terminate one old pod.

ff The period of updating time should be the worst case of the time required by a new
pod from pulling an image to running.

Chapter 3

139

There's more…
While doing rolling-update, we may specify the image for a new replication controller. But
sometimes, we cannot update the new image successfully. It is because of container's
image pull policy.

To update with a specific image, it will be great if users provide a tag so that what version of
the image should be pulled is clear and accurate. However, most of the time, the latest one
to which users look for and the latest tagged image could be regarded as the same one in
local, since they are called the latest as well. Like the command <DOCKERHUB_ACCOUNT>/
common-nginx:latest image will be used in this update:

kubectl rolling-update nginx-rc --image=<DOCKERHUB_ACCOUNT>/common-
nginx --update-period=10s

Still, nodes will ignore to pull the latest version of common-nginx if they find an image
labeled as the same request. For this reason, we have to make sure that the specified
image is always pulled from the registry.

In order to change the configuration, the subcommand edit can help in this way:

kubectl edit rc <REPLICATION_CONTROLLER_NAME>

Then, you can edit the configuration of the replication controller in the YAML format. The policy
of image pulling could be found in the following class structure:

apiVersion: v1

kind: replicationcontroller

spec:

 template:

 spec:

 containers:

 - name: <CONTAINER_NAME>

 image: <IMAGE_TAG>

 imagePullPolicy: IfNotPresent

:

The value IfNotPresent tells the node to only pull the image not presented on the local
disk. By changing the policy to Always, users will be able to avoid updating failure. It is
workable to set up the key-value item in the configuration file. So, the specified image is
guaranteed to be the one in the image registry.

Playing with Containers

140

See also
Pod is the basic computing unit in the Kubernetes system. You can learn how to use pods
even more effectively through the following recipes:

ff Scaling your containers

ff The Moving monolithic to microservices, Integrating with Jenkins, Working with the
private Docker registry, and Setting up the Continuous Delivery pipeline recipes
in Chapter 5, Building a Continuous Delivery Pipeline

Forwarding container ports
In the previous chapters, you learned how to work with the Kubernetes services to forward
the container port internally and externally. Now, it's time to take it a step further to see
how it works.

There are four networking models in Kubernetes, and we'll explore the details in the following
sections:

ff Container-to-container communications

ff Pod-to-pod communications

ff Pod-to-service communications

ff External-to-internal communications

Getting ready
In this section, we will run two nginx web apps in order to demonstrate how these four models
work. The default port of nginx in Docker Hub (https://hub.docker.com/_/nginx) is 80.
We will then create another nginx Docker image by modifying the nginx configuration file and
Dockerfile from 80 to 8800. The following steps will show you how to build it from scratch, but
you are free to skip it and use our prebuilt image (https://hub.docker.com/r/msfuko/
nginx_8800) as well.

Let's create one simple nginx configuration file first. Note that we need to listen to the
8800 port:

// create one nginx config file

cat nginx.conf

server {

 listen 8800;

 server_name localhost;

https://hub.docker.com/r/msfuko/nginx_8800
https://hub.docker.com/r/msfuko/nginx_8800

Chapter 3

141

 #charset koi8-r;

 #access_log /var/log/nginx/log/host.access.log main;

 location / {

 root /usr/share/nginx/html;

 index index.html index.htm;

 }

 #error_page 404 /404.html;

 # redirect server error pages to the static page /50x.html

 #

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root /usr/share/nginx/html;

 }

}

Next, we need to change the default nginx Dockerfile from expose 80 to 8800:

// modifying Dockerfile as expose 8800 and add config file inside

cat Dockerfile

FROM debian:jessie

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

RUN apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys
573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62

RUN echo "deb http://nginx.org/packages/mainline/debian/ jessie nginx" >>
/etc/apt/sources.list

ENV NGINX_VERSION 1.9.9-1~jessie

RUN apt-get update && \

 apt-get install -y ca-certificates nginx=${NGINX_VERSION} && \

 rm -rf /var/lib/apt/lists/*

COPY nginx.conf /etc/nginx/conf.d/default.conf

Playing with Containers

142

forward request and error logs to docker log collector

RUN ln -sf /dev/stdout /var/log/nginx/access.log

RUN ln -sf /dev/stderr /var/log/nginx/error.log

VOLUME ["/var/cache/nginx"]

EXPOSE 8800

CMD ["nginx", "-g", "daemon off;"]

Then, we'll need to build it using the Docker command:

// build docker image

docker build -t $(YOUR_DOCKERHUB_ACCOUNT)/nginx_8800 .

Finally, we can push to our Docker Hub repository:

// be sure to login via `docker login` first

docker push $(YOUR_DOCKERHUB_ACCOUNT)/nginx_8800

After this, you should be able to run the container by the pure Docker command: docker
run -d -p 8800:8800 msfuko/nginx_8800. Using curl $IP:8800, you should be
able to see the welcome page of nginx.

How to find my $IP?
If you are running on Linux, then ifconfig could help to figure out the
value of $IP. If you are running on another platform via Docker machine,
docker-machine ip could help you with that.

How to do it…
Pod contains one or more containers, which run on the same host. Each pod has their own
IP address; all the containers inside a pod see each other as on the same host. Containers
inside a pod will be created, deployed, and deleted almost at the same time.

Container-to-container communications
We'll create two nginx containers in one pod that will listen to port 80 and 8800, individually.
In the following configuration file, you should change the second image path as the one you
just built and pushed:

// create 2 containers inside one pod

cat nginxpod.yaml

Chapter 3

143

apiVersion: v1

kind: Pod

metadata:

 name: nginxpod

spec:

 containers:

 -

 name: nginx80

 image: nginx

 ports:

 -

 containerPort: 80

 hostPort: 80

 -

 name: nginx8800

 image: msfuko/nginx_8800

 ports:

 -

 containerPort: 8800

 hostPort: 8800

// create the pod

kubectl create -f nginxpod.yaml

pod "nginxpod" created

After the image is pulled and run, we can see that the status becomes running using the
kubectl command:

// list nginxpod pod

kubectl get pods nginxpod

NAME READY STATUS RESTARTS AGE

nginxpod 2/2 Running 0 12m

We could find the count in the READY column become 2/2, since there are two containers
inside this pod. Using the kubectl describe command, we can see the details of the pod:

// show the details of nginxpod

kubectl describe pod nginxpod

Name: nginxpod

Playing with Containers

144

Namespace: default

Image(s): nginx,msfuko/nginx_8800

Node: kube-node1/10.96.219.33

Start Time: Sun, 24 Jan 2016 10:10:01 +0000

Labels: <none>

Status: Running

Reason:

Message:

IP: 192.168.55.5

Replication Controllers: <none>

Containers:

 nginx80:

 Container ID: docker://3b467d8772f09c57d0ad85caa66b8379799f3a60da055
d7d8d362aee48dfa832

 Image: nginx

 ...

 nginx8800:

 Container ID: docker://80a77983f6e15568db47bd58319fad6d22a330c1c4c92
63bca9004b80ecb6c5f

 Image: msfuko/nginx_8800

 ...

We could see the pod is run on kube-node1 and the IP of the pod is 192.168.55.5.
Let's log in to kube-node1 to inspect these two containers:

// list containers

docker ps

CONTAINER ID IMAGE
COMMAND CREATED STATUS POR
TS NAMES

80a77983f6e1 msfuko/nginx_8800
"nginx -g 'daemon off" 32 minutes ago Up 32 minutes
k8s_nginx8800.645004b9_nginxpod_default_a08ed7cb-c282-11e5-9f21-
025a2f393327_9f85a41b

3b467d8772f0 nginx
"nginx -g 'daemon off" 32 minutes ago Up 32 minutes
k8s_nginx80.5098ff7f_nginxpod_default_a08ed7cb-c282-11e5-9f21-
025a2f393327_9922e484

71073c074a76 gcr.io/google_containers/pause:0.8.0
"/pause" 32 minutes ago Up 32 minutes
0.0.0.0:80->80/tcp, 0.0.0.0:8800->8800/tcp k8s_POD.5c2e23f2_nginxpod_
default_a08ed7cb-c282-11e5-9f21-025a2f393327_77e79a63

Chapter 3

145

We know that the ID of the two containers we created are 3b467d8772f0 and
80a77983f6e1.

We will use jq as the JSON parser to reduce the redundant information. For installing jq,
simply download the binary file from https://stedolan.github.io/jq/download:

// inspect the nginx container and use jq to parse it

docker inspect 3b467d8772f0 | jq '.[]| {NetworkMode: .HostConfig.
NetworkMode, NetworkSettings: .NetworkSettings}'

{

 "NetworkMode": "container:71073c074a761a33323bb6601081d44a79ba7de3dd593
45fc33a36b00bca613f",

 "NetworkSettings": {

 "Bridge": "",

 "SandboxID": "",

 "HairpinMode": false,

 "LinkLocalIPv6Address": "",

 "LinkLocalIPv6PrefixLen": 0,

 "Ports": null,

 "SandboxKey": "",

 "SecondaryIPAddresses": null,

 "SecondaryIPv6Addresses": null,

 "EndpointID": "",

 "Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "IPAddress": "",

 "IPPrefixLen": 0,

 "IPv6Gateway": "",

 "MacAddress": "",

 "Networks": null

 }

}

We can see that the network mode is set as mapped container mode. The network bridge
container is container:71073c074a761a33323bb6601081d44a79ba7de3dd59345fc3
3a36b00bca613f.

https://stedolan.github.io/jq/download

Playing with Containers

146

Let's see another setting about container nginx_8800:

// inspect nginx_8800

docker inspect 80a77983f6e1 | jq '.[]| {NetworkMode: .HostConfig.
NetworkMode, NetworkSettings: .NetworkSettings}'

{

 "NetworkMode": "container:71073c074a761a33323bb6601081d44a79ba7de3dd593
45fc33a36b00bca613f",

 "NetworkSettings": {

 "Bridge": "",

 "SandboxID": "",

 "HairpinMode": false,

 "LinkLocalIPv6Address": "",

 "LinkLocalIPv6PrefixLen": 0,

 "Ports": null,

 "SandboxKey": "",

 "SecondaryIPAddresses": null,

 "SecondaryIPv6Addresses": null,

 "EndpointID": "",

 "Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "IPAddress": "",

 "IPPrefixLen": 0,

 "IPv6Gateway": "",

 "MacAddress": "",

 "Networks": null

 }

}

The network mode is also set to container:
71073c074a761a33323bb6601081d44a79ba7de3dd59345fc33a36b00bca613. Which
container is this? We will then find out that this network container is created by Kubernetes
when your pod starts. The container is named gcr.io/google_containers/pause:

// inspect network container `pause`

docker inspect 71073c074a76 | jq '.[]| {NetworkMode: .HostConfig.
NetworkMode, NetworkSettings: .NetworkSettings}'

{

Chapter 3

147

 "NetworkMode": "default",

 "NetworkSettings": {

 "Bridge": "",

 "SandboxID":
"59734bbe4e58b0edfc92db81ecda79c4f475f6c8433e17951e9c9047c69484e8",

 "HairpinMode": false,

 "LinkLocalIPv6Address": "",

 "LinkLocalIPv6PrefixLen": 0,

 "Ports": {

 "80/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "80"

 }

],

 "8800/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "8800"

 }

]

 },

 "SandboxKey": "/var/run/docker/netns/59734bbe4e58",

 "SecondaryIPAddresses": null,

 "SecondaryIPv6Addresses": null,

 "EndpointID":
"d488fa8d5ee7d53d939eadda106e97ff01783f0e9dc9e4625d9e69500e1fa451",

 "Gateway": "192.168.55.1",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "IPAddress": "192.168.55.5",

 "IPPrefixLen": 24,

 "IPv6Gateway": "",

 "MacAddress": "02:42:c0:a8:37:05",

 "Networks": {

 "bridge": {

Playing with Containers

148

 "EndpointID":
"d488fa8d5ee7d53d939eadda106e97ff01783f0e9dc9e4625d9e69500e1fa451",

 "Gateway": "192.168.55.1",

 "IPAddress": "192.168.55.5",

 "IPPrefixLen": 24,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:c0:a8:37:05"

 }

 }

 }

}

We will find out that the network mode is set to default and its IP address is set to the IP of
the pod 192.168.55.5; the gateway is set to docker0 of the node. The routing illustration
will be as shown in the following image. The network container pause will be created when a
pod is created, which will be used to handle the route of the pod network. Then, two containers
will share the network interface with pause; that's why they see each other as localhost:

Chapter 3

149

Pod-to-pod communications
Since each pod has its own IP address, it makes the communication between pods easy.
In the previous chapter, we use flannel as the overlay network, which will define different
network segments for each node. Each packet is encapsulated to a UDP packet so that each
pod IP is routable. The packet from Pod1 will go though the veth (virtual network interface)
device, which connects to docker0 and routes to flannel0. The traffic is encapsulated by
flanneld and sent to the host (10.42.1.172) of the target pod:

Pod-to-service communications
Pods could be stopped accidentally, so the IP of the pod could be changed. When we expose
the port for a pod or a replication controller, we create a Kubernetes service acting as a proxy
or a load balancer. Kubernetes will create a virtual IP, which will receive the request from
clients and proxy the traffic to the pods in a service. Let's review how to do this. At first,
we will create a replication controller named my-first-nginx:

// create a rc named my-first-nginx

kubectl run my-first-nginx --image=nginx --replicas=2 --port=80

replicationcontroller "my-first-nginx" created

Playing with Containers

150

Then, let's list the pods to ensure two pods are created by this rc:

// two pods will be launched by this rc

kubectl get pod

NAME READY STATUS RESTARTS AGE

my-first-nginx-hsdmz 1/1 Running 0 17s

my-first-nginx-xjtxq 1/1 Running 0 17s

Next, let's expose one port 80 for the pod, which is the default port of the nginx app:

// expose port 80 for my-first-nginx

kubectl expose rc my-first-nginx --port=80

service "my-first-nginx" exposed

Use describe to see the details of the service. The service type we create is a ClusterIP:

// check the details of the service

kubectl describe service my-first-nginx

Name: my-first-nginx

Namespace: default

Labels: run=my-first-nginx

Selector: run=my-first-nginx

Type: ClusterIP

IP: 192.168.235.209

Port: <unnamed> 80/TCP

Endpoints: 192.168.20.2:80,192.168.55.5:80

Session Affinity: None

No events.

The virtual IP of the service is 192.168.235.209, which exposes the port 80. The service
will then dispatch the traffic into two endpoints 192.168.20.2:80 and 192.168.55.5:80.
The illustration is as follows:

Chapter 3

151

kube-proxy is a daemon that works as a network proxy on every node. It helps to reflect
the settings of services, such as IPs or ports, on each node. It will create the corresponding
iptables rules:

// list iptables rule by filtering my-first-nginx

iptables -t nat -L | grep my-first-nginx

REDIRECT tcp -- anywhere 192.168.235.209 /* default/
my-first-nginx: */ tcp dpt:http redir ports 43321

DNAT tcp -- anywhere 192.168.235.209 /* default/
my-first-nginx: */ tcp dpt:http to:10.96.219.33:43321

These two rules are under the KUBE-PORTALS-CONTAINER and KUBE-PORTALS-HOST
chains, which represent any traffic destined for the virtual IP with port 80 that will be redirected
to the localhost on port 43321 no matter whether the traffic is from containers or hosts. The
kube-proxy programs the iptables rule to make the pod and service communication available.
You should be able to access localhost:43321 on the target node or $nodeIP:43321
inside the cluster.

Using the environment variables of the Kubernetes service in your
program
Sometimes, you'll need to access the Kubernetes service in your program
inside the Kubernetes cluster. You could use environment variables or
DNS to access it. Environment variables are the easiest way and are
supported naturally. When a service is created, kubelet will add a set of
environment variables about this service:

ff $SVCNAME_SERVICE_HOST
ff $SVCNAME_SERVICE_PORT

Here, $SVNNAME is uppercase and the dashes are converted into
underscores. The service that a pod wants to access must be created
before the pod, otherwise the environment variables will not be populated.
For example, the environment variables that my-first-nginx populate
are:

ff MY_FIRST_NGINX_PORT_80_TCP_PROTO=tcp
ff MY_FIRST_NGINX_SERVICE_HOST=192.168.235.209
ff MY_FIRST_NGINX_SERVICE_PORT=80
ff MY_FIRST_NGINX_PORT_80_TCP_ADDR=192.168.235.209
ff MY_FIRST_NGINX_PORT=tcp://192.168.235.209:80
ff MY_FIRST_NGINX_PORT_80_TCP_PORT=80
ff MY_FIRST_NGINX_PORT_80_

TCP=tcp://192.168.235.209:80

Playing with Containers

152

External-to-internal communications
The external-to-internal communications could be set up using the external load balancer,
such as GCE's ForwardingRules or AWS's ELB, or by accessing node IP directly. Here, we will
introduce how accessing node IP could work. First, we'll run a replication controller with two
replicas named my-second-nginx:

// create a rc with two replicas

kubectl run my-second-nginx --image=nginx --replicas=2 --port=80

Next, we'll expose the service with port 80 with the type LoadBalancer. As we discussed in
the service section, LoadBalancer will also expose a node port:

// expose port 80 for my-second-nginx rc with type LoadBalancer

kubectl expose rc my-second-nginx --port=80 --type=LoadBalancer

We could now check the details of my-second-nginx service. It has a virtual IP
192.168.156.93 with port 80. It also has a node port 31150:

// list the details of service

kubectl describe service my-second-nginx

Name: my-second-nginx

Namespace: default

Labels: run=my-second-nginx

Selector: run=my-second-nginx

Type: LoadBalancer

IP: 192.168.156.93

Port: <unnamed> 80/TCP

NodePort: <unnamed> 31150/TCP

Endpoints: 192.168.20.3:80,192.168.55.6:80

Session Affinity: None

No events.

Let's list the iptables rules to see the differences between the different types of service:

// list iptables rules and filtering my-seconde-nginx on node1

iptables -t nat -L | grep my-second-nginx

REDIRECT tcp -- anywhere anywhere /* default/
my-second-nginx: */ tcp dpt:31150 redir ports 50563

DNAT tcp -- anywhere anywhere /* default/
my-second-nginx: */ tcp dpt:31150 to:10.96.219.141:50563

REDIRECT tcp -- anywhere 192.168.156.93 /* default/
my-second-nginx: */ tcp dpt:http redir ports 50563

Chapter 3

153

DNAT tcp -- anywhere 192.168.156.93 /* default/
my-second-nginx: */ tcp dpt:http to:10.96.219.141:50563

// list iptables rules and filtering my-second-nginx on node2

iptables -t nat -L | grep my-second-nginx

REDIRECT tcp -- anywhere anywhere /* default/
my-second-nginx: */ tcp dpt:31150 redir ports 53688

DNAT tcp -- anywhere anywhere /* default/
my-second-nginx: */ tcp dpt:31150 to:10.96.219.33:53688

REDIRECT tcp -- anywhere 192.168.156.93 /* default/
my-second-nginx: */ tcp dpt:http redir ports 53688

DNAT tcp -- anywhere 192.168.156.93 /* default/
my-second-nginx: */ tcp dpt:http to:10.96.219.33:53688

We have four rules related to my-second-nginx now. They are under the KUBE-NODEPORT-
CONTAINER, KUBE-NODEPORT-HOST, KUBE-PORTALS-CONTAINER, and KUBE-PORTALS-
HOST chains. Since we expose the node port in this example, if the traffic is from the outside
world to node port 31150, the traffic will be redirected to the target pod locally or across
nodes. Following is an illustration of routing:

The traffic from node port (x.x.x.x:31150) or from ClusterIP (192.168.156.93:80) will
be redirected to target pods by providing a load balancing mechanism across nodes. The
ports 50563 and 53688 are dynamically assigned by Kubernetes.

Playing with Containers

154

See also
Kubernetes forwards port based on the overlay network. In this chapter, we also run pods and
services with nginx. Reviewing the previous sections will help you to understand more about
how to manipulate it. Also, look at the following recipes:

ff The Creating an overlay network, Running your first container in Kubernetes recipes
in Chapter 1, Building Your Own Kubernetes

ff The Working with pods, Working with services in Chapter 2, Walking through
Kubernetes Concepts

Ensuring flexible usage of your containers
Pod, in Kubernetes, means a set of containers, which is also the smallest computing unit.
You may have known about the basic usage of pod in the previous recipes. Pods are usually
managed by replication controllers and exposed by services; they work as applications with
this scenario.

In this recipe, we will discuss two new features: job and daemon set. These two features
can make the usage of pods more effective.

Getting ready
What are a job-like pod and a daemon-like pod? Pods in a Kubernetes job will be terminated
directly after they complete their work. On the other hand, a daemon-like pod will be created
in every node, while users want it to be a long running program served as a system daemon.

Both the job and daemon set belong to the extension of the Kubernetes API. Furthermore, the
daemon set type is disabled in the default API settings. Then, you have to enable the usage
later for testing. Without starting the setting of the daemon set, you will get an error about the
unknown type:

kubectl create -f daemonset-test.yaml

error validating "daemonset-test.yaml": error validating data: couldn't
find type: v1beta1.DaemonSet; if you choose to ignore these errors, turn
validation off with --validate=false

Or error of this one

Error from server: error when creating "daemonset-free.yaml": the server
could not find the requested resource

Chapter 3

155

To enable the daemon set in the Kubernetes system, you should update a tag in the
daemon of the Kubernetes apiserver: --runtime-config=extensions/v1beta1/
daemonsets=true. Modify your service scripts or configuration options:

// For service init.d scripts, attached the tag after command hyperkube
apiserver or kube-apiserver

cat /etc/init.d/kubernetes-master

(heading lines ignored)

:

Start daemon.

echo $"Starting apiserver: "

daemon $apiserver_prog \

--service-cluster-ip-range=${CLUSTER_IP_RANGE} \

--insecure-port=8080 \

--secure-port=6443 \

--basic-auth-file="/root/ba_file" \

--address=0.0.0.0 \

--etcd_servers=${ETCD_SERVERS} \

--cluster_name=${CLUSTER_NAME} \

--runtime-config=extensions/v1beta1/daemonsets=true \

> ${logfile}-apiserver.log 2>&1 &

:

(ignored)

// For systemd service management, edit configuration files by add the
tag as optional one

cat /etc/kubernetes/apiserver

(heading lines ignored)

:

Add your own!

KUBE_API_ARGS="--cluster_name=Happy-k8s-cluster --runtime-
config=extensions/v1beta1/daemonsets=true"

After you set up the tag, remove the directory /tmp/kubectl.schema, which caches API
schemas. Then, it is good to restart the Kubernetes apiserver:

// Remove the schema file

rm -f /tmp/kubectl.schema

// The method to restart apiserver for init.d script

service kubernetes-master restart

Playing with Containers

156

// Or, restart the daemon for systemd service management

systemd restart kube-apiserver

// After restart daemon apiserver, you can find daemonsets is enable in
your API server

curl http://localhost:8080/apis/extensions/v1beta1

{

 "kind": "APIResourceList",

 "groupVersion": "extensions/v1beta1",

 "resources": [

 {

 "name": "daemonsets",

 "namespaced": true

 },

 {

 "name": "daemonsets/status",

 "namespaced": true

 },

:

Next, for the following sections, we are going to demonstrate how to create a job and daemon
set using configuration files. Take a look at the recipe Working with configuration files in this
chapter to know more about other concepts.

How to do it…
There is no command-line interface for us to create a job or a daemon set. Therefore, we will
build these two resource types by writing all the configurations in a template file.

Pod as a job
A job-like pod is suitable for testing your containers, which can be used for unit test
or integration test; or, it can be used for static program. Like in the following example,
we will write a job template to check the packages installed in image ubuntu:

cat job-dpkg.yaml

apiVersion: extensions/v1beta1

kind: Job

metadata:

 name: package-check

spec:

Chapter 3

157

 selector:

 matchLabels:

 image: ubuntu

 test: dpkg

 template:

 metadata:

 labels:

 image: ubuntu

 test: dpkg

 owner: Amy

 spec:

 containers:

 - name: package-check

 image: ubuntu

 command: ["dpkg-query", "-l"]

 restartPolicy: Never

A job resource needs a selector to define which pods should be covered as this job. If no
selector is specified in template, it will just be the same as the labels of the job. The restart
policy for pods created in a job should be set to Never or OnFailure, since a job goes to
termination once it is completed successfully.

Now, you are ready to create a job using your template:

kubectl create -f job-dpkg.yaml

job "package-check" created

After pushing the requested file, it is possible to verify the status of both the pod and job:

kubectl get job

JOB CONTAINER(S) IMAGE(S) SELECTOR
SUCCESSFUL

package-check package-check ubuntu image in (ubuntu),test in
(dpkg) 1

// Check the job as well

kubectl get pod

NAME READY STATUS RESTARTS AGE

package-check-jrry1 0/1 Pending 0 6s

Playing with Containers

158

You will find that a pod is booting up for handling this task. This pod is going to be stopped
very soon at the end of the process. The subcommand logs helps to get the result:

kubectl logs package-check-gtyrc

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/
Trig-pend

|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)

||/ Name Version
Architecture Description

+++-===============================-
================================-============-
==-
===========

ii adduser 3.113+nmu3ubuntu3 all
add and remove users and groups

ii apt 1.0.1ubuntu2.10
amd64 commandline package manager

ii apt-utils 1.0.1ubuntu2.10
amd64 package management related utility programs

ii base-files 7.2ubuntu5.3
amd64 Debian base system miscellaneous files

:

(ignored)

Please go ahead and check the job package-check using the subcommand describe; the
confirmation for pod completion and other messages are shown as system information:

kubectl describe job package-check

Later, to remove the job you just created, stop it with the name:

kubectl stop job package-check

job "package-check" deleted

Creating a job with multiple pods running
User can also decide the number of tasks that should be finished in a single job. It is helpful
to solve some random and sampling problems. Let's try it on the same template in the
previous example. We have to add the spec.completions item to indicate the pod number:

cat job-dpkg.yaml

apiVersion: extensions/v1beta1

kind: Job

Chapter 3

159

metadata:

 name: package-check

spec:

 completions: 3

 template:

 metadata:

 name: package-check-amy

 labels:

 image: ubuntu

 test: dpkg

 owner: Amy

 spec:

 containers:

 - name: package-check

 image: ubuntu

 command: ["dpkg-query", "-l"]

 restartPolicy: Never

Then, check how the job looks like using the subcommand describe:

kubectl describe job package-check

Name: package-check

Namespace: default

Image(s): ubuntu

Selector: image in (ubuntu),owner in (Amy),test in (dpkg)

Parallelism: 3

Completions: 3

Labels: image=ubuntu,owner=Amy,test=dpkg

Pods Statuses: 3 Running / 0 Succeeded / 0 Failed

No volumes.

Events:

 FirstSeen LastSeen Count From SubobjectPath Reason Message

 ───────── ──────── ───── ──── ───────────── ────── ───────

 6s 6s 1 {job } SuccessfulCreate Created pod: package-
check-dk184

 6s 6s 1 {job } SuccessfulCreate Created pod: package-
check-3uwym

 6s 6s 1 {job } SuccessfulCreate Created pod: package-
check-eg4nl

Playing with Containers

160

As you can see, three pods are created to solve this job. Also, since the selector part is
removed, the selector is copied from the labels.

Pod as a daemon set
If a Kubernetes daemon set is created, the defined pod will be deployed in every single node.
It is guaranteed that the running containers occupy equal resources in each node. In this
scenario, the container usually works as the daemon process.

For example, the following template has an ubuntu image container that keeps checking its
memory usage half minute a time. We are going to build it as a daemon set:

cat daemonset-free.yaml

apiVersion: extensions/v1beta1

kind: DaemonSet

metadata:

 name: ram-check

spec:

 selector:

 app: checkRam

 version: v1

 template:

 metadata:

 labels:

 app: checkRam

 owner: Amy

 version: v1

 spec:

 containers:

 - name: ubuntu-free

 image: ubuntu

 command: ["/bin/bash","-c","while true; do free; sleep 30; done"]

 restartPolicy: Always

As the job, the selector could be ignored, but it takes the values of the labels. We will always
configure the restart policy of the daemon set as Always, which makes sure that every node
has a pod running.

Chapter 3

161

The abbreviation of the daemon set is ds; use this shorter one in the command-line interface
for convenience:

kubectl create -f daemonset-free.yaml

daemonset "ram-check" created

kubectl get ds

NAME CONTAINER(S) IMAGE(S) SELECTOR NODE-
SELECTOR

ram-check ubuntu-free ubuntu app=checkRam,version=v1 <none>

// Go further look at the daemon set by "describe"

kubectl describe ds ram-check

Name: ram-check

Image(s): ubuntu

Selector: app=checkRam,version=v1

Node-Selector: <none>

Labels: app=checkRam,owner=Amy,version=v1

Desired Number of Nodes Scheduled: 3

Current Number of Nodes Scheduled: 3

Number of Nodes Misscheduled: 0

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

Events:

 FirstSeen LastSeen Count From SubobjectPath Reason Message

 ───────── ──────── ───── ──── ───────────── ────── ───────

 3m 3m 1 {daemon-set } SuccessfulCreate Created pod: ram-
check-bti08

 3m 3m 1 {daemon-set } SuccessfulCreate Created pod: ram-
check-u9e5f

 3m 3m 1 {daemon-set } SuccessfulCreate Created pod: ram-
check-mxry2

Here, we have three pods running in separated nodes. They can still be recognized in the
channel of the pod:

kubectl get pod --selector=app=checkRam

NAME READY STATUS RESTARTS AGE

ram-check-bti08 1/1 Running 0 4m

ram-check-mxry2 1/1 Running 0 4m

ram-check-u9e5f 1/1 Running 0 4m

// Get the evidence!

Playing with Containers

162

kubectl describe pods --selector=app=checkRam -o wide

NAME READY STATUS RESTARTS AGE NODE

ram-check-bti08 1/1 Running 0 4m kube-node1

ram-check-mxry2 1/1 Running 0 4m kube-node3

ram-check-u9e5f 1/1 Running 0 4m kube-node2

It is good for you to evaluate the result using the subcommand logs:

kubectl logs ram-check-bti08

 total used free shared buffers cached

Mem: 2051644 1256876 794768 148 136880 450620

-/+ buffers/cache: 669376 1382268

Swap: 0 0 0

 total used free shared buffers cached

Mem: 2051644 1255888 795756 156 136912 450832

-/+ buffers/cache: 668144 1383500

Swap: 0 0 0

:

(ignored)

Next, delete this daemon set by the reference of template file or by the name of the resource:

kubectl stop -f daemonset-free.yaml

// or

kubectl stop ds ram-check

Running the daemon set only on specific nodes
There is also a solution for you to deploy daemon-like pods simply on specified nodes. First,
you have to make nodes in groups by tagging them. We will only tag node kube-node3 with
the special key-value label, which indicates the one for running the daemon set:

kubectl label nodes kube-node3 runDS=ok

node "kube-node3" labeled

kubectl get nodes

NAME LABELS STATUS
AGE

kube-node1 kubernetes.io/hostname=kube-node1 Ready 27d

kube-node2 kubernetes.io/hostname=kube-node2 Ready 27d

kube-node3 kubernetes.io/hostname=kube-node3,runDS=ok Ready 4d

Chapter 3

163

Then, we will select this one-member group in the template. The item spec.template.
spec.nodeSelector can add any key-value pairs for node selection:

cat daemonset-free.yaml

apiVersion: extensions/v1beta1

kind: DaemonSet

metadata:

 name: ram-check

spec:

 selector:

 app: checkRam

 version: v1

 template:

 metadata:

 labels:

 app: checkRam

 owner: Amy

 version: v1

 spec:

 nodeSelector:

 runDS: ok

 containers:

 - name: ubuntu-free

 image: ubuntu

 command: ["/bin/bash","-c","while true; do free; sleep 30; done"]

 restartPolicy: Always

While assigning the daemon set to a certain node group, we can run it in a single node of the
three-node system:

kubectl describe pods --selector=app=checkRam | grep "Node"

Node: kube-node3/10.96.219.251

How it works…
Although job and daemon set are the special utilities of pods, the Kubernetes system has
different managements between them and pods.

For job, its selector cannot point to the existing pod. It is for fear to take a pod controlled by
the replication controller as a job. The replication controller has a desired number of pods
running, which is against job's ideal situation: pods should be deleted once they finish the
tasks. The pod in the replication controller won't get the state of end.

Playing with Containers

164

On the other hand, different from the general pod, a pod in a daemon set can be created
without the Kubernetes scheduler. This concept is apparent because the daemon set only
considers the labels of nodes, not their CPU or memory usages.

See also
In this recipe, we went deeply into the Kubernetes pod. Also, we used a bunch of Kubernetes
configuration files. The recipe about configuration files will make you learn more about
the following:

ff The Working with pods recipe in Chapter 2, Walking through Kubernetes Concepts

ff Working with configuration files

Working with configuration files
Kubernetes supports two different file formats YAML and JSON. Each format can describe the
same function of Kubernetes.

Getting ready
Both YAML and JSON have official websites to describe the standard format.

YAML
The YAML format is very simple with less syntax rules; therefore, it is easy to read and write
by a human. To know more about YAML, you can refer to the following website link:

http://www.yaml.org/spec/1.2/spec.html

The following example uses the YAML format to set up the nginx pod:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

http://www.yaml.org/spec/1.2/spec.html

Chapter 3

165

JSON
The JSON format is also simple and easy to read by humans, but more program-friendly.
Because it has data types (number, string, Boolean, and object), it is popular to exchange the
data between systems. To know more about JSON, you can refer to the following website link:

http://json.org/

The following example of the pod is the same as the preceding YAML format, but using the
JSON format:

{
 "apiVersion" : "v1",
 "kind" : "Pod",
 "metadata" : {
 "name" : "nginx",
 "labels": {
 "name": "nginx"
 }
 },
 "spec" : {
 "containers" : [
 {
 "name" : "nginx",
 "image" : "nginx",
 "ports" : [
 {
 "containerPort": 80
 }
]
 }
]
 }
}

How to do it…
Kubernetes has a schema that is defined using the configuration format; schema can be
generated in the /tmp/kubectl.schema/ directory on executing the kubectl create
command as follows:

cat pod.json

{

 "apiVersion" : "v1",

Playing with Containers

166

 "kind" : "Pod",

 "metadata" : {

 "name" : "nginx",

 "labels": {

 "name": "nginx"

 }

 },

 "spec" : {

 "containers" : [

 {

 "name" : "nginx",

 "image" : "nginx",

 "ports" : [

 {

 "containerPort": 80

 }

]

 }

]

 }

}

kubectl create -f pod.json

pod "nginx" created

ls -l /tmp/kubectl.schema/v1.1.3/api/v1/schema.json

-rw------- 2 root root 446224 Jan 24 04:50 /tmp/kubectl.schema/v1.1.3/
api/v1/schema.json

Chapter 3

167

There is an alternative way, because Kubernetes is also using swagger (http://
swagger.io/) to generate the REST API; therefore, you can access swagger-ui via
http://<kubernetes-master>:8080/swagger-ui/.

Each configuration, for example, pods, replication controllers, and services are described in
the POST section, as shown in the following screenshot:

Playing with Containers

168

The preceding screenshot of swagger-ui, shows the pod's definition. Types of items, such as
string, array, and integer are shown when you click on Model as follows:

The preceding screenshot shows the pod container definition. There are many items that
are defined; however, some of them are indicated as optional, which is not necessary
and applied as a default value or not set if you don't specify it.

Some of the items are indicated as readonly, such as UID. Kubernetes
generates these items. If you specify this in the configuration file, it will
be ignored.

How it works…
There are some mandatory items that need to be defined in each configuration file,
as follows:

Chapter 3

169

Pods

Item Type Example
apiVersion String v1
kind String Pod
metadata.name String my-nginx
spec v1.PodSpec
v1.PodSpec.containers array[v1.Container]

v1.Container.name String my-nginx
v1.Container.image String nginx

Therefore, the minimal pod configuration is as follows (in the YAML format):

apiVersion: v1
kind: Pod
metadata:
 name: my-nginx
spec:
 containers:
 - name: my-nginx
 image: nginx

Replication controllers

Item Type Example
apiVersion String v1
kind String ReplicationController

metadata.name String my-nginx-rc
spec v1.ReplicationControllerSpec

v1.ReplicationControllerSpec.template v1.PodTemplateSpec

v1.PodTemplateSpec.metadata.labels Map of String app: nginx

v1.PodTemplateSpec.spec v1.PodSpec
v1.PodSpec.containers array[v1.Container] As same as pod

Playing with Containers

170

The following example is the minimal configuration of the replication controller (in the YAML
format):

apiVersion: v1
kind: ReplicationController
metadata:
 name: my-nginx-rc
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: my-nginx
 image: nginx

Services

Item Type Example
apiVersion String v1
kind String Service
metadata.name String my-nginx-service
spec v1.ServiceSpec
v1.ServiceSpec.selector Map of String sel: my-selector
v1.ServiceSpec.ports array[v1.ServicePort]
v1.ServicePort.protocol String TCP
v1.ServicePort.port Integer 80

The following example is the minimal configuration of service (in the YAML format):

apiVersion: v1
kind: Service
metadata:
 name: my-nginx

spec:
 selector:
 sel: my-selector
 ports:
 - protocol: TCP
 port: 80

Chapter 3

171

See also
This recipe described how to find and understand a configuration syntax. Kubernetes has
some detailed options to define container and components. For more details, the following
recipes will describe how to define pods, replication controllers, and services:

ff The Working with pods, Working with a replication controller, and Working with
services recipes in Chapter 2, Walking through Kubernetes Concepts

173

4
Building a High

Availability Cluster

In this chapter, we will cover the following topics:

ff Clustering etcd

ff Building multiple masters

Introduction
Avoiding a single point of failure is a concept we need to always keep in mind. In this chapter,
you will learn how to build components in Kubernetes with high availability. We will also go
through the steps to build a three-node etcd cluster and masters with multinodes.

Clustering etcd
etcd stores network information and states in Kubernetes. Any data loss could be crucial.
Clustering is strongly recommended in etcd. etcd comes with support for clustering; a cluster
of N members can tolerate up to (N-1)/2 failures. There are three mechanisms for creating an
etcd cluster. They are as follows:

ff Static

ff etcd discovery

ff DNS discovery

In this recipe, we will discuss how to bootstrap an etcd cluster by static and etcd discovery.

Building a High Availability Cluster

174

Getting ready
Before you start building an etcd cluster, you have to decide how many members you need.
How big the etcd cluster should be really depends on the environment you want to create. In
the production environment, at least three members are recommended. Then, the cluster can
tolerate at least one permanent failure. In this recipe, we will use three members as
an example of the development environment:

Name/Hostname IP address
ip-172-31-0-1 172.31.0.1

ip-172-31-0-2 172.31.0.2

ip-172-31-0-3 172.31.0.3

How to do it…
A static mechanism is the easiest way to set up a cluster. However, the IP address of every
member should be known beforehand. It means that if you bootstrap an etcd cluster in some
cloud provider environment, the static mechanism might not be so practical. Therefore, etcd
also provides a discovery mechanism to bootstrap itself from the existing cluster.

Static
With a static mechanism, you have to know the address information of each member:

Parameters Meaning
-name The name of this member
-initial-advertise-
peer-urls

Used to peer with other members, should be the same as
the one listing in -initial-cluster

-listen-peer-urls The URL to accept peer traffic
-listen-client-urls The URL to accept client traffic
-advertise-client-urls etcd member used to advertise to other members
-initial-cluster-token A unique token for distinguishing different clusters
-initial-cluster Advertised peer URLs of all the members
-initial-cluster-state Specifies the state of the initial cluster

Chapter 4

175

Use the etcd command-line tool to bootstrap a cluster with additional parameters on each
member:

// on the host ip-172-31-0-1, running etcd command to make it peer with
ip-172-31-0-2 and ip-172-31-0-3, advertise and listen other members via
port 2379, and accept peer traffic via port 2380

etcd -name ip-172-31-0-1 \

 -initial-advertise-peer-urls http://172.31.0.1:2380 \

 -listen-peer-urls http://172.31.0.1:2380 \

 -listen-client-urls http://0.0.0.0:2379 \

 -advertise-client-urls http://172.31.0.1:2379 \

 -initial-cluster-token mytoken \

 -initial-cluster ip-172-31-0-1=http://172.31.0.1:2380,ip-172-31-0-
2=http://172.31.0.2:2380,ip-172-31-0-3=http://172.31.0.3:2380 \

 -initial-cluster-state new

...

2016-05-01 18:57:26.539787 I | etcdserver: starting member
e980eb6ff82d4d42 in cluster 8e620b738845cd7

2016-05-01 18:57:26.551610 I | etcdserver: starting server... [version:
2.2.5, cluster version: to_be_decided]

2016-05-01 18:57:26.553100 N | etcdserver: added member 705d980456f91652
[http://172.31.0.3:2380] to cluster 8e620b738845cd7

2016-05-01 18:57:26.553192 N | etcdserver: added member 74627c91d7ab4b54
[http://172.31.0.2:2380] to cluster 8e620b738845cd7

2016-05-01 18:57:26.553271 N | etcdserver: added local member
e980eb6ff82d4d42 [http://172.31.0.1:2380] to cluster 8e620b738845cd7

2016-05-01 18:57:26.553349 E | rafthttp: failed to dial 705d980456f91652
on stream MsgApp v2 (dial tcp 172.31.0.3:2380: getsockopt: connection
refused)

2016-05-01 18:57:26.553392 E | rafthttp: failed to dial 705d980456f91652
on stream Message (dial tcp 172.31.0.3:2380: getsockopt: connection
refused)

2016-05-01 18:57:26.553424 E | rafthttp: failed to dial 74627c91d7ab4b54
on stream Message (dial tcp 172.31.0.2:2380: getsockopt: connection
refused)

2016-05-01 18:57:26.553450 E | rafthttp: failed to dial 74627c91d7ab4b54
on stream MsgApp v2 (dial tcp 172.31.0.2:2380: getsockopt: connection
refused)

Building a High Availability Cluster

176

The etcd daemon on ip-172-31-0-1 will then start checking whether all the members are
online. The logs show connection refused since ip-172-31-0-2 and ip-172-31-0-3
are still offline. Let's go to the next member and run the etcd command:

// on the host ip-172-31-0-2, running etcd command to make it peer with
ip-172-31-0-1 and ip-172-31-0-3, advertise and listen other members via
port 2379, and accept peer traffic via port 2380

etcd -name ip-172-31-0-2 \

 -initial-advertise-peer-urls http://172.31.0.2:2380 \

 -listen-peer-urls http://172.31.0.2:2380 \

 -listen-client-urls http://0.0.0.0:2379 \

 -advertise-client-urls http://172.31.0.2:2379 \

 -initial-cluster-token mytoken \

 -initial-cluster ip-172-31-0-1=http://172.31.0.1:2380,ip-172-31-0-
2=http://172.31.0.2:2380, ip-172-31-0-3=http://172.31.0.3:2380 -initial-
cluster-state new

...

2016-05-01 22:59:55.696357 I | etcdserver: starting member
74627c91d7ab4b54 in cluster 8e620b738845cd7

2016-05-01 22:59:55.696397 I | raft: 74627c91d7ab4b54 became follower at
term 0

2016-05-01 22:59:55.696407 I | raft: newRaft 74627c91d7ab4b54 [peers: [],
term: 0, commit: 0, applied: 0, lastindex: 0, lastterm: 0]

2016-05-01 22:59:55.696411 I | raft: 74627c91d7ab4b54 became follower at
term 1

2016-05-01 22:59:55.706552 I | etcdserver: starting server... [version:
2.2.5, cluster version: to_be_decided]

2016-05-01 22:59:55.707627 E | rafthttp: failed to dial 705d980456f91652
on stream MsgApp v2 (dial tcp 172.31.0.3:2380: getsockopt: connection
refused)

2016-05-01 22:59:55.707690 N | etcdserver: added member 705d980456f91652
[http://172.31.0.3:2380] to cluster 8e620b738845cd7

2016-05-01 22:59:55.707754 N | etcdserver: added local member
74627c91d7ab4b54 [http://172.31.0.2:2380] to cluster 8e620b738845cd7

2016-05-01 22:59:55.707820 N | etcdserver: added member e980eb6ff82d4d42
[http://172.31.0.1:2380] to cluster 8e620b738845cd7

2016-05-01 22:59:55.707873 E | rafthttp: failed to dial 705d980456f91652
on stream Message (dial tcp 172.31.0.3:2380: getsockopt: connection
refused)

2016-05-01 22:59:55.708433 I | rafthttp: the connection with
e980eb6ff82d4d42 became active

Chapter 4

177

2016-05-01 22:59:56.196750 I | raft: 74627c91d7ab4b54 is starting a new
election at term 1

2016-05-01 22:59:56.196903 I | raft: 74627c91d7ab4b54 became candidate at
term 2

2016-05-01 22:59:56.196946 I | raft: 74627c91d7ab4b54 received vote from
74627c91d7ab4b54 at term 2

2016-05-01 22:59:56.949201 I | raft: raft.node: 74627c91d7ab4b54 elected
leader e980eb6ff82d4d42 at term 112

2016-05-01 22:59:56.961883 I | etcdserver: published {Name:ip-172-31-0-2
ClientURLs:[http://10.0.0.2:2379]} to cluster 8e620b738845cd7

2016-05-01 22:59:56.966981 N | etcdserver: set the initial cluster
version to 2.1

After starting member 2, we can see that the current cluster version is 2.1. The following
error message shows the connection to peer 705d980456f91652 is unhealthy.
By observing the log, we can find that member 705d980456f91652 is pointing to
http://172.31.0.3:2380. Let's start up the last member ip-172-31-0-3:

etcd -name ip-172-31-0-3 \

 -initial-advertise-peer-urls http://172.31.0.3:2380 \

 -listen-peer-urls http://172.31.0.3:2380 \

 -listen-client-urls http://0.0.0.0:2379 \

 -advertise-client-urls http://172.31.0.3:2379 \

 -initial-cluster-token mytoken \

 -initial-cluster ip-172-31-0-1=http://172.31.0.1:2380,ip-172-31-0-
2=http://172.31.0.2:2380, ip-172-31-0-3=http://172.31.0.3:2380 -initial-
cluster-state new

2016-05-01 19:02:19.106540 I | etcdserver: starting member
705d980456f91652 in cluster 8e620b738845cd7

2016-05-01 19:02:19.106590 I | raft: 705d980456f91652 became follower at
term 0

2016-05-01 19:02:19.106608 I | raft: newRaft 705d980456f91652 [peers: [],
term: 0, commit: 0, applied: 0, lastindex: 0, lastterm: 0]

2016-05-01 19:02:19.106615 I | raft: 705d980456f91652 became follower at
term 1

2016-05-01 19:02:19.118330 I | etcdserver: starting server... [version:
2.2.5, cluster version: to_be_decided]

2016-05-01 19:02:19.120729 N | etcdserver: added local member
705d980456f91652 [http://10.0.0.75:2380] to cluster 8e620b738845cd7

2016-05-01 19:02:19.120816 N | etcdserver: added member 74627c91d7ab4b54
[http://10.0.0.204:2380] to cluster 8e620b738845cd7

2016-05-01 19:02:19.120887 N | etcdserver: added member e980eb6ff82d4d42
[http://10.0.0.205:2380] to cluster 8e620b738845cd7

Building a High Availability Cluster

178

2016-05-01 19:02:19.121566 I | rafthttp: the connection with
74627c91d7ab4b54 became active

2016-05-01 19:02:19.121690 I | rafthttp: the connection with
e980eb6ff82d4d42 became active

2016-05-01 19:02:19.143351 I | raft: 705d980456f91652 [term: 1] received
a MsgHeartbeat message with higher term from e980eb6ff82d4d42 [term: 112]

2016-05-01 19:02:19.143380 I | raft: 705d980456f91652 became follower at
term 112

2016-05-01 19:02:19.143403 I | raft: raft.node: 705d980456f91652 elected
leader e980eb6ff82d4d42 at term 112

2016-05-01 19:02:19.146582 N | etcdserver: set the initial cluster
version to 2.1

2016-05-01 19:02:19.151353 I | etcdserver: published {Name:ip-172-31-0-3
ClientURLs:[http://10.0.0.75:2379]} to cluster 8e620b738845cd7

2016-05-01 19:02:22.022578 N | etcdserver: updated the cluster version
from 2.1 to 2.2

We can see, on member 3, we successfully initiated the etcd cluster without any errors and
the current cluster version is 2.2. How about member 1 now?

2016-05-01 19:02:19.118910 I | rafthttp: the connection with
705d980456f91652 became active

2016-05-01 19:02:22.014958 I | etcdserver: updating the cluster version
from 2.1 to 2.2

2016-05-01 19:02:22.018530 N | etcdserver: updated the cluster version
from 2.1 to 2.2

With member 2 and 3 online, member 1 can now get connected and go online too. When
observing the log, we can see the leader election took place in the etcd cluster:

ip-172-31-0-1: raft: raft.node: e980eb6ff82d4d42 (ip-172-31-0-1) elected
leader e980eb6ff82d4d42 (ip-172-31-0-1) at term 112

ip-172-31-0-2: raft: raft.node: 74627c91d7ab4b54 (ip-172-31-0-2) elected
leader e980eb6ff82d4d42 (ip-172-31-0-1) at term 112

ip-172-31-0-3: 2016-05-01 19:02:19.143380 I | raft: 705d980456f91652
became follower at term 112

The etcd cluster will send the heartbeat to the members in the cluster to check the health
status. Note that when you need to add or remove any members in the cluster, the preceding
etcd command needs to be rerun on all the members in order to notify that there are new
members joining the cluster. In this way, all the members in the cluster are aware of all the
online members; if one node goes offline, the other members will poll the failure member until
it refreshes members by the etcd command. If we set a message from a member, we could
get the same message from the other members too. If one member becomes unhealthy, the
other members in the etcd cluster will still be in service and elect for a new leader.

Chapter 4

179

etcd discovery
Before using the etcd discovery, you should have a discovery URL that is used to bootstrap
a cluster. If you want to add or remove a member, you should use the etcdctl command
as the runtime reconfiguration. The command line is pretty much the same as the static
mechanism. What we need to do is change –initial-cluster to –discovery, which
is used to specify the discovery service URL. We could use the etcd discovery service
(https://discovery.etcd.io) to request a discovery URL:

// get size=3 cluster url from etcd discovery service

curl -w "\n" 'https://discovery.etcd.io/new?size=3'

https://discovery.etcd.io/be7c1938bbde83358d8ae978895908bd

// Init a cluster via requested URL

etcd -name ip-172-31-0-1 -initial-advertise-peer-urls
http://172.31.43.209:2380 \

 -listen-peer-urls http://172.31.0.1:2380 \

 -listen-client-urls http://0.0.0.0:2379 \

 -advertise-client-urls http://172.31.0.1:2379 \

 -discovery https://discovery.etcd.io/be7c1938bbde83358d8ae978895908bd

...

2016-05-02 00:28:08.545651 I | etcdmain: listening for peers on
http://172.31.0.1:2380

2016-05-02 00:28:08.545756 I | etcdmain: listening for client requests on
http://127.0.0.1:2379

2016-05-02 00:28:08.545807 I | etcdmain: listening for client requests on
http://172.31.0.1:2379

2016-05-02 00:28:09.199987 N | discovery: found self e980eb6ff82d4d42 in
the cluster

2016-05-02 00:28:09.200010 N | discovery: found 1 peer(s), waiting for 2
more

The first member has joined the cluster; wait for the other two peers. Let's start etcd in the
second node:

etcd -name ip-172-31-0-2 -initial-advertise-peer-urls
http://172.31.0.2:2380 \

 -listen-peer-urls http://172.31.0.2:2380 \

 -listen-client-urls http://0.0.0.0:2379 \

 -advertise-client-urls http://172.31.0.2:2379 \

 -discovery https://discovery.etcd.io/be7c1938bbde83358d8ae978895908bd

...

https://discovery.etcd.io

Building a High Availability Cluster

180

2016-05-02 00:30:12.919005 I | etcdmain: listening for peers on
http://172.31.0.2:2380

2016-05-02 00:30:12.919074 I | etcdmain: listening for client requests on
http://0.0.0.0:2379

2016-05-02 00:30:13.018160 N | discovery: found self 25fc8075ab1ed17e in
the cluster

2016-05-02 00:30:13.018235 N | discovery: found 1 peer(s), waiting for 2
more

2016-05-02 00:30:22.985300 N | discovery: found peer e980eb6ff82d4d42 in
the cluster

2016-05-02 00:30:22.985396 N | discovery: found 2 peer(s), waiting for 1
more

We know there are two members in etcd already and they are waiting for the last one to join.
The following code starts the last node:

etcd -name ip-172-31-0-3 -initial-advertise-peer-urls
http://172.31.0.3:2380 \

 -listen-peer-urls http://172.31.0.3:2380 \

 -listen-client-urls http://0.0.0.0:2379 \

 -advertise-client-urls http://172.31.0.3:2379 \

 -discovery https://discovery.etcd.io/be7c1938bbde83358d8ae978895908bd

After new nodes join, we can check from the logs that there is a new election taking place:

2016-05-02 00:31:01.152215 I | raft: e980eb6ff82d4d42 is starting a new
election at term 308

2016-05-02 00:31:01.152272 I | raft: e980eb6ff82d4d42 became candidate at
term 309

2016-05-02 00:31:01.152281 I | raft: e980eb6ff82d4d42 received vote from
e980eb6ff82d4d42 at term 309

2016-05-02 00:31:01.152292 I | raft: e980eb6ff82d4d42 [logterm: 304,
index: 9739] sent vote request to 705d980456f91652 at term 309

2016-05-02 00:31:01.152302 I | raft: e980eb6ff82d4d42 [logterm: 304,
index: 9739] sent vote request to 74627c91d7ab4b54 at term 309

2016-05-02 00:31:01.162742 I | rafthttp: the connection with
74627c91d7ab4b54 became active

2016-05-02 00:31:01.197820 I | raft: e980eb6ff82d4d42 received vote from
74627c91d7ab4b54 at term 309

2016-05-02 00:31:01.197852 I | raft: e980eb6ff82d4d42 [q:2] has received
2 votes and 0 vote rejections

2016-05-02 00:31:01.197882 I | raft: e980eb6ff82d4d42 became leader at
term 309

Chapter 4

181

With the discovery method, we can see that the cluster can be launched without knowing the
others' IPs beforehand. etcd will start a new election if new nodes join or leave, and always
keep the service online with the multi-nodes setting.

See also
To understand the installation of a single etcd server, refer to the Building datastore recipe
in Chapter 1, Building Your Own Kubernetes.

Building multiple masters
The master node serves as a kernel component in the Kubernetes system. Its duties include
the following:

ff Pushing and pulling information from the datastore and the etcd servers

ff Being the portal for requests

ff Assigning tasks to nodes

ff Monitoring the running tasks

Three major daemons support the master fulfilling the preceding duties, which are numbered
in the following image:

As you can see, the master is the communicator between workers and clients. Therefore, it
will be a problem if the master node crashes. A multiple-master Kubernetes system is not
only fault tolerant, but also workload-balanced. There will be no longer only one API server
for accessing nodes and clients sending requests. Several API server daemons in separated
master nodes would help to solve the tasks simultaneously and shorten the response time.

Building a High Availability Cluster

182

Getting ready
The brief concepts for building a multiple-master system are listed here:

ff Add a load balancer server in front of the masters. The load balancer will become the
new endpoint accessed by nodes and clients.

ff Every master runs its own API server daemon.

ff Only one scheduler and one controller manager are in the system, which can avoid
conflict directions from different daemons while managing containers.

ff Pod master is a new daemon installed in every master. It elects to decide the
master node-running daemon scheduler and the master node-running controller
manager. It could be the same master that runs both the daemons.

ff Make a more flexible way to run a daemon scheduler and a controller manager
as a container. Install kubelet in master and manage the daemons as pods by
configuring files.

In this recipe, we are going to build a two-master system, which has similar methods while
scaling more masters.

How to do it…
Now, we will guide you step by step in building a multiple-master system. Before this, you have
to deploy a load balancer server for masters.

To learn about deploying the load balancer and to build the system on
AWS, please check the Building the Kubernetes infrastructure in AWS
recipe in Chapter 6, Building Kubernetes on AWS on how to build a master
load balancer.

Preparing multiple master nodes
First, install another master node in your previous Kubernetes system, which should be in the
same environment as the original master. Then, stop the daemon services of scheduler and
controller manager in both the masters:

ff For the systemd-controlled system, stop the services directly using the commands
systemctl kube-scheduler stop and systemctl kube-controller-
manager stop

Chapter 4

183

ff For the init service-controlled system, stop the master service first. Next, delete or
comment on the lines about scheduler and controller manager in the initialization
script:

// Checking current daemon processes on master server

service kubernetes-master status

kube-apiserver (pid 3137) is running...

kube-scheduler (pid 3138) is running...

kube-controller-manager (pid 3136) is running...

service kubernetes-master stop

Shutting down /usr/local/bin/kube-controller-manager: [OK
]

Shutting down /usr/local/bin/kube-scheduler: [OK
]

Shutting down /usr/local/bin/kube-apiserver: [OK
]

// Or, for "hypercube" command with init script, we block out
scheduler and controller-manager. Just leave apiserver daemon in
master node.

// Put comment on the scheduler and controller manager daemons

// the variable $prog is /usr/local/bin/hyperkube

cat /etc/init.d/kubernetes-master

(ignored above parts)

 # Start daemon.

 echo $"Starting apiserver: "

 daemon $prog apiserver \

 --service-cluster-ip-range=${CLUSTER_IP_RANGE} \

 --insecure-port=8080 \

 --secure-port=6443 \

 --address=0.0.0.0 \

 --etcd_servers=${ETCD_SERVERS} \

 --cluster_name=${CLUSTER_NAME} \

 > ${logfile}-apiserver.log 2>&1 &

echo $"Starting controller-manager: "

daemon $prog controller-manager \

--master=${MASTER} \

Building a High Availability Cluster

184

> ${logfile}-controller-manager.log 2>&1 &

#

echo $"Starting scheduler: "

daemon $prog scheduler \

--master=${MASTER} \

> ${logfile}-scheduler.log 2>&1 &

(ignored below parts)

service kubernetes-master start

Starting apiserver:

At this step, you have two masters serving in the system with two processes of the API server.

Setting up kubelet in master
Because we are going to install the daemons' scheduler and controller manager as pods, a
kubelet process is a must-have daemon. Download the latest (version 1.1.4) kubelet binary
file (https://storage.googleapis.com/kubernetes-release/release/v1.1.4/
bin/linux/amd64/kubelet) and put it under the directory of the system's binary files:

wget https://storage.googleapis.com/kubernetes-release/release/v1.1.4/
bin/linux/amd64/kubelet

chmod 755 kubelet

mv kubelet /usr/local/bin/

Alternatively, for the RHEL system, you can download kubelet from the YUM repository:

yum install kubernetes-node

Later, we will configure the kubelet daemon with specific parameters and values:

Tag Name Value Purpose
--api-
servers

127.0.0.1:8080 To communicate with the API server in local.

--register-
node

false Avoid registering this master, local host, as
a node.

--allow-
privileged

true To allow containers to request the privileged
mode, which means containers have the
ability to access the host device, especially,
the network device in this case.

--config /etc/kubernetes/
manifests

To manage local containers by the template
files under this specified directory.

https://storage.googleapis.com/kubernetes-release/release/v1.1.4/bin/linux/amd64/kubelet
https://storage.googleapis.com/kubernetes-release/release/v1.1.4/bin/linux/amd64/kubelet

Chapter 4

185

If your system is monitored by systemctl, put the preceding parameters in the configuration
files:

ff In /etc/kubernetes/config:

�� Modify KUBE_MASTER to --master=127.0.0.1:8080:

KUBE_LOGTOSTDERR="--logtostderr=true"

KUBE_LOG_LEVEL="--v=0"

KUBE_ALLOW_PRIV="--allow_privileged=false"

KUBE_MASTER="--master=127.0.0.1:8080"

ff In /etc/kubernetes/kubelet:

�� Put the tag --api-servers to variable KUBELET_API_SERVER.

�� Put the other three tags to variable KUBELET_ARGS:

KUBELET_ADDRESS="--address=0.0.0.0"

KUBELET_HOSTNAME="--hostname_override=127.0.0.1"

KUBELET_API_SERVER="--api_servers=127.0.0.1:8080"

KUBELET_ARGS="--register-node=false --allow-privileged=true
--config /etc/kubernetes/manifests"

On the other hand, modify your script file of init service management and append the tags
after the daemon kubelet. For example, we have the following settings in /etc/init.d/
kubelet:

cat /etc/init.d/kubelet

prog=/usr/local/bin/kubelet

lockfile=/var/lock/subsys/`basename $prog`

hostname=`hostname`

logfile=/var/log/kubernetes.log

start() {

 # Start daemon.

 echo $"Starting kubelet: "

 daemon $prog \

 --api-servers=127.0.0.1:8080 \

 --register-node=false \

 --allow-privileged=true \

 --config=/etc/kubernetes/manifests \

 > ${logfile} 2>&1 &

 (ignored)

Building a High Availability Cluster

186

It is fine to keep your kubelet service in the stopped state, since we will start it after the
configuration files of scheduler and the controller manager are ready.

Getting the configuration files ready
We need three templates as configuration files: pod master, scheduler, and controller
manager. These files should be put at specified locations.

Pod master handles the elections to decide which master runs the scheduler daemon and
which master runs the controller manager daemon. The result will be recorded in the etcd
servers. The template of pod master is put in the kubelet config directory, making sure that
the pod master is created right after kubelet starts running:

cat /etc/kubernetes/manifests/podmaster.yaml

apiVersion: v1

kind: Pod

metadata:

 name: podmaster

 namespace: kube-system

spec:

 hostNetwork: true

 containers:

 - name: scheduler-elector

 image: gcr.io/google_containers/podmaster:1.1

 command: ["/podmaster", "--etcd-servers=<ETCD_ENDPOINT>",
"--key=scheduler", "--source-file=/kubernetes/kube-scheduler.yaml",
"--dest-file=/manifests/kube-scheduler.yaml"]

 volumeMounts:

 - mountPath: /kubernetes

 name: k8s

 readOnly: true

 - mountPath: /manifests

 name: manifests

 - name: controller-manager-elector

 image: gcr.io/google_containers/podmaster:1.1

 command: ["/podmaster", "--etcd-servers=<ETCD_ENDPOINT>",
"--key=controller", "--source-file=/kubernetes/kube-controller-manager.
yaml", "--dest-file=/manifests/kube-controller-manager.yaml"]

 terminationMessagePath: /dev/termination-log

Chapter 4

187

 volumeMounts:

 - mountPath: /kubernetes

 name: k8s

 readOnly: true

 - mountPath: /manifests

 name: manifests

 volumes:

 - hostPath:

 path: /srv/kubernetes

 name: k8s

 - hostPath:

 path: /etc/kubernetes/manifests

 name: manifests

In the configuration file of pod master, we will deploy a pod with two containers, the two
electors for different daemons. The pod podmaster is created in a new namespace called
kube-system in order to separate pods for daemons and applications. We will need to create
a new namespace prior to creating resources using templates. It is also worth mentioning that
the path /srv/kubernetes is where we put the daemons' configuration files. The content of
the files is like the following lines:

cat /srv/kubernetes/kube-scheduler.yaml

apiVersion: v1

kind: Pod

metadata:

 name: kube-scheduler

 namespace: kube-system

spec:

 hostNetwork: true

 containers:

 - name: kube-scheduler

 image: gcr.io/google_containers/kube-scheduler:34d0b8f8b31e27937327961
528739bc9

 command:

 - /bin/sh

 - -c

 - /usr/local/bin/kube-scheduler --master=127.0.0.1:8080 --v=2 1>>/var/
log/kube-scheduler.log 2>&1

Building a High Availability Cluster

188

 livenessProbe:

 httpGet:

 path: /healthz

 port: 10251

 initialDelaySeconds: 15

 timeoutSeconds: 1

 volumeMounts:

 - mountPath: /var/log/kube-scheduler.log

 name: logfile

 - mountPath: /usr/local/bin/kube-scheduler

 name: binfile

 volumes:

 - hostPath:

 path: /var/log/kube-scheduler.log

 name: logfile

 - hostPath:

 path: /usr/local/bin/kube-scheduler

 name: binfile

There are some special items set in the template, such as namespace and two mounted
files. One is a log file; the streaming output can be accessed and saved in the local side. The
other one is the execution file. The container can make use of the latest kube-scheduler
on the local host:

cat /srv/kubernetes/kube-controller-manager.yaml

apiVersion: v1

kind: Pod

metadata:

 name: kube-controller-manager

 namespace: kube-system

spec:

 containers:

 - command:

 - /bin/sh

 - -c

 - /usr/local/bin/kube-controller-manager --master=127.0.0.1:8080
--cluster-cidr=<KUBERNETES_SYSTEM_CIDR> --allocate-node-cidrs=true --v=2
1>>/var/log/kube-controller-manager.log 2>&1

Chapter 4

189

 image: gcr.io/google_containers/kube-controller-manager:fda24638d51a48
baa13c35337fcd4793

 livenessProbe:

 httpGet:

 path: /healthz

 port: 10252

 initialDelaySeconds: 15

 timeoutSeconds: 1

 name: kube-controller-manager

 volumeMounts:

 - mountPath: /srv/kubernetes

 name: srvkube

 readOnly: true

 - mountPath: /var/log/kube-controller-manager.log

 name: logfile

 - mountPath: /usr/local/bin/kube-controller-manager

 name: binfile

 hostNetwork: true

 volumes:

 - hostPath:

 path: /srv/kubernetes

 name: srvkube

 - hostPath:

 path: /var/log/kube-controller-manager.log

 name: logfile

 - hostPath:

 path: /usr/local/bin/kube-controller-manager

 name: binfile

The configuration file of the controller manager is similar to the one of the scheduler.
Remember to provide the CIDR range of your Kubernetes system in the daemon command.

For the purpose of having your templates work successfully, there are still some
preconfigurations required before you start the pod master:

ff Create empty log files. Otherwise, instead of the file format, the container will regard
the path as a directory and cause the error of pod creation:
// execute these commands on each master

touch /var/log/kube-scheduler.log

touch /var/log/kube-controller-manager.log

Building a High Availability Cluster

190

ff Create the new namespace. The new namespace is separated from the default one.
We are going to put the pod for system usage in this namespace:
// Just execute this command in a master, and other masters can
share this update.

kubectl create namespace kube-system

// Or

curl -XPOST -d'{"apiVersion":"v1","kind":"Namespace","metadata":
{"name":"kube-system"}}' "http://127.0.0.1:8080/api/v1/namespaces"

Starting the kubelet service and turning daemons on!
Before starting kubelet for our pod master and two master-owned daemons, please make
sure you have Docker and flanneld started first:

Now, it is good to start kubelet on every masters

service kubelet start

Wait for a while; you will get a pod master running on each master and you will finally get a
pair of scheduler and controller manager:

Check pods at namespace "kube-system"

kubectl get pod --namespace=kube-system

NAME READY STATUS RESTARTS AGE

kube-controller-manager-kube-master1 1/1 Running 0 3m

kube-scheduler-kube-master2 1/1 Running 0 3m

podmaster-kube-master1 2/2 Running 0 1m

podmaster-kube-master2 2/2 Running 0 1m

Congratulations! You have your multiple-master Kubernetes system built up successfully. And
the structure of the machines looks like following image:

Chapter 4

191

You can see that now, a single node does not have to deal with the whole request load.
Moreover, the daemons are not crowded in a master; they can be distributed to different
masters and every master has the ability to do the recovery. Try to shut down one master;
you will find that your scheduler and controller manager are still providing services.

How it works…
Check the log of the container pod master; you will get two kinds of messages, one for who is
holding the key and one without a key on hand:

// Get the log with specified container name

kubectl logs podmaster-kube-master1 -c scheduler-elector
--namespace=kube-system

I0211 15:13:46.857372 1 podmaster.go:142] --whoami is empty,
defaulting to kube-master1

I0211 15:13:47.168724 1 podmaster.go:82] key already exists, the
master is kube-master2, sleeping.

I0211 15:13:52.506880 1 podmaster.go:82] key already exists, the
master is kube-master2, sleeping.

(ignored)

kubectl logs podmaster-kube-master1 -c controller-manager-elector
--namespace=kube-system

I0211 15:13:44.484201 1 podmaster.go:142] --whoami is empty,
defaulting to kube-master1

I0211 15:13:50.078994 1 podmaster.go:73] key already exists, we are
the master (kube-master1)

I0211 15:13:55.185607 1 podmaster.go:73] key already exists, we are
the master (kube-master1)

(ignored)

The master with the key should take charge of the specific daemon and the said scheduler
or controller manager. This current high-availability solution for the master is realized by the
lease-lock method in etcd:

Building a High Availability Cluster

192

The preceding loop image indicates the progress of the lease-lock method. Two time periods
are important in this method: SLEEP is the period for checking lock, and Time to Live (TTL)
is the period of lease expiration. We can say that if the daemon-running master crashed, the
worst case for the other master taking over its job requires the time SLEEP + TTL. By default,
SLEEP is 5 seconds and TTL is 30 seconds.

You can still take a look at the source code of pod master for more
concepts (podmaster.go: https://github.com/kubernetes/
contrib/blob/master/pod-master/podmaster.go).

See also
Before you read this recipe, you should have the basic concept of single master installation.
Refer to the related recipes mentioned here and get an idea of how to build a multiple-master
system automatically:

ff The Configuring master recipe in Chapter 1, Building Your Own Kubernetes

ff Clustering etcd

ff The Building the Kubernetes infrastructure in AWS recipe in Chapter 6, Building
Kubernetes on AWS

https://github.com/kubernetes/contrib/blob/master/pod-master/podmaster.go
https://github.com/kubernetes/contrib/blob/master/pod-master/podmaster.go

193

5
Building a Continuous

Delivery Pipeline

In this chapter, we will cover the following topics:

ff Moving monolithic to microservices

ff Integrating with Jenkins

ff Working with the private Docker registry

ff Setting up the Continuous Delivery pipeline

Introduction
Kubernetes is a perfect match with applications featuring the microservices architecture.
However, most of the old applications are all built in monolithic style. We will give you the idea
about how to move from monolithic to the microservices world. As for microservices, deployment
will become a burden if you are doing it manually. We will then learn how to build up our own
Continuous Delivery pipeline by coordinating Jenkins, the Docker registry, and Kubernetes.

Moving monolithic to microservices
Typically, application architecture was the monolithic design that contains Model-View-
Controller (MVC) and every component within a single big binary. Monolithic has some
benefits, such as less latency within components, all in one straightforward packaging,
and being easy to deploy and test.

However, a monolithic design has some downsides because the binary will be getting bigger
and bigger. You always need to take care of the side effects when adding or modifying the
code, therefore, making release cycles longer.

Building a Continuous Delivery Pipeline

194

Containers and Kubernetes give more flexibility in using microservices for your application.
The microservices architecture is very simple that can be divided into some modules or
some service classes with MVC together.

Monolithic and microservices design

Each microservice provides Remote Procedure Call (RPC) using RESTful or some standard
network APIs to other microservices. The benefit is that each microservice is independent.
There are minimal side effects when adding or modifying the code. Release the cycle
independently, so it perfectly fits with the Agile software development methodology and allows
to reuse these microservices to construct another application that builds the microservices
ecosystem.

Getting ready
Prepare the simple microservices program. In order to push and pull your microservices,
please register to Docker Hub (https://hub.docker.com/) to create your free Docker
Hub ID in advance:

Attention: If you push the Docker image to Docker Hub, it will be public;
anyone can pull your image. Therefore, don't put any confidential information
into the image.

https://hub.docker.com/

Chapter 5

195

Docker Hub registration page

Once you successfully log in to your Docker Hub ID, you will be redirected to your Dashboard
page as follows:

After logging to Docker Hub

Building a Continuous Delivery Pipeline

196

How to do it…
Prepare both microservices and the Frontend WebUI as a Docker image. Then, deploy them
using the Kubernetes replication controller and service.

Microservices
1.	 Here is the simple microservice using Python Flask (http://flask.pocoo.org/):

$ cat entry.py

from flask import Flask, request

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

@app.route("/power/<int:base>/<int:index>")

def power(base, index):

 return "%d" % (base ** index)

@app.route("/addition/<int:x>/<int:y>")

def add(x, y):

 return "%d" % (x+y)

@app.route("/substraction/<int:x>/<int:y>")

def substract(x, y):

 return "%d" % (x-y)

if __name__ == "__main__":

 app.run(host='0.0.0.0')

2.	 Prepare a Dockerfile as follows in order to build the Docker image:
$ cat Dockerfile

FROM ubuntu:14.04

http://flask.pocoo.org/

Chapter 5

197

Update packages

RUN apt-get update -y

Install Python Setuptools

RUN apt-get install -y python-setuptools git telnet curl

Install pip

RUN easy_install pip

Bundle app source

ADD . /src

WORKDIR /src

Add and install Python modules

RUN pip install Flask

Expose

EXPOSE 5000

Run

CMD ["python", "entry.py"]

3.	 Then, use the docker build command to build the Docker image as follows:

If you publish the Docker image, you should use Docker Hub
ID/image name as the Docker image name.

//name as "your_docker_hub_id/my-calc"

$ sudo docker build -t hidetosaito/my-calc .

Sending build context to Docker daemon 3.072 kB

Step 1 : FROM ubuntu:14.04

 ---> 6cc0fc2a5ee3

Step 2 : RUN apt-get update -y

 ---> Using cache

Building a Continuous Delivery Pipeline

198

(snip)

Step 8 : EXPOSE 5000

 ---> Running in 7c52f4bfe373

 ---> 28f79bb7481f

Removing intermediate container 7c52f4bfe373

Step 9 : CMD python entry.py

 ---> Running in 86b39c727572

 ---> 20ae465bf036

Removing intermediate container 86b39c727572

Successfully built 20ae465bf036

//verity your image

$ sudo docker images

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

hidetosaito/my-calc latest 20ae465bf036 19
seconds ago 284 MB

ubuntu 14.04 6cc0fc2a5ee3 3
weeks ago 187.9 MB

4.	 Then, use the docker login command to log in to Docker Hub:
//type your username, password and e-mail address in Docker hub

$ sudo docker login

Username: hidetosaito

Password:

Email: hideto.saito@yahoo.com

WARNING: login credentials saved in /home/ec2-user/.docker/config.
json

Login Succeeded

Chapter 5

199

5.	 Finally, use the docker push command to register to your Docker Hub repository
as follows:
//push to your docker index

$ sudo docker push hidetosaito/my-calc

The push refers to a repository [docker.io/hidetosaito/my-calc]
(len: 1)

20ae465bf036: Pushed

(snip)

92ec6d044cb3: Pushed

latest: digest: sha256:203b81c5a238e228c154e0b53a58e60e6eb3d156329
3483ce58f48351031a474 size: 19151

On accessing Docker Hub, you can see your microservices in the repository:

Microservice image on Docker Hub

Building a Continuous Delivery Pipeline

200

Frontend WebUI
1.	 Here is the simple Frontend WebUI that is also using Python Flask:

import os
import httplib
from flask import Flask, request, render_template
app = Flask(__name__)
@app.route("/")
def index():
 return render_template('index.html')

@app.route("/add", methods=['POST'])
def add():
 #
 # from POST parameters
 #
 x = int(request.form['x'])
 y = int(request.form['y'])

 #
 # from Kubernetes Service(environment variables)
 #
 my_calc_host = os.environ['MY_CALC_SERVICE_SERVICE_HOST']
 my_calc_port = os.environ['MY_CALC_SERVICE_SERVICE_PORT']

 #
 # remote procedure call to MicroServices(my-calc)
 #
 client = httplib.HTTPConnection(my_calc_host, my_calc_port)
 client.request("GET", "/addition/%d/%d" % (x, y))
 response = client.getresponse()
 result = response.read()

 return render_template('index.html',
 add_x=x, add_y=y, add_result=result)

if __name__ == "__main__":
 app.debug = True
 app.run(host='0.0.0.0')

Chapter 5

201

Kubernetes service generates the Kubernetes service name and port number
as an environment variable to the other pods. Therefore, the environment
variable's name and the Kubernetes service name must be consistent.
In this scenario, the my-calc service name must be my-calc-service.

2.	 Frontend WebUI uses the Flask HTML template; it is similar to PHP and JSP such
that entry.py will pass the parameter to the template (index.html) to render
the HTML:
<html>
<body>
<div>
 <form method="post" action="/add">
 <input type="text" name="x" size="2"/>
 <input type="text" name="y" size="2"/>
 <input type="submit" value="addition"/>
 </form>

 {% if add_result %}
 <p>Answer : {{ add_x }} + {{ add_y }} = {{ add_result }}</p>
 {% endif %}
</div>
</body>
</html>

3.	 Dockerfile is exactly the same as microservices. So, eventually, the file structure
will be as follows. Note that index.html is a template file; therefore, put it under
the templates directory:
/Dockerfile

/entry.py

/templates/index.html

4.	 Then, build a Docker image and push to Docker Hub as follows:

In order to push your image to Docker Hub, you need to log in using the
docker login command. It is needed only once; the system checks
~/.docker/config.json to read from there.

//build frontend Webui image

$ sudo docker build -t hidetosaito/my-frontend .

Building a Continuous Delivery Pipeline

202

//login to docker hub, if not login yet

$ sudo docker login

//push frontend webui image

$ sudo docker push hidetosaito/my-frontend

Microservices and Frontend WebUI image on Docker Hub

How it works…
Launch both microservices and the Frontend WebUI.

Microservices
Microservices (my-calc) uses the Kubernetes replication controller and service, but it needs
to communicate to other pods only. In other words, there's no need to expose it to the outside
Kubernetes network. Therefore, the service type is set as ClusterIP:

cat my-calc.yaml

apiVersion: v1

kind: ReplicationController

metadata:

 name: my-calc-rc

spec:

Chapter 5

203

 replicas: 2

 selector:

 app: my-calc

 template:

 metadata:

 labels:

 app: my-calc

 spec:

 containers:

 - name: my-calc

 image: hidetosaito/my-calc

apiVersion: v1

kind: Service

metadata:

 name: my-calc-service

spec:

 ports:

 - protocol: TCP

 port: 5000

 type: ClusterIP

 selector:

 app: my-calc

Use the kubectl command to load the my-calc pods as follows:

$ sudo kubectl create -f my-calc.yaml

replicationcontroller "my-calc-rc" created

service "my-calc-service" created

Frontend WebUI
Frontend WebUI also uses the replication controller and service, but it exposes the port
(TCP port 30080) in order to access it from an external web browser:

$ cat my-frontend.yaml

apiVersion: v1

kind: ReplicationController

Building a Continuous Delivery Pipeline

204

metadata:

 name: my-frontend-rc

spec:

 replicas: 2

 selector:

 app: my-frontend

 template:

 metadata:

 labels:

 app: my-frontend

 spec:

 containers:

 - name: my-frontend

 image: hidetosaito/my-frontend

apiVersion: v1

kind: Service

metadata:

 name: my-frontend-service

spec:

 ports:

 - protocol: TCP

 port: 5000

 nodePort: 30080

 type: NodePort

 selector:

 app: my-frontend

$ sudo kubectl create -f my-frontend.yaml

replicationcontroller "my-frontend-rc" created

service "my-frontend-service" created

Chapter 5

205

You have exposed your service to an external port on all the nodes in your cluster. If you want
to expose this service to the external Internet, you may need to set up firewall rules for the
service port(s) (TCP port 30080) to serve traffic. Refer to http://releases.k8s.io/
release-1.1/docs/user-guide/services-firewalls.md for more details.

Let's try to access my-frontend using a web browser. You can access any Kubernetes node's
IP address; specify the port number 30080 as follows:

Access to the Frontend WebUI

When you click on the addition button, it will forward a parameter to microservices
(my-calc). Microservices compute the addition (yes, just an addition!) and then return
the result back to the Frontend WebUI as follows:

Get a result from microservices and render the HTML

So now, it is easy to adjust the number of replicas for the Frontend WebUI and microservices
independently. For example, WebUI replicas range from 2 to 8 and microservice replicas range
from 2 to 16.

http://releases.k8s.io/release-1.1/docs/user-guide/services-firewalls.md
http://releases.k8s.io/release-1.1/docs/user-guide/services-firewalls.md

Building a Continuous Delivery Pipeline

206

Also, if there's a need to fix some bugs, for example, there's a frontend need to validate the input
parameter to check whether it is numeric or string (yes, if you type string and then submit, it will
show an error!); it will not affect the build and deploy the cycle against microservices:

The frontend WebUI and microservices diagram

In addition, if you want to add an additional microservice, for example, subtract microservices,
you may need to create another Docker image and deploy with another replication controller
and service, so it will be independent from the current microservices.

Then, you can keep accumulate your own microservices ecosystem to re-use for another
application.

See also
This recipe described how your application aligns to the microservices architecture. The
microservices and the Docker container perfectly fit the concept. The following recipe also
helps in managing your microservices' container images:

ff Working with the private Docker registry

Chapter 5

207

Integrating with Jenkins
In software engineering, Continuous Integration (CI) (https://en.wikipedia.
org/wiki/Continuous_integration) and Continuous Delivery (CD) (https://
en.wikipedia.org/wiki/Continuous_delivery), abbreviated as CI/CD, have the idea
to simplify the procedure of the traditional development process with a continuous testing
mechanism in order to reduce the panic of serious confliction, namely, to solve small errors
immediately once you have found it. Furthermore, through automatic tools, a product running
on the CI/CD system can achieve better efficiency for bug fixes or new feature delivery. Jenkins
is one of the well-known CI/CD applications. Projects in Jenkins pull codes from the code base
server and test or deploy. In this recipe, we will show you how the Kubernetes system joins
Jenkins servers as a CI/CD group.

Getting ready
Before you start this recipe, prepare a Docker Hub account (https://hub.docker.com)
if you don't have your Docker registry; we will put the images built by Jenkins here. It is also
where Kubernetes pulls images from. Next, make sure both the Kubernetes servers and your
Jenkins servers are ready. You can set up your own standalone Jenkins server through the
Docker image as well; the details are indicated here.

Install a Jenkins server which can build a Docker program
First, you need a Docker-installed machine. Then, you can go ahead to create a Jenkins server
using this command:

// Pull the Jenkins image from Docker Hub

$ docker run -p 8080:8080 -v /your/jenkins_home/:/var/jenkins_home -v
$(which docker):/bin/docker jenkins

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_delivery
https://hub.docker.com

Building a Continuous Delivery Pipeline

208

Port 8080 is the portal of a website. It is recommended to assign a host directory for
mounting the Jenkins home directory. Therefore, you can keep the data even with the
container shutdown. We will also mount the Docker binary file to our Jenkins container, since
this Jenkins official image didn't install the docker command. After you push this command,
logs for installation will show on your terminal. Once you see this information, INFO: Jenkins
is fully up and running, it is good for you to check the web console of Jenkins using DOCKER_
MACHINE_IP_ADDRESS:8080:

After this, you have to install the Git and Docker plugins for Jenkins. Installing plugins is
the way to customize your Jenkins server. Here, these two plugins can make you fulfill the
workflow from the code in your laptop to the containers on the Kubernetes system. You can
refer to the following steps:

1.	 Click on Manage Jenkins on the left menu.

2.	 Pick Manage Plugins.

3.	 Choose the tag Available.

4.	 Key in Git Plugin and check it; do the same for CloudBees Docker Build and
Publish Plugin.

5.	 Start the installation and reboot.

Chapter 5

209

How to do it…
We are going to make Kubernetes the working station for running testing containers or
deploying containers officially. Currently, there are no Jenkins plugins for deploying pods on the
Kubernetes systems. Therefore, we are going to call the Kubernetes API for our usage. In order
to run a program test, we can use the Kubernetes job mentioned in Ensuring flexible usage of
your containers recipe in Chapter 3, Playing with Containers, which will create the job-like pod
that could be terminated once finished. It is suitable for testing and verification. On the other
hand, we can directly create the replication controller and service for official deployment.

Create your Jenkins project
As a program build, we will create a single Jenkins project for each program. Now, you can
click on New Item on the menu on the left-hand side. In this recipe, choose Freestyle project;
it is good enough for the building examples later on. Name the project and click on OK:

Then, you will see the following blocks of categories on the configuration page:

ff Advanced Project Options

ff Source Code Management

ff Build Triggers

ff Build

ff Post-build Actions

Building a Continuous Delivery Pipeline

210

These settings can make your project more flexible and more close to the one you need.
However, we will only focus on the Source Code Management and Build parts to meet our
requirements. Source Code Management is where we will define our codebase location.
In the later sections, we will choose Git and put the corresponding repository:

In the category Build, several steps, such as Docker Build and Publish and Execute shell, will
help us build Docker images, push images to the Docker registry, and trigger the Kubernetes
system to run the programs:

Chapter 5

211

The following two scenarios will demonstrate how to set the configurations for running your
programs on the Kubernetes systems.

Run a program testing
Kubernetes' job is to handle some programs that have terminal conditions, such as unit
testing. Here, we have a short dockerized program, which is suitable for this situation. Feel
free to check it on GitHub: https://github.com/kubernetes-cookbook/sleeper.
As indicated in Dockerfile, this tiny program will be killed after 10 seconds of running and
doing nothing. The following steps will guide you set up the project's configurations:

1.	 At Source Code Management, choose Git, put the HTTPS URL of your GitHub
repository at Repository URL. For example, https://github.com/kubernetes-
cookbook/sleeper.git. And you will find that the WARNING message has
disappeared for a public repository; or you will have to add a credential.

2.	 At Build, we need the following two build steps:

1.	 Add Docker Build and Publish first to build your program as an image. A
repository name is a required item. In this case, we will use Docker Hub as
a registry; please name your repository as DOCKERHUB_ACCOUNT:YOUR_
CUSTOMIZED_NAME. For example, nosus:sleeper. Adding a tag, such
as v$BUILD_NUMBER, could tag your Docker image with the Jenkins build
number. Leave Docker Host URI and Server credentials empty if your
Jenkins servers already installed the Docker package. But if you follow the
instructions on the previous page to install the Jenkins server as a container,
please check the following tips for detailed settings of these two items. Leave
Docker registry URL empty, since we used Docker Hub as a Docker registry.
However, set a new credential for your Docker Hub accessing permission.

2.	 Next, add an Execute shell block for calling the Kubernetes API. We put
two API calls for our purpose: one is to create a Kubernetes job using the
JSON format template and the other is to query whether the job completes
successfully or not:
#run a k8s job

curl -XPOST -d'{"apiVersion":"extensions/
v1beta1","kind": "Job","metadata":{"name":"sleeper
"}, "spec": {"selector": {"matchLabels": {"image":
"ubuntu","test": "jenkins"}},"template": {"metadata":
{"labels": {"image": "ubuntu","test": "jenkins"}},"spec":
{"containers": [{"name": "sleeper","image": "nosus/
sleeper"}],"restartPolicy": "Never"}}}}' http://YOUR_
KUBERNETES_MASTER_ENDPOINT/apis/extensions/v1beta1/
namespaces/default/jobs

#check status

count=1

returnValue=-1

https://github.com/kubernetes-cookbook/sleeper
https://github.com/kubernetes-cookbook/sleeper.git
https://github.com/kubernetes-cookbook/sleeper.git

Building a Continuous Delivery Pipeline

212

while [$count -lt 60]; do

 curl -XGET http://YOUR_KUBERNETES_MASTER_ENDPOINT/apis/
extensions/v1beta1/namespaces/default/jobs/sleeper | grep
"\"succeeded\": 1" && returnValue=0 && break

 sleep 3

count=$(($count+1))

done

return $returnValue

We will also add a while loop for a 3-minute timeout limitation. Periodically checking
the status of the job is a simple way to know whether it is completed. If you fail to get the
message succeeded: 1, judge the job as a failure.

Set Docker Host URI and Server Credential for a containerized
Jenkins server
If you use docker-machine to build your Docker environment (for
example, an OS X user), type this command in your terminal:
$ docker-machine env
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="/Users/YOUR_ACCOUNT/.
docker/machine/machines/default"
export DOCKER_MACHINE_NAME="default"

Run this command to configure your shell:
eval $(docker-machine env)

By default, you will get the preceding information. Please paste the
value of $DOCKER_HOST in the item Docker Host URI. Then, check
your directory at $DOCKER_CERT_PATH:
$ ls /Users/carol/.docker/machine/machines/default
boot2docker.iso cert.pem default id_
rsa key.pem server.pem
ca.pem config.json disk.vmdk id_
rsa.pub server-key.pem

Chapter 5

213

Certain files listed here are capable for you to get permission. Please
click on the Add button beside Registry credentials and paste the
content of a part of the previous files, as shown in the following
screenshot:

After you finish project configurations, you can click on Save and then click on Build Now to
check the result. You may find your image is pushed to Docker Hub as well:

Deploying a program
Deploying a dockerized program through the Jenkins server has similar configurations in
the project's settings. We will prepare a simple nginx program for you to try on! Open a new
Jenkins project for new settings as follows:

1.	 At Source Code Management, choose Git; put the value https://github.com/
kubernetes-cookbook/nginx-demo.git in Repository URL.

2.	 At Build, we will need two build steps as well. They are as follows:

1.	 Add a Docker Build and Publish first; we are going to put nosus:nginx-
demo as the repository name. Specify appropriate values at Docker Host URI
and Server credentials.

https://github.com/kubernetes-cookbook/nginx-demo.git
https://github.com/kubernetes-cookbook/nginx-demo.git

Building a Continuous Delivery Pipeline

214

2.	 We need an Execute shell block for calling the Kubernetes API. There are
two API calls put in the space: first one is for creating a pod and the other
one is for creating a service to expose the pod:
#create a pod

curl -XPOST -d'{"apiVersion": "v1","kind":
"Pod","metadata": {"labels":{"app": "nginx"},"name":
"nginx-demo"},"spec": {"containers": [{"image": "nosus/
nginx-demo","imagePullPolicy": "Always","name":
"nginx-demo","ports": [{"containerPort": 80,"name":
"http"}]}],"restartPolicy": "Always"}}' http:// YOUR_
KUBERNETES_MASTER_ENDPOINT/api/v1/namespaces/default/pods

#create a service

curl -XPOST -d'{"apiVersion": "v1","kind":
"Service","metadata": {"name": "nginx-demo"},"spec":
{"ports": [{"port": 8081,"protocol": "TCP","targetPort":
80}],"selector": {"app": "nginx"},"type": "NodePort"}}'
http://YOUR_KUBERNETES_MASTER_ENDPOINT /api/v1/namespaces/
default/services

Feel free to check the endpoint of the Kubernetes service you just created using Jenkins! It is
even better if you add a Git server webhook with Jenkins. You can directly get the last result
after each code is pushed!

How it works…
The Jenkins server communicates with the Kubernetes system through its RESTful API. You
can also take a look at more functionalities via the URL: http://YOUR_KUBERNETES_
MASTER_ENDPOINT:KUBE_API_PORT/swagger_ui. Hey! The API list is just kept inside
your server!

On the other hand, it is possible for you to install the plugin called HTTP Request Plugin
(https://wiki.jenkins-ci.org/display/JENKINS/HTTP+Request+Plugin) to
fulfill the Kubernetes API calls. We will not explain this one, since the POST function of the
current version failed to use the JSON format payload. You can still try the other types of API
calls with this plugin.

Currently, there are no plugins that are able to help deploy the Kubernetes tasks. That is
why the building procedure is such a headache for the long curl commands. It is also an
inspiration that you can combine other systems or services with your Kubernetes system
through the RESTful API.

https://wiki.jenkins-ci.org/display/JENKINS/HTTP+Request+Plugin

Chapter 5

215

There's more…
You may find that in the section Deploying a program, if we build the same project again, the
Kubernetes API call will return an error response, replying that the pod and service already
exist. In this situation, Kubernetes does not have any rolling update API for the live updating
of our program.

Still, on the aspect of infrastructure, there are two ideas for Kubernetes integration:

ff A Jenkins plugin called Kubernetes Plugin (https://wiki.jenkins-ci.
org/display/JENKINS/Kubernetes+Plugin) helps to build Jenkins slaves
dynamically.

ff You can try to make your Kubernetes master as a Jenkins slave! As a result, it is
wonderful to create pods without complicated API calls. There is no problem to use a
rolling update!

In the version 1.2 of Kubernetes, there is a new resource type deployment that controls pods
and replica sets, which should be the new solution for managing your pods. Deployment has
the following features:

ff Desired state and available state to indicate whether the pods are ready to use

ff Rolling update for the pods for any modification

ff It is capable to roll back to the previous revision of deployment

Resource deployment is in the API version extensions /v1beta1. Kubernetes supports its API
call for both update and rollback. Please take the following API calls as a reference:

// Create a deployment

curl -XPOST -d "{\"metadata\":{\"name\":\"nginx-123\"},\"spec\":{\"repl
icas\":2,\"template\":{\"metadata\":{\"labels\":{\"app\":\nginx\"}},\"sp
ec\":{\"containers\":[{\"name\":\"nginx-deployment\",\"image\":\"nosus/
nginx-demo:v$BUILD_NUMBER\",\"ports\":[{\"containerPort\": 80}]}]}}}}"
YOUR_KUBERNETES_MASTER_ENDPOINT /v1beta1/namespaces/default/deployments

A patch call of API is used for update deployments. Here, we will change the image version.
Some details about patch operation can be found at https://github.com/kubernetes/
kubernetes/blob/master/docs/devel/api-conventions.md:

// Update a deployment

curl -H "Content-Type: application/strategic-merge-patch+json" -XPATCH
-d '{"spec":{"template":{"spec":{"containers":[{"name":"nginx-
deployment","image":"nosus/nginx-demo:v1"}]}}}}' YOUR_KUBERNETES_MASTER_
ENDPOINT /apis/extensions/v1beta1/namespaces/default/deployments/nginx-
deployment

// Rollback the deployment

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://github.com/kubernetes/kubernetes/blob/master/docs/devel/api-conventions.md
https://github.com/kubernetes/kubernetes/blob/master/docs/devel/api-conventions.md

Building a Continuous Delivery Pipeline

216

curl -H "Content-Type: application/json" -XPOST -d '{"name":"nginx-
deployment","rollbackTo":{"revision":0}}' YOUR_KUBERNETES_MASTER_ENDPOINT
/apis/extensions/v1beta1/namespaces/default/deployments/nginx-deployment/
rollback

In the last API call, we rollback the deployment to the original version, indicated as version 0.
Just try to manage the new resource type deployment by yourself!

See also
Please continue to read the next recipe for more CI/CD concepts. It will definitely help you
while pushing your programs on the Kubernetes system. Also refer to the following recipes:

ff Setting up the Continuous Delivery pipeline

ff The Working with a RESTful API and Authentication and authorization recipes in
Chapter 7, Advanced Cluster Administration

Working with the private Docker registry
Once you start maintaining your own Docker image, you might need to have some private
Docker registry to put some sensitive information into an image or your organization policy.

Docker Hub offers the private repository, which only the authenticated user can push and pull
images, and is not visible to other users. However, there is only one quota for a free Docker
Hub account. You may pay to increase the private repositories quota, but if you adopt the
microservices architecture, you will need a large number of private repositories:

Docker Hub private repositories price

Chapter 5

217

There are some ways to set up your own private Docker registry that unlimited Docker image
quota locates inside of your network.

Getting ready
The easiest way to set up your Docker registry is use an official Docker registry image
(https://docs.docker.com/registry/). Run the docker pull command to
download the Docker registry image as follows:

$ docker pull registry:2

2: Pulling from library/registry

f32095d4ba8a: Pull complete

9b607719a62a: Pull complete

973de4038269: Pull complete

2867140211c1: Pull complete

8da16446f5ca: Pull complete

fd8c38b8b68d: Pull complete

136640b01f02: Pull complete

e039ba1c0008: Pull complete

c457c689c328: Pull complete

Digest: sha256:339d702cf9a4b0aa665269cc36255ee7ce424412d56bee9ad8a247afe8
c49ef1

Status: Downloaded newer image for registry:2

//create Docker image datastore under /mnt/docker/images

$ sudo mkdir /mnt/docker/images

//launch registry that expose the 5000/tcp to 8888/tcp on host

$ sudo docker run -p 8888:5000 -v /mnt/docker/images:/var/lib/registry
registry:2

It will store the images to /mnt/docker/images on the host machine.
It is highly recommended to consider to mount a network data volume
such as NFS or use Docker volume

https://docs.docker.com/registry/

Building a Continuous Delivery Pipeline

218

How to do it…
Let's create your simple Docker image based on nginx:

1.	 Firstly, prepare index.html as follows:
$ cat index.html

<html>

 <head><title>My Image</title></head>

 <body>

 <h1>Hello Docker !</h1>

 </body>

</html>

2.	 Also, prepare Dockerfile as follows to build your Docker image:
$ cat Dockerfile

FROM nginx

COPY index.html /usr/share/nginx/html

3.	 Then, build a Docker image name as <your name>/mynginx as follows:
$ ls

Dockerfile index.html

$ docker build -t hidetosaito/mynginx .

Sending build context to Docker daemon 3.072 kB

Step 1 : FROM nginx

 ---> 9737f81306ee

Step 2 : COPY index.html /usr/share/nginx/html

 ---> 74dd7902a931

Removing intermediate container eefc2bb17e24

Successfully built 74dd7902a931

At this moment, the mynginx image is stored on this host only.

4.	 Now, it's time to push to your own private registry. First of all, it needs to tag the
image name as <private_registry:port number>/<your name>/mynginx
as follows:
$ docker tag hidetosaito/mynginx ip-10-96-219-25:8888/hidetosaito/
mynginx

Chapter 5

219

$ docker images

REPOSITORY TAG
IMAGE ID CREATED VIRTUAL SIZE

ip-10-96-219-25:8888/hidetosaito/mynginx latest
b69b2ab1f31b 7 minutes ago 134.6 MB

hidetosaito/mynginx latest
b69b2ab1f31b 7 minutes ago 134.6 MB

You may see that IMAGE ID are the same, because they are the
same image.

5.	 Then, push to the private registry using the docker push command as follows:
$ docker push ip-10-96-219-25:8888/hidetosaito/mynginx

The push refers to a repository [ip-10-96-219-25:8888/hidetosaito/
mynginx] (len: 1)

b69b2ab1f31b: Pushed

ae8e1e9c54b3: Pushed

18de280c0e54: Pushed

cd0794b5fd94: Pushed

f32095d4ba8a: Pushed

latest: digest: sha256:7ac04fdaedad1cbcc8c92fb2ff099a6509f4f29b0f6
94ae044a0cffc8ffe58b4 size: 15087

Now, your mynginx image has been stored in your private registry. Let's deploy this
image using Kubernetes.

6.	 Prepare the YAML file, which contains command to use nginx from the private
registry and use the Kubernetes service to expose to TCP port 30080:
cat my-nginx-with-service.yaml

apiVersion: v1

kind: ReplicationController

metadata:

 name: mynginx

spec:

 replicas: 2

 selector:

 app: mynginx

 template:

Building a Continuous Delivery Pipeline

220

 metadata:

 labels:

 app: mynginx

 spec:

 containers:

 - name: mynginx

 image: ip-10-96-219-25:8888/hidetosaito/mynginx

apiVersion: v1

kind: Service

metadata:

 name: mynginx-service

spec:

 ports:

 - protocol: TCP

 port: 80

 nodePort: 30080

 type: NodePort

 selector:

 app: mynginx

7.	 Then, use the kubectl create command to load this YAML file:
kubectl create -f my-nginx-with-service.yaml

replicationcontroller "mynginx" created

You have exposed your service to an external port on all the nodes in your cluster. If you want
to expose this service to the external Internet, you may need to set up firewall rules for the
service port(s) (TCP port 30080) to serve traffic. Refer to http://releases.k8s.io/
release-1.1/docs/user-guide/services-firewalls.md for more details:

service "mynginx-service" created

Then, access any Kubernetes node on TCP port 30080; you may see index.html as follows:

http://releases.k8s.io/release-1.1/docs/user-guide/services-firewalls.md
http://releases.k8s.io/release-1.1/docs/user-guide/services-firewalls.md

Chapter 5

221

How it works…
On running the docker push command, it uploads your Docker image to the private registry.
Then, when the kubectl create command is run, the Kubernetes node performs docker
pull from the private registry.

Using the private registry is the easiest way to propagate your Docker image to all the
Kubernetes nodes:

Alternatives
The official Docker registry image is the standard way to set up your private registry. However,
from the management and maintenance points of view, you might need to make more effort.
There is an alternative way to construct your own Docker private registry.

Docker Trusted Registry
Docker Trusted Registry is an enterprise version of Docker registry. It comes with Web
Console, LDAP integration, and so on. To know more about Docker Trusted Registry, please
refer to the following link:

https://www.docker.com/products/docker-trusted-registry

Nexus Repository Manager
Nexus Repository Manager is one of the popular repository managers; it supports Java Maven,
Linux apt/yum, Docker, and more. You can integrate all the software repository into the Nexus
Repository Manager. Read more about Nexus Repository here:

http://www.sonatype.com/nexus/solution-overview/nexus-repository

https://www.docker.com/products/docker-trusted-registry
http://www.sonatype.com/nexus/solution-overview/nexus-repository

Building a Continuous Delivery Pipeline

222

Amazon EC2 Container Registry
Amazon Web Services (AWS) also provides a managed Docker registry service. It is integrated
with Identity Access Management (IAM) and the charges are based on storage usage and
data transfer usage, instead of the number of images. To know more about it, please refer
to following link:

https://aws.amazon.com/ecr/

See also
This recipe described how to set up your own Docker registry. The private registry brings you
more flexibility and security for your own images. The following recipes help to understand the
need for private registry:

ff Moving monolithic to microservices

ff The Working with volumes recipe in Chapter 2, Walking through Kubernetes Concepts

Setting up the Continuous Delivery pipeline
Continuous Delivery is a concept that was first introduced in the book: Continuous Delivery:
Reliable Software Releases Through Build, Test, and Deployment Automation written by
Jez Humble and David Farley. By automation of the test, build, and deployment, the pace
of software release can be the time to market. It also helps in the collaboration between
developers, operations, and testers, reducing communication effort and bugs. CD pipeline
aims to be a reliable and repeatable process and tools of delivering software.

Kubernetes is one of the destinations in CD pipeline. This section will describe how to deliver
your new release software into Kubernetes by Jenkins and Kubernetes deployment.

Getting ready
Knowing Jenkins is prerequisite to this section. For more details on how to build and setup
Jenkins from scratch, please refer to Integrating with Jenkins section in this chapter. We will
use the sample Flask (http://flask.pocoo.org) app my-calc mentioned in Moving
monolithic to microservices section. Before setting up our Continuous Delivery pipeline with
Kubernetes, we should know what Kubernetes deployment is. Deployment in Kubernetes
could create a certain number of pods and replication controller replicas. When a new
software is released, you could then roll updates or recreate the pods that are listed in
the deployment configuration file, which can ensure your service is always alive.

Chapter 5

223

Just like Jobs, deployment is a part of the extensions API group and still in the v1beta
version. To enable a deployment resource, set the following command in the API server
configuration when launching. If you have already launched the server, just modify the /etc/
kubernetes/apiserver configuration file and restart the kube-apiserver service.
Please note that, for now, it still supports the v1beta1 version:

--runtime-config=extensions/v1beta1/deployments=true

After the API service starts successfully, we could start building up the service and create the
sample my-calc app. These steps are required, since the concept of Continuous Delivery is
to deliver your software from the source code, build, test and into your desired environment.
We have to create the environment first.

Once we have the initial docker push command in the Docker registry, let's start creating
a deployment named my-calc-deployment:

cat my-calc-deployment.yaml

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: my-calc-deployment

spec:

 replicas: 3

 template:

 metadata:

 labels:

 app: my-calc

 spec:

 containers:

 - name: my-calc

 image: msfuko/my-calc:1

 ports:

 - containerPort: 5000

// create deployment resource

kubectl create -f deployment.yaml

deployment "my-calc-deployment" created

Building a Continuous Delivery Pipeline

224

Also, create a service to expose the port to the outside world:

cat deployment-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-calc

spec:

 ports:

 - protocol: TCP

 port: 5000

 type: NodePort

 selector:

 app: my-calc

// create service resource

kubectl create -f deployment-service.yaml

You have exposed your service on an external port on all nodes in your
cluster. If you want to expose this service to the external internet, you
may need to set up firewall rules for the service port(s) (tcp:31725) to
serve traffic.

service "my-calc" created

How to do it…
To set up the Continuous Delivery pipeline, perform the following steps:

1.	 At first, we'll start a Jenkins project named Deploy-My-Calc-K8S as shown in the
following screenshot:

Chapter 5

225

2.	 Then, import the source code information in the Source Code Management section:

3.	 Next, add the targeted Docker registry information into the Docker Build and Publish
plugin in the Build step:

4.	 At the end, add the Execute Shell section in the Build step and set the following
command:
curl -XPUT -d'{"apiVersion":"extensions/v1beta1","kind":"Depl
oyment","metadata":{"name":"my-calc-deployment"},"spec":{"repl
icas":3,"template":{"metadata":{"labels":{"app":"my-calc"}},"s-
pec":{"containers":[{"name":"my-calc","image":"msfuko/my-
calc:${BUILD_NUMBER}","ports":[{"containerPort":5000}]}]}}}}'
http://54.153.44.46:8080/apis/extensions/v1beta1/namespaces/
default/deployments/my-calc-deployment

Building a Continuous Delivery Pipeline

226

Let's explain the command here; it's actually the same command with the following
configuration file, just using a different format and launching method. One is by using
the RESTful API, another one is by using the kubectl command.

5.	 The ${BUILD_NUMBER} tag is an environment variable in Jenkins, which will export
as the current build number of the project:
apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: my-calc-deployment

spec:

 replicas: 3

 template:

 metadata:

 labels:

 app: my-calc

 spec:

 containers:

 - name: my-calc

 image: msfuko/my-calc:${BUILD_NUMBER}

 ports:

 containerPort: 5000

6.	 After saving the project and we could start our build. Click on Build Now. Then,
Jenkins will pull the source code from your Git repository, building and pushing the
image. At the end, call the RESTful API of Kubernetes:
showing the log in Jenkins about calling API of Kubernetes

...

[workspace] $ /bin/sh -xe /tmp/hudson3881041045219400676.sh

+ curl -XPUT -d'{"apiVersion":"extensions/v1beta1","kind":"Depl
oyment","metadata":{"name":"my-cal-deployment"},"spec":{"repli
cas":3,"template":{"metadata":{"labels":{"app":"my-cal"}},"spe-
c":{"containers":[{"name":"my-cal","image":"msfuko/my-cal:1","p
orts":[{"containerPort":5000}]}]}}}}' http://54.153.44.46:8080/
apis/extensions/v1beta1/namespaces/default/deployments/my-cal-
deployment

 % Total % Received % Xferd Average Speed Time Time
Time Current

 Dload Upload Total Spent
Left Speed

Chapter 5

227

 0 0 0 0 0 0 0 0 --:--:-- --:--:--
--:--:-- 0

100 1670 100 1407 100 263 107k 20534 --:--:-- --:--:--
--:--:-- 114k

{

 "kind": "Deployment",

 "apiVersion": "extensions/v1beta1",

 "metadata": {

 "name": "my-calc-deployment",

 "namespace": "default",

 "selfLink": "/apis/extensions/v1beta1/namespaces/default/
deployments/my-calc-deployment",

 "uid": "db49f34e-e41c-11e5-aaa9-061300daf0d1",

 "resourceVersion": "35320",

 "creationTimestamp": "2016-03-07T04:27:09Z",

 "labels": {

 "app": "my-calc"

 }

 },

 "spec": {

 "replicas": 3,

 "selector": {

 "app": "my-calc"

 },

 "template": {

 "metadata": {

 "creationTimestamp": null,

 "labels": {

 "app": "my-calc"

 }

 },

 "spec": {

 "containers": [

 {

 "name": "my-calc",

 "image": "msfuko/my-calc:1",

 "ports": [

Building a Continuous Delivery Pipeline

228

 {

 "containerPort": 5000,

 "protocol": "TCP"

 }

],

 "resources": {},

 "terminationMessagePath": "/dev/termination-log",

 "imagePullPolicy": "IfNotPresent"

 }

],

 "restartPolicy": "Always",

 "terminationGracePeriodSeconds": 30,

 "dnsPolicy": "ClusterFirst"

 }

 },

 "strategy": {

 "type": "RollingUpdate",

 "rollingUpdate": {

 "maxUnavailable": 1,

 "maxSurge": 1

 }

 },

 "uniqueLabelKey": "deployment.kubernetes.io/podTemplateHash"

 },

 "status": {}

}

Finished: SUCCESS

7.	 Let's check it using the kubectl command line after a few minutes:
// check deployment status

kubectl get deployments

NAME UPDATEDREPLICAS AGE

my-cal-deployment 3/3 40m

We can see that there's a deployment named my-cal-deployment.

Chapter 5

229

8.	 Using kubectl describe, you could check the details:
// check the details of my-cal-deployment

kubectl describe deployment my-cal-deployment

Name: my-cal-deployment

Namespace: default

CreationTimestamp: Mon, 07 Mar 2016 03:20:52 +0000

Labels: app=my-cal

Selector: app=my-cal

Replicas: 3 updated / 3 total

StrategyType: RollingUpdate

RollingUpdateStrategy:	 1 max unavailable, 1 max surge, 0 min
ready seconds

OldReplicationControllers: <none>

NewReplicationController:	 deploymentrc-1448558234 (3/3 replicas
created)

Events:

 FirstSeen LastSeen Count From SubobjectPath Reason
Message

 ───────── ──────── ───── ──── ───────────── ──────
───────

 46m 46m 1 {deployment-controller } ScalingRC Scaled
up rc deploymentrc-3224387841 to 3

 17m 17m 1 {deployment-controller } ScalingRC Scaled
up rc deploymentrc-3085188054 to 3

 9m 9m 1 {deployment-controller } ScalingRC Scaled
up rc deploymentrc-1448558234 to 1

 2m 2m 1 {deployment-controller } ScalingRC Scaled
up rc deploymentrc-1448558234 to 3

We could see one interesting setting named RollingUpdateStrategy. We have 1 max
unavailable, 1 max surge, and 0 min ready seconds. It means that we could set
up our strategy to roll the update. Currently, it's the default setting; at the most, one pod is
unavailable during the deployment, one pod could be recreated, and zero seconds to wait
for the newly created pod to be ready. How about replication controller? Will it be created
properly?

// check ReplicationController

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

deploymentrc-1448558234 my-cal msfuko/my-cal:1 app=my-
cal,deployment.kubernetes.io/podTemplateHash=1448558234 3 1m

Building a Continuous Delivery Pipeline

230

We could see previously that we have three replicas in this RC with the name
deploymentrc-${id}. Let's also check the pod:

// check Pods

kubectl get pods

NAME READY STATUS RESTARTS AGE

deploymentrc-1448558234-qn45f 1/1 Running 0 4m

deploymentrc-1448558234-4utub 1/1 Running 0 12m

deploymentrc-1448558234-iz9zp 1/1 Running 0 12m

We could find out deployment trigger RC creation, and RC trigger pods creation. Let's check
the response from our app my-calc:

curl http://54.153.44.46:31725/

Hello World!

Assume that we have a newly released application. We'll make Hello world! to be Hello
Calculator!. After pushing the code into GitHub, Jenkins could be either triggered by
the SCM webhook, periodically run, or triggered manually:

[workspace] $ /bin/sh -xe /tmp/hudson877190504897059013.sh

+ curl -XPUT -d{"apiVersion":"extensions/v1beta1","kind":"Deployment","me
tadata":{"name":"my-calc-deployment"},"spec":{"replicas":3,"template":{"m
etadata":{"labels":{"app":"my-calc"}},"spec":{"containers":[{"name":"my-
calc","image":"msfuko/my-calc:2","ports":[{"containerPort":5000}]}]}}}}
http://54.153.44.46:8080/apis/extensions/v1beta1/namespaces/default/
deployments/my-calc-deployment

 % Total % Received % Xferd Average Speed Time Time Time
Current

 Dload Upload Total Spent Left
Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-
- 0

100 1695 100 1421 100 274 86879 16752 --:--:-- --:--:-- --:--:--
88812

{

 "kind": "Deployment",

 "apiVersion": "extensions/v1beta1",

 "metadata": {

 "name": "my-calc-deployment",

 "namespace": "default",

Chapter 5

231

 "selfLink": "/apis/extensions/v1beta1/namespaces/default/deployments/
my-calc-deployment",

 "uid": "db49f34e-e41c-11e5-aaa9-061300daf0d1",

 "resourceVersion": "35756",

 "creationTimestamp": "2016-03-07T04:27:09Z",

 "labels": {

 "app": "my-calc"

 }

 },

 "spec": {

 "replicas": 3,

 "selector": {

 "app": "my-calc"

 },

 "template": {

 "metadata": {

 "creationTimestamp": null,

 "labels": {

 "app": "my-calc"

 }

 },

 "spec": {

 "containers": [

 {

 "name": "my-calc",

 "image": "msfuko/my-calc:2",

 "ports": [

 {

 "containerPort": 5000,

 "protocol": "TCP"

 }

],

 "resources": {},

 "terminationMessagePath": "/dev/termination-log",

 "imagePullPolicy": "IfNotPresent"

 }

Building a Continuous Delivery Pipeline

232

],

 "restartPolicy": "Always",

 "terminationGracePeriodSeconds": 30,

 "dnsPolicy": "ClusterFirst"

 }

 },

 "strategy": {

 "type": "RollingUpdate",

 "rollingUpdate": {

 "maxUnavailable": 1,

 "maxSurge": 1

 }

 },

 "uniqueLabelKey": "deployment.kubernetes.io/podTemplateHash"

 },

 "status": {}

}

Finished: SUCCESS

How it works…
Let's continue the last action. We built a new image with the $BUILD_NUMBER tag and
triggered Kubernetes to replace a replication controller by a deployment. Let's observe
the behavior of the replication controller:

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

deploymentrc-1705197507 my-calc msfuko/my-calc:1 app=my-
calc,deployment.kubernetes.io/podTemplateHash=1705197507 3 13m

deploymentrc-1771388868 my-calc msfuko/my-calc:2 app=my-
calc,deployment.kubernetes.io/podTemplateHash=1771388868 0 18s

We can see deployment create another RC named deploymentrc-1771388868, whose pod
number is currently 0. Wait a while and let's check it again:

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

Chapter 5

233

deploymentrc-1705197507 my-calc msfuko/my-calc:1 app=my-
calc,deployment.kubernetes.io/podTemplateHash=1705197507 1 15m

deploymentrc-1771388868 my-calc msfuko/my-calc:2 app=my-
calc,deployment.kubernetes.io/podTemplateHash=1771388868 3 1m

The number of pods in RC with the old image my-calc:1 reduces to 1 and the new image
increase to 3:

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE

deploymentrc-1705197507 my-calc msfuko/my-calc:1 app=my-
calc,deployment.kubernetes.io/podTemplateHash=1705197507 0 15m

deploymentrc-1771388868 my-calc msfuko/my-calc:2 app=my-
calc,deployment.kubernetes.io/podTemplateHash=1771388868 3 2m

After a few seconds, the old pods are all gone and the new pods replace them to serve users.
Let's check the response by the service:

curl http://54.153.44.46:31725/

Hello Calculator!

The pods have been rolling updates to the new image individually. Following is the illustration
on how it works. Based on RollingUpdateStrategy, Kubernetes replaces pods one by
one. After the new pod launches successfully, the old pod is destroyed. The bubble in the
timeline arrow shows the timing of the logs we got on the previous page. At the end, the
new pods will replace all the old pods:

Building a Continuous Delivery Pipeline

234

There's more…
Deployment is still in the beta version, while some functions are still under development, for
example, deleting a deployment resource and recreating strategy support. However, it gives
the chance to Jenkins to make the Continuous Delivery pipeline available. It's pretty easy
and makes sure all the services are always online to update. For more details of the RESTful
API, please refer to http://YOUR_KUBERNETES_MASTER_ENDPOINT:KUBE_API_PORT/
swagger-ui/#!/v1beta1/listNamespacedDeployment.

See also
By deployment, we could achieve the goals of rolling the update. However, kubectl
also provides a rolling-update command, which is really useful, too. Check out the
following recipes:

ff The Updating live containers and Ensuring flexible usage of your containers recipes
in Chapter 3, Playing with Containers

ff Moving monolithic to microservices

ff Integrating with Jenkins

ff The Working with a RESTful API and Authentication and authorization recipes in
Chapter 7, Advanced Cluster Administration

235

6
Building Kubernetes

on AWS

In this chapter, we will cover the following topics:

ff Building the Kubernetes infrastructure in AWS

ff Managing applications using AWS OpsWorks

ff Auto-deploying Kubernetes through Chef recipes

ff Using AWS CloudFormation for fast provisioning

Introduction
In this chapter, you will learn how to build up all the components on popular public cloud
Amazon Web Services. However, we like our infrastructure as code. The infrastructure can be
built repeatedly in a reliable way. You will learn how to manage an application's life cycle using
AWS OpsWorks, which is powered by Chef. Finally, we will leverage what we learned and build
all the infrastructure via a text file in the JSON format!

Building Kubernetes on AWS

236

Building the Kubernetes infrastructure
in AWS

Amazon Web Services (AWS) is the most popular cloud service. You can launch several
virtual machines on the Amazon datacenter. This section covers sign-up, setting up AWS
infrastructure, and launching Kubernetes on AWS.

Getting ready
You must sign up to AWS to create an account. Access http://aws.amazon.com to put in
your information and credit card number:

AWS registration

http://aws.amazon.com

Chapter 6

237

After registration, you may need to wait up to 24 hours in order to validate your account. After
this, you will see the following page after logging on to the AWS console:

AWS console

How to do it…
AWS supports multiple region datacenters; you may choose the nearest and cheapest region.
Inside the region, there are several Availability Zones (AZ), which are physically isolated
locations that are available.

Once you choose a region, you can set up the Virtual Private Cloud (VPC) on your own
network, such as 10.0.0.0/16. Inside VPC, you can also define public and private subnets
that will do the following:

ff Public subnet : Allows you to assign a public IP address and access from/to public
Internet via Internet Gateway

ff Private subnet : Assigns a private IP address only; can't access from public Internet,
outgoing access to Internet through NAT

ff Between public subnet and private subnet are accessible

Building Kubernetes on AWS

238

Each subnet must be located in single AZ. Therefore, it would better to create multiple public
subnets and multiple private subnets in order to avoid a single point of failure (SPOF).

Typical VPC and subnet design

It would better to consider multiAZ for NAT; however, in this cookbook, we will skip it, as it is
not necessary. For more details about the NAT gateway, please follow the link http://docs.
aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html.

Let's create this VPC on your AWS.

VPC and subnets
1.	 On the AWS console, access VPC and click on Create VPC. Then, input the name tag

as My Kubernetes VPC and CIDR as 10.0.0.0/16:

Create VPC window

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html

Chapter 6

239

Under the VPC, subnets for both public and private on multiAZ are mentioned in the
following table:

Name Tag CIDR Block Availability Zone Auto-Assign Public IP
My Kubernetes Pub-
lic A

10.0.0.0/24 us-east-1a Yes

My Kubernetes Pub-
lic D

10.0.1.0/24 us-east-1d Yes

My Kubernetes Pri-
vate A

10.0.2.0/24 us-east-1a No (Default)

My Kubernetes Pri-
vate D

10.0.3.0/24 us-east-1d No (Default)

2.	 Click on Subnets on the left navigation link. Then, click on the Create Subnet button.
Fill out the information and choose the VPC and Availability Zone for each subnet.
Repeat this four times to create four subnets:

Creating subnet

Building Kubernetes on AWS

240

3.	 Select the public subnet and click on the Subnet Actions button. Then, choose
Modify Auto-Assign Public IP to enable public IP auto-assignment.

Set Auto-Assign Public IP

Internet Gateway and NAT
Each subnet should have a gateway that goes to an external network. There are two types of
gateway, as follows:

ff Internet Gateway (IGW): It allows you to access from/to the Internet (bidirectional)
for a server that has a public IP address

ff Network Address Translation (NAT): It allows you to access the Internet
(one direction) for a server that has a private IP address

Public subnets associate with an Internet Gateway; on the other hand, private subnets can go
to the Internet through NAT. Let's create IGW and NAT as follows:

Type Associate to
Internet Gateway VPC
NAT Gateway Public Subnet A

Chapter 6

241

Route Table
1.	 After creating IGW and NAT, you need to adjust the route table to set the default

gateway to IGW or NAT, as follows:

Route Table Name Route Destination Association
My Kubernetes Public
Route

10.0.0.0/16 local

0.0.0.0/0 IGW

Public Subnet A

Public Subnet D
My Kubernetes Private
Route

10.0.0.0/16 local

0.0.0.0/0 NAT

Private Subnet A

Private Subnet D

2.	 On the AWS console, click on Route Tables on the left navigation pane. Then, click
on the Create Route Table button. Fill out Table Name and choose the VPN that you
created. Repeat this procedure twice for a public route and private route.

3.	 After creating routes, you need to add the default route as either Internet Gateway
(IGW) or NAT.

For a public route, click on the Routes tab and click on Edit. Then, add the default
route as 0.0.0.0/0 and Target as the IGW ID.

For a private route, click on the Routes tab and click on Edit. Then, add the default
route as 0.0.0.0/0 and Target as the NAT Gateway ID.

Set default route to NAT

Building Kubernetes on AWS

242

4.	 Finally, click on the Subnet Associations tab and then on the Edit button. Then,
choose public subnets for a public route and private subnets for a private route,
as follows:

Associate route table to subnet

Security group
Security group is a kind of firewall to set up a rule that allows either inbound traffic or outbound
traffic. For Kubernetes, there are some known traffic rules that should be set as follows:

Rule name Inbound Protocol and
port number

Source

My Kubernetes
master SG

ff 8080/tcp ff My Kubernetes node

My Kubernetes
node SG

ff 30000-32767/
tcp (Service)

ff 0.0.0.0/0

Chapter 6

243

Rule name Inbound Protocol and
port number

Source

My etcd SG ff 7001/tcp

ff 4001/tcp

ff 2379/tcp

ff 2380/tcp

ff My etcd SG

ff My Kubernetes master
SG

ff My Kubernetes node
SG

My flannel SG ff 8285/udp

ff 8472/udp

ff My flannel SG

My ssh SG ff 22/tcp ff 0.0.0.0/0

On the AWS console, click on Security Groups on the left navigation pane, create five Security
Groups, and add Inbound Rules, as follows:

Creating a Security Group

Building Kubernetes on AWS

244

How it works…
Once you create your own VPC and related subnets and security groups, you can launch the
EC2 instance to set up your own Kubernetes cluster. Note that the EC2 instances should be
launched and associated with subnets and security groups as follows:

Instance Subnet Security Group
etcd Private ff My etcd SG

ff My ssh SG

Kubernetes node (with
flannel)

Public ff My flannel SG

ff My Kubernetes node SG

ff My ssh SG

Kubernetes master
(with flannel)

Private ff My flannel SG

ff My Kubernetes master SG

ff My ssh SG

Minimal configuration of the Kubernetes cluster in the AWS VPC

Chapter 6

245

See also
In this recipe, you learned how to register Amazon Web Services and how to create your own
infrastructure. AWS provides a huge number of services; however, it has a lot of documentation
and related webinars online. It is recommended that you read and watch to understand the best
practices to use the AWS infrastructure. Following is a list of good resources:

ff https://www.youtube.com/user/AmazonWebServices

ff https://aws.amazon.com/blogs/aws/

ff http://www.slideshare.net/AmazonWebServices

Furthermore, look at the following recipes:

ff The Building datastore and Creating an overlay network recipes in Chapter 1, Building
Your Own Kubernetes

ff Managing applications using AWS OpsWorks

ff Auto-deploying Kubernetes through Chef recipes

ff Using AWS CloudFormation for fast provisioning

Managing applications using AWS OpsWorks
AWS OpsWorks is a comprehensive AWS EC2 and application deployment framework, which is
based on Chef (http://chef.io/). It is easy to associate the Chef recipe and EC2 instance
using the OpsWorks UI.

Getting ready
In order to upload and maintain your Chef recipes, it is recommended that you prepare a
GitHub (http://github.com) account. After creating an account on GitHub, create a
repository my-opsworks-recipes for OpsWorks recipes.

https://www.youtube.com/user/AmazonWebServices
https://aws.amazon.com/blogs/aws/
http://www.slideshare.net/AmazonWebServices
http://chef.io/
http://github.com

Building Kubernetes on AWS

246

Just so you know, a free user on GitHub can only create a public repository.

Creating Git repository

After creating the my-opsworks-recipes repository, you can access the Git repository via
http://github.com/<your username>/my-opsworks-recipes.git.

Let's use the AWS CloudWatchLogs as a sample deployment to put a recipe into your
repository, as follows:

//Download CloudWatchLogs Cookbooks

$ curl -L -O https://s3.amazonaws.com/aws-cloudwatch/downloads/
CloudWatchLogs-Cookbooks.zip

//unzip

$ unzip CloudWatchLogs-Cookbooks.zip

//clone your GitHub repository

$ git clone https://github.com/hidetosaito/my-opsworks-recipes.git

//copy CloudWatchLogs Cookbooks into your Git repository

$ mv CloudWatchLogs-Cookbooks/logs my-opsworks-recipes/

$ cd my-opsworks-recipes/

//add recipes to Git

$ git add logs

$ git commit -a -m "initial import"

[master (root-commit) 1d9c16d] initial import

 5 files changed, 59 insertions(+)

Chapter 6

247

 create mode 100755 logs/attributes/default.rb

 create mode 100644 logs/metadata.rb

 create mode 100755 logs/recipes/config.rb

 create mode 100755 logs/recipes/install.rb

 create mode 100755 logs/templates/default/cwlogs.cfg.erb

//push to GitHub.com

$ git push

Username for 'https://github.com': hidetosaito

Password for 'https://hidetosaito@github.com':

Counting objects: 12, done.

How to do it…
Access the AWS Web console and navigate to OpsWorks. Then, create an OpsWorks stack first
and an OpsWorks layer.

The OpsWorks stack
The OpsWorks stack is the container of the OpsWorks framework. The OpsWorks stack
can associate one VPC. You can use your own VPC or the default VPC. Note that, due to
compatibility reasons, choose Chef 11.10 to use the CloudWatchLogs recipe and don't
forget to enable the custom Chef cookbooks and specify your GitHub repository, as follows:

Creating the OpsWorks stack

Building Kubernetes on AWS

248

The OpsWorks layer
Inside of the OpsWorks stack, you can have one or many OpsWorks layers. One layer can
associate one or many Chef recipes. Let's create one custom layer and associate with the
CloudWatchLogs recipe:

1.	 Access OpsWorks UI to create a custom layer and put the layer name as follows:

Creating the OpsWorks layer

2.	 Then, open the recipe page, as shown in the following screenshot:

Recipes settings page

Chapter 6

249

3.	 Then, add the logs::config and logs::install recipes to set up a lifecycle
event:

Associate recipes

Adjusting the IAM role
In order to send a log to the CloudWatchLogs service, you need to grant permission to the
IAM role. Access the AWS IAM console and choose aws-opsworks-ec2-role.

The aws-opsworks-ec2-role role is created with the OpsWorks stack by default. If you use
another role, you would need to change the OpsWorks stack setting to choose your role.

Then, attach the CloudWatchLogsFullAccess policy, as shown in the following screenshot:

Building Kubernetes on AWS

250

This role will be used when you launch the OpsWorks instance, which uses the
CloudWatchLogs recipe.

The OpsWorks instance
The OpsWorks instance is a managed EC2 instance, which is associated with the OpsWorks
layer. It will automatically set up the Chef Environment and cook your recipe. Let's access the
AWS OpsWorks console again and choose the OpsWorks layer to launch an instance, as follows:

After a few minutes, your instance state will be online which means, the launch of an EC2
instance and installation of the CloudWatchLogs agent has been completed:

Chapter 6

251

Now, you can see some logs on the AWS CloudWatchLogs console, as shown in the following
screenshot:

How it works…
Once the OpsWorks instance is launched, it will refer to the associated OpsWorks layer to
execute Chef recipes in the particular lifecycle event, as follows:

Lifecycle event Timing
Setup After instance has finished booting
Configure On entering or leaving the online state, associating or disassociating

an Elastic IP, attaching or detaching from Elastic Load Balancer
Deploy Deploying the application (non custom layer)
Undeploy When deleting an application (non custom layer)
Shutdown Before shutdown of an instance

Building Kubernetes on AWS

252

Again, the OpsWorks stack has one or more OpsWorks layers. In addition, each layer can
associate one or more custom Chef recipes. Therefore, you should define the layer as an
application role, such as frontend, backend, datastore, and so on.

For the Kubernetes setup, it should be defined as follows:

ff The Kubernetes master layer

ff The Kubernetes node layer

ff The etcd layer

These Chef recipes will be described in the next section.

See also
In this recipe, we introduced the OpsWorks service that can define your stack and layers. In
this recipe, we used the CloudWatchLogs Chef recipe as an example. However, Kubernetes
can also be automated to install the agent via the OpsWorks Chef recipe. It is described in the
following recipes of this chapter as well:

ff Building the Kubernetes infrastructure in AWS

ff Auto-deploying Kubernetes through Chef recipes

ff Using AWS CloudFormation for fast provisioning

Chapter 6

253

Auto-deploying Kubernetes through Chef
recipes

To achieve fast deployment in AWS OpsWorks, we can write installation procedures in Chef
recipes. Chef is a Ruby-based, auto-deployment managing tool (https://www.chef.io). It
can help for program deployment and system configuration. In this recipe, we will show you
how Chef works with the AWS OpsWorks.

Getting ready
In the following sections, we will show you how to use Chef recipes with the OpsWorks stack.
Therefore, please prepare the OpsWorks environment. Based on the previous recipes in this
chapter, we can build a Kubernetes stack with the following structure:

Let's consider that you have the same network settings mentioned in the recipe Building the
Kubernetes infrastructure in AWS, which means that the VPC, subnets, route tables, and
security groups are all ready for use. Then, we can apply the network environment directly
in OpsWorks.

AWS region should be the same for resource utility
Although OpsWorks is a global service, we cannot combine the
computing resources across different regions. Be aware that you need to
choose the same AWS region of the network environment to create ELB
and security groups.

https://www.chef.io

Building Kubernetes on AWS

254

Creating ELB and its security groups
As you can see in the previous stack structure, it is recommended to create ELBs beyond
etcd and the Kubernetes master. Because both etcd and the master could be a cluster
with multiple nodes, an ELB layer will provide the portal for the other application layers and
balance the load to the working nodes. First, let's create the security groups of these two
ELBs:

Rule name Inbound Protocol and
port number

Source

My ELB of etcd SG ff 80/tcp ff My Kubernetes
master

ff My Kubernetes
node

My ELB of Kubernetes
master SG

ff 8080/tcp ff My Kubernetes
node SG

Next, modify the existing security groups as follows. It will make sure that the network traffic is
redirected to ELB first:

Rule name Inbound Protocol and
port number

Source

My etcd SG ff 7001/tcp

ff 4001/tcp

ff My etcd SG

ff My ELB of etcd SG

My Kubernetes
master SG

ff 8080/tcp ff My ELB of Kubernetes
master SG

Then, we can create the ELBs with the specified security groups. Go to the EC2 console
and click on Load balancers on the left-hand side menu. Create new ELBs with the
following configurations:

ELB name VPC Listener
Configuration (ELB
Protocol:Port/
Instance Protocol:
Port)

Subnets Security
Groups

Health check

(Ping
Protocol:Ping
Port/Ping
Path)

my-
etcd-
elb My Kubernetes

VPC
(10.0.0.0/16)

HTTP:80/
HTTP:4001

My Kubernetes
Private A + My
Kubernetes
Private D

My ELB of
etcd SG

HTTP:4001/
version

my-k8s-
master-
elb

HTTP:8080/
HTTP:8080

My ELB of
Kubernetes
master SG

HTTP:8080/
version

Chapter 6

255

Except for the previous configurations, it is fine to leave other items with the default ones. You
don't have to add any instances in ELBs.

Creating an OpsWorks stack
Defining an application stack in OpsWorks is simple and easy. Refer to the detailed step-by-
step approach as follows:

1.	 Click on the Add stack button and you will enter the AWS OpsWorks console.

2.	 Fill in the following items. It is fine to leave the non-mentioned parts with default values:

1.	 Choose Chef 12 stack.

2.	 Give a stack name. For example, My Kubernetes Cluster.

3.	 Assign region and VPC which you just configured for Kubernetes.

4.	 For operating systems, a Linux system and the latest Amazon Linux are good
for installation later on. For example, Amazon Linux 2015.09.

5.	 Click on Advanced>> beneath the configurations and disable the block
Use OpsWorks security groups. Since we have already set up the required
security groups, this movement can prevent a lot of unnecessary security
groups from being created automatically.

6.	 Now, go ahead and click on Add stack to create a Kubernetes stack.

Creating application layers
After we have the OpsWorks stack, let's create the application layers and attach ELBs:

Building Kubernetes on AWS

256

To create layers in the stack, click on Add a layer on the front page of the stack:

We cannot attach an ELB to a layer at the initial step of creation. Click on Network for specified
layer modifications after they are created. Help yourself to generate the following layers:

Layer Name Short Name (the
name as the prefix of
instance)

Security Group Attached ELB

Etcd etcd My etcd SG my-etcd-elb
Kubernetes
Master

k8s-master My Kubernetes master SG

My flannel SG (optional)

my-k8s-master-elb

Kubernetes
Node

k8s-node My Kubernetes node SG

My flannel SG

You will realize that the stack looks as follows, which is the same structure we mentioned at
the beginning:

Chapter 6

257

Now, the OpsWorks stack has a basic system structure, but without customized Chef recipes.
We will go through the recipe's contents and setup concepts in the next section.

How to do it…
For Kubernetes installation using the Chef recipe, we will prepare a GitHub repository with the
following files and relative paths:

$ tree .

.

└── kubernetes

 ├── recipes

 │ ├── docker.rb

 │ ├── etcd-run.rb

 │ ├── etcd.rb

 │ ├── flanneld.rb

 │ ├── kubernetes-master-run.rb

 │ ├── kubernetes-master-setup.rb

 │ ├── kubernetes-node-run.rb

 │ ├── kubernetes-node-setup.rb

 │ └── kubernetes.rb

 └── templates

 └── default

 ├── docker.erb

 ├── etcd.erb

 ├── flanneld.erb

 ├── kubernetes-master.erb

 └── kubernetes-node.erb

4 directories, 14 files

In this section, different layers will illustrate the recipes and templates separately, but
comprehensively. Create the repository and directory on the GitHub server in advance.
It will help you set the customized stack configurations.

Building Kubernetes on AWS

258

Stack configuration for custom recipes
In order to run the recipes in the stack, we are supposed to add two items in the configuration
of the stack: one is the URL of the GitHub repo, which stored the recipe directory
kubernetes, the other one is custom JSON. We may put some input parameters for the
execution of recipes.

To modify the settings of the current stack, click on Stack Settings on the main page and
then click on Edit. Enable Use custom Chef Cookbooks. You will find additional items
showing up for codebase configuration. Then, put your GitHub repository URL for reference:

You can also check our GitHub repository for more information via https://github.com/
kubernetes-cookbook/opsworks-recipes.git.

Next, at the block of Advanced options, please key in the following information in the item
Custom JSON:

{
 "kubernetes": {
 "version":"1.1.8",
 "cluster_cidr":"192.168.0.0/16",
 "master_url":"<The DNS name of my-k8s-master-elb>"
 },
 "etcd": {
 "elb_url":"<The DNS name of my-etcd-elb>"
 }
}

The content of JSON is based on our Chef recipes. Users can define any key-value structure
data. Usually, we put the one that may dynamically change by each deployment, for example,
the version of the Kubernetes package. It would be better not to have hard code in our
recipes, or some data that you don't want to show in the recipes can be made as input
parameters. For example, the URL of ELB; it is a changeable value for each deployment. You
possibly don't want others to know it. After configure the GitHub repository and custom JSON,
we are ready to configuring the recipes in each layer.

https://github.com/kubernetes-cookbook/opsworks-recipes.git
https://github.com/kubernetes-cookbook/opsworks-recipes.git

Chapter 6

259

Recipes for etcd
The lifecycle event of the etcd layer is as follows:

We will separate the functionality of etcd recipes into two event stages: kubernetes::etcd
is set at the Setup stage for etcd installation and configuration while kubernetes::etcd-
run is at the Deploy stage to start the daemon:

$ cat ./kubernetes/recipes/etcd.rb

bash 'install_etcd' do

 user 'root'

 cwd '/tmp'

 code <<-EOH

 if [! -f /usr/local/bin/etcd]; then

 wget --max-redirect 255 https://github.com/coreos/etcd/releases/
download/v2.2.5/etcd-v2.2.5-linux-amd64.tar.gz

 tar zxvf etcd-v2.2.5-linux-amd64.tar.gz

 cd etcd-v2.1.1-linux-amd64

 cp etcd etcdctl /usr/local/bin

 fi

 EOH

end

template "/etc/init.d/etcd" do

 mode "0755"

 owner "root"

 source "etcd.erb"

end

Building Kubernetes on AWS

260

The recipe, etcd.rb, does the installation first. It will put the tarball at a temporary location
and copy the binary file as a shared local command. To prevent the instance booting up
from an already installed environment, we will add an if statement to check whether the
system has the etcd command or not. There is a template etcd.erb working as a service
configuration file. No dynamic input parameters are needed in this Chef template. It is also
the same as we mentioned in the Building datastore recipe in Chapter 1, Building Your
Own Kubernetes:

$ cat ./kubernetes/recipes/etcd-run.rb

service 'etcd' do

action [:enable,:start]

end

We have a short function in the recipe, etcd-run.rb, which enables and starts the etcd
service. The stage, Deploy will run directly after Setup. Therefore, it is confirmed that the
installation will finish before starting the service.

Recipes for the Kubernetes master
The recipes for installing the Kubernetes master are configured, as shown in the following
screenshot:

Just like the etcd layer, we use the Setup stage for installation and configuration file
assignment. The recipe kubernetes::kubernetes is used for downloading the
Kubernetes package. It will be shared to the node layer as well:

$ cat ./kubernetes/recipes/kubernetes.rb

bash 'install_kubernetes' do

 user 'root'

 cwd '/tmp'

 code <<-EOH

 if [[$(ls /usr/local/bin/kubectl)]]; then

 current_version=$(/usr/local/bin/kubectl version | awk 'NR==1' | awk
-F":\"v" '{ print $2 }' | awk -F"\"," '{ print $1 }')

 if ["$current_version" -eq "#{node['kubernetes']['version']}"];
then

Chapter 6

261

 exit

 fi

 fi

 if [[$(ls /usr/local/bin/kubelet)]] ; then

 current_version=$(/usr/local/bin/kubelet --version | awk
-F"Kubernetes v" '{ print $2 }')

 if ["$current_version" -eq "#{node['kubernetes']['version']}"];
then

 exit

 fi

 fi

 rm -rf kubernetes/

 wget --max-redirect 255 https://github.com/GoogleCloudPlatform/
kubernetes/releases/download/v#{node['kubernetes']['version']}/
kubernetes.tar.gz -O kubernetes-#{node['kubernetes']['version']}.tar.gz

 tar zxvf kubernetes-#{node['kubernetes']['version']}.tar.gz

 cd kubernetes/server

 tar zxvf kubernetes-server-linux-amd64.tar.gz

 EOH

end

In this recipe, the value of the Kubernetes' version will be taken from custom JSON. We may
specify the latest version of Kubernetes and enjoy the new features without modifying the
recipe. Two nested if conditions are used to validate whether the Kubernetes binary file
is deployed and updated to the version we requested. One is for the master and the other
is for the node; if the condition is satisfied, package downloading will be ignored. The main
Kubernetes master installation is written in the recipe kubernetes-master-setup.rb:

$ cat ./kubernetes/recipes/kubernetes-master-setup.rb

include_recipe 'kubernetes::kubernetes'

bash "master-file-copy" do

 user 'root'

 cwd '/tmp/kubernetes/server/kubernetes/server/bin'

 code <<-EOH

 if [[$(ls /usr/local/bin/kubectl)]]; then

 current_version=$(/usr/local/bin/kubectl version | awk 'NR==1' |
awk -F":\"v" '{ print $2 }' | awk -F"\"," '{ print $1 }')

Building Kubernetes on AWS

262

 if ["$current_version" -eq "#{node['kubernetes']['version']}"];
then

 exit

 fi

 fi

 cp kubectl kube-apiserver kube-scheduler kube-controller-manager
kube-proxy /usr/local/bin/

 EOH

end

directory '/etc/kubernetes' do

 owner 'root'

 group 'root'

 mode '0755'

 subscribes :create, "bash[master-file-copy]", :immediately

 action :nothing

end

etcd_endpoint="http://#{node['etcd']['elb_url']}:80"

template "/etc/init.d/kubernetes-master" do

 mode "0755"

 owner "root"

 source "kubernetes-master.erb"

 variables({

 :etcd_server => etcd_endpoint,

 :cluster_cidr => node['kubernetes']['cluster_cidr']

 })

 subscribes :create, "bash[master-file-copy]", :immediately

 action :nothing

end

The first line of kubernetes-master-setup.rb is the solution to set the dependency
within the same event stage. The resource type include_recipe requires you to execute
the recipe kubernetes::kubernetes first. Then, it is able to copy the necessary binary file
if the process does not exist in the version verifying condition, and next, prepare the suitable
configuration file and directory for service.

Chapter 6

263

Installing flanneld on the master node is an optional deployment. If so, on the Kubernetes
master, we can access containers laid on flanneld:

$ cat ./kubernetes/recipes/flanneld.rb

bash 'install_flannel' do

 user 'root'

 cwd '/tmp'

 code <<-EOH

 if [! -f /usr/local/bin/flanneld]; then

 wget --max-redirect 255 https://github.com/coreos/flannel/releases/
download/v0.5.2/flannel-0.5.2-linux-amd64.tar.gz

 tar zxvf flannel-0.5.2-linux-amd64.tar.gz

 cd flannel-0.5.2

 cp flanneld /usr/local/bin

 cp mk-docker-opts.sh /opt/

 fi

 EOH

end

template "/etc/init.d/flanneld" do

 mode "0755"

 owner "root"

 source "flanneld.erb"

 variables :elb_url => node['etcd']['elb_url']

 notifies :disable, 'service[flanneld]', :delayed

end

service "flanneld" do

 action :nothing

end

Especially, we will move a script file of flanneld to a specific location. This file helps to arrange
the flanneld-defined network. Therefore, Docker will be based on the setting and limit its
containers in the specific IP range. For the template, the value of etcd endpoints is an input
parameter of the recipe. The recipe would inform the template to put the etcd ELB URL as an
etcd endpoint:

$ cat ./kubernetes/templates/default/flanneld.erb

:

//above lines are ignored

Building Kubernetes on AWS

264

start() {

 # Start daemon.

 echo -n $"Starting $prog: "

 daemon $prog \

 --etcd-endpoints=http://<%= @elb_url %> -ip-masq=true \

 > /var/log/flanneld.log 2>&1 &

 RETVAL=$?

 echo

 [$RETVAL -eq 0] && touch $lockfile

 return $RETVAL

}

:

Finally, it is good for us to look at the recipe that starts the service:

$ cat ./kubernetes/recipes/kubernetes-master-run.rb

service "flanneld" do

 action :start

end

service "kubernetes-master" do

 action :start

end

It is straightforward to start these two independent daemons in this recipe.

Recipes for the Kubernetes node
With the previous experience, you now can easily understand the deployment of custom
recipes and Chef functions. Then, we will go further to look at the recipes for the Kubernetes
node layer:

Chapter 6

265

Besides flanneld, we have to install Docker for running containers. However, an additional
recipe kubernetes::docker is put at the Setup stage.

$ cat ./kubernetes/recipes/docker.rb

package "docker" do

 action :install

end

package "bridge-utils" do

 action :install

end

service "docker" do

 action :disable

end

template "/etc/sysconfig/docker" do

 mode "0644"

 owner "root"

 source "docker.erb"

end

We will install the necessary packages docker and bridge-utils in this recipe. But keep
the Docker service stopped, since there is a service starting dependency:

$ cat ./kubernetes/templates/default/docker.erb

/etc/sysconfig/docker

#

Other arguments to pass to the docker daemon process

These will be parsed by the sysv initscript and appended

to the arguments list passed to docker -d

. /opt/mk-docker-opts.sh

. /run/docker_opts.env

INSECURE_REGISTRY="<YOUR_DOCKER_PRIVATE_REGISTRY>"

Building Kubernetes on AWS

266

other_args="${DOCKER_OPTS} --insecure-registry ${INSECURE_REGISTRY}"

DOCKER_CERT_PATH=/etc/docker

Location used for temporary files, such as those created by

docker load and build operations. Default is /var/lib/docker/tmp

Can be overriden by setting the following environment variable.

DOCKER_TMPDIR=/var/tmp

The preceding template is called using docker.rb. Although there are no input parameters,
it is worth mentioning that the script from flanneld will be triggered to run. It will generate the
network settings for Docker and put it as the file /run/docker_opts.env.

Next, you will find that the node setup recipe is similar to the master one. We copy binaries,
setup configuration files and directories, and keep the node service stopped:

$ cat ./kubernetes/recipes/kubernetes-node-setup.rb

include_recipe 'kubernetes::kubernetes'

bash "node-file-copy" do

 user 'root'

 cwd '/tmp/kubernetes/server/kubernetes/server/bin'

 code <<-EOH

 if [[$(ls /usr/local/bin/kubelet)]]; then

 current_version=$(/usr/local/bin/kubelet --version | awk
-F"Kubernetes v" '{ print $2 }')

 if ["$current_version" -eq "#{node['kubernetes']['version']}"];
then

 exit

 fi

 fi

 cp kubelet kube-proxy /usr/local/bin/

 EOH

end

directory '/var/lib/kubelet' do

 owner 'root'

 group 'root'

 mode '0755'

Chapter 6

267

 subscribes :create, "bash[node-file-copy]", :immediately

 action :nothing

end

directory '/etc/kubernetes' do

 owner 'root'

 group 'root'

 mode '0755'

 subscribes :create, "bash[node-file-copy]", :immediately

 action :nothing

end

template "/etc/init.d/kubernetes-node" do

 mode "0755"

 owner "root"

 source "kubernetes-node.erb"

 variables :master_url => node['kubernetes']['master_url']

 subscribes :create, "bash[node-file-copy]", :immediately

 notifies :disable, 'service[kubernetes-node]', :delayed

 action :nothing

end

service "kubernetes-node" do

 action :nothing

end

On the other hand, the deploying recipe of node has more functions:

$ cat ./kubernetes/recipes/kubernetes-node-run.rb

service "flanneld" do

 action :start

 notifies :run, 'bash[wait_flanneld]', :delayed

end

bash 'wait_flanneld' do

 user 'root'

 cwd '/tmp'

Building Kubernetes on AWS

268

 code <<-EOH

 tries=0

 while [! -f /run/flannel/subnet.env -a $tries -lt 10]; do

 sleep 1

 tries=$((tries + 1))

 done

 EOH

 action :nothing

 notifies :start, 'service[docker]', :delayed

end

service "docker" do

 action :nothing

 notifies :start, 'service[kubernetes-node]', :delayed

end

service "kubernetes-node" do

 action :nothing

end

Because of the dependence, flanneld should be started first and then Docker can be run
according to the overlay network. Node service depends on running Docker, so it is the last
service that needs to be started.

Starting the instances
Eventually, you have all the recipes ready to deploy a Kubernetes cluster. It is time to boot
up some instances! Make sure that etcd is the earliest running instance. At that time, the
Kubernetes master layer can run the master, which requires the datastore for resource
information. After the master node is ready as well, create as many nodes as you want!

See also
In this recipe, you learned how to create your Kubernetes system automatically. Also, look at
the following recipes:

ff The Building datastore, Creating an overlay network, Configuring master and
Configuring nodes recipes in Chapter 1, Building Your Own Kubernetes

ff The Clustering etcd recipe in Chapter 4, Building a High Availability Cluster

ff Building the Kubernetes infrastructure in AWS

Chapter 6

269

ff Managing applications using AWS OpsWorks

ff Using AWS CloudFormation for fast provisioning

ff The Authentication and authorization recipe in Chapter 7, Advanced Cluster
Administration

Using AWS CloudFormation for fast
provisioning

AWS CloudFormation is a service to make AWS resource creation easy. A simple JSON format
text file could give you the power to create application infrastructure with just a few clicks.
System administrators and developers can create, update, and manage their AWS resources
easily without worrying about human error. In this section, we will leverage the content of
the previous sections in this chapter and use CloudFormation to create them and launch
instances with the Kubernetes setting automatically.

Getting ready
The unit of CloudFormation is a stack. One stack is created by one CloudFormation
template, which is a text file listing AWS resources in the JSON format. Before we launch
a CloudFormation stack using the CloudFormation template in the AWS console, let's
get a deeper understanding of the tab names on the CloudFormation console:

Tab name Description
Overview Stack profile overview. Name, status and description

are listed here
Output The output fields of this stack
Resources The resources listed in this stack
Events The events when doing operations in this stack

Template Text file in JSON format
Parameters The input parameters of this stack
Tags AWS tags for the resources
Stack Policy Stack policy to use during update. This can prevent

you from removing or updating resources accidentally

Building Kubernetes on AWS

270

One CloudFormation template contains many sections; the descriptions are put in the
following sample template:

{
 "AWSTemplateFormatVersion":"AWS CloudFormation templateversion
date",
 "Description":"stack description",
 "Metadata":{
 # put additional information for this template
 },
 "Parameters":{
 # user-specified the input of your template

 },
 "Mappings":{
 # using for define conditional parameter values and use it in the
template
 },
 "Conditions":{
 # use to define whether certain resources are created, configured
in a certain condition.
 },
 "Resources":{
 # major section in the template, use to create and configure AWS
resources
 },
 "Outputs":{
 # user-specified output
 }
}

We will use these three major sections:

ff Parameters

ff Resources

ff Outputs

Parameters are the variable you might want to input when creating the stack, Resources
are a major section for declaring AWS resource settings, and Outputs are the section you
might want to expose to the CloudFormation UI so that it's easy to find the output information
from a resource when a template is deployed.

Intrinsic Functions are built-in functions of AWS CloudFormation. They give you the power to
link your resources together. It is a common use case that you need to link several resources
together, but they'll know each other until runtime. In this case, the intrinsic function could be
a perfect match to resolve this. Several intrinsic functions are provided in CloudFormation. In
this case, we will use Fn::GetAtt, Fn::GetAZs and Ref.

Chapter 6

271

The following table has their descriptions:

Functions Description Usage
Fn::GetAtt Retrieve a value of an attribute

from a resource
{"Fn::GetAtt" : [
"logicalNameOfResource",
"attributeName"]}

Fn::GetAZs Return a list of AZs for the
region

{"Fn::GetAZs" : "us-
east-1"}

Fn::Select Select a value from a list { "Fn::Select" : [index,
listOfObjects]}

Ref Return a value from a logical
name or parameter

{"Ref" : "logicalName"}

How to do it…
Instead of launching a bit template with a thousand lines, we'll split it into two: one is for
network resources-only, another one is application-only. Both the templates are available
on our GitHub repository via https://github.com/kubernetes-cookbook/
cloudformation.

Creating a network infrastructure
Let's review the following infrastructure listed in the Building the Kubernetes infrastructure
in AWS section. We will create one VPC with 10.0.0.0/16 with two public subnets and two
private subnets in it. Besides these, we will create one Internet Gateway and add related route
table rules to a public subnet in order to route the traffic to the outside world. We will also
create a NAT Gateway, which is located in the public subnet with one Elastic IP, to ensure a
private subnet can get access to the Internet:

https://github.com/kubernetes-cookbook/cloudformation
https://github.com/kubernetes-cookbook/cloudformation

Building Kubernetes on AWS

272

How do we do that? At the beginning of the template, we'll define two parameters: one is
Prefix and another is CIDRPrefix. Prefix is a prefix used to name the resource we're
going to create. CIDRPrefix is two sections of an IP address that we'd like to create; the
default is 10.0. We will also set the length constraint to it:

"Parameters":{
 "Prefix":{
 "Description":"Prefix of resources",
 "Type":"String",
 "Default":"KubernetesSample",
 "MinLength":"1",
 "MaxLength":"24",
 "ConstraintDescription":"Length is too long"
 },
 "CIDRPrefix":{
 "Description":"Network cidr prefix",
 "Type":"String",
 "Default":"10.0",
 "MinLength":"1",
 "MaxLength":"8",
 "ConstraintDescription":"Length is too long"
 }
 }

Then, we will start describing the Resources section. For detailed resource types and
attributes, we recommend you visit the AWS Documentation via http://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-
type-ref.html:

"VPC":{
 "Type":"AWS::EC2::VPC",
 "Properties":{
 "CidrBlock":{
 "Fn::Join":[
 ".",
 [
 {
 "Ref":"CIDRPrefix"
 },
 "0.0/16"
]
]
 },
 "EnableDnsHostnames":"true",
 "Tags":[

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

Chapter 6

273

 {
 "Key":"Name",
 "Value":{
 "Fn::Join":[
 ".",
 [
 {
 "Ref":"Prefix"
 },
 "vpc"
]
]
 }
 },
 {
 "Key":"EnvName",
 "Value":{
 "Ref":"Prefix"
 }
 }
]
 }
 }

Here, we'll create one resource with the logical name VPC and type AWS::EC2::VPC. Please
note that the logical name is important and it cannot be duplicated in one template. You could
use {"Ref": "VPC"} in any other resource in this template to refer to VPCId. The name of
VPC will be $Prefix.vpc with CIDR $CIDRPrefix.0.0/16. The following image is that
of a created VPC:

Next, we'll create the first public subnet with CIDR $CIDRPrefix.0.0/24. Note that
{Fn::GetAZs:""} will return a list of all the available AZs. We'll use Fn::Select to
select the first element with index 0:

 "SubnetPublicA":{
 "Type":"AWS::EC2::Subnet",
 "Properties":{
 "VpcId":{
 "Ref":"VPC"
 },
 "CidrBlock":{
 "Fn::Join":[
 ".",

Building Kubernetes on AWS

274

 [
 {
 "Ref":"CIDRPrefix"
 },
 "0.0/24"
]
]
 },
 "AvailabilityZone":{
 "Fn::Select":[
 "0",
 {
 "Fn::GetAZs":""
 }
]
 },
 "Tags":[
 {
 "Key":"Name",
 "Value":{
 "Fn::Join":[
 ".",
 [
 {
 "Ref":"Prefix"
 },
 "public",
 "subnet",
 "A"
]
]
 }
 },
 {
 "Key":"EnvName",
 "Value":{
 "Ref":"Prefix"
 }
 }
]
 }
 }

Chapter 6

275

The second public subnet and two private subnets are the same as the first one just with a
different CIDR $CIDRPrefix.1.0/24. The difference between public and private subnets
are whether they're Internet reachable or not. Typically, an instance in a public subnet will
have a public IP or an Elastic IP with it that is Internet reachable. However, a private subnet
cannot be reachable from the Internet, except using a bastion host or via VPN. The difference
in the AWS setting is the routes in route tables. In order to let your instances communicate
with the Internet, we should create an Internet Gateway to a public subnet and a NAT Gateway
to a private subnet:

 "InternetGateway":{
 "Type":"AWS::EC2::InternetGateway",
 "Properties":{
 "Tags":[
 {
 "Key":"Stack",
 "Value":{
 "Ref":"AWS::StackId"
 }
 },
 {
 "Key":"Name",
 "Value":{
 "Fn::Join":[
 ".",
 [
 {
 "Ref":"Prefix"
 },
 "vpc",
 "igw"
]
]
 }
 },
 {
 "Key":"EnvName",
 "Value":{
 "Ref":"Prefix"
 }
 }
]
 }
 },
 "GatewayAttachment":{

Building Kubernetes on AWS

276

 "Type":"AWS::EC2::VPCGatewayAttachment",
 "Properties":{
 "VpcId":{
 "Ref":"VPC"
 },
 "InternetGatewayId":{
 "Ref":"InternetGateway"
 }
 }
 }

We will declare one Internet Gateway with the name $Prefix.vpc.igw and the logical
name InternetGateway; we will also attach it to VPC. Then, let's create NatGateway.
NatGateway needs one EIP by default, so we'll create it first and use the DependsOn
function to tell CloudFormation that the NatGateway resource must be created after
NatGatewayEIP. Note that there is AllocationId in the properties of NatGateway
rather than the Gateway ID. We'll use the intrinsic function Fn::GetAtt to get the attribute
AllocationId from the resource NatGatewayEIP:

 "NatGatewayEIP":{
 "Type":"AWS::EC2::EIP",
 "DependsOn":"GatewayAttachment",
 "Properties":{
 "Domain":"vpc"
 }
 },
 "NatGateway":{
 "Type":"AWS::EC2::NatGateway",
 "DependsOn":"NatGatewayEIP",
 "Properties":{
 "AllocationId":{
 "Fn::GetAtt":[
 "NatGatewayEIP",
 "AllocationId"
]
 },
 "SubnetId":{
 "Ref":"SubnetPublicA"
 }
 }
 }

Chapter 6

277

Time to create a route table for public subnets:

 "RouteTableInternet":{
 "Type":"AWS::EC2::RouteTable",
 "Properties":{
 "VpcId":{
 "Ref":"VPC"
 },
 "Tags":[
 {
 "Key":"Stack",
 "Value":{
 "Ref":"AWS::StackId"
 }
 },
 {
 "Key":"Name",
 "Value":{
 "Fn::Join":[
 ".",
 [
 {
 "Ref":"Prefix"
 },
 "internet",
 "routetable"
]
]
 }
 },
 {
 "Key":"EnvName",
 "Value":{
 "Ref":"Prefix"
 }
 }
]
 }
 }

Building Kubernetes on AWS

278

What about private subnets? You could use the same declaration; just change the logical
name to RouteTableNat. After creating a route table, let's create the routes:

 "RouteInternet":{
 "Type":"AWS::EC2::Route",
 "DependsOn":"GatewayAttachment",
 "Properties":{
 "RouteTableId":{
 "Ref":"RouteTableInternet"
 },
 "DestinationCidrBlock":"0.0.0.0/0",
 "GatewayId":{
 "Ref":"InternetGateway"
 }
 }
 }

This route is for the route table of a public subnet. It will relocate to the RouteTableInternet
table and route the packets to InternetGatway if the destination CIDR is 0.0.0.0/0. Let's
take a look at a private subnet route:

 "RouteNat":{
 "Type":"AWS::EC2::Route",
 "DependsOn":"RouteTableNat",
 "Properties":{
 "RouteTableId":{
 "Ref":"RouteTableNat"
 },
 "DestinationCidrBlock":"0.0.0.0/0",
 "NatGatewayId":{
 "Ref":"NatGateway"
 }
 }
 }

It is pretty much the same with RouteInternet but route the packets to NatGateway
if there are any, to 0.0.0.0/0. Wait, what's the relation between subnet and a route
table? We didn't see any declaration indicate the rules in a certain subnet. We have to use
SubnetRouteTableAssociation to define their relation. The following examples define
both public subnet and private subnet; you might also add a second public/private subnet
by copying them:

 "SubnetRouteTableInternetAssociationA":{
 "Type":"AWS::EC2::SubnetRouteTableAssociation",
 "Properties":{
 "SubnetId":{

Chapter 6

279

 "Ref":"SubnetPublicA"
 },
 "RouteTableId":{
 "Ref":"RouteTableInternet"
 }
 }
 },
 "SubnetRouteTableNatAssociationA":{
 "Type":"AWS::EC2::SubnetRouteTableAssociation",
 "Properties":{
 "SubnetId":{
 "Ref":"SubnetPrivateA"
 },
 "RouteTableId":{
 "Ref":"RouteTableNat"
 }
 }
 }

We're done for the network infrastructure. Then, let's launch it from the AWS console. First,
just click and launch a stack and select the VPC sample template.

Click on next; you will see the parameters' pages. It has its own default value, but you could
change it at the creation/update time of the stack.

Building Kubernetes on AWS

280

After you click on finish, CloudFormation will start creating the resources you claim on the
template. It will return Status as CREATE_COMPLETE after completion.

Creating OpsWorks for application management
For application management, we'll leverage OpsWorks, which is an application lifecycle
management in AWS. Please refer to the previous two sections to know more about
OpsWorks and Chef. Here, we'll describe how to automate creating the OpsWorks stack
and related resources.

We'll have eight parameters here. Add K8sMasterBaAccount, K8sMasterBaPassword,
and EtcdBaPassword as the basic authentication for Kubernetes master and etcd. We will
also put the VPC ID and the private subnet ID here as the input, which are created in the
previous sample. As parameters, we could use the type AWS::EC2::VPC::Id as a drop-
down list in the UI. Please refer to the supported type in the AWS Documentation via http://
docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-
section-structure.html:

"Parameters":{
 "Prefix":{
 "Description":"Prefix of resources",
 "Type":"String",
 "Default":"KubernetesSample",
 "MinLength":"1",
 "MaxLength":"24",
 "ConstraintDescription":"Length is too long"
 },
 "PrivateNetworkCIDR":{
 "Default":"192.168.0.0/16",
 "Description":"Desired Private Network CIDR or Flanneld (must
not overrap VPC CIDR)",
 "Type":"String",
 "MinLength":"9",
 "AllowedPattern":"\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\
d{1,3}/\\d{1,2}",
 "ConstraintDescription":"PrivateNetworkCIDR must be IPv4
format"
 },
 "VPCId":{
 "Description":"VPC Id",
 "Type":"AWS::EC2::VPC::Id"
 },
 "SubnetPrivateIdA":{
 "Description":"Private SubnetA",
 "Type":"AWS::EC2::Subnet::Id"
 },

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

Chapter 6

281

 "SubnetPrivateIdB":{
 "Description":"Private SubnetB",
 "Default":"subnet-9007ecc9",
 "Type":"AWS::EC2::Subnet::Id"
 },
 "K8sMasterBaAccount":{
 "Default":"admin",
 "Description":"The account of basic authentication for k8s
Master",
 "Type":"String",
 "MinLength":"1",
 "MaxLength":"75",
 "AllowedPattern":"[a-zA-Z0-9]*",
 "ConstraintDescription":"Account and Password should follow
Base64 pattern"
 },
 "K8sMasterBaPassword":{
 "Default":"Passw0rd",
 "Description":"The password of basic authentication for k8s
Master",
 "Type":"String",
 "MinLength":"1",
 "MaxLength":"75",
 "NoEcho":"true",
 "AllowedPattern":"[a-zA-Z0-9]*",
 "ConstraintDescription":"Account and Password should follow
Base64 pattern"
 },
 "EtcdBaPassword":{
 "Default":"Passw0rd",
 "Description":"The password of basic authentication for
Etcd",
 "Type":"String",
 "MinLength":"1",
 "MaxLength":"71",
 "NoEcho":"true",
 "AllowedPattern":"[a-zA-Z0-9]*",
 "ConstraintDescription":"Password should follow Base64
pattern"
 }
 }

Building Kubernetes on AWS

282

Before we get started with the OpsWorks stack, we need to create two IAM roles for it. One
is a service role, which is used to launch instances, attaching ELB, and so on. Another is an
instance role, which is to define the permission for what your OpsWorks instances can perform,
to access the AWS resources. Here, we won't access any AWS resources from EC2, so we could
just create a skeleton. Please note that you'll need to have IAM permission when you launch
CloudFormation with IAM creation. Click on the following checkbox when launching the stack:

In the SecurityGroup section, we will define each ingress and egress to a set of machines.
We'll take the Kubernetes master as an example. Since we put ELB in front of the master and
ELB to retain the flexibility for future HA settings. Using ELB, we'll need to create a security
group to ELB and point the ingress of the Kubernetes master that can be in touch with 8080
and 6443 from the ELB security group. Following is the example of the security group for the
Kubernetes master; it opens 80 and 8080 to the outside world:

 "SecurityGroupELBKubMaster":{
 "Type":"AWS::EC2::SecurityGroup",
 "Properties":{
 "GroupDescription":{
 "Ref":"Prefix"
 },
 "SecurityGroupIngress":[
 {
 "IpProtocol":"tcp",
 "FromPort":"80",
 "ToPort":"80",
 "CidrIp":"0.0.0.0/0"
 },
 {
 "IpProtocol":"tcp",
 "FromPort":"8080",
 "ToPort":"8080",
 "SourceSecurityGroupId":{
 "Ref":"SecurityGroupKubNode"
 }
 }
],

Chapter 6

283

 "VpcId":{
 "Ref":"VPCId"
 },
 "Tags":[
 {
 "Key":"Application",
 "Value":{
 "Ref":"AWS::StackId"
 }
 },
 {
 "Key":"Name",
 "Value":{
 "Fn::Join":[
 "-",
 [
 {
 "Ref":"Prefix"
 },
 "SGElbKubMaster"
]
]
 }
 }
]
 }
 },

Here is the example of the Kubernetes master instance set. It allows you to receive traffic from
8080 and 6443 from its ELB. We will open the SSH port to use the kubectl command:

 "SecurityGroupKubMaster":{
 "Type":"AWS::EC2::SecurityGroup",
 "Properties":{
 "GroupDescription":{
 "Ref":"Prefix"
 },
 "SecurityGroupIngress":[
 {
 "IpProtocol":"tcp",
 "FromPort":"22",
 "ToPort":"22",
 "CidrIp":"0.0.0.0/0"
 },
 {

Building Kubernetes on AWS

284

 "IpProtocol":"tcp",
 "FromPort":"8080",
 "ToPort":"8080",
 "SourceSecurityGroupId":{
 "Ref":"SecurityGroupELBKubMaster"
 }
 },
 {
 "IpProtocol":"tcp",
 "FromPort":"6443",
 "ToPort":"6443",
 "SourceSecurityGroupId":{
 "Ref":"SecurityGroupELBKubMaster"
 }
 }
],
 "VpcId":{
 "Ref":"VPCId"
 },
 "Tags":[
 {
 "Key":"Application",
 "Value":{
 "Ref":"AWS::StackId"
 }
 },
 {
 "Key":"Name",
 "Value":{
 "Fn::Join":[
 "-",
 [
 {
 "Ref":"Prefix"
 },
 "SG-KubMaster"
]
]
 }
 }
]
 }
 }

Chapter 6

285

Please refer to the examples from the book about the security group setting of etcd and node.
Next, we'll start creating the OpsWorks stack. CustomJson acts as the input of the Chef
recipe. If there is anything that Chef doesn't know at the beginning, you will have to pass
the parameters into CustomJson:

 "OpsWorksStack":{
 "Type":"AWS::OpsWorks::Stack",
 "Properties":{
 "DefaultInstanceProfileArn":{
 "Fn::GetAtt":[
 "RootInstanceProfile",
 "Arn"
]
 },
 "CustomJson":{
 "kubernetes":{
 "cluster_cidr":{
 "Ref":"PrivateNetworkCIDR"
 },
 "version":"1.1.3",
 "master_url":{
 "Fn::GetAtt":[
 "ELBKubMaster",
 "DNSName"
]
 }
 },
 "ba":{
 "account":{
 "Ref":"K8sMasterBaAccount"
 },
 "password":{
 "Ref":"K8sMasterBaPassword"
 },
 "uid":1234
 },
 "etcd":{
 "password":{
 "Ref":"EtcdBaPassword"
 },
 "elb_url":{
 "Fn::GetAtt":[
 "ELBEtcd",
 "DNSName"

Building Kubernetes on AWS

286

]
 }
 },
 "opsworks_berkshelf":{
 "debug":true
 }
 },
 "ConfigurationManager":{
 "Name":"Chef",
 "Version":"11.10"
 },
 "UseCustomCookbooks":"true",
 "UseOpsworksSecurityGroups":"false",
 "CustomCookbooksSource":{
 "Type":"git",
 "Url":"https://github.com/kubernetes-cookbook/opsworks-
recipes.git"
 },
 "ChefConfiguration":{
 "ManageBerkshelf":"true"
 },
 "DefaultOs":"Red Hat Enterprise Linux 7",
 "DefaultSubnetId":{
 "Ref":"SubnetPrivateIdA"
 },
 "Name":{
 "Ref":"Prefix"
 },
 "ServiceRoleArn":{
 "Fn::GetAtt":[
 "OpsWorksServiceRole",
 "Arn"
]
 },
 "VpcId":{
 "Ref":"VPCId"
 }
 }
 },

After creating the stack, we can start creating each layer. Take the Kubernetes master as
an example:

 "OpsWorksLayerKubMaster":{
 "Type":"AWS::OpsWorks::Layer",

Chapter 6

287

 "Properties":{
 "Name":"Kubernetes Master",
 "Shortname":"kube-master",
 "AutoAssignElasticIps":"false",
 "AutoAssignPublicIps":"false",
 "CustomSecurityGroupIds":[
 {
 "Ref":"SecurityGroupKubMaster"
 }
],
 "EnableAutoHealing":"false",
 "StackId":{
 "Ref":"OpsWorksStack"
 },
 "Type":"custom",
 "CustomRecipes":{
 "Setup":[
 "kubernetes-rhel::flanneld",
 "kubernetes-rhel::repo-setup",
 "kubernetes-rhel::master-setup"
],
 "Deploy":[
 "kubernetes-rhel::master-run"
]
 }
 }
 },

The run list of Chef in this layer is ["kubernetes-rhel::flanneld", "kubernetes-
rhel::repo-setup", "kubernetes-rhel::master-setup"] and ["kubernetes-
rhel::master-run"] at the deployment stage. For the run list of etcd, we'll use
["kubernetes-rhel::etcd", "kubernetes-rhel::etcd-auth"] to perform etcd
provisioning and authentication setting. For the Kubernetes nodes, we'll use ["kubernetes-
rhel::flanneld", "kubernetes-rhel::docker-engine", "kubernetes-
rhel::repo-setup", "kubernetes-rhel::node-setup"] as a run list at the setup
stage and ["kubernetes-rhel::node-run"] at the deployment stage.

After setting up the layer, we can create ELB and attach it to the stack. The target of health
check for the instance is HTTP:8080/version. It will then receive traffic from the port 80
and redirect it to the 6443 port in the master instances, and receive traffic from 8080 to the
instance port 8080:

 "ELBKubMaster":{
 "DependsOn":"SecurityGroupELBKubMaster",
 "Type":"AWS::ElasticLoadBalancing::LoadBalancer",

Building Kubernetes on AWS

288

 "Properties":{
 "LoadBalancerName":{
 "Fn::Join":[
 "-",
 [
 {
 "Ref":"Prefix"
 },
 "Kub"
]
]
 },
 "Scheme":"internal",
 "Listeners":[
 {
 "LoadBalancerPort":"80",
 "InstancePort":"6443",
 "Protocol":"HTTP",
 "InstanceProtocol":"HTTPS"
 },
 {
 "LoadBalancerPort":"8080",
 "InstancePort":"8080",
 "Protocol":"HTTP",
 "InstanceProtocol":"HTTP"
 }
],
 "HealthCheck":{
 "Target":"HTTP:8080/version",
 "HealthyThreshold":"2",
 "UnhealthyThreshold":"10",
 "Interval":"10",
 "Timeout":"5"
 },
 "Subnets":[
 {
 "Ref":"SubnetPrivateIdA"
 },
 {
 "Ref":"SubnetPrivateIdB"
 }
],
 "SecurityGroups":[
 {

Chapter 6

289

 "Fn::GetAtt":[
 "SecurityGroupELBKubMaster",
 "GroupId"
]
 }
]
 }
 }

After creating the master ELB, let's attach it to the OpsWorks stack:

 "OpsWorksELBAttachKubMaster":{
 "Type":"AWS::OpsWorks::ElasticLoadBalancerAttachment",
 "Properties":{
 "ElasticLoadBalancerName":{
 "Ref":"ELBKubMaster"
 },
 "LayerId":{
 "Ref":"OpsWorksLayerKubMaster"
 }
 }
 }

That's it! The ELB of etcd is the same setting, but listen to HTTP:4001/version as a
health check and redirect 80 traffic from the outside to the instance port 4001. For a
detailed example, please refer to our code reference. After launching the second sample
template, you should be able to see the OpsWorks stacks, layers, security groups, IAM, and
ELBs. If you want to launch by default with CloudFormation, just add the resource type with
AWS::OpsWorks::Instance, specify the spec, and you are all set.

See also
In this recipe, we got an understanding on how to write and deploy an AWS CloudFormation
template. Please check out the following recipes as well:

ff The Exploring architecture recipe in Chapter 1, Building Your Own Kubernetes

ff Building the Kubernetes infrastructure in AWS

ff Managing applications using AWS OpsWorks

ff Auto-deploying Kubernetes through Chef recipes

291

7
Advanced Cluster

Administration

In this chapter, we will cover:

ff Advanced settings in kubeconfig

ff Setting resource in nodes

ff Playing with WebUI

ff Working with a RESTful API

ff Authentication and authorization

Introduction
We will go through advanced topics on administration in this chapter. First, you will learn how
to use kubeconfig to manage different clusters. Then, we will work on computing resources
in nodes. Kubernetes provides a friendly user interface to illustrate the current status of
resources, such as the replication controller, nodes, and pods. You will learn how to build
and administrate it.

Next, you will learn how to work with the RESTful API that Kubernetes exposes. It will be a
handy way to integrate with other systems. Finally, we want to build a secure cluster; the last
section will go through how to set up authentication and authorization in Kubernetes.

Advanced Cluster Administration

292

Advanced settings in kubeconfig
kubeconfig is a configuration file to manage cluster, context, and authentication settings in
Kubernetes. Using the kubeconfig file, we are able to set different cluster credentials, users,
and namespaces to switch between clusters or contexts within a cluster. It can be configured
via the command line using the kubectl config subcommand or a configuration file
directly. In this section, we'll describe how to use kubectl config to manipulate kubeconfig
and how to input a kubeconfig file directly.

Getting ready
Before you start to modify kubeconfig, you should clearly know what your security policies are.
Using kubectl config view, you can check your current settings:

// check current kubeconfig file

kubectl config view

apiVersion: v1

clusters: []

contexts: []

current-context: ""

kind: Config

preferences: {}

users: []

We can see currently we do not have any specific settings in kubeconfig.

How to do it…
Assume we have two clusters, one is under localhost http://localhost:8080 and
another is in the remote http://remotehost:8080 named remotehost. In the example,
we'll use localhost as the main console to switch the cluster via context changes. We then run
different number of nginx into both the clusters and make sure the pods are all running:

// in localhost cluster

kubectl run localnginx --image=nginx --replicas=2 --port=80

replicationcontroller "localnginx" created

// check pods are running

kubectl get pods

NAME READY STATUS RESTARTS AGE

Chapter 7

293

localnginx-1blru 1/1 Running 0 1m

localnginx-p6cyo 1/1 Running 0 1m

// in remotehost cluster

kubectl run remotenginx --image=nginx --replicas=4 --port=80

replicationcontroller "remotenginx" created

// check pods are running

kubectl get pods

NAME READY STATUS RESTARTS AGE

remotenginx-6wz5c 1/1 Running 0 1m

remotenginx-7v5in 1/1 Running 0 1m

remotenginx-c7go6 1/1 Running 0 1m

remotenginx-r1mf6 1/1 Running 0 1m

Setting a new credential
First, we will set up two credentials for each cluster. Use kubectl config
set-credentials <nickname> for adding credential into kubeconfig. There are different
authentication methods supported in Kubernetes. We could use a password, client-certificate,
or token. In the example, we'll use HTTP basic authentication for simplifying the scenario.
Kubernetes also supports client certificate and token authentications. For more information,
please refer to the kubeconfig set-credential page: http://kubernetes.io/docs/user-
guide/kubectl/kubectl_config_set-credentials:

// in localhost cluster, add a user `userlocal` with nickname localhost/
myself

kubectl config set-credentials localhost/myself --username=userlocal
--password=passwordlocal

user "localhost/myself" set.	

// in localhost cluster, add a user `userremote` with nickname
remotehost/myself

kubectl config set-credentials remotehost/myself --username=userremote
--password=passwordremote

user "remotehost/myself" set.

Let's check out the current view:

kubectl config view

apiVersion: v1

clusters: []

contexts: []

http://kubernetes.io/docs/user-guide/kubectl/kubectl_config_set-credentials
http://kubernetes.io/docs/user-guide/kubectl/kubectl_config_set-credentials

Advanced Cluster Administration

294

current-context: ""

kind: Config

preferences: {}

users:

- name: localhost/myself

 user:

 password: passwordlocal

 username: userlocal

- name: remotehost/myself

 user:

 password: passwordremote

 username: userremote

We can find currently that we have two sets of credentials with nicknames localhost/
myself and remotehost/myself. Next, we'll set the clusters into the management.

Setting a new cluster
To set a new cluster, we will need the kubectl config set-cluster <nickname>
command. We will need the --server parameter for accessing clusters. Adding
-insecure-skip-tls-verify will not check the server's certificate. If you are setting
up a trusted server with HTTPS, you will need to replace -insecure-skip-tls-verify
to --certificate-authority=$PATH_OF_CERT --embed-certs=true. For more
information, check out the kubeconfig set-cluster page: http://kubernetes.io/docs/
user-guide/kubectl/kubectl_config_set-cluster:

// in localhost cluster: add http://localhost:8080 as localhost

kubectl config set-cluster localhost --insecure-skip-tls-verify=true
--server=http://localhost:8080

cluster "localhost" set.

// in localhost cluster: add http://remote:8080 as localhost

kubectl config set-cluster remotehost --insecure-skip-tls-verify=true
--server=http://remotehost:8080

cluster "remotehost" set.

Let's check out the current view now. The setting exactly reflects what we've set:

// check current view

kubectl config view

apiVersion: v1

http://kubernetes.io/docs/user-guide/kubectl/kubectl_config_set-cluster
http://kubernetes.io/docs/user-guide/kubectl/kubectl_config_set-cluster

Chapter 7

295

clusters:

- cluster:

 insecure-skip-tls-verify: true

 server: http://localhost:8080

 name: localhost

- cluster:

 insecure-skip-tls-verify: true

 server: http://remotehost:8080

 name: remotehost

contexts: []

current-context: ""

kind: Config

preferences: {}

users:

- name: localhost/myself

 user:

 password: passwordlocal

 username: userlocal

- name: remotehost/myself

 user:

 password: passwordremote

 username: userremote

Note that we do not associate anything between users and clusters yet. We will link them
via context.

Setting and changing the current context
One context contains a cluster, namespace, and user. kubectl will use the specified user
information and namespace to send requests to the cluster. To set up a context, we will use
kubectl config set-context <context nickname> --user=<user nickname>
--namespace=<namespace> --cluster=< cluster nickname> to create it:

// in localhost cluster: set a context named default/localhost/myself for
localhost cluster

kubectl config set-context default/localhost/myself --user=localhost/
myself --namespace=default --cluster=localhost

context "default/localhost/myself" set.

Advanced Cluster Administration

296

// in localhost cluster: set a context named default/remotehost/myself
for remotehost cluster

kubectl config set-context default/remotehost/myself --user=remotehost/
myself --namespace=default --cluster=remotehost

context "default/remotehost/myself" set.

Let's check out the current view. We can see a list of contexts is in the contexts section now:

kubectl config view

apiVersion: v1

clusters:

- cluster:

 insecure-skip-tls-verify: true

 server: http://localhost:8080

 name: localhost

- cluster:

 insecure-skip-tls-verify: true

 server: http://remotehost:8080

 name: remotehost

contexts:

- context:

 cluster: localhost

 namespace: default

 user: localhost/myself

 name: default/localhost/myself

- context:

 cluster: remotehost

 namespace: default

 user: remotehost/myself

 name: default/remotehost/myself

current-context: ""

kind: Config

preferences: {}

users:

- name: localhost/myself

 user:

 password: passwordlocal

 username: userlocal

Chapter 7

297

- name: remotehost/myself

 user:

 password: passwordremote

 username: userremote

After creating contexts, let's start to switch context in order to manage different clusters. Here,
we will use the command kubectl config use-context <context nickname>. We'll
start from the localhost one first:

// in localhost cluster: use the context default/localhost/myself

kubectl config use-context default/localhost/myself

switched to context "default/localhost/myself".

Let's list pods to see whether it is a localhost cluster:

// list the pods

kubectl get pods

NAME READY STATUS RESTARTS AGE

localnginx-1blru 1/1 Running 0 1m

localnginx-p6cyo 1/1 Running 0 1m

Yes, it looks fine. How about if we switch to the context with the remotehost setting?

// in localhost cluster: switch to the context default/remotehost/myself

kubectl config use-context default/remotehost/myself

switched to context "default/remotehost/myself".

Let's list the pods to make sure it's under the remotehost context:

kubectl get pods

NAME READY STATUS RESTARTS AGE

remotenginx-6wz5c 1/1 Running 0 1m

remotenginx-7v5in 1/1 Running 0 1m

remotenginx-c7go6 1/1 Running 0 1m

remotenginx-r1mf6 1/1 Running 0 1m

All the operations we have done are in the localhost cluster. kubeconfig makes switching
multiple clusters with multiple users easier.

Advanced Cluster Administration

298

Cleaning up kubeconfig
The kubeconfig file is stored in $HOME/.kube/config. If the file is deleted, the configuration
is gone; if the file is restored to the directory, the configuration will be restored:

// clean up kubeconfig file

rm -f ~/.kube/config

// check out current view

kubectl config view

apiVersion: v1

clusters: []

contexts: []

current-context: ""

kind: Config

preferences: {}

users: []

See also
kubeconfig manages the setting of clusters, credentials, and namespaces. Check out the
following recipes:

ff The Working with namespaces recipe in Chapter 2, Walking through Kubernetes
Concepts

ff Authentication and authorization

Setting resource in nodes
Computing resource management is so important in any infrastructure. We should know
our application well and preserve enough CPU and memory capacity in order to prevent
running out of resources. In this section, we'll introduce how to manage node capacity in the
Kubernetes nodes. Furthermore, we'll also describe how to manage pod computing resources.

Getting ready
Before you start managing computing resources, you should know your applications well
in order to know the maximum resources they need. Before we start, check out the current
node capacity using the kubectl command described in Chapter 1, Building Your Own
Kubernetes:

// check current node capacity

kubectl get nodes -o json | jq '.items[] | {name: .metadata.name,

Chapter 7

299

capacity: .status.capacity}'

{

 "name": "kube-node1",

 "capacity": {

 "cpu": "1",

 "memory": "1019428Ki",

 "pods": "40"

 }

}

{

 "name": "kube-node2",

 "capacity": {

 "cpu": "1",

 "memory": "1019428Ki",

 "pods": "40"

 }

}

You should know currently, we have two nodes with 1 CPU and 1019428 bytes memory. The
node capacity of the pods are 40 for each. Then, we can start planning. How much computing
resource capacity is allowed to be used on a node? How much computing resource is used in
running our containers?

How to do it…
When the Kubernetes scheduler schedules a pod running on a node, it will always ensure
that the total limits of the containers are less than the node capacity. If a node runs out
of resources, Kubernetes will not schedule any new containers running on it. If no node
is available when you launch a pod, the pod will remain pending, since the Kubernetes
scheduler will be unable to find any node that could run your desired pod.

Managing node capacity
Sometimes, we want to explicitly preserve some resources for other processes or future usage
on the node. Let's say we want to preserve 200 MB on all my nodes. First, we'll need to create
a pod and run the pause container in Kubernetes. Pause is a container for each pod for
forwarding the traffic. In this scenario, we'll create a resource reserver pod, which is basically
doing nothing with a limit of 200 MB:

// configuration file for resource reserver

cat /etc/kubernetes/reserve.yaml

Advanced Cluster Administration

300

apiVersion: v1

kind: Pod

metadata:

 name: resource-reserver

spec:

 containers:

 - name: resource-reserver

 image: gcr.io/google_containers/pause:0.8.0

 resources:

 limits:

 memory: 200Mi

Since it's a pod infra container, we will not use kubectl to launch it. Note that we put it in the
/etc/kubernetes/ folder. You could put it under different paths; write down the path and
we'll need to add it into the kubelet config file to launch it. Find the kubelet config file you
specified in the Configuring nodes recipe in Chapter 1, Building Your Own Kubernetes and add
the following argument when launching kubelet: --config=/etc/kubernetes/reserve.
yaml. Restart kubelet. After we restart kubelet, we will see the kubelet log in the node:

I0325 20:44:22.937067 21306 kubelet.go:1960] Starting kubelet main
sync loop.
I0325 20:44:22.937078 21306 kubelet.go:2012] SyncLoop (ADD):
"resource-reserver-kube-node1_default"
I0325 20:44:22.937138 21306 kubelet.go:2012] SyncLoop (ADD):
"mynginx-e09bu_default"
I0325 20:44:22.963425 21306 kubelet.go:2012] SyncLoop (ADD):
"resource-reserver-kube-node1_default"
I0325 20:44:22.964484 21306 manager.go:1707] Need to restart pod
infra container for "resource-reserver-kube-node1_default" because it
is not found

kubelet will check whether the infra container exists and create it accordingly:

// check pods list

kubectl get pods

NAME READY STATUS RESTARTS AGE

resource-reserver-kube-node1 1/1 Running 0 3m

The Kubernetes master is aware that the resource reserver pod has been created. Let's
describe the details to get deeper insight:

kubectl describe pods resource-reserver-kube-node1

Name: resource-reserver-kube-node1

Namespace: default

Chapter 7

301

Image(s): gcr.io/google_containers/pause:0.8.0

Node: kube-node1/10.0.0.224

Start Time: Fri, 25 Mar 2016 20:44:24 +0000

Labels: <none>

Status: Running

IP: 192.168.99.3

Replication Controllers: <none>

Containers:

 resource-reserver:

 ...

 QoS Tier:

 memory: Guaranteed

 Limits:

 memory: 200Mi

 Requests:

 memory: 200Mi

 State: Running

 Started: Fri, 25 Mar 2016 20:44:24 +0000

 Ready: True

We can find the limits and requests that are all set as 200Mi; it means that this container has
been reserved a minimum of 200 MB and a maximum of 200 MB. Repeat the same steps in
your other nodes and check the status via the kubectl command:

kubectl get pods

NAME READY STATUS RESTARTS AGE

resource-reserver-kube-node1 1/1 Running 0 11m

resource-reserver-kube-node2 1/1 Running 0 42m

Limits or requests?
The Kubernetes scheduler schedules a pod running on a node by checking
the remaining computing resources. We could specify the limits or requests
for each pod we launch. Limit means the maximum resources this pod can
occupy. Request means the minimum resources this pod needs. We could
use the following inequality to represent their relation: 0 <= request <= the
resource this pod occupies <= limit <= node capacity.

Advanced Cluster Administration

302

Managing computing resources in a pod
The concept for managing the capacity in a pod or node is similar. They both specify
the requests or limits under the container resource spec.

Let's create an nginx pod with certain requests and limits using kubectl create -f
nginx-resources.yaml to launch it:

cat nginx-resources.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx

 labels:

 name: nginx

spec:

 containers:

 - name: nginx

 image: nginx

 ports:

 - containerPort: 80

 resources:

 requests:

 cpu: 250m

 memory: 32Mi

 limits:

 cpu: 500m

 memory: 64Mi

// create the pod

kubectl create -f nginx-resources.yaml

pod "nginx" created

Following are the available resources for this pod:

ff CPU: 250 milli core ~ 500 milli core

ff Memory: 32MB ~ 64 MB

Chapter 7

303

Please note that the minimum CPU limit is set to 10 millicore. You cannot specify a value less
than the minimum limit. Let's get more details via kubectl:

kubectl describe pod nginx

Name: nginx

Namespace: default

Image(s): nginx

Node: kube-node1/10.0.0.224

Start Time: Fri, 25 Mar 2016 21:12:43 +0000

Labels: name=nginx

Status: Running

Reason:

Message:

IP: 192.168.99.4

Replication Controllers: <none>

Containers:

 nginx:

 ...

 QoS Tier:

 cpu: Burstable

 memory: Burstable

 Limits:

 memory: 64Mi

 cpu: 500m

 Requests:

 cpu: 250m

 memory: 32Mi

 State: Running

 Started: Fri, 25 Mar 2016 21:12:44 +0000

 Ready: True

 Restart Count: 0

Everything is expected. QoS Tier is Burstable. Compared with Guaranteed, Burstable
has a buffer to burst to the limits; however, Guaranteed will always reserve certain resources
for the pod. Please note that if you specify too many pods with Guaranteed, cluster
utilization would be poor, since it wastes the resources if the containers are not reaching
the limits all the time.

Advanced Cluster Administration

304

See also
In this section, you learned how to constrain computing resources in Kubernetes. We give
more control to our containers. Check out the following recipes:

ff The Preparing your environment and Configuring nodes recipes in Chapter 1, Building
Your Own Kubernetes

ff The Working with namespaces recipe in Chapter 2, Walking through Kubernetes
Concepts

ff The Working with configuration files recipe in Chapter 3, Playing with Containers

ff The Monitoring master and node recipe in Chapter 8, Logging and Monitoring

Playing with WebUI
Kubernetes has the WebUI add-on that visualizes Kubernetes' status, such as pod, replication
controller, and service.

Getting ready
The Kubernetes WebUI is assigned as http://<kubernetes master>/ui. However, it is
not launched by default, instead there are YAML files in the release binary.

Kubernetes 1.2 introduces the dashboard. For more details, please refer to
http://kubernetes.io/docs/user-guide/ui/.

Access to Kubernetes master/ui page

http://kubernetes.io/docs/user-guide/ui/

Chapter 7

305

Let's download a release binary and launch the WebUI:

//Download a release binary

$ curl -L -O https://github.com/kubernetes/kubernetes/releases/download/
v1.1.4/kubernetes.tar.gz

//extract the binary

$ tar zxf kubernetes.tar.gz

//WebUI YAML file is under the cluster/addons/kube-ui directory

$ cd kubernetes/cluster/addons/kube-ui/

$ ls

kube-ui-rc.yaml kube-ui-svc.yaml

How to do it…
Let's launch the kube-ui replication controller and service:

kubectl create -f kube-ui-rc.yaml

replicationcontroller "kube-ui-v2" created

kubectl create -f kube-ui-svc.yaml

service "kube-ui" created

Note that kube-ui-svc is a type of ClusterIP service; however, it is associated with
Kubernetes master (/ui). You can access, from the outside, the Kubernetes network
at http://<kubernetes master>/ui.

Launching the kube-ui/ui shows the dashboard screen

Advanced Cluster Administration

306

How it works…
The kube-ui replication controller accesses the API Server to get the Kubernetes cluster
information same as the kubectl command, though read-only. However, it is useful for
navigating Kubernetes' status and is easier to explore than the kubectl command.

The following screenshot is an Explore page that shows pod, replication controller, and
service instances:

Chapter 7

307

On clicking on one of the instances, it shows detailed information, as shown in the following
screenshot. It shows a service, which indicates port, node port, and selectors. It is easy to find
an associated replication controller and pods:

Advanced Cluster Administration

308

Additionally, UI can also show events, as follows:

See also
This recipe described how to launch a web interface that will help in easily exploring
Kubernetes instances, such as pods, replication controllers, and services without the
kubectl command. Please refer to following recipes on how to get detailed information
via the kubectl command.

ff The Working with pods, Working with a replication controller, and Working with
services recipes in Chapter 2, Walking through Kubernetes Concepts

Working with a RESTful API
The Kubernetes administrator can control the Kubernetes cluster via the kubectl command;
it supports local and remote execution. However, some of the administrators or operators may
need to integrate a program to control the Kubernetes cluster.

Kubernetes has a RESTful API that allows controlling the Kubernetes cluster via API similar to
the kubectl command.

Chapter 7

309

Getting ready
The RESTful API is open by default when we launch the API Server; you may access the
RESTful API via the curl command, as follows:

//assume API server is running at localhost port number 8080

curl http://localhost:8080/api

{

 "kind": "APIVersions",

 "versions": [

 "v1"

]

}

How to do it…
Let's create a replication controller using the following JSON format:

cat nginx-rc.json

{

 "apiVersion": "v1",

 "kind": "ReplicationController",

 "metadata": {

 "name": "my-first-rc"

 },

 "spec": {

 "replicas": 2,

 "template": {

 "spec": {

 "containers": [

 {

 "image": "nginx",

 "name": "my-nginx"

 }

]

 },

 "metadata": {

Advanced Cluster Administration

310

 "labels": {

 "app": "nginx"

 }

 }

 },

 "selector": {

 "app": "nginx"

 }

 }

}

Submit a request to create a replication controller, as follows:

curl -XPOST -H "Content-type: application/json" -d @nginx-rc.json
http://localhost:8080/api/v1/namespaces/default/replicationcontrollers

Then, kubectl get rc command should be as follows:

kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE

my-first-rc my-nginx nginx app=nginx 2 10s

Of course, use the curl command to check via a RESTful API, as follows:

curl -XGET http://localhost:8080/api/v1/namespaces/default/
replicationcontrollers

Deletion can also be done via a RESTful API, as follows:

curl -XDELETE http://localhost:8080/api/v1/namespaces/default/
replicationcontrollers/my-first-rc

Let's write the program that performs the same process. Following is the Python 2.7 code that
creates the same replication controller:

cat nginx-rc.py

import httplib
import json
k8s_master_url = "localhost"
k8s_master_port = 8080
namespace="default"

headers = {"Content-type": "applicaiton/json"}

Chapter 7

311

rc = {}
rc["apiVersion"] = "v1"
rc["kind"] = "ReplicationController"
rc["metadata"] = {"name" : "my-second-rc"}
rc["spec"] = {
 "replicas": 2,
 "selector": {"app": "nginx"},
 "template": {
 "metadata": {"labels": {"app": "nginx"}},
 "spec": {
 "containers" :[
 {"name": "my-nginx", "image": "nginx"}
]
 }
 }
}

h1 = httplib.HTTPConnection(k8s_master_url, k8s_master_port)
h1.request("POST", "/api/v1/namespaces/%s/replicationcontrollers" %
namespace, json.dumps(rc), headers)
res = h1.getresponse()

print "return code = %d" % res.status

You can run this code using the Python interpreter, as follows:

python nginx-rc.py

return code = 201

//HTTP return code 201 meant "Created"

How it works…
The RESTful API allows the CRUD (Create, Read, Update, and Delete) operations, which are
the same concepts behind every modern web application. For more details, please refer to
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete.

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Advanced Cluster Administration

312

Kubernetes RESTful API examples and related HTTP methods are as follows:

Operation HTTP
Method

Example

Create POST POST /api/v1/namespaces/default/services

Read GET GET /api/v1/componentstatuses

Update PUT PUT /api/v1/namespaces/default/
replicationcontrollers/my-first-rc

Delete DELETE DELETE /api/v1/namespaces/default/pods/my-
nginx

The entire Kubernetes RESTful APIs are defined by Swagger (http://swagger.io/). You
can see a detailed description via http://<API Server IP Address>:<API Server
port>/swagger-ui.

See also
This recipe described how to use the Kubernetes RESTful API via a program. It is important
to integrate with your automation program remotely. For detailed parameter and security
enhancement, please refer to the following recipes:

ff The Working with configuration files recipe in Chapter 3, Playing with Containers

ff The Authentication and authorization recipe in Chapter 7, Advanced Cluster
administration

http://swagger.io/

Chapter 7

313

Authentication and authorization
In order to use more advanced management, we can add permission rules to the Kubernetes
system. Two permission types could be generated in our cluster: one is between the machines.
Nodes having authentication can contact the controlling node. For example, the master who
owns certification with the etcd server can store data in etcd. The other permission rule is
inside the Kubernetes master. Users can be given authorization for checking and creating the
resources. Applying authentication and authorization is a secure solution to prevent your data
or status being accessed by others.

Getting ready
Before you start configuring your cluster with some permissions, please have your cluster
installed. Nevertheless, stop every service in the system. They will be started later with
the authentication enabled.

How to do it…
In this recipe, we will have a discussion on both authentication and authorization. For
authentication, etcd and the Kubernetes server need to do identity verification before they
respond to the requests. On the other hand, authorization restricts users by different resource
access permissions. All of these contacts are based on the API connection. Later sections
show you how to complete the configuration and follow the authentication.

Enabling authentication for an API call
There are several methods to block the unauthenticated communication in the Kubernetes
system. We are going to introduce basic authentication mechanism. It is easier to set it on not
only the Kubernetes masters, but etcd servers.

Basic authentication of etcd
First, let's try to send API requests on the etcd host. You will find that anyone can access the
data by default:

// Create a key-value pair in etcd

curl -X PUT -d value="Happy coding" http://localhost:4001/v2/keys/
message

{"action":"set","node":{"key":"/message","value":"Happy coding","modified
Index":4,"createdIndex":4}}

// Check the value you just push

curl http://localhost:4001/v2/keys/message

{"action":"get","node":{"key":"/message","value":"Happy coding","modified
Index":4,"createdIndex":4}}

Advanced Cluster Administration

314

// Remove the value

curl -X DELETE http://localhost:4001/v2/keys/message

{"action":"delete","node":{"key":"/message","modifiedIndex":5,"createdInd
ex":4},"prevNode":{"key":"/message","value":"Happy coding","modifiedIndex
":4,"createdIndex":4}}

Without authentication, neither reading nor writing functions can be protected. The way
to enable basic authentication of etcd is through the RESTful API as well. The procedure
is as follows:

ff Add a password for the admin account root

ff Enable basic authentication

ff Stop both read and write permissions of the guest account

Make sure the etcd service is running. We will transfer the preceding logics into the following
commands:

// Send the API request for setup root account

curl -X PUT -d "{\"user\":\"root\",\"password\":\"<YOUR_ETCD_PASSWD>\",
\"roles\":[\"root\"]}" http://localhost:4001/v2/auth/users/root

{"user":"root","roles":["root"]}

// Enable authentication

curl -X PUT http://localhost:4001/v2/auth/enable

// Encode "USERACCOUNT:PASSWORD" string in base64 format, and record in a
value

AUTHSTR=$(echo -n "root:<YOUR_ETCD_PASSWD>" | base64)

// Remove all permission of guest account. Since we already enable
authentication, use the authenticated root.

curl -H "Authorization: Basic $AUTHSTR" -X PUT -d "{\"role\":\"guest
\",\"revoke\":{\"kv\":{\"read\":[\"*\"],\"write\":[\"*\"]}}}" http://
localhost:4001/v2/auth/roles/guest

{"role":"guest","permissions":{"kv":{"read":[],"write":[]}}}

Now, for validation, try to check anything in etcd through the API:

curl http://localhost:4001/v2/keys

{"message":"Insufficient credentials"}

Because we didn't specify any identity for this API call, it is regarded as a request from a
guest. No authorization for even viewing data.

Chapter 7

315

For long-term usage, we would put user profiles of etcd in the Kubernetes master's
configuration. Check your configuration file of the Kubernetes API server. In the RHEL server,
it is the file /etc/kubernetes/apiserver; or for the other Linux server, just the one for
service, /etc/init.d/kubernetes-master. You can find a flag for the etcd server called
--etcd-servers. Based on the previous settings, the value we attached is a simple URL
with a port. It could be http://ETCD_ELB_URL:80. Add an account root and its password
in a plain text format to the value, which is the authorization header for the HTTP request. The
new value for flag --etcd-servers would become http://root:YOUR_ETCD_PASSWD@
ETCD_ELB_URL:80. Afterwards, your Kubernetes API server daemon will work well with an
authentication-enabled etcd endpoint.

Basic authentication of the Kubernetes master
Before we set up authentication in the Kubernetes master, let's check the endpoint of the
master first:

curl https://K8S_MASTER_HOST_IP:SECURED_PORT --insecure

or

curl http://K8S_MASTER_ELB_URL:80

{

 "paths": [

 "/api",

 "/api/v1",

 "/apis",

 "/apis/extensions",

 "/apis/extensions/v1beta1",

 "/healthz",

 "/healthz/ping",

 "/logs/",

 "/metrics",

 "/resetMetrics",

 "/swagger-ui/",

 "/swaggerapi/",

 "/ui/",

 "/version"

]

}

Advanced Cluster Administration

316

We don't want the previous message to be exposed to everyone, do we? Same as the etcd
host, Kubernetes master can apply basic authentication as a security mechanism. In this
section, we are going to limit the permission of the API server. However, different from etcd,
the information of authentication is defined in a file:

// Create a file for basic authentication with content:
PASSWORD,USERNAME,UID

cat /root/k8s-bafile

<APISERVER_BA_PASSWORD>,<APISERVER_BA_USERACCOUNT>,1

Then, we have to specify this file in the configuration file. According to your daemon
management tool, the configuration file could be located at /etc/init.d/kubernetes-
master or /etc/kubernetes/apiserver. A new flag named --basic-auth-file
should be added to the configuration file:

ff For the file kubernetes-master, append flag --basic-auth-file after the
kube-apiserver command or the hyperkube apiserver command. The value
for this tag should be the full path of the basic authentication file. For instance,
--basic-auth-file=/root/k8s-bafile.

ff For the file apiserver, add the tag to the variable KUBE_API_ARGS. For example,
KUBE_API_ARGS=--basic-auth-file=/root/k8s-bafile.

Most important of all, ensure the user who starts the services of Kubernetes, either root
or kubelet, has the permission to access the file you attached to the tag. After you add the
new tag, it is necessary to restart the service for making the authentication effective. Next,
it is good for you to try the curl command at the beginning of this section. It will return
Unauthorized without providing the username and password.

Our nodes communicate with API server through the insecure port 8080. Although we didn't
have to specify any role for authorizing permission, be aware of configuring the firewall of
master, which only allows nodes to go through port 8080. On AWS, a security group can help
for this part.

There are still some methods for the Kubernetes master's authentication. Please
check the official website for other ideas (http://kubernetes.io/docs/admin/
authentication/).

Making use of user authorization
We can also add different user permissions for the Kubernetes master's API server daemon.
There are three flags required to set user authorization. They are as follows:

ff --authorization-mode=ABAC: The value, ABAC, is the abbreviation of
Attribute-Based Access Control. By enabling this mode, we can set up customized
user permissions.

http://kubernetes.io/docs/admin/authentication/
http://kubernetes.io/docs/admin/authentication/

Chapter 7

317

ff --token-auth-file=<FULL_PATH_OF_YOUR_TOKEN_FILE>: This is the file we
used to announce the qualified users for API access. It is possible to provide more
accounts and token pairs.

ff --authorization-policy-file=<FULL_PATH_OF_YOUR_POLICY_FILE>: We
would need this policy file to generate separated rules for different users.

These special tags are going to be appended after the command kube-apiserver or
hyperkube apiserver. You can refer to the following example:

// The daemon configuration file of Kubernetes master for init.d service

cat /etc/init.d/kubernetes-master

(above lines are ignored)

:

Start daemon.

 echo $"Starting apiserver: "

 daemon $apiserver_prog \

 --service-cluster-ip-range=${CLUSTER_IP_RANGE} \

 --insecure-port=8080 \

 --secure-port=6443 \

 --authorization-mode=ABAC \

 --token-auth-file=/root/k8s-tokenfile \

 --authorization-policy-file=/root/k8s-policyfile \

 --address=0.0.0.0 \

 --etcd-servers=${ETCD_SERVERS} \

 --cluster-name=${CLUSTER_NAME} \

 > ${logfile}-apiserver.log 2>&1 &

:

(below lines are ignored)

or

// The kubernetes apiserver's configuration file for systemd service in
RHEL

cat /etc/kubernetes/apiserver

(above lines are ignored)

:

KUBE_API_ARGS="--authorization-mode=ABAC --token-auth-file=/root/k8s-
tokenfile --authorization-policy-file=/root/k8s-policyfile"

Advanced Cluster Administration

318

You still need to configure the file for account and the file for policy. To demonstrate the usage
of customizing user permission, the following content of files show you how to create an
admin account with full access and a read-only account:

cat /root/k8s-tokenfile

k8s2016,admin,1

happy123,amy,2

The format of user definition is similar to the basic authentication file we mentioned before.
Each line has these items in sequence: token, username, and UID. Other than admin, we
create another user account called amy, which will only have read-only permission:

cat /root/k8s-policyfile

{"apiVersion": "abac.authorization.kubernetes.io/v1beta1", "kind":
"Policy", "spec": {"user": "admin", "namespace": "*", "resource": "*",
"apiGroup": "*"}}

{"apiVersion": "abac.authorization.kubernetes.io/v1beta1", "kind":
"Policy", "spec": {"user": "amy", "namespace": "*", "resource": "*",
"readonly": true}}

For the policy file, each line will be a policy in the JSON format. Every policy should indicate
the user who obeys its rule. The first policy for admin allows control permission on every
namespace, resource, and API group. The key apiGroup specifies different API categories.
For instance, the resource job is defined in the extensions API group. In order to access
job, the extensions type should be included in apiGroup. The second policy is defined
with read-only permission, which means the role amy can only view resources, but not create,
remove, and edit actions.

Later, restart all the daemons of the Kubernetes master after you make both configuration
files and service files ready:

// For init.d service management

service kubernetes-master restart

// Or, you can restart the individually with dependency

systemctl stop kube-scheduler

systemctl stop kube-controller-manager

systemctl stop kube-apiserver

systemctl start kube-apiserver

systemctl start kube-controller-manager

systemctl start kube-scheduler

Chapter 7

319

See also
It is recommended to read some of the previous recipes on installing the Kubernetes cluster:

ff The Building datastore, Configuring master and Configuring nodes recipe in Chapter
1, Building Your Own Kubernetes

ff The Auto-deploying Kubernetes through Chef recipes recipe in Chapter 6, Building
Kubernetes on AWS

321

8
Logging and Monitoring

In this chapter, we will cover the following topics:

ff Collecting application logs

ff Working with Kubernetes logs

ff Working with etcd log

ff Monitoring master and node

Introduction
As DevOps, logging and monitoring are what we always keep in mind. These tell us the
stability and the status of our systems. For taking care of logs, you will learn how to collect the
application logs inside Kubernetes. You will also learn how to collect and inspect the logs for
Kubernetes. Finally, we will go through setting up monitoring systems for Kubernetes.

Collecting application logs
When you start managing the application, the log collection and analysis are two of the
important routines to keep tracking the application's status.

However, there are some difficulties when the application is managed by Docker/Kubernetes;
because the log files are inside the container, it is not easy to access them from outside the
container. In addition, if the application has many pods by the replication controller, it will also
be difficult to trace or identify in which pod the issue that has happened.

One way to overcome this difficulty is to prepare a centralized log collection platform that
accumulates and preserves the application log. This recipe describes one of the popular log
collection platforms ELK (Elasticsearch, Logstash, and Kibana).

Logging and Monitoring

322

Getting ready
First, we need to prepare the Elasticsearch server at the beginning. Then, the application will
send a log to Elasticsearch using Logstash. We will visualize the analysis result using Kibana.

Elasticsearch
Elasticsearch (https://www.elastic.co/products/elasticsearch) is one of the
popular text indexes and analytic engines. There are some examples YAML files that are
provided by the Kubernetes source file; let's download it using the curl command to
set up Elasticsearch:

An example YAML file is located on GitHub at https://github.
com/kubernetes/kubernetes/tree/master/examples/
elasticsearch.

curl -L -O https://github.com/kubernetes/kubernetes/releases/download/
v1.1.4/kubernetes.tar.gz

 % Total % Received % Xferd Average Speed Time Time Time
Current

 Dload Upload Total Spent Left
Speed

100 593 0 593 0 0 1798 0 --:--:-- --:--:-- --:--:-
- 1802

100 181M 100 181M 0 0 64.4M 0 0:00:02 0:00:02 --:--:--
75.5M

tar zxf kubernetes.tar.gz

cd kubernetes/examples/elasticsearch/

ls

es-rc.yaml es-svc.yaml production_cluster README.md service-account.
yaml

Create ServiceAccount (service-account.yaml) and then create the Elasticsearch
replication controller (es-rc.yaml) and service (es-svc.yaml) as follows:

kubectl create -f service-account.yaml

serviceaccount "elasticsearch" created

//As of Kubernetes 1.1.4, it causes validation error

//therefore append --validate=false option

https://www.elastic.co/products/elasticsearch
https://github.com/kubernetes/kubernetes/tree/master/examples/elasticsearch
https://github.com/kubernetes/kubernetes/tree/master/examples/elasticsearch
https://github.com/kubernetes/kubernetes/tree/master/examples/elasticsearch

Chapter 8

323

kubectl create -f es-rc.yaml --validate=false

replicationcontroller "es" created

kubectl create -f es-svc.yaml

service "elasticsearch" created

Then, you can access the Elasticsearch interface via the Kubernetes service as follows:

//Elasticsearch is open by 192.168.45.152 in this example

kubectl get service

NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE

elasticsearch 192.168.45.152 9200/TCP,9300/TCP
component=elasticsearch 9s

kubernetes 192.168.0.1 <none> 443/TCP <none>
110d

//access to TCP port 9200

curl http://192.168.45.152:9200/

{

 "status" : 200,

 "name" : "Wallflower",

 "cluster_name" : "myesdb",

 "version" : {

 "number" : "1.7.1",

 "build_hash" : "b88f43fc40b0bcd7f173a1f9ee2e97816de80b19",

 "build_timestamp" : "2015-07-29T09:54:16Z",

 "build_snapshot" : false,

 "lucene_version" : "4.10.4"

 },

 "tagline" : "You Know, for Search"

}

Now, get ready to send an application log to Elasticsearch.

Logging and Monitoring

324

How to do it…
Let's use a sample application, which was introduced in the Moving monolithic to
microservices recipe in Chapter 5, Building a Continuous Delivery Pipeline. Prepare
a Python Flask program as follows:

cat entry.py

from flask import Flask, request

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

@app.route("/addition/<int:x>/<int:y>")

def add(x, y):

 return "%d" % (x+y)

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Use this application to send a log to Elasticsearch.

Logstash
Send an application log to Elasticsearch; using Logstash (https://www.elastic.co/
products/logstash) is the easiest way, because it converts from a plain text format
to the Elasticsearch (JSON) format.

Logstash needs a configuration file that specifies the Elasticsearch IP address and port
number. In this recipe, Elasticsearch is managed by Kubernetes service; therefore, the IP
address and port number can be found using the environment variable as follows:

Item Environment Variable Example
Elasticsearch IP address ELASTICSEARCH_SERVICE_

HOST
192.168.45.152

Elasticsearch port number ELASTICSEARCH_SERVICE_
PORT

9200

https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash

Chapter 8

325

However, the Logstash configuration file doesn't support an environment variable directly.
Therefore, the Logstash configuration file uses the placeholder as _ES_IP_ and _ES_PORT_
as follows:

cat logstash.conf.temp

input {

 stdin {}

}

filter {

 grok {

 match => {

 "message" => "%{IPORHOST:clientip} %{HTTPDUSER:ident}
%{USER:auth} \[%{DATA:timestamp}\] \"(?:%{WORD:verb} %{NOTSPACE:request}
(?: HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})\" %{NUMBER:response}
(?:%{NUMBER:bytes}|-)"

 }

 }

}

output {

 elasticsearch {

 hosts => ["_ES_IP_:_ES_PORT_"]

 index => "mycalc-access"

}

stdout { codec => rubydebug }

}

Startup script
The startup script will read an environment variable, and then replace the placeholder to set
the real IP and port number, as follows:

#!/bin/sh

TEMPLATE="logstash.conf.temp"
LOGSTASH="logstash-2.2.2/bin/logstash"

Logging and Monitoring

326

cat $TEMPLATE | sed "s/_ES_IP_/$ELASTICSEARCH_SERVICE_HOST/g" | sed
"s/_ES_PORT_/$ELASTICSEARCH_SERVICE_PORT/g" > logstash.conf

python entry.py 2>&1 | $LOGSTASH -f logstash.conf

Dockerfile
Finally, prepare Dockerfile as follows to build a sample application:

FROM ubuntu:14.04

Update packages
RUN apt-get update -y

Install Python Setuptools
RUN apt-get install -y python-setuptools git telnet curl openjdk-7-jre

Install pip
RUN easy_install pip

Bundle app source
ADD . /src
WORKDIR /src

Download LogStash
RUN curl -L -O https://download.elastic.co/logstash/logstash/logstash-
2.2.2.tar.gz

RUN tar -zxf logstash-2.2.2.tar.gz

Add and install Python modules
RUN pip install Flask

Expose
EXPOSE 5000

Run
CMD ["./startup.sh"]

Chapter 8

327

Docker build
Let's build a sample application using the docker build command:

ls

Dockerfile entry.py logstash.conf.temp startup.sh

docker build -t hidetosaito/my-calc-elk .

Sending build context to Docker daemon 5.12 kB

Step 1 : FROM ubuntu:14.04

 ---> 1a094f2972de

Step 2 : RUN apt-get update -y

 ---> Using cache

 ---> 40ff7cc39c20

Step 3 : RUN apt-get install -y python-setuptools git telnet curl
openjdk-7-jre

 ---> Running in 72df97dcbb9a

(skip…)

Step 11 : CMD ./startup.sh

 ---> Running in 642de424ee7b

 ---> 09f693436005

Removing intermediate container 642de424ee7b

Successfully built 09f693436005

//upload to Docker Hub using your Docker account

docker login

Username: hidetosaito

Password:

Email: hideto.saito@yahoo.com

WARNING: login credentials saved in /root/.docker/config.json

Login Succeeded

//push to Docker Hub

Logging and Monitoring

328

docker push hidetosaito/my-calc-elk

The push refers to a repository [docker.io/hidetosaito/my-calc-elk] (len:
1)

09f693436005: Pushed

b4ea761f068a: Pushed

(skip…)

c3eb196f68a8: Image already exists

latest: digest: sha256:45c203d6c40398a988d250357f85f1b5ba7b14ae73d449b3ca
64b562544cf1d2 size: 22268

Kubernetes replication controller and service
Now, use this application by Kubernetes to send a log to Elasticsearch. First, prepare the
YAML file to load this application using the replication controller and service as follows:

cat my-calc-elk.yaml

apiVersion: v1

kind: ReplicationController

metadata:

 name: my-calc-elk-rc

spec:

 replicas: 2

 selector:

 app: my-calc-elk

 template:

 metadata:

 labels:

 app: my-calc-elk

 spec:

 containers:

 - name: my-calc-elk

 image: hidetosaito/my-calc-elk

apiVersion: v1

Chapter 8

329

kind: Service

metadata:

 name: my-calc-elk-service

spec:

 ports:

 - protocol: TCP

 port: 5000

 type: ClusterIP

 selector:

 app: my-calc-elk

Use the kubectl command to create the replication controller and service as follows:

kubectl create -f my-calc-elk.yaml

replicationcontroller "my-calc-elk-rc" created

service "my-calc-elk-service" created

Check the Kubernetes service to find an IP address for this application as follows. It indicates
192.168.121.63:

kubectl get service

NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE

elasticsearch 192.168.101.143 9200/TCP,9300/TCP
component=elasticsearch 15h

kubernetes 192.168.0.1 <none> 443/TCP
<none> 19h

my-calc-elk-service 192.168.121.63 <none> 5000/TCP
app=my-calc-elk 39s

Let's access this application using the curl command as follows:

curl http://192.168.121.63:5000/

Hello World!

curl http://192.168.121.63:5000/addition/3/5

8

Logging and Monitoring

330

Kibana
Kibana (https://www.elastic.co/products/kibana) is a visualization tool for
Elasticsearch. Download Kibana, and specify the Elasticsearch IP address, and port number,
to launch Kibana:

//Download Kibana 4.1.6

curl -O https://download.elastic.co/kibana/kibana/kibana-4.1.6-
linux-x64.tar.gz

 % Total % Received % Xferd Average Speed Time Time Time
Current

 Dload Upload Total Spent Left
Speed

100 17.7M 100 17.7M 0 0 21.1M 0 --:--:-- --:--:-- --:--:--
21.1M

//unarchive

tar -zxf kibana-4.1.6-linux-x64.tar.gz

//Find Elasticsearch IP address

kubectl get services

NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE

elasticsearch 192.168.101.143 9200/TCP,9300/TCP
component=elasticsearch 19h

kubernetes 192.168.0.1 <none> 443/TCP
<none> 23h

//specify Elasticsearch IP address

sed -i -e "s/localhost/192.168.101.143/g" kibana-4.1.6-linux-x64/
config/kibana.yml

//launch Kibana

kibana-4.1.6-linux-x64/bin/kibana

Then, you will see the application log. Create a chart as follows:

https://www.elastic.co/products/kibana

Chapter 8

331

This cookbook doesn't cover how to configure Kibana; please
visit the official page to learn about the Kibana configuration via
https://www.elastic.co/products/kibana.

How it works…
Now, the application log is captured by Logstash; it is converted into the JSON format and
then sent to Elasticsearch.

Since Logstash is bundled with an application container, there are no problems when the
replication controller increases the number of replicas (pods). It captures all the application
logs with no configuration changes.

https://www.elastic.co/products/kibana

Logging and Monitoring

332

All the logs will be stored in Elasticsearch as follows:

See also
This recipe covers how to integrate to the ELK stack. The centralized log collection platform is
important for the Kubernetes environment. The container is easy to launch, and is destroyed
by the scheduler, but it is not easy to know which node runs which pod. Check out the
following recipes:

ff Working with Kubernetes logs

ff Working with etcd log

ff The Moving monolithic to microservices recipe in Chapter 5, Building a Continuous
Delivery Pipeline

Working with Kubernetes logs
Kubernetes comes with three daemon processes on master: API server, scheduler, and
controller manager. Under the /var/log folder, there are three corresponding log files
recording the logs of these processes:

Daemon on master Log file Description
API server apiserver.log Logs for API calls.
Scheduler k8s-scheduler.

log
Logs of scheduler data for any
containers scheduling events

Chapter 8

333

Daemon on master Log file Description
Controller manager controller-

manager.log
Logs for showing any events or issues
relate to controller manager

On nodes, we have a kubelet process to handle container operations and report to the
master:

Daemon on node Log file Description
kubelet kubelet.log Logs for any issues happening in

container

On both masters and nodes, there is another log file named kube-proxy.log to record any
network connection issues.

Getting ready
We will use the log collection platform ELK, which was introduced in the previous section, to
collect Kubernetes logs as a centralized log platform. For the setting of ELK, we'd suggest
you to review the collecting application logs section again. Before we start collecting the
Kubernetes logs, knowing the data structure in the logs is important. The preceding logs
are this format:

<log level><date> <timestamp> <indicator> <source file>:<line
number>] <logs>

The following is an example:

E0328 00:46:50.870875 3189 reflector.go:227] pkg/proxy/config/api.
go:60: Failed to watch *api.Endpoints: too old resource version: 45128
(45135)

By the heading character of the lines in the log file, we are able to know the log severity
of this line:

ff D: DEBUG

ff I: INFO

ff W: WARN

ff E: ERROR

ff F: FATAL

Logging and Monitoring

334

How to do it…
We will still use the grok filter in the logstash setting, as discussed in the previous section,
but we might need to write our custom pattern for the <log level><date> pattern, which is
listed at the beginning of the log line. We will create a pattern file under the current directory:

// list custom patterns

cat ./patterns/k8s

LOGLEVEL [DEFIW]

DATE [0-9]{4}

K8SLOGLEVEL %{LOGLEVEL:level}%{DATE}

The preceding setting is used to split the E0328 pattern into level=E and DATE=0328. The
following is an example of how to send k8s-apiserver.log into the ElasticSearch cluster:

// list config file for k8s-apiserver.log in logstash

cat apiserver.conf

input {

 file {

 path => "/var/log/k8s-apiserver.log"

 }

}

filter {

 grok {

 patterns_dir => ["./patterns"]

 match => { "message" => "%{K8SLOGLEVEL} %{TIME} %{NUMBER}
%{PROG:program}:%{POSINT:line}] %{GREEDYDATA:message}" }

 }

}

output {

 elasticsearch {

 hosts => ["_ES_IP_:_ES_PORT_"]

 index => "k8s-apiserver"

 }

 stdout { codec => rubydebug }

}

Chapter 8

335

For the input, we will use the file plugin (https://www.elastic.co/guide/en/logstash/
current/plugins-inputs-file.html), which adds the path of the k8s-apiserver.
log. We will use patterns_dir in grok to specify the definition of our custom patterns
K8SLOGLEVEL. The hosts' configuration in the output elasticsearch section should be
specified to your Elasticsearch IP and port number. The following is a sample output:

// start logstash with config apiserver.conf

bin/logstash -f apiserver.conf

Settings: Default pipeline workers: 1

Pipeline main started

{

 "message" => [

 [0] "E0403 15:55:24.706498 2979 errors.go:62] apiserver
received an error that is not an unversioned.Status: too old resource
version: 47419 (47437)",

 [1] "apiserver received an error that is not an unversioned.
Status: too old resource version: 47419 (47437)"

],

 "@timestamp" => 2016-04-03T15:55:25.709Z,

 "level" => "E",

 "host" => "kube-master1",

 "program" => "errors.go",

 "path" => "/var/log/k8s-apiserver.log",

 "line" => "62",

 "@version" => "1"

}

{

 "message" => [

 [0] "E0403 15:55:24.706784 2979 errors.go:62] apiserver
received an error that is not an unversioned.Status: too old resource
version: 47419 (47437)",

 [1] "apiserver received an error that is not an unversioned.
Status: too old resource version: 47419 (47437)"

],

 "@timestamp" => 2016-04-03T15:55:25.711Z,

 "level" => "E",

 "host" => "kube-master1",

 "program" => "errors.go",

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-file.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-file.html

Logging and Monitoring

336

 "path" => "/var/log/k8s-apiserver.log",

 "line" => "62",

 "@version" => "1"

}

It shows the current host, the log path, log level, the triggered program, and the total message.
The other logs are all in the same format, so it is easy to replicate the settings. Just specify
different indexes from k8s-apiserver to the others. Then, you are free to search the logs
via Kibana, or get the other tools integrated with Elasticsearch to get notifications or so on.

See also
Check out the following recipes:

ff The Configuring master and Configuring nodes recipes in Chapter 1, Building Your
Own Kubernetes

ff Collecting application logs

ff Monitoring master and node

Working with etcd log
The datastore, etcd, works for saving the information of Kubernetes resources. The
Kubernetes system won't be stable without robust etcd servers. If the information of a pod is
lost, we will not be able to recognize it in the system, mention how to access it through the
Kubernetes service, or manage it through the replication controller. In this recipe, you will
learn what kind of message you may get from the etcd log and how to collect them with ELK.

Getting ready
Before we start collecting the log of etcd, we should prepare the servers of ELK. Please go
back to the Collecting application logs recipe in Chapter 8, Logging and Monitoring to review
how to set up ELK and study its basic usage.

On the other hand, please expose your Kubernetes service of Elasticsearch if your etcd
servers are individual machines beyond the Kubernetes cluster. You can modify the service
template for Elasticsearch as follows:

cat es-svc.yaml

apiVersion: v1

kind: Service

metadata:

Chapter 8

337

 name: elasticsearch

 labels:

 component: elasticsearch

spec:

 type: LoadBalancer

 selector:

 component: elasticsearch

 ports:

 - name: http

 port: 9200

 nodePort: 30000

 protocol: TCP

 - name: transport

 port: 9300

 protocol: TCP

Then, your Logstash process on the etcd server can access it using the URL <NODE_
ENDPOINT>:30000. Port 30000 is exposed on every node, which means that it is possible
to be contacted by every nodes' endpoints.

How to do it…
On the etcd server, we have recorded the log from the daemon etcd at /var/log/etcd.
log. The message is line by line in the following format:

<date> <time> <subpackage>: <logs>

It is quite straightforward to show the timestamp and the information. We can also see where
the logs come from, which means we know which kind of subpackages handle this issue. Here
is an example of an etcd log:

2016/04/4 08:43:51 etcdserver: starting server... [version: 2.1.1,
cluster version: to_be_decided]

After you understand the style of the message, it is time to create the Logstash
configuration file:

cat etcd.conf

input {

 file {

Logging and Monitoring

338

 path => "/var/log/etcd.log"

 }

}

filter {

 grok {

 match => {

 "message" => "%{DATA:date} %{TIME:time} %{PROG:subpackage}:
%{GREEDYDATA:message}"

 }

 }

}

output {

 elasticsearch {

 hosts => ["<ELASTIC_SERVICE_IP>:<EXPOSE_PORT>"]

 index => "etcd-log"

 }

 stdout { codec => rubydebug }

}

In the file, we will assign the location of the etcd logfile as input data. The pattern defined in
the grok filter simply separates the log into three parts: timestamp, the subpackage, and the
message. Of course, we not only show the output on screen, but also send the data to the
Elasticsearch server for further analysis:

// Under the directory of $LOGSTASH_HOME

./bin/logstash -f etcd.conf

Settings: Default pipeline workers: 1

Pipeline main started

{

 "subpackage" => "raft",

 "message" => [

 [0] "2016/04/4 08:43:53 raft: raft.node: ce2a822cea30bfca elected
leader ce2a822cea30bfca at term 2",

Chapter 8

339

 [1] "raft.node: ce2a822cea30bfca elected leader ce2a822cea30bfca
at term 2"

],

 "@timestamp" => 2016-04-04T11:23:

27.571Z,

 "time" => "08:43:53",

 "host" => "etcd1",

 "path" => "/var/log/etcd.log",

 "date" => "2016/04/4",

 "@version" => "1"

}

{

 "subpackage" => "etcdserver",

 "message" => [

 [0] "2016/04/4 08:43:53 etcdserver: setting up the initial
cluster version to 2.1.0",

 [1] "setting up the initial cluster version to 2.1.0"

],

 "@timestamp" => 2016-04-04T11:24:09.603Z,

 "time" => "08:43:53",

 "host" => "etcd1",

 "path" => "/var/log/etcd.log",

 "date" => "2016/04/4",

 "@version" => "1"

}

As you can see, through Logstash, we will parse the log in different subpackage issues and at
a particular time. It is a good time for you now to access the Kibana dashboard, and work with
the etcd logs.

See also
Before you trace the log file of etcd, you must have your own etcd system. Take a look at the
previous chapters; you will understand how to build a single node or a cluster-like etcd system.
Check out the following recipes:

ff The Building datastore recipe in Chapter 1, Building Your Own Kubernetes

ff The Clustering etcd recipe in Chapter 4, Building a High Availability Cluster

ff Collecting application logs

ff Working with Kubernetes logs

Logging and Monitoring

340

Monitoring master and node
During the journey of the previous recipes, you learned how to build your own cluster,
run various resources, enjoy different scenarios of usages, and even enhance cluster
administration. Now comes a new level of view for your Kubernetes cluster. In this recipe, we
are going to talk about monitoring. Through the monitoring tool, users not only learn about the
resource consumption of workers and nodes, but also the pods. It will help us have a better
efficiency in resource utilization.

Getting ready
Before we set up our monitoring cluster in the Kubernetes system, there are two main
prerequisites:

ff One is to update the last version of binary files, which makes sure your cluster has
stable and capable functionality

ff The other one is to set up the DNS server

A Kubernetes DNS server can reduce some steps and dependency for installing cluster-like
pods. In here, it is easier to deploy a monitoring system in Kubernetes with a DNS server.

In Kubernetes, how does the DNS server gives assistance in large-
system deployment?
The DNS server can support resolving the name of the Kubernetes service
for every container. Therefore, while running a pod, we don't have to set a
specific service IP for connecting to other pods. Containers in a pod just
need to know the service name.
The daemon of the node kubelet assigns containers to the DNS server
by modifying the file /etc/resolv.conf. Try to check the file or use
the command nslookup for verification after you have installed the DNS
server:
kubectl exec <POD_NAME> [-c <CONTAINER_NAME>] -- cat
/etc/resolv.conf

// Check where the service "kubernetes" served

kubectl exec <POD_NAME> [-c <CONTAINER_NAME>] --
nslookup kubernetes

Chapter 8

341

Updating Kubernetes to the latest version: 1.2.1
Updating the version of a running Kubernetes system is not troublesome. You can simply
follow these steps. The procedure is similar for both master and node:

ff Since we are going to upgrade every Kubernetes' binary file, stop all of the
Kubernetes services before you upgrade. For instance, service <KUBERNETES_
DAEMON> stop

ff Download the latest tarball file version 1.2.1:
cd /tmp && wget https://storage.googleapis.com/kubernetes-
release/release/v1.2.1/kubernetes.tar.gz

ff Decompress the file in a permanent directory. We are going to use the add-on
templates provided in the official source files. These templates can help to create
both the DNS server and the monitoring system:
// Open the tarball under /opt

tar -xvf /tmp/kubernetes.tar.gz -C /opt/

// Go further decompression for binary files

cd /opt && tar -xvf /opt/kubernetes/server/kubernetes-server-
linux-amd64.tar.gz

ff Copy the new files and overwrite the old ones:
cd /opt/kubernetes/server/bin/

// For master, you should copy following files and confirm to
overwrite

cp kubectl hypercube kube-apiserver kube-controller-manager
kube-scheduler kube-proxy /usr/local/bin

// For nodes, copy the below files

cp kubelet kube-proxy /usr/local/bin

ff Finally, you can start the system services. It is good to verify the version through the
command line:

kubectl version

Client Version: version.Info{Major:"1", Minor:"2",
GitVersion:"v1.2.1", GitCommit:"50809107cd47a1f62da362bccefdd9e
6f7076145", GitTreeState:"clean"}

Server Version: version.Info{Major:"1", Minor:"2",
GitVersion:"v1.2.1", GitCommit:"50809107cd47a1f62da362bccefdd9e
6f7076145", GitTreeState:"clean"}

As a reminder, you should update both the master and node at the same time.

Logging and Monitoring

342

Setting up the DNS server
As mentioned, we will use the official template to build up the DNS server in our Kubernetes
system. There are just two steps. First, modify the templates and create the resources. Then,
we need to restart the kubelet daemon with DNS information.

Start the server using templates
The add-on files of Kubernetes are located at <KUBERNETES_HOME>/cluster/addons/.
According to the last step, we can access the add-on files for DNS at /opt/kubernetes/
cluster/addons/dns. Two template files are going to be modified and executed. Feel free
to depend on the following steps:

ff Copy the file from the format .yaml.in to the YAML file and we will edit the copied
ones later:
cp skydns-rc.yaml.in skydns-rc.yaml

Input variable Substitute value Example
{{ pillar['dns_
domain'] }}

The domain of this cluster k8s.local

{{ pillar['dns_
replicas'] }}

The number of replica for this
replication controller

1

{{ pillar['dns_
server'] }}

The private IP of DNS server.
Must also be in the CIDR of
cluster

192.168.0.2

 # cp skydns-svc.yaml.in skydns-svc.yaml

ff In these two templates, replace the pillar variable, which is covered by double
big parentheses, with the items in this table. As you know, the default service
kubernetes will occupy the first IP in CIDR. That's why we will use IP 192.168.0.2
for our DNS server:
kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 192.168.0.1 <none> 443/TCP 4d

ff In the template for the replication controller, the file named skydns-rc.yaml
specifies the master URL in the container kube2sky:

cat skydns-rc.yaml

(Ignore above lines)

:

- name: kube2sky

Chapter 8

343

 image: gcr.io/google_containers/kube2sky:1.14

 resources:

 limits:

 cpu: 100m

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 50Mi

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 60

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 httpGet:

 path: /readiness

 port: 8081

 scheme: HTTP

 initialDelaySeconds: 30

 timeoutSeconds: 5

 args:

 # command = "/kube2sky"

 - --domain=k8s.local

 - --kube-master-url=<MASTER_ENDPOINT_URL>:<EXPOSED_PORT>

:

(Ignore below lines)

Logging and Monitoring

344

After you finish the preceding steps for modification, you can just start them using the
subcommand create:

kubectl create -f skydns-svc.yaml

service "kube-dns" created

kubectl create -f skydns-rc.yaml

replicationcontroller "kube-dns-v11" created

Enable Kubernetes DNS in kubelet
Next, we have access to each node and add DNS information to the daemon kubelet.
The tags we used for the cluster DNS are --cluster-dns, for assign the IP of DNS server,
and --cluster-domain, which define the domain of Kubernetes services:

// For init service daemon

cat /etc/init.d/kubernetes-node

(Ignore above lines)

:	

Start daemon.

echo $"Starting kubelet: "

 daemon $kubelet_prog \

 --api_servers=<MASTER_ENDPOINT_URL>:<EXPOSED_PORT> \

 --v=2 \

 --cluster-dns=192.168.0.2 \

 --cluster-domain=k8s.local \

 --address=0.0.0.0 \

 --enable_server \

 --hostname_override=${hostname} \

 > ${logfile}-kubelet.log 2>&1 &

:

(Ignore below lines)

// Or, for systemd service

cat /etc/kubernetes/kubelet

(Ignore above lines)

:

Add your own!

KUBELET_ARGS="--cluster-dns=192.168.0.2 --cluster-domain=k8s.local"

Now, it is good for you to restart either the service kubernetes-node or just kubelet! And
you can enjoy the cluster with a DNS server.

Chapter 8

345

How to do it…
In this section, we will work on installing a monitoring system and introducing its dashboard. This
monitoring system is based on Heapster (https://github.com/kubernetes/heapster),
a resource usage collecting and analyzing tool. Heapster communicates with kubelet to get
the resource usage of both machine and container. Along with Heapster, we have influxDB
(https://influxdata.com) for storage and Grafana (http://grafana.org) as the
frontend dashboard, which visualizes the status of resources in several user-friendly plots.

Installing a monitoring cluster
If you have gone through the preceding section about the prerequisite DNS server, you must
be very familiar with deploying the system with official add-on templates.

1.	 Let's check the directory cluster-monitoring under <KUBERNETES_HOME>/
cluster/addons. There are different environments provided for deploying the
monitoring cluster. We choose influxdb in this recipe for demonstration:
cd /opt/kubernetes/cluster/addons/cluster-monitoring/influxdb &&
ls

grafana-service.yaml heapster-service.yaml
influxdb-service.yaml

heapster-controller.yaml influxdb-grafana-controller.yaml

Under this directory, you can see three templates for services and two for replication
controllers.

2.	 We will retain most of the service templates as the original ones. Because these
templates define the network configurations, it is fine to use the default settings
but expose Grafana service:
cat heapster-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: monitoring-grafana

 namespace: kube-system

 labels:

 kubernetes.io/cluster-service: "true"

 kubernetes.io/name: "Grafana"

spec:

 type: NodePort

 ports:

https://github.com/kubernetes/heapster
https://influxdata.com
http://grafana.org

Logging and Monitoring

346

 - port: 80

 nodePort: 30000

 targetPort: 3000

 selector:

 k8s-app: influxGrafana

As you can see, we expose Grafana service with port 30000. This revision will allow
us to access the dashboard of monitoring from browser.

3.	 On the other hand, the replication controller of Heapster and the one combining
influxDB and Grafana require more additional editing to meet our Kubernetes system:
cat influxdb-grafana-controller.yaml

(Ignored above lines)

:

- image: gcr.io/google_containers/heapster_grafana:v2.6.0-2

 name: grafana

 env:

 resources:

 # keep request = limit to keep this container in
guaranteed class

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 100Mi

 env:

 # This variable is required to setup templates in
Grafana.

 - name: INFLUXDB_SERVICE_URL

 value: http://monitoring-influxdb.kube-system:8086

 - name: GF_AUTH_BASIC_ENABLED

 value: "false"

 - name: GF_AUTH_ANONYMOUS_ENABLED

 value: "true"

 - name: GF_AUTH_ANONYMOUS_ORG_ROLE

 value: Admin

 - name: GF_SERVER_ROOT_URL

Chapter 8

347

 value: /

:

(Ignored below lines)

For the container of Grafana, please change some environment variables. The first
one is the URL of influxDB service. Since we set up the DNS server, we don't have to
specify the particular IP address. But an extra-postfix domain should be added. It is
because the service is created in the namespace kube-system. Without adding this
postfix domain, DNS server cannot resolve monitoring-influxdb in the default
namespace. Furthermore, the Grafana root URL should be changed to a single slash.
Instead of the default URL, the root (/) makes Grafana transfer the correct webpage
in the current system.

4.	 In the template of Heapster, we run two Heapster containers in a pod. These two
containers use the same image and have similar settings, but actually, they take to
different roles. We just take a look at one of them as an example of modification:
cat heapster-controller.yaml

(Ignore above lines)

:

 containers:

 - image: gcr.io/google_containers/heapster:v1.0.2

 name: heapster

 resources:

 limits:

 cpu: 100m

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 200Mi

 command:

 - /heapster

 - --source=kubernetes:<MASTER_ENDPOINT_URL>:<EXPOSED_
PORT>?inClusterConfig=false

 - --sink=influxdb:http://monitoring-influxdb.kube-
system:8086

 - --metric_resolution=60s

:

(Ignore below lines)

Logging and Monitoring

348

At the beginning, remove all double-big-parentheses lines. These lines will cause
creation error, since they cannot be parsed or considered in the YAML format. Still,
there are two input variables that need to be replaced to possible values. Replace {{
metrics_memory }} and {{ eventer_memory }} to 200Mi. The value 200MiB
is a guaranteed amount of memory that the container could have. And please change
the usage for Kubernetes source. We specify the full access URL and port, and
disable ClusterConfig for refraining authentication. Remember to adjust on
both the heapster and eventer containers.

5.	 Now you can create these items with simple commands:
kubectl create -f influxdb-service.yaml

service "monitoring-influxdb" created

kubectl create -f grafana-service.yaml

You have exposed your service on an external port on all nodes in
your

cluster. If you want to expose this service to the external
internet, you may

need to set up firewall rules for the service port(s) (tcp:30000)
to serve traffic.

See http://releases.k8s.io/release-1.2/docs/user-guide/services-
firewalls.md for more details.

service "monitoring-grafana" created

kubectl create -f heapster-service.yaml

service "heapster" created

kubectl create -f influxdb-grafana-controller.yaml

replicationcontroller "monitoring-influxdb-grafana-v3" created

// Because heapster requires the DB server and service to be
ready, schedule it as the last one to be created.

kubectl create -f heapster-controller.yaml

replicationcontroller "heapster-v1.0.2" created

6.	 Check your Kubernetes resources at namespace kube-system:

kubectl get svc --namespace=kube-system

NAME CLUSTER-IP EXTERNAL-IP PORT(S)
AGE

heapster 192.168.135.85 <none> 80/TCP
12m

Chapter 8

349

kube-dns 192.168.0.2 <none> 53/UDP,53/
TCP 15h

monitoring-grafana 192.168.84.223 nodes 80/TCP
12m

monitoring-influxdb 192.168.116.162 <none> 8083/
TCP,8086/TCP 13m

kubectl get pod --namespace=kube-system

NAME READY STATUS
RESTARTS AGE

heapster-v1.0.2-r6oc8 2/2 Running 0
4m

kube-dns-v11-k81cm 4/4 Running 0
15h

monitoring-influxdb-grafana-v3-d6pcb 2/2 Running 0
12m

Congratulations! Once you have all the pods in a ready state, let's check the monitoring
dashboard.

Introducing the Grafana dashboard
At this moment, the Grafana dashboard is available through nodes' endpoints. Please make
sure the node's firewall or security group on AWS has opened port 30000 to your local subnet.
Take a look at the dashboard using a browser. Type <NODE_ENDPOINT>:30000 in your URL
search bar:

Logging and Monitoring

350

In the default settings, we have two dashboards Cluster and Pods. The Cluster board covers
nodes' resource utilization, such as CPU, memory, network transaction, and storage. The Pods
dashboard has similar plots for each pod and you can watch each container in a pod.

As the preceding images show, for example, we can observe the memory utilization of
individual containers in the pod kube-dns-v11, which is the cluster of the DNS server.
The purple lines in the middle just indicate the limitation we set to the containers skydns
and kube2sky.

Creating a new metric to monitor pods
There are several metrics for monitoring offered by Heapster (https://github.com/
kubernetes/heapster/blob/master/docs/storage-schema.md). We are going to
show you how to create a customized panel by yourself. Please take the following steps as
a reference:

1.	 Go to the Pods dashboard and click on ADD ROW at the bottom of the webpage. A
green button will show up on the left-hand side. Choose to add a graph panel.

https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md

Chapter 8

351

2.	 First, give your panel a name. For example, CPU Rate. We would like to create one
showing the rate of CPU's utility:

3.	 Set up the parameters in the query as shown in the following screenshot:

�� FROM: For this parameter input cpu/usage_rate

�� WHERE: For this parameter set type = pod_container

Logging and Monitoring

352

�� AND: Set this parameter with the namespace_name=$namespace,
pod_name= $podname value

�� GROUP BY: Enter tag(container_name) for this parameter

�� ALIAS BY: For this parameter input $tag_container_name

4.	 Good job! You can now save the pod by clicking on the icon at the top:

Just try to discover more functionality of the Grafana dashboard and the Heapster monitoring
tool. You will get more details about your system, services, and containers through the
information from the monitoring system.

See also
This recipe informs you how to monitor your master node and nodes in the Kubernetes
system. However, it is wise to study the recipes about the main components and daemons.
You can get more of an idea about the view of working processes and resource usage.
Moreover, since we have worked with several services to build our monitoring system,
reviewing the recipe about the Kubernetes services again will give you a clear idea about
how you can build up this monitoring system.

ff The Creating an overlay network, Configuring master, and Configuring nodes recipes
in Chapter 1, Building Your Own Kubernetes

ff The Working with services recipe in Chapter 2, Walking through Kubernetes Concepts

Kubernetes is a project which keeps moving forward and upgrading at a fast speed.
The recommended way for catching up is to check out new features on its official
website: http://kubernetes.io. Also, you can always get new Kubernetes on GitHub:
https://github.com/kubernetes/kubernetes/releases. Keeping your Kubernetes
system up to date, and learning new features practically, is the best method to access the
Kubernetes technology continuously.

http://kubernetes.io
https://github.com/kubernetes/kubernetes/releases

353

Index
A
alternatives, private Docker registry

Amazon EC2 Container Registry 222
Docker Trusted Registry 221
Nexus Repository Manager 221

Amazon EC2 Container Registry
about 222
reference 222

Amazon Web Services (AWS)
about 222
Kubernetes infrastructure, building 236-238
subnets, creating 239
URL 236
VPC, creating 238

application
layers, creating 255-257
managing, AWS OpsWorks used 245-247

application logs
collecting 321, 322
working 331, 332

application management
OpsWorks, creating for 280-289

architecture, Kubernetes
exploring 1, 2
Kubernetes master 2
Kubernetes node 4

authentication, enabling for API call
API requests, sending on etcd host 313-315
in Kubernetes master 315

authorization
about 313
using 316, 318

auto startup script, datastore
about 17
startup script (init) 18-20
startup script (systemd) 18

Availability Zones (AZ) 237
AWS CloudFormation

network infrastructure, creating 271-280
using, for fast provisioning 269-271

awsElasticBlockStore volume 98
AWS OpsWorks

used, for managing application 245-247

C
Ceph RADOS Block Device

reference 97
Chef

URL 245, 253
Classless Inter-Domain Routing (CIDR) 33
ClusterIP service 85
Command Line Interface (CLI) 58
configuration files

JSON 165-168
pods 169
working with 164
YAML 164

container nginx
URL 49

container ports
container-to-container

communications 142-148
external-to-internal communications 152-154
forwarding 140-142
pod-to-pod communications 149
pod-to-service communications 149-151

354

container, running in Kubernetes
about 49, 50
application, stopping 53
HTTP server (nginx), running 51
port, exposing for external access 52
working 53-56

containers
pod, as daemon set 160-162
pod, as job 156, 157
references 131
scaling 129-133
using 154-156

Continuous Delivery (CD)
about 222
pipeline, setting up 222-234
reference 207

Continuous Integration (CI)
reference 207

D
daemon set

running, on specific nodes 162-164
datastore, building

about 13
auto startup script 17
CentOS 7 13
configuration 20, 21
etcd, running 16, 17
Linux 13
Red Hat Enterprise Linux 7 13
Ubuntu Linux 15.10 Wily Werewolf 13

DNS server, Kubernetes system
enabling, in kubelet 344
setting up 342
starting, templates used 342-344

Docker
reference 4
URL 8

docker build command 327
Dockerfile 326
Docker Hub

URL 61, 194
Docker installation

reference 12

Docker Trusted Registry
about 221
reference 221

downwardAPI volume 98

E
Elasticsearch

about 324
reference 322

ELB
creating 254, 255
security groups 254, 255

ELK (Elasticsearch, Logstash, and
Kibana) 321

emptyDir volume 88-90
etcd

about 6, 173
reference 6
static mechanism 174-178
storing 173, 174

etcd discovery
service, reference 17
using 179, 180

etcd log
working with 336-339

F
Flask

reference 222
Flocker

about 96
reference 96

flocker volume 96
Frontend WebUI

about 200-202
working 203-206

G
gcePersistentDisk volume 98
GitHub

URL 245
gitRepo volume 97

355

GlusterFS
about 94
URL 94

glusterfs volume 94-96
Google Container Engine 9
Grafana

URL 345
Grafana dashboard

about 349, 350
new metric, creating to monitor

pods 350-352

H
Heapster

URL 345
hostPath volume 90
HTTP Request Plugin

reference 214

I
Identity Access Management (IAM)

about 222
role, adjusting 249, 250

influxDB
URL 345

installation, master
about 34
CentOS 7 34-36
daemon dependency, adding 36, 37
other Linux options 38-40
Red Hat Enterprise Linux 7 34-36
verification 40

installation, nodes
CentOS 7 44-46
other Linux options 46-48
Red Hat Enterprise Linux 7 44-46
verification 48

instances
starting 268

Intrinsic Functions 270
iscsi volume 96

J
Jenkins integration

about 207
Jenkins project, creating 209-211
Jenkins server, installing 207-209
program, deploying 213-216
program testing, running 211-213

job
creating, with multiple pods 158-160

JSON
URL 165

K
kernel version

reference 11
Kibana

about 330
URL 330

kubeconfig
about 292
advanced setting 292
cleaning up 298
current context, changing 295-297
current context, setting up 295-297
new cluster, setting up 294, 295
new credential, reference link 294
new credential, setting up 293, 294
overview 58-60
reference link 293

kubectl command 58
kubelet binary file

reference 184
Kubernetes

about 1, 304
architecture 1, 2
auto-deploying, through Chef recipes 253
environment, preparing 8, 9
infrastructure, building, in AWS 236-238
logs, working with 332-336
reference link 316
replication controller 328, 329
service 328, 329

356

Kubernetes 1.2
reference link 304

Kubernetes environment
etcd 12
hardware resource 9, 10
Kubernetes master 11
Kubernetes nodes 12
operating system 10, 11

Kubernetes master
about 2
API server (kube-apiserver) 3
Command Line Interface (kubectl) 4
controller manager (kube-controller-

manager) 4
functionalities 2
kube-apiserver 3
kube-controller-manager 3
kube-scheduler 3
scheduler (kube-scheduler) 3

Kubernetes node
about 4
kubelet 5
Proxy (kube-proxy) 5, 6

Kubernetes Plugin
reference 215

Kubernetes RPMs
reference 35

L
labels

about 121
working with 122-124

label selectors
about 121
empty label selectors 122
equality-based label selector 122
null label selector 122
set-based label selector 122
used, for linking service with replication

controller 124-128
Linux

about 13
binary, downloading 14
etcd, installing 15
user, creating 15

live containers
updating 133-139

LoadBalancer service 85
Logstash

about 324
reference 324

M
master

configuring 33, 34
master and node

monitoring 340
microservices

about 196-199
working 202

Model-View-Controller (MVC) 193
monitoring cluster

installing 345-348
monolithic

moving, to microservices 193-196
multiple masters

building 181, 182
configuration files, preparing 186-189
daemons, enabling 190-192
kubelet service, starting 190-192
kubelet, setting up 184, 185
multiple master nodes, preparing 182-184

N
names

working with 109-113
namespaces

default namespace, changing 116
deleting 117-120
LimitRange, deleting 121
working with 114, 115

NAT gateway
reference 238

Network File System (NFS) 92
Nexus Repository Manager

about 221
reference 221

nfs volume 92, 93

357

nginx
URL 140

NodePort service 85
nodes

about 41
capacity, managing 299-301
computing resources, managing

in pod 302-304
configuring 41-43
installation 44
resources, setting 298

O
OpsWorks

creating, for application
management 280-289

instance 250-252
OpsWorks layer

about 248
creating 248, 249

OpsWorks stack
about 247
creating 255

overlay network
about 7
CentOS 7 24
creating 22
flannel 7
flannel networking configuration 28
installing 23, 24
integrating, with Docker 29-33
Linux options 25-28
Red Hat Enterprise Linux 7 24, 25

P
PersistentVolume (PV) 99-103
pods

about 61
working with 61-66

private Docker registry
alternatives 221
reference 217
working with 216-220

Q
qperf

reference 22

R
rbd volume 97
recipes

for etcd 259, 260
for Kubernetes master 260-264
for Kubernetes node 264-268

Remote Procedure Call (RPC) 194
replication controller

about 170
configuration, changing 72
creating 68-70
information, obtaining 71, 72
removing 73-75
working with 67, 68

resource
setting, in nodes 298

RESTful API
working with 308-312

rkt
reference 4

S
secrets

about 104
creating 104, 105
deleting 107-109
Docker authentication 104
Opaque 104
picking up, in container 106, 107
service account token 104
types 104
working with 104

selectors
about 121
working with 121-124

services
about 170
creating, as ClusterIP type 85
creating, as LoadBalancer type 85

358

creating, as NodePort type 85
creating, for different resources 79
creating, for pod 79, 80
creating, for replication controller 80
creating, in different type 85
creating, in NodePort type 85, 86
creating with session affinity, based on

another service 84
deleting 86
external IP, adding 80
no-selector service, creating for

endpoint 81, 82
working with 76-78

single point of failure (SPOF) 238
stack configuration, for custom recipe 258
startup script 325
subnets

creating 239
Internet Gateway (IGW) 240
Network Address Translation (NAT) 240
route table, associating 241, 242
security group, creating 242-244

Swagger
reference link 312

T
Time to Live (TTL) 192

U
user authorization

flags 317

V
Vagrant

URL 8
Virtual Private Cloud (VPC) 237
volumes

awsElasticBlockStore 98
downwardAPI 98, 99
emptyDir 88-90
flocker 96
gcePersistentDisk 98
gitRepo 97
glusterfs 94-96
hostPath 90, 91
iscsi 96
nfs 92, 93
PersistentVolume (PV) 100-103
rbd 97
working with 87, 88

W
WebUI

exploring 305-308

Y
YAML

URL 164

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building Your Own Kubernetes
	Introduction
	Exploring architecture
	Preparing your environment
	Building datastore
	Creating an overlay network
	Configuring master
	Configuring nodes
	Run your first container in Kubernetes

	Chapter 2: Walking through Kubernetes Concepts
	Introduction
	An overview of Kubernetes control
	Working with pods
	Working with a replication controller
	Working with services
	Working with volumes
	Working with secrets
	Working with names
	Working with namespaces
	Working with labels and selectors

	Chapter 3: Playing with Containers
	Introduction
	Scaling your containers
	Updating live containers
	Forwarding container ports
	Ensuring flexible usage of your containers
	Working with configuration files

	Chapter 4: Building a High Availability Cluster
	Introduction
	Clustering etcd
	Building multiple masters

	Chapter 5: Building a Continuous Delivery Pipeline
	Introduction
	Moving monolithic to microservices
	Integrating with Jenkins
	Working with the private Docker registry
	Setting up the Continuous Delivery pipeline

	Chapter 6: Building Kubernetes
on AWS
	Introduction
	Building the Kubernetes infrastructure
in AWS
	Managing applications using AWS OpsWorks
	Auto-deploying Kubernetes through Chef recipes
	Using AWS CloudFormation for fast provisioning

	Chapter 7: Advanced Cluster Administration
	Introduction
	Advanced settings in kubeconfig
	Setting resource in nodes
	Playing with WebUI
	Working with a RESTful API
	Authentication and authorization

	Chapter 8: Logging and Monitoring
	Introduction
	Collecting application logs
	Working with Kubernetes logs
	Working with etcd log
	Monitoring master and node

	Index

