

Infrastructure as Code
(IAC) Cookbook

Over 90 practical, actionable recipes to automate, test,
and manage your infrastructure quickly and effectively

Stephane Jourdan

Pierre Pomès

BIRMINGHAM - MUMBAI

Infrastructure as Code (IAC) Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2017

Production reference: 1150217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-491-0

www.packtpub.com

www.packtpub.com

Credits

Authors
Stephane Jourdan

Pierre Pomès

Reviewer
Pierre Mavro

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editors
Sanjeet Rao

Monika Sangwan

Technical Editor
Devesh Chugh

Copy Editor
Tom Jacob

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Stephane Jourdan is a passionate infrastructure engineer, enthusiastic entrepreneur,
zealous trainer, and continuous learner, working on innovative infrastructures since the early
2000s. He focuses equally on tools and culture, in environments as different as startups,
online audio/video media, e-commerce, and semi-conductors. The common point between all
these experiences is that success comes with rigor, technical repeatability, communication,
and a shared team culture. He co-founded an infrastructure automation consultancy
(https://www.linkedin.com/company/green-alto), a web radio (http://
phauneradio.com/), a container/serverless platform for developers (https://www.
squarescale.com/), and a sound design studio (http://www.tarabust.com/).

When Stephane isn't starting or contributing to new open source projects, he's usually found
hiking in remote places with his camera.

Pierre Pomès is a senior enthusiastic engineer of open source technologies and a Linux
adept since 1994. He has been working in the IT industry for the last twenty years mostly in
C development, system administration, and security including PCI-DSS. He is currently an
architect and a DevOps team leader for Reservit, an online hotel booking engine. He has
also contributed to the pfSense project.

https://www.linkedin.com/company/green-alto
http://phauneradio.com/
http://phauneradio.com/
https://www.squarescale.com/
https://www.squarescale.com/
http://www.tarabust.com/

About the Reviewer

Pierre Mavro lives in a suburb of Paris. He's an open source software lover and has been
working with Linux for more than 10 years now. Today, he works as a Lead SRE at Criteo,
where he manages distributed systems and NoSQL technologies. During the last few years,
he has been designing distributed and high-available infrastructures on public/private cloud
infrastructures. He also worked for financial software companies on high-frequency trading
technologies. He also wrote a book on MariaDB named MariaDB High Performance by Packt
Publishing. He is also one of the co-founders of Nousmotards, an application for bike riders.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www.packtpubom/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon
page at https://www.amazon.com/dp/1786464918.

If you'd like to join our team of regular reviewers, you can email us at customerreviews@
packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for
their valuable feedback. Help us be relentless in improving our products!

https://www.amazon.com/dp/1786464918

i

Table of Contents
Preface	 v
Chapter 1: Vagrant Development Environments	 1

Introduction	 2
Adding an Ubuntu Xenial (16.04 LTS) Vagrant box	 2
Using a disposable Ubuntu Xenial (16.04) in seconds	 3
Enabling VirtualBox Guest Additions in Vagrant	 5
Using a disposable CentOS 7.x with VMware in seconds	 7
Extending the VMware VM capabilities	 8
Enabling multiprovider Vagrant environments	 10
Customizing a Vagrant VM	 12
Using Docker with Vagrant	 13
Using Docker in Vagrant for a Ghost blog behind NGINX	 16
Using Vagrant remotely with AWS EC2 and Docker	 19
Simulating dynamic multiple host networking	 22
Simulating a networked three-tier architecture app with Vagrant	 25
Showing your work on the LAN while working with Laravel	 30
Sharing access to your Vagrant environment with the world	 33
Simulating Chef upgrades using Vagrant	 36
Using Ansible with Vagrant to create a Docker host	 40
Using Docker containers on CoreOS with Vagrant	 44

Chapter 2: Provisioning IaaS with Terraform	 47
Introduction	 48
Configuring the Terraform AWS provider	 48
Creating and using an SSH key pair to use on AWS	 51
Using AWS security groups with Terraform	 54
Creating an Ubuntu EC2 instance with Terraform	 56
Generating meaningful outputs with Terraform	 60
Using contextual defaults with Terraform	 61

ii

Table of Contents

Managing S3 storage with Terraform	 63
Creating private Docker repositories with Terraform	 66
Creating a PostgreSQL RDS database with Terraform	 67
Enabling CloudWatch Logs for Docker with Terraform	 72
Managing IAM users with Terraform	 74

Chapter 3: Going Further with Terraform	 81
Introduction	 82
Handling different environments with Terraform	 82
Provisioning a CentOS 7 EC2 instance with Chef using Terraform	 85
Using data sources, templates, and local execution	 89
Executing remote commands at bootstrap using Terraform	 92
Using Docker with Terraform	 94
Simulating infrastructure changes using Terraform	 98
Teamwork – sharing Terraform infrastructure state	 103
Maintaining a clean and standardized Terraform code	 108
One Makefile to rule them all	 110
Team workflow example	 113
Managing GitHub with Terraform	 122
External monitoring integration with StatusCake	 125

Chapter 4: Automating Complete Infrastructures with Terraform	 129
Introduction	 129
Provisioning a complete CoreOS infrastructure on Digital Ocean
with Terraform	 130
Provisioning a three-tier infrastructure on Google Compute Engine	 137
Provisioning a GitLab CE + CI runners on OpenStack	 146
Managing Heroku apps and add-ons using Terraform	 153
Creating a scalable Docker Swarm cluster on bare metal with Packet	 156

Chapter 5: Provisioning the Last Mile with Cloud-Init	 165
Introduction	 165
Using cloud-init on AWS, Digital Ocean, or OpenStack	 166
Handling files using cloud-init	 170
Configuring the server's time zone using cloud-init	 171
Managing users, keys, and credentials using cloud-init	 172
Managing repositories and packages using cloud-init	 174
Running commands during boot using cloud-init	 176
Configuring CoreOS using cloud-init	 178
Deploying Chef Client from start to finish using cloud-init	 184
Deploying a remote Docker server using cloud-init	 187

iii

Table of Contents

Chapter 6: Fundamentals of Managing Servers with Chef and Puppet	 191
Introduction	 192
Getting started (notions and tools)	 192
Installing the Chef Development kit and Puppet Collections	 195
Creating a free hosted server Chef account and a Puppet server	 197
Automatically bootstrapping a Chef client and a Puppet agent	 201
Installing packages	 204
Managing services	 213
Managing files, directories, and templates	 216
Handling dependencies	 223
More dynamic code using notifications	 226
Centrally sharing data using a Chef data bag and Hiera with Puppet	 230
Creating functional roles	 237
Managing external Chef cookbooks and Puppet modules	 239

Chapter 7: Testing and Writing Better Infrastructure Code
with Chef and Puppet	 249

Introduction	 249
Linting Chef code with Foodcritic and Puppet code with puppet-lint	 250
Unit testing with ChefSpec and rspec-puppet	 259
Testing infrastructure with Test Kitchen for Chef and Beaker for Puppet	 271
Integration testing with ServerSpec	 276

Chapter 8: Maintaining Systems Using Chef and Puppet	 287
Introduction	 287
Maintaining consistent systems using scheduled convergence	 288
Creating environments	 293
Using Chef encrypted data bags and Hiera-eyaml with Puppet	 298
Using Chef Vault encryption	 306
Accessing and manipulating system information with Ohai	 308
Automating application deployment (a WordPress example)	 313
Using a TDD workflow	 320
Planning for the worse – train to rebuild working systems	 329

Chapter 9: Working with Docker	 335
Introduction	 335
Docker usage overview	 336
Choosing the right Docker base image	 339
Optimizing the Docker image size	 343
Versioning Docker images with tags	 345
Deploying a Ruby-on-Rails web application in Docker	 347
Building and using Golang applications with Docker	 349
Networking with Docker	 351

iv

Table of Contents

Creating more dynamic containers	 354
Auto-configuring dynamic containers	 355
Better security with unprivileged users	 357
Orchestrating with Docker Compose	 359
Linting a Dockerfile	 363
Deploying a private Docker registry with S3 storage	 365

Chapter 10: Maintaining Docker Containers	 369
Introduction	 369
Testing Docker containers with BATS	 370
Test-Driven Development (TDD) with Docker and ServerSpec	 374
The workflow for creating automated Docker builds from Git	 380
The workflow for connecting the Continuous Integration (CI) system	 388
Scanning for vulnerabilities with Quay.io and Docker Cloud	 391
Sending Docker logs to AWS CloudWatch logs	 395
Monitoring and getting information out of Docker	 399
Debugging containers using sysdig	 404

Index	 409

v

Preface
In continuously evolving environments, operations and development teams are increasingly
working together, using tools and techniques and sharing a common culture popularized
as part of the DevOps movement. From development to production, a common tooling and
approach emerged—often borrowed from developers and the agile techniques.

Now that APIs are everywhere in the datacenter, automation took over every aspect and
every step of what used to be a sysadmin or IT job—infrastructure is now basically code, and
should be considered as such while working alone in development or in production within a
distributed team.

Learning the most important tools, techniques, and workflows that fit in an
infrastructure-as-code description can be a daunting task, and many teams can
either be misled or discouraged by the amount of information, change, and knowledge
required to switch to infrastructure-as-code.

This book has been written keeping in mind all those teams that we have met in the past
few years through our respective jobs—teams interested in DevOps, automation, and
code, sometimes already doing part of it quite well, but willing to discover other tools and
techniques, discovering how they could do better by improving the quality of their code, the
stability of their infrastructure, the scalability of their services, the speed of their deployments,
the efficiency of team work, and the feedback loop.

This book is a humble attempt to cover everything related to infrastructure-as-code, based
on our real-life experience, from development workflows with Vagrant to complex production
infrastructure deployments with Terraform or Ansible, from configuration management
essentials using Chef and Puppet to advanced Test-Driven Development (TDD) techniques,
and thorough infrastructure code coverage testing. It will also give insights and advanced
Docker techniques, and much more. Whenever it was possible or relevant, we tried to show
alternative ways of doing the same thing with another tool or approach, so that everyone with
any prior knowledge of the subject can still find something to learn in any section of the book.

Preface

vi

We hope you'll get much out of this book, and that automating and testing using
infrastructure-as-code will be as fun for you as it's been for us to write about.

What this book covers
Chapter 1, Vagrant Development Environments, is all about automated development
environments using Vagrant. Launch simple or complex environments, simulate various virtual
networking configurations, combine Vagrant and Docker or the Amazon cloud, and hand over
the provisioning of virtual machines to Chef and Ansible. All examples are self-contained
real-life little projects.

Chapter 2, Provisioning IaaS with Terraform, is everything needed to get started with
Terraform on Amazon Web Services, from managed database servers to log handling,
storage, credentials, Docker registries, and EC2 instances.

Chapter 3, Going Further with Terraform, sheds light on some more advanced techniques of
using Terraform code, such as dynamic data sources, separate environments, Docker, GitHub
or StatusCake integration, team work, and how the code linter works.

Chapter 4, Automating Complete Infrastructures with Terraform, will show and describe
complete, real-life Terraform code for infrastructures on Amazon Web Services, Digital Ocean,
OpenStack, Heroku, Packet, and Google Cloud. We'll deploy a Docker Swarm cluster on a bare
metal CoreOS cluster for containers, an n-tier web infrastructure, or a GitLab + CI combo.

Chapter 5, Provisioning the Last Mile with Cloud-Init, explores everything we can do with
cloud-init code—file management, server configuration, adding users and keys, repositories
and packages, or examples of extensions such as Chef, CoreOS, and Docker.

Chapter 6, Fundamentals of Managing Servers with Chef and Puppet, shows the essentials of
using Chef code to automate an infrastructure. From the workstation setup to writing our own
recipes to managing external cookbooks, this chapter contains it all—we'll manage packages,
services, files, dynamic templates, dependencies, relationships, shared data, and more, all
using code. Alternative ways of doing similar actions using Puppet code are also shown for you
to have a better view of the ecosystem.

Chapter 7, Testing and Writing Better Infrastructure Code with Chef and Puppet, is all about
advanced techniques of testing code for quality and sustainability. It also covers unit and
integration testing, linters, and tools for Chef and Puppet, so that you'll produce the best
infrastructure code possible.

Chapter 8, Maintaining Systems Using Chef and Puppet, shows advanced features made
possible by Chef or Puppet code, such as scheduled convergence, encrypted secrets,
environments, live system information retrieval, application deployments, and workflows
or practices to be safe.

Preface

vii

Chapter 9, Working with Docker, is about using Docker containers from a developer point of
view—choosing a base image, optimizations, tags, versioning, deploying Ruby-on-Rails or Go
applications, networking, security, linting, and using our own durable private registry—all using
simple Docker instructions—as code.

Chapter 10, Maintaining Docker Containers, is showing more advanced Docker usage for
developers and engineers, such as code testing, automated build pipelines and Continuous
Integration, automated vulnerability scanning, monitoring, and debugging.

What you need for this book
The essential requirement is a computer capable of running a Linux virtual machine and an
Internet connection. The author's computers are laptops running Mac OS 10.11 and Fedora
25, with VirtualBox 5, but any other Linux distribution will work as well. Vagrant, Terraform,
the Chef Development Kit, and Docker also work on the Windows platform, although this is
untested by the authors.

As we're dealing with Infrastructure-as-a-Service (IaaS) here, also required are valid accounts
with Amazon Web Services (AWS), Google Cloud, Digital Ocean, Packet, Heroku, or an
OpenStack deployment.

Through the various chapters of this book, we'll also use free Software-as-a-Service (SaaS)
accounts such as GitHub, Travis CI, Docker Hub, Quay.io, Hosted Chef, and StatusCake.

Who this book is for
This book is for DevOps engineers and developers working in cross-functional teams or
operations and would like to switch to IAC to manage complex infrastructures.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

Preface

viii

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Include
both the NGINX configuration and docker-compose.yml files from the previous recipe
and you're good to go."

A block of code is set as follows:

Vagrant.configure("2") do |config|
 # all your Vagrant configuration here
end

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 config.vm.provision "ansible_local" do |ansible|
 ansible.version = "1.9.6"
 ansible.install_mode = :pip
 ansible.playbook = "playbook.yml"
 end

Preface

ix

Any command-line input or output is written as follows:

$ vagrant plugin list

vagrant-vbguest (0.13.0)

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "You can see your newly
created security group by logging into the AWS Console and navigating to EC2 Dashboard |
Network & Security | Security Groups."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

x

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Infrastructure-as-Code-IAC-Cookbook. We also have other
code bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/InfrastructureasCode_IAC_Cookbook_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

https://github.com/PacktPublishing/Infrastructure-as-Code-IAC-Cookbook
https://github.com/PacktPublishing/Infrastructure-as-Code-IAC-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/InfrastructureasCode_IAC_Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/InfrastructureasCode_IAC_Cookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata

Preface

xi

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Vagrant Development

Environments

In this chapter, we will cover the following recipes:

ff Adding an Ubuntu Xenial (16.04 LTS) Vagrant box

ff Using a disposable Ubuntu Xenial (16.04) in seconds

ff Enabling VirtualBox Guest Additions in Vagrant

ff Using a disposable CentOS 7.x with VMware in seconds

ff Extending the VMware VM capabilities

ff Enabling multiprovider Vagrant environments

ff Customizing a Vagrant VM

ff Using Docker with Vagrant

ff Using Docker in Vagrant for a Ghost blog behind NGINX

ff Using Vagrant remotely with AWS EC2 and Docker

ff Simulating dynamic multiple host networking

ff Simulating a networked three-tier architecture app with Vagrant

ff Showing your work on the LAN while working with Laravel

ff Sharing access to your Vagrant environment with the world

ff Simulating Chef upgrades using Vagrant

ff Using Ansible with Vagrant to create a Docker host

ff Using Docker containers on CoreOS with Vagrant

Vagrant Development Environments

2

Introduction
Vagrant is a free and open source tool by Hashicorp aimed at building a repeatable
development environment inside a virtual machine, using simple Ruby code. You can then
distribute this simple file with other people, team members, and external contributors, so
that they immediately have a working running environment as long as they have virtualization
on their laptop. It also means that you can use a Mac laptop, and with a simple command,
launch a fully configured Linux environment for you to use locally. Everyone can work using
the same environment, regardless of their own local machine. Vagrant is also very useful to
simulate full production environments, with multiple machines and specific operating system
versions. Vagrant is compatible with most hypervisors, such as VMware, VirtualBox,
or Parallels, and can be largely extended using plugins.

Vagrant uses boxes to run. These boxes are just packaged virtual machines images that are
available, for example, from https://atlas.hashicorp.com/boxes/search, or you
can alternatively build your own using various tools.

Vagrant can be greatly extended using plugins. There're plugins for almost anything you can
think about, and most of them are community supported. From specific guest operating
systems to remote IaaS providers, features around sharing, caching or snapshotting,
networking, testing or specifics to Chef/Puppet, a lot can be done through plugins in Vagrant.

A list of all available plugins, including all Vagrant providers is available on the Vagrant wiki
here: https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-
Plugins.

More information about all integrated providers can be found on Vagrant's website:
https://www.vagrantup.com/docs/providers/.

You can download a Vagrant installer for your platform from https://www.vagrantup.
com/downloads.html.

The Vagrant version in use for this book is Vagrant 1.8.4

Adding an Ubuntu Xenial (16.04 LTS)
Vagrant box

Vagrant boxes are referred to by their names, usually following the username/boxname
naming scheme. A 64-bits Precise box released by Ubuntu will be named ubuntu/precise64
while the centos/7 box will always be the latest CentOS 7 official box.

https://atlas.hashicorp.com/boxes/search
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins
https://www.vagrantup.com/docs/providers/
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Chapter 1

3

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation using the free and open source Virtualbox hypervisor

ff An Internet connection

How to do it…
Open a terminal and type the following code:

$ vagrant box add ubuntu/xenial64
==> box: Loading metadata for box 'ubuntu/xenial64'
 box: URL: https://atlas.hashicorp.com/ubuntu/xenial64
==> box: Adding box 'ubuntu/xenial64' (v20160815.0.0) for provider:
virtualbox
 box: Downloading: https://atlas.hashicorp.com/ubuntu/boxes/xenial64/
versions/20160815.0.0/providers/virtualbox.box
==> box: Successfully added box 'ubuntu/xenial64' (v20160815.0.0) for
'virtualbox'!

How it works…
Vagrant knows where to look for the latest version for the requested box on the Atlas
service and automatically downloads it over the Internet. All boxes are stored by default
in ~/.vagrant.d/boxes.

There's more…
If you're interested in creating your own base Vagrant boxes, refer to Packer (https://www.
packer.io/) and the Chef Bento project (http://chef.github.io/bento/).

Using a disposable Ubuntu Xenial (16.04) in
seconds

We want to access and use an Ubuntu Xenial system (16.04 LTS) as quickly as possible.

To do that, Vagrant uses a file named Vagrantfile to describe the Vagrant infrastructure.
This file is in fact pure Ruby that Vagrant reads to manage your environment. Everything
related to Vagrant is done inside a block such as the following:

Vagrant.configure("2") do |config|
 # all your Vagrant configuration here
end

https://www.packer.io/
https://www.packer.io/
http://chef.github.io/bento/

Vagrant Development Environments

4

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox installation

ff An Internet connection

How to do it…
1.	 Create a folder for the project:

$ mkdir vagrant_ubuntu_xenial_1 && cd $_

2.	 Using your favorite editor, create this very minimal Vagrantfile to launch an ubuntu/
xenial64 box:
Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
end

3.	 Now you can execute Vagrant, by explicitly using the Virtualbox hypervisor:
$ vagrant up --provider=virtualbox

4.	 Within seconds, you'll have a running Ubuntu 16.04 Vagrant box on your host and you
can do whatever you want with it. For example, start by logging into it via Secure Shell
(SSH) by issuing the following vagrant command and use the system normally:
$ vagrant ssh

Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-34-generic x86_64)

[…]

ubuntu@ubuntu-xenial:~$ hostname

ubuntu-xenial

ubuntu@ubuntu-xenial:~$ free -m

ubuntu@ubuntu-xenial:~$ cat /proc/cpuinfo

5.	 When you're done with your Vagrant VM, you can simply destroy it:

$ vagrant destroy
==> default: Forcing shutdown of VM...
==> default: Destroying VM and associated drives...

Alternatively, we can just stop the Vagrant VM with the goal of restarting it later in its
current state using vagrant halt:

$ vagrant halt

Chapter 1

5

How it works…
When you started Vagrant, it read the Vagrantfile, asking for a specific box to run (Ubuntu
Xenial). If you previously added it, it will launch it right away through the default hypervisor
(in this case, VirtualBox), or if it's a new box, download it for you automatically. It created the
required virtual network interfaces, then the Ubuntu VM got a private IP address. Vagrant took
care of configuring SSH by exposing an available port and inserting a default key, so you can
log into it via SSH without problems.

Enabling VirtualBox Guest Additions
in Vagrant

The VirtualBox Guest Additions are a set of drivers and applications to be deployed on a
virtual machine to have better performance and enable features such as folder sharing. While
it's possible to include the Guest Additions directly in the box, not all the boxes you'll find have
it, and even when they do, they can be outdated very quickly.

The solution is to automatically deploy the VirtualBox Guest Additions on demand, through
a plugin.

The downside to using this plugin is that the Vagrant box may now
take longer to boot, as it may need to download and install the right
guest additions for the box.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation
ff A working VirtualBox installation
ff An internet connection
ff The Vagrantfile from the previous recipe

How to do it…
Follow these steps to enable VirtualBox Guest Additions in Vagrant:

1.	 Install the vagrant-vbguest plugin:
$ vagrant plugin install vagrant-vbguest
Installing the 'vagrant-vbguest' plugin. This can take a few
minutes...
Installed the plugin 'vagrant-vbguest (0.13.0)'!

Vagrant Development Environments

6

2.	 Confirm that the plugin is installed:
$ vagrant plugin list

vagrant-vbguest (0.13.0)

3.	 Start Vagrant and see that the VirtualBox Guest Additions are installed:
$ vagrant up

[…]

Installing Virtualbox Guest Additions 5.0.26

[…]

Building the VirtualBox Guest Additions kernel modules

 ...done.

Doing non-kernel setup of the Guest Additions …done.

4.	 Now, maybe you don't want to do this every time you start you Vagrant box, because
it takes time and bandwidth or because the minor difference between your host
VirtualBox version and the one already installed in the Vagrant box isn't a problem for
you. In this case, you can simply tell Vagrant to disable the auto-update feature right
from the Vagrantfile:
config.vbguest.auto_update = false

5.	 An even better way to keep your code compatible with people without this plugin is to
use this plugin configuration only if the plugin is found by Vagrant itself:
if Vagrant.has_plugin?("vagrant-vbguest") then
 config.vbguest.auto_update = false
end

6.	 The full Vagrantfile now looks like this:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 if Vagrant.has_plugin?("vagrant-vbguest") then
 config.vbguest.auto_update = false
 end
end

How it works…
Vagrant plugins are automatically installed from the vendor's website, and made available
globally on your system for all other Vagrant environments you'll run. Once the virtual machine
is ready, the plugin will detect the operating system, decide if the Guest Additions need to
be installed or not, and if they do, install the necessary tools to do that (compilers, kernel
headers, and libraries), and finally download and install the corresponding Guest Additions.

Chapter 1

7

There's more…
Using Vagrant plugins also extends what you can do with the Vagrant CLI. In the case of the
VirtualBox Guest Addition plugin, you can do a lot of things such as status checks, manage
the installation, and much more:

$ vagrant vbguest --status

[default] GuestAdditions 5.0.26 running --- OK.

The plugin can later be called through Vagrant directly; here it's triggering the Guest Additions
installation in the virtual machine:

$ vagrant vbguest --do install

Using a disposable CentOS 7.x with VMware
in seconds

Vagrant supports both VMware Workstation and VMware Fusion through official plugins
available on the Vagrant store (https://www.vagrantup.com/vmware). Follow the
indications from the official website to install the plugins.

Vagrant boxes depend on the hypervisor—a VirtualBox image won't run on VMware. You need
to use dedicated images for each supervisor you choose to use. For example, Ubuntu official
releases only provide VirtualBox images. If you try to create a Vagrant box with a provider while
using an image built for another provider, you'll get an error.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VMware Workstation (PC) or Fusion (Mac) installation

ff A working Vagrant VMware plugin installation

ff An Internet connection

How to do it…
The Chef Bento project provides various multiprovider images we can use. For example,
let's use a CentOS 7.2 with Vagrant (bento/centos-7.2) with this simplest Vagrantfile:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
end

https://www.vagrantup.com/vmware

Vagrant Development Environments

8

Start your CentOS 7.2 virtual environment and specify the hypervisor you want to run:

$ vagrant up --provider=vmware_fusion

$ vagrant ssh

You're now running a CentOS 7.2 Vagrant box using VMware!

How it works…
Vagrant is powered by plugins extending its usage and capabilities. In this case, the Vagrant
plugin for VMware delegates all the virtualization features to the VMware installation,
removing the need for VirtualBox.

There's more…
If VMware is your primary hypervisor, you'll soon be tired to always specify the provider in the
command line. By setting the VAGRANT_DEFAULT_PROVIDER environment variable to the
corresponding plugin, you will never have to specify the provider again, VMware will be
the default:

$ export VAGRANT_DEFAULT_PROVIDER=vmware_fusion

$ vagrant up

See also
ff The Chef Bento Project at http://chef.github.io/bento/

ff A community VMware vSphere plugin at https://github.com/nsidc/vagrant-
vsphere

ff A community VMware vCloud Director plugin at https://github.com/
frapposelli/vagrant-vcloud

ff A community VMware vCenter plugin at https://github.com/frapposelli/
vagrant-vcenter

ff A community VMware vCloud Air plugin at https://github.com/frapposelli/
vagrant-vcloudair

Extending the VMware VM capabilities
The hardware specifications of the Vagrant box vary from image to image as they're specified
at the creation time. However, it's not fixed forever: it's just the default behavior. You can set
the requirements right in the Vagrantfile, so you can keep a daily small Vagrant box and
on-demand.

http://chef.github.io/bento/
https://github.com/frapposelli/vagrant-vcloud
https://github.com/frapposelli/vagrant-vcloud
https://github.com/frapposelli/vagrant-vcenter
https://github.com/frapposelli/vagrant-vcenter
https://github.com/frapposelli/vagrant-vcloudair
https://github.com/frapposelli/vagrant-vcloudair

Chapter 1

9

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VMware Workstation (PC) or Fusion (Mac) installation

ff A working Vagrant VMware plugin installation

ff An internet connection

ff The Vagrantfile from the previous recipe using a bento/centos72 box

How to do it…
The VMware provider can be configured inside the following configuration blocks:

VMware Fusion configuration
config.vm.provider "vmware_fusion" do |vmware|
 # enter all the vmware configuration here
end

VMware Workstation configuration
config.vm.provider "vmware_workstation" do |vmware|
 # enter all the vmware configuration here
end

If the configuration is the same, you'll end up with a lot of duplicated code. Take advantage of
the Ruby nature of the Vagrantfile and use a simple loop to iterate through both values:

["vmware_fusion", "vmware_workstation"].each do |vmware|
 config.vm.provider vmware do |v|
 # enter all the vmware configuration here
 end
end

Our default Bento CentOS 7.2 image has only 512 MB of RAM and one CPU. Let's double that
for better performance using the vmx["numvcpus"] and vmx["memsize"] keys:

 ["vmware_fusion", "vmware_workstation"].each do |vmware|
 config.vm.provider vmware do |v|
 v.vmx["numvcpus"] = "2"
 v.vmx["memsize"] = "1024"
 end
 end

Vagrant Development Environments

10

Start or restart your Vagrant machine to apply the changes:

$ vagrant up

[…]

Your box is now using two CPUs and 1 GB of RAM.

How it works…
Virtual machine configuration is the last thing done by Vagrant before starting up. Here, it just
tells VMware to allocate two CPUs and 1 GB of RAM to the virtual machine it's launching the
way you would have done manually from inside the software.

There's more…
Vagrant's authors may merge both plugins into one at some point in the future. The current
4.x version of the plugins is still split.

The VMX format is not very well documented by VMware. The possible keys and values can be
found on most VMware Inc. documentation about VMX configuration.

Enabling multiprovider Vagrant
environments

You might be running VMware on your laptop, but your coworker might not. Alternatively, you
want people to have the choice, or you simply want both environments to work! We'll see how
to build a single Vagrantfile to support them all.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox installation

ff A working VMware Workstation (PC) or Fusion (Mac) installation

ff A working Vagrant VMware plugin installation

ff An internet connection

ff The Vagrantfile from the previous recipe using a bento/centos72 box

Chapter 1

11

How to do it…
Some Vagrant boxes are available for multiple hypervisors, such as the CentOS 7 Bento box
we previously used. This way, we can simply choose which one to use.

Let's start with our previous Vagrantfile including customizations for VMware:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
 ["vmware_fusion", "vmware_workstation"].each do |vmware|
 config.vm.provider vmware do |v|
 v.vmx["numvcpus"] = "2"
 v.vmx["memsize"] = "1024"
 end
 end
end

How would we add the same configuration on VirtualBox as we have on VMware? Here's how
to customize VirtualBox similarly in the Vagrantfile:

 config.vm.provider :virtualbox do |vb|
 vb.memory = "1024"
 vb.cpus = "2"
 end

Add this to your current Vagrantfile, reload and you'll get the requested resources from your
hypervisor, be it VMware or VirtualBox.

It's nice, but we're still repeating ourselves with the values, leading to possible errors,
omissions, or mistakes in the future. Let's take advantage once again of the Ruby nature
of our Vagrantfile and declare some meaningful variables at the top of our file:

vm_memory = 1024
vm_cpus = 2

Now replace the four values by their variable names and you're done: you're centrally
managing characteristics of the Vagrant environment you're using and distributing,
whatever hypervisor you're using.

How it works…
The simple fact that the Vagrantfile is a pure Ruby file helps creating powerful and dynamic
configuration, by simply setting variables that we use later for all the providers.

Vagrant Development Environments

12

Customizing a Vagrant VM
Vagrant supports many configuration options through the Vagrantfile. Here are the most
useful ones for daily use.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation (with a hypervisor)

ff An Internet connection

ff The Vagrantfile from the previous recipe using a bento/centos72 box

How to do it…
Here are some possible customizations for your Vagrant Virtual Machine.

Set the hostname
If you want to specify the VM name right from Vagrant, just add the following:

config.vm.hostname = "vagrant-lab-1"

This will also add an entry with the hostname to the /etc/host file.

Disable new box version check at startup
You may be using a slow internet connection, or you know you do want to use your current
installed box, or maybe you're in a hurry and just want to get the job done; you can just
remove the option to check for a new version of the box at startup by adding the following:

config.vm.box_check_update = false

Use a specific box version
If you know you want to use a specific version of the box (maybe for debugging purposes or
compliance) and not the latest, you can simply declare it as follows:

config.vm.box_version = "2.2.9"

Chapter 1

13

Display an informational message to the user
A useful feature is to display some basic but relevant information to the user launching the
Vagrant box, such as usage or connection information. Don't forget to escape the special
characters. As it's Ruby, you can access all available variables, so the message can be even
more dynamic and useful to the user:

config.vm.post_up_message = "Use \"vagrant ssh\" to log into the
box. This VM uses #{vm_cpus} CPUs and #{vm_memory}MB of RAM."

Specify a minimum Vagrant version
Vagrant is updated quite often, and new features are added regularly. A good practice, if
you use a feature that is known to work only after a specific version, is to declare it in the
Vagrantfile, so people with an older version know they have to update:

Vagrant.require_version ">= 1.8.0"

Using Docker with Vagrant
Development environments can often be mixed, using both virtual machines and Docker
containers. While virtual machines include everything needed to run a full operating system
like memory, CPU, a kernel and all required libraries, a container is much more lightweight
and can share all this with its host, while keeping a good isolation through special kernel
features named cgroups. Docker containers helps developers use, share and ship a
bundle including everything needed to run their application. Here, we'll show how to use
Vagrant to start containers. Since Docker usage is a little different between Linux hosts and
other platforms, the reference used here is the native Docker platform—Linux.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation (no hypervisor needed)
ff A working Docker installation and basic Docker knowledge
ff An Internet connection

How to do it…
We'll see how to use, access, and manipulate an NGINX container in Vagrant using Docker as
a provider.

Vagrant Development Environments

14

Using NGINX Docker container through Vagrant
Let's start with the simplest Vagrantfile possible, using the nginx:stable container with the
Docker Vagrant provider:

Vagrant.configure("2") do |config|
 config.vm.hostname = "vagrant-docker-1"
 config.vm.post_up_message = "HTTP access: http://localhost/"
 config.vm.provider "docker" do |docker|
 docker.image = "nginx:stable"
 end
end

Simply start it up with the following code:

$ vagrant up --provider=docker
Bringing machine 'default' up with 'docker' provider...
==> default: Creating the container...
[…]
==> default: HTTP access: http://localhost/

Let's remove the need to specify the provider on the command line by setting a simple Ruby
environment access code at the top of the Vagrantfile:

ENV['VAGRANT_DEFAULT_PROVIDER'] = 'docker'

Now you can distribute your Vagrantfile and not worry about people forgetting to explicitly
specify the Docker provider.

Exposing Docker ports in Vagrant
Okay, the previous example wasn't terribly useful as we didn't expose any ports. Let's tell
Vagrant to expose the Docker container HTTP (TCP/80) port to our host's HTTP (TCP/80) port:

 config.vm.provider "docker" do |docker|
 docker.image = "nginx:stable"
 docker.ports = ['80:80']
 end

Restart the Vagrant and verify you can access your NGINX container:

$ curl http://localhost/

Sharing folders with Docker through Vagrant
What about sharing a local folder so you can code on your laptop and see the result
processed by the Vagrant environment? The default NGINX configuration reads files from
/usr/share/nginx/html. Let's put our own index.html in there.

Chapter 1

15

Create a simple src/index.html file, containing some text:

$ mkdir src; echo "<h1>Hello from Docker via Vagrant<h1>" > src/index.
html

Add the Docker volume configuration to our Docker provider block in Vagrant:

 config.vm.provider "docker" do |docker|
 docker.image = "nginx:stable"
 docker.ports = ['80:80']
 docker.volumes = ["#{Dir.pwd}/src:/usr/share/nginx/html"]
 end

#{Dir.pwd} is the Ruby for finding the current directory, so you don't
hardcode paths, making it highly distributable.

Restart the Vagrant environment and see the result:

$ curl http://localhost

<h1>Hello from Docker via Vagrant<h1>

On SELinux-enabled systems you may need to do some configuration that's
beyond the scope of this book. We encourage you to secure your Docker
systems using SELinux, but to disable SELinux just type the following:
$ sudo setenforce 0

There's more…
You can choose not to use your local or default Docker installation, but instead use a
dedicated VM, maybe to reflect production or a specific OS (such as CoreOS). In this
case, you can specify a dedicated Vagrantfile as follows:

config.vm.provider "docker" do |docker|
docker.vagrant_vagrantfile = "docker_host/Vagrantfile"
end

Vagrant Development Environments

16

Using Docker in Vagrant for a Ghost blog
behind NGINX

Vagrant in Docker can be used more usefully to simulate traditional setups such as an
application behind a load balancer or a reverse proxy. We've already set up NGINX, so what
about using it as a front reverse proxy with a blog engine such as Ghost behind it? We'll end
up by showing how to do something similar with docker-compose.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation (no hypervisor needed)

ff A working Docker installation and basic Docker knowledge

ff An Internet connection

How to do it…
The previous example allows only one container to be launched simultaneously, which is
sad considering the power of Docker. Let's define multiple containers and start by creating a
front container (our previous NGINX):

 config.vm.define "front" do |front|
 front.vm.provider "docker" do |docker|
 docker.image = "nginx:stable"
 docker.ports = ['80:80']
 docker.volumes = ["#{Dir.pwd}/src:/usr/share/nginx/html"]
 end
 end

Now how about creating an application container, maybe a blog engine such as Ghost? Ghost
publishes a ready-to-use container on the Docker Hub, so let's use that (version 0.9.0 at the
time of writing) and expose on TCP/8080 the application container listening on TCP/2368:

 config.vm.define "app" do |app|
 app.vm.provider "docker" do |docker|
 docker.image = "ghost:0.9.0"
 docker.ports = ['8080:2368']
 end
 end

Chapter 1

17

Check if you can access the blog on http://localhost:8080 and NGINX on
http://localhost:

$ curl -IL http://localhost:8080

HTTP/1.1 200 OK

X-Powered-By: Express

[…]

$ curl -IL http://localhost

HTTP/1.1 200 OK

Server: nginx/1.10.1

Now let's use NGINX for what it's for—serving the application. Configuring NGINX as a reverse
proxy is beyond the scope of this book, so just use the following simple configuration for the
nginx.conf file at the root of your working folder:

server {
 listen 80;
 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $http_host;
 proxy_pass http://app:2368;
 }
}

Change the configuration of the front container in Vagrant to use this configuration,
remove the old index.html as we're not using it anymore, and link this container to
the app container:

 config.vm.define "front" do |front|
 front.vm.provider "docker" do |docker|
 docker.image = "nginx:stable"
 docker.ports = ['80:80']
 docker.volumes = ["#{Dir.pwd}/nginx.conf:/etc/nginx/conf.d/
default.conf"]
 docker.link("app:app")
 end
 end

Vagrant Development Environments

18

Linking the app container makes it available to the front container, so now there's no need
to expose the Ghost blog container directly, let's make it simpler and more secure behind the
reverse proxy:

 config.vm.define "app" do |app|
 app.vm.provider "docker" do |docker|
 docker.name = "app"
 docker.image = "ghost:0.9.0"
 end
 end

We're close! But this setup will eventually fail for a simple reason: our systems are too fast,
and Vagrant parallelizes the startup of virtual machines by default, and also does this for
containers. Containers start so fast that the app container may not be ready for NGINX when
it's started. To ensure sequential startup, use the VAGRANT_NO_PARALLEL environment
variable at the top of the Vagrantfile:

ENV['VAGRANT_NO_PARALLEL'] = 'true'

Now you can browse to http://localhost/admin and start using your Ghost blog in a
container, behind a NGINX reverse proxy container, with the whole thing managed by Vagrant!

There's more…
You can access the containers logs directly using Vagrant:

$ vagrant docker-logs --follow

==> app: > ghost@0.9.0 start /usr/src/ghost

==> app: > node index

==> app: Migrations: Creating tables...

[…]

==> front: 172.17.0.1 - - [21/Aug/2016:10:55:08 +0000] "GET /
HTTP/1.1" 200 1547 "-" "Mozilla/5.0 (X11; Fedora; Linux x86_64;
rv:48.0) Gecko/20100101 Firefox/48.0" "-"

==> app: GET / 200 113.120 ms - -

[…]

A Docker Compose equivalent
Docker Compose is a tool to orchestrate multiple containers and manage Docker features
from a single YAML file. So if you're more familiar with Docker Compose, or if you'd like to
do something similar with this tool, here's what the code would look like in the docker-
compose.yml file:

version: '2'
services:

Chapter 1

19

 front:
 image: nginx:stable
 volumes:
 - "./nginx.conf:/etc/nginx/conf.d/default.conf"
 restart: always
 ports:
 - "80:80"
 depends_on:
 - app
 links:
 - app
 app:
 image: ghost:0.9.0
 restart: always

Remember that with Vagrant, you can mix virtual machines and Docker
containers, while you can't with docker-compose.

Using Vagrant remotely with AWS EC2 and
Docker

Another powerful usage of Vagrant can be with remote IaaS resources such as Amazon
EC2. Amazon Web Services Elastic Compute Cloud (EC2) and similar Infrastructure-as-a-
Service providers like Google Cloud, Azure or Digital Ocean, to name a few, are selling virtual
machines with varying compute power and network bandwidth for a fee. You don't always
have all the necessary CPU and memory you need on your laptop, or you need to have some
specific computing power for a task, or you just want to replicate part of an existing production
environment: here's how you can leverage the power of Vagrant using Amazon EC2.

Here, we'll deploy a Ghost blog with an NGINX reverse proxy, all on Docker, using an Ubuntu
Xenial 16.04 on AWS EC2! This is to simulate a real deployment of an application, so you can
see if it is working in real conditions.

Vagrant Development Environments

20

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation (no hypervisor needed)

ff An Amazon EC2 account (or create one for free at https://aws.amazon.com/
if you don't have one already), with valid Access Keys, a keypair named iac-lab, a
security group named iac-lab allowing at least HTTP ports, and SSH access.

ff An Internet connection

How to do it…
Begin by installing the plugin:

$ vagrant plugin install vagrant-aws

A requirement of this plugin is the presence of a dummy Vagrant box that does nothing:

$ vagrant box add dummy https://github.com/mitchellh/vagrant-
aws/raw/master/dummy.box

Remember how we configured the Docker provider in the previous recipes? This is
no different:

config.vm.provider :aws do |aws, override|
 # AWS Configuration
 override.vm.box = "dummy"
end

Then, defining an application VM will consist of specifying which provider it's using (AWS in our
case), the Amazon Machine Image (AMI) (Ubuntu 16.04 LTS in our case), and a provisioning
script that we creatively named script.sh.

You can find other AMI IDs at http://cloud-images.ubuntu.com/locator/ec2/:

config.vm.define "srv-1" do |config|
 config.vm.provider :aws do |aws|
 aws.ami = "ami-c06b1eb3"
 end
 config.vm.provision :shell, :path => "script.sh"
end

So what is the AWS-related information we need to fill in so Vagrant can launch servers
on AWS?

https://aws.amazon.com/

Chapter 1

21

We need the AWS Access Keys, preferably from environment variables so you don't hardcode
them in your Vagrantfile:

aws.access_key_id = ENV['AWS_ACCESS_KEY_ID']
aws.secret_access_key = ENV['AWS_SECRET_ACCESS_KEY']

Indicate the region and availability zone where you want the instance to start:

aws.region = "eu-west-1"
aws.availability_zone = "eu-west-1a"

Include the instance type; here, we've chosen the one included in the AWS free tier plan so it
won't cost you a dime with a new account:

aws.instance_type = "t2.micro"

Indicate in which security group this instance will live (it's up to you to adapt the requirements
to your needs):

aws.security_groups = ['iac-lab']

Specify the AWS keypair name, and override the default SSH username and keys:

aws.keypair_name = "iac-lab"
override.ssh.username = "ubuntu"
override.ssh.private_key_path = "./keys/iac-lab.pem"

Under some circumstances, you can experience a bug with NFS while using Vagrant and AWS
EC2, so I choose to disable this feature:

override.nfs.functional = false

Finally, it's a good practice to tag the instances, so you can later find out where they
come from:

aws.tags = {
 'Name' => 'Vagrant'
}

Add a simple shell script that will install Docker and docker-compose, then execute the
docker-compose file:

#!/bin/sh
install Docker
curl -sSL https://get.docker.com/ | sh
add ubuntu user to docker group
sudo usermod -aG docker ubuntu
install docker-compose
curl -L https://github.com/docker/compose/releases/download/1.8.0/docker-
compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

Vagrant Development Environments

22

sudo chmod +x /usr/local/bin/docker-compose
execute the docker compose file
cd /vagrant
docker-compose up -d

Include both NGINX configuration and docker-compose.yml files from the previous recipe
and you're good to go:

$ vagrant up
Bringing machine 'srv-1' up with 'aws' provider...
[…]
==> srv-1: Launching an instance with the following settings...
==> srv-1: -- Type: t2.micro
==> srv-1: -- AMI: ami-c06b1eb3
==> srv-1: -- Region: eu-west-1
[…]
==> srv-1: Waiting for SSH to become available...
==> srv-1: Machine is booted and ready for use!
[…]
==> srv-1: docker version
[…]
==> srv-1: Server:
==> srv-1: Version: 1.12.1
[…]
==> srv-1: Creating vagrant_app_1
==> srv-1: Creating vagrant_front_1

Open your browser at http://a.b.c.d/ (using the EC2 instance public IP) and you'll see
your Ghost blog behind an NGINX reverse proxy, using Docker containers, using Vagrant on
Amazon EC2.

A common usage for such a setup is for the developer to test the application in close to real
production conditions, maybe to show a new feature to a remote product owner, replicate a
bug seen only in this setup, or at some point in the CI. Once Docker containers have been
built, smoke test them on EC2 before going any further.

Simulating dynamic multiple host
networking

Vagrant is also very useful when used to simulate multiple hosts in a network. This way you
can have full systems able to talk to each other in the same private network and easily test
connectivity between systems.

Chapter 1

23

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox installation

ff An Internet connection

How to do it…
Here's how we would create one CentOS 7.2 machine with 512 MB of RAM and one CPU, in a
private network with a fixed IP 192.168.50.11, and a simple shell output:

vm_memory = 512
vm_cpus = 1

Vagrant.configure("2") do |config|

 config.vm.box = "bento/centos-7.2"

 config.vm.provider :virtualbox do |vb|
 vb.memory = vm_memory
 vb.cpus = vm_cpus
 end

 config.vm.define "srv-1" do |config|
 config.vm.provision :shell, :inline => "ip addr | grep \"inet\" |
awk '{print $2}'"
 config.vm.network "private_network", ip: "192.168.50.11",
virtualbox__intnet: "true"
 end
end

To add a new machine to this network, we could simply duplicate the srv-1 machine
definition, as in the following code:

config.vm.define "srv-2" do |config|
 config.vm.provision :shell, :inline => "ip addr | grep
\"inet\" | awk '{print $2}'"
 config.vm.network "private_network", ip: "192.168.50.12",
virtualbox__intnet: "true"
end

Vagrant Development Environments

24

That's not very DRY, so let's take advantage of the Ruby nature of the Vagrantfile to create a
loop that will dynamically and simply create as many virtual machines as we want.

First, declare a variable with the amount of virtual machines we want (2):

vm_num = 2

Then iterate through that value, so it can generate values for an IP and for a hostname:

(1..vm_num).each do |n|
 # a lan lab in the 192.168.50.0/24 range
 lan_ip = "192.168.50.#{n+10}"
 config.vm.define "srv-#{n}" do |config|
 config.vm.provision :shell, :inline => "ip addr | grep \"inet\"
| awk '{print $2}'"
 config.vm.network "private_network", ip: lan_ip, virtualbox__
intnet: "true"
 end
 end

This will create two virtual machines (srv-1 at 192.168.50.11 and srv-2 at
192.168.50.12) on the same internal network, so they can talk to each other.

Now you can simply change the value of vm_num and you'll easily spawn new virtual machines
in seconds.

There's more…
We can optionally go even further, using the following cloning and networking features.

Speed up deployments with linked clones
Linked clones is a feature that enables new VMs to be created based on an initial existing disk
image, without the need to duplicate everything. Each VM stores only its delta state, allowing
very fast virtual machines boot times.

As we're launching many machines, you can optionally enable linked clones to speed
things up:

config.vm.provider :virtualbox do |vb|
 vb.memory = vm_memory
 vb.cpus = vm_cpus
 vb.linked_clone = true
end

Chapter 1

25

Using named NAT networks
VirtualBox has the option to let you define your own networks for further reference or reuse.
Configure them under Preferences | Network | NAT Networks. Luckily, Vagrant can work with
those named NAT networks too. To test the feature, you can create in VirtualBox a network
(like iac-lab) and assign it the network 192.168.50.0/24.

Just change the network configuration from the preceding Vagrantfile to launch the VMs in this
specific network:

config.vm.network "private_network", ip: lan_ip,
virtualbox__intnet: "iac-lab"

Simulating a networked three-tier
architecture app with Vagrant

Vagrant is a great tool to help simulate systems in isolated networks, allowing us to easily
mock architectures found in production. The idea behind the multiple tiers is to separate the
logic and execution of the various elements of the application, and not centralize everything
in one place. A common pattern is to get a first layer that gets the common user requests, a
second layer that does the application job, and a third layer that stores and retrieves data,
usually from a database.

In this simulation, we'll have the traditional three tiers, each running CentOS 7 virtual
machines on their own isolated network:

ff Front: NGINX reverse proxy

ff App: a Node.js app running on two nodes

ff Database: Redis

Virtual Machine
Name

front_lan IP app_lan IP db_lan IP

front-1 10.10.0.11/24 10.20.0.101/24 N/A

app-1 N/A 10.20.0.11/24 10.30.0.101/24

app-2 N/A 10.20.0.12/24 10/30.0.102/24

db-1 N/A N/A 10.30.0.11/24

You will access the reverse proxy (NGINX), which alone can contact the application server
(Node.js), which is the only one to be able to connect to the database.

Vagrant Development Environments

26

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox installation

ff An Internet connection

How to do it…
Follow these steps for simulating a networked three-tier architecture app with Vagrant.

Tier 3 – the database
The database lives in a db_lan private network with the IP 10.30.0.11/24.

This application will use a simple Redis installation. Installing and configuring Redis is beyond
the scope of this book, so we'll keep it as simple as possible (install it, configure it to listen on
the LAN port instead of 127.0.0.1, and start it):

 config.vm.define "db-1" do |config|
 config.vm.hostname = "db-1"
 config.vm.network "private_network", ip: "10.30.0.11",
virtualbox__intnet: "db_lan"
 config.vm.provision :shell, :inline => "sudo yum install -q -y
epel-release"
 config.vm.provision :shell, :inline => "sudo yum install -q -y
redis"
 config.vm.provision :shell, :inline => "sudo sed -i 's/bind
127.0.0.1/bind 127.0.0.1 10.30.0.11/' /etc/redis.conf"
 config.vm.provision :shell, :inline => "sudo systemctl enable
redis"
 config.vm.provision :shell, :inline => "sudo systemctl start
redis"
 end

Tier 2: the application servers
This tier is where our application lives, backed by an application (web) server. The application
can connect to the database tier, and will be available to the end user through tier 1 proxy
servers. This is usually where all the logic is done (by the application).

The Node.js application
This will be simulated with the simplest Node.js code I could produce to demonstrate the
usage, displaying the server hostname (the filename is app.js).

Chapter 1

27

First, it creates a connection to the Redis server on the db_lan network:

#!/usr/bin/env node
var os = require("os");
var redis = require('redis');
var client = redis.createClient(6379, '10.30.0.11');
client.on('connect', function() {
 console.log('connected to redis on '+os.hostname()+'
10.30.0.11:6379');
});

Then if it goes well, it creates an HTTP server listening on :8080, displaying the
server's hostname:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Running on '+os.hostname()+'\n');
}).listen(8080);
console.log('HTTP server listening on :8080');

Start the app, the simplest of the systemd service file (systemd unit files are out of the
scope of this book):

[Unit]
Description=Node App
After=network.target

[Service]
ExecStart=/srv/nodeapp/app.js
Restart=always
User=vagrant
Group=vagrant
Environment=PATH=/usr/bin
Environment=NODE_ENV=production
WorkingDirectory=/srv/nodeapp
[Install]
WantedBy=multi-user.target

Vagrant Development Environments

28

Let's iterate through the deployment of a number of application servers (in this case: two) to
serve the app. Once again, deploying Node.js applications is out of the scope of this book, so
I kept it as simple as possible—simple directories and permissions creation and systemd unit
deployment. In production, this would probably be done through a configuration management
tool such as Chef or Ansible and maybe coupled with a proper deployment tool:

Tier 2: a scalable number of application servers
vm_app_num = 2
 (1..vm_app_num).each do |n|
 app_lan_ip = "10.20.0.#{n+10}"
 db_lan_ip = "10.30.0.#{n+100}"
 config.vm.define "app-#{n}" do |config|
 config.vm.hostname = "app-#{n}"
 config.vm.network "private_network", ip: app_lan_ip,
virtualbox__intnet: "app_lan"
 config.vm.network "private_network", ip: db_lan_ip,
virtualbox__intnet: "db_lan"
 config.vm.provision :shell, :inline => "sudo yum install -q
-y epel-release"
 config.vm.provision :shell, :inline => "sudo yum install -q
-y nodejs npm"
 config.vm.provision :shell, :inline => "sudo mkdir
/srv/nodeapp"
 config.vm.provision :shell, :inline => "sudo cp
/vagrant/app.js /src/nodeapp"
 config.vm.provision :shell, :inline => "sudo chown -R
vagrant.vagrant /srv/"
 config.vm.provision :shell, :inline => "sudo chmod +x
/srv/nodeapp/app.js"
 config.vm.provision :shell, :inline => "cd /srv/nodeapp; npm
install redis"
 config.vm.provision :shell, :inline => "sudo cp
/vagrant/nodeapp.service /etc/systemd/system"
 config.vm.provision :shell, :inline => "sudo systemctl
daemon-reload"
 config.vm.provision :shell, :inline => "sudo systemctl start
nodeapp"
 end
 end

Tier 1: the NGINX reverse proxy
Tier 1 is represented here by an NGINX reverse proxy configuration on CentOS 7, as simple as
it could be for this demo. Configuring an NGINX reverse proxy with a pool of servers is out of
the scope of this book:

events {

Chapter 1

29

 worker_connections 1024;
}
http {
 upstream app {
 server 10.20.0.11:8080 max_fails=1 fail_timeout=1s;
 server 10.20.0.12:8080 max_fails=1 fail_timeout=1s;
 }
 server {
 listen 80;
 server_name _;
 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $http_host;
 proxy_pass http://app;
 }
 }
}

Now let's create the reverse proxy VM that will serve http://localhost:8080 through the
pool of application servers. This VM listens on 10.10.0.11/24 on its own LAN (front_lan),
and on 10.20.0.101/24 on the application servers' LAN (app_lan):

 # Tier 1: an NGINX reverse proxy VM, available on http://
localhost:8080
 config.vm.define "front-1" do |config|
 config.vm.hostname = "front-1"
 config.vm.network "private_network", ip: "10.10.0.11",
virtualbox__intnet: "front_lan"
 config.vm.network "private_network", ip: "10.20.0.101",
virtualbox__intnet: "app_lan"
 config.vm.network "forwarded_port", guest: 80, host: 8080
 config.vm.provision :shell, :inline => "sudo yum install -q -y
epel-release"
 config.vm.provision :shell, :inline => "sudo yum install -q -y
nginx"
 config.vm.provision :shell, :inline => "sudo cp
/vagrant/nginx.conf /etc/nginx/nginx.conf"
 config.vm.provision :shell, :inline => "sudo systemctl enable
nginx"
 config.vm.provision :shell, :inline => "sudo systemctl start
nginx"
 end

Start this up (vagrant up) and navigate to http://localhost:8080, where the app
displays the application server hostname so you can confirm that the load balancing across
networks is working (while application servers can talk to the Redis backend).

Vagrant Development Environments

30

Showing your work on the LAN while
working with Laravel

You're working on your application using Laravel, the free and open source PHP framework
(https://laravel.com/), and you'd like to showcase your work to your colleagues. Using a
Vagrant development environment can help keep your work machine clean and allow
you to use your usual tools and editors while using an infrastructure close to production.

In this example, we'll deploy a CentOS 7 server, with NGINX, PHP-FPM, and MariaDB, all the
PHP dependencies, and install Composer. You can build from this example and others in this
book to create an environment that mimics production (three-tier, multiple machines, and
other characteristics).

This environment will be available for access to all your coworkers on your network, and the
code will be accessible to you locally.

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox or VMware installation

ff An Internet connection

How to do it…
Let's start with the simplest Vagrant environment we know:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
 config.vm.define "srv-1" do |config|
 config.vm.hostname = "srv-1"
 end
end

A sample NGINX configuration for Laravel
Configuring NGINX for Laravel is out of the scope for this book, but for reference, here's a
simple NGINX configuration that will work well for us, listening on HTTP, serving files located
on /srv/app/public, and using PHP-FPM (the file name is nginx.conf):

events {
 worker_connections 1024;
}

Chapter 1

31

http {
 sendfile off;
 server {
 listen 80;
 server_name _;
 root /srv/app/public ;
 try_files $uri $uri/ /index.php?q=$uri&$args;
 index index.php;
 location / {
 try_files $uri $uri/ /index.php?$query_string;
 }
 location ~ \.php$ {
 try_files $uri /index.php =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_
name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params;
 }
 }
}

Simple shell provisioning
We'll create a provisioning script that we'll name as provision.sh, which contains all the
steps we need to have a fully working Laravel environment. The details are out of the scope of
this book, but here are the steps:

1.	 We want Extra Packages for Enterprise Linux (EPEL):
sudo yum install -q -y epel-release

2.	 We want PHP-FPM:
sudo yum install -q -y php-fpm

3.	 We want PHP-FPM to run as the Vagrant user so we have the rights:
sudo sed -i 's/user = apache/user = vagrant/' /etc/php-
fpm.d/www.conf

4.	 Install a bunch of PHP dependencies:
sudo yum install -q -y php-pdo php-mcrypt php-mysql php-cli
php-mbstring php-dom

5.	 Install Composer:
curl -sS https://getcomposer.org/installer | php

sudo mv composer.phar /usr/local/bin/composer

sudo chmod +x /usr/local/bin/composer

Vagrant Development Environments

32

6.	 Install and ship a good enough NGINX configuration:
sudo yum install -q -y nginx

sudo cp /vagrant/nginx.conf /etc/nginx/nginx.conf

7.	 Install MariaDB Server:
sudo yum install -q -y mariadb-server

8.	 Start all the services:

sudo systemctl enable php-fpm

sudo systemctl start php-fpm

sudo systemctl enable nginx

sudo systemctl start nginx

sudo systemctl enable mariadb

sudo systemctl start mariadb

Enable provisioning
To enable provisioning using our script, add the following code in the VM definition block:

config.vm.provision :shell, :path => "provision.sh"

Shared folder
To share the src folder between your host and the Vagrant VM under /srv/app, you can add
the following code:

config.vm.synced_folder "src/", "/srv/app"

Public LAN Networking
The last thing we need to do now is to add a network interface to our Vagrant virtual machine,
that will be on the real LAN, so our coworkers will access it easily through the network:

config.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)"

Adapt the name of your network adapter to use (this was on a Mac, as you can guess) to your
needs. Another solution is not to specify any adapter name, so you will be presented a list of
possible adapters to bridge:

==> srv-1: Available bridged network interfaces:

1) en0: Wi-Fi (AirPort)

[...]

Chapter 1

33

Start the Vagrant environment (vagrant up), and when it's available, you can execute
commands such as finding out the network information: vagrant ssh -c "ip
addr". Your mileage will vary, but in this network, the public IP of this Vagrant box is
192.168.1.106, so our work is available.

Now you can start coding in the ./src/ folder. This is not a Laravel book, but a way to create
a new project in a clean directory is as follows:

cd /srv/app

composer create-project --prefer-dist laravel/laravel.

Don't forget to remove all files from the folder beforehand. Navigate to http://local-ip/
and you'll see the default Laravel welcome screen.

To verify the file sharing sync is working correctly, edit the ./resources/views/welcome.
blade.php file and reload your browser to see the change reflected.

There's more…
If you include the Vagrantfile directly with your project's code, coworkers or contributors will
only have to run vagrant up to see it running.

Other Vagrantfile sharing options include Windows Sharing (smb), rsync (useful with remote
virtual machines such as on AWS EC2), and even NFS.

A noticeable bug in the sharing feature using VirtualBox leads to corrupted or non-updating
files. The workaround is to deactivate in the web server configuration sendfile, using NGINX:

sendfile off;

Using Apache, it is as follows:

EnableSendfile Off

Sharing access to your Vagrant environment
with the world

You're working on your project with your local Vagrant environment, and you'd like to show
the status of the job to your customer who's located in another city. Maybe you have an issue
configuring something and you'd like some remote help from your coworker on the other side
of the planet. Alternatively, maybe you'd like to access your work Vagrant box from home,
hotel, or coworking space? There's a neat Vagrant sharing feature we'll use here, working with
a Ghost blog on CentOS 7.2.

Vagrant Development Environments

34

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox installation

ff A free HashiCorp Atlas account (https://atlas.hashicorp.com/account/
new)

ff An Internet connection

How to do it…
Let's start with this simple Vagrantfile:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
 config.vm.define "blog" do |config|
 config.vm.hostname = "blog"
 end
end

We know we'll have to install some packages, so let's add a provisioning script to be executed:

 config.vm.provision :shell, :path => "provision.sh"

We'll want to hack locally on our Ghost blog, such as adding themes and more, so let's sync
our src/ folder to the remote /srv/blog folder:

 config.vm.synced_folder "src/", "/srv/blog"

We want a local private network so we can access the virtual machine, with the 2368 TCP port
(Ghost default) redirected to our host 8080 HTTP port:

 config.vm.network "private_network", type: "dhcp"
 config.vm.network "forwarded_port", guest: 2368, host: 8080

Provisioning
1.	 To configure our new box, we'll first need to enable EPEL:

sudo yum install -q -y epel-release

2.	 Then install the requirements, node, npm, and unzip:
sudo yum install -q -y node npm unzip

3.	 Download the latest Ghost version:
curl -L https://ghost.org/zip/ghost-latest.zip -o ghost.zip

https://atlas.hashicorp.com/account/new
https://atlas.hashicorp.com/account/new

Chapter 1

35

4.	 Uncompress it in the /srv/blog folder:
sudo unzip -uo ghost.zip -d /srv/blog/

5.	 Install the Ghost dependencies:

cd /srv/blog && sudo npm install --production

Put all those commands in the provisioning.sh script and we're good to go: vagrant up.

Starting Ghost engine
As you would do normally, log in to your Vagrant box to launch the node server:

vagrant ssh

cd /srv/blog && sudo npm start --production

[…]

Ghost is running in production...

Your blog is now available on http://my-ghost-blog.com

Ctrl+C to shut down

Change the host IP from 127.0.0.1 to 0.0.0.0 in the generated config.js file so the
server listens on all interfaces:

server: {

 host: '0.0.0.0',

 port: '2368'

 }

Restart the node server:

cd /srv/blog && sudo npm start --production

You now have a direct access to the blog through your box LAN IP (adapt the IP to your case):
http://172.28.128.3:2368/.

Sharing access
Now you can access your application locally through your Vagrant box, let's give access to it to
others through the Internet using vagrant share:

HTTP
The default is to share through HTTP, so your work is available through a web browser:

$ vagrant share

==> srv-1: Detecting network information for machine...

[...]

Vagrant Development Environments

36

==> srv-1: Your Vagrant Share is running! Name: anxious-cougar-6317

==> srv-1: URL: http://anxious-cougar-6317.vagrantshare.com

This URL is the one you can give to anyone to access publicly your work: Vagrant servers being
used as proxy.

SSH
Another possible sharing option is by SSH (deactivated by default). The program will ask you
for a password you'll need to connect to the box remotely:

$ vagrant share --ssh

==> srv-1: Detecting network information for machine...

[...]

srv-1: Please enter a password to encrypt the key:

 srv-1: Repeat the password to confirm:

[...]

==> srv-1: You're sharing with SSH access. This means that another user

==> srv-1: simply has to run `vagrant connect --ssh subtle-platypus-4976`

==> srv-1: to SSH to your Vagrant machine.

[...]

Now, at home or at the coworking space, you can simply connect to your work Vagrant box (if
needed, the default Vagrant password is vagrant):

$ vagrant connect --ssh subtle-platypus-4976

Loading share 'subtle-platypus-4976'...

[...]

[vagrant@srv-1 ~]$ head -n1 /srv/blog/config.js

// # Ghost Configuration

You or your coworker are now remotely logged into your own Vagrant box over the Internet!

Simulating Chef upgrades using Vagrant
Wouldn't it be awesome to simulate production changes quickly? Chances are you're using
Chef in production. We'll see how to use both Chef cookbooks with Vagrant, as well as how to
simulate Chef version upgrades between environments. This kind of setup is the beginning of
a good combination of infrastructure as code.

Chapter 1

37

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working VirtualBox installation

ff An Internet connection

How to do it…
Let's start with a minimal virtual machine named prod that simply boots a CentOS 7.2,
like we have in our production environment:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
 config.vm.define "prod" do |config|
 config.vm.hostname = "prod"
 config.vm.network "private_network", type: "dhcp"
 end

end

Vagrant Omnibus Chef plugin
Now, if we want to use Chef code, if we want to use Chef code (Ruby files organized in
directories that form a unit called a 'cookbook' that configure and maintain a specific area
of a system), we first need to install Chef on the Vagrant box. There're many ways to do this,
from provisioning shell scripts to using boxes with Chef already installed. A clean, reliable,
and repeatable way is to use a Vagrant plugin to do just that—vagrant-omnibus. Omnibus is a
packaged Chef. Install it like any other Vagrant plugin:

$ vagrant plugin install vagrant-omnibus

Installing the 'vagrant-omnibus' plugin. This can take a few minutes...

Installed the plugin 'vagrant-omnibus (1.4.1)'!

Then, just add the following configuration in your VM definition of the Vagrantfile and you'll
always have the latest Chef version installed on this box:

config.omnibus.chef_version = :latest

However, our goal is to mimic production, maybe we're still using the latest in v11.x series of
Chef instead of the latest 12.x, so instead let's specify exactly which version we want:

config.omnibus.chef_version = "11.18.12"

Vagrant Development Environments

38

Now that we're using a new plugin, our Vagrantfile won't work out of the box for everybody.
Users will have to install this vagrant-omnibus plugin. If you care about consistency and
repeatability, an option is to add the following Ruby check at the beginning of your Vagrantfile:

%w(vagrant-vbguest vagrant-omnibus).each do |plugin|
 unless Vagrant.has_plugin?(plugin)
 raise "#{plugin} plugin is not installed! Please install it using
`vagrant plugin install #{plugin}`"
 end
end

This code snippet will simply iterate over each plugin name to verify that Vagrant returns
them as installed. If not, stop there and return a helpful exit message on how to install the
required plugins.

A sample Chef recipe
This part of the book isn't about writing Chef recipes (read more about it later in the book!),
so we'll keep that part simple. Our objective is to install the Apache 2 web server on CentOS
7 (httpd package), and start it. Here's what our sample recipe looks like (cookbooks/
apache2/recipes/default.rb); it does exactly what it says in plain English:

package "httpd"

service "httpd" do
 action [:enable, :start]
end

Vagrant and Chef integration
Here's how, in our VM definition block, we'll tell Vagrant to work with Chef Solo (a way of
running Chef in standalone mode, without the need of a Chef server) to provision our box:

 config.vm.provision :chef_solo do |chef|
 chef.add_recipe 'apache2'
 end

As simple as that. Vagrant this up (vagrant up), and you'll end up with a fully provisioned
VM, using the old 11.18.12 version, and a running Apache 2 web server.

Our manual tests can include checking that the chef-solo version is the one we requested:

$ chef-solo --version
Chef: 11.18.12

They can also check if we have httpd installed:

$ httpd -v
Server version: Apache/2.4.6 (CentOS)

Chapter 1

39

Also, we can check if httpd is running:

$ pidof httpd

13029 13028 13027 13026 13025 13024

Various other options than chef-solo exist, such as chef-client and chef-zero.

Testing the Chef version update
So we simulated our production environment locally, with the same CentOS version, the
apache2 cookbook used in production, and the old Chef version 11. Our next task is to
test if everything is still running smoothly after an upgrade to the new version 12. Let's
create a second "staging" VM, very similar to our production setup, except we want to
install the current latest Chef version (12.13.37 at the time of writing, feel free to use
:latest instead):

 config.vm.define "staging" do |config|
 config.vm.hostname = "staging"
 config.omnibus.chef_version = "12.13.37"
 config.vm.network "private_network", type: "dhcp"
 config.vm.provision :chef_solo do |chef|
 chef.add_recipe 'apache2'
 end
 end

Launch this new machine (vagrant up staging) and we'll see if our setup still works with
the new major Chef version:

$ vagrant ssh staging

$ chef-solo --version

Chef: 12.13.37

$ httpd -v

Server version: Apache/2.4.6 (CentOS)

$ pidof httpd

13029 13028 13027 13026 13025 13024

So we can safely assume, as far as our testing goes, that the newest Chef version still works
correctly with our production Chef code.

Vagrant Development Environments

40

There's more…
Here are more ways of controlling a Vagrant environment, and use even better Chef tooling
inside it.

Controlling default Vagrant VMs
You may not always want to boot both production and staging vagrant virtual machines,
especially when you just want to work on the default production setup. To specify a
default VM:

config.vm.define "prod", primary: true do |config|
 […]
end

To not start automatically a VM when issuing the vagrant up command:

config.vm.define "staging", autostart: false do |config|
 […]
end

Berkshelf and Vagrant
Chances are, if your production environment is using Chef, you're also using Berkshelf for
dependency management and not 100% local cookbooks (if you aren't, you should!).

Vagrant work pretty well with a Berkshelf enabled Chef environment, using the
vagrant-berkshelf plugin.

Your workstation will need the Chef Development Kit (Chef DK: https://
downloads.chef.io/chef-dk/) for this to work correctly.

Testing with Test Kitchen
This setup is in fact so close to what's used to make infrastructure code testing that you'll see
a lot of similarities in the dedicated section of this book.

Using Ansible with Vagrant to create a
Docker host

Ansible (https://www.ansible.com/) is a very simple and powerful open source
automation tool. While using and creating Ansible playbooks is off-topic for this book, we'll use
a very simple playbook to install and configure Docker on a CentOS 7 box. Starting from here,
you'll be able to iterate through more complex Ansible playbooks.

https://downloads.chef.io/chef-dk/
https://downloads.chef.io/chef-dk/
https://www.ansible.com/

Chapter 1

41

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working hypervisor

ff A working Ansible installation on your machine (an easy way is to $ pip install
ansible or to pick your usual package manager like APT or YUM/DNF)

ff An Internet connection

How to do it…
Because writing complex Ansible playbooks is out of the scope of this book, we'll use a very
simple one, so you can learn more about Ansible later and still reuse this recipe.

A simple Ansible Docker playbook for Vagrant
Our playbook file (playbook.yml) is a plain YAML file, and we'll do the following in this order:

1.	 Install EPEL.

2.	 Create a Docker Unix group.

3.	 Add the default Vagrant user to the new Docker group.

4.	 Install Docker from CentOS repositories.

5.	 Enable and start Docker Engine.

Here's how the playbook.yml file looks:

- hosts: all

 become: yes

 tasks:

 - name: Enable EPEL

 yum: name=epel-release state=present

 - name: Create a Docker group

 group: name=docker state=present

 - name: Add the vagrant user to Docker group

 user: name=vagrant groups=docker append=yes

 - name: Install Docker

 yum: name=docker state=present

 - name: Enable and Start Docker Daemon

 service: name=docker state=started enabled=yes

Vagrant Development Environments

42

Apply Ansible from Vagrant
To use our Ansible playbook, let's start with a simple Vagrantfile starting a CentOS 7 box:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
 config.vm.define "srv-1" do |config|
 config.vm.hostname = "srv-1"
 config.vm.network "private_network", type: "dhcp"
 end
end

Simply add Ansible provisioning like this to the VM definition so it will load and apply your
playbook.yml file:

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end

You can now run vagrant up and use CentOS 7 Docker Engine version right away:

$ vagrant ssh

[vagrant@srv-1 ~]$ systemctl status docker

[vagrant@srv-1 ~]$ docker --version

Docker version 1.10.3, build d381c64-unsupported

[vagrant@srv-1 ~]$ docker run -it --rm alpine /bin/hostname

0f44a4d7afcd

There's more…
What if for some reason you don't or can't have Ansible installed on your host machine?
Alternatively, maybe you need a specific Ansible version on your Vagrant box to mimic
production and you don't want to mess with your local Ansible installation. There's an
interesting variant Ansible provider you can use: it will either use Ansible directly from the
guest VM, and if it's not installed, it will install it from official repositories or PIP. You can use
this very simple default configuration:

 config.vm.provision "ansible_local" do |ansible|
 ansible.playbook = "playbook.yml"
 end

You can also use the following command:

$ vagrant up

[…]

==> srv-1: Running provisioner: ansible_local...

Chapter 1

43

 srv-1: Installing Ansible...

 srv-1: Running ansible-playbook...

[…]

Log in to the box via SSH and check that Ansible is locally installed with the latest version:

$ vagrant ssh

$ ansible --version

ansible 2.1.1.0

If your use case is different, you can use more precise deployment options, to be able to fix an
Ansible version number using PIP (here, version 1.9.6 instead of the latest 2.x series):

It will take noticeably longer to start, as it needs to install many packages on
the guest system.

 config.vm.provision "ansible_local" do |ansible|
 ansible.version = "1.9.6"
 ansible.install_mode = :pip
 ansible.playbook = "playbook.yml"
 end

You can also use the following command:

$ vagrant up

[…]

==> srv-1: Running provisioner: ansible_local...

 srv-1: Installing Ansible...

 srv-1: Installing pip... (for Ansible installation)

 srv-1: Running ansible-playbook...

Inside the Vagrant guest, you can now check for the PIP and Ansible versions:

$ pip --version

pip 8.1.2 from /usr/lib/python2.7/site-packages (python 2.7)

$ ansible --version

ansible 1.9.6

You can also check if our playbook has been installed correctly with the old 1.x
Ansible version:

$ docker version

Vagrant Development Environments

44

Also check if Docker is installed, and verify now it's working as the Vagrant user:

$ docker run -it --rm alpine ping -c2 google.com
PING google.com (216.58.211.78): 56 data bytes
64 bytes from 216.58.211.78: seq=0 ttl=61 time=22.078 ms
64 bytes from 216.58.211.78: seq=1 ttl=61 time=21.061 ms

Using Docker containers on CoreOS with
Vagrant

Vagrant can help in simulating environments, and Docker containers are not forgotten with
Vagrant. We'll use one of the best platforms to run containers, the free and open source
lightweight operating system CoreOS. Based on Linux, targeting easy container and clustered
deployments, it also provides official Vagrant boxes. We'll deploy the official WordPress
container with MariaDB on another container using the Vagrant Docker provisioner
(and not the Vagrant Docker provider).

Getting ready
To step through this recipe, you will need the following:

ff A working Vagrant installation

ff A working hypervisor

ff An Internet connection

How to do it…
CoreOS doesn't host its official images at the default location on Atlas, it hosts it itself.
So, we have to specify the full URL to the Vagrant box in our Vagrantfile:

Vagrant.configure("2") do |config|
 config.vm.box = https://stable.release.core-os.net/amd64-usr/
current/coreos_production_vagrant.box
end

As CoreOS is a minimal OS, it doesn't support any of the VirtualBox guest addition
tools, so we'll disable them, and don't try anything if we (most likely) have the
vagrant-vbguest plugin:

 config.vm.provider :virtualbox do |vb|
 vb.check_guest_additions = false
 vb.functional_vboxsf = false

Chapter 1

45

 end

 if Vagrant.has_plugin?("vagrant-vbguest") then
 config.vbguest.auto_update = false
 end

Let's create a new VM definition, using the CoreOS Vagrant box:

 config.vm.define "core-1" do |config|
 config.vm.hostname = "core-1"
 config.vm.network "private_network", type: "dhcp"
 end

We now need to run the mariadb and wordpress official containers from the Docker Hub.
Using Docker directly, we would have run the following:

$ docker run -d --name mariadb -e MYSQL_ROOT_PASSWORD=h4ckm3 mariadb

$ docker run -d -e WORDPRESS_DB_HOST=mariadb -e
'WORDPRESS_DB_PASSWORD=h4ckm3 --link mariadb:mariadb -p 80:80
wordpress

Let's translate this into our Vagrantfile:

db_root_password = "h4ckm3"

config.vm.provision "docker" do |docker|

 docker.run "mariadb",

 args: "--name 'mariadb' -e
'MYSQL_ROOT_PASSWORD=#{db_root_password}'"

 docker.run "wordpress",

 args: "-e 'WORDPRESS_DB_HOST=mariadb' -e
'WORDPRESS_DB_PASSWORD=#{db_root_password}' --link 'mariadb:mariadb'
-p '80:80'"

 end

Vagrant this up ($ vagrant up), and you'll access a ready-to-use WordPress installation
running on CoreOS:

$ curl -IL http://172.28.128.3/wp-admin/install.php

HTTP/1.1 200 OK

Date: Thu, 25 Aug 2016 10:54:17 GMT

Server: Apache/2.4.10 (Debian)

X-Powered-By: PHP/5.6.25

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Content-Type: text/html; charset=utf-8

Vagrant Development Environments

46

There's more…
The CoreOS team proposes a full Vagrant environment to try and manipulate a CoreOS cluster
https://github.com/coreos/coreos-vagrant. You'll then be able to try all CoreOS
features and configuration options for all release channels (alpha, beta, or stable).

Other operating systems such as Ubuntu or CentOS are fully supported to provision Docker
containers, even if Docker isn't installed at first on the base image. Vagrant will install Docker
for you, so it will work transparently and run the containers as soon as it's installed.

https://github.com/coreos/coreos-vagrant

47

2
Provisioning IaaS with

Terraform

In this chapter, we will cover the following recipes:

ff Configuring the Terraform AWS provider

ff Creating and using an SSH key pair to use on AWS

ff Using AWS security groups with Terraform

ff Creating an Ubuntu EC2 instance with Terraform

ff Generating meaningful outputs with Terraform

ff Using contextual defaults with Terraform

ff Managing S3 storage with Terraform

ff Creating private Docker repositories with Terraform

ff Creating a PostgreSQL RDS database with Terraform

ff Enabling CloudWatch Logs for Docker with Terraform

ff Managing IAM users with Terraform

Provisioning IaaS with Terraform

48

Introduction
A modern infrastructure often uses multiple providers Amazon Web Services (AWS),
OpenStack, Google Cloud, Digital Ocean, and many others), combined with multiple external
services (DNS, mail, monitoring, and others). Many providers propose their own automation
tool, but the power of Terraform is that it allows you to manage it all from one place, all using
code. With it, you can dynamically create machines at two IaaS providers depending on the
environment, register their names at another DNS provider, enable monitoring at a third-
party monitoring company, while configuring the company GitHub account and sending the
application logs to an appropriate service. On top of that, it can delegate configuration to
those who do it well (configuration management tools such as Chef, Puppet, and so on),
all with the same tool. The state of your infrastructure is described, stored, versioned,
and shared.

In this chapter, we'll discover how to use Terraform to bootstrap a fully capable infrastructure
on AWS. You'll know everything from launching fine-tuned EC2 instances and optimized RDS
databases dynamically in different regions, to creating tight security groups, deploying SSH
key pairs and securing IAM access keys, enabling log storage with CloudWatch, generating
useful outputs, handling infinite Simple Storage Service (S3) storage, and using private
Docker repositories.

The Terraform version in use for this book is 0.7.2.

Configuring the Terraform AWS provider
We can use Terraform with many IaaS providers, such as Google Cloud or Digital Ocean.
Here, we'll configure Terraform to be used with AWS and stick with this provider for the
rest of the chapter.

For Terraform to interact with an IaaS, it needs to have a provider configured.

Getting ready
To step through this recipe, you will need the following:

ff An AWS account with keys

ff A working Terraform installation

ff An empty directory to store your infrastructure code

ff An Internet connection

Chapter 2

49

How to do it…
To configure the AWS provider in Terraform, we'll need the following three files:

ff A file declaring our variables, an optional description, and an optional default for each
(variables.tf)

ff A file setting the variables for the whole project (terraform.tfvars)

ff A provider file (provider.tf)

Lets declare our variables in the variables.tf file. We can start by declaring what's usually
known as the AWS_DEFAULT_REGION, AWS_ACCESS_KEY_ID, and AWS_SECRET_ACCESS_
KEY environment variables:

variable "aws_access_key" {
 description = "AWS Access Key"
}

variable "aws_secret_key" {
 description = "AWS Secret Key"
}

variable "aws_region" {
 default = "eu-west-1"
 description = "AWS Region"
}

Set the two variables matching the AWS account in the terraform.tfvars file. It's not
recommended to check this file into source control: it's better to use an example file instead
(that is: terraform.tfvars.example). It's also recommended to use a dedicated
Terraform user for AWS, not the root account keys:

aws_access_key = "< your AWS_ACCESS_KEY >"
aws_secret_key = "< your AWS_SECRET_KEY >"

Now, let's tie all this together into a single file, provider.tf:

provider "aws" {
 access_key = "${var.aws_access_key}"
 secret_key = "${var.aws_secret_key}"
 region = "${var.aws_region}"
}

Apply the following Terraform code:

$ terraform apply

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Provisioning IaaS with Terraform

50

It only means the code is valid, not that it can really authenticate with AWS (try with a bad pair
of keys). For this, we'll need to create a resource on AWS.

You now have a new file named terraform.tfstate that has been
created at the root of your repository. This file is critical: it's the stored state of
your infrastructure. Don't hesitate to look at it, it's a text file.

How it works…
This first encounter with HashiCorp Configuration Language (HCL), the language used by
Terraform, and other Hashicorp products looks pretty familiar: it's a structured language fully
compatible with JSON. We can find more information about HCL here: https://github.
com/hashicorp/hcl. In this case, we've declared variables with an optional description for
reference. We could have declared them simply with the following:

variable "aws_access_key" { }

All variables are referenced to use the following structure:

${var.variable_name}

If the variable has been declared with a default, as our aws_region has been declared with
a default of eu-west-1; this value will be used if there's no override in the terraform.
tfvars file.

What would have happened if we didn't provide a safe default for our variable? Terraform
would have asked us for a value when executed:

$ terraform apply
var.aws_region
 AWS Region

 Enter a value:

There's more…
We've used values directly inside the Terraform code to configure our AWS credentials.
If you're already using AWS on the command line, chances are you already have a set of
standard environment variables:

$ echo ${AWS_ACCESS_KEY_ID}

<your AWS_ACCESS_KEY_ID>

$ echo ${AWS_SECRET_ACCESS_KEY}

<your AWS_SECRET_ACCESS_KEY>

https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl

Chapter 2

51

$ echo ${AWS_DEFAULT_REGION}

eu-west-1

If not, you can simply set them as follows:

$ export AWS_ACCESS_KEY_ID="123"

$ export AWS_SECRET_ACCESS_KEY="456"

$ export AWS_DEFAULT_REGION="eu-west-1"

Then Terraform can use them directly, and the only code you have to type would be to declare
your provider! That's handy when working with different tools.

The provider.tf will then look as simple as this:

provider "aws" { }

Creating and using an SSH key pair to use
on AWS

Now we have our AWS provider configured in Terraform, let's add a SSH key pair to use on a
default account of the virtual machines we intend to launch soon.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS provider configured in Terraform

ff Generate a pair of SSH keys somewhere you remember, for example, in the keys
folder at the root of your repo:
$ mkdir keys

$ ssh-keygen -q -f keys/aws_terraform -C
aws_terraform_ssh_key -N ''

ff An Internet connection

How to do it…
The resource we want for this is named aws_key_pair. Let's use it inside a keys.tf file,
and paste the public key content:

resource "aws_key_pair" "admin_key" {
 key_name = "admin_key"

Provisioning IaaS with Terraform

52

 public_key = "ssh-rsa AAAAB3[…]"
}

This will simply upload your public key to your AWS account under the name admin_key:

$ terraform apply

aws_key_pair.admin_key: Creating...

 fingerprint: "" => "<computed>"

 key_name: "" => "admin_key"

 public_key: "" => "ssh-rsa AAAAB3[…]"

aws_key_pair.admin_key: Creation complete

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

If you manually navigate to your AWS account, in EC2 | Network & Security | Key Pairs,
you'll now find your key:

Another way to use our key with Terraform and AWS would be to read it directly from the file,
and that would show us how to use file interpolation with Terraform.

To do this, let's declare a new empty variable to store our public key in variables.tf:

variable "aws_ssh_admin_key_file" { }

Initialize the variable to the path of the key in terraform.tfvars:

aws_ssh_admin_key_file = "keys/aws_terraform"

Now let's use it in place of our previous keys.tf code, using the file() interpolation:

resource "aws_key_pair" "admin_key" {
 key_name = "admin_key"
 public_key = "${file("${var.aws_ssh_admin_key_file}.pub")}"
}

Chapter 2

53

This is a much clearer and more concise way of accessing the content of the public key from
the Terraform resource. It's also easier to maintain, as changing the key will only require to
replace the file and nothing more.

How it works…
Our first resource, aws_key_pair takes two arguments (a key name and the public key
content). That's how all resources in Terraform work.

We used our first file interpolation, using a variable, to show how to use a more dynamic code
for our infrastructure.

There's more…
Using Ansible, we can create a role to do the same job. Here's how we can manage our EC2
key pair using a variable, with the name admin_key. For simplification, we're using the three
usual environment variables—AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and
AWS_DEFAULT_REGION:

Here's a typical Ansible file hierarchy:

├── keys

│ ├── aws_terraform

│ └── aws_terraform.pub

├── main.yml

└── roles

 └── ec2_keys

 └── tasks

 └── main.yml

In the main file (main.yml), let's declare that our host (localhost) will apply the role
dedicated to manage our keys:

- hosts: localhost
 roles:
 - ec2_keys

In the ec2_keys main task file, create the EC2 key (roles/ec2_keys/tasks/main.yml):

 - name: ec2 admin key

Provisioning IaaS with Terraform

54

 ec2_key:
 name: admin_key
 key_material: "{{ item }}"
 with_file: './keys/aws_terraform.pub'

Execute the code with the following command:

$ ansible-playbook -i localhost main.yml

TASK [ec2_keys : ec2 admin key]
**

ok: [localhost] => (item=ssh-rsa AAAA[…] aws_terraform_ssh)

PLAY RECAP **

localhost : ok=2 changed=0 unreachable=0
failed=0

Using AWS security groups with Terraform
Amazon's security groups are similar to traditional firewalls, with ingress (incoming traffic)
and egress (outgoing traffic) rules applied to EC2 instances. Those rules can be updated
on-demand. We'll create an initial security group allowing ingress Secure Shell (SSH) traffic
only for our own IP address, while allowing all outgoing traffic.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS provider configured in Terraform (refer to the previous recipe)

ff An Internet connection

How to do it…
The resource we're using is called aws_security_group. Here's the basic structure:

resource "aws_security_group" "base_security_group" {
 name = "base_security_group"
 description = "Base Security Group"

Chapter 2

55

 ingress { }

 egress { }

}

We know we want to allow inbound TCP/22 for SSH only for our own IP (replace 1.2.3.4/32
with yours!), and allow everything outbound. Here's how it looks:

ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["1.2.3.4/32"]
 }

egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
}

You can add a name tag for easier reference later:

tags {
 Name = "base_security_group"
}

Apply this and you're good to go:

$ terraform apply

aws_security_group.base_security_group: Creating...

[…]

aws_security_group.base_security_group: Creation complete

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Provisioning IaaS with Terraform

56

You can see your newly created security group by logging into the AWS Console and navigating
to EC2 Dashboard | Network & Security | Security Groups:

Another way of accessing the same AWS Console information is through the AWS
command line:

$ aws ec2 describe-security-groups --group-names base_security_group

{...}

There's more…
We can achieve the same result using Ansible. Here's the equivalent of what we just did with
Terraform in this recipe:

 - name: base security group
 ec2_group:
 name: base_security_group
 description: Base Security Group
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 1.2.3.4/32

Creating an Ubuntu EC2 instance with
Terraform

We have previously created the requirements to launch a standard virtual machine on AWS
EC2 (an SSH key pair and a security group). Let's now launch this virtual machine on EC2,
using the specified SSH key pair to log into it and placed inside the security group, so (in our
case) SSH is only available from a specific IP address.

Chapter 2

57

This example uses the t2.micro instance available for free in the
AWS Free Tier.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS provider, a SSH key pair, and a Security Group configured in Terraform (refer

to the previous recipes)
ff An Internet connection

How to do it…
First, you need to find the correct AMI for your machine. An AMI is like a system disk image for
AWS, and is referred to by its ID (that is: ami-df3bceb0 or ami-f2fc9d81). In the Ubuntu case,
you can find the AMI you want by going to their Amazon EC2 AMI Locator page (https://
cloud-images.ubuntu.com/locator/ec2/). In this case, I selected a Xenial release
(16.04 LTS), on the eu-west-1 zone (Ireland), running on HVM virtualization and backed by
SSD disks. This leaves us with one result—ami-ee6b189d:

Start by declaring this variable in the variables.tf file started in the first recipe, using a
default value corresponding to the AMI ID we found previously:

variable "ami" {
 default = "ami-ee6b189d"
}

Now let's declare the instance type, specifying it as a default:

variable "aws_instance_type" {
 default = "t2.micro"
}

Let's use those variables to create the Terraform aws_instance resource. Locally declared
variables are available using the ${var.variable_name} structure, and internal resource
attributes are accessed using the ${resource_type.resource_name.attribute}
structure:

resource "aws_instance" "dev" {

https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/

Provisioning IaaS with Terraform

58

 ami = "${var.ami}"
 instance_type = "${var.aws_instance_type}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 security_groups = ["${aws_security_group.base_security_
group.name}"]
 associate_public_ip_address = true

 tags {
 Name = "Ubuntu launched by Terraform"
 }
}

Apply the following code:

$ terraform apply
aws_key_pair.admin_key: Creating...
[…]
aws_security_group.base_security_group: Creating...
[…]
aws_instance.dev: Creating...
[…]

Navigate to the AWS EC2 dashboard under Instances | Instances, select your instance and
note the public IP:

Try to log into it:

$ ssh -i keys/aws_terraform ubuntu@52.210.12.27
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-36-generic x86_64)
ubuntu@ip-172-31-18-156:~$

You can apply and apply by refreshing its state against Amazon's as Terraform knows remote
and local states are the same, and therefore it doesn't recreate endlessly new VMs each time.

You've successfully launched your first AWS EC2 instance using repeatable Terraform code!

Chapter 2

59

Scaling the number of instances
What if you want to launch two similar instances, maybe for debugging purposes, or for instant
action behind a load balancer? It's very easy with Terraform, just use the count option inside
the aws_instance resource, and that will launch the required amount of instances:

count = 2

Next, terraform apply this and observe Terraform automatically creating a new machine
according to the counter:

$ terraform apply
aws_key_pair.admin_key: Refreshing state... (ID: admin_key)
aws_security_group.base_security_group: Refreshing state... (ID: sg-
d3dbd8b4)
aws_instance.dev.0: Refreshing state... (ID: i-0018b1044953371ae)
aws_instance.dev.1: Creating...
[...]
aws_instance.dev.1: Creation complete

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The second server shows up in the AWS Console:

Remember, the command to destroy a Terraform infrastructure is
terraform destroy.

There's more…
We can achieve similar results using Ansible. Here's how it looks, using admin_key and
base_security_group created in the previous recipes:

 - name: dev instance
 ec2:
 key_name: admin_key
 group: base_security_group
 instance_type: t2.micro
 image: ami-ee6b189d
 wait: yes

Provisioning IaaS with Terraform

60

Generating meaningful outputs with
Terraform

Wouldn't it be great if Terraform could show us useful, informational output after a successful
run? Following what we've done so far, it would be helpful to know how to connect to the
instance, what are the local and public IP addresses, or see the security groups used. That's
what Terraform's outputs are for.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS provider and an EC2 instance (using a SSH keypair and a Security Group), all
configured in Terraform (refer to the previous recipes)

ff An Internet connection

How to do it…
Thankfully, we can use the same syntax we're already using to access variables and attributes
of references, but this time in an output resource.

Let's start by simply adding a line in outputs.tf that would show us how to connect to our
virtual machine, using the public_ip attribute of our dev EC2 instance:

output "login" {
 value = "ssh ubuntu@${aws_instance.dev.public_ip} -i
${var.aws_ssh_admin_key_file}"
}

When applying terraform next time, it will display the following:

login = ssh ubuntu@52.51.242.17 -i keys/aws_terraform

No doubt it's much quicker than having to log into the AWS dashboard, find the instance,
and copy and paste the IP in the terminal.

What if it's important for us to know at a glimpse under what security groups our EC2 instance
is running? We know security groups can be multiple, so it's an array. We can access the
content of this array using the formatlist interpolation syntax as follows:

output "security_groups" {
 value = "${formatlist("%v", aws_instance.dev.security_groups)}"
}

Chapter 2

61

So now, at the next terraform apply, we'll instantly know our security groups:
security_groups = [
 base_security_group
]

Also, if we have a lot of information to display from multiple sources, we can use the
same syntax:

output "instance_information" {
 value = "${formatlist("instance: %v public: %v private: %v",
 aws_instance.dev.*.id, aws_instance.dev.*.public_ip,
 aws_instance.dev.*.private_ip)}"
}

This will display the instance ID and its local and public IP addresses.

There's more…
Note that we used ${aws_instance.dev.public_ip} in the first output and
aws_instance.dev.*.public_ip in our last output. If you use the latter, the output
will iterate through all available machines. It's very useful if you launch more than one
instance using the count=n parameter in the aws_instance Terraform resource.

Using contextual defaults with Terraform
We've seen how to declare and use default values in our Terraform code, such as the Ubuntu
AMI for our region or our VM size. An interesting feature in Terraform is the ability to declare
and use maps of values, so, depending on a key, the variable can have a different value. We'll
see how it applies to the correct AMI of the corresponding AWS.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS provider and an EC2 instance (using a SSH key pair and a security group),

all configured in Terraform (refer to the previous recipes)
ff An Internet connection

Provisioning IaaS with Terraform

62

How to do it…
Here's how we simply declared the AMI we wanted for the eu-west-1 region in the
variables.tf file:

variable "ami" {
 default = "ami-ee6b189d"
}

We accessed it easily like this in the instances.tf file:

ami = "${var.ami}"

A similar, but more explicit way would be to use a map, so we know which region the value
refers to:

variable "ami" {
 default = {
 eu-west-1 = "ami-ee6b189d"
 }
}

Here's how we access the same value in a map:

ami = "${var.ami["eu-west-1"]}"

Now let's add more valid AMI IDs for other regions:

variable "ami" {
 default = {
 eu-west-1 = "ami-ee6b189d"
 us-east-1 = "ami-4f680658"
 us-west-1 = "ami-68a9e408"
 }
}

The ami variable can now be valid for either of the three regions if accessed correctly in the
instances.tf file:

ami = "${var.ami["us-east-1"]}"

Now is a good time to start managing the AWS region directly in the code, for better portability.
Add the following to variables.tf to use eu-west-1 as a default region:

variable "aws_region" {
 default = "eu-west-1"
}

Chapter 2

63

You can now use this variable in the provider.tf file to set the region:

provider "aws" {
 region = "${var.aws_region}"
}

Now the region variable is globally available, let's use it to access our map in instances.tf:

ami = "${var.ami["${var.aws_region}"]}"

We now have an easily geographically deployable infrastructure that anyone in your team can
launch close to him or her without the need to change code.

There's more…
We can perform the same dynamic access to a map using the lookup() function
in Terraform:

ami = "${lookup(var.ami, var.aws_region)}"

Managing S3 storage with Terraform
Storing and accessing files easily and in a scalable way is an essential part of a modern
infrastructure. Amazon S3 is Amazon's answer to this need. S3 stores "objects" in "buckets"
and has no storage limit (one exception is the bucket name: it has to be unique on Amazon's
S3, the namespace being shared). We'll see how to make the best use of S3 with Terraform.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS provider configured in Terraform (refer to the previous recipes)
ff An Internet connection

Provisioning IaaS with Terraform

64

How to do it…
We'll start by creating a simple and explicitly public bucket on S3 named iac-book, using the
aws_s3_bucket resource (and a tag for the sake of it):

resource "aws_s3_bucket" "iac_book" {
 bucket = "iac-book"
 acl = "public-read"

 tags {
 Name = "IAC Book Bucket in ${var.aws_region}"
 }
}

After a terraform apply, your bucket is immediately available for storing objects. You can
see it on the AWS S3 Console (https://console.aws.amazon.com/s3/):

Let's store a first object right now, a very simple file containing a simple string ("Hello
Infrastructure-as-Code Cookbook!"). The resource is named aws_s3_bucket_
object, and you need to reference the bucket previously created, the destination name
(index.html), and its content. The ACL is here again explicitly public:

resource "aws_s3_bucket_object" "index" {
 bucket = "${aws_s3_bucket.iac_book.bucket}"
 key = "index.html"
 content = "<h1>Hello Infrastructure-as-Code Cookbook!</h1>"
 content_type = "text/html"
 acl = "public-read"
}

You can alternatively provide a file directly instead of its content:

source = "index.html"

https://console.aws.amazon.com/s3/

Chapter 2

65

If you navigate to the AWS S3 Console, you can see it available with some
extended information:

It would be awesome if we could know easily the URL of our file right from Terraform, so we
could give it to others. Unfortunately, there's no easy function for that. However, we know how
URLs are constructed: http://s3-<region>.amazonaws.com/bucket_name/object_
name. Let's create an output containing this information:

output "S3" {
 value = "http://s3-${aws_s3_bucket.iac_book.region}.amazonaws.
com/${aws_s3_bucket.iac
_book.id}/${aws_s3_bucket_object.index.key}"
}

Paste the link in a web browser and you'll be able to access your file.

A workaround is to use the static website hosting feature of S3 by simply adding the following
to your aws_s3_bucket resource:

website {
 index_document = "index.html"
}

An optional output will give you its static hosting URL (in our case, iac-book.s3-website-
eu-west-1.amazonaws.com instead of http://s3-eu-west-1.amazonaws.com/iac-
book/index.html):

output "S3 Endpoint" {
 value = "${aws_s3_bucket.iac_book.website_endpoint}"
}

iac-book.s3-website-eu-west-1.amazonaws.com
iac-book.s3-website-eu-west-1.amazonaws.com
http://s3-eu-west-1.amazonaws.com/iac-book/index.html
http://s3-eu-west-1.amazonaws.com/iac-book/index.html

Provisioning IaaS with Terraform

66

There's more…
Using Ansible, there are many ways to create a bucket. Here's a simple bucket with public
read permissions, using the classic s3 module:

- name: create iac-book bucket
 s3:
 bucket: iac-book
 mode: create
 permission: public-read

Note that Ansible 2.2 also comes with an s3_website module
for specifically handling S3 websites.

Here's how we would simply upload our previous index.html file using the same s3 module:

- name: create index.html file
 s3:
 bucket: iac-book
 object: index.html
 src: index.html
 mode: put
 permission: public-read

Creating private Docker repositories with
Terraform

To host your Docker images, you need what's called a registry. This registry is either run by
you or as a service. It stores your images for you and sometimes builds them too. The Docker
Hub and Quay.io from CoreOS are the main Docker-managed registries you can subscribe
to. Both are interesting in terms of features or pricing. However, an interesting alternative is
AWS Elastic Container Registry (ECR): pricing is different and fully integrated in the AWS
ecosystem. Let's create countless repositories simply with Terraform!

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS provider configured in Terraform (refer to the previous recipes)

Chapter 2

67

ff A configured AWS CLI (http://docs.aws.amazon.com/cli/latest/
userguide/installing.html)

ff An Internet connection

How to do it…
Let's say you want to store your application container in a repository named myapp, so you
can deploy it easily. It's very simple with Terraform. Add the following code to a file named
ecr.tf:

resource "aws_ecr_repository" "myapp" {
 name = "myapp"
}

If you want to know the URL to access your new repository, you can create an output using the
corresponding exported attribute:

output "ECR" {
 value = "${aws_ecr_repository.myapp.repository_url}"
}

If you're used to the other Docker registries, the first step is to authenticate so you create
private repositories. Here, no login or password are provided by AWS. We need to use the
official AWS command line to authenticate, and that will give us temporary Docker credentials.
The output of this command is the Docker command to type:

$ aws ecr get-login --region eu-west-1
docker login -u AWS -p AQECAHh... -e none
https://<account_number>.dkr.ecr.eu-west-1.amazonaws.com

Now we can docker build, tag, and push images at will! (See more about using Docker
images in the dedicated chapter of this book.)

A nice advanced feature is the ability to use fine-grained policies for each repository created.

Creating a PostgreSQL RDS database with
Terraform

Amazon Relational Database Service (RDS) is an on-demand, ready-to-use, and resizable
EC2 instance specifically tailored and configured to run the requested database server. You
can launch many different relational database servers on RDS, and we'll focus on PostgreSQL
for this recipe.

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

Provisioning IaaS with Terraform

68

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS provider configured in Terraform (refer to the previous recipes)
ff An Internet connection

How to do it…
There are many parameters at play in a database deployment, even a simple one. To be
certain of what we'll deploy, we'll start by filling a simple table with the database requirements,
and build on it:

Parameter Variable name Value

RDS Database Engine rds_engine postgresql

RDS Database Engine Version rds_engine_version 9.5.2

RDS Instance Name rds_identifier db

RDS Instance Type rds_instance_type db.t2.micro

RDS Storage Size (GB) rds_storage_size 5

RDS First Database Name rds_db_name iac_book_db

RDS Administrator Username rds_admin_user dbadmin

RDS Administrator Password rds_admin_password super_secret_password

RDS Publicly Accessible rds_publicly_
accessible

true

Let's set all those variables in our variables.tf file:

variable "rds_identifier" {
 default = "db"
}

variable "rds_instance_type" {
 default = "db.t2.micro"
}
variable "rds_storage_size" {
 default = "5"
}

variable "rds_engine" {
 default = "postgres"

Chapter 2

69

}

variable "rds_engine_version" {
 default = "9.5.2"
}

variable "rds_db_name" {
 default = "iac_book_db"
}

variable "rds_admin_user" {
 default = "dbadmin"
}

variable "rds_admin_password" {
 default = "super_secret_password"
}

variable "rds_publicly_accessible" {
 default = "true"
}

As we're running PostgreSQL and we want it to be available on the Internet (though generally
not a good idea for production), we'll need a security group allowing just the default PgSQL
port (TCP/5432) for our IP address (refer to the Using AWS security groups with Terraform
recipe), in securitygroups.tf:

resource "aws_security_group" "rds_security_group" {
 name = "rds_security_group"
 description = "RDS Security Group"

 ingress {
 from_port = 5432
 to_port = 5432
 protocol = "tcp"
 cidr_blocks = ["1.2.3.4/32"]
 }

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

Provisioning IaaS with Terraform

70

 tags {
 Name = "rds_security_group"
 }
}

Now we have everything in place to construct the aws_db_instance resource:

resource "aws_db_instance" "db" {
 engine = "${var.rds_engine}"
 engine_version = "${var.rds_engine_version}"
 identifier = "${var.rds_identifier}"
 instance_class = "${var.rds_instance_type}"
 allocated_storage = "${var.rds_storage_size}"
 name = "${var.rds_db_name}"
 username = "${var.rds_admin_user}"
 password = "${var.rds_admin_password}"
 publicly_accessible = "${var.rds_publicly_accessible}"
 vpc_security_group_ids = ["${aws_security_group.rds_security_group.
id}"]
 tags {
 Name = "IAC Database in ${var.aws_region}"
 }
}

As we did previously, a quick output giving us the FQDN of our new database will help us to
use it quickly, in outputs.tf:

output "RDS" {
 value = "address: ${aws_db_instance.db.address}"
}

Let's terraform apply now and try the result:

psql -h <your_db_address> -d iac_book_db -U dbadmin

Password for user dbadmin:

psql (9.5.4, server 9.5.2)

[...]

iac_book_db=> \l

 List of databases

 Name | Owner | Encoding | Collate | Ctype |
Access privileges

-------------+----------+----------+-------------+-------------+---------

Chapter 2

71

 iac_book_db | dbadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 postgres | dbadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 rdsadmin | rdsadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
rdsadmin=CTc/rdsadmin

 template0 | rdsadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
=c/rdsadmin +

 | | | | |
rdsadmin=CTc/rdsadmin

 template1 | dbadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
=c/dbadmin +

 | | | | |
dbadmin=CTc/dbadmin

(5 rows)

There are many more useful options you can use or set, such as maintenance windows,
backup retention periods, dedicated database subnets, storage encryption, and master/slave
configuration.

There's more…
How would that work when using Ansible to do a similar job with the same values? Just as
easy as usual:

- name: create RDS PgSQL
 rds:
 command: create
 instance_name: db
 db_engine: postgres
 engine_version: 9.5.2
 db_name: iac_book_db
 size: 5
 instance_type: db.t2.micro
 username: dbadmin
 password: super_secure_password
 publicly_accessible: yes
 tags:
 Name: IAC Database

After executing this playbook, a similar PostgreSQL server will run on RDS as we just did with
Terraform.

Provisioning IaaS with Terraform

72

Enabling CloudWatch Logs for Docker with
Terraform

CloudWatch Logs is a log aggregation service by Amazon you can use to send your logs to. It's
very useful to keep some logs centralized, share access to them, receive alarms when errors
happen, or simply store them safely. We'll see how to create a CloudWatch Log group and use
it to stream logs from a Docker container logs inside it.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS provider configured in Terraform (refer to the previous recipes)

ff An Internet connection

ff A Docker Engine running on Linux for the optional usage demonstration

How to do it…
Let's say we want the log group to be named docker_logs, and that we want to keep those
logs for seven days. In the variables.tf file, that would look like this:

variable "log_group_name" {
 default = "docker_logs"
}

variable "log_retention_days" {
 default = "7"
}

Also, in a new cloudwatch.tf file, we can use the simple aws_cloudwatch_log_group
resource:

resource "aws_cloudwatch_log_group" "docker_logs" {
 name = "${var.log_group_name}"
 retention_in_days = "${var.log_retention_days}"
}

Chapter 2

73

After a terraform apply, if you navigate to the AWS CloudWatch page, you'll see the newly
created group under the Log Groups entry on the left (https://eu-west-1.console.
aws.amazon.com/cloudwatch/).

Amazon CloudWatch Logs Docker logging driver
You can now use this group to create a log stream from an application or a container. Using
it as recommended by AWS is well documented, so let's use it with Docker instead. It only
requires to give the Docker daemon access to the AWS_ACCESS_KEY_ID and AWS_SECRET_
ACCESS_KEY environment variables (configuring the Docker daemon is out of the scope of
this chapter, but that's under /etc/sysconfig/docker for Red Hat-based systems such
as Fedora or CentOS, and /etc/default/docker for Debian/Ubuntu systems). Restart the
daemon and start logging your containers output using a new Docker logging driver, using the
log group name specified in Terraform earlier (docker_logs):

$ docker run -it --rm -p 80:80 --log-driver=awslogs --log-opt
awslogs-region=eu-west-1 --log-opt awslogs-group=docker_logs --log-
opt awslogs-stream=nginx nginx:stable

Generate some activity on the container:

$ curl -IL http://localhost

HTTP/1.1 200 OK

https://eu-west-1.console.aws.amazon.com/cloudwatch/
https://eu-west-1.console.aws.amazon.com/cloudwatch/

Provisioning IaaS with Terraform

74

Refresh the AWS CloudWatch page and you'll see a new entry named nginx with the
container logs. You can run all your containers in your infrastructure like this and get
centralized logging very easily!

Managing IAM users with Terraform
An essential part of using AWS is controlling access to the resources. We've seen with all the
previous recipes how often we need to use the AWS Access Keys, and it's surely not a good
idea to use a single key for all your activities. Imagine what would happen if a single one of
your services was hacked—the intruder would get the main AWS key and would be able to do
everything on your behalf.

A good secure setup would be dedicated keys with a dedicated scope of access rights for
every person in your team and every service in your infrastructure.

Thankfully, Identity and Access Management (IAM) is there just for that. We'll see how to use
it with Terraform.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS provider configured in Terraform (refer to the previous recipes)
ff An Internet connection

Chapter 2

75

How to do it…
Let's start with a simple case: two members of a team (Mary and Joe) need to access
resources on AWS. They currently all share the same main key, which is a disaster if
a leakage happens. So let's ask them what exactly they need to access in the AWS space:

Mary S3 in read and write
Joe EC2 in read only

As expected, neither user really needs full access!

Amazon helps by offering prebuilt security policies for IAM. If those aren't enough, you can
tailor the ones you need:

You can find all AWS Managed IAM Policies at https://console.aws.
amazon.com/iam/home#policies.

An IAM user for S3 access
Let's create a first IAM user for Mary in a new iam.tf file using the aws_iam_user resource:

resource "aws_iam_user" "mary" {
 name = "mary"
 path = "/team/"
}

https://console.aws.amazon.com/iam/home#policies
https://console.aws.amazon.com/iam/home#policies

Provisioning IaaS with Terraform

76

The path is purely optional and informative, I'm simply suggesting structured paths. So we'll
have /apps/ as well later.

We can now create an AWS Access Key for our user Mary, using the aws_iam_access_key
resource with reference to our user:

resource "aws_iam_access_key" "mary" {
 user = "${aws_iam_user.mary.name}"
}

And finally, as we know, we want to attach to this user the AmazonS3FullAccess managed
policy, let's use the dedicated resource:

resource "aws_iam_user_policy_attachment" "mary_s3full" {
 user = "${aws_iam_user.mary.name}"
 policy_arn = "arn:aws:iam::aws:policy/AmazonS3FullAccess"
}

Let's write an output so we know both parts of the key in outputs.tf:

output "mary" {
 value = "ACCESS_KEY: ${aws_iam_access_key.mary.id}, SECRET:
${aws_iam_access_key.mary.secret}"
}

Also, terraform apply this to create the mary user:

[...]
Outputs:
mary = ACCESS_KEY: AKIAJPQB7HBK2KLAARRQ, SECRET: wB+Trao2R8qTJ36IEE64G
NIGTqeWrpMwid69Etna

Testing the restrictions
Now, terraform apply this, and confirm using an S3 browser that you can access S3!
Here's an example of creating a simple S3 bucket with s3cmd:

$ s3cmd --access_key=<mary_access_key> --secret_key=<mary_secret_key>
mb s3://iacbook-iam-bucket

Bucket 's3://iacbook-iam-bucket/' created

Is this account really limited to S3, as it pretends to be? Let's try to list EC2 hosts with Mary's
account using the aws command line (provided you configured the aws tool accordingly):

$ aws --profile iacbook-mary ec2 describe-hosts

An error occurred (UnauthorizedOperation) when calling the
DescribeHosts operation: You are not authorized to perform this
operation.

Chapter 2

77

So it all looks good and secure! Mary can do her job on S3 safely.

An IAM user for EC2 in read-only
Is there a similar managed policy for Joe, with a read-only scope on EC2? Fortunately, there is!
It's creatively named AmazonEC2ReadOnlyAccess.

Let's create our second user, with this IAM policy in the iam.tf file:

resource "aws_iam_user" "joe" {
 name = "joe"
 path = "/team/"
}

resource "aws_iam_access_key" "joe" {
 user = "${aws_iam_user.joe.name}"
}

resource "aws_iam_user_policy_attachment" "joe_ec2ro" {
 user = "${aws_iam_user.joe.name}"
 policy_arn = "arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess"
}

Don't forget the useful output that comes with it:

output "joe" {
 value = "ACCESS_KEY: ${aws_iam_access_key.joe.id}, SECRET: ${aws_
iam_access_key.joe.secret}"
}

Next, terraform apply this once again, and can the Joe user see what's on S3? No,
he can't:

$ s3cmd --access_key=<joe_access_key> --secret_key=<joe_secret_key>
ls

ERROR: S3 error: 403 (AccessDenied): Access Denied

But can the Joe user simply list the EC2 VMs as he needs to, with the same command that
was forbidden to Mary? Yes, he can:

$ aws --profile iacbook-joe ec2 describe-hosts
{
 "Hosts": []
}

We're on track to securely manage our infrastructure access using code!

Provisioning IaaS with Terraform

78

An application user IAM – CloudWatch Logs
We've used the CloudWatch Logs service in a previous recipe. If you remember, you had to
enter once again your keys in the Docker Engine configuration. If you had 100 servers, your
master keys would be on each of them. This is rather unnecessary, if you consider that the
scope of this configuration in Docker is just to send logs. Fortunately, there's a managed IAM
policy for that named CloudWatchLogsFullAccess.

So let's create another user, exactly as before for Mary and Joe, except this one will be for our
Docker Engines and not for a real user in iam.tf. I suggest using a different path, just to
separate real users and application users. However, that's totally optional and opinionated:

resource "aws_iam_user" "logs" {
 name = "logs"
 path = "/apps/"
}

resource "aws_iam_access_key" "logs" {
 user = "${aws_iam_user.logs.name}"
}

resource "aws_iam_user_policy_attachment" "logs_cloudwatch_full" {
 user = "${aws_iam_user.logs.name}"
 policy_arn = "arn:aws:iam::aws:policy/CloudWatchLogsFullAccess"
}

The relevant output in outputs.tf is as follows:

output "logs" {
 value = "ACCESS_KEY: ${aws_iam_access_key.logs.id}, SECRET:
${aws_iam_access_key.logs.secret}"
}

Now, terraform apply this and try the Enabling CloudWatch Logs for Docker with
Terraform recipe again with those credentials instead of the master keys: it will still work
on the CloudWatch scope, but if something goes wrong, it will never put the rest of your
infrastructure in danger. The worst that can happen in this area is the total waste of the logs.

[...]
Outputs:

joe = ACCESS_KEY: AKIAJQPSXBKSD3DY47BQ, SECRET:
VQgtQ7D8I+mxRX28/x5qbFk6cdyxZajhhSsh7Rha
logs = ACCESS_KEY: AKIAISIUXTG5RIJZAEYA, SECRET:
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
mary = ACCESS_KEY: AKIAJPQB7HBK2KLAARRQ, SECRET:
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

Chapter 2

79

There's more…
If you'd prefer to see how this would work using Ansible, it's a bit different. IAM support is not
equivalent, as there's no IAM Managed Policies support. However, you can simply create users
like this:

- name: create mary user
 iam:
 iam_type: user
 name: mary
 state: present
 access_key_state: create
 path: /team/

As there's currently no IAM Managed Policy support, a workaround is to use the JSON from
the IAM Policy we want, such as AmazonS3FullAccess for our user Mary. It's easy to find
in the AWS Console in the Policies section (https://console.aws.amazon.com/iam/
home#policies). Paste the following JSON content in AmazonS3FullAccess.json at the
root of the Ansible folder:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "*"
 }
]
}

https://console.aws.amazon.com/iam/home#policies
https://console.aws.amazon.com/iam/home#policies

Provisioning IaaS with Terraform

80

Use this local policy in the iam_policy module:

- name: Assign a AmazonS3FullAccess policy to mary
 iam_policy:
 iam_type: user
 iam_name: mary
 policy_name: AmazonS3FullAccess
 state: present
 policy_document: AmazonS3FullAccess.json

81

3
Going Further with

Terraform

In this chapter, we will cover the following recipes:

ff Handling different environments with Terraform

ff Provisioning a CentOS 7 EC2 instance with Chef using Terraform

ff Using data sources, templates, and local execution

ff Executing remote commands at bootstrap using Terraform

ff Using Docker with Terraform

ff Simulating infrastructure changes using Terraform

ff Teamwork – sharing Terraform infrastructure state

ff Maintaining a clean and standardized Terraform code

ff One Makefile to rule them all

ff Team workflow example

ff Managing GitHub with Terraform

ff External monitoring integration with StatusCake

Going Further with Terraform

82

Introduction
In this chapter, we'll go beyond the essentials of using Terraform we covered in Chapter 2,
Provisioning IaaS with Terraform. We'll discover many important techniques to use Terraform
in conjunction with other players in the field such as Docker and Chef, how it can be used in
multiple environments (such as development/staging/production), how powerful it can be to
manage not only infrastructure but many SaaS as well, and how to integrate the tool within a
team workflow (sharing, synchronizing, maintaining, harmonizing, and so on). These topics are
all equally important, as they will define the quality of our daily work and our ability to interact
with other people, services, and systems.

The Terraform version in use for this book is 0.7.3.

Handling different environments with
Terraform

It's a common and recommended setup to have different infrastructure environments,
with some level of parity. Those environments can vary greatly between companies and
projects in both names and focus, but here are commonly found environments:

ff Development: where developers can implement and quickly test new features

ff Staging: where the new features are tested in a more consistent environment than
the development one, sometimes very similar to a preproduction environment

ff Preproduction: this environment is the most similar possible to production

ff Production: the full-featured live production environment

We'll see how using infrastructure-as-code and especially how Terraform fundamentally helps
to build strong and replicated environments. This time we'll use a CoreOS AMI for a change.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS account with an SSH key configured in Terraform (refer to the Chapter 2,
Provisioning IaaS with Terraform, recipes)

ff An Internet connection

Chapter 3

83

How to do it…
Using infrastructure-as-code, the easiest thing is to simply duplicate the code to create as
many environments as needed. However, there's a much more powerful way to leverage the
full capabilities of Terraform.

Let's define the requirements of simple target environments that we'll translate into dynamic
Terraform code:

Parameter Staging Production
Number of instances 1 3
Type of instance t2.micro t2.medium

Operating system CoreOS Stable CoreOS Stable
AMI in eu-west-1 ami-85097ff6 ami-85097ff6

AMI in us-east-1 ami-0aef8e1d ami-0aef8e1d

S3 bucket naming iacbook-staging iacbook-production
Default environment Yes No

Let's start by declaring those variables in the variables.tf file, exactly as we' saw in
Chapter 2, Provisioning laaS with Terraform, except we'll describe environments such as
staging and production instead of the AWS regions for the cluster size and instance types.

Define the CoreOS AMI variable:

variable "aws_coreos_ami" {
 type = "map"

 default = {
 eu-west-1 = "ami-85097ff6"
 us-east-1 = "ami-0aef8e1d"
 }
}

Define a cluster size variable with different values according to the environment:

variable "cluster_size" {
 type = "map"

 default = {
 staging = "1"
 production = "3"
 }

 description = "Number of nodes in the cluster"
}

Going Further with Terraform

84

Finally, define the different AWS instance types:

variable "aws_instance_type" {
 type = "map"

 default = {
 staging = "t2.micro"
 production = "t2.medium"
 }

 description = "Instance type"
}

Now let's use those in a highly dynamic infrastructure code (instances.tf), using the
aws_instance resource and by choosing automatically the correct cluster size and
instance type according to the environment, while choosing the right AMI according to
the execution region:

resource "aws_instance" "coreos" {
 count = "${lookup(var.cluster_size,
var.environment)}"
 ami = "${lookup(var.aws_coreos_ami,
var.aws_region)}"
 instance_type = "${lookup(var.aws_instance_type,
var.environment)}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 associate_public_ip_address = true

 tags {
 Name = "coreos_${var.environment}_${count.index+1}"
 Environment = "${var.environment}"
 }
}

We constructed each instance Name tag according to its environment and its
numerical value in the count (that is, coreos_production_2).

Our specification table indicates we need two different S3 buckets as well. Let's reuse in
s3.tf something close to what we did in Chapter 2, Provisioning IaaS with Terraform:

resource "aws_s3_bucket" "bucket" {
 bucket = "iacbook-${var.environment}"

 tags {
 Name = "IAC Book ${var.environment} Bucket"
 Environment = "${var.environment}"
 }
}

Chapter 3

85

It's the same construction here, each environment will get its bucket dynamically named
after it.

Keeping the tfstate isolated
It's strongly recommended to not mix Terraform state files between environments.
One elegant solution to keep them well separated is to use the following option when
executing the terraform command:

$ terraform apply -state=staging.tfstate

Your default environment (set to staging) will now reside in the staging.tfstate file.

Setting the production flag
Now we have our staging infrastructure running smoothly, it's time to launch the real
thing—the production environment. As we're already using a dedicated terraform state file,
let's do the same for production, and set the environment variable directly through the
command line:

$ terraform plan -state=production.tfstate -var
environment=production

You now have two clearly separated environments using the very same code, but living
independently from each other. Concise and elegant!

Provisioning a CentOS 7 EC2 instance with
Chef using Terraform

Once the underlying infrastructure is generated by Terraform, chances are the job isn't
already finished. That's the moment a configuration management tool such as Chef, Ansible,
or Puppet enters the game, to provision the virtual machine. Thankfully, Chef is a first class
provisioning tool in Terraform. We'll see here how to fully bootstrap a CentOS 7.2 instance on
AWS with Terraform, from nothing to a fully configured node, by gracefully handing over the
configuration to Chef after having it automatically deployed and registered on Hosted Chef.

If it's the first time you've launched CentOS 7 servers on AWS, you have to agree their terms
and conditions at https://aws.amazon.com/marketplace/pp/B00O7WM7QW.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS account with an SSH key configured in Terraform and a security group

allowing SSH connections from outside (refer to the Chapter 2, Provisioning IaaS
with Terraform, recipes)

https://aws.amazon.com/marketplace/pp/B00O7WM7QW

Going Further with Terraform

86

ff An account on a Chef server (we recommend using a free hosted Chef account.
Please refer to the Creating a free hosted server Chef account and a Puppet server
recipe of Chapter 6, Fundamentals of Managing Servers with Chef and Puppet), with
the default cookbook uploaded

ff An Internet connection

How to do it…
As there're a lot of sources involved, let's put all the required information in a table (the Chef
information is taken from the Chef Starter Kit, or your own Chef server, fill in your own values):

Hostname centos-1

Instance type t2.micro

AMI in eu-west-1 ami-7abd0209

AMI in us-east-1 ami-6d1c2007
SSH username centos
SSH key keys/aws_terraform

TCP ports needed 22
Cookbook(s) to apply starter
Chef server URL https://api.chef.io/organizations/iacbook

Validation key iacbook.pem

Validation client name iacbook
Chef client version 12.13.37

1.	 Let's start by declaring our AMIs as a map in the variables.tf file:
variable "aws_centos_ami" {
 type = "map"

 default = {
 eu-west-1 = "ami-7abd0209"
 us-east-1 = "ami-6d1c2007"
 }
}

2.	 Now add the instance type in the same file:
variable "aws_instance_type" {
 default = "t2.micro"
 description = "Instance Type"
}

https://api.chef.io/organizations/iacbook

Chapter 3

87

3.	 Declare the Chef version we're currently using in production, so it's stable and stays
the same:
variable "chef_version" {
 default = "12.13.37"
}

4.	 Declare the Chef server URL. If you're using the book example with hosted Chef, you'll
find the correct address in the knife.rb file: it's simply https://api.chef.io/
organizations/<your_organization_name>, otherwise, use your own
Chef server):
variable "chef_server_url" {
 default = "https://api.chef.io/organizations/iacbook"
}

5.	 Finally, add the validation client name for the Chef server:
variable "chef_validation_client_name" {
 default = "iacbook"
}

6.	 To connect to the instance, we know the default username is centos, but as it can
evolve or you may use your own images, it's better to fix it in a variable as well:

variable "ssh_user" {
 default = "centos"
}

Creating the EC2 instance
We know from previous recipes that a basic instance running CentOS looks like this in
Terraform's instances.tf using a security group named base_security_group:

resource "aws_instance" "centos" {
 ami = "${lookup(var.aws_centos_ami,
var.aws_region)}"
 instance_type = "${var.aws_instance_type}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 security_groups = ["${aws_security_group.base_security_
group.name}"]
 associate_public_ip_address = true

 tags {
 Name = "CentOS-${count.index+1} by Terraform"
 }
}

Now we need to provide two kinds of information to our Terraform file: what to do with Chef on
the server and how to connect to it.

Going Further with Terraform

88

Passing connection information
To tell Terraform how to connect itself to the new EC2 instance, we use a connection {}
block inside the aws_instance resource to tell it which user and key to use through SSH:

connection {
 type = "ssh"
 user = "${var.ssh_user}"
 key_file = "${var.aws_ssh_admin_key_file}"
 }

Giving Chef information
We need to give some information to Terraform to pass it on to Chef. This will all happen
inside a provisioner "chef" {} block inside the aws_instance resource.

Using all the variables we declared, here's how it looks:

resource "aws_instance" "centos" {
[...]
 provisioner "chef" {
 node_name = "centos-${count.index+1}"
 run_list = ["starter"]
 server_url = "${var.chef_server_url}"
 validation_client_name = "${var.chef_validation_client_name}"
 validation_key = "${file("chef/validator.pem")}"
 version = "${var.chef_version}"
 }
 }

Don't forget to use a valid path for the validation key!

Now you can terraform apply this and see everything happen, from instance creation to
Chef Client deployment and cookbook installation.

How it works…
First, Terraform creates the required AWS environment (keys, security groups, and instances),
and once the instance is running, it connects to it with the right credentials by SSH, then
deploys the specified Chef client version from the official source, and finally executes
an initial chef-client run that registers the node on the Chef server and applies the
requested cookbooks.

Chapter 3

89

There's more…
A lot more configuration options are possible for the Chef provisioner inside Terraform. For
example, all available chef-client options can be passed as an array using client_options,
and the Chef environment (usually very important) is passed using environment as a string.
If you use a custom built image with the Chef client already baked in, you will be interested in
setting skip_install to true so it doesn't get reinstalled.

Using data sources, templates, and local
execution

When we deploy or update an infrastructure with Terraform, it's sometimes enjoyable to have
some local content dynamically generated. For example, if you want to provision with Ansible
the new virtual machine launched by Terraform, chances are you'll need to populate a hosts
file with the public IP address of this host locally on your laptop.

Ansible can use some dynamic inventories with AWS by itself, but we'll see here how to use
a template in Terraform and dynamically fill in the required information so we end up with a
working Ansible setup, thanks to Terraform.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation
ff An AWS account with an SSH key configured in Terraform and a security group

allowing SSH connections from outside (refer to the Chapter 2, Provisioning IaaS
with Terraform recipes)

ff An Internet connection

How to do it…
Let's start by launching a standard CentOS 7.2 on AWS with a standard set of variables in
variables.tf:

variable "aws_centos_ami" {
 type = "map"

 default = {
 eu-west-1 = "ami-7abd0209"
 us-east-1 = "ami-6d1c2007"
 }
}

Going Further with Terraform

90

variable "aws_instance_type" {
 default = "t2.micro"
 description = "Instance Type"
}

Here's the simplest instances.tf file to launch the instance:

resource "aws_instance" "centos" {
 ami = "${lookup(var.aws_centos_ami,
var.aws_region)}"
 instance_type = "${var.aws_instance_type}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 security_groups = ["${aws_security_group.base_security_
group.name}"]
 associate_public_ip_address = true

 tags {
 Name = "CentOS"
 }
}

Data and templates
Now, how does a typical hosts file look for Ansible? It looks like this:

[section_name_1]
1.2.3.4
[section_name_2]
5.6.7.8
a.server.fqdn

So, later, Ansible will apply whatever role is needed for each server of each section.

In our case, we want a simple section named centos7_hosts and the servers IP as follows:

[centos7_hosts]
1.2.3.4

Let's construct our first template named hosts.tpl with a variable named host_public_
ipv4 that will ultimately be replaced by the real future IP of the host we'll later launch:

[centos7_hosts]
${host_public_ipv4}

To generate this file, we'll use a template with a variable in it, that Terraform will generate for
us, using a data resource in data.tf—it simply contains the file interpolation of our template
and passes it the variable we need from our AWS instance:

data "template_file" "ansible_hosts" {

Chapter 3

91

 template = "${file("hosts.tpl")}"

 vars {
 host_public_ipv4 = "${aws_instance.centos.public_ip}"
 }
}

The local-exec Terraform provisioner
This generates the template internally, meaning the data is available, but not dumped
anywhere. That's where the local-exec provisioner comes in, by simply echoing the
rendered template from the data source into the file we want (in data.tf):

resource "null_resource" "generate_ansible_hosts" {
 provisioner "local-exec" {
 command = "echo '${data.template_file.ansible_hosts.rendered}'
 > hosts"
 }
}

We use "null_resource" for this purpose, so the generation of the
template is independent of any other executing resource. In other situations,
we can perfectly use the "local-exec" { } provisioner directly from
inside a standard resource.

We can now terraform apply this setup. How does our hosts file look? Like this:

$ cat hosts

[centos7_hosts]

52.17.172.231

It's correctly populated!

Apply a configured Ansible
Our code repository is now ready for use by Ansible. Here's a sample Ansible role that simply
installs Docker and starts it, so we can play with it, under ansible/main.yml:

- hosts: centos7_hosts
 become: yes
 tasks:
 - name: Install EPEL
 yum: name=epel-release state=present
 - name: Install Docker

Going Further with Terraform

92

 yum: name=docker state=present
 - name: Start docker
 service: name=docker state=started enabled=yes

Now you just have to execute Ansible when you want, it is all ready and configured!

$ ansible-playbook -i hosts -u centos ansible/main.yml

PLAY [centos7_hosts]

[...]

PLAY RECAP

52.17.172.231 : ok=4 changed=0 unreachable=0
failed=0

Executing remote commands at bootstrap
using Terraform

It's a very common practice to have a set of initial commands executed right after bootstrap,
even before the proper configuration management system such as Chef or Ansible takes
responsibility. It can include immediate full updating of the OS, initial registration on
discovery systems such as Consul, or initial addition of local DNS servers. It really shouldn't
go farther than delivering a system in a slightly more advanced and expected state for the
next configuration system to take over. Under no circumstance should it replace a proper
configuration management tool.

In this recipe, we'll launch a CentOS 7.2 system, then fully update it so it's as secure as
possible, install EPEL so we have a greater library of available packages, add the Puppet Labs
Yum repository and install a Puppet agent, and add a different name server so our system is
ready for the next step (which we won't cover here, as it's probably executing Puppet code).

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS account with an SSH key configured in Terraform and a security group
allowing SSH connections from outside (refer to the chapter 2, Provisioning IaaS
with Terraform recipes)

ff An Internet connection

Chapter 3

93

How to do it…
Before diving into the provisioning part, let's start by describing a classic CentOS 7.2 AMI in
instances.tf:

resource "aws_instance" "centos" {
 ami = "${lookup(var.aws_centos_ami,
 var.aws_region)}"
 instance_type = "${var.aws_instance_type}"
 key_name =
 "${aws_key_pair.admin_key.key_name}"
 security_groups =
 ["${aws_security_group.base_security_group.name}"]
 associate_public_ip_address = true

 tags {
 Name = "CentOS"
 }
}

The variables in the variables.tf file are as follows:

variable "aws_centos_ami" {
 type = "map"

 default = {
 eu-west-1 = "ami-7abd0209"
 us-east-1 = "ami-6d1c2007"
 }
}

variable "aws_instance_type" {
 default = "t2.micro"
 description = "Instance Type"
}

Now, what are our immediate objectives for this system?:

ff Fully update it: sudo yum install -y

ff Enable the EPEL repository: sudo yum install epel-release -y

ff Add a custom name server: echo "nameserver 8.8.8.8" | sudo tee -a /
etc/resolv.conf

ff Add the Puppet Labs repository: sudo yum install https://yum.
puppetlabs.com/puppetlabs-release-pc1-el-7.noarch.rpm -y

Going Further with Terraform

94

ff Install the Puppet agent: sudo yum install puppet-agent -y

ff Display the Puppet version: sudo /opt/puppetlabs/bin/puppet agent
--version

Let's add those commands inside a remote-exec provisioner inside our aws_instance
resource, changing the default username to centos:

provisioner "remote-exec" {
 inline = [
 "echo \"nameserver 8.8.8.8\" | sudo tee -a
/etc/resolv.conf",
 "sudo yum update -y",
 "sudo yum install epel-release -y",
 "sudo yum install https://yum.puppetlabs.com/puppetlabs-
release-pc1-el-7.noarch.rpm -y",
 "sudo yum install puppet-agent -y",
 "sudo /opt/puppetlabs/bin/puppet agent --version"
]
 connection {
 user = "centos"
 }
 }

When you terraform apply this, you'll end up with a fully updated CentOS 7.2 system,
with EPEL available, a custom DNS server added and Puppet agent installed.

Ready for the next stage of deployment with Puppet!

Using Docker with Terraform
Terraform can also be used to manipulate Docker. The classical usage is against an already
running Docker server on the network, but it will work exactly the same locally with your own
Docker installation. Using Terraform for controlling Docker, we'll be able to dynamically trigger
Docker image updates, execute containers with every imaginable option, manipulate Docker
networks, and use Docker volumes.

Here, we'll deploy an isolated blog container (Ghost) that will be publicly served by the nginx-
proxy container over HTTP. This very useful nginx-proxy container is proposed by Jason
Wilder from InfluxDB on his GitHub: https://github.com/jwilder/nginx-proxy.

https://github.com/jwilder/nginx-proxy

Chapter 3

95

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation.

ff A working Docker installation (native Docker for Mac, Docker Engine on Linux,
a remote server running Docker on TCP, and so on). Docker 1.12 is used for
this recipe.

ff An Internet connection.

How to do it…
Before starting to code anything using Terraform, ensure you can connect to any kind of
Docker Engine, local or remote:

$ docker version

Client:

 Version: 1.12.0

 API version: 1.24

 Go version: go1.6.3

 Git commit: 8eab29e

 Built: Thu Jul 28 21:15:28 2016

 OS/Arch: darwin/amd64

Server:

 Version: 1.12.0

 API version: 1.24

 Go version: go1.6.3

 Git commit: 8eab29e

 Built: Thu Jul 28 21:15:28 2016

 OS/Arch: linux/amd64

If you have issues at this point, you need to fix them before going further.

Our goal is to serve, through an nginx-proxy container, a blog container (Ghost) that will not
be directly available on the network.

Going Further with Terraform

96

If you're connecting to a remote Docker server, you need to configure the Docker provider
(maybe in provider.tf). Alternatively, it can use the DOCKER_HOST environment variable,
or just the local daemon if not specified. When using locally for this exercise, you can just
forget about including the provider:

provider "docker" {
 host = "tcp://1.2.3.4:2375"
}

Let's start by declaring two data sources for each of our Docker images (in docker.tf). The
ghost image will be in its 0.10 version tag, while nginx-proxy will use the 0.4.0 version
tag. Using a data source will help us manipulate the image later:

data "docker_registry_image" "ghost" {
 name = "ghost:0.10"
}

data "docker_registry_image" "nginx-proxy" {
 name = "jwilder/nginx-proxy:0.4.0"
}

Now that we can access the image, let's exactly do that, using the docker_image resource.
We're reusing all the information our data source is exposing to us, such as the image name
or its SHA256, so we know if a new image is available to pull:

resource "docker_image" "ghost" {
 name = "${data.docker_registry_image.ghost.name}"
 pull_trigger =
 "${data.docker_registry_image.ghost.sha256_digest}"
}

resource "docker_image" "nginx-proxy" {
 name = "${data.docker_registry_image.nginx-proxy.name}"
 pull_trigger = "${data.docker_registry_image.nginx-
 proxy.sha256_digest}"
}

Let's now declare the private Ghost container (without any port mapping), using the
docker_container resource. Let's use the image we just declared through the
docker_image resource, and export an environment variable named VIRTUAL_HOST,
to be used by the nginx-proxy container (refer to the nginx-proxy documentation for more
information). Replace with the host you want if you're not running against a local Docker host:

resource "docker_container" "ghost" {
 name = "ghost"
 image = "${docker_image.ghost.latest}"
 env = ["VIRTUAL_HOST=localhost"]
}

Chapter 3

97

Now let's start the nginx-proxy container. We know from its documentation that it needs
to share the Docker socket in read-only mode (/var/run/docker.sock) to dynamically
access the running containers, and we want it to run on the default HTTP port (tcp/80).
Let's do that:

resource "docker_container" "nginx-proxy" {
 name = "nginx-proxy"
 image = "${docker_image.nginx-proxy.latest}"

 ports {
 internal = 80
 external = 80
 protocol = "tcp"
 }

 volumes {
 host_path = "/var/run/docker.sock"
 container_path = "/tmp/docker.sock"
 read_only = true
 }
}

Now if you terraform apply this, you can navigate over to http://localhost/admin
(replace localhost with the Docker server you used) and set up your Ghost blog!

Going Further with Terraform

98

Simulating infrastructure changes using
Terraform

In an earlier recipe, you learned how to manage different environments with Terraform,
which is great. But how do we test for changes before applying them?

Terraform has a great internal mechanism that allows us to plan for changes by comparing
what our infrastructure code wants and what the remote state includes. That way, we can
safely check whether what we thought was a minor modification in our code has in fact a
destructive impact (sometimes, some parameters in a resource trigger a full destruction
of the resource!).

We'll cover different ways of anticipating, simulating, and targeting changes in our
infrastructure, as an added safety check before applying the changes for good.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS account with an SSH key configured in Terraform (refer to the Chapter 2,
Provisioning IaaS with Terraform recipes)

ff An Internet connection

How to do it…
Let's start with a simple CoreOS machine on AWS. We know the AMI ID, we want a single
t2.micro host. Let's put that information in the variables.tf file:

variable "aws_coreos_ami" {
 default = "ami-85097ff6"
}

variable "cluster_size" {
 default = "1"
 description = "Number of nodes in the cluster"
}

variable "aws_instance_type" {
 default = "t2.micro"
 description = "Instance type"
}

Chapter 3

99

The simplest aws_instance resource we can make is the following in instances.tf:

resource "aws_instance" "coreos" {
 count = "${var.cluster_size}"
 ami = "${var.aws_coreos_ami}"
 instance_type = "${var.aws_instance_type}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 associate_public_ip_address = true

 tags {
 Name = "coreos_${count.index+1}"
 }
}

Planning
Until now, we've used terraform apply for immediate action. There's another command:
terraform plan. It does what it says. It plans for changes, but doesn't apply them:

$ terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but

will not be persisted to local or remote state storage.

The Terraform execution plan has been generated and is shown
below.

[...]

+ aws_instance.coreos

 ami: "ami-85097ff6"

 [...]

+ aws_key_pair.admin_key

 [...]

Plan: 2 to add, 0 to change, 0 to destroy.

So, by planning before applying, we can know what's about to happen to our infrastructure.
We're happy about an instance with the right AMI being created, so let's terraform apply.

Now the infrastructure is created, if you run a plan again, it will say nothing should
be modified:

$ terraform plan

Going Further with Terraform

100

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but

will not be persisted to local or remote state storage.

aws_key_pair.admin_key: Refreshing state... (ID: admin_key)

aws_instance.coreos: Refreshing state... (ID: i-0f9106905e74a29f7)

No changes. Infrastructure is up-to-date. This means that Terraform

could not detect any differences between your configuration and

the real physical resources that exist. As a result, Terraform

doesn't need to do anything.

A normally operating infrastructure should always be in a state where a terraform plan
doesn't want to change anything.

Now let's say we need our infrastructure to evolve, and create an S3 bucket. That would look
like this in a file named s3.tf:

resource "aws_s3_bucket" "bucket" {
 bucket = "iacbook"

 tags {
 Name = "IAC Book Bucket"
 }
}

We're not sure about what's about to happen, so let's plan with Terraform, so it's telling us
exactly what it's intending to do:

$ terraform plan

Refreshing Terraform state in-memory prior to plan...

[...]

aws_key_pair.admin_key: Refreshing state... (ID: admin_key)

aws_instance.coreos: Refreshing state... (ID: i-0f9106905e74a29f7)

[...]

+ aws_s3_bucket.bucket

 bucket: "iacbook"

 tags.Name: "IAC Book Bucket"

Chapter 3

101

 [...]

Plan: 1 to add, 0 to change, 0 to destroy.

The plan looks good—it seems to want to create an S3 bucket named the way we want! Let's
terraform apply this and move on.

Quickly simulating changes
We now wonder what would happen if we were to change the number of instances. That's the
cluster_size variable, currently set to 1. Instead of messing with the code, we can test the
impact of changing that value directly from the command line:

$ terraform plan -var 'cluster_size="2"'

[...]

+ aws_instance.coreos.1

 ami: "ami-85097ff6"

 instance_type: "t2.micro"

 tags.Name: "coreos_2"

 [...]

Plan: 1 to add, 0 to change, 0 to destroy.

Good news! It looks like increasing the cluster_size value has the intended effect:
creating a new instance.

Now, we wonder legitimately what would be the effect of changing the instance type, from
t2.micro to t2.medium:

$ terraform plan -var aws_instance_type="t2.medium"

[...]

-/+ aws_instance.coreos

 [...]

 instance_type: "t2.micro" => "t2.medium" (forces
 new resource)

Plan: 1 to add, 0 to change, 1 to destroy.

Ouch! Changing the instance type seems to be a destructive action. Let's work on that later,
and add the change to a new file named plan.tfvars:

aws_instance_type="t2.medium"

Going Further with Terraform

102

We know we'd like to propose to change the number of instances to 2, so let's add that to the
same file:

aws_instance_type="t2.medium"
cluster_size="2"

We can now test against this file containing all our changes, using the -var-file option:

$ terraform plan -var-file=plan.tfvars

-/+ aws_instance.coreos.0

 instance_type: "t2.micro" => "t2.medium" (forces
 new resource)

 tags.Name: "coreos_1" => "coreos_1"

 [...]

+ aws_instance.coreos.1

 instance_type: "t2.medium"

 tags.Name: "coreos_2"

 [...]

Plan: 2 to add, 0 to change, 1 to destroy.

Good! You learn that our first instance will be destroyed and recreated to move from
t2.micro to t2.medium, and that a second instance will be created with the same
values. Let's not apply this, as added fees will be incurred.

Targeting for a specific change
Our colleague asks us if we're sure our proposed changes have no impact specifically on the
S3 bucket. Terraform allows us to get an answer to that question very specifically by targeting
the resource directly in the planning phase:

$ terraform plan -var-file=plan.tfvars -
target="aws_s3_bucket.bucket"

[...]

aws_s3_bucket.bucket: Refreshing state... (ID: iacbook)

[...]

No changes. Infrastructure is up-to-date.

[...]

Our colleague is happy, and we're now sure that this change will do exactly what's intended.
We can submit this change for review.

Chapter 3

103

Teamwork – sharing Terraform
infrastructure state

You probably work with a team, and now you're using Terraform to manage your infrastructure,
you'll face an issue: how does your team work together on infrastructure-as-code? There're
many answers to that, and one crucial question to address is: how is transmitted or
synchronized the Terraform state?

We'll see here how we can share the state using Git (a version control system where
developers can store code), AWS S3 (an Amazon Web Services storage system using
HTTP) or Consul (a tool for service discovery and a key-value store), chosen among
many other solutions.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS account with an SSH key configured in Terraform (refer to the Chapter 2,
Provisioning IaaS with Terraform recipes)

ff A working Docker installation for the Consul simulation solution (optional)

ff An Internet connection

How to do it…
Let's start by having an initial infrastructure running (a single virtual machine for this
example). Here's an aws_instance resource in instances.tf for a CoreOS stable
release taken from previous recipes:

resource "aws_instance" "coreos" {
 count = "${var.cluster_size}"
 ami = "${var.aws_coreos_ami}"
 instance_type = "${var.aws_instance_type}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 associate_public_ip_address = true

 tags {
 Name = "coreos_${count.index+1}"
 }
}

Going Further with Terraform

104

Here are example variables in variables.tf; feel free to adapt them:

variable "aws_coreos_ami" {
 default = "ami-85097ff6"
}

variable "cluster_size" {
 default = "1"
 description = "Number of nodes in the cluster"
}

variable "aws_instance_type" {
 default = "t2.micro"
 description = "Instance type"
}

Terraform stores its state by default in a file named terraform.tfstate, with a backup file
named terraform.tfstate.backup:

$ ls terraform.tfstate*

terraform.tfstate terraform.tfstate.backup

Sharing with Git
The simplest of all options is to share the state file using Git: you're already supposed to
version your infrastructure code! Go and create an account somewhere. GitHub (https://
github.com) doesn't have free private repositories, but GitLab (https://gitlab.com) or
BitBucket (https://bitbucket.org) do. Follow the instructions to have your Git repository
locally working.

Now, add the tfstate files:

$ git add *.tfstate*

Commit the files:

$ git commit -m "initial state creating the infrastructure"

[master (root-commit) 6f7e2ba] initial state creating the
infrastructure

 2 files changed, 193 insertions(+)

 create mode 100644 terraform.tfstate

 create mode 100644 terraform.tfstate.backup

https://github.com
https://github.com
https://gitlab.com
https://bitbucket.org

Chapter 3

105

Push the commit:

$ git push

Now your coworkers absolutely need to pull the changes before applying any action,
or calamity might follow soon:

coworker@host $ git pull

Sharing remotely with S3
Sharing the state file through Git works, to some extent. You'll end up someday in a situation
where someone forgets to push or pull. Merging conflicts in a state file is really not something
nice to do.

One solution to stop thinking about it is using S3 to share the state file and use the remote
state feature of Terraform.

Start by creating an S3 bucket just for that, in s3.tf, with versioning enabled (so you can roll
back to a previous version of the infrastructure):

resource "aws_s3_bucket" "tfstate" {
 bucket = "iacbook-tfstate"

 versioning {
 enabled = true
 }

 tags {
 Name = "IAC Book TFState Bucket"
 }
}

Let's terraform apply this S3 bucket, and move on to the remote configuration with
our information:

$ terraform remote config -backend=s3 -backend-
config="bucket=iacbook-tfstate" -backend-
config="key=terraform.tfstate"

Remote state management enabled

Remote state configured and pulled.

Going Further with Terraform

106

You can now see the terraform state file in the S3 browser:

Now make any change to the infrastructure, such as adding a new S3 bucket, to see the file
change in action:

resource "aws_s3_bucket" "bucket" {
 bucket = "iacbook-bucket"

 tags {
 Name = "IAC Book Bucket"
 }
}

After a terraform apply, simply push the changes:

$ terraform remote push

State successfully pushed!

See the history in the S3 browser:

Chapter 3

107

The coworker has to configure their environment and pull the information:

coworker@host $ terraform remote config -backend=s3 -backend-
config="bucket=iacbook-tfstate" -backend-
config="key=terraform.tfstate"
Initialized blank state with remote state enabled!
Remote state configured and pulled.

A local copy is now residing in the .terraform folder:

$ head .terraform/terraform.tfstate

Sharing remotely with Consul
A very nice way to share the state file is by using Consul, a powerful key/value storage from
Hashicorp (http://consul.io/). Using Consul to store the Terraform states makes it
easier to work with a team, as there's only a single replicated state. No risk of using an old
state file if we forgot to synchronize our git repository.

Configuring a proper Consul in cluster for production is out of the scope of this book, but if
you don't have a Consul cluster at hand to try this out, here's a way to quickly have one,
using Docker and a Consul image:

$ docker run -it --rm -p 8400:8400 -p 8500:8500 -p 8600:53/udp -h
node1 progrium/consul -server -bootstrap

Now let's configure our Terraform remote for Consul, and name it terraform/my_customer,
so we can manage multiple customers simultaneously:

$ terraform remote config -backend=consul -backend-
config="path=terraform/my_customer"
Remote state management enabled
Remote state configured and pulled.

http://consul.io/)

Going Further with Terraform

108

Job done! Your coworkers can now push and pull from the Consul source! In a production
Consul cluster, it means replicated and synchronized states on each node, with added privacy.

Other state sharing options
There're many other ways to share the state, such as on Azure, using OpenStack Swift, any
kind of HTTP server supporting REST, CoreOS's own etcd key-value store, Google Cloud
storage, or Atlas, the commercial solution by Hashicorp.

Maintaining a clean and standardized
Terraform code

Everyone has coding styles, but enforcing a standardized and commonly readable style is the
key for a smooth collaborative team work. That's why Terraform has a command to ensure
both format and style are all right.

I encourage readers to use it extensively, and even integrate it in Continuous Integration (CI)
systems and in Makefiles.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An Internet connection

How to do it…
We'll intentionally write a simple Terraform code with non-standard style and with an error (a
missing variable). This will help us manipulate the various tools Terraform offers to ensure the
most consistent and homogenous code, so we can achieve more quickly a better quality and a
higher level of standardization of our code.

Let's write a provider for AWS like this in provider.tf (deliberately on one line):

provider "aws" { region = "${var.aws_region}" }

Syntax validation
Try to validate that file, and it will notify us that we're missing a variable:

$ terraform validate

Error validating: 1 error(s) occurred:

Chapter 3

109

* provider config 'aws': unknown variable referenced:
'aws_region'. define it with 'variable' blocks

The validation fails, and the return code is 1:

$ echo $?

1

Let's add this variable to a variables.tf file:

variable "aws_region" { default = "eu-west-1" }

Hooray! A terraform validate is now happy:

$ terraform validate

$ echo $?

0

Style validation
This thing is, we solved the obvious problem (a missing variable), but what about style?
The preceding style perfectly works, but style might not be canonical.

Let's use the fmt option to check for styling issues, displaying the diff onscreen, but not
writing the files automatically:

$ terraform fmt -write=false -diff=true

provider.tf

diff a/provider.tf b/provider.tf

--- /var/folders/zn/bx_20cp90bq5_fqqmlvx3tq40000gn/T/598506546
2016-09-10 22:40:35.000000000 +0200

+++ /var/folders/zn/bx_20cp90bq5_fqqmlvx3tq40000gn/T/407676393
2016-09-10 22:40:35.000000000 +0200

@@ -1 +1,3 @@

-provider "aws" { region = "${var.aws_region}" }

+provider "aws" {

+ region = "${var.aws_region}"

+}

variables.tf

diff a/variables.tf b/variables.tf

--- /var/folders/zn/bx_20cp90bq5_fqqmlvx3tq40000gn/T/743564340
2016-09-10 22:40:35.000000000 +0200

+++ /var/folders/zn/bx_20cp90bq5_fqqmlvx3tq40000gn/T/095288323
2016-09-10 22:40:35.000000000 +0200

Going Further with Terraform

110

@@ -1 +1,3 @@

-variable "aws_region" { default = "eu-west-1" }

+variable "aws_region" {

+ default = "eu-west-1"

+}

We see our style was quite far away from the guidelines. Let's fix this and automatically format
our files correctly:

$ terraform fmt

provider.tf

variables.tf

Our two files are now correctly formatted!

I highly recommend putting those two commands in your CI tests (you are running
infrastructure code tests in CI, aren't you?), and even before reaching the CI, it's even
better if it's in the project's Makefile.

Here's a simple Makefile example:

.DEFAULT_GOAL := all

all:
 terraform validate
 terraform fmt

Now you can just type make in the Terraform directory and you're sure your code both
validates and is coherently styled.

One Makefile to rule them all
Some languages have environment or version managers such as RVM for Ruby, NVM for
Node, or even Rackspace's DVM for Docker.

It's highly recommended to lock the Terraform version, so everyone in the team uses the
same version, and updates can be painlessly handled. To do that, I suggest using a Terraform
container, so we'll use here the one I use myself: sjourdan/terraform:<version> (from
https://github.com/sjourdan/terraform-docker). But I understand replacing the
simple terraform command by something such as docker run -it --rm -v `pwd`:/
data sjourdan/terraform:0.7.3 can feel not so appealing. That's why we can use a
common Makefile for each project using Terraform.

Using a common entry point for manipulating the infrastructure code helps a lot of sharing
practices, enforcing policies, and integrating third-party services such as CI systems.

https://github.com/sjourdan/terraform-docker

Chapter 3

111

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff An AWS account with an SSH key configured in Terraform (refer to the Chapter 2,
Provisioning IaaS with Terraform recipes)

ff An Internet connection

How to do it…
Let's begin by setting the Terraform version we want to use in a Makefile so it will be easy to
manipulate for updates in the future:

TERRAFORM_VERSION = 0.7.3

Let's now create a TERRAFORM_BIN variable that will include the full Docker command,
plus share our local folder:

TERRAFORM_BIN = docker run -it --rm -v "$(PWD)":/data
sjourdan/terraform:$(TERRAFORM_VERSION)

I like auto-documenting my Makefile, and I propose a popular technique: make by default calls
make help, which in turn parses the Makefile for comments, and displays them.
That way, I can choose what to output by simply adding a comment. Here's how it works:

.DEFAULT_GOAL := help

help:
 @grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort |
 awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m
 %s\n",
 $$1, $$2}'

Now simply use this feature to create an entry for the validation and formatting from the
previous recipe:

validate: terraform-fmt terraform-validate ## Validate syntax and
format

terraform-fmt:

 $(TERRAFORM_BIN) fmt -list

terraform-validate:

 $(TERRAFORM_BIN) validate

Going Further with Terraform

112

If you simply type make, you'll get an automatic help:

$ make
validate Validate syntax and format

Now, a simple make validate will both validate the syntax and format the code.

It would be great to have the plan and apply commands as well, and if you followed the
recipe on environment management with Terraform, that would be awesome if it worked right
from the Makefile, we'd save a lot of time.

Start by creating the Makefile main "help" entries:

plan: terraform-validate terraform-plan ## Plan changes
apply: terraform-validate terraform-apply ## Apply Changes

We added the validation step at each step, so we're always absolutely sure it
passes full validation (and you can add your own validation steps).

Let's check for an environment variable named env, passed at make execution (such as make
plan env=staging), and returns an error if not set:

ifndef env
getenv=$(error var:"env=" is not set)
else
getenv=$(env)
endif

Now we can write what terraform-plan and terraform-apply are exactly running,
with isolated Terraform states and environments:

terraform-plan:
 $(TERRAFORM_BIN) plan -state=$(call getenv).tfstate -var
 environment=$(call getenv)

terraform-apply:
 $(TERRAFORM_BIN) apply -state=$(call getenv).tfstate -var
 environment=$(call getenv)

By the way, you can add support for environments to our previous terraform-validate
example:

terraform-validate:
 $(TERRAFORM_BIN) validate -var environment=$(call getenv)

Add as many features as you want to your project's Makefile; you'll soon realize this simple
tool helps so much.

Chapter 3

113

For example, I always add a make destroy command, so I can easily destroy a test
infrastructure (be careful though!):

destroy: terraform-destroy ## Destroy (careful!)
terraform-destroy:
 $(TERRAFORM_BIN) destroy -state=$(call getenv).tfstate -var
 environment=$(call getenv)

Our Makefile now looks like this:

$ make

apply Apply Changes

destroy Destroy (careful!)

plan Plan changes

validate Validate syntax and format

Also, it can be used like this:

$ make plan env=staging

$ make apply env=staging

Add absolutely anything that might make your lives easier, such as releases,
tests, and so on.

See also
ff The auto documented Makefile: http://marmelab.com/blog/2016/02/29/

auto-documented-makefile.html

ff Rbenv: https://github.com/rbenv/rbenv

ff RVM: https://github.com/rvm/rvm

ff DVM: https://github.com/getcarina/dvm

ff NVM: https://github.com/creationix/nvm

Team workflow example
Working with infrastructure code is very similar to working with software code. Countless
books and methods exist on the subject and approaches are usually very opinionated.

http://marmelab.com/blog/2016/02/29/auto-documented-makefile.html
http://marmelab.com/blog/2016/02/29/auto-documented-makefile.html
https://github.com/rbenv/rbenv
https://github.com/rvm/rvm
https://github.com/getcarina/dvm
https://github.com/creationix/nvm

Going Further with Terraform

114

A simple workflow I propose to use here for our infrastructure-as-code work is based on what's
called the GitHub Flow (https://guides.github.com/introduction/flow/):

Getting ready
To step through this recipe, you will need the following:

ff An account on some Git hosting (self-hosted or commercial)

ff A working Terraform installation

ff An AWS account with an SSH key configured in Terraform (refer to the Chapter 2,
Provisioning IaaS with Terraform recipes)

ff An Internet connection

How to do it…
Start by creating a new repository for use with your team. Use any service that works for you:
GitLab, GitHub, BitBucket, and others. This example uses GitHub.

A simple Git repository
Create a new repository on GitHub:

We might be storing secrets in that repository, such as SSH private
keys or passwords. It's probably a safer option to create a private Git
repository for now.

https://guides.github.com/introduction/flow/

Chapter 3

115

Now import this new empty repository on your workstation, in a dedicated folder:

$ git clone <your_git_repostory_address>

Cloning into 'my_infrastructure_code'...

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (3/3), done.

Checking connectivity... done.

Initial infrastructure code
Create a new Git branch to work on an initial infrastructure:

$ git checkout -b new_infrastructure

Switched to a new branch 'new_infrastructure'

Add some Terraform code from the previous recipes, such as a single CoreOS instance.
For the record, here's the variables.tf file:

variable "aws_region" {
 default = "eu-west-1"
}

Going Further with Terraform

116

variable "aws_ssh_admin_key_file" {
 default = "keys/aws_terraform"
}

variable "aws_coreos_ami" {
 default = "ami-85097ff6"
}

variable "cluster_size" {
 default = "1"
 description = "Number of nodes in the cluster"
}

variable "aws_instance_type" {
 default = "t2.micro"
 description = "Instance type"
}

Here's a deliberately badly formatted provider.tf:

provider "aws" { region = "${var.aws_region}" }

Also, here's a CoreOS instance in instances.tf:

resource "aws_instance" "coreos" {
 count = "${var.cluster_size}"
 ami = "${var.aws_coreos_ami}"
 instance_type = "${var.aws_instance_type}"
 key_name = "${aws_key_pair.admin_key.key_name}"
 associate_public_ip_address = true

 tags {
 Name = "coreos_${count.index+1}"
 }
}

Terraform code validation
Let's be sure our code validates:

$ terraform validate

Thankfully, it does!

Chapter 3

117

Does this code plan to do what we want it to do? Have a look:

$ terraform plan

[...]

+ aws_instance.coreos

[...]

+ aws_key_pair.admin_key

[...]

Plan: 2 to add, 0 to change, 0 to destroy.

This looks exactly like our objective. Let's continue.

Infrastructure code commit
What are the new files on this branch that aren't on master? Let's find out:

$ git status

[...]

 instances.tf

 keys.tf

 keys/

 provider.tf

 variables.tf

Good, those are the files we just created. Let's add them to a commit:

$ git add .

$ git commit -m "an initial infrastructure"

[new_infrastructure 2415ad4] an initial infrastructure

 6 files changed, 65 insertions(+)

 create mode 100644 instances.tf

 create mode 100644 keys.tf

 create mode 100644 keys/aws_terraform

 create mode 100644 keys/aws_terraform.pub

 create mode 100644 provider.tf

 create mode 100644 variables.tf

Going Further with Terraform

118

Now let's send the branch upstream so that our coworkers can see our work that's still not yet
in production:

$ git push --set-upstream origin new_infrastructure

Counting objects: 9, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (8/8), done.

Writing objects: 100% (9/9), 2.60 KiB | 0 bytes/s, done.

Total 9 (delta 0), reused 0 (delta 0)

To git@github.com:sjourdan /my_infrastructure_code.git

 * [new branch] new_infrastructure -> new_infrastructure

Branch new_infrastructure set up to track remote branch
new_infrastructure from origin.

Make a pull request
Navigate to your repository, and you'll see something similar to the following screenshot,
showing an information about the new branch being just pushed. GitHub proposes to
easily create a pull request. A pull request is a request to merge the content of one
branch to another branch. In our case, we want to ask our coworkers to merge our
new_infrastructure branch into the master branch, to create some discussion:

Chapter 3

119

When you open a pull request, GitHub automatically tries the requested merge (in our
case, from our branch to master). Here, no conflicts are noted, so we can write a message
explaining what our request is all about. A pull request is often composed of multiple
commits, so a summary is more than welcome:

Now everyone from your team have access to your work and can discuss it right from GitHub
if necessary:

Going Further with Terraform

120

A few minutes later, one of your coworkers reviews your code and sends you a remark:

She might be right; let's find out with the Terraform formatter:

$ terraform fmt

provider.tf

Looks like there was a formatting issue! Use git diff to see what's the difference:

$ git diff

diff --git a/provider.tf b/provider.tf

index 59cdf2a..b54eb94 100644

--- a/provider.tf

+++ b/provider.tf

@@ -1 +1,3 @@

-provider "aws" { region = "${var.aws_region}" }

+provider "aws" {

+ region = "${var.aws_region}"

+}

We're happy with that; let's add, commit, and push. Pushing to our remote branch will
automatically add our commit to the pull request as well:

$ git add provider.tf

$ git commit -m "fixed bad formatting"

[new_infrastructure b027825] fixed bad formatting

 1 file changed, 3 insertions(+), 1 deletion(-)

$ git push

Our coworker can now see in real time that we took her remark into account, as GitHub
automatically marks it as outdated:

Chapter 3

121

Now our coworker pulled the changes on her side, tried to plan the changes herself with
Terraform, and announces she's happy with the results as well:

Apply the changes
So let's do that right now:

$ terraform apply

aws_key_pair.admin_key: Creating...

[...]

aws_instance.coreos: Creating...
[...]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Is there anything new in our repository? Have a look:

$ git status

terraform.tfstate

Going Further with Terraform

122

Sure, now we have to ship our infrastructure state to the pull request:

$ git add terraform.tfstate

$ git commit -m "initial terraform state"

$ git push

Our coworker sees that everything is all right, and she also checked the server is doing well.
So, now she can merge our branch, close the pull request with a message, and then delete
the now useless branch:

Our code and its fixes are now on master, along with the updated infrastructure state, all done
in full collaboration with a coworker.

For any new feature, anything added to the infrastructure should follow the same pattern:
create a branch, insert your changes, open a pull request, discuss the changes with the
coworkers, apply the change, and merge to master. Master is now the reference again.

Managing GitHub with Terraform
There're many service providers to use with Terraform. GitHub is one of them, and we'll see
how to manage members of an organization, various teams, and control repository access,
right from our infrastructure code. That way, we have an automatic history log of who
accesses what.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

Chapter 3

123

ff A GitHub account (with an API token)

ff An Internet connection

How to do it…
We want to manage a GitHub organization named ACME. Here are the users and their groups:

GitHub username GitHub team name Membership level Team privacy
John Documentation member closed
Jane Engineering admin secret

Here's the policy we decided concerning the Git repository named infrastructure-
repository:

GitHub team name Repository permissions
Documentation pull
Engineering admin

Configuring GitHub
Let's start by creating a github provider, as we used an aws provider for AWS in the previous
recipes. The documentation lists the requirements: an API token and an organization name:

provider "github" {
 token = "${var.github_token}"
 organization = "${var.github_organization}"
}

Set the generic variables in a variables.tf file:

variable "github_token" {
 default = "1a2b3c4d5"
 description = "GitHub API Token"
}

variable "github_organization" {
 default = "ACME Inc."
 description = "GitHub Organization Name"
}

Don't forget to override those variables to fit your own in the terraform.tfvars file.

Going Further with Terraform

124

Adding users to the GitHub organization
We want to add the username john as a member, and jane as an admin, in a file you can
name github.tf (feel free to split managed GitHub features in many smaller files as your
organization grows):

// john is a simple member of the organization
resource "github_membership" "membership_for_john" {
 username = "john"
 role = "member"
}

// jane is an administrator of the organization
resource "github_membership" "membership_for_jane" {
 username = "jane"
 role = "admin"
}

John and Jane are now part of the GitHub organization (they will receive invitations by e-mail).

Adding GitHub teams
Let's create our two teams, technical writers and engineering, with their respective
privacy settings:

// An engineering team
resource "github_team" "engineering" {
 name = "Engineering Team"
 description = "Our awesome engineers"
 privacy = "secret"
}

// A documentation team
resource "github_team" "documentation" {
 name = "Technical Writers Team"
 description = "Our awesome technical writers"
 privacy = "closed"
}

Add our two members to their respective teams—Jane in engineering, John in documentation:

// Jane is a member of the engineering team
resource "github_team_membership" "eng_membership_jane" {
 team_id = "${github_team.engineering.id}"
 username = "jane"
 role = "member"
}

// John is a member of the documentation team

Chapter 3

125

resource "github_team_membership" "doc_membership_john" {
 team_id = "${github_team.documentation.id}"
 username = "john"
 role = "member"
}

Setting Git repository access rights
The policy we've set is that members of the engineering group are admins of the repository,
while technical writers can only pull the code:

// technical writers can pull the repo
resource "github_team_repository" "infrastructure_doc" {
 team_id = "${github_team.documentation.id}"
 repository = "infrastructure-repository"
 permission = "pull"
}

// engineers are admin on the repo
resource "github_team_repository" "infrastructure_eng" {
 team_id = "${github_team.engineering.id}"
 repository = "infrastructure-repository"
 permission = "admin"
}

You've just set the essentials to manage your GitHub organization right from Terraform!

External monitoring integration with
StatusCake

External monitoring is helpful because it gives insights on how performant your infrastructure
is, as seen from the outside, maybe from many places in the world. We can build our own
availability monitoring systems, or we can use third-party services. StatusCake is a good
example for us as they have a good API and a free service tier for us to try with Terraform.
We'll monitor two things: host latency and HTTP availability.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff A StatusCake account (https://statuscake.com)

https://statuscake.com

Going Further with Terraform

126

ff Optionally, an infrastructure managed by Terraform (refer to the previous recipes)

ff An Internet connection

How to do it…
Start by setting the new statuscake provider, as we did with AWS or GitHub, using a
username and API key:

provider "statuscake" {
 username = "${var.statuscake_username}"
 apikey = "${var.statuscake_apikey}"
}

Declare the variables in variables.tf:

variable "statuscake_username" {
 default = "changeme"
 description = "Sets the StatusCake Username"
}

variable "statuscake_apikey" {
 default = "hackme"
 description = "Sets the StatusCake API Key"
}

Also, don't forget to set those variables to your own values in terraform.tfvars.

Creating an automated ping monitoring test
Let's create an initial test, a simple ICMP ping to a server whose IP is 1.2.3.4,
every 5 minutes:

resource "statuscake_test" "latency" {
 website_name = "My Server Latency"
 website_url = "1.2.3.4"
 test_type = "PING"
 check_rate = 300
 paused = false
}

Chapter 3

127

The website_name or website_url can be a reference to an existing
Terraform resource. If our AWS instance resource is named centos, you can
access the value dynamically like this, instead of a static value:

website_url = "${aws_instance.centos.public_ip}"

If your resource has a count number, you can iterate through it so all the available instances
are automatically monitored. It works like this:

resource "statuscake_test" "another_latency" {
 website_name = "${element(aws_instance.centos.*.public_ip,
 count.index)}"
 website_url = "${element(aws_instance.centos.*.public_ip,
 count.index)}"
 test_type = "PING"
 check_rate = 300
 paused = false
}

Another useful feature is to switch the value of paused to true for planned downtimes,
so you're not hammered with alerts you're already aware of.

Creating an HTTPS test
A very common test we'll want to make is HTTP availability. It's really no different than an
ICMP check;

resource "statuscake_test" "http" {
 website_name = "www.myweb.com Availability"
 website_url = "https://www.myweb.com:443"
 test_type = "HTTP"
 check_rate = 300
}

129

4
Automating Complete

Infrastructures with
Terraform

In this chapter, we will cover the following recipes:

ff Provisioning a complete CoreOS infrastructure on Digital Ocean with Terraform

ff Provisioning a three-tier infrastructure on Google Compute Engine

ff Provisioning a GitLab CE + CI runners on OpenStack

ff Managing Heroku Apps and Add-ons using Terraform

ff Creating a scalable Docker Swarm cluster on bare metal with Packet

Introduction
In this chapter, we'll describe complete infrastructures using Terraform, how it looks when
everything is tied together, with a real project in mind. Most examples from previous chapters
on Terraform were on Amazon Web Services, so to try to be more diverse and complete, this
chapter is dedicated to other infrastructure services, namely Digital Ocean, Google Cloud,
Heroku, and Packet. On Digital Ocean, we'll build a fully working and monitored CoreOS
cluster with DNS dynamically updated. On Google Cloud, we'll build a three-tier infrastructure
with two HTTP nodes behind a load balancer and an isolated MySQL managed database.
Using OpenStack, we'll deploy a GitLab CE and two GitLab CI runners, using different storage
solutions. We'll see how we can integrate and automate a Heroku environment. We'll end
this chapter with a powerful and scalable Docker Swarm cluster on bare metal using Packet,
capable of scaling hundreds of containers.

Automating Complete Infrastructures with Terraform

130

The Terraform version in use for this book is 0.7.4.

Provisioning a complete CoreOS
infrastructure on Digital Ocean
with Terraform

In this recipe, we'll build from scratch a fully working CoreOS cluster on Digital Ocean in their
New York region, using Terraform and cloud-init. We'll add some latency monitoring as well
with StatusCake, so we have a good foundation of using Terraform on Digital Ocean.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff A Digital Ocean account

ff A StatusCake account

ff An Internet connection

How to do it…
Let's start by creating the digitalocean provider (it only requires an API token) in a file
named providers.tf:

provider "digitalocean" {
 token = "${var.do_token}"
}

Declare the do_token variable in a file named variables.tf:

variable "do_token" {
 description = "Digital Ocean Token"
}

Also, don't forget to set it in a private terraform.tfvars file:

do_token = "a1b2c3d4e5f6"

Chapter 4

131

Handling the SSH key
We know that we'll need an SSH key to log into the cluster members. With Digital Ocean,
the resource is named digitalocean_ssh_key. I propose that we name the SSH key file
iac_admin_sshkey in the keys directory, but as you might prefer something else, let's use
a variable for that as well. Let's write this in a keys.tf file:

resource "digitalocean_ssh_key" "default" {
 name = "Digital Ocean SSH Key"
 public_key = "${file("${var.ssh_key_file}.pub")}"
}

Create the related variable in variables.tf, with our suggested default:

variable "ssh_key_file" {
 default = "keys/iac_admin_sshkey"
 description = "Default SSH Key file"
}

It's now time to effectively override the value in the terraform.tfvars file if you feel like it:

ssh_key_file = "./keys/my_own_key"

Creating the CoreOS cluster members
Here's the core of our infrastructure: three nodes running in the New York City data center
NYC1, with private networking enabled, no backups activated (set it to true if you feel
like it!), the SSH key we previously created, and a cloud-init file to initiate configuration. A
virtual machine at Digital Ocean is named a droplet, so the resource to launch a droplet is
digitalocean_droplet. All variables' names relate to what we just enumerated:

resource "digitalocean_droplet" "coreos" {
 image = "${var.coreos_channel}"
 count = "${var.cluster_nodes}"
 name = "coreos-${count.index+1}"
 region = "${var.do_region}"
 size = "${var.do_droplet_size}"
 ssh_keys = ["${digitalocean_ssh_key.default.id}"]
 private_networking = true
 backups = false
 user_data = "${file("cloud-config.yml")}"
}

Declare all the variables in the variables.tf file, with some good defaults (the smallest
512 MB droplet, a three-node cluster), and some defaults we'll want to override (AMS3 data
center or the stable CoreOS channel):

variable "do_region" {

Automating Complete Infrastructures with Terraform

132

 default = "ams3"
 description = "Digital Ocean Region"
}

variable "do_droplet_size" {
 default = "512mb"
 description = "Droplet Size"
}

variable "coreos_channel" {
 default = "coreos-stable"
 description = "CoreOS Channel"
}

variable "cluster_nodes" {
 default = "3"
 description = "Number of nodes in the cluster"
}

Here are our overridden values in terraform.tfvars (but feel free to put your own values,
such as using another data center or CoreOS release):

do_region = "nyc1"
coreos_channel = "coreos-beta"

Adding useful output
It would be awesome to automatically have a few auto-documented lines on how to connect
to our CoreOS cluster. As we can do that with the Terraform outputs, let's use this example
for a start, in outputs.tf. This is constructing an SSH command line with dynamic
information from Terraform that we'll be able to use easily (it's simply iterating over every
digitalocean_droplet.coreos.* available):

output "CoreOS Cluster Members" {

 value = "${formatlist("ssh core@%v -i ${var.ssh_key_file}",
digitalocean_droplet.coreos.*.ipv4_address)}"

}

The output will look like this:

CoreOS Cluster Members = [

 ssh core@192.241.128.44 -i ./keys/iac_admin_sshkey,

 ssh core@192.241.130.33 -i ./keys/iac_admin_sshkey,

 ssh core@198.199.120.212 -i ./keys/iac_admin_sshkey

]

Chapter 4

133

Dynamic DNS Integration
One of the attractive features of Digital Ocean is the easy DNS integration. For example, if
our domain is infrastructure-as-code.org and we launch a blog droplet, we'll end up
registering it automatically under the public DNS name blog.infrastructure-as-code.
org. Pretty easy and dynamic! To give Digital Ocean power on our domain, we need to go to
our registrar (where we bought our domain), and configure our domain to be managed by
Digital Ocean, using their own nameservers, which are as follows:

ff ns1.digitalocean.com

ff ns2.digitalocean.com

ff ns3.digitalocean.com

This prerequisite being done, let's declare our domain in the dns.tf file using the
digitalocean_domain resource, automatically using a cluster_domainname variable
for the domain name, and an initial IP address matching, that we can either set to a value you
already know or to an arbitrary droplet:

resource "digitalocean_domain" "cluster_domainname" {
 name = "${var.cluster_domainname}"
 ip_address = "${digitalocean_droplet.coreos.0.ipv4_address}"
}

Add the new variable in variables.tf:

variable "cluster_domainname" {
 default = "infrastructure-as-code.org"
 description = "Domain to use"
}

Don't forget to override it as necessary in terraform.tfvars.

The next step is to register automatically every droplet in the DNS. By iterating over
each droplet, and extracting their name and ipv4_address attributes, we'll add this
digitalocean_record resource into the mix:

resource "digitalocean_record" "ipv4" {
 count = "${var.cluster_nodes}"
 domain = "${digitalocean_domain.cluster_domainname.name}"
 type = "A"
 name = "${element(digitalocean_droplet.coreos.*.name,
 count.index)}"
 value = "${element(digitalocean_droplet.coreos.*.ipv4_address,
 count.index)}"
}

This will automatically register every droplet under the name core-[1,2,3].mydomain.com,
for easier access and reference.

Automating Complete Infrastructures with Terraform

134

If you like, you can access the fqdn attribute of this resource right from the outputs
(outputs.tf):

output "CoreOS Cluster Members DNS" {
 value = "${formatlist("ssh core@%v -i ${var.ssh_key_file}",
digitalocean_record.ipv4.*.fqdn)}"
}

Integrating cloud-init
We need to build a fully working cloud-config.yml file for our CoreOS cluster. Refer to the
cloud-init part of this book in Chapter 5, Provisioning the Last Mile with Cloud-Init for more
information on the cloud-config.yml file, and especially on configuring CoreOS with it.

What we need for a fully usable CoreOS cluster are the following:

ff A working etcd cluster on the local network interface ($private_ipv4)

ff A working fleet cluster on the local network interface ($private_ipv4)

Fleet is a distributed init system. You can think of it as systemd for a whole cluster

To configure etcd, we first need to obtain a new token. This token is unique and can be
distributed through different channels. It can be easily obtained through the https://
coreos.com/os/docs/latest/cluster-discovery.html etcd service. Then
we'll start 2 units—etcd and fleet.

$ curl -w "\n" 'https://discovery.etcd.io/new?size=3'
https://discovery.etcd.io/b04ddb7ff454503a66ead486b448afb7

Note this URL carefully and copy paste it in the following cloud-config.yml file:

#cloud-config
https://coreos.com/validate/
coreos:
 etcd2:
 discovery:
 "https://discovery.etcd.io/b04ddb7ff454503a66ead486b448afb7"
 advertise-client-urls: "http://$private_ipv4:2379"
 initial-advertise-peer-urls: "http://$private_ipv4:2380"
 listen-client-urls: http://0.0.0.0:2379
 listen-peer-urls: http://$private_ipv4:2380
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 fleet:
 public-ip: "$public_ipv4"
 metadata: "region=ams,provider=digitalocean"

https://coreos.com/os/docs/latest/cluster-discovery.html
https://coreos.com/os/docs/latest/cluster-discovery.html

Chapter 4

135

This will be enough to start an etcd + fleet cluster on CoreOS. Chapter 5, Provisioning the Last
Mile with Cloud-Init, for in-depth details on cloud-init.

Integrating dynamic StatusCake monitoring
We can reuse our knowledge from previous chapters to easily integrate full latency
monitoring to the hosts of our CoreOS cluster, using a free StatusCake account
(https://statuscake.com).

Start by configuring the provider in providers.tf:

provider "statuscake" {
 username = "${var.statuscake_username}"
 apikey = "${var.statuscake_apikey}"
}

Declare the required variables in variables.tf:

variable "statuscake_username" {
 default = "changeme"
 description = "StatusCake Account Username"
}

variable "statuscake_apikey" {
 default = "hackme"
 description = "StatusCake Account API Key"
}

Also, override with your own values in terraform.tfvars.

Now we can use the statuscake_test resource to activate immediate latency (ping)
monitoring on every droplet by iterating over each digitalocean_droplet.coreos.*
resource value:

resource "statuscake_test" "coreos_cluster" {
 count = "${var.cluster_nodes}"
 website_name = "${element(digitalocean_droplet.coreos.*.name,
 count.index)}.${var.cluster_domainname}"
 website_url =
"${element(digitalocean_droplet.coreos.*.ipv4_address,
count.index)}"
 test_type = "PING"
 check_rate = 300
 paused = false
}

https://statuscake.com

Automating Complete Infrastructures with Terraform

136

It's time to terraform apply this:

$ terraform apply

[...]

CoreOS Cluster Members = [

 ssh core@159.203.189.142 -i ./keys/iac_admin_sshkey,

 ssh core@159.203.189.146 -i ./keys/iac_admin_sshkey,

 ssh core@159.203.189.131 -i ./keys/iac_admin_sshkey

]

CoreOS Cluster Members DNS = [

 ssh core@coreos-1.mydomain.com -i ./keys/iac_admin_sshkey,

 ssh core@coreos-2.mydomain.com -i ./keys/iac_admin_sshkey,

 ssh core@coreos-3.mydomain.com -i ./keys/iac_admin_sshkey

]

Confirm that we can connect to a member using the command line from the output:

$ ssh core@159.203.189.142 -i ./keys/iac_admin_sshkey

Verify the etcd cluster health:

$ core@coreos-1 ~ $ etcdctl cluster-health

member 668f889d5f96b578 is healthy: got healthy result from
http://10.136.24.178:2379

member c8e8906e0f3f63be is healthy: got healthy result from
http://10.136.24.176:2379

member f3b53735aca3062e is healthy: got healthy result from
http://10.136.24.177:2379

cluster is healthy

Check that all fleet members are all right:

core@coreos-1 ~ $ fleetctl list-machines

MACHINE IP METADATA

24762c02... 159.203.189.146 provider=digitalocean,region=ams

3b4b0792... 159.203.189.142 provider=digitalocean,region=ams

59e15b88... 159.203.189.131 provider=digitalocean,region=ams

Enjoy, in less than a minute, you're ready to use a CoreOS cluster with basic monitoring,
using only fully automated Terraform code!

Chapter 4

137

Provisioning a three-tier infrastructure on
Google Compute Engine

We'll provision a ready to use, three-tier, load-balanced web infrastructure on Google
Compute Engine, using two CentOS 7.2 servers for the web and one master Google MySQL
instance. The MySQL instance will allow connections only from the two web servers (with valid
credentials), and all three instances (SQL and HTTP) will be accessible from a single corporate
network (our company's network). The topology looks like this:

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff A Google Compute Engine account with a project

ff An Internet connection

Automating Complete Infrastructures with Terraform

138

How to do it…
The first thing we need to do is to get our credentials from the console.

Generating API credentials for a Google project
Navigate to your Google Cloud project, and in the API Manager, select Credentials | Create
credentials | Service Account Key. Now choose Compute Engine default service account
from the dropdown list, in the JSON format. Save this file as account.json at the root of the
infrastructure repository.

Create the variables to define our credentials file in variables.tf, store the region we're
running in, and the Google Compute project name:

variable "credentials_file" {
 default = "account.json"
 description = "API credentials JSON file"
}
variable "region" {
 default = "europe-west"
 description = "Region name"
}
variable "project_name" {
 default = "default-project"
 description = "Project ID to use"
}

Don't forget to override those values in terraform.tfvars if you want to:

project_name = "iac-book-infra"
region = "us-east1"

Now, in a providers.tf file, add the google provider:

provider "google" {
 credentials = "${file("${var.credentials_file}")}"
 project = "${var.project_name}"
 region = "${var.region}"
}

Our google provider is now configured!

Creating Google Compute HTTP instances
Here's the checklist of our requirements for these HTTP hosts:

ff We want two of them

Chapter 4

139

ff Their type is n1-standard-1 (3.75 GB of RAM, one vCPU)

ff Their region and zone is: us-east1-d

ff They are running CentOS 7.2 (official image is: centos-cloud/centos 7)

ff The default SSH username is centos

ff The SSH key known to us is (keys/admin_key)

ff We want a fully updated system with Docker installed and running

Let's define generic variables for all these requirements in a variables.tf file:

variable "machine_type" {
 default = "f1-micro"
 description = "Machine type"
}

variable "zone" {
 default = "c"
 description = "Region Zone"
}

variable "disk_image" {
 default = "centos-cloud/centos-7"
 description = "Disk image"
}

variable "ssh_key" {
 default = "keys/admin_key"
 description = "SSH key"
}

variable "ssh_username" {
 default = "root"
 description = "The SSH username to use"
}

variable "www_servers" {
 default = "2"
 description = "Amount of www servers"
}

Now let's override in terraform.tfvars the generic values we just set:

machine_type = "n1-standard-1"
zone = "d"
ssh_username = "centos"

Automating Complete Infrastructures with Terraform

140

Google Cloud instances are called from Terraform using the resource google_compute_
instance:

Let's add what we already know in this resource:

resource "google_compute_instance" "www" {
 count = "${var.www_servers}"
 name = "www-${count.index+1}"
 machine_type = "${var.machine_type}"
 zone = "${var.region}-${var.zone}"

 disk {
 image = "${var.disk_image}"
 }

 metadata {
 ssh-keys = "${var.ssh_username}:${file("${var.ssh_key}.pub")}"
 }
}

This could be enough, but we want to go much farther.

For example, we'll later add a firewall, whose rule will apply to a target defined by its tags.
Let's add a tag right now, so we can use it later:

tags = ["www"]

We have to configure networking. It's necessary in our case to have a public IPv4, because
we need to access the servers by SSH from outside. We might have chosen to not have
publicly exposed servers and use a bastion host instead. To create a network interface
in our default network, mapped behind a public IPv4, add the following to the
google_compute_instance resource:

 network_interface {
 network = "default"

 access_config {
 nat_ip = ""
 }
 }

Let's finish by connecting automatically to each instance and fully update it, then install,
enable, and start Docker. We do this using the remote-exec provisioner, correctly
configured with the right SSH username and private key:

provisioner "remote-exec" {
 connection {

Chapter 4

141

 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key}")}"
 }

 inline = [
 "sudo yum update -y",
 "sudo yum install -y docker",
 "sudo systemctl enable docker",
 "sudo systemctl start docker",
]
 }

We're finally done, with our two instances automatically provisioned!

Creating a Google Compute Firewall rule
Our goal is simple: we want to allow anyone (0.0.0.0/0) to access using HTTP (TCP port
80) any instance with the tag www in the default network. To do this, let's use the google_
compute_firewall resource:

resource "google_compute_firewall" "fw" {
 name = "www-firewall"
 network = "default"

 allow {
 protocol = "tcp"
 ports = ["80"]
 }

 source_ranges = ["0.0.0.0/0"]
 target_tags = ["www"]
}

Load balancing Google Compute instances
To load balance requests across our two instances, we'll need to create a pool of hosts, where
membership will be handled by a simple health check: an HTTP GET on / every second, with
an immediate timeout (1 second), and removal after 3 errors. We can do this in a file named
pool.tf with the google_compute_http_health_check resource:

resource "google_compute_http_health_check" "www" {
 name = "http"
 request_path = "/"
 check_interval_sec = 1
 healthy_threshold = 1
 unhealthy_threshold = 3
 timeout_sec = 1
}

Automating Complete Infrastructures with Terraform

142

Feel free to transform those values into variables for better tuning on your end!

Now, let's define the pool, which is defined by the results of the health checks and instances
inclusion. This is done using the google_compute_target_pool resource:

resource "google_compute_target_pool" "www" {
 name = "www-pool"
 instances = ["${google_compute_instance.www.*.self_link}"]
 health_checks = ["${google_compute_http_health_check.www.name}"]
}

The self_link attribute returns the URI of the resource.

Now we have our pool of hosts with health checks, let's create the load balancer itself. It's
done using the google_compute_forwarding_rule resource, simply pointing to the pool
of hosts we created earlier. Add the following in a loadbalancer.tf file:

resource "google_compute_forwarding_rule" "http" {
 name = "http-lb"
 target = "${google_compute_target_pool.www.self_link}"
 port_range = "80"
}

Creating a Google MySQL database instance
Our typical target application needs a database to store and access data. We won't get
into database replication here, but it can also be done quite simply with Terraform on
Google Cloud.

Double-check you have the SQL API activated in the Google Cloud
Console: https://console.cloud.google.com/apis/
library. By default, it isn't.

Here's a checklist of what we know about our MySQL database:

ff It's running on us-east1 region

ff It's running MySQL 5.6

ff It's type is D2 (1 GB of RAM)

ff Our own network and both HTTP servers can access it

ff We want a database named app_db

ff We want a user with a password to be allowed to connect from the HTTP servers

https://console.cloud.google.com/apis/library
https://console.cloud.google.com/apis/library

Chapter 4

143

Let's put all these variables in the variables.tf file:

variable "db_type" {
 default = "D0"
 description = "Google SQL DB type"
}

variable "db_authorized_network" {
 default = "0.0.0.0/0"
 description = "A corporate network authorized to access the DB"
}

variable "db_username" {
 default = "dbadmin"
 description = "A MySQL username"
}

variable "db_password" {
 default = "changeme"
 description = "A MySQL password"
}

variable "db_name" {
 default = "db_name"
 description = "MySQL database name"
}

Don't forget to override each generic value in the terraform.tfvars:

db_authorized_network = "163.172.161.158/32"
db_username = "sqladmin"
db_password = "pwd1970"
db_name = "app_db"
db_type = "D2"

Now we can build our database using the google_sql_database_instance resource in a
db.tf file:

resource "google_sql_database_instance" "master" {
 name = "mysql-mastr-1"
 region = "${var.region}"
 database_version = "MYSQL_5_6"

 settings = {
 tier = "${var.db_type}"
 activation_policy = "ALWAYS" // vs "ON_DEMAND"

Automating Complete Infrastructures with Terraform

144

 pricing_plan = "PER_USE" // vs "PACKAGE"

 ip_configuration {
 ipv4_enabled = true

 authorized_networks {
 name = "authorized_network"
 value = "${var.db_authorized_network}"
 }

 authorized_networks {
 name = "${google_compute_instance.www.0.name}"
 value = "${google_compute_instance.www.0.network_
interface.0.access_config.0.assigned_nat_ip}"
 }

 authorized_networks {
 name = "${google_compute_instance.www.1.name}"
 value = "${google_compute_instance.www.1.network_
interface.0.access_config.0.assigned_nat_ip}"
 }
 }
 }
}

The pricing_plan "PACKAGE" is more interesting for a long-lasting
database. Also, the authorized_network block doesn't currently support
a count value, so we can't iterate dynamically over every HTTP host. For
now, we have to duplicate the block, but that may very well change in a newer
Terraform version.

Let's now create a database, using a google_sql_database resource:

resource "google_sql_database" "db" {
 name = "${var.db_name}"
 instance = "${google_sql_database_instance.master.name}"
}

Finish by creating the SQL user with host restriction. Like the authorized_network block,
the google_sql_user resource doesn't support a count value yet, so we have to duplicate
the code for each HTTP server for now:

resource "google_sql_user" "user_www_1" {
 name = "${var.db_username}"
 password = "${var.db_password}"

Chapter 4

145

 instance = "${google_sql_database_instance.master.name}"
 host = "${google_compute_instance.www.0.network_
interface.0.access_config.0.assigned_nat_ip}"
}

resource "google_sql_user" "user_www_2" {
 name = "${var.db_username}"
 password = "${var.db_password}"
 instance = "${google_sql_database_instance.master.name}"
 host = "${google_compute_instance.www.1.network_
interface.0.access_config.0.assigned_nat_ip}"
}

Adding some useful outputs
It would be awesome to have some useful information such as IPs for all our instances and
services and usernames and passwords. Let's add some outputs in outputs.tf:

output "HTTP Servers" {
 value = "${join(" ", google_compute_instance.www.*.network_
interface.0.access_config.0.
assigned_nat_ip)}"
}

output "MySQL DB IP" {
 value = "${google_sql_database_instance.master.ip_address.0.ip_
address}"
}

output "Load Balancer Public IPv4" {
 value = "${google_compute_forwarding_rule.http.ip_address}"
}

output "DB Credentials" {
 value = "Username=${var.db_username} Password=${var.db_password}"
}

Here we are!

$ terraform apply

[...]

Outputs:

DB Credentials = Username=sqladmin Password=pwd1970

HTTP Servers = 104.196.180.192 104.196.157.246

Automating Complete Infrastructures with Terraform

146

Load Balancer Public IPv4 = 104.196.45.46

MySQL DB IP = 173.194.111.120

Simply deploy our application on the HTTP servers and we're done! To test drive the load
balancer and the HTTP instances, you can simply deploy the NGINX container on each
server and see the traffic flow:

$ sudo docker run -it --rm -p 80:80 --name web nginx

Provisioning a GitLab CE + CI runners on
OpenStack

OpenStack is a very popular open source cloud computing solution. Many providers are
based on it, and you can roll your own in your data center. In this example, we'll use the public
OpenStack by OVH, located in Montreal, QC (Canada), but we can use any other OpenStack.
There're differences in implementation for every custom deployment, but we'll stick with very
stable features.

We'll launch one compute instance running Ubuntu LTS 16.04 for GitLab, with a dedicated
block device for Docker, and two other compute instances for GitLab CI runners. Security will
allow HTTP for everyone, but SSH only for a known IP from our corporate network. To store
our builds or releases, we'll create a container, which is in OpenStack terminology—an object
storage. The equivalent with AWS S3 is a bucket.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation.
ff An OpenStack account on any OpenStack provider (public or private). This recipe uses

an account on OVH's public OpenStack (https://www.ovh.com/us/).
ff An Internet connection.

How to do it…
We'll create:

ff Three compute instances (virtual machines)
ff One keypair
ff One block storage device
ff One security group
ff One object storage bucket

https://www.ovh.com/us/

Chapter 4

147

Configuring the OpenStack provider
Let's start by configuring the OpenStack provider. We need four pieces of information: a
username, a password, an OpenStack tenant name, and an OpenStack authentication
endpoint URL. To make the code very dynamic, let's create variables for those in
variables.tf:

variable "user_name" {
 default = "changeme"
 description = "OpenStack username"
}

variable "password" {
 default = "hackme"
 description = "OpenStack password"
}

variable "tenant_name" {
 default = "123456"
 description = "OpenStack Tenant name"
}

variable "auth_url" {
 default = "https://openstack.url/v2.0"
 description = "OpenStack Authentication Endpoint"
}

Don't forget to override the default values with your own in the terraform.tfvars file!

user_name = "***"
tenant_name = "***"
password = "***"
auth_url = "https://auth.cloud.ovh.net/v2.0/"

Now we're good to go.

Creating a key pair on OpenStack
To authenticate ourselves on the instances, we need to provide the public part of the key
pair to OpenStack. This is done using the openstack_compute_keypair_v2 resource,
specifying in which region we want the key, and where the key is. Let's add both variables in
variables.tf:

variable "region" {
 default = "GRA1"
 description = "OpenStack Region"
}

Automating Complete Infrastructures with Terraform

148

variable "ssh_key_file" {
 default = "keys/admin_key"
 description = "Default SSH key"
}

Next, override them in the terraform.tfvars file:

region = "BHS1"

Now we can build our resource in the keys.tf file:

resource "openstack_compute_keypair_v2" "ssh" {
 name = "Admin SSH Public Key"
 region = "${var.region}"
 public_key = "${file("${var.ssh_key_file}.pub")}"
}

Creating a security group on OpenStack
We know our requirements are to allow HTTP (TCP/80) from anywhere, but SSH (TCP/22) only
from one corporate network. Add it right now in variables.tf so we can use it:

variable "allowed_network" {
 default = "1.2.3.4/32"
 description = "The Whitelisted Corporate Network"
}

Don't forget to override with your own network in terraform.tfvars.

Let's create a first security group allowing HTTP for everyone in our region, using the
openstack_compute_secgroup_v2 resource in a security.tf file:

 resource "openstack_compute_secgroup_v2" "http-sg" {
 name = "http-sg"
 description = "HTTP Security Group"
 region = "${var.region}"

 rule {
 from_port = 80
 to_port = 80
 ip_protocol = "tcp"
 cidr = "0.0.0.0/0"
 }
}

Chapter 4

149

Following the same pattern, create another security group to allow SSH only from our
corporate network:

resource "openstack_compute_secgroup_v2" "base-sg" {
 name = "base-sg"
 description = "Base Security Group"
 region = "${var.region}"

 rule {
 from_port = 22
 to_port = 22
 ip_protocol = "tcp"
 cidr = "${var.allowed_network}"
 }
}

Creating block storage volumes on OpenStack
In our requirements, we want a dedicated volume to be available to our GitLab instance, for
Docker. We decide this one will be 10 GB in size. This volume will be mounted by the compute
instance under a dedicated device (likely /dev/vdb). The whole thing is done using the
openstack_blockstorage_volume_v2 resource:

resource "openstack_blockstorage_volume_v2" "docker" {
 region = "${var.region}"
 name = "docker-vol"
 description = "Docker volume"
 size = 10
}

Add a simple output in outputs.tf so we know the volume description, name, and size:

output "Block Storage" {
 value = "${openstack_blockstorage_volume_v2.docker.description}:
${openstack_blockstorage_volume_v2.docker.name},
${openstack_blockstorage_volume_v2.docker.size}GB"
}

We now have every requirement to launch our compute instances.

Creating compute instances on OpenStack
It's now time to create the instances. We know they have to be Ubuntu 16.04, and we
decide on a flavor name: a flavor is the type of the machine. It varies from every other
OpenStack installation. In our case, it's named vps-ssd-1. Let's define some defaults
in the variables.tf file:

variable "image_name" {

Automating Complete Infrastructures with Terraform

150

 default = "CentOS"
 description = "Default OpenStack image to boot"
}

variable "flavor_name" {
 default = "some_flavor"
 description = "OpenStack instance flavor"
}

Also, override them with good values in terraform.tfvars:

image_name = "Ubuntu 16.04"
flavor_name = "vps-ssd-1"

To create a compute instance, we use a resource named openstack_compute_instance_
v2. This resource takes all the parameters we previously declared (name, image, flavor, SSH
key, and security groups). Let's try this in instances.tf:

resource "openstack_compute_instance_v2" "gitlab" {
 name = "gitlab"
 region = "${var.region}"
 image_name = "${var.image_name}"
 flavor_name = "${var.flavor_name}"
 key_pair = "${openstack_compute_keypair_v2.ssh.name}"
 security_groups = ["${openstack_compute_secgroup_v2.base-
 sg.name}", "${openstack_compute_secgroup_v2.http-sg.name}"]
}

To attach the block storage volume we created, we need to add a volume {} block inside
the resource:

 volume {
 volume_id = "${openstack_blockstorage_volume_v2.docker.id}"
 device = "/dev/vdb"
 }

Now, an optional but fun part is that the commands needed to format the volume, mount it at
the right place, fully update the system, install Docker, and run the GitLab CE container. This
is done using the remote-exec provisioner and requires a SSH username. Let's set it as
variables.tf:

variable "ssh_username" {
 default = "ubuntu"
 description = "SSH username"
}

Chapter 4

151

Now we can just type in all the commands to be executed when the instance is ready:

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key_file}")}"
 }

 inline = [
 "sudo mkfs.ext4 /dev/vdb",
 "sudo mkdir /var/lib/docker",
 "sudo su -c \"echo '/dev/vdb /var/lib/docker ext4 defaults 0
 0' >> /etc/fstab\"",
 "sudo mount -a",
 "sudo apt update -y",
 "sudo apt upgrade -y",
 "sudo apt install -y docker.io",
 "sudo systemctl enable docker",
 "sudo systemctl start docker",
 "sudo docker run -d -p 80:80 --name gitlab gitlab/gitlab-
 ce:latest",
]
 }

Add a simple output in the outputs.tf file, so we easily know the GitLab instance public IP:

output "GitLab Instance" {
 value = "gitlab:
 http://${openstack_compute_instance_v2.gitlab.access_ip_v4}"
}

The runner instances are the same, but a little simpler, as they don't need a local volume.
However, we need to set the amount of runners we want in variables.tf:

variable "num_runners" {
 default = "1"
 description = "Number of GitLab CI runners"
}

Override the value to have more runners in terraform.tfvars:

num_runners = "2"

Now we can create our runner instances using the openstack_compute_instance_v2
resource:

resource "openstack_compute_instance_v2" "runner" {
 count = "${var.num_runners}"

Automating Complete Infrastructures with Terraform

152

 name = "gitlab-runner-${count.index+1}"
 region = "${var.region}"
 image_name = "${var.image_name}"
 flavor_name = "${var.flavor_name}"
 key_pair = "${openstack_compute_keypair_v2.ssh.name}"
 security_groups = ["${openstack_compute_secgroup_v2.base-
 sg.name}", "${openstack_compute_secgroup_v2.http-sg.name}"]

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key_file}")}"
 }

 inline = [
 "sudo apt update -y",
 "sudo apt upgrade -y",
 "sudo apt install -y docker.io",
 "sudo systemctl enable docker",
 "sudo systemctl start docker",
 "sudo docker run -d --name gitlab-runner -v
 /var/run/docker.sock:/var/run/docker.sock gitlab/gitlab-
 runner:latest",
]
 }
}

This will launch a GitLab CI runner, so builds can be triggered by GitLab! (there's one last step
of configuration, though. It's out of the scope of this book, but we need to register each runner
to the main GitLab instance by executing docker exec -it gitlab-runner gitlab-
runner register and answering the questions).

Add the following output to outputs.tf so we know all the IP addresses of our runners:

output "GitLab Runner Instances" {
 value = "${join(" ",
 openstack_compute_instance_v2.runner.*.access_ip_v4)}"
}

Creating an object storage container on OpenStack
This one is very simple: it only requires a name and a region. As it's to store releases, let's
call it releases, using the openstack_objectstorage_container_v1 resource, in an
objectstorage.tf file:

resource "openstack_objectstorage_container_v1" "releases" {
 region = "${var.region}"

Chapter 4

153

 name = "releases"
}

Add a simple output in outputs.tf so we remember the Object Storage
container name:

output "Object Storage" {
 value = "Container name:
 ${openstack_objectstorage_container_v1.releases.name}"
}

Applying
In the end, do a terraform apply:

$ terraform apply

[...]

Outputs:

Block Storage = Docker volume: docker-vol, 10GB

GitLab Instance = gitlab: http://158.69.95.202

GitLab Runner Instances = 158.69.95.200 158.69.95.201

Object Storage = Container name: releases

Connect to the GitLab instance and enjoy the runners (after GitLab token registration)!

Managing Heroku apps and add-ons using
Terraform

Heroku is a popular Platform-as-a-Service (PaaS), where you have absolutely no control over
the infrastructure. But even for such platforms, Terraform can automate and manage things
for you, so Heroku can do the rest. We'll create an app (a simple GitHub Hubot: http://
hubot.github.com/), but feel free to use your own. On top of this app, we'll automatically
plug a Heroku add-on (redis) and deploy everything.

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff A Heroku account (https://www.heroku.com/)

http://hubot.github.com/
http://hubot.github.com/
https://www.heroku.com/

Automating Complete Infrastructures with Terraform

154

ff An optional Slack Token

ff An Internet connection

How to do it…
First things first: we need to define the Heroku provider. It consists of an e-mail address and
an API key. Let's create generic variables for that in variables.tf:

variable "heroku_email" {
 default = "user@mail.com"
 description = "Heroku account email"
}

variable "heroku_api_key" {
 default = "12345"
 description = "Heroku account API key"
}

Don't forget to override them in terraform.tfvars:

heroku_email = "me@gmail.com"
heroku_api_key = "52eef461-5e34-47d8-8191-ede7ef6cf9bg"

Now we can create the Heroku provider with the information we have:

provider "heroku" {
 email = "${var.heroku_email}"
 api_key = "${var.heroku_api_key}"
}

Creating a Heroku application with Terraform
Instead of clicking through Heroku to create an application, let's do it right from Terraform.
We want to run our app in Europe and we want Hubot to connect to Slack, so we need to
provide a Slack token as well. Let's start by creating default values in variables.tf:

variable "heroku_region" {
 default = "us"
 description = "Heroku region"
}

variable "slack_token" {
 default = "xoxb-1234-5678-1234-5678"
 description = "Slack Token"
}

Chapter 4

155

Now we can create our first Heroku app with its variables using the heroku_app resource,
in heroku.tf:

resource "heroku_app" "hubot" {
 name = "iac-book-hubot"
 region = "${var.heroku_region}"

 config_vars {
 HUBOT_SLACK_TOKEN = "${var.slack_token}"
 }
}

That's it! As simple as it seems.

Add some output in outputs.tf so we have better information about our app, like the
Heroku app URL and environment variables:

output "heroku URL" {
 value = "${heroku_app.hubot.web_url}"
}

output "heroku_vars" {
 value = "${heroku_app.hubot.all_config_vars}"
}

output "heroku Git URL" {
 value = "${heroku_app.hubot.git_url}"
}

Adding Heroku add-ons using Terraform
Some add-ons need Redis to store data. Instead of going through the web application and
enabling add-ons, let's instead use the heroku_addon resource. It takes a reference to the
app to link the add-on to, and a plan (hobby-dev is free, so let's use that):

resource "heroku_addon" "redis" {
 app = "${heroku_app.hubot.name}"
 plan = "heroku-redis:hobby-dev"
}

Using Heroku with Terraform
It's out of the scope of this book to show Heroku usage, but let's apply this terraform code:

$ terraform apply
[...]
Outputs:

Automating Complete Infrastructures with Terraform

156

heroku Git URL = https://git.heroku.com/iac-book-hubot.git
heroku URL = https://iac-book-hubot.herokuapp.com/
heroku_vars = {
 HUBOT_SLACK_TOKEN = xoxb-1234-5678-91011-00e4dd
}

If you don't have an application ready to ship on Heroku, let's try to deploy GitHub's chat robot
Hubot. It's an easy application ready to use on Heroku. Quickly reading through the Hubot
documentation, let's install the Hubot generator:

$ npm install -g yo generator-hubot

Create a new hubot:

$ mkdir src; cd src

$ yo hubot

Answer the questions and when you're done, using the usual heroku command, add the
Heroku git remote for our Heroku app:

$ heroku git:remote --app iac-book-hubot

Now you can git push heroku and see your application being deployed, all
using Terraform.

Creating a scalable Docker Swarm cluster
on bare metal with Packet

IaaS clouds have been popularized through heavy usage of virtual machines. Recent
initiatives are targeting bare metal servers with an API, so we get the best of both
worlds—on-demand servers through an API and incredible performance through direct
access to the hardware. https://www.packet.net/ is a bare metal IaaS provider
(https://www.scaleway.com/ is another) very well supported by Terraform with an
awesome global network. Within minutes we have new hardware ready and connected
to the network.

We'll build a fully automated and scalable Docker Swarm cluster, so we can operate highly
scalable and performant workloads on bare metal: this setup can scale thousands of
containers in just a few minutes. This cluster is composed of Type 0 machines (4 cores and 8
GB RAM), for one manager and 2 nodes, totaling 12 cores and 24 GB of RAM, but we can use
more performant machines if we want: the same cluster with Type 2 machines will have 72
cores and 768 GB of RAM (though the price will adapt accordingly).

https://www.packet.net/
https://www.scaleway.com/

Chapter 4

157

Getting ready
To step through this recipe, you will need the following:

ff A working Terraform installation

ff A Packet.net account with an API key

ff An Internet connection

How to do it…
Let's start by creating the packet provider, using the API key (an authentication token).
Create the variable in variables.tf:

variable "auth_token" {
 default = "1234"
 description = "API Key Auth Token"
}

Also, be sure to override the value in terraform.tfvars with the real token:

auth_token = "JnN7e6tPMpWNtGcyPGT93AkLuguKw2eN"

Creating a Packet project using Terraform
Packet, like some other IaaS providers, uses the notion of project to group machines. Let's
create a project named Docker Swarm Bare Metal Infrastructure, since that's what
we want to do, in a projects.tf file:

resource "packet_project" "swarm" {
 name = "Docker Swarm Bare Metal Infrastructure"
}

This way, if you happen to manage multiple projects or customers, you can split them all into
their own projects.

Handling Packet SSH keys using Terraform
To connect to the machines using SSH, we need at least one public key uploaded to our
Packet account. Let's create a variable to store it in variables.tf:

variable "ssh_key" {
 default = "keys/admin_key"
 description = "Path to SSH key"
}

Automating Complete Infrastructures with Terraform

158

Don't forget to override the value in terraform.tfvars if you use another name for the key.

Let's use the packet_ssh_key resource to create the SSH key on our Packet account:

resource "packet_ssh_key" "admin" {
 name = "admin_key"
 public_key = "${file("${var.ssh_key}.pub")}"
}

Bootstraping a Docker Swarm manager on Packet using
Terraform
We'll create two types of servers for this Docker Swarm cluster: managers and nodes.
Managers are controlling what's executed on the nodes. We'll start by bootstrapping the
Docker Swarm manager server, using the Packet service (more alternatives are available
from Packet API):

ff We want the cheapest server (baremetal_0)

ff We want the servers in Amsterdam (ams1)

ff We want the servers to run Ubuntu 16.04 (ubuntu_16_04_image)

ff Default SSH user is root

ff Billing will be hourly, but that can be monthly as well

Let's put generic information in variables.tf so we can manipulate them:

variable "facility" {
 default = "ewr1"
 description = "Packet facility (us-east=ewr1, us-west=sjc1, eu-
west=ams1)"
}

variable "plan" {
 default = "baremetal_0"
 description = "Packet machine type"
}

variable "operating_system" {
 default = "coreos_stable"
 description = "Packet operating_system"
}

variable "ssh_username" {
 default = "root"
 description = "Default host username"
}

Chapter 4

159

Also, override them in terraform.tfvars to match our values:

facility = "ams1"
operating_system = "ubuntu_16_04_image"

To create a server with Packet, let's use the packet_device resource, specifying the chosen
plan, facility, operating system, billing, and the project in which it will run:

resource "packet_device" "swarm_master" {
 hostname = "swarm-master"
 plan = "${var.plan}"
 facility = "${var.facility}"
 operating_system = "${var.operating_system}"
 billing_cycle = "hourly"
 project_id = "${packet_project.swarm.id}"
}

Now, let's create two scripts that will execute when the server is ready. The first
one will update Ubuntu (update_os.sh) while the second will install Docker
(install_docker.sh).

#!/usr/bin/env bash

file: ./scripts/update_os.sh

sudo apt update -yqq

sudo apt upgrade -yqq

This script will install and start Docker:

#!/usr/bin/env bash

file: ./scripts/install_docker.sh

curl -sSL https://get.docker.com/ | sh

sudo systemctl enable docker

sudo systemctl start docker

We can now call those scripts as a remote-exec provisioner inside the packet_device
resource:

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key}")}"
 }

 scripts = [
 "scripts/update_os.sh",

Automating Complete Infrastructures with Terraform

160

 "scripts/install_docker.sh",
]
 }

At this point, the system is fully provisioned and functional, with Docker running.

To initialize a Docker Swarm cluster, starting with Docker 1.12, we can just issue the
following command:

$ docker swarm init --advertise-addr docker.manager.local.ip

A server at Packet has one interface sharing both public and private IP addresses. The private
IP is the second one, and is available through the following exported attribute: ${packet_
device.swarm_master.network.2.address}. Let's create another remote-exec
provisioner, so the Swarm manager is initialized automatically, right after bootstrap:

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key}")}"
 }

 inline = [
 "docker swarm init --advertise-addr ${packet_device.swarm_
master.network.2.address}",
]
 }

At this point, we have a Docker cluster running, with only one node—the manager itself.

The last step is to store the Swarm token, so the nodes can join. The token can be obtained
with the following command:

$ docker swarm join-token worker -q

We'll store this token in a simple file in our infrastructure repository (worker.token),
so we can access it and version it. Let's create a variable to store our token in a file in
variables.tf:

variable "worker_token_file" {
 default = "worker.token"
 description = "Worker token file"
}

We will execute the previous docker swarm command through SSH when everything else
is done, using a local-exec provisioner. As we can't interact with the process, let's skip the
host key checking and other initial SSH checks:

 provisioner "local-exec" {

Chapter 4

161

 command = "ssh -t -o UserKnownHostsFile=/dev/null -o
 StrictHostKeyChecking=no -i ${var.ssh_key}
 ${var.ssh_username}@${packet_device.swarm_master.
network.0.address} \"docker swarm join-token worker -q\" >
${var.worker_token_file}"
 }

We're now done with the Docker Swarm manager!

Bootstraping Docker Swarm nodes on Packet using Terraform
We need nodes to join the swarm, so the workload can be spread. For convenience, the
machine specs for the nodes will be the same as that of the master. Here's what will happen:

ff Two nodes are created

ff The token file is sent to each node

ff The operating system is updated, and Docker is installed

ff The node joins the swarm

Let's start by creating a variable for the number of nodes we want, in variables.tf:

variable "num_nodes" {
 default = "1"
 description = "Number of Docker Swarm nodes"
}

Override that value as the cluster grows in terraform.tfvars:

num_nodes = "2"

Create the nodes using the same packet_device resource we used for the master:

resource "packet_device" "swarm_node" {
 count = "${var.num_nodes}"
 hostname = "swarm-node-${count.index+1}"
 plan = "${var.plan}"
 facility = "${var.facility}"
 operating_system = "${var.operating_system}"
 billing_cycle = "hourly"
 project_id = "${packet_project.swarm.id}"
}

Add a file provisioner to copy the token file:

 provisioner "file" {
 source = "${var.worker_token_file}"
 destination = "${var.worker_token_file}"
 }

Automating Complete Infrastructures with Terraform

162

Using the same update and Docker installation scripts as the master, create the same
remote-exec provisioner:

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key}")}"
 }

 scripts = [
 "scripts/update_os.sh",
 "scripts/install_docker.sh",
]
 }

The operating system is now fully updated and Docker is running.

Now we want to join the Docker Swarm cluster. To do this, we need two pieces of information:
the token and the local IP of the master. We already have the token in a file locally, and
Terraform knows the local IP of the swarm manager. So a trick is to create a simple script (I
suggest you write a more robust one!), that reads the local token, and takes the local
manager IP address as an argument. In a file named scripts/join_swarm.sh,
enter the following lines:

#!/usr/bin/env bash
file: scripts/join_swarm.sh
MASTER=$1
SWARM_TOKEN=$(cat worker.token)
docker swarm join --token ${SWARM_TOKEN} ${MASTER}:2377

Now we just have to send this file to the nodes using the file provisioner:

 provisioner "file" {
 source = "scripts/join_swarm.sh"
 destination = "join_swarm.sh"
 }

Use it as a last step through a remote-exec provisioner, sending the local Docker master
IP (${packet_device.swarm_master.network.2.address}") as an argument to
the script:

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_username}"
 private_key = "${file("${var.ssh_key}")}"
 }

Chapter 4

163

 inline = [
 "chmod +x join_swarm.sh",
 "./join_swarm.sh ${packet_device.swarm_master.
network.2.address}",
]
 }//.

Launch the whole infrastructure:

$ terraform apply

Outputs:

Swarm Master Private IP = 10.80.86.129

Swarm Master Public IP = 147.75.100.19

Swarm Nodes = Public: 147.75.100.23,147.75.100.3, Private:
10.80.86.135,10.80.86.133

Our cluster is running.

Using the Docker Swarm cluster
Using our Docker Swarm cluster is out of the scope of this book, but now we have it, let's take
a quick look to scale a container to the thousands!

Verify we have our 3 nodes:

docker node ls
ID HOSTNAME STATUS
AVAILABILITY MANAGER STATUS
9sxqi2f1pywmofgf63l84n7ps * swarm-master.local.lan Ready
Active Leader
ag07nh1wzsbsvnef98sqf5agy swarm-node-1.local.lan Ready
Active
cppk5ja4spysu6opdov9f3x8h swarm-node-2.local.lan Ready
Active

We want a common network for our containers, and we want to scale to the thousands. So a
typical /24 network won't be enough (that's the docker network default). Let's create a /16
overlay network, so we have room for scale!

docker network create -d overlay --subnet 172.16.0.0/16 nginx-
network

Create a Docker service that will simply launch an nginx container on this new overlay
network, with 3 replicas (3 instances of the container running at the same time):

docker service create --name nginx --network nginx-network --
replicas 3 -p 80:80/tcp nginx

Automating Complete Infrastructures with Terraform

164

Verify if it's working:

docker service ls

ID NAME REPLICAS IMAGE COMMAND

aeq9lspl0mpg nginx 3/3 nginx

Now, accessing by HTTP any of the public IPs of the cluster, any container of any node can
answer: we can make an HTTP request to node-1, and it can be a container on node-2
responding. Nice!

Let's scale our service now, from 3 replicas to 100:

docker service scale nginx=100

nginx scaled to 100

docker service ls

ID NAME REPLICAS IMAGE COMMAND

aeq9lspl0mpg nginx 100/100 nginx

We just scaled to a hundred containers in a few seconds and split them on all 3 bare
metal machines.

Now, you know you can scale, and with such a configuration you can push the nginx service
to 500, 1000, or maybe more!

165

5
Provisioning the Last

Mile with Cloud-Init

In this chapter, we will cover the following recipes:

ff Using cloud-init on AWS, Digital Ocean, or OpenStack

ff Handling files using cloud-init

ff Configuring the server's time zone using cloud-init

ff Managing users, keys, and credentials using cloud-init

ff Managing repositories and packages using cloud-init

ff Running commands during boot using cloud-init

ff Configuring CoreOS using cloud-init

ff Deploying Chef client from start to finish using cloud-init

ff Deploying a remote Docker server using cloud-init

Introduction
Cloud-init is a cloud instance initialization system, standard across most Linux distributions.
It's supported by all recent distributions (Ubuntu, Arch, CentOS/Red Hat, Fedora, and more),
as well as a variant found on CoreOS systems.

With cloud-init, a number of actions are taken during the initialization phases of booting a
cloud instance (new or not): installing packages, copying files or SSH keys, deploying Chef,
defining repositories, or rebooting (when done).

Provisioning the Last Mile with Cloud-Init

166

The scope of action of cloud-init is really intended for the initialization phase; it's not a
configuration management tool and is globally not meant to be run again afterwards to update
configuration, like one would with Ansible or Chef. It's only used to obtain an instance properly
configured for the next step to happen, and to ensure a set of commands are executed in
order during boot. In other words, Terraform (the tool covered in Chapter 2, Provisioning
IaaS with Terraform, Chapter 3, Going Further with Terraform, and Chapter 4, Automating
Complete Infrastructures with Terraform) is perfect to define all the aspects of the underlying
infrastructure, but cloud-init can be an easy and awesome solution for handling the first and
subsequent boots before letting a full-fledged configuration management tool such as Chef or
Ansible play its part for the rest of the instance life.

Cloud-init is defined as a simple YAML file (cloud-config), sent in the user-data field of a cloud
instance. We'll see how this works in the coming sections.

In this chapter, we will present the most useful use cases with cloud-init, such as copying
files, creating users, managing SSH keys, adding repositories and installing packages, running
arbitrary commands, bootstrapping a Chef client, or managing CoreOS and Docker with it.

Using cloud-init on AWS, Digital Ocean, or
OpenStack

As cloud-init is an initialization system for cloud instances, we need to find a way to send
the cloud-config YAML file to the bootstrapping process. On all IaaS providers supporting
cloud-init, there's a field where we can paste our file. We'll review how cloud-init works on
three important IaaS providers—AWS, Digital Ocean, and OpenStack.

Getting ready
To step through this recipe, you will need an account on Amazon Web Services, Digital Ocean,
or some OpenStack deployment, or on all of them if you want to try them all!

How to do it…
To illustrate cloud-init usage, we'll create the simplest cloud-config file on Ubuntu 16.04
and CentOS 7.2, installing packages such as htop, tcpdump, docker, or nmap that aren't
usually installed by default on most Linux distributions. This is how a very simple cloud-config
file looks:

#cloud-config
Install packages on first boot
packages:
 - tcpdump
 - docker
 - nmap

Chapter 5

167

Using cloud-init on Amazon Web Services
Using the AWS Console, when launching your instance, click on Advanced Details and we'll be
able to paste our sample (and simple) cloud-config YAML file, or even simply upload it:

In this case, the Ubuntu 16.04 instance we just launched will already have the htop
and tcpdump system tools installed, along with the Linux distribution's supported version
of Docker:

ubuntu@ip-172-31-40-77:~$ which htop
/usr/bin/htop
ubuntu@ip-172-31-40-77:~$ which tcpdump
/usr/sbin/tcpdump
ubuntu@ip-172-31-40-77:~$ docker --version
Docker version 1.11.2, build b9f10c9

We can manually update cloud-config.yml of a particular instance
by powering off the instance, then under the Actions menu, navigate to
Instance Settings | View/Change User Data. Start the EC2 instance
again and the updated configuration is applied.

Using cloud-init on Digital Ocean
The situation is similar on Digital Ocean. When creating a new droplet, be sure to tick the
User data checkbox under the Select additional options section and paste the cloud-config
file content:

Provisioning the Last Mile with Cloud-Init

168

After a few seconds of boot time and package installation, our customized Ubuntu distribution
is available:

root@ubuntu-512mb-nyc3-01:~# which htop

/usr/bin/htop

root@ubuntu-512mb-nyc3-01:~# which tcpdump

/usr/sbin/tcpdump

root@ubuntu-512mb-nyc3-01:~# docker --version

Docker version 1.11.2, build b9f10c9

Using cloud-init on OpenStack
When creating an instance on OpenStack, using the Horizon dashboard, click on the Post-
Creation tab, and paste the cloud-config YAML content in the text box. Alternatively, it is
possible to upload the file:

Chapter 5

169

Verify the requested packages were installed, this time on a CentOS 7.2 box:

[centos@cloud-init-demo ~]$ which nmap

/usr/bin/nmap

[centos@cloud-init-demo ~]$ docker --version

Docker version 1.10.3, build cb079f6-unsupported

[centos@cloud-init-demo ~]$ which tcpdump

/usr/sbin/tcpdump

Combining cloud-init and Terraform for any IaaS
In the previous chapters about Terraform, we've in fact already used a cloud-init file
a few times.

On Amazon Web Services, using the aws_instance resource to launch an EC2 VM, we use
the user_data argument to pass the cloud-config file content, and in this case, using the
file() interpolation:

resource "aws_instance" "vm" {
 ami = "ami-643d4217"
 instance_type = "t2.micro"
 key_name = "manual cloud init"
 user_data = "${file("cloud-config.yml")}"
}

The equivalent for a Digital Ocean VM is the user_data argument as well:

resource "digitalocean_droplet" "vm" {
 image = "ubuntu-14-04-x64"
 name = "ubuntu"
 region = "ams3"
 size = "512mb"
 ssh_keys = ["keys/admin_key"]
 user_data = "${file("cloud-config.yml")}"
}

Provisioning the Last Mile with Cloud-Init

170

Handling files using cloud-init
An early need we all face is to have a file, a license, or a script in place right from the
beginning of the instance life. Cloud-init proposes different ways of sending those files over
the new instance. We'll see how to send files using plain text and base64 data encodings.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

How to do it…
The first file we'll write is a MOTD (short for Message Of The Day) with root read-write
permissions, read-only for everyone else. This file will have its content declared right
from the cloud-config file:

#cloud-config
write_files:
 - path: /etc/motd
 content: |
 This server is configured using cloud-init.
 Welcome.
 owner: root:root
 permissions: '0644'

This machine, when booted, will have /etc/motd in place and display the string at login:

$ ssh ubuntu@server_ip

Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-36-generic x86_64)

[...]

This server is configured using cloud-init.

Welcome.

[...]

ubuntu@ip-172-31-44-177:~$

Another way of including file content is to encode it in base64. Let's say we want to create a
file named /etc/server-id with the content abc-123, with permissions 0600. Begin by
obtaining the base64 version of the file:

$ base64 server-id

YWJjLTEyMwo=

Chapter 5

171

This is the output we'll integrate into the content field of the cloud-config file:

 - path: /etc/server-id

 content: YWJjLTEyMwo=

 encoding: b64

 permissions: '0600'

Let's verify the remote content is what we expected:

$ ls -al /etc/server-id

-rw------- 1 root root 8 Sep 20 10:15 /etc/server-id

$ sudo cat /etc/server-id

abc-123

It works! Our file is read/write for the owner only, and the content is abc-123.

Another possibility is to compress the file using gzip, or even to base64 encode the resulting
compressed gzip file.

Configuring the server's time zone using
cloud-init

One very common configuration step on a new instance is setting the time zone. This time
we'll explicitly set the EDT (New York) time zone for our server (even if the server is running in
Europe or somewhere else). It is sometimes important to have as early as possible a correct
date and time set up (for things like registration times, delays, and other issues depending on
dates and times).

In most setups, I personally prefer to ensure all the systems are set to
GMT, wherever they are on the planet, GMT or not. This way, it's much
easier to debug, compare logs or behavior when failures arise, without
losing time doing the math of the time zones.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

Provisioning the Last Mile with Cloud-Init

172

How to do it…
To set the server's time zone automatically to America/New_York, use the
timezone directive:

#cloud-config
timezone: "America/New_York"

That is it! Our server is now configured from the beginning to use the correct time zone:

$ date

Sun Sep 25 10:48:32 EDT 2016

This, in fact, has simply set the /etc/timezone file to the correct value:

$ cat /etc/timezone

America/New_York

Managing users, keys, and credentials using
cloud-init

There's a high probability we won't plan to use the default root account, or even the default
user account from our distribution (those ubuntu or centos users). There's an even higher
probability we'll need a Unix account very early in the process, even before the proper
configuration management tool enters the game.

Let's say our IT security policy wants us to have an emergency user account in a group
named infosec for the IT security team with passwordless sudo rights and the simple
/bin/sh shell. This account has one authorized public key automatically populated.
The policy is also to remove the default ubuntu account.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

Chapter 5

173

How to do it…
To create a group, we use a directive simply named groups, taking a list of groups. Any group
can have a sublist of users to put in that group:

#cloud-config
groups:
 - infosec: [emergency]

To create a user, let's use a directive named users, taking a list of users. This list of users
has a set of keys, such as groups the user is a member of, sudo rights, which shell to
default to, or an SSH public key to authorize. Here's how it looks for our user emergency:

users:

 - name: emergency

 groups: sudo

 shell: /bin/sh

 sudo: ['ALL=(ALL) NOPASSWD:ALL']

 ssh-authorized-keys:

 - ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQC+fAfzjw5+mUZ7nGokB0tzO9fOLKrjHGVlabpRUxvs
IN/dRRmiBA9NDh5YRZ/ThAhn+RvPKGTBrXmuv3qWd/iWc3nie0fc2zDX1/Dc8EAIF9ybXfSxT
2DXOWWLOvNdUVOZNifmsmCQ1z0p9hg3bo65c0ZEBpXHIk+l75uFWAIYZ/
4jnXyFWz1ptmQR7gnAk2KBK19sj1Ii0pNjGyVbl5bNitWb3ulaviIT3FCswZoOsYvc
LpOwQrMA3k12kEAb30CYpesGcq6WDHAZSpWkFvc3Cd/AET4/
SjtyYpQVEhUn84v106WbNeDyJpUX6cz2WG2UaEqZc0VqZVhI63jG7wUR emergency@host

Once logged in as emergency using the private key, let's verify cloud-init did the job:

$ whoami

emergency

$ groups emergency

emergency : emergency sudo

$ echo $SHELL

/bin/sh

$ sudo whoami

root

Provisioning the Last Mile with Cloud-Init

174

We never explicitly asked to remove the default ubuntu user account:
it's automatic as soon as we create an initial user.

However, if we wanted to keep the default user from our Linux distribution, we'd just have to
add the following default user to the users directive:

users:

 - default

Managing repositories and packages using
cloud-init

Unless we need a very specific release of a Linux distribution, it's highly probable we'll expect
a fully updated system as soon as possible (think security patches and other bug fixes).
Similarly, we usually expect a set of tools to be available in the new system. However, things
might change, default tools might be removed – better to be safe than sorry. If one of our
bootstrap scripts needs wget or curl and nmap, let's ensure those are present long before
the proper configuration management tool starts its job (such as Chef or Puppet). We may
also want to reboot the server after applying critical initial packages such as the kernel, or add
a custom package repository.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

How to do it…
To upgrade all the packages right after bootstrap, simply set the package_upgrade directive
to true:

#cloud-config
package_upgrade: true

Chapter 5

175

Another useful directive is to reboot the system if required by the package manager
(common case with kernel updates). It's often better to reboot as soon as possible with
the most secure kernel, but proceed with caution according to your own environment (you
might not want to reboot while another action is taking place, maybe a Chef run or similar
management software):

apt_reboot_if_required: true

To ensure the required packages are installed, use the packages directive:

packages:
 - htop
 - nmap
 - curl
 - wget

We can also add a custom APT repository using apt_sources:

apt_sources:
 - source: "ppa:nginx/stable"

Let's launch a new instance and verify it's fully updated, so no updates can be applied:

$ sudo apt-get dist-upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Verify our required tools are available:

$ which nmap

/usr/bin/nmap

$ which htop

/usr/bin/htop

$ which curl

/usr/bin/curl

$ which wget

/usr/bin/wget

Good thing! Now we're sure to always have a fully updated system with the required set of
tools installed, even our own, right from the beginning.

Provisioning the Last Mile with Cloud-Init

176

Running commands during boot using
cloud-init

When bootstrapping a new server or instance, the first boot is often very different from all the
other boots the instance will experience in its life, and most often we want some commands
to be executed very early or very late in the boot process. For example, let's say our cloud
instance is launched with an attached block storage. We might want to format this storage
space and be sure it's mounted on the host, but while we always want the disk to mount, we
probably don't want it to be formatted at each boot! The bootcmd directive is there to handle
everything related to commands to be executed very early in the boot process, while the
runcmd directive is executed much later in the boot process (and only once).

bootcmd will be executed at every boot of the instance.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

How to do it…
We'll launch three commands during boot. The first one is a simple file with a dynamic
content (the $INSTANCE_ID variable made available to us by cloud-init), which will always be
rewritten, no matter what, at each boot. The second command is printing the date in the logs
(so we know when the boot process started). The final command is the ext4 formatting of a
block device attached on /dev/xvdb. For the sake of the exercise, we'll also mount the new
device under /srv/www on the host.

To launch any command at boot time that will be run as early as possible, every time the
machine boots, simply add it to the list of the bootcmd directive:

#cloud-config
bootcmd:
 - echo bootcmd started at $(date)
 - echo $INSTANCE_ID > /etc/instance_id

If we delete or modify this file, at the next reboot it will be overwritten.

Chapter 5

177

On the other hand, if we want to run a command only once inside the bootcmd directive, we
can use the helper script cloud-init-per. You can choose to launch the command once
per boot or once per instance. In our case, we want to format the /dev/xvdb device
(so, unless we want to format our drive each time we reboot, we probably want this to happen
only once on this instance. So let's add the instance argument to the cloud-init-per
helper script):

#cloud-config
bootcmd:
 - cloud-init-per instance mkfs-xvdb mkfs -t ext4 /dev/xvdb

Finally, let's use the mounts directive to mount the now formatted /dev/xvdb on the /srv/
www folder:

mounts:
 - [/dev/xvdb, /srv/www]

After boot, let's verify the block device is mounted:

df -h /srv/www/
Filesystem Size Used Avail Use% Mounted on
/dev/xvdb 4.8G 10M 4.6G 1% /srv/www

We can also test the existence of the file we created:

cat /etc/instance_id
i-03005dd324599df11

Try to delete this file and reboot the server: the file will be there again.

Now, let's take a look at how different the runcmd directive is. Let's add a very similar
command to the date output in the bootcmd directive:

runcmd:
 - 'echo runcmd started at $(date)'

Start a new instance, and observe the difference in timestamps:

$ grep "started at" /var/log/cloud-init-output.log

bootcmd started at Fri Sep 23 07:02:35 UTC 2016

+ echo runcmd started at Fri Sep 23 07:02:47 UTC 2016

runcmd started at Fri Sep 23 07:02:47 UTC 2016

The runcmd directive started 12 seconds later than the bootcmd directive.

Provisioning the Last Mile with Cloud-Init

178

Now reboot the instance, and observe that runcmd didn't run again:

$ grep "started at" /var/log/cloud-init-output.log

bootcmd started at Fri Sep 23 07:04:31 UTC 2016

Now we know what directive to use in each case.

Configuring CoreOS using cloud-init
CoreOS supports its own version of cloud-init, with added support for the CoreOS
environment, and without everything else incompatible with its environment,
so we can boot a fully configured system and cluster.

We'll take a look at the CoreOS specificities, as we can refer to earlier tips on how to manage
users, files, authorized SSH keys, and other standard cloud-init directives. At the end of this
part, you'll know how to configure the etcd key value store, the fleet cluster manager, the
flannel overlay network, control the update mechanism, and ensure systemd units are
started as early as possible.

CoreOS proposes a very useful cloud-config file validator at
https://coreos.com/validate/. It's super useful when
we're not sure if a directive is supported or not in the distribution.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

How to do it…
We'll get through the most important configuration options that can be manipulated for
CoreOS. This includes the etcd distributed key value store, the fleet scheduler, the fleet
network, the update strategy, and some systemd unit configuration.

https://coreos.com/validate/

Chapter 5

179

Configuring etcd using cloud-init
The etcd key value store is used in CoreOS to share multiple configuration data between
members of a same cluster. To begin with, we need a discovery token, that can be obtained
from https://discovery.etcd.io/new.

$ curl -w "\n" 'https://discovery.etcd.io/new'
https://discovery.etcd.io/638d980c4edf94d6ddff8d6e862bc7d9

We can specify the minimum required size of the CoreOS cluster by
adding the size= argument to the URL https://discovery.
etcd.io/new?size=3.

Now we have a valid discovery token, let's add it to our cloud-config.yml file under the
etcd2 directive:

#cloud-config
coreos:
 etcd2:
 discovery:
"https://discovery.etcd.io/638d980c4edf94d6ddff8d6e862bc7d9"

The next step is to configure etcd:

ff How should etcd listen for peer traffic? (listen-peer-urls). We want the local
interface on the default port (TCP/2380).

ff How should etcd listen for client traffic? (listen-client-urls). We want all
available interfaces on the default port (TCP/2379).

ff How should etcd initially advertise to the rest of the cluster? (initial-advertise-
peer-urls). We want the local interface, using the same peer traffic port
(TCP/2380).

ff How should etcd advertise the client URLs to the rest of the cluster? (advertise-
client-urls). We want the local interface, using the same client traffic port
(TCP/2379).

To make it more dynamic, we can use variables compatible with most IaaS
providers—$private_ipv4 and $public_ipv4.

This is how our cloud-config.yml file looks with all the etcd configuration:

#cloud-config
coreos:
 etcd2:

https://discovery.etcd.io/new
https://discovery.etcd.io/new?size=3
https://discovery.etcd.io/new?size=3

Provisioning the Last Mile with Cloud-Init

180

 discovery:
"https://discovery.etcd.io/b8724b9a1456573f4d527452cba8ebdb"
 advertise-client-urls: "http://$private_ipv4:2379"
 listen-client-urls: "http://0.0.0.0:2379"
 initial-advertise-peer-urls: "http://$private_ipv4:2380"
 listen-peer-urls: "http://$private_ipv4:2380"

This will generate the right variables in the systemd unit file found at /run/systemd/
system/etcd2.service.d/20-cloudinit.conf.

$ cat /run/systemd/system/etcd2.service.d/20-cloudinit.conf

[Service]

Environment="ETCD_ADVERTISE_CLIENT_URLS=http://172.31.15.59:2379"

Environment="ETCD_DISCOVERY=https://discovery.etcd.io/b8724b9a1456
573f4d527452cba8ebdb"

Environment="ETCD_INITIAL_ADVERTISE_PEER_URLS=http://172.31.15.59:
2380"

Environment="ETCD_LISTEN_CLIENT_URLS=http://0.0.0.0:2379"

Environment="ETCD_LISTEN_PEER_URLS=http://172.31.15.59:2380"

When we have our cluster ready, we'll be able to request information as a client on the
specified port:

$ etcdctl cluster-health

member 7466dcc2053a98a4 is healthy: got healthy result from
http://172.31.15.59:2379

member 8f9bd8a78e0cca38 is healthy: got healthy result from
http://172.31.8.96:2379

member e0f77aacba6888fc is healthy: got healthy result from
http://172.31.1.27:2379

cluster is healthy

We can also navigate the etcd key value store to confirm we can access it:

$ etcdctl ls

/coreos.com

Configuring fleet using cloud-init
Fleet is a distributed init manager based on systemd that we use to schedule services on our
CoreOS cluster.

Chapter 5

181

The most important configuration parameters are the following:

ff public_ip: This specifies which interface to use to communicate with other
hosts. We want the public IP of the host so we can interact with fleet right from
our workstation.

ff metadata: This is any key value relevant to our needs, so we can schedule units
accordingly. We want to store the provider (aws), the region (eu-west-1), and the
name of the cluster (mycluster). This is totally arbitrary; adapt keys and values to
your own needs.

This is how it looks in the cloud-config.yml file:

coreos:
 fleet:
 public-ip: "$public_ipv4"
 metadata: "region=eu-west-1,provider=aws,cluster=mycluster"

This will generate the right variables in the systemd unit at /run/systemd/system/fleet.
service.d/20-cloudinit.conf:

$ cat /run/systemd/system/fleet.service.d/20-cloudinit.conf
[Service]
Environment="FLEET_METADATA=region=eu-west-1,provider=aws,cluster=myc
luster"
Environment="FLEET_PUBLIC_IP=52.209.159.4"

Using fleet is outside of the scope of this book, but we can at least verify the connection to the
fleet cluster manager is working from the instance:

$ fleetctl list-machines
MACHINE IP METADATA
441bf02a... 52.31.10.18 cluster=mycluster,provider=aws,region
=eu-west-1
b95a5262... 52.209.159.4 cluster=mycluster,provider=aws,region
=eu-west-1
d9fa1d18... 52.31.109.156 cluster=mycluster,provider=aws,region
=eu-west-1

We can now submit and start services on our working fleet cluster!

Provisioning the Last Mile with Cloud-Init

182

Configuring the update strategy using cloud-init
CoreOS can handle updates in various ways, including rebooting immediately after a new
CoreOS version is made available, scheduling with etcd for an ideal time so the cluster never
breaks, a mix of both (the default), or even to never reboot. We can also explicitly specify
which CoreOS channel to use (stable, beta, or alpha). We want to ensure the cluster never
breaks, using the etcd-lock strategy, and be sure the stable release is used:

coreos:
 update:
 reboot-strategy: "etcd-lock"
 group: "stable"

This section generates the /etc/coreos/update.conf file:

$ cat /etc/coreos/update.conf
GROUP=stable
REBOOT_STRATEGY=etcd-lock

We can force an update check to verify it's working (sample taken from a system with an
update available):

$ sudo update_engine_client -update
[0924/131749:INFO:update_engine_client.cc(243)] Initiating update
check and install.
[0924/131750:INFO:update_engine_client.cc(248)] Waiting for update to
complete.
CURRENT_OP=UPDATE_STATUS_UPDATE_AVAILABLE
[...]

Configuring locksmith using cloud-init
Now we're sure the update system is correctly triggered, we are facing a new problem: nodes
from our cluster can reboot at any time when an update is available. It's probably less than
desirable in a high load environment. So we can configure locksmith to allow reboots only
during a specific timeframe, such as "every night from Friday to Saturday, between 4 am and 6
am". We're not limited to a single day, so we could also allow reboots any day at 4 am:

coreos:
 locksmith:
 window-start: Sat 04:00
 window-length: 2h

Chapter 5

183

This generates the following content in /run/systemd/system/locksmithd.
service.d/20-cloudinit.conf:

$ cat /run/systemd/system/locksmithd.service.d/20-cloudinit.conf
[Service]
Environment="REBOOT_WINDOW_START=04:00"
Environment="REBOOT_WINDOW_LENGTH=2h"

At any time, we can check for a reboot slot availability using the locksmithctl command:

$ locksmithctl status
Available: 1
Max: 1

If another machine is currently rebooting, its ID is displayed so we know who's rebooting.

Configuring systemd units using cloud-init
We can manage units easily from cloud-init, so critical parts of the system are started right
when we need them. For example, we know we want the etcd2 and fleet services to start at
every boot:

 coreos:
units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start

Configuring flannel using cloud-init
Flannel is used to create an overlay network across all hosts in the cluster, so containers can
talk to each other over the network, whatever node they run on. To configure flannel before
starting it, we can add more configuration information to the cloud-config file. We know we
want our flannel network to work on the 10.1.0.0/16 network, so we can create a drop-in
systemd configuration file with its content that will be executed before the flanneld service.
In this case, setting the flannel network is done by writing the key/value combination to etcd
under /coreos.com/network/config:

coreos:
 units:
 - name: flanneld.service
 drop-ins:
 - name: 50-network-config.conf

Provisioning the Last Mile with Cloud-Init

184

 content: |
 [Service]
 ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "Network": "10.1.0.0/16" }'

This will simply create the file /etc/systemd/system/flanneld.service.d/50-
network-config.conf:

$ cat /etc/systemd/system/flanneld.service.d/50-network-config.conf
[Service]
ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config '{
"Network": "10.1.0.0/16" }'

Verify we have a correct flannel0 interface in the correct IP network range:

$ ifconfig flannel0
flannel0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 8973
 inet 10.1.19.0 netmask 255.255.0.0 destination 10.1.19.0
[...]

Launch a container to verify it's also running in the 10.1.0.0/16 network:

$ docker run -it --rm alpine ifconfig eth0
eth0 Link encap:Ethernet HWaddr 02:42:0A:01:13:02
 inet addr:10.1.19.2 Bcast:0.0.0.0 Mask:255.255.255.0
[...]

It's all working great!

Note that it may take a while to get the interface up, depending on
the host Internet connection speed, as flannel is running from a
container that needs to be downloaded first (51 MB to date).

We now know the most useful configuration options to bootstrap automatically a CoreOS
cluster using cloud-init.

Deploying Chef Client from start to finish
using cloud-init

We can deploy Chef using the official omnibus installer through cloud-init. This installer
embeds everything needed to deploy Chef and all its dependencies. We'll then configure the
Chef client to authenticate securely against the Chef Server organization, and finally apply an
initial set of cookbooks.

Chapter 5

185

Warning: The current cloud-init version shipped with Ubuntu 16.04
LTS and CentOS 7 is having issues installing Chef. This recipe is using
Ubuntu 14.04 LTS waiting for the issue to be fixed.

Getting ready
To step through this recipe, you will need the following:

ff Access to a cloud-config enabled infrastructure

ff A working Chef Server and organization setup

How to do it…
Everything related to Chef with cloud-init is configured under the directive named chef.

Deploying the Chef omnibus installer using cloud-init
As we want to use the official omnibus build (other choices are installing Chef through a
Ruby gem—deprecated and too dependent on a locally installed Ruby version and through a
package, which is already documented), let's define the installation type to omnibus, and
ensure it is installed even if, for some reason, the Chef client was found to be already present
on the system. Finally, let's explicitly define the installer full URL, so we're sure about what we
install (maybe point it to a local version on your own servers).

#cloud-config
chef:
 install_type: "omnibus"
 force_install: true
 omnibus_url: "https://www.getchef.com/chef/install.sh"

This will output something like the following in the cloud-init logs:

Getting information for chef stable for ubuntu...
downloading https://omnitruck-direct.chef.io/stable/chef/metadata?v=&p
=ubuntu&pv=14.04&m=x86_64
 to file /tmp/install.sh.1294/metadata.txt
[...]
version 12.14.89
[...]
Installing chef

Provisioning the Last Mile with Cloud-Init

186

[...]
Unpacking chef (12.14.89-1) ...
Setting up chef (12.14.89-1) ...
Thank you for installing Chef!

At this point, you'll have a valid Chef installation under /opt/chef, though not yet configured.

Configuring Chef against a Chef Server organization using
cloud-init
Three pieces of information are needed for a chef client to authenticate correctly against a
pre-existing Chef Server organization: the URL of the Chef server (https://api.chef.io/
organizations/iacbook), the private key allowing you to add nodes to the organization,
and the name linked to this key (by default, the organization name, such as iacbook). This
information is mapped like this in the cloud-config file:

#cloud-config
chef:
 server_url: "https://api.chef.io/organizations/iacbook"
 validation_name: "iacbook"
 validation_cert: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEAuR[...]
 -----END RSA PRIVATE KEY-----

With this information, the initial chef-client run will be able to authenticate itself against the
Chef organization and add the node. In the cloud-init logs, this step is found at this moment:

[...]
Starting Chef Client, version 12.14.89
Creating a new client identity for i-0913e870fb28af4bd using the
validator key.
[...]

Applying a Chef cookbook at bootstrap using cloud-init
We certainly want to apply at least an initial cookbook for configuring the instance. In this
case, we'll simply apply the starter cookbook shipped with the starter kit, but we can add as
many required roles and cookbooks as we want. Refer to the dedicated chapter of this book
for more information on obtaining this cookbook:

#cloud-config
chef:
 run_list:
 - "recipe[starter]"

https://api.chef.io/organizations/iacbook
https://api.chef.io/organizations/iacbook

Chapter 5

187

In the logs, we'll see this being applied like this:

[...]
Loading cookbooks [starter@1.0.0]
Storing updated cookbooks/starter/attributes/default.rb in the cache.
Storing updated cookbooks/starter/recipes/default.rb in the cache.
Storing updated cookbooks/starter/templates/default/sample.erb in the
cache.
Storing updated cookbooks/starter/files/default/sample.txt in the
cache.
Storing updated cookbooks/starter/metadata.rb in the cache.
Processing log[Welcome to Chef, Sam Doe!] action write
(starter::default line 4)
Welcome to Chef, Sam Doe!
Chef Run complete in 2.625856409 seconds

Our instance is now both registered and configured automatically, as early as possible, with
just a few lines in the cloud-config file.

Deploying a remote Docker server using
cloud-init	

It can be very handy to have a remote Docker server instead of the default local configuration
from our workstation because of bandwidth issues, testing a production environment, maybe
a customer demonstration, or distant team collaboration. Being able to send the usual Docker
commands to a remote server has a multitude of advantages. For speed and comfort, we'll
deploy a basic CoreOS system, add one user (Jane) and its public key. Docker will be modified
to listen to the network through a socket kind of systemd service, and we'll configure the
server time zone to be in New York.

Getting ready
To step through this recipe, you will need:

ff Access to a cloud-config enabled infrastructure

How to do it...
Let's start by simply calling this server "docker":

#cloud-config
hostname: "docker"

Provisioning the Last Mile with Cloud-Init

188

In the final system, this will set the hostname to the correct value:

$ hostname
docker
$ cat /etc/hostname
docker

Now let's create the Jane user, so she can log in to the instance to remotely help us. She
needs to be in the docker group, so she can manipulate the containers, and she gave us
her SSH public key. This is how it translates in the cloud-config file:

#cloud-config
users:
 - name: "jane"
 gecos: "Jane Docker"
 groups:
 - "docker"
 ssh-authorized-keys:
 - "ssh-rsa AAAAB[...] jane"

In the final system, Jane is able to log in using her private key, and interact with the docker
daemon as she's a member of the docker group:

jane@docker ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

The SSH public key ends up in the following file:

jane@docker ~ $ cat .ssh/authorized_keys.d/coreos-cloudinit
ssh-rsa AAAAB [..] jane

Setting the timezone on CoreOS using cloud-init
CoreOS uses a system built around NTP (short for Network Time Protocol), controlled by
the timedatectl command. We won't find the usual /etc/timezone on CoreOS, so the
default timezone directive from cloud-init we've seen earlier in this book won't work. To set
the time zone to New York on CoreOS, we would set it like this:

$ /usr/bin/timedatectl set-timezone America/New_York

Easy! So let's launch that command through a systemd unit in the cloud-config file, so we're
sure the time zone is set. In-depth knowledge of systemd is out of the scope of this book, but
to do that, we'll have to add two options to the unit: one that tells systemd to not think the
unit has crashed because the command exited (RemainAfterExit=yes), and one that tells
the unit type is not executing a long running process, but instead a short one that should exit
before continuing (Type=oneshot).

Chapter 5

189

Here's the unit in the cloud-config.yml file:

coreos:
 units:
 - name: settimezone.service
 command: start
 content: |
 [Unit]
 Description=Setting the timezone

 [Service]
 ExecStart=/usr/bin/timedatectl set-timezone America/New_York
 RemainAfterExit=yes
 Type=oneshot

Enabling Docker TCP socket for network access
Our final objective is to be able to use a Docker Engine remotely from our workstation. The
default Docker configuration is to listen to the Unix socket (/var/run/docker.sock)—and
we want it to listen to a TCP socket on port 2375 (the default unencrypted port, it's highly
recommended to configure TLS encryption; this will use the TCP/2376 by convention). To
configure this, we'll use a systemd feature—socket activation. To make it short, this creates
a systemd service that listens on port 2375, and spawns the regular docker.service
unit along with the socket description. This way, this particular Docker Engine will answer
to requests on the TCP socket and not on the Unix socket (while keeping the possibility to
activate more TCP sockets, or keeping the default docker.service clean). Here's how
it looks:

coreos:
 units:
 - name: docker-tcp.socket
 command: start
 enable: true
 content: |
 [Unit]
 Description=Docker Socket for the API

 [Socket]
 ListenStream=2375
 BindIPv6Only=both
 Service=docker.service

 [Install]
 WantedBy=sockets.target

Provisioning the Last Mile with Cloud-Init

190

Let's start a remote server with this whole configuration and use it a little for the
demonstration (in this example, the Docker remote host is 52.211.117.98, and we'll launch
an nginx container with HTTP port forwarding). Refer to the Docker section of this book for
more information on the command-line options used:

user@workstation $ docker -H 52.211.117.98 run -it --rm -p 80:80 nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
6a5a5368e0c2: Pull complete
4aceccff346f: Pull complete
c8967f302193: Pull complete
Digest: sha256:1ebfe348d131e9657872de9881fe736612b2e8e1630e0508c354ac
b0350a4566
Status: Downloaded newer image for nginx:latest
1.2.3.4 - - [25/Sep/2016:16:06:30 +0000] "GET / HTTP/1.1" 200 612 "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36" "-"

Make some requests on the remote Docker host HTTP port and it will answer. We now have a
full on-demand CoreOS host, capable of giving us control over a Docker Engine remotely, using
a nifty systemd configuration feature!

There's more...
When connecting to various remote Docker Engines, we will sooner or later connect to a
server not using the same version of the server as our client. In this case, we'll get the
following error:

Error response from daemon: client is newer than server (client API
version: 1.24, server API version: 1.22)

The easy workaround is to override the DOCKER_API_VERSION environment variable and set
it to the same value as the server (1.22 in this example):

$ DOCKER_API_VERSION=1.22 docker -H 52.211.117.98 ps

Docker 1.13 greatly improved this situation, by managing
the version/feature negotiation between the client and the
server directly in the CLI.

See also
ff For more information about systemd socket activation refer to http://0pointer.

de/blog/projects/socket-activation.html.

http://0pointer.de/blog/projects/socket-activation.html
http://0pointer.de/blog/projects/socket-activation.html

191

6
Fundamentals of

Managing Servers with
Chef and Puppet

In this chapter, we will cover the following recipes:

ff Getting started (notions and tools)

ff Installing the Chef Development kit and Puppet Collections

ff Creating a free hosted server Chef account and a Puppet server

ff Automatically bootstrapping a Chef client and a Puppet agent

ff Installing packages

ff Managing services

ff Managing files, directories, and templates

ff Handling dependencies

ff More dynamic code using notifications

ff Centrally sharing data using a Chef data bag and Hiera with Puppet

ff Creating functional roles

ff Managing external Chef cookbooks and Puppet modules

Fundamentals of Managing Servers with Chef and Puppet

192

Introduction
Chef is an open source tool used to automate the configuration of systems and it integrates
well with most IaaS such as Amazon Web Services, OpenStack, or Google Cloud. Using
Chef, we write infrastructure code in Ruby that describes how every aspect of the system is
expected to behave according to a number of conditions, then apply it through various client
tools to ensure the defined state is applied.

In this chapter, you'll discover the essentials of managing servers using Chef code with the
Chef Development Kit (Chef DK). You'll learn how to bootstrap a working Chef environment
on a new server, how to install packages and manage services, how easy it is to generate
dynamic configurations through files and templates, create useful functional roles, centrally
share data to dynamically generate content, and show how to articulate dependencies
between services while helping them notify each other of their state, so the whole deployment
chain works in order. We'll also have an introduction on easily managing those dependencies,
that will give an insight of how to deal with more complex infrastructures managed by Chef.

To illustrate all those features, throughout the chapter we will build a classic LAMP (Linux,
Apache, MySQL, PHP) server on CentOS 7.x, from scratch, 100% automated with Chef. This
way, we'll go through all the features while progressively building our end project—a working
LAMP server with external dependencies on the latest community MySQL 5.7 release, and
more features.

All recipes are based on Chef. However, when possible, we'll try to show how things work
similarly with Puppet, Chef's direct alternative.

Getting started (notions and tools)
Chef is a very complex system, with a lot of notions and vocabulary that can be very
discouraging at first. In this chapter, we'll go through all the most important notions,
so it can also serve as a quick cheat sheet or reminder.

Running Chef
Chef can be used in multiple ways, the most important are the following:

ff Client/server mode: An agent runs on every managed client, regularly getting
updates from the server, and applying them. In this mode, all Chef code is distributed
from the Chef server.

ff Chef-Solo: In this mode, the need for a Chef server is removed at the cost of less
features, including important ones such as search, API, persistent storage of nodes
information, and more. All Chef code needs to be sent over in some way to be
applied manually.

Chapter 6

193

Other modes exist, such as Chef Zero, but they are beyond the scope
of this book.

The multi-platform client is written in Ruby, while its server counterpart is written in Erlang.
The Chef server is open source (Apache License at the time of this writing) and everyone can
host it, and the company behind Chef is also proposing their own hosted version, with added
features and support.

A Chef server is a combination of many technologies such as
PostgreSQL, RabbitMQ, Redis, Nginx, and so on. Think about
maintenance, backup, and performance before deploying your own.

Chef plugins
Chef is also highly modular, with a great number of plugins available either directly from
Chef, vendors, or the community. Plugins range from IaaS support such as AWS, OpenStack,
VMware, or Digital Ocean to hardware management from Dell, HP, or IPMI interfaces, team
workflow integration, or system-related concerns such as logs handling, security, and other
similar features.

Chef organizations
At the very top of a Chef hierarchy, we find an organization. Nothing can be shared between
organizations and this is usually where is defined a company, different business units, or even
deliberately isolated corporate departments. It's really up to everyone to know what has to be
shared with whom to know what the Chef organization will be.

Chef nodes
A node, in Chef terminology, is anything managed by Chef, be it physical or virtual, and every
node has a number of characteristics or parameters that we'll set or change during the
lifetime of the node.

Chef environments
Every node runs inside an environment. Environments are usually matching notions such
as development, staging, or production, but it's not uncommon to see creative uses to
manage different applications or other groups of interest. Environments also have a set of
characteristics set.

Chef roles
Roles are usually functional and generic, more than centered around a product. For example,
we'll see a database role way more often than a MySQL role. Other roles can be monitoring-
server or loadbalancer.

Fundamentals of Managing Servers with Chef and Puppet

194

Chef resources
This is the single most important notion in Chef: a resource is any part of a system to be set
in a desired state. This includes a package to be installed or removed, a service to be enabled
or started, a file to be generated from a template, a user to be created or banned, and other
expected elements of a system.

Chef recipes
Recipes are simply plain Ruby files including a number of Chef resources describing a
coherent desired state, such as a package to be installed, its configuration file written,
and a service to be restarted.

Chef cookbooks
Chef cookbooks are used to group many recipes under a coherent set, as well as every other
file required to make it work. An example cookbook can be mysql, and two recipes from this
cookbook can be mysql::server to manage the server, and mysql::client to manage a client.

Chef run list
A run list is a list of roles or recipes that a node has to apply. This is sent by the Chef server by
request from the chef client.

There's more…
Puppet is a configuration tool published by Puppet Labs, and is an alternative to Chef.

Puppet can also work in a standalone mode like Chef, but we will focus on a client/server
architecture.

The Puppet infrastructure is mainly composed of:

ff A Puppet server acting as a main configuration server, which contains all the
configuration code

ff A Puppet agent running on all infrastructure nodes, applying configurations

Communication between agents and the server is done through HTTPS, and Puppet has its
own PKI for the server certificate and for client certificates (client certificates are used to
authenticate nodes to the server).

Puppet has its own Domain Specific Language (DSL). As for Chef, Puppet is using resources
for installing packages, managing services, creating files, and more. A Puppet piece of code
is called a manifest, and is a file with a .pp extension. The code is structured using modules.
For example, we can imagine an apache module containing resources for Apache installation
and service management. We can also have a mysql module for the MySQL server, with its
own resources.

Chapter 6

195

There is also a main manifest, outside any module, which is the list of nodes of the
infrastructure. For each node, we can specify which module(s) to use to perform the complete
node installation. When a node is requesting its configuration from the server, the server
compiles a catalog of this node, and the Puppet agent applies this catalog.

We can write our own modules or use existing modules from GitHub of Puppet Forge. Puppet
Forge hosts a lot of community modules, and some of them are supported by Puppet Labs.

In this chapter, we will first write our own code in order to learn some basics of the Puppet
DSL. We will then use a module from Puppet Forge.

Installing the Chef Development kit and
Puppet Collections

The Chef ecosystem is as rich as Chef itself is complex; there's a myriad of tools filling almost
every imaginable task we can think of. Chef being written in Ruby, a lot of those tools are also
written in Ruby and over the years, the usual dependency hell between tools, plugins, code,
and various Ruby versions led to a simple solution—the Chef DK. The Chef DK also brings a
nice selection of the best tools and environments that work well together.

We'll see how to install the Chef DK and quickly describe what it includes.

The current Chef DK version is 1.1.16.

Getting ready
To work through this recipe, you will need the following:

ff An Internet connection

ff A physical or virtual machine

How to do it…
The Chef DK can be downloaded from https://downloads.chef.io/chef-dk/. There're
versions for most platforms: Debian, Red Hat-based systems, Ubuntu, and Windows. Simply
download the package corresponding to your platform and install it. For example, using a
recent Fedora, and installing the Red Hat package, the installation goes like this:

$ sudo dnf install chefdk-1.1.16-1.el7.x86_64.rpm

https://downloads.chef.io/chef-dk/

Fundamentals of Managing Servers with Chef and Puppet

196

Verify the installation worked as expected:

$ chef --version

Chef Development Kit Version: 1.1.16

That's it! Everything we need to start coding Chef recipes is there.

Chef DK contents
The Chef DK includes a selection of the best tools, including the following:

ff Chef: A workflow tool

ff Berkshelf: A cookbook dependency manager that does a lot more than that

ff Test Kitchen: A full featured integration tests framework

ff ChefSpec: easy unit testing of Chef code

ff FoodCritic: static code analysis for quality and consistency

The Chef DK also includes all the standard Chef commands (chef-solo or chef-client
to apply cookbooks on nodes, or knife to manipulate Chef resources on the developer's
workstation, among other tools).

How it works…
The whole Chef environment, as well as its dependencies is deployed under /opt/chefdk.
The package we installed created symlinks from this directory to /usr/bin which is on
the $PATH:

$ ls -al /usr/bin/chef

lrwxrwxrwx. 1 root root 20 Oct 5 16:36 /usr/bin/chef ->
/opt/chefdk/bin/chef

This way of packaging software includes all its dependencies, and as Chef relies heavily on
Ruby, the Chef DK ships with an embedded version that does not conflict with a Ruby version
that might already be installed on your system:

$ /opt/chefdk/embedded/bin/ruby --version

ruby 2.3.1p112 (2016-04-26 revision 54768) [x86_64-linux]

There's more…
Starting from Puppet 4.x, Puppet Labs is providing repositories for both agent and server
packages. These repositories are called Puppet Collections. As for Chef, provided packages
are shipped with an Embedded Ruby version.

Chapter 6

197

All examples from this book have been developed with Puppet 4.8 (open source edition).
Packages can be downloaded from https://docs.puppet.com/puppet/4.8/puppet_
collections.html.

First of all you need to install the puppet-agent package from Puppet Collections on your
workstation. Even if we won't be managing it using Puppet, these packages will install some
commands necessary for upcoming examples.

Once the package is installed, all files are deployed under /opt/puppetlabs:

$ ls -la /opt/puppetlabs/bin/puppet

lrwxrwxrwx 1 root root 20 Sep 22 18:42 /opt/puppetlabs/bin/puppet ->
../puppet/bin/puppet

$ /opt/puppetlabs/puppet/bin/ruby -version

ruby 2.1.9p490 (2016-03-30 revision 54437) [x86_64-linux]

For an easier use of the Embedded Ruby version, you need to add /opt/puppetlabs/
puppet/bin to the $PATH environment variable. For example, on Linux systems, this can
be done by appending the following line in the .bashrc file located in your home directory:

export PATH=/opt/puppetlabs/puppet/bin:$PATH

See also
ff The Chef documentation on installing the Chef DK: https://docs.chef.io/

install_dk.html

ff The Chef documentation on the Chef DK: https://docs.chef.io/release/
devkit/

Creating a free hosted server Chef account
and a Puppet server

In the preferred Chef client/server mode, we need a Chef server to centralize all the
information and action. We can build our own, either for testing purposes or for production
use (with the maintenance overhead that goes with it), or we can use Hosted Chef, the Chef
server hosted by the company who wrote Chef. You'll learn here how to create a free Hosted
Chef account, so we can start coding with Chef as soon as possible and not worry about the
server part. After this first step, we'll download the Chef Start Kit, an archive containing a fully
working Chef repository, with a sample role and cookbook we can use right away—and that's
what we'll do by sending this sample cookbook to the server using our first knife command.

https://docs.puppet.com/puppet/4.8/puppet_collections.html
https://docs.puppet.com/puppet/4.8/puppet_collections.html
https://docs.chef.io/install_dk.html
https://docs.chef.io/install_dk.html
https://docs.chef.io/release/devkit/
https://docs.chef.io/release/devkit/

Fundamentals of Managing Servers with Chef and Puppet

198

Remember: knife is the command to use from the developer's workstation
to manipulate information and resources on the Chef server. The knife
command is never used on a Chef node.

Getting ready
To work through this recipe, you will need the following:

ff An Internet connection

ff A working Chef DK installation on the workstation

How to do it…
Follow these steps for Creating a free hosted server Chef account and a Puppet server:

1.	 Go to https://manage.chef.io/signup.

2.	 Fill in the details, use a valid e-mail address, and validate.

3.	 Click on the link in the e-mail to validate your account.

4.	 Create a password you remember.

5.	 Create a new Chef organization.

6.	 Download the Starter Kit.

7.	 Uncompress the Starter Kit somewhere safe:
$ unzip chef-starter.zip

Archive: chef-starter.zip

 inflating: chef-repo/README.md

 inflating: chef-repo/cookbooks/starter/files/default/sample.txt

 inflating: chef-repo/cookbooks/starter/recipes/default.rb

 inflating: chef-repo/cookbooks/starter/attributes/default.rb

 inflating: chef-repo/cookbooks/starter/metadata.rb

 inflating: chef-repo/cookbooks/starter/templates/default/sample.
erb

 inflating: chef-repo/cookbooks/chefignore

 inflating: chef-repo/.gitignore

 inflating: chef-repo/.chef/knife.rb

 inflating: chef-repo/roles/starter.rb

 inflating: chef-repo/.chef/iacbook.pem

https://manage.chef.io/signup

Chapter 6

199

8.	 Verify the connection to Hosted Chef using the knife command and request,
for example, the list of the users (this will return you user):
$ cd chef-repo

$ knife user list

iacbook

9.	 Upload the initial starter cookbook, still using the knife command:

$ knife upload cookbooks/starter

Created cookbooks/starter

There's more…
There's no hosted Puppet server offering. We need to deploy our own Puppet server. To
simulate a small infrastructure, we will use Vagrant with Ubuntu boxes (for more information
about Vagrant, please refer to Chapter 1, Vagrant Development Environment). Let's start with
a single node infrastructure, with only a Puppet server. Here is our Vagrantfile:

vm_memory = 2048
vm_cpus = 2

unless Vagrant.has_plugin?("vagrant-hostmanager")
 raise 'vagrant-hostmanager is not installed!'
end

Vagrant.configure("2") do |config|

 config.hostmanager.enabled = true
 config.hostmanager.manage_guest = true
 config.hostmanager.manage_host = true

 config.vm.define "puppet.pomes.pro" do |puppet|
 puppet.vm.box="bento/ubuntu-16.04"
 puppet.vm.hostname="puppet.pomes.pro"

 puppet.vm.provider :virtualbox do |vb|
 vb.memory = vm_memory
 vb.cpus = vm_cpus
 end

 puppet.vm.network :private_network, ip: "192.168.50.10"
 puppet.hostmanager.aliases = %w(puppet)
 puppet.vm.provision :shell, :path => "puppet_master.sh"

Fundamentals of Managing Servers with Chef and Puppet

200

 puppet.vm.synced_folder "puppetcode", "/etc/puppetlabs/code/
environments/production"
 end
end

This Vagrant file relies on the vagrant-hostmaster plugin. If you don't already have it, you
will need to install it manually using vagrant plugin install vagrant-hostmanager.
This Vagrant plugin is used to create host entries in /etc/hosts in managed boxes and in
your workstation. A shared folder will be used to edit code directly from your workstation.

The puppet_master.sh provisioning script is as follows:

#!/usr/bin/env bash

Exit immediately if a command exits with a non-zero status
set -e

puppetlabs URL
DEBREPO="https://apt.puppetlabs.com/puppetlabs-release-pc1-xenial.deb"

Install the PuppetLabs repo
echo "Configuring PuppetLabs repo..."
debrepo=$(mktemp)
wget --output-document=${debrepo} ${DEBREPO}
dpkg -i ${debrepo}
apt-get update

Install Puppet Server from puppetlabs
This will remove puppet-common package provided by the
vagrant box (if any)
echo "Installing Puppet..."
apt-get install -y puppetserver

For tests, limit memory usage. 512m is enough
sed -i 's/2g/512m/g' /etc/default/puppetserver

For tests, enable autosign for all csr
echo "autosign=true" | tee --append /etc/puppetlabs/puppet/puppet.conf

Restart puppetserver
service puppetserver restart

Ensure puppetserver is running and enable it on boot
/opt/puppetlabs/bin/puppet resource service puppetserver
ensure=running enable=true

echo "Puppet server installed!"

Chapter 6

201

In this example, we are using a bundled Puppet server from the Puppet Collections repository
provided by Puppet Labs. For simplicity and following recipes in this chapter, the auto-signing
feature has been enabled. This means that when a Puppet node is contacting the server for
the first time, a CSR is generated on the node and the Puppet server automatically signs it:
subsequent requests will be authenticated and secured.

Let's create the shared folder and start Vagrant:

mkdir puppetcode

vagrant up

We now have an Ubuntu Puppet server listening on 192.168.50.10, with FQDN puppet.
pomes.pro. A short name puppet is also available, and has been populated by the
vagrant-hostmanager plugin.

Depending on your sudo configuration, Vagrant may ask you for your
password. This is requested by the vagrant-hostmanager plugin
in order to create entries in the /etc/hosts file of your workstation.

Automatically bootstrapping a Chef client
and a Puppet agent

The first thing we want to do when working with Chef is to get the Chef client actually
bootstrapped on the targeted remote server. For the Chef client to be able to apply Chef code,
it first needs to be configured and registered on the Chef server. Thankfully, this can be very
easily done.

Getting ready
To work through this recipe, you will need the following:

ff A remote server, with a user with SSH access

ff A working Chef DK installation on the workstation

How to do it…
Let's say we already have a server running somewhere available with a user. The minimal
command line we can build is as follows:

ff The IP or FQDN of the host we want to configure (1.2.3.4)

Fundamentals of Managing Servers with Chef and Puppet

202

ff The name under which to register the node on the Chef server (my_node_hostname)

ff The username to use to connect to the server (sudoer if not root).

Navigate to the Chef repository on your workstation:

$ cd chef-repo

Now let's remotely install the Chef client on the remote host from your workstation, using an
example vagrant user:

$ knife bootstrap 1.2.3.4 -N my_node_hostname -x vagrant --sudo

This will first download the latest available Chef version and install it. Then it will execute an
initial chef-client run to register the node on the Chef server under the specified name.
Here it will stop.

If we want to run a cookbook right after bootstrap (and we probably want to), just use the
-r option to add cookbooks to the run list, so they are executed right away. Let's use the
starter cookbook we uploaded earlier in this chapter, but feel free to use any other
cookbook you may have already synchronized on the Chef server.

$ knife bootstrap 1.2.3.4 -N my_node_hostname -x vagrant --sudo -r
"starter"

[...]

192.168.146.129 resolving cookbooks for run list: ["starter"]

[...]

192.168.146.129 Recipe: starter::default

192.168.146.129 * log[Welcome to Chef, Sam Doe!] action write

There's more…
Using Puppet, we need to install the Puppet agent, once our node is created. Let's add a new
node into the Vagrantfile we previously used for the Puppet server:

vm_memory = 2048
vm_cpus = 2

unless Vagrant.has_plugin?("vagrant-hostmanager")
 raise 'vagrant-hostmanager is not installed!'
end

Vagrant.configure("2") do |config|

 config.hostmanager.enabled = true
 config.hostmanager.manage_guest = true

Chapter 6

203

 config.hostmanager.manage_host = true

 config.vm.define "puppet.pomes.pro" do |puppet|
 puppet.vm.box="bento/ubuntu-16.04"
 puppet.vm.hostname="puppet.pomes.pro"

 puppet.vm.provider :virtualbox do |vb|
 vb.memory = vm_memory
 vb.cpus = vm_cpus
 end

 puppet.vm.network :private_network, ip: "192.168.50.10"
 puppet.hostmanager.aliases = %w(puppet)
 puppet.vm.provision :shell, :path => "puppet_master.sh"

 puppet.vm.synced_folder "puppetcode",
"/etc/puppetlabs/code/environments/production"
 end

 config.vm.define "web.pomes.pro" do |web|
 web.vm.box="bento/ubuntu-16.04"
 web.vm.hostname="web.pomes.pro"

 web.vm.network :private_network, ip: "192.168.50.11"

 web.vm.provision :shell, :path => "puppet_node.sh"
 end
end

As you can see, there is now another shell script puppet_node.sh used for the provisioning
of this new node:

#!/usr/bin/env bash

Exit immediately if a command exits with a non-zero status
set -e

puppetlabs URL
DEBREPO="https://apt.puppetlabs.com/puppetlabs-release-pc1-xenial.deb"

Install the PuppetLabs repo
echo "Configuring PuppetLabs repo..."
debrepo=$(mktemp)
wget --output-document=${debrepo} ${DEBREPO}
dpkg -i ${debrepo}

Fundamentals of Managing Servers with Chef and Puppet

204

apt-get update

Install Puppet Agent from puppetlabs
This will remove puppet-common package provided by the
vagrant box
echo "Installing Agent..."
apt-get install -y puppet-agent

Ensure puppet agent is stopped for our tests
/opt/puppetlabs/bin/puppet resource service puppet
ensure=stopped enable=false

echo "Puppet agent installed!"

We now also have an Ubuntu Puppet node with FQDN web.pomes.pro with IP
192.168.50.11. By default, the Puppet agent is looking for a server named
puppet—that's why this name has been defined as an alias to the puppet server.

The Puppet agent has been explicitly stopped; during examples, we will start it
on demand to see all changes.

Installing packages
We need some packages for our server. Now our server is configured to use Chef and talk to a
Chef server, let's install a few packages such as the Apache server, PHP, and MariaDB to build
a classic LAMP server on a CentOS 7.2 server.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

How to do it…
To install a package on a Red Hat-based system, we'd use either yum (until CentOS 7) or dnf
(for Fedora after version 22). As we're using a CentOS 7 server, the Apache2 HTTP server
package name is httpd, (it's apache2 on Debian-based systems). Manually, we would have
typed the following:

$ dnf install httpd

$ yum install httpd

Chapter 6

205

Let's see how this translates into a repeatable process with a Chef cookbook.

Generating an empty Apache cookbook
Let's start by creating an empty cookbook from inside the Chef repository cookbooks folder
to install Apache2 using the chef command:

$ cd chef-repo/cookbooks

$ chef generate cookbook apache

Generating cookbook apache

[...]

Your cookbook is ready. Type `cd apache` to enter it.

[...]

If you'd prefer to dive right in, the default recipe can be found at:

recipes/default.rb

Now we need to tell Chef to install a package using the package resource.

Open that apache/recipes/default.rb file and type in the following:

package "httpd"

That's the most basic way we can tell Chef to install a package. This will do the install
action by default. To be a little bit more comprehensive, we can use the full block to do
the same:

package "httpd" do
 action :install
end

Uploading the cookbook
Still from inside the Chef repository, we now need to upload this new apache cookbook to
the Chef server, so our servers can access it. To do this, we use the knife command on our
workstation:

$ knife cookbook upload apache

Uploading apache [0.1.0]

Uploaded 1 cookbook.

We just uploaded our first cookbook on the Chef server!

Fundamentals of Managing Servers with Chef and Puppet

206

Let's confirm the cookbook is available remotely on the Chef server:

$ knife cookbook list

apache 0.1.0

starter 1.0.0

Applying the cookbook
Now we have the apache cookbook remotely available, let's tell the Chef server that our
particular node has to run it. Two options here are as follows:

ff From the Chef server UI, select the host and click on Edit on the Run List box, then
drag and drop the correct cookbook name on the Current Run List column:

Chapter 6

207

ff From the knife CLI on the workstation, run the following:

$ knife node run_list add <nodename> apache

nodename:

 run_list: recipe[apache]

Either way, we just told the Chef server to apply the apache cookbook on this particular
server. Let's launch the Chef client on our remote node:

$ sudo chef-client

Starting Chef Client, version 12.15.19

resolving cookbooks for run list: ["apache"]

Synchronizing Cookbooks:

 - apache (0.1.0)

Installing Cookbook Gems:

Compiling Cookbooks...

Converging 1 resources

Recipe: apache::default

 * yum_package[httpd] action install

 - install version 2.4.6-40.el7.centos.4 of package httpd

Running handlers:

Running handlers complete

Chef Client finished, 1/1 resources updated in 32 seconds

Chef just installed the Apache HTTP server package for us! If we launch the Chef
client, it won't install it again, as it knows it's already there (look at the largely
different execution times):

$ sudo chef-client

[...]

Recipe: apache::default

 * yum_package[httpd] action install (up to date)

[...]

Chef Client finished, 0/1 resources updated in 04 seconds

Fundamentals of Managing Servers with Chef and Puppet

208

Verify if the package is really installed:

$ which httpd

/usr/sbin/httpd

$ httpd -v

Server version: Apache/2.4.6 (CentOS)

Server built: Jul 18 2016 15:30:14

Creating a MariaDB cookbook
Let's use our knowledge to create a MariaDB cookbook the same way we just deployed
Apache, from the Chef repository:

$ chef generate cookbook cookbooks/mariadb

We want to install two packages: mariadb for the client and the libraries, and mariadb-
server for the server. Add the following on the mariadb/recipes/default.rb file:

package "mariadb" do
 action :install
end

package "mariadb-server" do
 action :install
end

Alternatively, as we're writing plain Ruby, let's rewrite it in a more idiomatic way:

%w(mariadb mariadb-server).each do |name|
 package name do
 action :install
 end
end

Upload the cookbook from your workstation:

$ knife cookbook upload mariadb

Add the mariadb cookbook to the remote node's run list from your workstation:

$ knife node run_list add <nodename> mariadb

Run the Chef client on the remote host:

$ sudo chef-client

Starting Chef Client, version 12.15.19

Chapter 6

209

resolving cookbooks for run list: ["apache", "mariadb"]

Synchronizing Cookbooks:

 - apache (0.1.0)

 - mariadb (0.1.0)

[...]

Recipe: mariadb::default

 * yum_package[mariadb] action install

 - install version 5.5.50-1.el7_2 of package mariadb

 * yum_package[mariadb-server] action install

 - install version 5.5.50-1.el7_2 of package mariadb-server

[...]

Chef Client finished, 2/3 resources updated in 25 seconds

Verify that the MariaDB package is correctly installed:

$ which mysql

/usr/bin/mysql

$ mysql --version

mysql Ver 15.1 Distrib 5.5.50-MariaDB, for Linux (x86_64) using
readline 5.1

Creating a PHP cookbook
Let's reuse our knowledge to create a cookbook that will install the packages needed
for PHP support:

$ chef generate cookbook cookbooks/php

Let's add our Chef code that will install the following three packages: the php, php-cli,
and php-mysql packages (respectively for PHP support, command line, and PHP/MySQL
support) in the cookbooks/php/recipes/default.rb file:

%w(php php-mysql).each do |name|
 package name do
 action :install
 end
end

Upload this new php cookbook from your workstation:

$ knife cookbook upload php

Fundamentals of Managing Servers with Chef and Puppet

210

Add the php cookbook to the remote node's run list from your workstation:

$ knife node run_list add vagrant php

Run the Chef client on the remote node:

$ sudo chef-client

$ php --version

PHP 5.4.16 (cli) (built: Aug 11 2016 21:24:59)

We now know the very basics of deploying cookbooks and installing packages on a remote
node, using Chef!

There's more…
Using Puppet, a package installation is done using the package resource directive.
The following example shows how to install an Apache 2.x server on Ubuntu systems:

 package {
 'apache2:
 ensure => installed;
 }

To deploy a LAMP server on the box web.pomes.pro, we need Apache2, PHP, and the
MariaDB server. In order to do a real example, perform the following steps:

1.	 Start Vagrant with the Vagrantfile from the previous recipe.

2.	 Go into the puppetcode directory, which is the shared folder between your
workstation and the Puppet server: cd puppetcode

3.	 We are about to create three modules (apache, php, and mariadb), so let's create a
minimalist module layout for them:
mkdir modules/apache

mkdir modules/apache/manifests

mkdir modules/apache/templates

mkdir modules/php

mkdir modules/php/manifests

mkdir modules/php/templates

mkdir modules/mariadb

mkdir modules/mariadb/manifests

mkdir modules/mariadb/templates

Chapter 6

211

4.	 Create a module/apache/manifests/init.pp manifest file with the
following content:
class apache {
 package {'apache2':
 ensure => present,
 }
}

5.	 Create a module/php/manifests/init.pp manifest file with the
following content:
class php {
 package {['php','php-mysql','libapache2-mod-php']:
 ensure => present,
 }
}

6.	 Create a module/mariadb/manifests/init.pp manifest file with the
following content:
class mariadb {
 package {'mariadb-server':
 ensure => present,
 }
}

7.	 Finally, create the main manifest manifests/site.pp, with the following content:

node 'web.pomes.pro' {
 class {
 'apache':;
 'php':;
 'mariadb':;
 }
}

That's it! With a few lines of code, all necessary binaries will be installed. We can now apply
changes, using puppet agent --test:

$ vagrant ssh web.pomes.pro

Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-51-generic x86_64)

...

...

vagrant@web:~$ sudo -i

root@web:~# puppet agent --test

Fundamentals of Managing Servers with Chef and Puppet

212

Info: Creating a new SSL key for web.pomes.pro

Info: Caching certificate for ca

Info: csr_attributes file loading from /etc/puppetlabs/puppet/csr_
attributes.yaml

Info: Creating a new SSL certificate request for web.pomes.pro

Info: Certificate Request fingerprint (SHA256): 12:9E:DD:E5:85:C9:F2:56:9
2:1B:92:93:0A:3C:7B:00:DE:2A:45:C0:D9:F8:F6:
D0:EC:9D:0B:6E:42:7E:74:33

Info: Caching certificate for web.pomes.pro

Info: Caching certificate_revocation_list for ca

Info: Caching certificate for ca

Info: Using configured environment 'production'

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for web.pomes.pro

Info: Applying configuration version '1477085080'

Notice: /Stage[main]/Apache/Package[apache2]/ensure: created

Notice: /Stage[main]/Php/Package[php]/ensure: created

Notice: /Stage[main]/Php/Package[php-mysql]/ensure: created

Notice: /Stage[main]/Php/Package[libapache2-mod-php]/ensure: created

Notice: /Stage[main]/Mariadb/Package[mariadb-server]/ensure: created

Notice: Applied catalog in 59.77 seconds

Unlike what you might think, the --test option does apply changes.
This option is used to test code immediately after a change and
implies other options such as --no-daemonize, --onetime,
and --verbose. If you need to do only a dry-run, you can use the
--noop option combined with –test.

See also
ff The Chef package resource documentation: https://docs.chef.io/

resource_package.html

ff The Puppet package resource documentation: https://docs.puppet.com/
puppet/4.8/types/package.html

https://docs.chef.io/resource_package.html
https://docs.chef.io/resource_package.html
https://docs.puppet.com/puppet/4.8/types/package.html
https://docs.puppet.com/puppet/4.8/types/package.html

Chapter 6

213

Managing services
We've seen how to install system packages using the package resource. In this section, you'll
discover how to manage system services, using a resource named service. We'll continue to
build the LAMP server we started in the previous section by managing the Apache HTTP and
MariaDB services right from Chef. This way we'll be able to manage any available service.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

ff The Chef code from the previous recipe

How to do it…
The structure of the service resource is very similar to the package resource. We want to do
two actions with our services: enable them at boot and start them right away. This translates
into a simple Chef resource with an array of actions:

service "service_name" do
 action [:enable, :start]
end

Enabling and starting Apache service
Add this service resource to the apache/recipes/default.rb file, just after the
package resource:

service "httpd" do
 action [:enable, :start]
end

Bump the cookbook version number on the apache/metatada.rb file:

version '0.2.0'

This way, the Chef server will always keep version 0.1.0 with only the package installation,
and a new version 0.2.0, with the service support. We'll also be able to easily rollback to a
previously running version.

Fundamentals of Managing Servers with Chef and Puppet

214

When the Chef client runs, it always downloads and applies
the latest version by default. It's advised to fix (or pin) versions
where appropriate—especially in production.

Upload the new cookbook version:

$ knife cookbook upload apache

Now we have both versions of the cookbook available on the Chef server:

$ knife cookbook show apache

apache 0.2.0 0.1.0

Apply on the remote host:

$ sudo chef-client

Verify the Apache service is indeed running:

$ systemctl status httpd

You can also navigate to the site's IP address in HTTP to see the default page displayed.

Enabling and starting the MariaDB service
Do exactly the same for MariaDB's mariadb service in mariadb/recipes/default.rb:

service "mariadb" do
 action [:enable, :start]
end

Don't forget to also bump the cookbook version in mariadb/metadata.rb:

version '0.2.0'

Send the updated cookbook to the Chef server:

$ knife cookbook upload mariadb

Apply the new cookbook:

$ sudo chef-client

Confirm the MariaDB service is now running:

$ systemctl status mariadb

Chapter 6

215

Confirm we can access the MariaDB server from the node:

$ mysql -e "show databases;"

+--------------------+

| Database |

+--------------------+

| information_schema |

| test |

+--------------------+

We've just covered how to handle a system service using Chef, so you now know how to easily
and repeatedly deploy packages and manage the corresponding service.

There's more…
Using Puppet, services are also managed with a dedicated resource directive. Using the
previous example, we now need to ensure that the corresponding services are running.

This resource needs to be added on both Apache and MariaDB modules. The new manifest for
the Apache module is:

class apache {
 package {'apache2':
 ensure => present,
 }

 service {'apache2':
 ensure => running,
 enable => true
 }
}

The new manifest for the MariaDB module is:

class mariadb {
 package {'mariadb-server':
 ensure => present,
 }

 service {'mysql':
 ensure => running,
 enable => true
 }
}

Fundamentals of Managing Servers with Chef and Puppet

216

The ensure=>running property is used to check the service is running (and will start it if
needed), and enable=>true is used to start the service at boot.

The name of the service used in the service resource is the
same as used in a root shell to stop/start/reload the service.

See also
ff The Chef service resource documentation: https://docs.chef.io/

resource_service.html

ff The Chef metadata.rb resource documentation: https://docs.chef.io/
config_rb_metadata.html

ff The Puppet service resource documentation: https://docs.puppet.com/
puppet/4.8/types/service.html

Managing files, directories, and templates
A very useful Chef feature is the ability to manage files right from the Chef code. Either plain
files can be copied or dynamic files can be generated through templates. We'll leverage this
feature to create an example PHP test file and dynamically generate Apache VirtualHosts for
our LAMP server, so you'll know how to reuse it anywhere else.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

ff Optionally, the Chef code from the previous recipes

How to do it…
We'll manage two different kinds of files in two different ways: a static file and a dynamic file
generated from a template, so the most common usage is covered.

https://docs.chef.io/resource_service.html
https://docs.chef.io/resource_service.html
https://docs.chef.io/config_rb_metadata.html
https://docs.chef.io/config_rb_metadata.html
https://docs.puppet.com/puppet/4.8/types/service.html
https://docs.puppet.com/puppet/4.8/types/service.html

Chapter 6

217

Managing a simple static file
Let's begin by creating a basic PHP file that will only display the phpinfo() result. This is
done using the simple file resource with the file path as argument, giving its content inline.
Other optional properties of the file resource include ownership information or the file
mode. Add a file resource to the php/recipes/default.rb recipe:

file '/var/www/html/phpinfo.php' do
 content '<?php phpinfo(); ?>'
 mode '0644'
 owner 'root'
 group 'root'
end

Don't forget to bump the version in php/metadata.rb:

version '0.2.0'

Upload the new cookbook from your workstation:

$ knife cookbook upload php

Deploy using the Chef client on the remote node:

$ sudo chef-client

If you now navigate to http://node-hostname/phpinfo.php, you'll see the PHP
information displayed.

This is the most static way of shipping a plain file.

Managing dynamic files and directories from a template
Let's now create a generic Apache virtual host to fully control what we'll do with our LAMP
server, and not just live with the default configuration shipped with our Linux distribution. We
want the website's root folder to be /var/www/<sitename> and the configuration file will
live under /etc/httpd/conf.d/<sitename>.conf. We'll ship a sample HTML index file
as well, to validate we're running the correct virtual host.

Start by generating a new recipe in the Apache cookbook using the chef command, to
manage a default Virtual Host:

$ chef generate recipe cookbooks/apache virtualhost

A new file named apache/recipes/virtualhost.rb is now created.

http://node-hostname/phpinfo.php

Fundamentals of Managing Servers with Chef and Puppet

218

To store the name of our virtual host, let's create an attribute. An attribute is similar to a
persisting node setting, declared in a cookbook in a file under the attribute directory, and
can then be overridden by many mechanisms that we'll later discover. Start by generating an
attributes file using the chef command:

$ chef generate attribute cookbooks/apache default

This will create a new file under apache/attributes/default.rb. To set the sitename
attribute with default value of defaultsite, add the following in this file:

default["sitename"] = "defaultsite"

To create a new directory, let's use a resource named directory in the apache/recipes/
virtualhost.rb file, with standard access rights. Note the Ruby #{node["sitename"]}
syntax to access a node attribute from inside a string that will be recurring from now on:

directory "/var/www/#{node["sitename"]}" do
 owner 'root'
 group 'root'
 mode '0755'
 action :create
end

Let's reuse the file resource to create a basic index.html file with a simple string such
as Hello from Chef! or whatever you find more appealing, in the apache/recipes/
virtualhost.rb file:

file "/var/www/#{node["sitename"]}/index.html" do
 owner 'root'
 group 'root'
 mode '0644'
 content '<html><h1>Hello from Chef!</h1></html>'
end

Let's once again use the chef generator to create a new template for our Apache virtual host
configuration file:

$ chef generate template cookbooks/apache virtualhost

This will create a template under apache/templates/ named virtuahost.erb. This is a
standard ERB (short for Embedded Ruby) template. This template file will contain the virtual
host Apache configuration for our site.

Let's start by populating the content of this ERB with a minimal Apache configuration file,
using a new website variable that we'll set in a minute.

Chapter 6

219

A variable in an ERB template is prefixed with the @ character.

<VirtualHost *:80>
 ServerName <%= @website %>
 DocumentRoot /var/www/<%= @website %>
 ErrorLog /var/log/httpd/error-<%= @website %>.log
 CustomLog /var/log/httpd/access-<%= @website %>.log
combined
 <Directory /var/www/<%= @website %>/ >
 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

This way, the whole configuration is dynamic; we'll be able to instantiate this cookbook for any
site name of our choice and it will be dedicated to it.

Now let's use the template resource to generate a file from the template we just created,
in the apache/recipes/virtualhost.rb file. This resource takes a source parameter,
which is the template file we just created, and the variables to be injected. In our case, we
want to inject the value of the sitename attribute, so it can be accessed by the template
as @website:

template "/etc/httpd/conf.d/#{node["sitename"]}.conf" do
 source "virtualhost.erb"
 owner 'root'
 group 'root'
 mode '0644'
 variables(
 :website => "#{node["sitename"]}"
)
end

Don't forget to bump the cookbook version in apache/metadata.rb:

version '0.3.0'

Upload the cookbook to Chef server from the workstation:

$ knife cookbook upload apache

Fundamentals of Managing Servers with Chef and Puppet

220

Add the newly-created recipe to the remote node run list:

$ knife node run_list add <node name> apache::virtualhost

Apply the new cookbook on the remote host:

$ sudo chef-client

Restart the Apache server manually to take the changes into account (be sure we'll automate
that in the next pages):

$ sudo systemctl restart httpd

Verify that the served page is the one we added:

$ curl http://node_ip_or_hostname/

<html><h1>Hello from Chef!</h1></html>

Good job! We've just covered how to manage files, directories, as well as dynamic templates,
using pure Ruby code with Chef.

There's more…
Now that we have a LAMP server with Puppet, let's create a virtual host! Our goals are
as follows:

ff Removing the default virtual host provided by Ubuntu

ff Creating our own virtual host, with a specific DocumentRoot and dedicated log files

ff Deploying a simple PHP page displaying the result of the function phpinfo()

These three operations will be done using the file directive.

On Ubuntu, we need to remove the default website in order to have virtual hosting up and
running. This can be done easily in the Apache manifest; a file directive for the deletion
of /etc/apache2/site-enabled/000-default.conf will remove the symlink and will
disable the site:

class apache {
 package {'apache2':
 ensure => present,
 }

 service {'apache2':
 ensure => running,
 enable => true
 }

Chapter 6

221

 file {'/etc/apache2/sites-enabled/000-default.conf':
 ensure => absent,
 }
}

Now let's create the code for the virtual host generation. The creation of a new virtual
host must be done in /etc/apache2/sites-available, and will be generated from a
template. Two languages are available:

ff ERB for Embedded Ruby.

ff EPP for Embedded Puppet (Puppet 4 and higher). Let's choose this one.

Our EPP template will use two parameters: the site name and the document root. Let's create
a vhost.epp file in the modules/apache/templates directory:

<VirtualHost *:80>
 ServerName <%=$website%>
 DocumentRoot <%=$docroot%>
 <Directory <%=$docroot%>>
 Order deny,allow
 Allow from all
 AllowOverride All
 </Directory>
 ErrorLog /var/log/apache2/error-<%=$website%>.log
 CustomLog /var/log/apache2/access-<%=$website%>.log combined
</VirtualHost>

Now we need to instantiate this template. The best way is to think about something we could
reuse as many times as needed (in case we would like to add more sites).

We previously used a class statement, but each class in Puppet can be used only once per
catalog (remember, a catalog is the result of the compilation for a node). Fortunately, the
define statement is used to define a block of code that can be used multiple times.

So let's define a file, module/apache/manifest/vhost.pp that will use such a statement:

define apache::vhost (
 $website,
 $docroot
) {

 file { "/etc/apache2/sites-available/$website.conf":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0640',
 content => epp('apache/vhost.epp',

Fundamentals of Managing Servers with Chef and Puppet

222

 {'website' => $website,
 'docroot'=>$docroot}),
 }

 file { "/etc/apache2/sites-enabled/$website.conf":
 ensure => link,
 target => "/etc/apache2/sites-available/$website.conf",
 require => File["/etc/apache2/sites-available/$website.conf"],
 }
}

The website name and the document root are the two parameters for our apache::vhost
statement and are passed to the epp function along with the template file name in the first
file directive.

On Ubuntu, to enable a site, a link must be created in /etc/apache2/site-enabled;
the second file directive will handle it.

Finally, we need to deploy our PHP file under the DocumentRoot directory. This can be done
directly in the main manifest using file directives to create the DocumentRoot directory
and the file itself:

node 'web.pomes.pro' {
 $website=$fqdn;
 $docroot="/var/www/$fqdn";

 class {
 'apache':;
 'php':;
 'mariadb':;
 }
 apache::vhost {$website:
 website => $website,
 docroot => $docroot,
 }
 file { $docroot:
 ensure => directory,
 owner => 'www-data',
 group => 'www-data',
 mode => '0755',
 }
 file {"$docroot/index.php":
 ensure => present,
 owner => 'www-data',
 group => 'www-data',
 mode => '0644',

Chapter 6

223

 content => "<?php phpinfo() ?>",
 }
}

We can now run the Puppet agent again. For now, we need to restart Apache manually in
order to have our virtual host running (as for Chef, we'll automate this in the next pages):

root@web:~# service apache2 reload

Now you should see the phpinfo page on http://web.pomes.pro

See also
ff The Chef documentation on attributes: https://docs.chef.io/attributes.

html

ff The Chef documentation on the directory resource: https://docs.chef.io/
resource_directory.html

ff The Chef documentation on the file resource: https://docs.chef.io/
resource_file.html

ff The Chef documentation on the template resource: https://docs.chef.io/
resource_template.html

ff The Puppet file resource documentation: https://docs.puppet.com/
puppet/4.8/types/file.html

ff Using templates with Puppet: https://docs.puppet.com/puppet/4.8/lang_
template.html

Handling dependencies
A very nifty feature of Chef is the ability to include recipes from one cookbook with another.
This way, we can create cookbooks with a purpose, like a product or an end result. An example
of such a cookbook could be an application cookbook named MyCloudApp, with calls to, or
inclusions of, other cookbooks such as Apache, MySQL, or any other cookbook it might need.

Until now, we added recipe after recipe to the run list of our host. This is not optimal, and
less than desirable when managing a lot of nodes. The idea here is to create a new cookbook
dedicated to an imaginary MySite application, that will reference and depend on all the other
recipes, so we can only load this MySite cookbook and be done with it.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

https://docs.chef.io/attributes.html
https://docs.chef.io/attributes.html
https://docs.chef.io/resource_directory.html
https://docs.chef.io/resource_directory.html
https://docs.chef.io/resource_file.html
https://docs.chef.io/resource_file.html
https://docs.chef.io/resource_template.html
https://docs.chef.io/resource_template.html
https://docs.puppet.com/puppet/4.8/types/file.html
https://docs.puppet.com/puppet/4.8/types/file.html
https://docs.puppet.com/puppet/4.8/lang_template.html
https://docs.puppet.com/puppet/4.8/lang_template.html

Fundamentals of Managing Servers with Chef and Puppet

224

ff A working Chef client configuration on the remote host

ff Optionally, the Chef code from the previous recipes

How to do it…
We know we want to create a new cookbook named mysite so we can centralize everything
related to making this application work in the same place. Let's use the chef command to
do that:

$ chef generate cookbook cookbooks/mysite
To include a recipe from another cookbook with our default recipe, we'll use the
include_recipe method in mysite/recipes/default.rb:

include_recipe "apache"
include_recipe "apache::virtualhost"
include_recipe "mariadb"
include_recipe "php"

This is telling Chef to load and execute the content of each recipe.

For Chef to know where this is to be found, we need to create a dependency to those
cookbooks. This is done in the mysite/metadata.rb file:

depends "apache"
depends "mariadb"
depends "php"

Now, our MySite cookbook has a nice dependency graph: to fully work, it needs Apache,
MariaDB, and PHP. The recipe details what exactly to run.

Since we have a dedicated cookbook for our app, let's try to add some customization to it.
Remember the default sitename attribute in the apache cookbook? Let's override it to
match our own value by adding the following at the top of the file, just before the apache
recipes inclusion:

node.override["sitename"] = "mysite"

Upload the cookbook to the Chef server:

$ knife cookbook upload mysite

Remove previous recipes from our node's run list using knife node run_list remove
<node name> <recipe name>:

$ knife node run_list remove vagrant "recipe[mariadb]" "recipe[php]"
"recipe[apache]" "recipe[apache::virtualhost]"

Chapter 6

225

The node's run list is now empty. Simply add the new mysite cookbook that includes
everything it needs to run:

$ knife node run_list add vagrant mysite

The next Chef client run won't change anything, but it will be much easier to manage in
the future!

There's more…
Using puppet, a module can be used in other modules. Based on previous examples,
we could think about a mysite module, with the following manifest:

class mysite (
 $website,
 $docroot
){
 class {
 'apache':;
 'php':;
 'mariadb':;
 }
 apache::vhost {$website:
 website => $website,
 docroot => $docroot,
 }
 file { $docroot:
 ensure => directory,
 owner => 'www-data',
 group => 'www-data',
 mode => '0755',
 }
 file {"$docroot/index.php":
 ensure => present,
 owner => 'www-data',
 group => 'www-data',
 mode => '0644',
 content => "<?php phpinfo() ?>",
 }
}

The main manifest of our node would be as follows:

node 'web.pomes.pro' {
 class {
 'mysite':

Fundamentals of Managing Servers with Chef and Puppet

226

 website => $fqdn,
 docroot => "/var/www/$fqdn",
 }
}

See also
ff The Chef documentation on attributes: https://docs.chef.io/attributes.

html

ff The Chef cookbook metadata.rb documentation: https://docs.chef.io/
config_rb_metadata.html

More dynamic code using notifications
Wouldn't it be great if Chef knew how and what to restart automatically when a change
arises? In a previous example, we added a new virtual host to our node, and we had to
manually restart Apache to take the change into account. Luckily, there's a mechanism
named notifications in Chef, that helps trigger an action, when a resource changes. This
way, changing a virtual host can trigger a restart of the Apache HTTP server automatically.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

ff The Chef code from the previous recipes

How to do it…
We'll start from the apache cookbook we've left in its 0.3.0 version. Bump it right now to
0.4.0 so we're starting fresh in apache/metadata.rb:

version '0.4.0'

Every resource can notify another resource to do something when its state changes, and any
resource can also subscribe to a change of state from another resource. In our case, we'd like
our template resource to notify the httpd system service to restart when the Virtual Host
template changes, so we're sure the change is automatically taken into account. The httpd
service is coming from the default Apache recipe, so it’s better to include it right now in the
apache/recipes/virtualhost.rb file, so we’re sure this particular recipe works alone
and not by side-effect of a previous inclusion:

https://docs.chef.io/attributes.html
https://docs.chef.io/attributes.html
https://docs.chef.io/config_rb_metadata.html
https://docs.chef.io/config_rb_metadata.html

Chapter 6

227

include_recipe 'apache::default'

1.	 In the apache/recipes/virtualhost.rb file, add the following highlighted
notification section:
template "/etc/httpd/conf.d/#{node["sitename"]}.conf" do
 source "virtualhost.erb"
 owner 'root'
 group 'root'
 mode '0644'
 variables(
 :website => "#{node["sitename"]}"
)
 notifies :restart, resources(:service => "httpd")
end

By default, actions are delayed at the end of the Chef run. If we need an
action to take place immediately, at the risk of breaking the state of the
system, we can add the :immediately timer at the end of the line.

2.	 To validate it's working, we need to change something in our Virtual Host template in
apache/templates/virtualhost.erb. For this example, I simply set the local IP
the node is listening to, but feel free to adapt to your own case:
<VirtualHost 192.168.146.129:80>
 ServerName <%= @website %>
 DocumentRoot /var/www/<%= @website %>
 ErrorLog /var/log/httpd/error-<%= @website %>.log
 CustomLog /var/log/httpd/access-<%= @website %>.log
combined
</VirtualHost>

3.	 Now upload the updated cookbook (we've already bumped it):
$ knife cookbook upload apache

4.	 Run the Chef client on the node and see the magic happen:
$ sudo chef-client

[...]

 * template[/etc/httpd/conf.d/defaultsite.conf] action
create

 - update content in file /etc/httpd/conf.d/defaultsite.conf
from 6f4d47 to 05ea5b

 --- /etc/httpd/conf.d/defaultsite.conf 2016-10-17
01:05:49.243799676 +0000

Fundamentals of Managing Servers with Chef and Puppet

228

 +++ /etc/httpd/conf.d/.chef-defaultsite20161017-14052-
1xt951m.conf 2016-10-17 01:10:27.452670052 +0000

 @@ -1,4 +1,4 @@

 -<VirtualHost *:80>

 +<VirtualHost 192.168.146.129:80>

 ServerName defaultsite

 DocumentRoot /var/www/defaultsite

 ErrorLog /var/log/httpd/error-defaultsite.log

[...]

Recipe: apache::default

 * service[httpd] action reload

 - reload service service[httpd]

The cool thing is we can even see a diff of the change in the logs so we always know what's
changed, as well as see the httpd service being reloaded after the change happened.

Our system is now perfectly dynamic and can reload its configuration at will at every change.

There's more…
Puppet has exactly the same feature, using the notify attribute. When the content of /etc/
apache2/sites-enabled is modified, Apache configuration needs to be reloaded.

Let's change our Apache manifest to do this.

Apache configuration needs to be reloaded when the default vhost is removed, so we need to
modify modules/apache/manifests/init.pp with the corresponding notify attribute:

class apache {
 package {'apache2':
 ensure => present,
 }

 service {'apache2':
 ensure => running,
 enable => true
 }

 file {'/etc/apache2/sites-enabled/000-default.conf':
 ensure => absent,
 notify => Service['apache2'],
 }
}

Chapter 6

229

The same logic applies for the virtual host creation (modules/apache/manifests/vhost.
pp):

define apache::vhost (
 $website,
 $docroot
) {

 file { "/etc/apache2/sites-available/$website.conf":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0640',
 content => epp('apache/vhost.epp',
 {'website' => $website,
 'docroot'=>$docroot}),
 }

 file { "/etc/apache2/sites-enabled/$website.conf":
 ensure => link,
 target => "/etc/apache2/sites-available/$website.conf",
 require => File["/etc/apache2/sites-available/$website.conf"],
 notify => Service['apache2'],
 }
}

Let's try to run the Puppet agent on fresh Vagrant boxes, we will see that the two modifications
will schedule a configuration reload, that will be done at the end of the Puppet Agent run.
(refer to the lines with Scheduling refresh of Service[apache2] and Triggered
'refresh' from 2 events):

Notice: /Stage[main]/Apache/File[/etc/apache2/sites-enabled/000-
default.conf]/ensure: removed

Info: /Stage[main]/Apache/File[/etc/apache2/sites-enabled/000-
default.conf]: Scheduling refresh of Service[apache2]

...

...

Notice: /Stage[main]/Main/Node[web.pomes.pro]/Apache::Vhost[web.pomes.
pro]/File[/etc/apache2/sites-enabled/web.pomes.pro.conf]/ensure: created

Info: /Stage[main]/Main/Node[web.pomes.pro]/Apache::Vhost[web.pomes.pro]/
File[/etc/apache2/sites-enabled/web.pomes.pro.conf]: Scheduling refresh
of Service[apache2]

Notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 2 events

Fundamentals of Managing Servers with Chef and Puppet

230

Notice: Applied catalog in 45.46 seconds

Now we can access the phpinfo page at http://web.pomes.pro without manually
restarting Apache.

See also
ff The Chef documentation for notifications: https://docs.chef.io/resource_

common.html#notifications

ff The Chef documentation for subscribes: https://docs.chef.io/resource_
common.html#subscribes

ff The Puppet notify resource documentation: https://docs.puppet.com/
puppet/4.8/types/notify.html

Centrally sharing data using a Chef data bag
and Hiera with Puppet

Now we have the basics of our LAMP infrastructure up and running, let's secure it a little by
creating an htaccess file with a few authorized users in it. To achieve this, we could use
different techniques, but the data bag feature in Chef is pretty convenient for our objective.
A data bag is simply data in a JSON file stored on the Chef server, that can be searched from
the cookbooks. It's especially useful for storing data that need to be accessed globally from a
central point (such as users, service credentials, version numbers, URLs, even feature flags,
and other similar features depending on your usage).

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

ff The Chef code from the previous recipes

How to do it…
Our objective is to create two users—John and Mary. Here's a table of the
required information:

https://docs.chef.io/resource_common.html#notifications
https://docs.chef.io/resource_common.html#notifications
https://docs.chef.io/resource_common.html#subscribes
https://docs.chef.io/resource_common.html#subscribes
https://docs.puppet.com/puppet/4.8/types/notify.html
https://docs.puppet.com/puppet/4.8/types/notify.html

Chapter 6

231

User Password Hash
John p4ssw0rd $apr1$AUI2Y5pj$0v0PaSlLfc6QxZx1Vx5Se

Mary s3cur3 $apr1$eR7H0C5r$OrhOQUTXfUEIdvWyeGGGy/

To generate the encrypted passwords, you can use the simple htpasswd
utility:
$ htpasswd -n -b mary s3cur3

mary:$apr1$eR7H0C5r$OrhOQUTXfUEIdvWyeGGGy/

We want to store that piece of information (username and password), inside a single entity:
this is the data bag. Let's name it webusers, and we'll store our users under this directory.

1.	 Let's create this directory inside our Chef repository for our revision control system
(RCS, like git):
$ mkdir -p data_bags/webusers

2.	 To create the data bag entry on the Chef server, use the following knife command:
$ knife data bag create webusers

3.	 As we know, an entry is simple JSON structured data. Let's write the content of our
data bag for our user John, in data_bags/webusers/john.json:
{
 "id": "john",
 "htpasswd": "$apr1$AUI2Y5pj$0v0PaSlLfc6QxZx1Vx5Se."
}

4.	 Let's do the same for Mary in data_bags/webusers/mary.json
{
 "id": "mary",
 "htpasswd": "$apr1$eR7H0C5r$OrhOQUTXfUEIdvWyeGGGy/"
}

5.	 Now let's send this data on the Chef server using the knife command:

$ knife data bag from file webusers mary.json

Updated data_bag_item[webusers::mary]

$ knife data bag from file webusers john.json

Updated data_bag_item[webusers::john]

Fundamentals of Managing Servers with Chef and Puppet

232

You can see the current entries in the data bag using the knife command:
$ knife data bag show webusers

john

mary

Now the data is globally available from the Chef server, how do we access it dynamically from
inside our code? This is where the search feature in Chef is useful to create dynamically
generated content.

Before starting any work in the mysite cookbook, let's bump the version in mysite/
metadata.rb so we're sure not to break anything:

version '0.2.0'

1.	 Let's create a new recipe named htaccess.rb under the mysite cookbook so
we can create both the htaccess file under /etc/httpd/htaccess (this is an
arbitrary location, adaptable to your needs) and the Apache configuration file under
the web root:
$ chef generate recipe cookbooks/mysite htaccess

2.	 To have our entries automatically populated in the htaccess file, we'll have to iterate
through all existing entries. This is done using the search in Chef, specifying the
data bag, and the scope to search (in our case, everything). This is simply added in
the mysite/recipes/htaccess.rb file:
users = search(:webusers, "*:*")

3.	 This variable, users, will then be passed to the template file to generate the content,
like we did previously—except this time we have multiple entries, not just one. We're
using the htpasswd.erb file as a source, that we'll create in a moment:
template "/etc/httpd/htpasswd" do
 source "htpasswd.erb"
 owner 'root'
 group 'root'
 mode '0660'
 variables(
 :users => users
)
end

4.	 Generate a new template for the htpasswd file, using the chef command:
$ chef generate template cookbooks/mysite htpasswd

Chapter 6

233

5.	 Inside this ERB file in mysite/templates/htpasswd.erb, enter the following:
<% @users.each do |user| -%>
<%= user["id"] %>:<%= user["htpasswd"] %>
<% end -%>

The .each method loops around the users variable that we passed through
the template, iterates on user, and extracts our two values of interest: id
and htpasswd.

While we're at it, let's create the template for the .htaccess file under our web
root folder:
$ chef generate template cookbooks/mysite htaccess

Its content is the most basic we can find:

AuthType Basic
AuthName "Restricted Area"
AuthUserFile /etc/httpd/htpasswd
Require valid-user

There's currently no variable in this template. As I know, files most often
end up being dynamic, I always prefer to start them as templates, even if
content is currently static. It's very likely that in the near future we'll want
to use a variable for AuthUserFile.

6.	 Back to our mysite/recipes/htaccess.rb recipe, let's add the template we
just created:

template "/var/www/mysite/.htaccess" do
 source "htaccess.erb"
 owner 'root'
 group 'root'
 mode '0644'
end

Don't forget the last step: we have to call this new recipe from our main, default.rb recipe!
In mysite/recipes/default.rb, include our new recipe, so it gets picked up by the client:

include_recipe "mysite::htaccess"

Just upload the new version of the cookbook:

$ knife cookbook upload mysite

After you've run chef-client on your node, the site will be protected and users mary and
john will be able to use basic HTTP authentication.

Fundamentals of Managing Servers with Chef and Puppet

234

There's more…
With Puppet, we can do it using Hiera. Hiera can be seen as datastore keeping site
information out of manifests. Hiera can be customized in the way data is stored, but
this will be out of the scope of this chapter; we will use default configuration.

First of all, we need to define the data in Hiera. This will be done by creating web.pomes.
pro.yaml in the Hiera tree:

$ cd puppetcode/hieradata

$ mkdir nodes

$ cat > nodes/web.pomes.pro.yaml

webusers:

 - id: john

 htpasswd: $apr1$AUI2Y5pj$0v0PaSlLfc6QxZx1Vx5Se

 - id: mary

 htpasswd: $apr1$eR7H0C5r$OrhOQUTXfUEIdvWyeGGGy/

^D

This file now contains an array of hashes for authorized users, for the node web.pomes.pro.

From the main manifest, we need to look up our Hiera data using the following code:

$users=hiera('webusers');

Now it's easy to generate the password file using a new apache::htpasswd define
statement, that we need to create in modules/apache/manifests/htpasswd.pp:

define apache::htpasswd (
 $filepath,
 $users
) {

 file { "$filepath":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => template('apache/htpasswd.erb'),
 }
}

Chapter 6

235

For the corresponding template, this time, let's try an ERB template in modules/apache/
templates/htpasswd.erb:

<% @users.each do |user| -%>
<%= user['id'] %>:<%= user['htpasswd'] %>
<% end -%>

From the main manifest, we can now create the password file:

apache::htpasswd{'htpasswd':
 filepath => '/etc/apache2/htpasswd',
 users => hiera('webusers'),
}

We also need to create a .htaccess file. Let's create a new apache::htaccess statement
in modules/apache/manifests/htaccess.pp:

define apache::htaccess (
 $filepath,
 $docroot
) {

 file { "$docroot/.htaccess":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => template('apache/htaccess.erb'),
 }
}

The associated template in modules/apache/templates/htaccess.erb is:

AuthType Basic
AuthName "Restricted Area"
AuthUserFile <%= @filepath %>
Require valid-user

From the main manifest, we can now create the .htaccess file:

apache::htaccess{"$docroot-htaccess":
 filepath => '/etc/apache2/htpasswd',
 docroot => $docroot,
 }

Fundamentals of Managing Servers with Chef and Puppet

236

As a result, here is the main manifest of the web.pomes.pro node:

node 'web.pomes.pro' {
 $website=$fqdn;
 $docroot="/var/www/$fqdn";
 $users=hiera('webusers');

 class {
 'apache':;
 'php':;
 'mariadb':;
 }
 apache::vhost{$website:
 website => $website,
 docroot => $docroot,
 }
 apache::htpasswd{'htpasswd':
 filepath => '/etc/apache2/htpasswd',
 users => hiera('webusers'),
 }
 apache::htaccess{"$docroot-htaccess":
 filepath => '/etc/apache2/htpasswd',
 docroot => $docroot,
 }
 file { $docroot:
 ensure => directory,
 owner => 'www-data',
 group => 'www-data',
 mode => '0755',
 }
 file {"$docroot/index.php":
 ensure => present,
 owner => 'www-data',
 group => 'www-data',
 mode => '0644',
 content => "<?php phpinfo() ?>",
 }
}

After running the Puppet agent, http://web.pomes.pro will now ask you for a
login/password.

See also
ff The Chef documentation on data bags: https://docs.chef.io/data_bags.

html

ff Puppet Hiera: https://docs.puppet.com/hiera/3.2/

https://docs.chef.io/data_bags.html
https://docs.chef.io/data_bags.html
https://docs.puppet.com/hiera/3.2/

Chapter 6

237

Creating functional roles
Until now, we have created cookbooks based on a particular technology. We created
a cookbook for MariaDB, one for Apache HTTPd, and one for our app (including all the
dependencies). What about the role of each of those infrastructure elements? A database
role can include what is now running our database (MariaDB), but maybe tomorrow it can
run something else (migrate back to MySQL, or switch to PostgreSQL). As roles in Chef have
a dedicated run list, it's common to see a role include the product recipes, and everything
related to it, think monitoring for example. Roles can do a lot more, like overriding attributes
or have different run lists for each environment. Here, we'll create two generic database and
webserver roles that might be simply reused later for another project that just need those
services and a mysite role, that will include the two other roles. A role can include other roles
as well as recipes. This way, the role for mysite will be enough to run our infrastructure, from a
functional point of view.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

ff The Chef code from the previous recipes

How to do it…
Follow these steps for creating functional roles:

1.	 We can write roles in plain JSON or in Ruby. Let's try Ruby for our webserver role in
roles/webserver.rb. It requires a name, a description, and a run list. That's the
bare minimum:
name "webserver"
description "An HTTP server for our application"
run_list "recipe[apache]"

2.	 Let's do the same for our database role; we currently want to use our mariadb
cookbook. So let's write it in roles/database.rb:
name "database"
description "A database server for our application"
run_list "recipe[mariadb]"

Fundamentals of Managing Servers with Chef and Puppet

238

3.	 Finally, let's write the mysite role, that will include a webserver, a database, as well
as its own cookbook, in roles/mysite.rb:
name "mysite"
description "MySite role"
run_list(
 "role[webserver]",
 "role[database]",
 "recipe[mysite]"
)

4.	 Send the roles to the Chef server using the knife command:
$ knife role from file database.rb
Updated Role database
$ knife role from file webserver.rb
Updated Role webserver
$ knife role from file mysite.rb
Updated Role mysite

5.	 Now, either edit your current node's run list (if you have one) to use only this
role (role[mysite]), or if you're about to bootstrap the server; adding the -r
"role[mysite]" option will bootstrap Chef on the node as well as execute Chef
with this run list:

$ knife bootstrap 192.168.146.129 -N vagrant -x vagrant --
sudo -r "role[mysite]"

We'll now be free to add more complex features to our role in the future!

There's more…
Puppet does not provide a role feature. However, this can be done by adding a level of
abstraction using the role and profile design pattern. In this pattern:

ff A role is a class defining a behavior (For example, a web server). This class needs to
include all needed profiles to create the role.

ff A profile is a class used to manage the underlying technology (For example,
by installing Apache)

ff In the main manifest, nodes are only using roles.

Using this pattern, it is easier to refactor only profiles classes when the technology needs to
be changed.

See also
ff The Chef documentation on roles: https://docs.chef.io/roles.html

https://docs.chef.io/roles.html

Chapter 6

239

Managing external Chef cookbooks and
Puppet modules

Up till now, we've written our own cookbooks, which are fairly simple in their current state.
Chances are, we'll expect a lot more complicated setups in our real life infrastructure. To help
us, there're two kinds of external cookbooks we can use: community-backed cookbooks and
official cookbooks, written and maintained by the Chef team directly. To browse available
cookbooks, navigate to the Chef Supermarket (think of it as a store for cookbooks):
https://supermarket.chef.io/.

The thing is, our life will become increasingly complicated with all those cookbooks
downloaded here and there, each of them having dependencies of their own. Fortunately,
the Chef DK ships with a superb utility for this use case—Berkshelf.

Berkshelf allows us to declare cookbook dependencies, versions and locations in a single file,
and in a single command, upload everything needed to run our cookbook.

In this section, we'll migrate away from our distribution's MariaDB default and unconfigured
package, to a fully configured MySQL 5.7—and that workflow is pretty close to everyday life
using Chef in production.

Getting ready
To work through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Chef client configuration on the remote host

ff The Chef code from the previous recipes

How to do it…
Let's start by discovering how Berkshelf works. Under the cookbooks/mysite/ directory,
we find a file named Berksfile (if you didn't create the cookbook with the chef utility,
create the file manually). As Berkshelf works per cookbook, we'll declare all our cookbook
dependencies to run this particular cookbook here, which in our case, happens to be currently
all local. In this Berksfile, enter the following:

source 'https://supermarket.chef.io'

metadata

cookbook 'apache', path: '../apache'
cookbook 'php', path: '../php'
cookbook 'mariadb', path: '../mariadb'

https://supermarket.chef.io/

Fundamentals of Managing Servers with Chef and Puppet

240

This tells us three important things:

ff Where to find unknown cookbooks (on the official supermarket, we can replace with
our own internal supermarket if we run one)

ff Where to find dependencies: in our cookbook's metadata file
ff Where each of those cookbooks reside: in our case, the local relative path

Bump the mysite cookbook version in metadata.rb so we don't mess with our previous
work, and, from the mysite cookbook directory, upload all our cookbook's dependencies
at once:

$ berks upload

Uploaded apache (0.5.0) to:
'https://api.chef.io:443/organizations/iacbook'

Uploaded mariadb (0.2.0) to:
'https://api.chef.io:443/organizations/iacbook'

Uploaded mysite (0.3.0) to:
'https://api.chef.io:443/organizations/iacbook'

Uploaded php (0.2.0) to:
'https://api.chef.io:443/organizations/iacbook'

Now we start to realize how faster it is than manual uploading all the cookbooks one by one!

Using the official MySQL cookbook and its dependencies with
Berkshelf
As we already know, we didn't make any special configuration with MariaDB; we just installed
it from our distribution's repositories. This needs to change! We want a full-fledged MySQL
deployment. Looking at the Chef Supermarket, we notice an official MySQL cookbook
maintained by the Chef team, currently at version 8.0.4: https://supermarket.chef.
io/cookbooks/mysql. It seems to do wonders; there are many configuration options, and
many other things. Pages and pages of tested, reliable code ready to use! Good.

By reading the README file, it is stated that it needs two other cookbooks as dependencies—
selinux and yum-mysql-community. The first one to work around SELinux temporarily,
and the second one to manage the official MySQL community repository for RHEL. We could
solve those dependencies by hand, but we have a better idea: use the Berksfile!

Let's start by replacing our dependency on our own mariadb cookbook with this cookbook,
in mysite/Berksfile:

Find the following code:

cookbook 'mariadb', path: '../mariadb'

Replace the previous code with the following:

cookbook 'mysql', '8.0.4'

https://supermarket.chef.io/cookbooks/mysql
https://supermarket.chef.io/cookbooks/mysql

Chapter 6

241

This way, we ensure we'll ever only run this particular cookbook version (8.0.4) and not a new
one that might break things in production.

1.	 Then add the following two dependencies from the mysql cookbook:
cookbook 'selinux'
cookbook 'yum-mysql-community', '~> 1.0'

In this case, we declared a dependency on any version of the selinux cookbook,
the latest being the default, and a loose constraint on any minor revision of the yum-
mysql-community 1.0 cookbook.

2.	 In the cookbooks mysite/metadata.rb file, do the same and replace the
mariadb dependency with the three new ones:
depends "mysql" , '~> 8.0'
depends "selinux"
depends "yum-mysql-community", '~> 1.0'

3.	 Run the berks command from inside the cookbook directory to grab the new
cookbook dependencies:
$ berks install

Resolving cookbook dependencies...

[...]

Fetching cookbook index from https://supermarket.chef.io...

Using mysql (8.0.4)

Using selinux (0.9.0)

Using yum-mysql-community (1.0.0)

[...]

4.	 Great! It automatically downloaded our dependencies. Upload them all now:
$ berks upload

5.	 Let's now create a new recipe named mysql under our mysite cookbook, so we can
deploy the MySQL we need for our application. In our case, we want the latest and
greatest MySQL 5.7 with the admin password: super_secure_password.

6.	 Start by bumping the cookbook's version in metadata.rb to a minor version:
version '0.3.1'

7.	 Now generate the new mysql recipe so we can use it:
$ chef generate recipe cookbooks/mysite mysql

Fundamentals of Managing Servers with Chef and Puppet

242

8.	 In the newly-created mysite/recipes/mysql.rb file, start by including the new
recipes described as needed by the documentation:
include_recipe "selinux::disabled"
include_recipe "yum-mysql-community::mysql57"

9.	 Then, still following the documentation, just add the following block to fully deploy
MySQL 5.7 on the default port (TCP/3306):
mysql_service 'default' do
 port '3306'
 version '5.7'
 initial_root_password 'super_secure_password'
 action [:create, :start]
end

What happened here is that the official mysql cookbook didn't
make anything inside the cookbooks. It, in fact, extended Chef
functionalities by offering a mysql_service resource. In
Chefspeak, it is called LWRP (Lightweight Resources and
Providers).

10.	 Finally, remove the reference to the mariadb recipe from the default mysite
recipe in mysite/recipe/default.rb, and replace it with a call to the new
mysql recipe:

include_recipe "mysite::mysql"

Including dependencies in a role
To fully match our environment with what we just did in the cookbook, let's remove the call to
the old mariadb cookbook from the database role, and as there's no recipe to call (as we
said, this cookbook is just extending Chef functionality), let's instead add the two cookbook
dependencies as stated in the documentation in roles/database.rb:

name "database"
description "A database server for our application"
run_list(
 "recipe[selinux::disabled]",
 "recipe[yum-mysql-community::mysql57]"
)

Upload the updated role using the knife command:

$ knife role from file database.rb

Updated Role database

Chapter 6

243

Our node running the mysite role, calling the database role will be alright. If we did choose to
run only nodes with a call to the mysite::default recipe, it will also work.

Uploading cookbook dependencies using Berkshelf
Now navigate to the mysite cookbook directory and use the upload feature from Berkshelf,
so it will upload all necessary cookbooks at once:

$ berks upload

With Berkshelf, dependencies of the dependencies are
uploaded as well!

Testing MySQL deployment
Run the chef-client on the node, and when the process is done, ensure we can connect to the
local MySQL server using the supplied password:

$ mysql -h 127.0.0.1 -uroot -psuper_secure_password -e "show
databases;"

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sys |

+--------------------+

There's more…
With Puppet, there is also a lot of code ready to use. We can use modules from Puppet Forge
or GitHub for example. Modules hosted on Puppet Forge can be searched using the puppet
module search command:

$ puppet module search mysql | head -10

Notice: Searching https://forgeapi.puppetlabs.com ...

NAME DESCRIPTION AUTHOR KEYWORDS

puppetlabs-mysql Installs, con... @puppetlabs mysql

Fundamentals of Managing Servers with Chef and Puppet

244

example42-mysql Puppet module... @example42 mysql

gousto-mysql Installs, con... @gousto

ULHPC-mysql Configure and... @ULHPC mysql

aco-mysql_yumrepo Puppet module... @aco mysql

BoxUpp-mysql A puppet modu... @BoxUpp mysql

rgevaert-mysql Manage your p... @rgevaert mysql

rocha-mysql Resources to ... @rocha mysql

We can install one of them:

$ puppet module install puppetlabs-mysql

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/Users/me/.puppetlabs/etc/code/modules

└─┬ puppetlabs-mysql (v3.9.0)

 ├── puppet-staging (v2.0.1)

 └── puppetlabs-stdlib (v4.13.1)

By default, installation is done in a hidden folder under the home directory. We can see that
the MySQL module from Puppet Labs depends on two other modules.

Several tools can be used to manage packages; r10k is one of them. It can also manage
environments (such as staging, development, production), but we will focus on package
management in this chapter.

The first thing we need is to install r10k. In previous examples, we edited code directly on
our workstation in a shared folder used by Vagrant, so we need to install r10k directly on our
workstation:

$ sudo puppet resource package r10k provider=puppet_gem

Notice: /Package[r10k]/ensure: created

package { 'r10k':

 ensure => ['2.5.1'],

}

$ r10k version

r10k 2.5.1

r10k is using a file named Puppetfile in which we declare all necessary modules. Here is
an example of Puppetfile:

forge 'http://forge.puppetlabs.com'

mod 'puppetlabs/mysql'

Chapter 6

245

Unfortunately at the time of writing, r10k does not support dependencies, so we need to
discover and add them in the Puppetfile. We can discover dependencies manually by
installing modules using puppet module install as we did earlier. However, this is not
very handy, and fortunately we can use external tools such as https://github.com/
rnelson0/puppet-generate-puppetfile.

Let's install it:

$ sudo puppet resource package generate-puppetfile provider=puppet_gem

Notice: /Package[generate-puppetfile]/ensure: created

package { 'generate-puppetfile':

 ensure => ['0.10.0'],

}

So now, let's discover dependencies for the Puppet Labs MySQL module:

$ generate-puppetfile puppetlabs/mysql

Installing modules. This may take a few minutes.

Your Puppetfile has been generated. Copy and paste between the
markers:

===

forge 'http://forge.puppetlabs.com'

Modules discovered by generate-puppetfile

mod 'puppet/staging', '2.1.0'

mod 'puppetlabs/mysql', '3.10.0'

mod 'puppetlabs/stdlib', '4.15.0'

===

https://github.com/rnelson0/puppet-generate-puppetfile
https://github.com/rnelson0/puppet-generate-puppetfile

Fundamentals of Managing Servers with Chef and Puppet

246

We now have all dependencies.

Now suppose we want to use our previous example, using the code we made for Apache,
and the official Puppet Labs MySQL package.

To do so, let's adjust the Puppetfile in order to download the official Mysql module from
Puppet Labs and keep our existing modules. We need to inform r10k which modules are local.
If we don't, r10k will perform a complete installation after removing all the content in the
modules directory. Here is the Puppetfile:

forge 'http://forge.puppetlabs.com'

Local modules
mod 'apache', :local =>true
mod 'php', :local =>true
mod 'mariadb', :local =>true

Modules discovered by generate-puppetfile
mod 'puppet/staging', '2.0.1'
mod 'puppetlabs/mysql', '3.9.0'
mod 'puppetlabs/stdlib', '4.13.1'

Now we need to run r10k to install packages:

$ ls modules/

apache/ mariadb/ php/

$ r10k puppetfile install

$ ls modules/

apache/ concat/ mariadb/ mysql/ php/ stdlib/

Let's modify the main manifest to use the official MySQL package; we need to remove the
reference to our MariaDB module, and use the class provided by the official MySQL package:

node 'web.pomes.pro' {
 $website=$fqdn;
 $docroot="/var/www/$fqdn";
 $users=hiera('webusers');

 class {
 'apache':;
 'php':;
 }
 class { 'mysql::server':
 root_password => 'super_secure_password',
 }
 apache::vhost{$website:

Chapter 6

247

 website => $website,
 docroot => $docroot,
 }
 apache::htpasswd{'htpasswd':
 filepath => '/etc/apache2/htpasswd',
 users => hiera('webusers'),
 }
 apache::htaccess{"$docroot-htaccess":
 filepath => '/etc/apache2/htpasswd',
 docroot => $docroot,
 }
 file { $docroot:
 ensure => directory,
 owner => 'www-data',
 group => 'www-data',
 mode => '0755',
 }
 file {"$docroot/index.php":
 ensure => present,
 owner => 'www-data',
 group => 'www-data',
 mode => '0644',
 content => "<?php phpinfo() ?>",
 }
}

Let's start a fresh Vagrant setup. After applying Puppet, we can now use the MySQL server
with the root credentials we specified in the main manifest:

vagrant@web:~$ mysql -h 127.0.0.1 -uroot -
psuper_secure_password -e "show databases;"

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

+--------------------+

If needed, you can browse the online documentation of this module to create custom
databases and grants.

Fundamentals of Managing Servers with Chef and Puppet

248

See also
ff The Chef documentation on roles: https://docs.chef.io/roles.html

ff The Chef Supermarket: https://supermarket.chef.io/

ff The Berkshelf documentation: http://berkshelf.com/

ff MySQL cookbook source on GitHub: https://github.com/chef-cookbooks/
mysql

ff Puppet r10k: https://github.com/puppetlabs/r10k

ff The Puppet Labs MySQL module on Puppet Forge: https://forge.puppet.com/
puppetlabs/mysql

https://docs.chef.io/roles.html
https://supermarket.chef.io/
http://berkshelf.com/
https://github.com/chef-cookbooks/mysql
https://github.com/chef-cookbooks/mysql
https://github.com/puppetlabs/r10k
https://forge.puppet.com/puppetlabs/mysql
https://forge.puppet.com/puppetlabs/mysql

249

7
Testing and Writing

Better Infrastructure
Code with Chef

and Puppet

In this chapter, we will cover the following recipes:

ff Linting Chef code with Foodcritic and Puppet code with puppet-lint

ff Unit testing with ChefSpec and rspec-puppet

ff Testing infrastructure with Test Kitchen for Chef and Beaker for Puppet

ff Integration testing with ServerSpec

Introduction
In the development world, good practices of testing software are widespread, such as unit and
integration tests. Linters are also used daily for most languages by software developers. These
techniques are fortunately brought to the infrastructure world through the tools we use; now
as infrastructure is basically code, it can be analyzed, tested, and reported! Combined with CI
systems, writing infrastructure code that is thoroughly tested at different levels helps hugely
to achieve a very high quality of sustainable code and prevents unexpected regressions that
would have otherwise broken things later.

Testing and Writing Better Infrastructure Code with Chef and Puppet

250

In this chapter, you'll discover various techniques to write cleaner code using linters and
styling tools, so our code follows high standards. You'll learn how to unit test infrastructure
code such as Chef resources and achieve the highest code coverage possible, so we're sure
nothing is there by error or is being modified unintentionally. Then we'll configure the testing
environment Test Kitchen, which leverages the use of VMs through Vagrant (or other systems)
to apply test suites. This will be our base to then write integration tests so we can make sure
we achieve what we intended to achieve with multiple cookbooks and sources of code, really
reaching the target and doing the job on a real system.

These tools and techniques are absolutely key to write the best infrastructure code possible,
and they are as fun to use as they are powerful!

All recipes are based on Chef. However, when possible, we'll try to show how things work
similarly with Puppet, Chef's direct alternative.

Linting Chef code with Foodcritic and
Puppet code with puppet-lint

Since we're mainly coding in Ruby, we can use common linters such as Rubocop in the Ruby
world. However, Rubocop, is targeted at software development by default and is not really
optimized for Chef cookbooks development. So, Chef adapted their own version of Rubocop,
named Cookstyle. In the meantime, the Foodcritic tool used in conjunction with rules checks
our code for a set of commonly accepted good practices by the community. We'll walk through
those tools to end up with a much better and cleaner code.

Getting ready
To step through this recipe, you will need the following:

ff A working Chef DK installation on the workstation
ff A working Chef client configuration on the remote host
ff The Chef code from Chapter 6, Fundamentals of Managing Servers with Chef and

Puppet, or any custom Chef code.

How to do it…
We'll study and follow suggestions of the two complimentary tools—Cookstyle and Foodcritic.
Both give some precious and complementary advice on code quality and portability. Let's start
with the quickest and easiest—Cookstyle.

Cookstyle
Navigate to a cookbook root directory and type in the following:
$ cookstyle

Chapter 7

251

This will output all the suggestions for a cleaner code.

To get more information about the suggestions, including a URL with more information,
use the following options:

$ cookstyle -DES

If you're happy with the propositions and would like to automatically apply them all directly in
the code, use the following switch:

$ cookstyle -a

If we apply cookstyle to the Chapter 6, Fundamentals of Managing Servers with Chef and
Puppet, Chef cookbooks we've written, we'll end up with two good suggestions:

ff Single quotes for strings when interpolation is not needed

ff Newer Ruby 1.9 syntax for hashes

As these are valuable and recommended changes, let's bump our cookbook versions in all
concerned metadata.rb files, apply those suggestions, and upload the new minor revision
to the Chef server.

Foodcritic
Foodcritic goes much further than Cookstyle and checks the Chef code for things such
as incompatible, nonidempotent, repetitive, or deprecated code, and missing templates,
files, dependencies, or variables. All the rules are described on the Foodcritic website at
http://www.foodcritic.io, along with examples and explanations.

Execute foodcritic by navigating to the Chef repo and type in the following command:

$ foodcritic <cookbook path>

For example, for testing our previous mysite cookbook (excluding the auto-generated test
directory, as it's not a cookbook in itself), we type the following command:

$ foodcritic --exclude test cookbooks/mysite

FC003: Check whether you are running with chef server before using
server-specific features: cookbooks/mysite/recipes/htaccess.rb:7

FC033: Missing template: cookbooks/mysite/recipes/htaccess.rb:9

FC033: Missing template: cookbooks/mysite/recipes/htaccess.rb:19

FC064: Ensure issues_url is set in metadata:
cookbooks/mysite/metadata.rb:1

FC065: Ensure source_url is set in metadata:
cookbooks/mysite/metadata.rb:1

http://www.foodcritic.io

Testing and Writing Better Infrastructure Code with Chef and Puppet

252

Interesting! Let's start with FC003 (http://www.foodcritic.io/#FC003). Our code
is indeed not usable with other Chef modes such as chef-solo, as we're using Chef Search
directly in the code and chef-solo can't interact with a Chef server. Two options here are that
either we don't care about chef-solo portability and you exclude that rule from the tests, or we
care and modify the code accordingly.

To exclude the FC003 rule, use the -t option:

$ foodcritic -t ~FC003 --exclude test cookbooks/mysite/

FC033: Missing template: cookbooks/mysite/recipes/htaccess.rb:9

FC033: Missing template: cookbooks/mysite/recipes/htaccess.rb:19

FC064: Ensure issues_url is set in metadata:
cookbooks/mysite/metadata.rb:1

FC065: Ensure source_url is set in metadata:
cookbooks/mysite/metadata.rb:1

Alternatively, if we care about chef-solo compatibility, let's change the code as proposed by
the FC003 rule. Bump the mysite cookbook in the mysite/metadata.rb file, and edit
the users search in the mysite/recipes/htaccess.rb file to include an evaluation of
whether we're running chef-solo or not:

if Chef::Config[:solo]
 Chef::Log.warn('This recipe uses search. Chef Solo does not
support search.')
else
 users = search(:webusers, '*:*')
end

Upload the new version of the cookbook using Berkshelf:

$ berks upload

Rerun foodcritic and the warning is gone:

$ foodcritic --exclude test cookbooks/mysite

Let's continue our investigation of the suggestions. FC033 (http://www.foodcritic.
io/#FC033) is about missing templates. However, our templates are placed under mysite/
templates by the chef workflow command. This is typically why it's important to understand
why suggestions are only that—suggestions. The Foodcritic team proposes to enforce in FC033
the presence of default templates in the templates/default directory. It is entirely up to
you and your team to decide what to follow: the recommended behavior from Chef or from
Foodcritic. Let's decide to follow Chef and ignore this warning:

$ foodcritic -t ~FC033 --exclude test cookbooks/mysite/

FC064: Ensure issues_url is set in metadata:
cookbooks/mysite/metadata.rb:1

http://www.foodcritic.io/#FC003
http://www.foodcritic.io/#FC033
http://www.foodcritic.io/#FC033

Chapter 7

253

FC065: Ensure source_url is set in metadata:
cookbooks/mysite/metadata.rb:1

The previous two warnings (FC064 and FC065) are only about cookbooks released on the
Chef Supermarket, which is not our case. Let's exclude globally all supermarket-related
warnings using the -t ~supermarket switch:

$ foodcritic -t ~FC033 -t ~supermarket --exclude test
cookbooks/mysite/

No more warnings now; our cookbook is following the best advice on the planet from both
Chef and the Foodcritic community!

It's highly recommended that you add those tests to your automated testing process. Let's say
we're using a global Makefile to do that. Create it at the root of the Chef repository:

$ cat Makefile

tests:

 foodcritic -t ~FC033 -t ~supermarket --exclude test
cookbooks/mysite

Now, you or some CI system can automatically check the code for quality or regression
in quality.

There's more…
Using Puppet, puppet-lint will help us to clean code. We need to install puppet-lint using the
following command:

$ sudo puppet resource package puppet-lint
provider=puppet_gem

If you are already familiar with Puppet, you probably saw that the code we wrote in
the previous chapter does not conform to standards. Let's discover some issues with
puppet-lint based on the latest recipe for our Apache module:

$ puppet-lint modules/apache/manifests/init.pp

WARNING: class not documented on line 1

ERROR: two-space soft tabs not used on line 3

...

$ puppet-lint modules/apache/manifests/vhost.pp

WARNING: defined type not documented on line 1

WARNING: variable not enclosed in {} on line 6

...

Testing and Writing Better Infrastructure Code with Chef and Puppet

254

ERROR: trailing whitespace found on line 11

...

ERROR: two-space soft tabs not used on line 2

...

WARNING: indentation of => is not properly aligned (expected in
column 34, but found it in column 31) on line 12

...

$ puppet-lint modules/apache/manifests/htpasswd.pp

WARNING: defined type not documented on line 1

WARNING: string containing only a variable on line 6

WARNING: variable not enclosed in {} on line 6

ERROR: two-space soft tabs not used on line 2

...

$ puppet-lint modules/apache/manifests/htaccess.pp

WARNING: defined type not documented on line 1

WARNING: variable not enclosed in {} on line 6

ERROR: two-space soft tabs not used on line 2

We can see two error categories:

ff Puppet coding style warnings/errors

ff Missing documentation

Let's try to fix them!

Puppet coding style
For our concerns here, the basic rules are:

ff Tabulation needs to be two-space characters

ff No trailing whitespaces

ff In string interpolation, variables should be enclosed in braces; for example,
"$docroot/.htaccess" is wrong and must be "${docroot}/.htaccess"

Documentation
Documentation should be done using Markdown. If you've never heard about it, Markdown
is a language used to format a document in plain text mode, in order to export it in HTML.
With Markdown, it becomes easy to add headers, links, bullets and font effects. A short and
interactive tutorial can be found on http://www.markdowntutorial.com.

http://www.markdowntutorial.com

Chapter 7

255

A Markdown editor with a live preview mode is available at https://stackedit.io.

We need to create a README.md file at the top-level directory of the module. This file should
contain a short description, and some usage examples. For more readability, we will focus
only on the installation and the definition of a virtual host. The complete documentation can
be found in the code bundle. Here is an extract of modules/apache/README.md:

Apache module

Table of Contents

1. [Description](#description)
1. [Usage](#usage)
 * [Apache installation](#installation)
 * [Defining a vhost](#vhost)

Description

Sample module for Apache on Ubuntu systems

Usage

installation

To install apache2:

```
class {
  'apache':;
}
```

vhost

To create a vhost:

```
apache::vhost{'mysite':
  website    => 'www.example.com',
  docroot    => '/var/www/example',
}
```

https://stackedit.io

Testing and Writing Better Infrastructure Code with Chef and Puppet

256

We also need to document all statements and their parameters, using the @param tag
inside comments at the top of each manifest. The new code following puppet-lint
recommendations, is:

ff For modules/apache/manifests/init.pp:
See README
class apache {
 package {'apache2':
 ensure => present,
 }

 service {'apache2':
 ensure => running,
 enable => true
 }

 file {'/etc/apache2/sites-enabled/000-default.conf':
 ensure => absent,
 notify => Service['apache2'],
 }
}

ff For modules/apache/manifests/htpasswd.pp:
@param filepath Path of the htpasswd database
@param users Array of hash containing users
See README
define apache::htpasswd (
 $filepath,
 $users
) {
 file { $filepath:
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => template('apache/htpasswd.erb'),
 }
}

Chapter 7

257

ff For modules/apache/manifests/htaccess.pp:
@param filepath Path of the htpasswd database
@param docroot DocumentRoot where the .htaccess should be
generated
See README
define apache::htaccess (
 $filepath,
 $docroot
) {
 file { "${docroot}/.htaccess":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => template('apache/htaccess.erb'),
 }
}

ff For modules/apache/manifests/vhost.pp:

@param website Site name
@param docroot DocumentRoot
See README
define apache::vhost (
 $website,
 $docroot
) {
 file { "/etc/apache2/sites-available/${website}.conf":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => epp('apache/vhost.epp', {
 'website' => $website,
 'docroot' => $docroot}
),
 }

 file { "/etc/apache2/sites-enabled/${website}.conf":
 ensure => link,
 target => "/etc/apache2/sites-available/${website}.conf",
 require => File["/etc/apache2/sites-available/${website}.
conf"],
 notify => Service['apache2'],
 }
}

Testing and Writing Better Infrastructure Code with Chef and Puppet

258

The documentation can be automatically generated to a set of HTML pages. To do so, we need
to install the yard and puppet-strings packages:

$ sudo puppet resource package yard provider=puppet_gem

$ sudo puppet resource package puppet-strings provider=puppet_gem

Now, from the top-level directory of our module, the documentation can be generated:

$ puppet strings

Files: 4

Modules: 0 (0 undocumented)

Classes: 0 (0 undocumented)

Constants: 0 (0 undocumented)

Attributes: 0 (0 undocumented)

Methods: 0 (0 undocumented)

Puppet Classes: 1 (0 undocumented)

Puppet Defined Types: 3 (0 undocumented)

Puppet Types: 0 (0 undocumented)

Puppet Providers: 0 (0 undocumented)

Puppet Functions: 0 (0 undocumented)

 100.00% documented

$ ls -1 doc

_index.html

css/

file.README.html

frames.html

index.html

js/

puppet_class_list.html

puppet_classes/

puppet_defined_type_list.html

puppet_defined_types/

top-level-namespace.html

The documentation is in the doc directory. We can now read it by opening index.html
in any browser.

Chapter 7

259

See also
The Puppet Language Style:

ff Cookstyle: https://github.com/chef/cookstyle
ff Foodcritic: http://www.foodcritic.io/

Unit testing with ChefSpec and
rspec-puppet

ChefSpec is a Chef cookbook RSpec unit testing framework written by the great Seth Vargo
(Opscode Chef, Hashicorp). ChefSpec helps to create a fast feedback loop, locally simulate
Chef runs (solo or server) over the code, and issue a code coverage statement for every
resource used. It integrates very well with Berkshelf, so cookbook dependencies are easily
handled during the testing process.

We'll create unit tests for the cookbooks created in Chapter 6, Fundamentals of Managing
Servers with Chef and Puppet, that covers the most common tests, such as convergence
issues, packages installation, services status check, file and template creation, access rights,
recipe inclusion, stubbing data bag searches, or even intercepting expected errors. These
tests are so generic, we'll be able to reuse them in all our future recipes and get started
on more.

Getting ready
To step through this recipe, you will need the following:

ff A working Chef installation on the workstation
ff A working Chef client configuration on the remote host
ff The Chef code from Chapter 6, Fundamentals of Managing Servers with Chef and

Puppet, or any custom Chef code

How to do it…
ChefSpec unit tests are found in the spec/unit/recipes folder of every Chef cookbook.
Depending on how we created our cookbooks, this folder may already exist.

To illustrate, let's start from the apache cookbook from Chapter 6, Fundamentals of
Managing Servers with Chef and Puppet, but any similar custom cookbook is equally good.

If the spec/unit/recipes directory doesn't exist, create it by executing the
following command:

$ mkdir -p spec/unit/recipes

https://github.com/chef/cookstyle
http://www.foodcritic.io/

Testing and Writing Better Infrastructure Code with Chef and Puppet

260

In this recipes directory in spec/unit are found the ChefSpec unit tests, typically:

$ tree spec/

spec/

├── spec_helper.rb

└── unit

 └── recipes

 ├── default_spec.rb

 └── virtualhost_spec.rb

Each recipe gets its matching ChefSpec file. In this case, our simple cookbook contains two
recipes, so we get two specs.

The Spec Helper
It's helpful to have a common set of requirements for all the concerned cookbook tests.
The default is to have it named spec_helper.rb at the root of the spec/unit directory.
We suggest to include at least three requirements:

ff ChefSpec itself

ff The Berkshelf plugin for dependencies management

ff Immediately start the code coverage

Here's our sample spec_helper.rb file:

require 'chefspec'
require 'chefspec/berkshelf'
ChefSpec::Coverage.start!

Testing a successful Chef run context
We'll now unit test the default apache cookbook recipe. Our first step is to require the helper
created earlier in the default_spec.rb file. It will be required in all of our future tests:

require 'spec_helper'

All unit tests start with a descriptive block, as given here:

describe 'cookbook::recipe_name' do
 [...]
end

Chapter 7

261

Inside this block, we want to simulate the Chef run in a simulated CentOS 7.2 environment,
with the default attributes. This is the context, and we expect this Chef run to not raise
any errors:

describe 'apache::default' do
 context 'Default attributes on CentOS 7.2' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'centos',
version: '7.2.1511')
 runner.converge(described_recipe)
 end

 it 'converges successfully' do
 expect { chef_run }.to_not raise_error
 end
 end
end

To find the exact past or future CentOS version we might need, we can go to the CentOS mirror
site, http://mirror.centos.org/centos/, or read a full list of available simulated
platforms at https://github.com/customink/fauxhai/tree/master/lib/
fauxhai/platforms.

Execute our first unit test using chef exec rspec (it's using the bundled rspec from the
Chef DK):

$ chef exec rspec --color

.....

Finished in 0.82521 seconds (files took 1.87 seconds to load)

5 examples, 0 failures

ChefSpec Coverage report generated...

 Total Resources: 2

 Touched Resources: 0

 Touch Coverage: 0.0%

Untouched Resources:

 yum_package[httpd] apache/recipes/default.rb:7

 service[httpd] apache/recipes/default.rb:11

http://mirror.centos.org/centos/
https://github.com/customink/fauxhai/tree/master/lib/fauxhai/platforms
https://github.com/customink/fauxhai/tree/master/lib/fauxhai/platforms

Testing and Writing Better Infrastructure Code with Chef and Puppet

262

We see the simulated Chef run execution times, as well as a coverage report (0%, as we didn't
test anything for now). ChefSpec even shows us what's not unit tested yet!

A nice option is the documentation RSpec formatter, so we have descriptions of what's being
tested. At the end of this section, we'll have something like this, using this formatter:

$ chef exec rspec --format documentation --color

apache::default

 Default attributes on CentOS 7.2

 converges successfully

 installs httpd

 enables and starts httpd service

apache::virtualhost

 Default attributes on CentOS 7.2

 converges successfully

 creates a virtualhost directory

 creates and index.html file

 creates a virtualhost configuration file

Finished in 1.14 seconds (files took 2.56 seconds to load)

7 examples, 0 failures

ChefSpec Coverage report generated...

 Total Resources: 5

 Touched Resources: 5

 Touch Coverage: 100.0%

You are awesome and so is your test coverage! Have a fantastic day!

Testing a package installation
Our default recipe starts by installing the httpd package. Here's how to test it using
ChefSpec, inside the context we created earlier:

 it 'installs httpd' do

 expect(chef_run).to install_package('httpd')

 end

Chapter 7

263

Execute rspec again and see the touch coverage attain 50% as one of the two resources
from the default recipe is now tested.

Testing services status
The default recipe enables and starts the httpd service. Here's how to test if both actions are
handled by the code using ChefSpec, inside the context created earlier:

 it 'enables and starts httpd service' do

 expect(chef_run).to enable_service('httpd')

 expect(chef_run).to start_service('httpd')

 end

Our test coverage is now 100% for the default recipe as we tested both declared resources.

Testing another recipe from the same cookbook
As we have two recipes in the apache cookbook, let's create tests for our second
recipe—virtualhost_spec.rb. Start it exactly like the first one, with a description,
context, and an initial test for a valid Chef run:

require 'spec_helper'

describe 'apache::virtualhost' do
 context 'Default attributes on CentOS 7.2' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'centos',
version: '7.2.1511')
 runner.converge(described_recipe)
 end

 it 'converges successfully' do
 expect { chef_run }.to_not raise_error
 end
 end
end

Execute RSpec and see the coverage fall from 100% to 40%. Three new resources are now
untested, from the apache::virtualhost recipe:

$ chef exec rspec --color

[...]

ChefSpec Coverage report generated...

 Total Resources: 5

 Touched Resources: 2

Testing and Writing Better Infrastructure Code with Chef and Puppet

264

 Touch Coverage: 40.0%

Untouched Resources:

 directory[/var/www/default] apache/recipes/virtualhost.rb:8

 file[/var/www/default/index.html]
apache/recipes/virtualhost.rb:15

 template[/etc/httpd/conf.d/default.conf]
apache/recipes/virtualhost.rb:22

The good news is that ChefSpec still tells us which resources are not tested!

Testing directory creation
This particular apache::virtualhost recipe starts by creating a directory. Here's how we
can test for this directory existence, along with its ownership parameters:

 it 'creates a virtualhost directory' do
 expect(chef_run).to create_directory('/var/www/default').with(
 user: 'root',
 group: 'root'
)
 end

Code coverage is now 60%!

Testing file creation
The same recipe then creates an index file. This is how we test it's created with the
required ownership:

 it 'creates and index.html file' do
 expect(chef_run).to
create_file('/var/www/default/index.html').with(
 user: 'root',
 group: 'root'
)
 end

Code coverage is now 80%!

Chapter 7

265

Testing templates creation
The recipe ends with the creation of Apache VirtualHost from a template. This is how to test
it's in place with the default attributes:

 it 'creates a virtualhost configuration file' do
 expect(chef_run).to create_template('/etc/httpd/conf.d/default.
conf').with(
 user: 'root',
 group: 'root'
)
 end

All in all, we've now covered 100% of our resources!

As the output says:

You are awesome and so is your test coverage! Have a fantastic day!

Stubbing data bags for searches
The mysite cookbook we created earlier contains a search in a data bag to later
populate a file with content. The thing is, we're unit testing, and no real Chef server is
answering requests. So the tests are failing: the simulated Chef run doesn't end well because
a search can't be executed. Fortunately, ChefSpec allows us to stub the data bag with real
content. So here's how it looks in spec/unit/recipes/default_spec.rb from the
mysite cookbook:

describe 'mysite::default' do
 context 'Default attributes on CentOS 7.2' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'centos', version:
'7.2.1511')
 runner.create_data_bag('webusers', {
 'john' => {
 'id' => 'john',
 'htpasswd' => '$apr1$AUI2Y5pj$0v0PaSlLfc6QxZx1Vx5Se.'
 }
 })
 runner.converge(described_recipe)
 end

 it 'converges successfully' do
 expect { chef_run }.to_not raise_error
 end
 end
end

Testing and Writing Better Infrastructure Code with Chef and Puppet

266

Now the simulated Chef run has a webusers data bag and some sample data to work with!

Testing recipes inclusion
It's very common to include recipes inside another recipe. Typically, when using notifications
for restarting a service from a file change, the concerned service must be included in the
recipe where the file resource is located; otherwise, the code most probably works by chance
because the required dependent cookbook is included elsewhere! Here's how to test for a
cookbook inclusion:

 it 'includes the `apache` recipes' do
 expect(chef_run).to include_recipe('apache::default')
 expect(chef_run).to include_recipe('apache::virtualhost')
 end

We now ensure that dependencies are always included.

Intercepting errors in tests
Sometimes we have to work with third-party cookbooks, that may somehow raise errors. It's
the case with the official MySQL cookbook, which depends on the SELinux cookbook for the
RHEL/CentOS platform. This cookbook, for some reason, doesn't work with ChefSpec, so
when converged, it errors out the following string: chefspec not supported!. ChefSpec
stops there, and say the Chef run is in error. As we don't have any power on why is that, here's
a workaround to expect a very specific error from a Chef run, and this will be helpful many
times later:

 it 'converges successfully' do
 # The selinux cookbook raises this error.
 expect { chef_run }.to raise_error(RuntimeError, 'chefspec
not supported!')
 end

We've seen a selection of the most common and reusable unit tests for Chef cookbooks!

There's more…
Using Puppet, Puppet Labs is providing a repository containing several useful tools we will use
in this chapter—the Puppet Labs Spec Helper. Let's install it:

$ sudo puppet resource package puppetlabs_spec_helper provider=puppet_gem

Chapter 7

267

For unit testing, rspec-puppet is the counterpart of ChefSpec for Puppet, and has been
installed as a dependency of puppetlabs_spec_helper. We will now add a unit test for
each manifest in our Apache module. First of all, we need a Rakefile to create the required
targets. Fortunately, the puppetlabs_spec_helper gem provides such targets. Let's create
a Rakefile in the top-level directory of our Apache module with the following content:

require 'puppetlabs_spec_helper/rake_tasks'

All unit tests should remain in a spec directory. Before writing any test, we also need a
helper script that will be common to all tests. Let's create it in spec/spec_helper.rb.
This file should contain the following line:

require 'puppetlabs_spec_helper/module_spec_helper'

We are now ready to write unit tests. We have four manifests in our module, and we are about
to create a unit test for each of them. Here are the goals:

ff For the apache/manifests/init.pp manifest: The unit test needs to validate the
manifest is compiling, the apache2 package installation is done, and the apache2
service is running and activated on boot.

ff For the apache/manifests/vhost.pp manifest: The unit test should ensure the
virtual host is created in /etc/apache2/sites-available and activated in
/etc/apache2/sites-enabled.

ff For the apache/manifests/htpasswd.pp manifest: The unit test should ensure a
htpasswd file is generated correctly.

ff For the apache/manifests/htaccess.pp manifest: The unit test should ensure a
.htaccess file is generated correctly.

Let's try the first one! Since the manifest contains a class declaration, the unit test should
be in spec/classes. The class name is apache; this will be the base name of the file
containing the test. Each test file should be suffixed by _spec.rb, so let's create spec/
classes/apache_spec.rb with the following content:

require 'spec_helper'

Description of the "apache" class
describe 'apache' do
 # Assertion list

Testing and Writing Better Infrastructure Code with Chef and Puppet

268

 it { is_expected.to compile.with_all_deps }
 it { is_expected.to contain_package('apache2').with(
 {
 'ensure' => 'present',
 }
) }
 it { is_expected.to contain_service('apache2').with(
 {
 'ensure' => 'running',
 'enable' => 'true',
 }
) }
end

Unit tests are in descriptive blocks, with a list of assertions. Here, we have the three
assertions we mentioned earlier when describing the goal of the test.

Now, let's run the unit test using the spec rake target:

$ rake spec

...

Finished in 2.42 seconds (files took 1.53 seconds to load)

3 examples, 0 failures

That's it! Our three assertions have been tested successfully!

The three other tests should be placed under spec/defines, this is because the
corresponding manifests declare a define statement. Let's create:

ff spec/defines/apache_vhost_spec.rb, with the following content:
require 'spec_helper'

Description of the "apache::vhost" 'define' resource
describe 'apache::vhost', :type => :define do

 # As a requirement, we should load the apache class
 let :pre_condition do
 'class {"apache":;}'
 end

 # Define a title for the 'define' resource
 let :title do

Chapter 7

269

 'mysite'
 end

 # Parameters list
 let :params do
 {
 :website => 'www.sample.com' ,
 :docroot => '/var/www/docroot',
 }
 end

 # Assertions list
 it { is_expected.to compile }
 it { is_expected.to contain_class('apache') }
 it { is_expected.to contain_file('/etc/apache2/sites-
available/www.sample.com.conf')
 .with_content(/DocumentRoot \/var\/www\/docroot/) }
 it { is_expected.to contain_file('/etc/apache2/sites-
enabled/www.sample.com.conf').with(
 'ensure' => 'link',
 'target' => '/etc/apache2/sites-
available/www.sample.com.conf'
) }
end

ff spec/defines/apache_htpasswd_spec.rb, with the following content:
require 'spec_helper'

Description of the "apache::htpasswd" 'define' resource
describe 'apache::htpasswd', :type => :define do

 # As a requirement, we should load the apache class
 let :pre_condition do
 'class {"apache":;}'
 end

 # Define a title for the 'define' resource
 let :title do
 'myhtpasswd'
 end

 # Parameters list
 let :params do
 {

Testing and Writing Better Infrastructure Code with Chef and Puppet

270

 :filepath => '/tmp/htpasswd' ,
 :users => [{ "id" => "user1", "htpasswd" => "hash1"
}]
 }
 end

 # Assertion list
 it { is_expected.to compile }
 it { is_expected.to contain_class('apache') }
 it { is_expected.to contain_file('/tmp/htpasswd')
 .with_content(/user1:hash1/) }
end

ff spec/defines/apache_htaccess_spec.rb, with the following content:

require 'spec_helper'

Description of the "apache::htaccess" 'define' resource
describe 'apache::htaccess', :type => :define do

 # As a requirement, we should load the apache class
 let :pre_condition do
 'class {"apache":;}'
 end

 # Define a title for the 'define' resource
 let :title do
 'myhtaccess'
 end

 # Parameters list
 let :params do
 {
 :filepath => '/tmp/htpasswd' ,
 :docroot => '/var/www/docroot',
 }
 end

 # Assertion list
 it { is_expected.to compile }
 it { is_expected.to contain_class('apache') }
 it { is_expected.to contain_file('/var/www/docroot/.htaccess')
 .with_content(/AuthUserFile \/tmp\/htpasswd/) }
end

Chapter 7

271

Now we have all our unit tests, and each one validates the initial target we defined earlier.
The total number of assertions is 13, and we can now run the complete test suite:

$ rake spec

.............

Finished in 2.88 seconds (files took 1.52 seconds to load)

13 examples, 0 failures

The Rake targets provided also contain a lint target that can be used with
rake lint. We can use this target directly instead of puppet-lint manually
as we did earlier.

See also
ff ChefSpec: http://sethvargo.github.io/chefspec

ff A wide selection of quality examples is given on the ChefSpec GitHub repository:
https://github.com/sethvargo/chefspec/tree/master/examples

ff Puppet RSpec: http://rspec-puppet.com

ff Rspec: http://rspec.info

Testing infrastructure with Test Kitchen for
Chef and Beaker for Puppet

Test Kitchen is a central tool in the Chef ecosystem as it enables thorough testing of
infrastructure code and plays very well with a lot of other tools we already use and
know. It takes the strong testing culture from the development world and applies it to an
infrastructure-as-code environment. Test Kitchen helps start an isolated system environment,
apply Chef cookbooks to it, and then execute tests. Supported test frameworks include RSpec,
ServerSpec, or Bats (and more), with a large choice of supported environments such as
AWS, Vagrant, Digital Ocean, Docker, and OpenStack. Test Kitchen integrates very well with
Berkshelf, so cookbook dependencies aren't an issue while testing complex infrastructures.
The best part is, it's already included in the Chef DK, so we just have to use it.

In this section, we'll structure everything needed to properly test our Chef cookbooks code
using Vagrant with CentOS 7.2

The Test Kitchen version in use in the Chef DK at the time of writing is 1.13.2.

http://sethvargo.github.io/chefspec
http://rspec-puppet.com/
http://rspec-puppet.com
http://rspec.info

Testing and Writing Better Infrastructure Code with Chef and Puppet

272

Getting ready
To step through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code from Chapter 6, Fundamentals of Managing Servers with Chef and
Puppet, or any custom Chef code

How to do it…
Test Kitchen is configured by a single .kitchen.yml file at the root of the cookbook.
It contains a lot of information:

ff How to test the system (Vagrant, by default)

ff How to provision the system (chef-solo, chef-zero, or other modes)

ff Which platforms to test (Ubuntu 16.04, CentOS 7.2, or other distributions)

ff The test suites (what to apply, where to find information, in what context,
and similar information)

Configuring Test Kitchen
Irrespective of whether we already have a .kitchen.yml file or not, let's open it and fill in
the following details:

ff We want to run the tests with Vagrant to closely simulate a VM in production

ff We want to provision using Chef Zero (by simulating a Chef server locally)

ff We want to test only on CentOS 7.2 (our code isn't currently designed to run on
something else)

ff We want a single suite of tests, with a run list of the mysite::default recipe,
and a path to the Data Bags

This is how our .kitchen.yml file looks for the mysite cookbook:

driver:
 name: vagrant

provisioner:
 name: chef_zero

Chapter 7

273

platforms:
 - name: centos-7.2

suites:
 - name: default
 data_bags_path: "../../data_bags"
 run_list:
 - recipe[mysite::default]
 attributes:

Testing with Test Kitchen
To simply launch Test Kitchen with the specified configuration, execute the
following command:

$ kitchen test

-----> Testing <default-centos-72>

-----> Creating <default-centos-72>...

[...]

 Finished creating <default-centos-72> (1m1.51s).

-----> Converging <default-centos-72>...

[...]

-----> Installing Chef Omnibus (install only if missing)

[...]

 resolving cookbooks for run list: ["mysite::default"]

 Synchronizing Cookbooks:

 - apache (0.5.0)

 - php (0.2.0)

 - selinux (0.9.0)

 - yum-mysql-community (1.0.0)

 - mysite (0.3.1)

 - mysql (8.0.4)

 - yum (4.0.0)

[...]

 Chef Client finished, 41/56 resources updated in 02 minutes 47
seconds

 Finished converging <default-centos-72> (3m18.96s).

-----> Setting up <default-centos-72>...

 Finished setting up <default-centos-72> (0m0.00s).

-----> Verifying <default-centos-72>...

 Preparing files for transfer

 Transferring files to <default-centos-72>

 Finished verifying <default-centos-72> (0m0.00s).

Testing and Writing Better Infrastructure Code with Chef and Puppet

274

-----> Destroying <default-centos-72>...

 ==> default: Stopping the VMware VM...

 ==> default: Deleting the VM...

 Vagrant instance <default-centos-72> destroyed.

 Finished destroying <default-centos-72> (0m28.38s).

 Finished testing <default-centos-72> (4m48.86s).

-----> Kitchen is finished. (4m50.01s)

What happened here is the following:

ff Test Kitchen read the .kitchen.yml file

ff Test Kitchen created the Vagrant VM with the specified image

ff Test Kitchen installed Chef, synchronized the cookbooks, solved dependencies with
Berkshelf, and applied the run_list content

ff Test Kitchen launched tests (we don't have any for now)

ff Test Kitchen destroyed the VM as everything went smoothly

How it works…
When we execute the simple kitchen test command, we are in fact running through
five steps:

1.	 kitchen create: This creates the virtual testing environment (in our case, through
Vagrant and an hypervisor), but does not provision it.

2.	 kitchen converge: This provisions the instance with the suite information from
the .kitchen.yml we created. As we're using Test Kitchen with Chef, it starts by
installing Chef and then resolves cookbook dependencies for us. Then it applies
run_list with the requested Chef mode (chef-zero in our case).

3.	 kitchen setup: This installs any additional plugin we might need.

4.	 kitchen verify: This first installs everything needed to run the tests—in our case,
this will be ServerSpec.

5.	 kitchen destroy: If all tests pass, this step destroys the testing environment.

We highly recommend that you use each command sequentially for debugging purposes.

For reference, as this will all be discussed in the next section, all tests are located in the
test/integration/<suite_name>/<plugin_name> folder. In other words, the test
/integration/default/serverspec/virtualhost_spec.rb file will match the Chef
cookbook recipe named virtualhost, executed from the default Kitchen test suite, and
tested with the serverspec plugin.

Chapter 7

275

There's more…
The counterpart for Puppet is Beaker. The development of Beaker is very active, and the
current version (6.x) needs at least Ruby 2.2.5. In order to use the Embedded Ruby provided
by Puppet Collections, let's stay on the 5.x branch:

$ sudo puppet resource package beaker-rspec

provider=puppet_gem ensure=5.6.0

A C/C++ compiler is needed to install Beaker, so install gcc/g++ or
clang before trying to install beaker-rspec. The Zlib library is also
needed (binaries and headers).

We also need another gem containing helpers: beaker-puppet_install_helper.
This gem is mainly used to install Puppet in boxes during tests:

$ sudo puppet resource package beaker-
puppet_install_helper provider=puppet_gem

We first need to define a list of supported platforms for running test acceptances. Each
platform must be defined in a YAML file in spec/acceptance/nodesets. Since our code
only works on Ubuntu, let's define a single platform in spec/acceptance/nodesets/
default.yml:

HOSTS:

 ubuntu-1604-x64:

 roles:

 - agent

 - default

 platform: ubuntu-16.04-amd64

 hypervisor: vagrant

 box: bento/ubuntu-16.04

CONFIG:

 type: foss

As you can see, we will use Vagrant as hypervisor, with an Ubuntu Xenial box.

type: foss means that the open source edition of Puppet will be used.

Testing and Writing Better Infrastructure Code with Chef and Puppet

276

Now we can run Beaker:

$ rake beaker

/opt/puppetlabs/puppet/bin/ruby -
I/opt/puppetlabs/puppet/lib/ruby/gems/2.1.0/gems/rspec-support-
3.6.0.beta1/lib:/opt/puppetlabs/puppet/lib/ruby/gems/2.1.0/gems/rspec-
core-3.6.0.beta1/lib
/opt/puppetlabs/puppet/lib/ruby/gems/2.1.0/gems/rspec-core-
3.6.0.beta1/exe/rspec --pattern spec/acceptance --color

No examples found.

Finished in 0.00081 seconds (files took 0.14125 seconds to load)

0 examples, 0 failures

No acceptance test has been defined yet, but we will see how to write one in the next pages.

See also
ff Bats testing framework: https://github.com/sstephenson/bats

ff RSpec: http://rspec.info/

ff ServerSpec: http://serverspec.org/

ff Test Kitchen drivers: https://rubygems.org/search?query=kitchen-

Integration testing with ServerSpec
Integration testing comes after unit testing: we're now testing the actual functionality on a real
black box system. We're probably using many cookbooks that are doing a lot of things, each
unit tested in an early stage, but how are they playing together for real? Everything assembled
together, intentions might match, but reality can be very different. Overrides might overlap, a
forgotten recipe can change behavior, a service might not start and then changes will happen,
regression can be introduced, or newer systems or updates can break; there are countless
reasons why things can go wrong at a certain point on a real system. That's the reason we
need integration testing; testing the outcome of the combination of all our cookbooks applied
to a real test system, and now.

In the case of Chef, we have a great tool to help us for this matter named Test Kitchen, which
we previously installed and configured to run and execute tests. Let's now write these tests!

https://github.com/sstephenson/bats
http://rspec.info/
http://serverspec.org/
https://rubygems.org/search?query=kitchen-

Chapter 7

277

We'll write integrations tests for the mysite cookbook written in Chapter 6, Fundamentals
of Managing Servers with Chef and Puppet, for demonstration purposes, but those are
completely generic and can be reused anywhere. We'll test for services, files, directories, yum
repositories, packages, ports, and injected content. This way, we'll be certain that the code
we're writing actually does what it's expected to do in the (simulated) real world!

We strongly suggest that you add those integrations tests to an automated
CI system. So that after a change in the code, tests can be automatically
launched and as time go by, complexity soars with many cases added, so
you just don't have to think about it: it's all going to be tested, and if your
change breaks something you missed, you'll know it in seconds. Nobody wants
to manually verify that nothing breaks on three versions of four operating
systems at each change.

Getting ready
To step through this recipe, you will need the following:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code from Chapter 6, Fundamentals of Managing Servers with Chef and
Puppet, or any custom Chef code

How to do it…
Depending on how the cookbooks we test are created, a test folder can be created with
some sample content under it. We don't need it, so be sure to get rid of everything under the
test folder to start fresh. We'll use the mysite cookbook from Chapter 6, Fundamentals of
Managing Servers with Chef and Puppet, as the base cookbook to build our ServerSpec tests
on, but obviously those tests can be used anywhere:

$ cd cookbooks/mysite

$ rm -rf test/*

Test Kitchen works with test suites, and consequently expects a folder hierarchy with the same
name as the suite name, in an integration folder. The final folder hierarchy for a default
test suite will then be mysite/test/integration/default/serverspec.

$ mkdir -p test/integration/default/serverspec

Testing and Writing Better Infrastructure Code with Chef and Puppet

278

Creating a ServerSpec helper script
ServerSpec needs a minimum of two lines of configuration that must be repeated on each
test. Instead of repeating ourselves, let's create a helper script in test/integration/
default/serverspec/spec_helper.rb:

require 'serverspec'
Required by serverspec
set :backend, :exec

Now all our tests will just need to include the following at the top of the file:

require 'spec_helper'

Testing a package installation
Our cookbooks are doing a lot of things, and among the most important things is package
installation. These things were unit tested previously, but now we're in integration. Are
those packages really installed? Let's find out by writing the test for the httpd package
in apache_spec.rb:

require 'spec_helper'

describe package('httpd') do
 it { should be_installed }
end

We can now fire up Test Kitchen and see if this specific package is really installed!

While writing integration tests, we strongly suggest that you use Test
Kitchen to create/converge/set up/verify the sequence and not the
simple kitchen test command that does everything at once—the
manual way is much faster!

Similarly, testing for the php packages in a php_spec.rb file will look exactly the same:

require 'spec_helper'

describe package('php') do
 it { should be_installed }
end

describe package('php-cli') do
 it { should be_installed }
end

describe package('php-mysql') do
 it { should be_installed }
end

Chapter 7

279

Testing for service status
ServerSpec allows us to test the actual process status. In the recipe to install the Apache
HTTPD server, we requested it to be enabled and running. Let's find out if it's really the
case by adding the following to the apache_spec.rb file:

describe service('httpd') do
 it { should be_enabled }
 it { should be_running }
end

In the case of our MySQL installation, the documentation from the official cookbook
indicates the service is by default named mysql-default (and not the usual mysqld).
In a mysql_spec.rb file, add the following:

describe service('mysql-default') do
 it { should be_enabled }
 it { should be_running }
end

Testing for listening ports
ServerSpec is a great tool to test listening ports. In our case, we expect Apache to listen
on port 80 (HTTP) and we configured MySQL to listen to 3306. Add the following to the
apache_spec.rb file:

describe port('80') do
 it { should be_listening }
end

Similarly, add the following for MySQL in the mysql_spec.rb file:

describe port('3306') do
 it { should be_listening }
end

Testing for files existence and content
We previously unit tested the intention to create all those files in our cookbooks, such as
a VirtualHost with a custom name, impacting both filename and content (that's what the
mysite cookbook from Chapter 6, Fundamentals of Managing Servers with Chef and Puppet,
does, override the defaults from the custom apache cookbook). Is it really working? Let's find
out by testing our virtual hosting configuration with vhost_spec.rb:

describe file('/etc/httpd/conf.d/mysite.conf') do
 it { should exist }
 it { should be_mode 644 }
 its(:content) { should match /ServerName mysite/ }
 it { should be_owned_by 'root' }
 it { should be_grouped_into 'root' }
end

Testing and Writing Better Infrastructure Code with Chef and Puppet

280

This actually proves the default attribute really got overridden by the mysite value, and
the content of the virtual host configuration file also matches this value. The cookbook
really works.

A directory can similarly be tested like this in the same vhost_spec.rb file:

describe file('/var/www/mysite') do
 it { should be_directory }
end

Another interesting test to be done is to check the content of the htpasswd file; in
Chapter 6, Fundamentals of Managing Servers with Chef and Puppet, we wrote a recipe
making a request to the Chef server for authorized users in a data bag. We unit tested the
feature by stubbing the data bag, and then using Test Kitchen, we configured it to simulate
the availability of those data bags. Is this Chef Server-specific code really working and adding
the john user in the htpasswd file while restricting access to it? Let's find out by adding the
following to an htaccess_spec.rb file:

describe file('/etc/httpd/htpasswd') do
 it { should exist }
 it { should be_mode 660 }
 its(:content) { should match /john/ }
 it { should be_owned_by 'root' }
 it { should be_grouped_into 'root' }
end

Testing for repository existence
Our mysite cookbook example from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, is using the official Chef cookbook to deploy MySQL, and that includes
adding a yum repository. As it's now an important part of the system, we'd better test for its
existence and status! To test a yum repository, add the following to the mysql_spec.rb file:

describe yumrepo('mysql57-community') do
 it { should be_exist }
 it { should be_enabled }
end

Many other parts of a system can be tested using ServerSpec, notably in networking (routing
tables, gateways, and interfaces), Unix users and groups, real commands, cron jobs, and
many more.

There's more…
Using Puppet and Beaker, let's try to write acceptance tests for our Apache module.
Acceptance tests needs to be placed in the spec/acceptance directory.

Chapter 7

281

We need to define a helper file that will be shared by all acceptance tests. Let's create a
spec/spec_helper_acceptance.rb file with the following content:

require 'beaker-rspec'
require 'beaker/puppet_install_helper'

Install puppet
run_puppet_install_helper

RSpec.configure do |c|
 # Project root
 proj_root = File.expand_path(File.join(File.dirname(__FILE__),
'..'))

 # Output should contain test descriptions
 c.formatter = :documentation

 # Configure nodes
 c.before :suite do
 # Install module
 puppet_module_install(:source => proj_root, :module_name =>
'apache')
 end
end

This helper file will be used to install Puppet on the test box, and populate the module
directory with our apache module.

As a first basic acceptance test for the main apache class, let's create spec/acceptances/
classes/apache_spec.rb, with the following content:

require 'spec_helper_acceptance'

describe 'Apache' do
 describe 'Puppet code' do
 it 'should compile and work with no error' do
 pp = <<-EOS
 class { 'apache': }
 EOS

 apply_manifest(pp, :catch_failures => true)
 apply_manifest(pp, :catch_changes => true)
 end
 end
end

Testing and Writing Better Infrastructure Code with Chef and Puppet

282

The goals of this test are as follows:

ff Installing Apache using our class.
ff Verifying Puppet applies properly.
ff Verifying that a second run of Puppet does not change anything: we want to prove the

code is idempotent.

Let's try the test!

$ rake beaker

...

...

Beaker::Hypervisor, found some vagrant boxes to create

Bringing machine 'ubuntu-1604-x64' up with 'virtualbox' provider...

...

...

Apache

 Puppet code

localhost $ scp /var/folders/k9/7sp85p796qx7c22btk7_tgym0000gn/T/
beaker20161101-75828-1of1g5j ubuntu-1604-x64:/tmp/apply_manifest.
pp.cZK277 {:ignore
=> }

localhost $ scp /var/folders/k9/7sp85p796qx7c22btk7_tgym0000gn/T/
beaker20161101-75828-1l28bth ubuntu-1604-x64:/tmp/apply_manifest.
pp.q2Z81Z {:ignore
=> }

 should compile and work with no error

Destroying vagrant boxes

==> ubuntu-1604-x64: Forcing shutdown of VM...

==> ubuntu-1604-x64: Destroying VM and associated drives...

Finished in 19.68 seconds (files took 1 minute 20.11 seconds to load)

1 example, 0 failures

In this example, Beaker created the box, installed Puppet, uploaded our code, applied Puppet
twice to validate our test, and destroyed the box.

To have more logs regarding Puppet agent installation and execution, we can add a line
log_level: verbose in the nodeset file:

HOSTS:
 ubuntu-1604-x64:
 roles:
 - agent
 - default

Chapter 7

283

 platform: ubuntu-16.04-amd64
 hypervisor: vagrant
 box: bento/ubuntu-16.04
CONFIG:
 type: foss
 log_level: verbose

Now let's extend our test to use all code contained in the apache module. We want to update
the manifest at the top of the file in order to do the following:

ff Install apache

ff Define a virtual host

ff Create the root directory of the virtual host

ff Create a htpasswd file with a test user

ff Create a .htaccess file in the root directory, using the previous htpasswd file

Regarding tests, we want to:

ff Verify Puppet applies

ff Verify the code is idempotent

ff Verify apache is running and activated at boot

ff Verify apache is listening

ff Verify the virtual host is deployed and activated with the correct DocumentRoot

ff Verify the htpasswd file is deployed with a correct content

ff Verify the .htaccess file is deployed with a correct content

The updated acceptance test code is now as follows:

require 'spec_helper_acceptance'

describe 'Apache' do
 describe 'Puppet code' do
 it 'should compile and work with no error' do
 pp = <<-EOS
 class { 'apache': }
 apache::vhost{'mysite':
 website => 'www.sample.com',
 docroot => '/var/www/docroot',
 }
 apache::htpasswd{'htpasswd':
 filepath => '/etc/apache2/htpasswd',
 users => [{ "id" => "user1", "htpasswd" =>
"hash1" }],
 }

Testing and Writing Better Infrastructure Code with Chef and Puppet

284

 file { '/var/www/docroot':
 ensure => directory,
 owner => 'www-data',
 group => 'www-data',
 mode => '0755',
 }
 apache::htaccess{'myhtaccess':
 filepath => '/etc/apache2/htpasswd',
 docroot => '/var/www/docroot',
 }
 EOS

 apply_manifest(pp, :catch_failures => true)
 apply_manifest(pp, :catch_changes => true)
 end
 end

 # Apache running and enabled at boot ?
 describe service('apache2') do
 it { is_expected.to be_enabled }
 it { is_expected.to be_running }
 end

 # Apache listening ?
 describe port(80) do
 it { is_expected.to be_listening }
 end

 # Vhost deployed ?
 describe file ('/etc/apache2/sites-available/www.sample.com.conf')
do
 its(:content) { should match /DocumentRoot \/var\/www\/docroot/ }
 end

 describe file ('/etc/apache2/sites-enabled/www.sample.com.conf') do
 it { is_expected.to be_symlink }
 end

 # htpasswd file deployed ?
 describe file ('/etc/apache2/htpasswd') do
 its(:content) { should match /user1:hash1/ }
 end

 # htaccess file deployed ?
 describe file ('/var/www/docroot/.htaccess') do
 its(:content) { should match /AuthUserFile \/etc\/apache2\/

Chapter 7

285

htpasswd/ }
 end

end

Now, let's try to run Beaker again:

$ rake beaker

…

…

Beaker::Hypervisor, found some vagrant boxes to create

Bringing machine 'ubuntu-1604-x64' up with 'virtualbox'
provider...

…

…

Apache

 Puppet code

localhost $ scp /var/folders/k9/7sp85p796qx7c22btk7_tgym0000gn/T/
beaker20161103-41882-1twwbr2 ubuntu-1604-x64:/tmp/apply_manifest.
pp.nWPdZJ {:ignore => }

localhost $ scp /var/folders/k9/7sp85p796qx7c22btk7_tgym0000gn/T/
beaker20161103-41882-73vqlb ubuntu-1604-x64:/tmp/apply_manifest.pp.0Jht7j
{:ignore => }

 should compile and work with no error

 Service "apache2"

 should be enabled

 should be running

 Port "80"

 should be listening

 File "/etc/apache2/sites-available/www.sample.com.conf"

 content

 should match /DocumentRoot \/var\/www\/docroot/

 File "/etc/apache2/sites-enabled/www.sample.com.conf"

 should be symlink

 File "/etc/apache2/htpasswd"

 content

 should match /user1:hash1/

 File "/var/www/docroot/.htaccess"

 content

Testing and Writing Better Infrastructure Code with Chef and Puppet

286

 should match /AuthUserFile \/etc\/apache2\/htpasswd/

Destroying vagrant boxes

==> ubuntu-1604-x64: Forcing shutdown of VM...

==> ubuntu-1604-x64: Destroying VM and associated drives...

Finished in 20.22 seconds (files took 1 minute 24.54 seconds
to load)

8 examples, 0 failures

We now have a complete acceptance test suite for our Apache module!

See also
ff ServerSpec GitHub: https://github.com/serverspec/

ff ServerSpec Homepage: http://serverspec.org/

ff Test Kitchen Homepage: http://kitchen.ci/

ff A sample skeleton for Puppet module with Beaker enabled: https://gitlab.com/
joshbeard/puppet-module-test

https://github.com/serverspec/
http://serverspec.org/
https://gitlab.com/joshbeard/puppet-module-test
https://gitlab.com/joshbeard/puppet-module-test
https://gitlab.com/joshbeard/puppet-module-test
https://gitlab.com/joshbeard/puppet-module-test

287

8
Maintaining Systems

Using Chef and Puppet

In this chapter, we will cover the following recipes:

ff Maintaining consistent systems using scheduled convergence
ff Creating environments
ff Using Chef encrypted data bags and Hiera-eyaml with Puppet
ff Using Chef Vault encryption
ff Accessing and manipulating system information with Ohai
ff Automating application deployment (a WordPress example)
ff Using a TDD workflow
ff Planning for the worse – train to rebuild working systems

Introduction
We've previously seen how to automate systems with code and how to properly test this code.
Now we're ready for prime time; there's a whole set of features, constraints, and objectives to be
properly set. We'll want to isolate environments such as dev, staging, and production. We'll need
our infrastructure code to stay consistent without our intervention. Security and confidentiality
will start becoming an issue, and maybe those passwords and secret keys should not be
stored in clear text at all. After a few months, our automated infrastructure will grow into a large
number of managed nodes, and it will become critical to have coherent behaviour according
to systems profiles—we'll need to gather and process system information. We'll eventually end
up deploying web applications directly from Chef. To keep a high level of quality while our code
base gets more and more complex, we'll switch to the Test-Driven Development (TDD) approach
for our workflow. And finally, we'll make sure we're always ready to redeploy any part of the
infrastructure at any time (think of a disaster).

Maintaining Systems Using Chef and Puppet

288

All recipes are based on Chef. However, when possible, we'll try to show how things work
similarly with Puppet, Chef's direct alternative.

Maintaining consistent systems using
scheduled convergence

Once initially deployed and configured, it's hardly imaginable to let our systems be manually
updated afterwards by logging in to each host and launching the chef-client command.
Systems maintained with Chef have the opportunity to be converged at a predetermined time,
either through a chef-client daemon or a cron job. We'll go through both these options.

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from either Chapter 6, Fundamentals of Managing Servers
with Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with
Chef and Puppet, or any custom Chef code

How to do it…
We recommend that you create a cookbook, different from other cookbooks, dedicated to
configuring the underlying host. Let's call this cookbook common:

$ cd chef-repo/cookbooks

$ chef generate cookbook common

$ cd common

To configure the Chef client, there's an official cookbook aptly named chef-client.
Let's declare a cookbook requirement to it, specifically to Berksfile:

cookbook 'chef-client', '~> 7.0.0'

To the common/metadata.rb file, add the dependency:

depends 'chef-client'

Using the Chef client as a daemon
The documentation tells us that including the default recipe will automatically detect the host
platform and configure chef-client accordingly to run as a daemon. Here are the steps to
enable chef-client:

Chapter 8

289

1.	 Add the following to recipes/default.rb:
include_recipe 'chef-client'

2.	 Install the dependencies using Berkshelf:
$ berks install

3.	 Now upload the common cookbook with all its dependencies:
$ berks upload

4.	 Add the common cookbook to the host run-list:
$ knife node run_list add vagrant common

5.	 On the target host, launch the Chef client one last time to make it deploy itself
as a service:
$ chef-client

Recipe: chef-client::systemd_service

[...]

 * service[chef-client] action enable

 - enable service service[chef-client]

 * service[chef-client] action start

 - start service service[chef-client]

 * service[chef-client] action restart

 - restart service service[chef-client]

6.	 The logs seem pretty optimistic, but let's double-check the daemon is really running
on the host:

$ systemctl status chef-client

� chef-client.service - Chef Client daemon

 Loaded: loaded (/etc/systemd/system/chef-client.service;
enabled; vendor preset: disabled)

 Active: active (running) since Mon 2016-11-07 01:35:05 UTC; 57s
ago

 Main PID: 12943 (chef-client)

 CGroup: /system.slice/chef-client.service

 └─12943 /opt/chef/embedded/bin/ruby /usr/bin/chef-
client -c /etc/chef/client.rb -i 1800 -s 300

The chef-client service is indeed enabled and running!

Maintaining Systems Using Chef and Puppet

290

Tweaking the convergence interval time
Interesting enough, we see that the interval is introduced every 1,800 seconds (30 minutes).
What if we want a different convergence interval, say, every 900 seconds (15 minutes)? Let's
transform the default.rb recipe:

node.override['chef_client']['interval'] = '900'
include_recipe 'chef-client'

Bump the version in metadata.rb, upload the new version, wait for the new chef-client
execution, or launch it yourself to save some time. The systemd unit is now updated:

$ systemctl status chef-client

� chef-client.service - Chef Client daemon

[...]

 └─13316 /opt/chef/embedded/bin/ruby /usr/bin/chef-client -c /
etc/chef/client.rb -i 900 -s 300

Our system is now configured to converge every 15 minutes with a controlled variation
of 300 seconds.

We highly suggest that you include this common cookbook in every
new host deployment process so they could all be automatically
configured to converge at a predetermined interval.

Running the Chef client as a cron
Under certain circumstances, we might not want to run the Chef client as a daemon (such as
memory or security requirements). So luckily, we can simply fall back to a simple method that
is based on a cron. Let's transform the default recipe.rb recipe to match this:

node.override['chef_client']['init_style'] = 'none'
include_recipe 'chef-client::cron'

Upload this cookbook version using Berkshelf and execute chef-client on the target host.
See root's crontab file:

$ sudo crontab -l

Chef Name: chef-client

0 0,4,8,12,16,20 * * * /bin/sleep 69; /usr/bin/chef-client > /dev/null
2>&1

By default, it's executing chef-client every four hours with, in this case, a 69 seconds
delay to avoid every node from hammering the Chef server at the same time.

Chapter 8

291

Tweaking the Chef cron job
If converging every four hours is not enough for you and you would like to converge every 15
minutes, like we did with the daemon in the default.rb recipe, here's what you need to do:

node.override['chef_client']['init_style'] = 'none'
node.override['chef_client']['cron']['minute'] = '*/15'
node.override['chef_client']['cron']['hour'] = '*'

include_recipe 'chef-client::cron'

Upload the cookbook and run chef-client (or wait for the next scheduled run). The interval
is now set to run every 15 minutes:

$ sudo crontab -l

Chef Name: chef-client

*/15 * * * * /bin/sleep 69; /usr/bin/chef-client > /dev/null 2>&1

There's more…
With Puppet, the agent can also run as a service or a cron.

The following command is used to enable the service mode:

puppet resource service puppet ensure=running enable=true

In this mode, the Puppet agent will apply the configuration every 30 minutes by default. This
delay can be changed in /etc/puppetlabs/puppet.conf. Here is an example to reduce
this delay to five minutes:

[agent]
 runinterval = 5m

To run the Puppet agent as a cron, we need to declare a Puppet cron resource as follows:

puppet resource cron puppet-agent ensure=present user=root minute=0
command='/opt/puppet/bin/puppet agent --onetime --no-daemonize --splay
--splaylimit 60'

The generated crontab file is:

$ sudo crontab -l

0 * * * * /opt/puppet/bin/puppet agent --onetime --no-daemonize --splay
--splaylimit 60

Maintaining Systems Using Chef and Puppet

292

In this example, the Puppet agent will run every hour. The splay option is used to introduce
a random delay before the run itself, and this delay cannot exceed 60 minutes (the value of
the splaylimit option). This is particularly useful when a lot of nodes are connected to the
same Puppet server in order to spread the Puppet agent's requests in time.

Of course, if there are many nodes in your infrastructure, you should create a module
containing these Puppet resources and include it for each node. Based on our previous
Vagrant-based LAMP setup, let's create a local module with a single file, namely module/
baseconfig/manifests/init.pp, with:

@param agentmode Agent type: service or cron. If anything else,
agent will be disabled. Default value: service
class baseconfig (
 $agentmode='service'
) {
 case $agentmode {
 'service': {
 $ensureservice='running';
 $enableservice=true;
 $ensurecron='absent'
 }
 'cron': {
 $ensureservice='stopped';
 $enableservice=false;
 $ensurecron='present'
 }
 default: {
 $ensureservice='stopped';
 $enableservice=false;
 $ensurecron='absent'
 }
 }
 service {'puppet':
 ensure => $ensureservice,
 enable => $enableservice,
 }
 cron {'puppet-agent':
 ensure => $ensurecron,
 user => root,
 minute => 0,
 command => '/opt/puppet/bin/puppet agent --onetime
 --no-daemonize --splay --splaylimit 60',
 }
}

Chapter 8

293

Now we can define the requested mode from the main manifest:

node 'web.pomes.pro' {
...
 class { 'baseconfig':
 agentmode => 'cron';
 }
...
}

If there is any future change between service versus cron, our baseconfig module will
remove the configuration for the previous mode.

See also
ff The chef-client cookbook source at https://github.com/chef-

cookbooks/chef-client

ff The Puppet cron resource at https://docs.puppet.com/puppet/4.8/types/
cron.html

Creating environments
A classic organization has a minimum of two environments in which the infrastructure is run:
development and production. Very often, a lot of environments are seen, such as staging,
testing, alpha or beta. It's entirely up to the organization to model the infrastructure according
to its needs, and the complexity can grow very quickly. The good news is that Chef helps a lot
in mapping this model to the infrastructure. There's a set of information that will be different
in two distinct environments, such as cookbook versions or attributes, and Chef makes it as
easy as possible to manage these environments. By default, nodes without an environment
set will run in a _default environment.

In this section, we'll see how to create different environments, how to set nodes (both existing
and new) in a dedicated environment, how to set cookbook constraints, and finally how to
override the attributes in each environment.

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

https://github.com/chef-cookbooks/chef-client
https://github.com/chef-cookbooks/chef-client
https://docs.puppet.com/puppet/4.8/types/cron.html
https://docs.puppet.com/puppet/4.8/types/cron.html

Maintaining Systems Using Chef and Puppet

294

How to do it…
Chef environments live in a folder named environments at the root of chef-repo. If the
folder doesn't exist, create it:

$ mkdir environments

Creating a production environment
To create a production environment, follow these steps:

1.	 Let's start by creating a production environment in a production.rb file:
name 'production'
description 'The production environment'

2.	 This is the simplest environment possible; it does nothing. Upload it to the
Chef server:
$ knife environment from file environments/production.rb

Updated Environment production

3.	 List the available remote environments:

$ knife environment list

_default

production

We see we have two environments available: production and _default.

Setting an environment to a node
To set an already existing node to this new production environment, execute the
following command:

$ knife node environment set my_node_name production

my_node_name:

 chef_environment: production

Bootstrapping a node with an environment
If we're bootstrapping a node with the knife bootstrap command, we can start in the
required environment right from the beginning (using an user named vagrant like the
previous examples):

$ knife bootstrap a.b.c.d -N vagrant -x vagrant --sudo --environment
production --run-list 'recipe[mysite]'

Chapter 8

295

Fixing cookbook versions for an environment
Let's say our production systems are running a perfectly stable mysite cookbook in version
0.3.1, but we want to try a new feature in the development infrastructure in the 0.4.0 version
of the same cookbook. As every cookbook version can live together, each environment
can call its own version. The production.rb file would contain the following for the
production environment:

cookbook_versions 'mysite' => '= 0.3.1'

The development.rb file would contain the following for the development environment:

cookbook_versions 'mysite' => '= 0.4.0'

A Chef environment file may contain many cookbook constraints, as follows:

cookbook_versions: {
 'mysite': '= 0.4.0',
 'apache': '= 0.6.0'
}

Overriding attributes for an environment
Each environment can override any value, and, in Chef, it's the highest level of override.
Nothing else can override a value set for an environment. So, if we simply want to override the
value of the sitename attribute to production.rb, it will look like this:

override_attributes 'sitename' => 'mysite_production'

Accessing the environment from a recipe
The node's environment is available from any recipe through the node.chef_environment
attribute.

So if our wish is to create a file that would display the environment inside which the node is
running, we would need to create a template like this:

Running in <%= @node.chef_environment %> mode.

There's more...
With Puppet, environments are located in distinct directories on the Puppet server. You
probably noticed this in Chapter 6, Fundamentals of Managing Servers with Chef and
Puppet; we created the code in the /etc/puppetlabs/code/environments/
production directory.

This is because the default Puppet environment is production. Other environments, for
example test, should be created under /etc/puppetlabs/code/environments/.

Maintaining Systems Using Chef and Puppet

296

Manual environment creation in the Puppet server
Let's start with samples from Chapter 6, Fundamentals of Managing Servers with Chef and
Puppet, and try creating a new environment, namely test. On the Puppet server, we just
need to do this:

$ sudo -s

cd /etc/puppetlabs/code/environments/

cp -a production test

Node environment selection
On the node side, the environment to use can be controlled using --environment:

puppet agent --test --environment test

To use this environment as the default one, without using --environment, we can configure
it in /etc/puppetlabs/puppet/puppet.conf with the following:

[agent]
environment = test

Getting the environment from manifests
As for Chef, we can get the name of the running environment from any manifest. This is done
by using the $environment variable, which is set by the Puppet server.

To illustrate this, let's modify our index.php file (manifests/site.pp), both in
production and test:

file {"${docroot}/index.php":
 ensure => present,
 owner => 'www-data',
 group => 'www-data',
 mode => '0644',
 content => "<?php echo \"Running from ${environment}\" ?>"
}

We can now switch between test and production and see the changes:

puppet agent --test
Info: Using configured environment 'production'
…
@@ -1 +1 @@
-<?php echo "Running from test" ?>
+<?php echo "Running from production" ?>
…

Chapter 8

297

puppet agent --test --environment test
Info: Using configured environment 'test'
@@ -1 +1 @@
-<?php echo "Running from production" ?>
+<?php echo "Running from test" ?>

The dynamic way – r10k
We edited the environments and code directly in the Puppet master, which is not
recommended. Fortunately, r10k (which we already used in Chapter 6, Fundamentals
of Managing Servers with Chef and Puppet, to install modules) can be used to create
environments from a Git repository. Each branch from the Git repository will be checked out
into a distinct directory and will be available as an environment. This feature is dynamic: each
new branch added to the Git repository will be deployed by r10k.

Let's try it from our workstation. Until now, the job of the shared folder of our Vagrant
setup was to map the relative directory puppetcode to /etc/puppetlabs/code/
environments/production in the puppet.pomes.pro box. We are about to use
multiple environments, so we need to change the mapping to /etc/puppetlabs/code/.

We need a Git repository with two branches, production and test, with all of the previous
code. An example is available at https://github.com/ppomes/r10k_sample.git.

The r10k tool needs a global configuration file, which must be created at the same level as our
Vagrantfile, with the following content:

:sources:
 :my-repos:
 remote: 'https://github.com/ppomes/r10k_sample.git'
 basedir: 'puppetcode/environments'

Now let's use r10k:

$ r10k -c ./r10k.yaml deploy environment -p

$ ls -l puppetcode/environments/

total 0

drwxr-xr-x 8 ppomes staff 272B 26 Nov 16:40 production/

drwxr-xr-x 8 ppomes staff 272B 26 Nov 16:40 test/

Both branches from the Git repository have been deployed, and we can now fire up Vagrant
and play with our boxes and branches.

The r10k tool also takes care of the Puppetfile file in each branch, as we
already saw in Chapter 6, Fundamentals of Managing Servers with Chef and
Puppet, and deploys external modules, if any.

https://github.com/ppomes/r10k_sample.git

Maintaining Systems Using Chef and Puppet

298

See also
ff The Chef environment documentation at https://docs.chef.io/

environments.html

ff Puppet's r10k at https://github.com/puppetlabs/r10k

Using Chef encrypted data bags and Hiera-
eyaml with Puppet

Some information in data bags can be safely stored in the Chef server in plain text, but under
some circumstances, sensitive information might be safer if encrypted. Companies might not
like production API keys, private keys, or similar sensitive content to be stored in plain text
on the Chef server or on third-party services, such as GitHub. We'll see how to encrypt and
decrypt data in the command line and from inside a Chef recipe.

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

How to do it…
Our goal is to create a configuration file containing our AWS credentials for the us-east-1
region, and it's not acceptable that you store the credentials in clear text on the Chef server.
We'd like to use a data bag, as it can be encrypted:

1.	 Create a data bag folder aws to store the credentials for the us-east-1 region:
$ mkdir data_bags/aws

2.	 Create the data bag on the Chef server while we're at it:
$ knife data bag create aws
Created data_bag[aws]

https://docs.chef.io/environments.html
https://github.com/puppetlabs/r10k

Chapter 8

299

3.	 Inside this aws data bag folder, create a sample us-east-1.json file containing
the credentials:

{
 "id": "us-east-1",
 "aws_access_key": "AKIAJWTIBGE3NFDB4HOB",
 "aws_secret_key":
 "h77/xZt/5NUafuE+q5Mte2RhGcjY4zbJ3V0cTnAc"
}

This is the standard procedure for a normal data bag. If we upload it now as is,
it won't be encrypted.

Encrypting data bags with a shared secret
The solution to use an encrypted data bag is to send it encrypted from our workstation. The
encryption is done through a shared secret, the secret being either a file or a string. Let's use
the string s3cr3t as an encryption key (weak). To simply send the encrypted version of the
data bag, let's use the encryption feature of the knife command:

$ knife data bag from file --encrypt --secret s3cr3t aws us-east-1.json

Updated data_bag_item[aws::us-east-1]

If we request the data without providing a decryption key, we'll get the encrypted data from the
Chef server:

$ knife data bag show aws us-east-1

WARNING: Encrypted data bag detected, but no secret provided for
decoding. Displaying encrypted data.

aws_access_key:

 cipher: aes-256-cbc

 encrypted_data: RwbfsWgKk16sSCkMD38tXKGHmT1AHFGHRm/7fyzppye7wSS0kk19Zml
0VuhQ

 XxxI

 iv: iRRgrKfz6Ou2qdpYLkUA+w==

 version: 1

aws_secret_key:

 cipher: aes-256-cbc

 encrypted_data: uSppKMYrRbEYn/njDYo3CIGC5tY+pptN1Z7LiARtNIU/
zsllBNdSVENC1XwX

 QksifE6g00sdcHTGlHlVU0WJ0Q==

Maintaining Systems Using Chef and Puppet

300

 iv: ppjeAJcegZ9Yyn9rXgHRBQ==

 version: 1

id: us-east-1

It looks like we got what we wanted: data is stored encrypted on the Chef server!

As it may not be a secure move to store unencrypted data bags on version control systems,
such as Git, we can ask for a JSON-formatted encrypted version, such as the following, and
redirect the output to a JSON file for storage purposes:

$ knife data bag show aws us-east-1 -Fj

{

 "id": "us-east-1",

 "aws_access_key": {

 "encrypted_data": "RwbfsWgKk16sSCkMD38tXKGHmT1AHFGHRm/7fyzppye7wSS0kk
19Zml0VuhQ\nXxxI\n",

 "iv": "iRRgrKfz6Ou2qdpYLkUA+w==\n",

 "version": 1,

 "cipher": "aes-256-cbc"

 },

 "aws_secret_key": {

 "encrypted_data": "uSppKMYrRbEYn/njDYo3CIGC5tY+pptN1Z7LiARtNIU/
zsllBNdSVENC1XwX\nQksifE6g00sdcHTGlHlVU0WJ0Q==\n",

 "iv": "ppjeAJcegZ9Yyn9rXgHRBQ==\n",

 "version": 1,

 "cipher": "aes-256-cbc"

 }

}

This might be the content you'd like to store on Git!

Accessing an encrypted data bag in the CLI
To access unencrypted data from the knife CLI, the process is as easy as encrypting
data—pass the shared secret as an argument:

$ knife data bag show aws us-east-1 --secret s3cr3t

Encrypted data bag detected, decrypting with provided secret.

aws_access_key: AKIAJWTIBGE3NFDB4HOB

aws_secret_key: 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

id: us-east-1

Chapter 8

301

Now we have access to our data but in an unencrypted form.

Using an encrypted data bag from a recipe
Now that the data is safely stored on the Chef server, how do we access it from inside a Chef
recipe? Let's say our objective is to create a file named /etc/aws/credentials that will
contain the unencrypted value from the encrypted version on the Chef server. The final file
should look like this:

[region_name]
aws_access_key_id = the_access_key
aws_secret_access_key = the_secret_key

1.	 To do so, create a new recipe named aws inside the mysite cookbook:
$ chef generate recipe aws

Don't forget to bump the cookbook version and environment
constraints accordingly.

2.	 Start by creating the /etc/aws folder using the directory resource:
directory "/etc/aws" do
 owner 'root'
 group 'root'
 mode '0755'
 action :create
end

3.	 Here's a templates/aws.erb ERB template file for our destination, namely /etc/
aws/credentials:
[<%= @aws_region %>]
aws_access_key_id = <%= @aws_access_key %>
aws_secret_access_key = <%= @aws_secret_key %>

We see the template is expecting the aws_region, aws_access_key, and aws_
secret_key variables. Let's write the code to inject these values to the aws.rb
recipe. To begin with, let's access our encrypted data bag item us-east-1 from the
aws data bag, using the inline shared secret s3cr3t:
aws = Chef::EncryptedDataBagItem.load("aws", "us-east-1",
's3cr3t')

All of this information can be set as attributes if we like. If the file
method is chosen for the shared secret, the final argument will be
the path to the secret key file to decrypt the data.

Maintaining Systems Using Chef and Puppet

302

4.	 Now let's create the template, writing the decrypted credentials to the /etc/aws/
credentials file:

template "/etc/aws/credentials" do
 source 'aws.erb'
 owner 'root'
 group 'root'
 mode '0600'
 variables(
 aws_region: aws['id'],
 aws_access_key: aws['aws_access_key'],
 aws_secret_key: aws['aws_secret_key']
)
end

Here we are! The Chef server is now safely storing encrypted data. For added security, it's
better to not hardcode the shared key—use the key file that is sent separately (but this creates
an added layer of complexity in the deployment system).

There's more…
While using Puppet, it is a good practice to store the credentials and site information in Hiera,
as we saw in Chapter 6, Fundamentals of Managing Servers with Chef and Puppet. Using
hiera-eyaml, it is possible to encrypt sensitive data. Using our previous LAMP setup with
Vagrant, let's try to encrypt the root password for MySQL.

Preparing the Puppet server
We need to install a new backend for Hiera. We have not discussed a lot about Hiera yet, and
it's time to do so. Hiera is used to store data out of manifests, and is based on a hierarchy
to look up data. A default configuration is provided with the Puppet server installation and is
located at /etc/puppetlabs/puppet/hiera.yaml:

:backends:
 - yaml
:hierarchy:
 - "nodes/%{::trusted.certname}"
 - common

:yaml:
:datadir:

Chapter 8

303

Here, a yaml backend is defined, allowing us to use yaml files in the hieradata directory
of our environments. Then, a hierarchy is defined. Puppet will first try to look up data in a
yaml file with the name matching the name of the client certificate (that is, the FQDN node)
and located under the nodes subdirectory. If no data is found, Puppet will try to look up a
common.yaml file.

With hiera-eyaml, we need to declare a new backend to look up data in encrypted files.
This backend is eyaml, and by default, we will look for files with the .eyaml extension.
This backend relies on a key pair to read data, so we need to generate these keys.

Fortunately, a Puppet module, named puppet/hiera, exists to handle all of this for us.
So we just need to add it to Puppetfile with its dependencies (do not forget to run r10k
puppetfile install):

mod 'puppetlabs/inifile'
mod 'puppet/hiera'
mod 'puppetlabs/puppetserver_gem'

With this module, it is now very easy to prepare the Puppet server using the following:

node 'puppet.pomes.pro' {

 # Create a service resource for the puppetserver
 # This is needed by the hiera module, in order
 # to restart the server once hiera-eyaml is installed
 service {'puppetserver':
 ensure => running,
 }
 # Configure hiera
 class { 'hiera':
 hierarchy => [
 'nodes/%{::trusted.certname}',
],
 eyaml => true,
 manage_package => true,
 provider => 'puppetserver_gem',
 master_service => 'puppetserver',
 }
}

This piece of code will:

ff Declare a service resource for the Puppet server. This is needed by the
puppet/hiera module (see parameter master_service)

ff Install the eyaml backend in the Puppet server
ff Update the Hiera configuration in order to use this backend
ff Generate the private and public keys
ff Restart the Puppet server

Maintaining Systems Using Chef and Puppet

304

Private and public keys will be respectively placed in /etc/puppetlabs/puppet/keys/
private_key.pkcs7.pem and /etc/puppetlabs/puppet/keys/public_key.
pkcs7.pem.

Preparing the workstation
To prepare the workstation, follow these steps:

1.	 To create and edit encrypted data, we need eyaml. Let's install it using the following:
$ sudo puppet resource package hiera-eyaml provider=puppet_gem

2.	 Let's copy the keys from the Puppet server and store them in a keys folder
under $HOME:
$ ls ~/keys/

private_key.pkcs7.pem public_key.pkcs7.pem

3.	 For security reasons, it is a good idea to restrict access to the private key:
$ chmod 500 keys

$ chmod 400 keys/private_key.pkcs7.pem

4.	 We also need an eyaml configuration file, located in ~/.eyaml/config.yaml,
with this content (do not forget to adjust the path of your $HOME directory):

pkcs7_public_key: "/Users/me/keys/public_key.pkcs7.pem"
pkcs7_private_key: "/Users/me/keys/private_key.pkcs7.pem"

We are now ready to encrypt sensitive data.

Securing the MySQL root password
From the command line, eyaml can encrypt values. Here is a session example:

$ eyaml encrypt -s 'super_secure_password'

[hiera-eyaml-core] Loaded config from /Users/me/.eyaml/config.yaml

string: ENC[PKCS7,MIIBiQYJKoZIhvcNAQcDoIIBejCCAXYCAQAxggEhMIIBHQIBADAFMA
ACAQEwDQYJKoZIhvcNAQEBBQAEggEALjJ2a9uZ04lk2V5xKqEd0n3BtA4OLe1B6rA2iVru
JRKxWJdevuGvJ55DDedRwBMZmqbvSMO1cgMUyPbfEy54i3SXw4x3LEuxc1R31ILoOspBgz
U4OLuepCotuhBASA/pI/xu40y66AZAcCQ4CtD9SZJYjiWNtUA91rcARy/xYQGK39Qievx
T2eq5De89qIn2w/5fIRIkJBRyNqnwyYCWKcKSRwaiLbimpwmarOP+dxGHEFRrD/
FiM4NfoV1WNNVr1UkPEFuNrWBzwBpvyZUnMbGHN676Rg5vq9sS6aWI6zPxTrJyLtss
Zm1f4GsfhmE+anFmuxrcWtEH6C82wKMOoTBMBgkqhkiG9w0BBwEwHQYJYIZIAWUDBAEq
BBC3MhSP09yUw8XTj0XdlG1VgCCDCGhqIFdUmORYKlq0Pn5CE/cDZKTO+bhHxdBw5amAGQ==]

OR

Chapter 8

305

block: >

 ENC[PKCS7,MIIBiQYJKoZIhvcNAQcDoIIBejCCAXYCAQAxggEhMIIBHQIBADAFMAACAQEw

 DQYJKoZIhvcNAQEBBQAEggEALjJ2a9uZ04lk2V5xKqEd0n3BtA4OLe1B6rA2

 iVruJRKxWJdevuGvJ55DDedRwBMZmqbvSMO1cgMUyPbfEy54i3SXw4x3LEux

 c1R31ILoOspBgzU4OLuepCotuhBASA/pI/xu40y66AZAcCQ4CtD9SZJYjiWN

 tUA91rcARy/xYQGK39QievxT2eq5De89qIn2w/5fIRIkJBRyNqnwyYCWKcKS

 RwaiLbimpwmarOP+dxGHEFRrD/FiM4NfoV1WNNVr1UkPEFuNrWBzwBpvyZUn

 MbGHN676Rg5vq9sS6aWI6zPxTrJyLtssZm1f4GsfhmE+anFmuxrcWtEH6C82

 wKMOoTBMBgkqhkiG9w0BBwEwHQYJYIZIAWUDBAEqBBC3MhSP09yUw8XTj0Xd

 lG1VgCCDCGhqIFdUmORYKlq0Pn5CE/cDZKTO+bhHxdBw5amAGQ==]

Since the eyaml backend is looking for files with the .eyaml extension, we just need to
create a hieradata/nodes/web.pomes.pro.eyaml file with the following content:

root_password: >

 ENC[PKCS7,MIIBiQYJKoZIhvcNAQcDoIIBejCCAXYCAQAxggEhMIIBHQIBADAFMAACAQEw

 DQYJKoZIhvcNAQEBBQAEggEALjJ2a9uZ04lk2V5xKqEd0n3BtA4OLe1B6rA2

 iVruJRKxWJdevuGvJ55DDedRwBMZmqbvSMO1cgMUyPbfEy54i3SXw4x3LEux

 c1R31ILoOspBgzU4OLuepCotuhBASA/pI/xu40y66AZAcCQ4CtD9SZJYjiWN

 tUA91rcARy/xYQGK39QievxT2eq5De89qIn2w/5fIRIkJBRyNqnwyYCWKcKS

 RwaiLbimpwmarOP+dxGHEFRrD/FiM4NfoV1WNNVr1UkPEFuNrWBzwBpvyZUn

 MbGHN676Rg5vq9sS6aWI6zPxTrJyLtssZm1f4GsfhmE+anFmuxrcWtEH6C82

 wKMOoTBMBgkqhkiG9w0BBwEwHQYJYIZIAWUDBAEqBBC3MhSP09yUw8XTj0Xd

 lG1VgCCDCGhqIFdUmORYKlq0Pn5CE/cDZKTO+bhHxdBw5amAGQ==]

However, eyaml has a very handy feature—the edit mode—allowing us to create and edit
encrypted values in plain text, based on the keys stored in the $HOME directory:

$ eyaml edit hieradata/nodes/web.pomes.pro.eyaml

This command will launch an editor, and we just need to enter the following content:

root_password: >

 DEC::PKCS7[super_secure_password]!

Maintaining Systems Using Chef and Puppet

306

While saving, eyaml will write the file with the encrypted content for root_password.
If needed, we can edit the file again and all the encrypted values will be automatically
decrypted.

When editing with eyaml edit, all the new values should be contained in a
DEC::PKCS7[value]! block. For existing values, eyaml will add an index
called num to DEC(<num>)::PKCS7[value]! blocks. This index must
remain unchanged.

As our last step, we need to modify the main manifest to do a Hiera lookup in order to get
the password:

node 'web.pomes.pro' {
...
 $pass=hiera('root_password');
...
 class { 'mysql::server':
 root_password => $pass;
 }
...
}

Now the root password is encrypted in Hiera, and only people having the keys can recover it.

See also
ff The hiera-eyaml GitHub repository with its documentation at https://github.

com/TomPoulton/hiera-eyaml

ff The puppet-hiera GitHub repository with its documentation at https://github.
com/voxpupuli/puppet-hiera

Using Chef Vault encryption
A different way of encrypting data is proposed through Chef Vault, and this does not require
you to include the key somewhere in the code. The concept is elegant and simple: shared key
encryption is done for each and every existing Chef node through their already existing client
keys. This way, only the nodes allowed to access the data can decrypt it—each with their own
private key—ensuring no clear-text shared keys are being sent, like with the classic encrypted
data bag scheme.

https://github.com/TomPoulton/hiera-eyaml
https://github.com/TomPoulton/hiera-eyaml
https://github.com/voxpupuli/puppet-hiera
https://github.com/voxpupuli/puppet-hiera

Chapter 8

307

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

How to do it…
We'll build on the previous, already existing, mysite cookbook; however, any other situation
will work similarly. Instead of using the us-east-1 item from the aws data bag, let's create a
new eu-west-1 item, very similar to the other item for us-east-1 in data_bags/aws/eu-
west-1.json:

{
 "id": "eu-west-1",
 "aws_access_key": "an_access_key",
 "aws_secret_key": "a_secret_key"
}

As we know, the data will be encrypted for each and every running node's public key. It means
we have to filter hosts based on a search. I propose, that you search for every node using
search(*:*); however, feel free to limit to whatever is more secure or appropriate for you,
such as tags or roles, like search(tags:aws) or search(role:mysite):

$ knife vault create aws eu-west-1 --json data_bags/aws/eu-west-1.json
--search "*:*" --mode "client"

Don't forget the --mode "client" option when executing with
a Chef server like we do!

Accessing the encrypted vault from a cookbook
The companion to knife vault is the chef-vault cookbook. We'll use it to easily access
encrypted data in our recipe. If you're using Berkshelf to manage dependencies, don't forget
to add the cookbook where required (either metadata.rb or Berksfile). In the aws.rb
file, include the chef-vault recipe and set aws to the result of the chef_vault_item
helper search:

include_recipe 'chef-vault'
aws = chef_vault_item('aws', 'eu-west-1')

Maintaining Systems Using Chef and Puppet

308

If the node making the request isn't allowed to decrypt the data with its private key, we'll get
an error. If the node can decrypt it, like we did previously with traditional data bags, the data
will be available for use:

template "/etc/aws/credentials" do
 source 'aws.erb'
 owner 'root'
 group 'root'
 mode '0600'
 variables(
 aws_region: aws['id'],
 aws_access_key: aws['aws_access_key'],
 aws_secret_key: aws['aws_secret_key']
)
end

In the end, the /etc/aws/credentials file is populated with valid unencrypted data:

$ sudo cat /etc/aws/credentials

[eu-west-1]

aws_access_key_id = an_access_key

aws_secret_access_key = a_secret_key

Using Chef Vault, no shared key has ever transited in clear text, and only filtered and existing
nodes can decrypt data that has been encrypted specifically for them. Much more can be
done with this tool!

See also
ff The Chef Vault gem at https://github.com/chef/chef-vault

ff The Chef Vault cookbook at https://github.com/chef-cookbooks/chef-
vault

Accessing and manipulating system
information with Ohai

A vast amount of information from a given system is available to Chef through Ohai. This
program is executed during each Chef run and stores all of the gathered information in
the Chef database to make it available right from the cookbooks. The kind of information
gathered by default is quite large.

https://github.com/chef/chef-vault
https://github.com/chef-cookbooks/chef-vault
https://github.com/chef-cookbooks/chef-vault

Chapter 8

309

It ranges from networking details—such as link speed, MTU, or addresses—to all the memory
usage details you'd find on a utility such as top, all of the imaginable data regarding
filesystems or virtualization systems, or the list of every single installed package and
logged-in users.

On top of this, Ohai is a modular system with a lot of community plugins to integrate Dell DRAC
information with support information related to a KVM, LXC, or XenServer.

It can even be used to retrieve some specific data related to Windows Management
Instrumentation (WMI). We obviously can write our own plugins, but that's way beyond the
scope of this book.

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

How to do it…
In a fresh and minimal installation of a CentOS 7.2 virtual machine, the ohai output is 5,292
lines long, which is full of information. To see it bit by bit, refer to the following:

$ ohai | more

{

 "cpu": {

 "0": {

 "vendor_id": "GenuineIntel",

 "family": "6",

 "model": "69",

 "model_name": "Intel(R) Core(TM) i7-4578U CPU @ 3.00GHz",

 "stepping": "1",

 "mhz": "2999.991",

 "cache_size": "4096 KB",

 "physical_id": "0",

 "core_id": "0",

 "cores": "1",

Maintaining Systems Using Chef and Puppet

310

Alternatively, another solution is to redirect its content to a file so it's easier to process with a
dedicated tool:

$ ohai > ohai.json

All of this information is also graphically available on the Chef interface when you select a
node in the Attributes tab:

Chapter 8

311

Accessing Ohai information from a Chef recipe
Now let's access this information from a recipe. We'd like an index.html page with some
of this information, so let's edit the one we already have from the apache cookbook;
however, you can start from scratch as well. We'd like this page to dynamically display
something like this:

This centos 7.2.1511 linux system version 3.10.0-327.el7.x86_64 listening
on 192.168.146.129 is up since 25 minutes 55 seconds

All the information we need is stored somewhere in ohai: platform, platform_version,
os, os_version, ipaddress, or uptime are all valid values. Let's use them.

In apache/templates/index.html.erb, add the following:

This <%= node['platform'] %> <%= node['platform_version'] %> <%=
node['os'] %> system version <%= node['os_version'] %> listening on
<%= node['ipaddress'] %> is up since <%= node['uptime'] %>

To build something more interesting, as the platform name is available, let's make our
apache cookbook a bit more portable across Linux distributions. When running on Ubuntu,
install the apache2 package; else, install the httpd package. (This will have to be more
precise to handle all the real cases.) In the apache::default recipe, make the following
change so the httpd variable is set to apache2 when running Ubuntu and to the default
httpd elsewhere:

if node['platform'] == 'ubuntu'
 httpd = 'apache2'
else
 httpd = 'httpd'
end

package httpd do
 action :install
end

service httpd do
 action [:enable, :start]
end

This is how we can start leveraging the use of the powerful ohai command in our
Chef infrastructure.

Maintaining Systems Using Chef and Puppet

312

There's more…
The counterpart for Puppet is facter, which is installed with the Puppet agent. Like ohai,
facter is a command-line tool:

$ facter | more

aio_agent_version => 1.8.0

augeas => {

 version => "1.4.0"

}

disks => {

 sda => {

 model => "VBOX HARDDISK",

 size => "40.00 GiB",

 size_bytes => 42949672960,

 vendor => "ATA"

 }

}

dmi => {

 bios => {

 release_date => "12/01/2006",

 vendor => "innotek GmbH",

 version => "VirtualBox"

 },

 board => {

 manufacturer => "Oracle Corporation",

 product => "VirtualBox"

 },

...

As for Chef, the facter information can be accessed from a Puppet manifest.
Such information in the Puppet world is named facts.

Starting from Puppet 4.x, facts can be accessed from manifests using the $facts hash.
Let's try to create more portable lines of code for the apache module:

if $facts['os']['family'] == 'debian' {
 $packagename='apache2'
} else {
 $packagename='httpd'

Chapter 8

313

}

package{'apache2':
 ensure => present,
 name => $packagename,
}

service{'apache2':
 ensure => running,
 enable => true,
 name => $packagename,
}

You may find pieces of codes that are accessing facts using variables,
such as $osfamily instead of $facts['os']['family']. This
method works with previous versions of Puppet, but it is not obvious
here that a fact is being used.

See also
ff Ohai plugins at https://docs.chef.io/plugin_community.html#ohai

ff Ohai documentation at https://docs.chef.io/ohai.html

ff Puppet facts at https://docs.puppet.com/puppet/4.8/lang_facts_and_
builtin_vars.html

Automating application deployment (a
WordPress example)

Chef can also be used to deploy applications from code repositories. It combines one of
the most complete, feature rich, and complicated Chef resources available—the deploy
resource—and the various powerful and popular cookbooks, such as the database
cookbook. We'll show you how to deploy a simple WordPress application right from the GitHub
repository, creating a dedicated database and user as well as all the required dependencies.
This builds on what has already been done previously, but the resources and cookbook shown
here are made to be reusable anywhere.

https://docs.chef.io/ohai.html
https://docs.puppet.com/puppet/latest/reference/lang_facts_and_builtin_vars.html
https://docs.puppet.com/puppet/latest/reference/lang_facts_and_builtin_vars.html
https://docs.puppet.com/puppet/4.8/lang_facts_and_builtin_vars.html
https://docs.puppet.com/puppet/4.8/lang_facts_and_builtin_vars.html

Maintaining Systems Using Chef and Puppet

314

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

How to do it…
As we're going to deploy an application for MySite (maybe an engineering blog for the
MySite company), let's call this recipe mysite::deploy. Create the recipe like this
from chef-repo:

$ chef generate recipe cookbooks/mysite deploy

Our next steps will be to include the Apache and MySQL dependencies, configure everything
on MySQL so that WordPress can be installed, and finally deploy the WordPress code
from GitHub.

Including dependencies
A WordPress installation needs at least an HTTP server and a database. Start by including
the known dependencies to the service we already have: an Apache virtual host and MySQL.
Include them in deploy.rb:

include_recipe 'apache::virtualhost'
include_recipe 'mysite::mysql'

Creating the application's database
Before we deploy anything, we need to create a database on our already running MySQL
server with a dedicated WordPress user. There's a wonderful cookbook meant just for this: the
database cookbook. We'll reuse this one very often. It gives access to many helpers for most
use cases and most types of databases. According to the documentation, we'll need to deploy
a gem named mysql2_chef_gem, which fortunately comes with a dedicated cookbook as
well. And finally, as we're using MySQL, let's make sure we depend on its official cookbook.
Let's include all of this information in our mysite cookbook's metadata.rb:

depends 'database'
depends 'mysql2_chef_gem', '~> 1.1'
depends 'mysql', '~> 8.1'

Chapter 8

315

To build the mysql2 gem using the cookbook's new mysql2_chef_gem resource, we'll need
the MySQL development package named mysql-community-devel. Let's add the following
to our deploy.rb recipe:

package 'mysql-community-devel'

mysql2_chef_gem 'default' do
 action :install
end

The database cookbook created, among others, two useful resources for us:
mysql_database and mysql_database_user. As we can guess by their names,
they respectively help create MySQL databases and MySQL users. Let's create the
MySQL connection information variable so it can be reused in our two resources:

mysql_connection_info = {
 host: '127.0.0.1',
 username: 'root',
 password: 'super_secure_password'
}

In a proper production environment, we should use encrypted data bags
for this matter, as seen in this chapter. We're trying to keep the code simple
here.

Now we can create our database named wordpress using the mysql_database resource:

mysql_database 'wordpress' do
 connection mysql_connection_info
 action :create
end

Also, create a wordpress_user MySQL user with the password changeme. This will create
the user and grant all the privileges to it:

mysql_database_user 'wordpress_user' do
 connection mysql_connection_info
 password 'changeme'
 database_name 'wordpress'
 host '%'
 privileges [:all]
 action [:create, :grant]
end

At this point, we should have everything we need related to the database.

Maintaining Systems Using Chef and Puppet

316

Deploying an application from git or GitHub
Now on to application deployment! We know we want to deploy from git. Let's make sure git
is installed:

package 'git'

The deploy_revision resource is the most complex of all. It has a multitude of options,
and a full chapter about it wouldn't be enough. Let's keep it simple here and refer to the
complete online documentation for more complex uses. Let's keep it simple here, and please
refer to the very complete online documentation for more complex uses—because this
resource is absolutely powerful and does wonders when properly manipulated. We know
the following:

ff Our code is available at https://github.com/WordPress/WordPress
ff We want to try the latest revision (HEAD) and keep the last five revisions to

allow rollbacks
ff Our HTTP web server runs under the apache user
ff The virtual host folder is inherited from an attribute set earlier (/var/

www/#{node['sitename']})
ff There's no database migrations to execute with WordPress

The deploy_revision resource is modeled after Capistrano and therefore comes from the
Ruby on Rails world. But the concepts still apply to most languages, and it's a good practice
in production to create shared folders and symlinks for long-lasting configurations and files. It
includes certificates, database configuration files, local assets, and so on. However, to keep
the current deployment simple, we won't use these right now, even though you'll probably start
looking into it as soon as you'll need it. We'll include the symlinks configuration and initialize
them to nothing so the code is already present when the time arises. Here's how all this
ties together:

deploy_revision 'wordpress' do
 repo 'https://github.com/WordPress/WordPress'
 revision 'HEAD'
 user 'apache'
 deploy_to "/var/www/#{node['sitename']}"
 keep_releases 5
 symlinks({})
 symlink_before_migrate({})
 migrate false
 action :deploy
end

Once the code is applied, the /var/www/mysite (or whatever name you may have
overridden) structure will change a little:

$ ls /var/www/mysite/
current index.html releases shared

https://github.com/WordPress/WordPress

Chapter 8

317

There's a current, releases, and shared folder. The shared folder contains
everything that will last through the releases, including a cached copy of the current
code. The releases folder contains all the stored releases. The current folder
is itself a symlink to a specific release, which is the git commit SHA on GitHub
(72606bed348e61b6f98318cf920684765aa08b37). Each subsequent release will be
identified by its SHA indicating its unique identification and symlinked to current at the
end of the deployment process. The number of kept releases is set by the keep_releases
integer:

$ ls -ld /var/www/mysite/current

lrwxrwxrwx. 1 apache root 65 Nov 17 02:18 /var/www/mysite/current -> /
var/www/mysite/releases/72606bed348e61b6f98318cf920684765aa08b37

Once this code is applied to our node, if we navigate to http://<node_ip>/current/,
we'll see the WordPress setup page:

Maintaining Systems Using Chef and Puppet

318

To check whether the connection to the database is working correctly, type in all of the
information from our Chef code:

And, job done! The WordPress installer says, All right, sparky! You’ve made it through this
part of the installation. WordPress can now communicate with your database. If you are
ready, time now to... run the installer!.

We're now basically able to deploy any WordPress installation from scratch, at will, and in
seconds, again and again.

Let's insist again:
Once you're comfortable with this, refer to the deploy resource documentation
to discover everything this resource has to offer. It works wonders.

There's more…
With Puppet, there is no deploy resource. However, Puppet Labs is providing a useful
module—vcsrepo. With this module, we will be able to deploy a WordPress site from git.

Chapter 8

319

Let's reuse our Vagrant LAMP example in Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet. We just need to add the vcsrepo module to Puppetfile (do not forget to
run r10k puppetfile install):

mod 'puppetlabs/vcsrepo', '1.4.0'

Now we are ready to modify the main manifest of the box, namely web.pomes.pro,
to include the WordPress deployment. First, install the git package:

 package {'git':
 ensure => installed,
 }

Then, create a database for WordPress:

 mysql::db {'wordpress':
 user => 'wordpress_user',
 password => 'changeme',
 host => '%',
 grant => 'ALL',
 }

Also, update our virtual definition to change DocumentRoot:

 apache::vhost { 'web.pomes.pro':
 website => 'web.pomes.pro',
 docroot => '/var/www/wordpress',
 }

And finally, install WordPress from git and give rights to Apache:

 vcsrepo {'/var/www/wordpress':
 ensure => latest,
 provider => git,
 source => 'https://github.com/WordPress/WordPress',
 revision => 'master',
 }

 file {'/var/www/wordpress':
 ensure => directory,
 owner => 'www-data',
 group => 'www-data',
 recurse => true,
 }

https://docs.chef.io/resource_deploy.html
https://docs.chef.io/resource_deploy.html
https://docs.chef.io/resource_deploy.html

Maintaining Systems Using Chef and Puppet

320

See also
ff The deploy resource documentation at https://docs.chef.io/resource_

deploy.html

ff The PuppetLabs vcsrepo module at https://forge.puppet.com/
puppetlabs/vcsrepo

ff The WordPress hardening guide at https://codex.wordpress.org/
Hardening_WordPress

Using a TDD workflow
TDD is a popular technique in development teams that consists of this: you begin by writing
tests that will fail because no code is actually written and then write the code that will make
these tests pass. This way, we ensure that the code we write is already tested, that it really
covers the tested area; if some regression was to happen someday, it would be immediately
noticed. Here, we'll show a whole workflow, from development to production, where we deploy
Docker on CentOS 7 and Ubuntu 16.04 using the TDD technique. Using Git branches, Chef
tools, Test Kitchen, linting, and ServerSpec, we'll go through each and every step of a small
project led by TDD principles. We'll do this to achieve maximum code quality among teams,
from the development phase in the beginning to the final production environment.

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

How to do it…
Our goal is to start a new platform based on Docker. To do this, follow these steps:

1.	 Start by creating the platform cookbook:
$ cd chef-repo

$ chef generate cookbook cookbooks/platform

2.	 Now create the empty platform::docker recipe:
$ chef generate recipe cookbooks/platform docker

https://forge.puppet.com/puppetlabs/vcsrepo
https://forge.puppet.com/puppetlabs/vcsrepo
https://forge.puppet.com/puppetlabs/vcsrepo
https://codex.wordpress.org/Hardening_WordPress
https://codex.wordpress.org/Hardening_WordPress

Chapter 8

321

3.	 Initialize a git repo if it's not already done:
$ git init

4.	 Add and commit whatever work is in the repository right now, if any:
$ git add .

$ git commit -m "initial chef repo state"

5.	 Create a feature branch for we're about to work on supporting docker in
our platform:

$ git checkout -b docker_support

Infrastructure TDD – writing tests first
Let's write our tests first so they will fail for sure, and we'll know we're building from
there correctly.

Create the ServerSpec integration folder inside the platform cookbook:

$ mkdir -p test/integration/default/serverspec

Create .kitchen.yml at the root of the platform cookbook file with the following content.
We'll use Vagrant and simulate a Chef server with the chef_zero provisioner. We'd like our
platform to work on both Ubuntu 16.04 and CentOS 7.2, and we want the entry point for our
cookbook as its default recipe:

driver:
 name: vagrant

provisioner:
 name: chef_zero
 always_update_cookbooks: true

platforms:
 - name: centos-7.2

suites:
 - name: default
 run_list:
 - recipe[platform::default]
 attributes:

Maintaining Systems Using Chef and Puppet

322

As we've seen earlier in this book, create a helper script in the serverspec folder named
spec_helper.rb:

require 'serverspec'
Required by serverspec
set :backend, :exec

Let's start our test and see what is it we want to do according to our needs:

ff We want the docker-engine package to be installed

ff We want the docker service to be enabled and started

ff We want a specific docker image to be pulled (that is, sjourdan/
terraform:0.7.10)

let's write these tests in docker_spec.rb, in the serverspec folder:

require 'spec_helper'

describe package('docker-engine') do
 it { should be_installed }
end

describe service('docker') do
 it { should be_enabled }
 it { should be_running }
end

describe command('docker images') do
 its(:exit_status) { should eq 0 }
 its(:stdout) { should match(%r{^sjourdan/terraform\s.*0.7.10}) }
end

This is good enough for our needs! Let's launch our test environment by firing up kitchen:

$ kitchen create
$ kitchen converge
$ kitchen verify
[...]
 Package "docker-engine"
 should be installed (FAILED - 1)

 Service "docker"
 should be enabled (FAILED - 2)
 should be running (FAILED - 3)

 Command "docker images"
 exit_status

Chapter 8

323

 should eq 0 (FAILED - 4)
 stdout
 should match /^sjourdan\/terraform\s.*0.7.10/ (FAILED - 5)
[...]

We've failed successfully! Docker is neither installed, enabled, nor started, and no docker
image is there.

Let's get to work.

Deploying Docker with Chef
There's a very nice cookbook, which is extremely well-documented, that does everything we
need (https://github.com/chef-cookbooks/docker). Let's add it to metadata.rb
so we depend on it:

depends 'docker', '~> 2.0'

Add it to Berkshelf as well if you plan to use it in Berksfile:

cookbook 'docker', '~> 2.0'

As we'll be writing our Docker code in the platform::docker recipe, let's start by including
it in the default.rb recipe:

include_recipe 'platform::docker'

The docker cookbook provides us with a new resource named docker_installation that
does just this: install docker. There's a myriad of installation options you can toy around with.
Let's keep it simple and install the current stable Docker version from Docker repositories (not
from our Linux distribution). Add the following to the docker.rb recipe:

docker_installation 'default' do
 repo 'main'
 action :create
end

Execute kitchen again to apply our code and see whether the tests are passing or failing:

$ kitchen converge

$ kitchen verify

[...]

 Package "docker-engine"

 should be installed

[...]

 Finished in 0.18797 seconds (files took 0.43908 seconds to load)

 5 examples, 4 failures

https://github.com/chef-cookbooks/docker

Maintaining Systems Using Chef and Puppet

324

Good! What was failing a few minutes ago is now passing. It proves our action has fixed the
problem, and we're on the right track. However, other tests are still failing, though.

Let's create the Docker service and start it using the docker_service resource the
cookbook is offering us:

docker_service 'default' do
 action [:create, :start]
end

Execute kitchen again to apply our code and see what the tests say:

$ kitchen converge

$ kitchen verify

[...]

 Package "docker-engine"

 should be installed

 Service "docker"

 should be enabled

 should be running

[...]

 Finished in 0.12301 seconds (files took 0.28237 seconds to load)

 5 examples, 1 failure

Good! The service is now tested and enabled and it is running. Let's add this little requirement
to have an image pulled right from the beginning, and we've chosen the Docker image
sjourdan/terraform in its version 0.7.10:

docker_image 'sjourdan/terraform' do
 tag '0.7.10'
 action :pull
end

Execute kitchen again to apply our new code and check whether the tests pass:

$ kitchen converge

$ kitchen verify

[...]

 Finished in 0.23526 seconds (files took 0.44015 seconds to load)

 5 examples, 0 failures

Chapter 8

325

Our code seems to do exactly what our tests expected! Let's destroy our testing environment:

$ kitchen destroy

Linting the code
Let's not forget to check how clean our code is with cookstyle from inside the
platform cookbook:

$ cookstyle
Inspecting 6 files
......

6 files inspected, no offenses detected

No offenses! Our code is clean. Let's move on.

Supporting another platform
Let's check whether this code would work on Ubuntu 16.04 as well. Wouldn't it be awesome to
have it working on both the current platforms with long-term support? Simply add the platform
to the cookbook's kitchen.yml file:

 - name: ubuntu-16.04

Launch kitchen again and check whether it works with Ubuntu 16.04 as well:

$ kitchen test

[...]

 Package "docker-engine"

 should be installed

 Service "docker"

 should be enabled

 should be running

 Command "docker images"

 exit_status

 should eq 0

 stdout

 should match /^sjourdan\/terraform\s.*0.7.10/

 Finished in 0.27516 seconds (files took 0.43079 seconds to load)

 5 examples, 0 failures

 Finished verifying <default-ubuntu-1604> (5m9.12s).

Maintaining Systems Using Chef and Puppet

326

We're now sure that our code supports Ubuntu 16.04 as well!

Team working using Chef and git
Now that our platform cookbook works pretty well in our docker_support git branch,
let's commit that work. Start by verifying what's not tracked:

$ git status

On branch docker_support

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 cookbooks/platform/

Commit that work:

$ git add cookbooks/platform

$ git commit -m "added docker support to the platform"

Is our git tree clean so that we can ship it to our team? Check this using the following code:

$ git status

On branch docker_support

nothing to commit, working tree clean

Then, let's push it to our git repository (supposedly GitHub, but it might be anything):

$ git push

Now one of our coworkers can peer review the code and eventually merge docker_support
with the master branch:

$ git merge docker_support master

Our new cookbook is now ready for prime time and can be deployed to staging.

In a more complex setup, it's highly recommended that you run those
integration tests in a continuous integration system, such as Jenkins. These
systems can integrate very well with services such as GitHub or GitLab and
launch tests automatically after a push or pull request. This is an added
value, ensuring quality in the process before shipping.

Chapter 8

327

Deploying to staging
Now let's deploy this new platform cookbook to our staging environment. Let's begin by
making sure we have all the required cookbook dependencies:

$ cd cookbooks/platform

$ berks

Then, upload all the required cookbooks:

$ berks upload

Use already existing environments, such as staging, and add our new platform cookbook
version constraint to environments/staging.rb or any similar environment you're using:

name 'staging'
description 'The staging environment'
cookbook_versions 'platform' => '= 0.1.0'

Update that environment using the knife command:

$ knife environment from file environments/staging.rb

Updated Environment staging

Check this code into git:

$ git add .

$ git commit -m "added platform::docker to staging"

Add the platform cookbook to the target node's run_list:

$ knife node run_list add my_node_name 'recipe[platform]'

Wait for the next Chef run or run it yourself and Docker will be available on any node, including
this recipe.

Deploying to production
Deploying to production at this stage is totally similar to shipping to staging; there's no
difference. The environments/production.rb file should now look like this:

name 'production'
description 'The production environment'
cookbook_versions 'platform' => '= 0.1.0'

Don't forget to upload it to the Chef server:

$ knife environment from file environments/production.rb

Updated Environment production

Maintaining Systems Using Chef and Puppet

328

Commit the changes to git:

$ git add .

$ git commit -m "updated production env with platform::docker"

Wait for the next Chef run or execute it yourself, and from now on, we'll have a nice
four-step workflow:

1.	 Storing the TDD infrastructure code locally

2.	 Peer reviewing and merging

3.	 Deployment to staging

4.	 Deployment to production

Now, each time we're interested in testing or staging a new version of the cookbook that has
passed steps 1 and 2, we just bump the cookbook's version number constraint, validating
the results in the staging environment without impacting production, and finally deploy it in
production whenever possible.

There's more…
With Puppet, the same logic applies. In Chapter 7, Testing and Writing Better Infrastructure
Code with Chef and Puppet, we introduced Beaker as an acceptance test tool. In a TDD
workflow, we can first write acceptance tests in the specs/acceptance subdirectory of any
module and then write the code itself.

Using multiple nodesets, we can also ensure tests can be validated on multiple platforms. In
Chapter 7, Testing and Writing Better Infrastructure Code with Chef and Puppet, we used only
one platform (Ubuntu) in spec/acceptance/nodesets/default.yml. However, we can
create as many as needed. Here is an example of a CentOS node that should be defined in
spec/acceptance/nodesets/centos-7-x64.yml:

HOSTS:
 centos-7-x64:
 roles:
 - agent
 - default
 platform: redhat-7-x86_64
 hypervisor: vagrant
 box: puppetlabs/centos-7.2-64-nocm
CONFIG:
 type: foss

Using the environment variable BEAKER_set, it is then possible to specify on which platform
the test needs to be run:

$ BEAKER_set=centos-7-x64 rake beaker

Chapter 8

329

And using git and r10k, the same team workflow applies. We first develop in a test branch.
When all the tests have passed successfully, we merge them into the production branch
and use r10k to deploy the code.

See also
ff The Docker chef cookbook at https://github.com/chef-cookbooks/docker

Planning for the worse – train to rebuild
working systems

It's one thing to get a full infrastructure finally managed by Chef—block by block, weeks after
weeks, modification after modification—keeping the Chef run always smooth and working.
However, it's something quite different to be able to rebootstrap a working system from
scratch. What if the current setup that works perfectly well is in fact working because there's
a script or a binary somewhere left from last year, which does the thing that makes it work?
What if the application servers get corrupted tonight? If this happens, will we be able to
rebuild it from scratch? If tomorrow our IaaS cloud provider crashes, in what timeframe will
we be able to rebuild systems somewhere else (provided the backups are working; well, that's
another story)?

Now our systems are as much as possible automated, hopefully 100 percent. It's important
to know whether we'd be able to fully rebootstrap these systems in case of a disaster; if yes,
how long it would take. You may be surprised when you collect some data and discover that
many systems can be recovered in minutes. Compare this with the time it might take to find
an outdated documentation, apply untested manual processes, and finally do whatever it
takes to get something up and running under the pressure of an emergency. We'll all spend
better nights and weekends if we know that all the system profiles are being continuously
rebootstrapped successfully; in fact, why not use the CI system every night so every morning
we would know whether the previous day's changes have impacted something. We, as a team,
always know that we're ready to redeploy a system if required.

Getting ready
To step through this recipe, you will need:

ff A working Chef DK installation on the workstation

ff A working Vagrant installation on the workstation

ff The Chef code (optionally) from Chapter 6, Fundamentals of Managing Servers with
Chef and Puppet, Chapter 7, Testing and Writing Better Infrastructure Code with Chef
and Puppet, or any custom Chef code

https://github.com/chef-cookbooks/docker

Maintaining Systems Using Chef and Puppet

330

How to do it…
There is no single way to achieve our goal. We've already covered Test Kitchen, and this
might be a good solution, especially if we have written extensive tests. Integrate this in the
company's Continuous Integration (CI) system and this will do the job.

A simpler and quicker solution can also be to just launch Vagrant boxes with the right
Chef-provisioning profiles for each use case: docker, webserver, database server,
or full deployment.

Refer to the Vagrant chapter of this book for more information
about the Vagrant tool!

Our production servers are configured by the application of some Chef code, and currently, it
does this job pretty well. Are we able to easily rebootstrap a similar CentOS 7.2 server from
scratch to the point that it is similarly installed without any Chef or system error? Let's find this
out by including Vagrantfile at the root of the infrastructure repository, using the previous
project code for deploying Docker (but the idea is the same for any kind of Chef repo). The
minimum we can do is boot a fresh CentOS 7.2:

Vagrant.configure("2") do |config|
 config.vm.box = "bento/centos-7.2"
end

We'd like to automatically install Chef on our temporary node, so let's use the vagrant-
omnibus plugin (remember, installing it is easy: vagrant plugin install vagrant-
omnibus). Here's the code to do this:

 config.omnibus.chef_version = :latest

Let's configure the Vagrant provisioning system to use Chef Zero in order to simulate a Chef
server. We can also directly use a real Chef server; if we have one behind the firewall, it can
be handy. We have to specify where is everything placed (cookbooks, environments, roles, and
so on) with the added subtlety of a nodes folder that will be left empty in our case. Our virtual
machine will run in the production environment and apply the docker role:

 config.vm.provision "chef_zero" do |chef|
 chef.cookbooks_path = "cookbooks"
 chef.environments_path = "environments"
 chef.roles_path = "roles"
 chef.nodes_path = "nodes"
 chef.environment = "production"
 chef.add_role "docker"
 end

Chapter 8

331

We're almost done! We need to tell the Vagrant Berkshelf plugin where to look for Berksfile
and whether to enable it (installing the Berkshelf plugin is easy: vagrant plugin install
vagrant-berkshelf). Here's the code to do this:

 config.berkshelf.berksfile_path = "cookbooks/platform/Berksfile"
 config.berkshelf.enabled = true

Starting Vagrant at this point will just deploy everything from scratch:

$ vagrant up

[...]

Chef Client finished, 17/45 resources updated in 03 minutes 30 seconds

If the run succeeds, meaning the code from the Docker role is applied, we're safe. Let's
destroy the VM:

$ vagrant destroy -f

Including this Vagrant command in our CI system will ensure this particular role will run
flawlessly in this particular environment and with this particular system, and that potentially,
it's a matter of three minutes and 30 seconds to recover from nothing to a working state.

Multi-machine recovery
Let's move to a more complicated setup. Vagrant supports multi-machine setups, letting us
define profiles for each one of them. In a previous example of this chapter, we deployed a
WordPress installation with a database configured and the Apache web server configured as
well, all with encrypted data bags and templates. We'll implement the same idea, except that
Vagrantfile will include multiple machine profiles: one to start a virtual machine only with
the webserver role, another to deploy only the database part, and the third one to launch
everything together, including the web application. So we'll make sure all the parts of the final
product can be redeployed from scratch (which is the main point).

All VM definitions will live inside the main Vagrant configuration:

Vagrant.configure('2') do |config|
 config.vm.define 'whatever_vm', autostart: false do |node|
 [...]
 end
end

We suggest disabling the automatic start of VMs so we don't make
the mistake of launching dozens of VMs by error.

Maintaining Systems Using Chef and Puppet

332

To make sure our code is capable of bootstrapping only the webserver role from scratch,
we will need to do the following—setting paths for everything, including the specific
Berksfile for the job:

 config.vm.define 'webserver', autostart: false do |ws|
 ws.vm.box = 'bento/centos-7.2'

 ws.vm.provision :chef_zero do |chef|
 chef.cookbooks_path = 'cookbooks'
 chef.environments_path = 'environments'
 chef.roles_path = 'roles'
 chef.nodes_path = 'nodes'
 chef.environment = 'production'
 chef.add_role 'webserver'
 end

 ws.berkshelf.berksfile_path = 'cookbooks/apache/Berksfile'
 ws.berkshelf.enabled = true
 end

To launch only this box in order to make sure the webserver role can be deployed from
scratch, use the following command:

$ vagrant up webserver

To make sure our code is capable of bootstrapping only the database part of this platform
from scratch, just execute the mysite::mysql recipe in a similar context:

 config.vm.define 'db', autostart: false do |db|
 db.vm.box = 'bento/centos-7.2'

 db.vm.provision :chef_zero do |chef|
 chef.cookbooks_path = 'cookbooks'
 chef.environments_path = 'environments'
 chef.roles_path = 'roles'
 chef.nodes_path = 'nodes'
 chef.environment = 'production'
 chef.add_recipe 'mysite::mysql'
 end

 db.berkshelf.berksfile_path = 'cookbooks/mysite/Berksfile'
 db.berkshelf.enabled = true
 end

Chapter 8

333

To launch only this box in order to make sure the database recipe can be deployed from
scratch, use the following command:

$ vagrant up db

[...]

Chef Client finished, 29/43 resources updated in 01 minutes 28 seconds

To make sure our code is capable of bootstrapping the whole platform from scratch, we'll
have to simply execute the whole mysite::default recipe with one more step. One of the
included recipes uses an encrypted data bag. It's stored encrypted on the Chef server, but
locally, our ./data_bags/ directory currently includes only the unencrypted JSON versions.
We have to make sure another folder hosts the encrypted versions (maybe you already have
one to store them on GitHub for example). Otherwise, import the encrypted version from the
Chef server to a new directory, say, in JSON (using -Fj):

$ mkdir data_bags_encrypted

$ knife data bag show aws us-east-1 -Fj > data_bags_encrypted/us-east-1.
json

Now we can define the full VM like the others with the modified data bag path for the
encrypted version:

 config.vm.define 'mysite', autostart: false do |mysite|
 mysite.vm.box = 'bento/centos-7.2'

 mysite.vm.provision :chef_zero do |chef|
 chef.cookbooks_path = 'cookbooks'
 chef.environments_path = 'environments'
 chef.data_bags_path = 'data_bags_encrypted'
 chef.roles_path = 'roles'
 chef.nodes_path = 'nodes'
 chef.environment = 'production'
 chef.add_recipe 'mysite::default'
 end

 mysite.berkshelf.berksfile_path = 'cookbooks/mysite/Berksfile'
 mysite.berkshelf.enabled = true
 end

To launch only this box in order to make sure the whole recipe is deployed from scratch,
use the following command:

$ vagrant up mysite

Maintaining Systems Using Chef and Puppet

334

Put these commands (with their destroy counterparts) in the CI or whatever system you
prefer at a regular interval, like daily or weekly, for each and every automated part of the
infrastructure. With this, you'll always be certain you can redeploy the system when a
disaster comes.

There's more…
Using Puppet, all the examples we used were based on Vagrant, and it is easy to rebuild
nodes from scratch. But, in the real word, you probably won't deploy and maintain a
production system running from Vagrant on your workstation.

However, these examples show that it is possible to simulate a complete infrastructure using a
simple vagrant up command, and therefore, it is easy to put it into any CI system to ensure
you will be able to rebuild your production system easily.

335

9
Working with Docker

In this chapter, we will cover the following recipes:

ff Docker usage overview

ff Choosing the right Docker base image

ff Optimizing the Docker image size

ff Versioning Docker images with tags

ff Deploying a Ruby-on-Rails web application in Docker

ff Building and using Golang applications with Docker

ff Networking with Docker

ff Creating more dynamic containers

ff Auto-configuring dynamic containers

ff Better security with unprivileged users

ff Orchestrating with Docker Compose

ff Linting a Dockerfile

ff Deploying a private Docker registry with S3 storage

Introduction
In this chapter, we'll discover the best bits of using Docker in a development environment:
from Docker image optimizations to versioning, security, and networking, tips on how to
choose the right base Docker image and how to make them dynamic and self-configurable,
and how to leverage Docker to cross-compile Go programs or deploy Ruby-on-Rails web
applications. Still with a focus on developers and achieving the highest code quality possible,
we'll spend some time linting our code, and finally deploy our own Docker Registry to store our
own images internally—both on local storage and on AWS S3 for infinite space.

Working with Docker

336

Docker usage overview
This section is an introduction to Docker for newcomers, and can be used as a refresher
for others. We'll see how to quickly use Docker to achieve some tasks such as executing an
Ubuntu container or networked webserver, sharing data with a container, building an image,
and accessing a registry other than the default one.

Getting ready
To step through this recipe, you will need a working Docker installation.

How to do it…
We'll quickly manipulate Docker, so we're up and running with some basic usage.

Running Bash in an Ubuntu 16.04 container
To execute /bin/bash in an Ubuntu container, tag 16.04 (ubuntu:16.04). Our environment
will be interactive (use -i) and we want a pseudo-terminal to be allocated (use -t). We want
the container to be destroyed afterwards (use --rm):

$ docker run -it --rm ubuntu:16.04 /bin/bash

root@d372dba0ab90:/# hostname

d372dba0ab90

We've run our first container! Now do whatever you want with it. Quitting it destroys it and its
content is lost forever as we specified the --rm option.

Running Nginx in a container
Nginx is officially packaged as a Docker container. We want to access port 80 from the
container on port 80 of our host using the -p option, with the latest Nginx version available:

$ docker run --rm -p 80:80 nginx

Make some HTTP requests such as a curl:

$ curl -IL http://localhost

HTTP/1.1 200 OK

Server: nginx/1.11.5

[…]

The logs on the Docker stdout are displaying the logs as follows:

172.17.0.1 - - [21/Nov/2016:21:21:15 +0000] "HEAD / HTTP/1.1" 200 0
"-" "curl/7.43.0" "-"

Chapter 9

337

Maybe for some reason we need to launch a specific Nginx version, like this:

$ docker run --rm -p 80:80 nginx:1.10

The HTTP headers will reflect that we're now running the current stable version:

$ curl -IL http://localhost

HTTP/1.1 200 OK

Server: nginx/1.10.2

Sharing data with a container
We want our own content to be displayed instead of the default Nginx page. Let's create an
index.html file in the www directory, with some custom content such as the following:

<html>
 <h1>Hello from Docker!</h1>
</html>

Nginx is serving content by default in /usr/share/nginx/html; let's use the -v option to
share our own directory with the container:

$ docker run --rm -p 80:80 -v ${PWD}/www:/usr/share/nginx/html
nginx:1.10

Let's see our new content served:

$ curl -L http://localhost

<html>

 <h1>Hello from Docker!</h1>

</html>

Building a container with utilities
Let's create our own Ubuntu 16.04 image with some utilities such as curl, dig, and netcat
in it, so that whatever machine we're using, we can always have our tools at hand. To build
our container, we need a file named Dockerfile, acting like a script, executed line by line,
to build the final container. We know we want to start from an Ubuntu 16.04, then update
the APT base, and finally install our utilities. Let's do just that using the FROM and
RUN instructions:

FROM ubuntu:16.04
RUN apt-get -yq update
RUN apt-get install -yq dnsutils curl netcat

Working with Docker

338

Now build using the docker build command, passing it the name of the container with the
-t option:

$ docker build -t utils .

Step 1 : FROM ubuntu:16.04

 ---> 2fa927b5cdd3

Step 2 : RUN apt-get update -yq

 ---> Running in 0d8f8e01bde8

[...]

Step 3 : RUN apt-get install ruby -yq

 ---> Running in 425bfb1e8ee1

[...]

Removing intermediate container 425bfb1e8ee1

Successfully built c86310e48731

We can see each line of our Dockerfile is a step in the build process, each step being a
container itself (hence the different ID each time).

Let's now execute our container to make a DNS request using dig:

$ docker run -it --rm utils dig +short google.com

172.217.5.14

Alternatively, we may use curl as follows:

$ docker run -it --rm utils curl -I google.com

HTTP/1.1 302 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Location: http://www.google.ca/?gfe_rd=cr&ei=UgA1VMLPRUvF9gfJ_riACg

Content-Length: 258

Date: Wed, 23 Nov 2016 02:34:58 GMT

Using a private registry
When not specifying anything else than the container name, Docker is looking for it locally,
then on Docker Hub (https://hub.docker.com). However, we can run our own registry
or use an alternative registry such as https://quay.io/. Here's how it works: instead of
specifying only the container name, or the combo username/container_name, we prefix
both by the DNS name of the registry, for example, https://quay.io/. Here, we'll launch
the HTTP/2 Caddy webserver hosted in the CoreOS account on the Quay.io registry:

https://hub.docker.com
https://quay.io/
https://quay.io/

Chapter 9

339

$ docker run -it --rm -p 80:2015 quay.io/coreos/caddy

Activating privacy features... done.

http://0.0.0.0:2015

Here's for this quick introduction on how to use Docker.

See also
ff Docker run reference: https://docs.docker.com/engine/reference/run/

ff Dockerfile reference: https://docs.docker.com/engine/reference/
builder/

ff Quay.io alternative registry: https://quay.io/

ff Docker Hub: https://hub.docker.com/

ff Docker Store: https://store.docker.com/

Choosing the right Docker base image
Depending on our end goal, using the image of our favorite Linux distribution might or might
not be the best solution. Starting with a full CentOS container image might be a waste of
resources, while an Alpine Linux image might not contain the most complete libc for our
usage. In other cases, using the image from our favorite programming language might also
be a good idea, or not. Let's see this in depth and learn when to choose what source.

Getting ready
To step through this recipe, you will need a working Docker installation.

How to do it…
Most common distributions are available as a container form.

Starting from an Ubuntu image
Ubuntu ships official images that are all tagged with both their release version and name:
ubuntu:16.04 is equivalent to ubuntu:xenial. At the time of writing, the supported
Ubuntu releases are 12.04 (precise), 14.04 (trusty), 16.04 (xenial), and 16.10 (yakkety).

To start with an Ubuntu image in a Dockerfile, execute the following:

FROM ubuntu:16.04
ENTRYPOINT ["/bin/bash"]

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://quay.io/
https://hub.docker.com/
https://store.docker.com/

Working with Docker

340

Starting from a CentOS image
The CentOS team ships official container images, all tagged with versions. It's highly
recommended that you stick with the rolling builds that are continuously updated because
these are tagged only with major versions such as centos:7. At the time of writing,
the supported CentOS releases are CentOS 7, 6, and 5. If for some compliance reason
we were to use a specific CentOS 7 release, specific tags such as centos:7.3.1611,
centos:7.2.1511, centos:7.1.1503, and centos:7.0.1406 are available.

To start with the latest CentOS 7 available, in a Dockerfile execute the following:

FROM centos:7
ENTRYPOINT ["/bin/bash"]

Starting from a Red Hat Enterprise Linux (RHEL) image
Red Hat also ships containers for RHEL. At the time of writing, images are hosted on Red Hat's
Docker registry servers (https://access.redhat.com/containers/). These images
aren't tagged with release versions, but directly with their name: rhel7 for RHEL 7 and
rhel6 for RHEL 6. Similarly, subversions are also directly in the name of the image: RHEL 7.3
has the image named rhel7.3.

To start with the latest RHEL 7, in a Dockerfile execute the following:

FROM registry.access.redhat.com/rhel7
ENTRYPOINT ["/bin/bash"]

Starting from a Fedora image
Fedora is officially built for Docker and each release is simply tagged with its version number.
Fedora 25 has fedora:25, and it goes back to fedora:20 at the time of writing.

To start a with the latest Fedora release, use the following in a Dockerfile:

FROM fedora:latest
ENTRYPOINT ["/bin/bash"]

Starting from an Alpine Linux image
Alpine Linux is a very popular and secure lightweight Linux distribution in the container world.
It's dozens of times smaller in size than other main distributions: less than 5 MB. It became
so popular that Docker (the company) is now using it as a base for all its official images—and
the Alpine founder is now working at Docker. Alpine versions are found in the image tags:
Alpine 3.1 is alpine:3.1, and similarly, Alpine 3.4 is alpine:3.4.

To start with the 3.4 release of Alpine Linux, use this in a Dockerfile:

FROM alpine:3.4
ENTRYPOINT ["/bin/sh"]

https://access.redhat.com/containers/

Chapter 9

341

Starting from a Debian image
The Debian distribution is present as well, with many different tags: we can find the usual
debian:stable, debian:unstable, and debian:sid we're used to, and also some
other tags, such as debian:oldstable. Release names are tagged like the corresponding
versions, so the image debian:8 is the same as debian:jessie. Debian ships slim images
for each release: debian:jessie-slim is 30% smaller than the main one (80 MB compared to
126 MB at the time of writing).

To start with the Debian 8 (Jessie) release, use the following in a Dockerfile:

FROM debian:jessie
ENTRYPOINT ["/bin/bash"]

Linux distributions container image size table
Here's a table with the current size for each referenced image:

Linux distribution image Size
Alpine 3.4 4.799 MB
Debian 8 (slim) 80 MB
Debian 8 123 MB
Ubuntu 16.04 126.6 MB
RHEL 7.3 192.5 MB
CentOS 7.3 191.8 MB
Fedora 25 199.9 MB

With this information in hand, we can now decide to go for any one of these.

That being said, many popular programming languages (Go, Node, Java, Python, Ruby, PHP,
and more) are also shipping their own container images. They are all very often based on
the images from the operating system container images in the preceding table. It will be
interesting to use them if our product is definitely going to use the corresponding language as
they often offer custom versions and features.

Starting from a Node JS image
The official repository for the Node Docker image includes many tagged versions with many base
images: node:7 is based on Debian Jessie, while node:7-alpine is based on Alpine 3.4.
node:7-slim will be based on the slim Debian Jessie, and there's even node:7-wheezy if we
feel like running Node 7 on Debian Wheezy. Also available are Node 6, 4, and below.

To start from the latest Node 7 image version, use this in a Dockerfile:

FROM node:7
ENTRYPOINT ["/bin/bash"]

Working with Docker

342

For the record, a node:7 image will be around 650 MB, while node:4-slim will be around
205 MB.

Starting from a Golang image
Go is well distributed as a Docker image. Its releases are tagged by release (such as
golang:1.7) and with alternatives such as one based on Alpine (golang:1.7-alpine)
or even for Windows Server (golang:1.7-windowsservercore and golang:1.7-
nanoserver).

To start from the Go image, use the following in a Dockerfile:

FROM golang:1.7
ENTRYPOINT ["/bin/bash"]

The main Go 1.7 image is 672 MB.

Starting from a Ruby image
Ruby is also distributed as an official Docker image: all the latest releases are found tagged
like ruby:2.3. Alternative builds from Alpine Linux and Debian Jessie slim images are also
available.

A distinct Ruby-on-Rails Docker image used to exist, but is now deprecated in
favor of the main Ruby Docker image.

To start from the Ruby 2.3 image, use the following to start a Dockerfile:

FROM ruby:2.3
ENTRYPOINT ["/bin/bash"]

The main Ruby 2.3 image is 725 MB.

Starting from a Python image
Python is officially distributed and many of its versions are supported as tagged Docker
images. We can find versions 2.7, 3.3, 3.4, 3.5, and current beta versions based on
Debian Jessie or Wheezy, Alpine, and Windows Server.

To start our project using the Python 3.5 image, add the following in a Dockerfile:

FROM python:3.5
ENTRYPOINT ["/bin/bash"]

The main python:3.5 image is around 683 MB.

Chapter 9

343

Starting from a Java image
Java users are also getting official releases on Docker. Both OpenJDK and JRE are available,
for versions 6, 7, 8, and 9, based on Debian Jessie or Alpine.

To start using the OpenJDK 9 image, use the following in a Dockerfile:

FROM openjdk:9
ENTRYPOINT ["/bin/bash"]

The main openjdk:9 image is 548 MB—one of the smallest programming language
images available.

Starting from a PHP image
The PHP Docker image is very popular, and available in many different flavors. It's one of the
easiest ways of easily testing newer and older releases of PHP on a platform. PHP 5.6 and 7.0
(and all beta versions) are available, and each is also available with a different flavor, that is,
based on Alpine (php:7-alpine), Debian Jessie with Apache (php:7-apache), or Debian
Jessie with FPM (php:7-fpm), but if we still like FPM with Alpine, it's also ok (php:7-fpm-
alpine).

To start using a classic PHP 7 Docker image, start with the following in a Dockerfile:

FROM php:7
ENTRYPOINT ["/bin/bash"]

The main php:7 image is 363 MB—this is the smallest programming language image
available.

See also
ff Images on the Docker Hub: https://hub.docker.com/explore/

ff Red Hat Container catalog: https://access.redhat.com/containers

Optimizing the Docker image size
Docker images are generated instruction by instruction from the Dockerfile. Though perfectly
correct, many images are sub-optimized when we're talking about size. Let's see what we can
do about it by building an Apache Docker container on Ubuntu 16.04.

Getting ready
To step through this recipe, you will need a working Docker installation.

https://access.redhat.com/containers

Working with Docker

344

How to do it…
Take the following Dockerfile, which updates the Ubuntu image, installs the apache2
package, and then removes the /var/lib/apt cache folder. It's perfectly correct,
and if you build it, the image size is around 260 MB:

FROM ubuntu:16.04
RUN apt-get update -y
RUN apt-get install -y apache2
RUN rm -rf /var/lib/apt
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

Now, each layer is added on top of the previous. So, what's written during the apt-get
update layer is written forever, even if we remove it in the last RUN.

Let's rewrite this Dockerfile using a one-liner, to save some space:

FROM ubuntu:16.04
RUN apt-get update -y && \
 apt-get install -y apache2 && \
 rm -rf /var/lib/apt/
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

This image is exactly the same, but is only around 220 MB. That's 15% space saved!

Replacing the ubuntu:16.04 image with the debian:stable-slim image gets the same
result, but with a size of 135 MB (a 48% reduction in size!):

FROM debian:stable-slim
RUN apt-get update -y && \
 apt-get install -y apache2 && \
 rm -rf /var/lib/apt/
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

How it works…
Each layer is added to its predecessor. By combining all the related commands from download
to deletion, we keep a clean state on this particular layer. Another good example is when
the Dockerfile downloads a compressed archive; downloading it, uncompressing it, and then
removing the archive uses a lot of added layer space when done separately. The same in one
line does everything at once, so instead of having the cumulated space taken from the archive
and its uncompressed content, the space taken is only from the uncompressed content alone.
Often, there's a very nice gain in size!

Chapter 9

345

Versioning Docker images with tags
A very common need is to quickly identify what version of the software a Docker image is
running and optionally stick to it, or to be sure to always run a stable version. This is a perfect
use for the Docker tags. We'll build a Terraform container, with both a stable and an unstable
tag, so multiple versions can coexist—one for production and one for testing.

Docker tags are not to be mistaken with Docker labels. Labels are purely
informative when tags can be requested directly to make images distinct from
an operational point of view.

Getting ready
To step through this recipe, you will need a working Docker installation.

How to do it…
Here's a simple Dockerfile to create a Terraform container (Terraform was covered earlier in
this book):

FROM alpine:latest
ENV TERRAFORM_VERSION=0.7.12
VOLUME ["/data"]
WORKDIR /data
RUN apk --update --no-cache add ca-certificates openssl && \
 wget -O terraform.zip
"https://releases.hashicorp.com/terraform/${TERRAFORM_VERSION}/ter
raform_${TERRAFORM_VERSION}_linux_amd64.zip" && \
 unzip terraform.zip -d /bin && \
 rm -rf terraform.zip /var/cache/apk/*
ENTRYPOINT ["/bin/terraform"]
CMD ["--help"]

This is the current, stable, and latest version, and it's 0.7.12 as well. We'd like our users to be
able to request one of the following:

ff terraform:latest (for those of our users who always want the latest version
available)

ff terraform:stable (for those of our users who always want the stable version,
opposed to a beta version)

ff terraform:0.7.12 (for those of our users who always want a very specific version,
such as for compatibility issues)

Working with Docker

346

This is easily achievable by building directly with all these different tags:

$ docker build -t terraform:latest -t terraform:stable -t
terraform:0.7.12 .

Now when requesting which images are available, we can see they all have the same image
ID, but with different tags. This is what we wanted, since it's the same image that shares all
those tags:

$ docker images terraform

REPOSITORY TAG IMAGE ID CREATED
SIZE

terraform 0.7.12 9d53a0811d63 About a
minute ago 83.61 MB

terraform latest 9d53a0811d63 About a
minute ago 83.61 MB

terraform stable 9d53a0811d63 About a
minute ago 83.61 MB

Some days later, we release a new version of the software as a Docker container for our team
to test it out. This time it's an unstable, 0.8.0-rc1 version. We'd like our users to request this
image as one of the following:

ff terraform:latest (it's still the latest version available, even unstable)

ff terraform:unstable (it's a release candidate, not a stable version)

ff terraform:0.8.0-rc1 (it's this specific version)

Change the TERRAFORM_VERSION variable in the Dockerfile, and build the image with the
following tags:

$ docker build -t terraform:latest -t terraform:unstable -t
terraform:0.8.0-rc1 .

Now, if we look at the available Terraform images, we can confirm that it's the same image
ID shared by the latest, unstable, and 0.8.0-rc1 tags, while our users preferring the
stable version are not impacted by our changes:

$ docker images terraform

REPOSITORY TAG IMAGE ID CREATED
SIZE

terraform 0.8.0-rc1 44609fa7c016 18
seconds ago 86.77 MB

terraform latest 44609fa7c016 18
seconds ago 86.77 MB

terraform unstable 44609fa7c016 18
seconds ago 86.77 MB

Chapter 9

347

terraform 0.7.12 9d53a0811d63 9 minutes
ago 83.61 MB

terraform stable 9d53a0811d63 9 minutes
ago 83.61 MB

This leads to a very important question: as the latest tag is by default when
not specifying any, should it be also used for unstable releases? This is
something you have to answer according to your needs and environment.

Deploying a Ruby-on-Rails web application in
Docker

The great thing with Docker is that, as developers, we can ship whatever is working on
this particular container on one environment (such as development or staging) and be
sure it will run similarly in another environment (such as production). Deploys are less
stressful, and rollbacks are easier. However, to achieve this peace of mind, we need more
than a Ruby-on-Rails application, for example, we need to ship a Dockerfile containing
everything to build a self-sufficient container so anyone can run it. Here's how to do it.

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff A Rails application

How to do it…
Here are our standard requirements:

ff This Rails application needs Ruby 2.3

ff All dependencies are handled by Bundler, and need to be installed in the container

ff Node 5 is also needed

ff We want assets to be precompiled in the image (putting them somewhere else is out
of scope)

Here's how we'll proceed. To match our main requirement, we'll start with the
ruby:2.3 image:

FROM ruby:2.3

Working with Docker

348

One way to enable the official Node 5 repositories is to download and execute a setup script.
Let's do it:

RUN curl -sL https://deb.nodesource.com/setup_5.x | bash -

Now we need to install Node 5 (apt-get install nodejs) and remove all the cache files:

RUN apt-get install -qy nodejs && \
 rm -rf /var/lib/apt/* && \
 rm -rf /var/lib/cache/* && \
 rm -rf /var/lib/log/* && \
 rm -rf /tmp/*

The Ruby image documentation suggests using /usr/src/app as a destination folder for our
code. Let's ensure it's created and switch to it until the rest of the process:

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

To install all the declared dependencies, we need to send both Gemfile and Gemfile.
lock to the destination folder, /usr/src/app. We include it as a distinct step, so we
can optionally customize this step later. Then we execute Bundler (without the test and
development sections if we have them). If you're a Ruby developer, customize accordingly!

COPY Gemfile /usr/src/app/
COPY Gemfile.lock /usr/src/app/
RUN bundle install --without test development --jobs 20 --retry 5

It's now time to copy the application code itself to the destination folder, /usr/src/app (in
this case, it's the current folder):

COPY . /usr/src/app

The next step is to precompile the assets, with a RAILS_ENV set to production, but feel free
to adapt, including the compilation command:

RUN RAILS_ENV=production rake assets:precompile

Finally, run the Rails server on all interfaces through bundler (by default, it listens on
TCP/3000):

CMD ["bundle", "exec", "rails", "server", "-b", "0.0.0.0"]

We can now build this Dockerfile and have our complete, standalone, and fully working Ruby-
on-Rails application ready on Docker.

It is a good practice to plug the build process in CI and execute tests against
running this new image!

Chapter 9

349

Building and using Golang applications with
Docker

Golang is a great language able to create statically linked binaries for different platforms such
as Linux (ELF binaries) or Mac OS (Mach-O binaries). These binaries are often very small in
size, and the language is getting increasingly popular in the microservices world because of
their portability and the speed of deployment it enables: deploying a self-sufficient 10 MB
Docker image on dozens of servers is just more convenient and fast than a 1.5 GB image
full of libs. Golang and containers are two technologies that go perfectly well together, and
shipping or managing infrastructures using Go programs is a breeze.

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff A Golang application source code

How to do it…
Let's say our application code is checked in src/hello. We'd like to begin by at least
compiling the program, either for the Linux platform or for the Mac operating system.

Using the golang Docker image to cross-compile a Go program
We can compile our program sharing the code folder, and setting the work directory to it:

$ docker run --rm -v "${PWD}/src/hello":/usr/src/hello -w
/usr/src/hello golang:1.7 go build -v

This way, even on a Mac OS system, we can generate a proper ELF binary:

$ file src/hello/hello

src/hello/hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
statically linked, not stripped

That said, if we explicitly want a Mac binary, we can pass the standard Go environment
variables GOOS and GOARCH so even a Linux machine can build a Mac binary:

$ docker run --rm -v "${PWD}/src/hello":/usr/src/hello -w

/usr/src/hello -e GOOS=darwin -e GOARCH=amd64 golang:1.7 go build -v

Working with Docker

350

Confirm we have a Mach-O executable and not an ELF binary:

$ file src/hello/hello

src/hello/hello: Mach-O 64-bit executable x86_64

Using the golang Docker image to build and ship a Go program
Now if we want to build our program right from a Dockerfile and generate a Docker image out
of it, that would translate like the following:

FROM golang:1.7
COPY src/hello /go/src/hello
RUN go install hello
ENTRYPOINT ["/go/bin/hello"]

Just build that image and execute it:

$ docker build -t hello .

$ docker run -it --rm hello

Using the scratch Docker image
Now, it's a bit of a waste of space to have a 675 MB+ image for the very often small Golang
application that often is only a few MB, and it takes time to deploy on servers. Here comes
the scratch image: it just doesn't exist. We start from nothing, copy the binary, and execute
it. Our build process (Makefile, build process, and CI) builds the app with the golang image,
but does not ship the compiled application with it, saving usually 95–99% of the space,
depending on the size of our binary:

FROM scratch
COPY src/hello/hello /hello
ENTRYPOINT ["/hello"]

This generates the smallest image imaginable. Think only a few megabytes.

Using the Alpine Linux alternative for a Go program
The main problem with the scratch image solution is the impossibility to debug it easily from
inside the container, and the impossibility to rely on external libraries or dependencies such
as SSL and certificates. Alpine Linux is this small image (~5 MB) that can greatly help us
if we'd like to access a shell (/bin/sh is available) and a package manager to debug our
application. This is how we'd do it:

FROM alpine:latest
RUN apk --update --no-cache add ca-certificates openssl && \
 rm -rf /var/cache/apk/*
COPY src/hello/hello /bin/hello
ENTRYPOINT ["/bin/hello"]

Chapter 9

351

Such an image usually is only a handful of megabytes more than the application binary, but
helps greatly for debugging.

Networking with Docker
Docker has some pretty nice networking options, from choosing which ports to expose to
concurrently running isolated or bridged networks. It's pretty useful to quickly and easily
simulate production environments, create better architectures, and increase container
exposure on the network front. We'll see different ways to expose ports, create new networks,
execute Docker containers inside them, and even have multiple networks per container.

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff A sample HTTP server binary (sample code included)

How to do it…
To make a container network port available to others, it first needs to be exposed. Consider
any service listening on a port not reachable unless properly exposed in the 3:

FROM debian:jessie-slim
COPY src/hello/hello /hello
EXPOSE 8000
ENTRYPOINT ["/hello"]

This service is listening on port 8000, and any other Docker container running on the host can
access it, by default on the same network:

curl -I http://172.17.0.2:8000/

HTTP/1.1 200 OK

However, this service is not available to the host system:

$ curl http://localhost:8000

curl: (7) Failed to connect to localhost port 8000: Connection
refused

Working with Docker

352

To make it available to the host system, the container has to be run with an explicit port
redirection. It can be option -P to map exposed ports randomly (the port 8000 can be
mapped to 32768 on the local machine), or the other option -p 8000:8000 to make it fixed:

$ docker run -ti --rm -P --name hello hello

On another terminal, find the port redirection:

$ docker port hello
8000/tcp -> 0.0.0.0:32771

Also, try to connect to it:

$ curl -I http://localhost:32771/

HTTP/1.1 200 OK

These are the basics of networking with Docker containers.

Docker networks
Containers can also live inside dedicated networks for added security and isolation. To create
a new Docker network, just give it a name:

$ docker network create hello_network

d01a3784dec1ade72b813d87c1e6fff14dc1b55fdf6067d6ed8dbe42a3af96c2

Grab some information about this network using the docker network inspect command:

$ docker network inspect hello_network -f '{{json .IPAM.Config }}'

[{"Subnet":"172.18.0.0/16","Gateway":"172.18.0.1/16"}]

This is a new subnet: 172.18.0.0/16 (in this case).

To execute a container in this specific Docker network, use the --network <docker_
network_name> option like this:

$ docker run -it --rm --name hello --network hello_network hello

Confirm this container is in the 172.18.0.0/16 network space from the hello_network
network:

$ docker inspect --format '{{json
.NetworkSettings.Networks.hello_network.IPAddress }}' hello
"172.18.0.2"

This container will be protected from unauthorized access from any container not running on
the correct network. Here's an example from a container running in the default network:

curl -I --connect-timeout 5 http://172.18.0.2:8000/

curl: (28) Connection timed out after 5003 milliseconds

Chapter 9

353

However, connecting from a container in the same network is allowed and working
as expected:

curl -I http://hello:8000/

HTTP/1.1 200 OK

Connecting multiple networks for one container
It can be useful to have a few specific containers available on more than one network; proxies,
internal services, and other similar services can face different networking configurations. A
single Docker container can connect multiple Docker networks. Take this simple HTTP service
listening on port 8000 and launch it on the default bridged network:

$ docker run -ti --rm --name hello hello

This service is now available to any other container on the default network:

curl -I http://172.17.0.2:8000/

HTTP/1.1 200 OK

However, we'd like it to be also available on the hello_network Docker network. Let's connect
them to the host:

$ docker network connect hello_network hello

The container now has a new network interface in the hello_network subnet:

$ docker exec -it hello ip addr

[...]

116: eth0@if117: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP group default

 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff

 inet 172.17.0.2/16 scope global eth0

[...]

118: eth1@if119: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP group default

 link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff

 inet 172.18.0.2/16 scope global eth1

[...]

This means that it's also available to answer requests from containers on this network!

$ curl http://hello:8000

Hello world

Working with Docker

354

We'll eventually remove the link to the original network after we're done with it:

$ docker network disconnect bridge hello

Creating more dynamic containers
We can create better containers than just fixing their usage in advance and executing them.
Maybe part of the command is the one to keep (like we always want the OpenVPN binary and
options to be executed, no matter what), maybe everything needs to be overridden (that's the
toolbox container model, such as a /bin/bash command by default, but any other command
given in argument can otherwise be executed), or a combination of the two, for a much more
dynamic container.

Getting ready
To step through this recipe, you will need a working Docker installation.

How to do it…
To have a fixed command executed by the container, use the ENTRYPOINT instruction. Use an
array if the command is followed by arguments to be enforced:

FROM debian:stable-slim
RUN apt-get update -y && \
 apt-get install -y apache2 && \
 rm -rf /var/lib/apt/
EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

To override the whole command at runtime, use the --entrypoint option:

$ docker run -it --rm --entrypoint /bin/sh httpd

hostname

585dff032d21

To have a command that can be simply overridden with an argument, use the CMD instruction
instead of ENTRYPOINT:

FROM debian:stable-slim
RUN apt-get update -y && \
 apt-get install -y apache2 && \
 rm -rf /var/lib/apt/
EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

Chapter 9

355

To override the command, simply give another command as an argument at runtime:

$ docker run -it --rm httpd /bin/sh

hostname

cb1c6a7083ad

We can combine both instructions to have a more dynamic container. In this case, we want to
obtain a container always executing /usr/sbin/apache2ctl, and by default starting the
daemon in foreground, otherwise overridden by any argument at container launch time:

FROM debian:stable-slim
RUN apt-get update -y && \
 apt-get install -y apache2 && \
 rm -rf /var/lib/apt/
EXPOSE 80
CMD ["-D", "FOREGROUND"]
ENTRYPOINT ["/usr/sbin/apache2ctl"]

If this container is executed as is, nothing changes; apache2ctl gets executed with the -D
FOREGROUND option.

However, it becomes a more useful container when giving it arguments, as it dynamically will
add them to the apache2ctl command, replacing the original command specified by the
CMD instruction:

$ docker run -it --rm httpd -v

Server version: Apache/2.4.10 (Debian)

Server built: Sep 15 2016 20:44:43

We can interactively pass /usr/sbin/apache2ctl arguments without the need to override
the entrypoint, for example, to propose alternatives Apache configuration files or options.

Auto-configuring dynamic containers
We can't always execute a binary to get what we want. A configuration done dynamically
is a very common situation; system paths can be dynamic, users and passwords can be
auto-generated, network ports can be contextual, third-party credentials will be different in
development and in production, slaves will join their masters, cluster members will find other
nodes, and most other similar changing elements will need to adapt at runtime. The trick
here is to combine environment variables with the use of a script as an entry point that will
be executed no matter what, and behave according to the environment variables, optionally
combined with a command from the Dockerfile.

Working with Docker

356

Getting ready
To step through this recipe, you will need a working Docker installation.

How to do it…
Our objective is to create a temporary, dynamic SSH server in a Docker container, with
credentials we can't know in advance. So, to make it work as intended, we'll want to execute
this container like this:

$ docker run -e USER=john -e PASSWORD=s3cur3 sshd

Take this simple Dockerfile that creates what's necessary to run the Dropbear SSH server
on the Alpine Docker image:

FROM alpine:latest
RUN apk add --update openssh-sftp-server openssh-client dropbear
&&\
 rm -rf /var/cache/apk/*
RUN mkdir /etc/dropbear && touch /var/log/lastlog
COPY entrypoint.sh /
ENTRYPOINT ["/entrypoint.sh"]
CMD ["dropbear", "-RFEmwg", "-p", "22"]

When built, this container will start by executing the entrypoint.sh script, and then the
dropbear binary. Here's a sample entrypoint.sh that only does simple checks for the
USER and PASSWORD environment variable, creates the required users on the container, sets
some permissions, and finally executes the CMD instruction from the original Dockerfile:

#!/bin/sh

Checks for USER variable
if [-z "$USER"]; then
 echo >&2 'Please set an USER variable (ie.: -e USER=john).'
 exit 1
fi

Checks for PASSWORD variable
if [-z "$PASSWORD"]; then
 echo >&2 'Please set a PASSWORD variable (ie.: -e
PASSWORD=hackme).'
 exit 1
fi

echo "Creating user ${USER}"
adduser -D ${USER} && echo "${USER}:${PASSWORD}" | chpasswd

Chapter 9

357

echo "Fixing permissions for user ${USER}"
chown -R ${USER}:${USER} /home/${USER}
exec "$@"

If this container is executed without any arguments, it errors out, thanks to the check from the
entrypoint.sh script:

$ docker run --rm ssh

Please set an USER variable (ie.: -e USER=john).

To properly use this dynamically configured container, use environment variables as required:

$ docker run --rm -h ssh-container -e USER=john -e PASSWORD=s3cur3 -p
22:22 ssh

Creating user john

Password for 'john' changed

Fixing permissions for user john

[1] Nov 29 23:02:02 Not backgrounding

Now try connecting to this container from another terminal or container with proper
credentials:

$ ssh john@localhost

[...]

john@localhost's password:

ssh-container:~$ hostname

ssh-container

We're logged in to our SSH container!

Such a dynamic system can be used to give temporary, controlled, and secure SSH access
to someone needing, for example, shared volume storage access or similar usages. Shutting
down the container just revokes everything and we're done with it.

Better security with unprivileged users
By default, containers execute everything as the root user. Granted that containers are
running in an isolated environment, but still, a publicly facing daemon is running as root on a
system, and a security breach may give an attacker access to this particular container, and
maybe root shell access, giving access at least to the container's Docker overlay network.
Would we like to see this issue combined with a 0-day local kernel security breach that would
give the attacker access to the Docker host? Probably not. Then, maybe we should keep some
of the good old practices and start by executing our daemon as a user other than root.

Working with Docker

358

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff A sample HTTP server binary (sample code included)

How to do it…
Let's take a simple HTTP server that answers on the port 8000 of the container. Executed
through a container, it would look like this, as seen earlier in this book:

FROM debian:jessie-slim
COPY src/hello/hello /usr/bin/hello
RUN chmod +x /usr/bin/hello
EXPOSE 8000
ENTRYPOINT ["/usr/bin/hello"]

This will work, but things aren't looking that great security-wise; our daemon is, in fact,
running as the root user, even though it's running on an unprivileged port:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
COMMAND
root 1 0.6 0.2 36316 4180 ? Ssl+ 23:30 0:00
/usr/bin/hello

This is suboptimal from a security point of view. Containers are real systems, so they too can
have users. Combined with the USER instruction in the Dockerfile, we'll be able to execute
commands as an unprivileged user! Here's how an optimized Dockerfile looks, adding a
normal user and group for the hello user, and then executing the /usr/bin/hello HTTP
server as this new unprivileged user:

FROM debian:jessie-slim
COPY src/hello/hello /usr/bin/hello
RUN chmod +x /usr/bin/hello
RUN groupadd -r hello && useradd -r -g hello hello
USER hello
EXPOSE 8000
ENTRYPOINT ["/usr/bin/hello"]

Once built and running, the daemon still runs correctly, but as an unprivileged user:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
COMMAND
hello 1 0.0 0.2 36316 4768 ? Ssl+ 23:33 0:00
/usr/bin/hello

Chapter 9

359

We're now building tougher containers!

Orchestrating with Docker Compose
Launching multiple containers manually can be a hassle, especially when the infrastructure
goes increasingly complex. Dependencies, shared variables, and common networking can be
easily handled with the orchestration tool named Docker Compose. In a simply YAML file, we
can describe what services are needed to run our application (proxy, application, databases,
and so on). In this section, we'll show how to create a simple LAMP docker-compose
file, then we'll show how we can iterate from that to build some staging and production
specific changes.

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff A working Docker Compose installation

How to do it…
To orchestrate multiple containers together using Docker Compose, let's start with an easy
WordPress example. The team at WordPress built a container that auto-configures to some
extent through environment variables similar to what we saw earlier in this chapter. If we just
apply the documentation shipped with the WordPress Docker container, we end up with the
following docker-compose.yml at the root of some new directory (it can be a Git repository
if needed):

version: '2'

services:
 wordpress:
 image: wordpress
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_PASSWORD: example
 mysql:
 image: mariadb
 environment:
 MYSQL_ROOT_PASSWORD: example

Working with Docker

360

This has the great advantage to work out of the box; the latest WordPress and MariaDB
images get downloaded, local HTTP port 80 gets redirected on port 8080 on the host, and
MySQL stays isolated. The WordPress container takes one environment variable in this
case—the MySQL root password, which should match the environment variable from
MySQL. We'll see that many more are possible.

Executing Docker Compose will automatically create a Docker network and run the containers:

$ docker-compose up

[...]

mysql_1 | 2016-12-01 20:51:14 139820361766848 [Note] mysqld
(mysqld 10.1.19-MariaDB-1~jessie) starting as process 1 ...

[...]

mysql_1 | 2016-12-01 20:51:15 139820361766848 [Note] mysqld:
ready for connections.

[...]

wordpress_1 | [Thu Dec 01 20:51:17.865932 2016] [mpm_prefork:notice]
[pid 1] AH00163: Apache/2.4.10 (Debian) PHP/5.6.28 configured -- resuming
normal operations

wordpress_1 | [Thu Dec 01 20:51:17.865980 2016] [core:notice] [pid
1] AH00094: Command line: 'apache2 -D FOREGROUND'

Let's verify we can connect to the WordPress HTTP server locally, on the redirected port 8080:

$ curl -IL http://localhost:8080

HTTP/1.1 302 Found

[...]

HTTP/1.1 200 OK

[...]

More information can be seen using the ps command:

$ docker-compose ps

 Name Command State
Ports

1basics_mysql_1 docker-entrypoint.sh mysqld Up
3306/tcp

1basics_wordpress_1 docker-entrypoint.sh apach ... Up
0.0.0.0:8080->80/tcp

Chapter 9

361

Let's ensure the password used for the MySQL root password is really the one provided by the
docker-compose.yml file, using the docker-compose exec command, very similar to
the docker run command (it takes docker-compose.yml names):

$ docker-compose exec mysql /usr/bin/mysql -uroot -pexample

[...]

MariaDB [(none)]> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| wordpress |

+--------------------+

4 rows in set (0.00 sec)

When we're done with our initial Docker Compose environment, let's destroy it; the containers
and networks will be removed:

$ docker-compose down

Extending Docker Compose
Now we know the basics, let's extend the usage a little. We're not happy with the default
password and would like to use a better one, so simulate the staging environment. Let's
use the overriding feature of Docker Compose for that and create a docker-compose.
staging.yml file that will simply override the concerned values:

version: '2'
services:
 wordpress:
 image: wordpress:4.6
 environment:
 WORDPRESS_DB_PASSWORD: s3cur3
 mysql:
 environment:
 MYSQL_ROOT_PASSWORD: s3cur3

The two environment variables WORDPRESS_DB_PASSWORD and MYSQL_ROOT_PASSWORD
will be overridden when docker-compose is executed with multiple configuration files taken
in order:

$ docker-compose -f docker-compose.yml -f docker-compose.staging.yml
up

Working with Docker

362

Verify that the new password is indeed working for MySQL:

$ docker exec -it 1basics_mysql_1 mysql -uroot -ps3cur3

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 4

We're very easily overriding values with simple YAML files!

Suppose that we now want to include a reverse proxy to the mix, with a slightly earlier version
of the Docker image and another MySQL password, to mimic a specific situation we have in
production. We can use the excellent dynamic Nginx image from jwilder/nginx-proxy to
do this job and add a new proxy service, sharing port 80 and the local Docker socket as read-
only (to dynamically access running containers) on a docker-compose.production.yml
file:

 proxy:
 image: jwilder/nginx-proxy
 ports:
 - "80:80"
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock:ro

This nginx-proxy container needs a variable named VIRTUAL_HOST to know what to
answer in case of multiple virtual hosts. Let's add it as localhost (or adapt to your local
hostname), along with the better password and the WordPress image version:

 wordpress:
 image: wordpress:4.5
 environment:
 WORDPRESS_DB_PASSWORD: sup3rs3cur3
 VIRTUAL_HOST: localhost

Make the password match in the MySQL section as well and we'll be done with our production
environment simulation:

$ docker-compose -f docker-compose.yml -f docker-
compose.production.yml up

Confirm nginx-proxy is answering in HTTP/80 and forwarding a proper HTTP answer from
the WordPress container:

$ curl -IL http://localhost/

HTTP/1.1 302 Found

Server: nginx/1.11.3

[...]

HTTP/1.1 200 OK

Server: nginx/1.11.3

Chapter 9

363

We've seen how, with only a few lines of YAML, we can easily orchestrate containers, how it
can be used to handle different cases and environments, and how it can also be successfully
extended. This is, however, just a small introduction to what can be done with Docker
Compose—it's quite a powerful tool!

See also
ff Nginx-proxy: https://github.com/jwilder/nginx-proxy

ff WordPress Docker image: https://hub.docker.com/_/wordpress/

ff The Docker Compose documentation: https://docs.docker.com/compose/

Linting a Dockerfile
Like any other language, Dockerfiles can and should be linted for updated best practices and
code quality checks. Docker is no exception to the rule, and good practices are always moving,
getting updates, and might also be a little different between communities. In this section, we'll
start with a basic Dockerfile found earlier and end up with a fully double-checked linted file.

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff An AWS account

How to do it…
Many different linters exist for linting Dockerfiles: Hadolint (http://hadolint.
lukasmartinelli.ch/) maybe the most used linter, while Project Atomic's dockerfile_
lint project is perhaps the most complete one (https://github.com/projectatomic/
dockerfile_lint).

Here's the working Dockerfile from earlier in this book:

FROM debian:stable-slim
RUN apt-get update -y \
 && apt-get install -y apache2 \
 && rm -rf /var/lib/apt
ENTRYPOINT ["/usr/sbin/apache2ctl"]
CMD ["-D", "FOREGROUND"]

https://github.com/jwilder/nginx-proxy
https://hub.docker.com/_/wordpress/
https://docs.docker.com/compose/
http://hadolint.lukasmartinelli.ch/
http://hadolint.lukasmartinelli.ch/
https://github.com/projectatomic/dockerfile_lint
https://github.com/projectatomic/dockerfile_lint

Working with Docker

364

Hadolint
Let's start working with Hadolint, as it's easy to install (prebuilt binaries and Docker
images) and use. All rules are explained in Hadolint's wiki (https://github.com/
lukasmartinelli/hadolint/wiki), and usage is really simple:

$ hadolint Dockerfile

Alternatively, use the Docker containerized version; it's probably good in CI scripts. Beware
of the image size; at the time of writing, the image is 1.7 GB, while the hadolint binary is less
than 20 MB:

$ docker run --rm -i lukasmartinelli/hadolint < Dockerfile

Linting Dockerfiles from this chapter, we'll notice different warnings. Maybe some are false
positives, or maybe some rules are just not yet updated to the latest deprecation notices,
such as the following:

$ hadolint Dockerfile

Dockerfile DL4000 Specify a maintainer of the Dockerfile

In fact, this Dockerfile is following Docker 1.13 recommendations, which include to no more
include a maintainer instruction. However, Hadolint is not yet up to date for this deprecation
change, so execute the following to ignore one or more IDs, to still be cool:

$ hadolint --ignore DL4000 --ignore <another_ID> Dockerfile

Dockerfile_lint
This project lead by the Project Atomic team (http://www.projectatomic.io/) is also
proposing different checks and strong opinions on how a Dockerfile should be written. These
propositions are very often good advice, though.

Execute this to launch dockerfile_lint from the official Docker image:

$ docker run -it --rm -v $PWD:/root/ projectatomic/dockerfile-lint
dockerfile_lint

A certain amount of suggestions will arise (errors, warnings, and info), each with a related
reference URL to refer to.

When in doubt, it's often a good move to follow the suggestions and fix the code accordingly.

At the end of this double linting process, our Dockerfile changed a lot, as shown here:

FROM debian:stable-slim
LABEL name="apache"
LABEL maintainer="John Doe <john@doe.com>"

https://github.com/lukasmartinelli/hadolint/wiki
https://github.com/lukasmartinelli/hadolint/wiki
http://www.projectatomic.io/

Chapter 9

365

LABEL version=1.0
RUN apt-get update -y \
 && apt-get install -y --no-install-recommends apache2=2.4.10-
10+deb8u7 \
 && apt-get clean \
 && rm -rf /var/lib/apt/lists/*
EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2ctl"]
CMD ["-D", "FOREGROUND"]

We added labels to identify the image, versions, and maintainer, and we fixed a proper version
of the apache2 package. So no bad surprise can happen with an untested update (updating
the package will need a rebuild of the image), we're cleaning the apt cache more precisely,
and we're explicitly exposing a port from the container.

Overall, those changes proposed by the linters helped us a lot in building a much better and
stronger container. Their role in CI is crucial; include the linters in your Jenkins, Circle, or Travis
CI jobs!

Deploying a private Docker registry with S3
storage

The Docker registry is a central image distribution service. When we pull or push an image,
it's from the Docker registry. It can be commercially hosted (CoreOS Quay https://quay.
io/ is an example, Docker's own https://hub.docker.com/ is another), or it can be self-
hosted (for privacy, speed, bandwidth issues, or company policy). Docker Inc. made it simple
for us to deploy it; it's extensively documented and packaged. Amongst the many deployable
features, we'll start by simply deploying a single registry ready to be load-balanced, and then
we'll switch its backend storage to AWS S3, so disk space will never be an issue again.

Getting ready
To step through this recipe, you will need the following:

ff A working Docker installation

ff An AWS account with full S3 access

https://quay.io/
https://quay.io/
https://hub.docker.com/

Working with Docker

366

How to do it…
We'll use Docker Compose to work through this recipe. Our objective is to host our own private
Docker registry, initially using local storage, then an S3 bucket for infinite space. The registry
will be available on http://localhost:5000, but feel free to use any other resolvable
name or a dedicated server with a locally available name.

To begin with, we need the Docker registry v2 image: registry:2. We know from the
documentation that port 5000 is exposed by the registry server, so we need to forward it to
our host to use it locally. If we are running multiple registries behind a load balancer, it's safe
to share a common secret, let's set it to s3cr3t.

This is what our initial docker-compose.yml file looks like:

version: '2'

services:
 registry:
 image: registry:2
 ports:
 - 5000:5000
 environment:
 REGISTRY_HTTP_SECRET: s3cr3t

With this simple setup, we already are able to run our own local Docker registry server:

$ docker-compose up

To upload an image to our private registry, the process is to simply tag the image with the local
registry URL and then push it. Execute the following to tag the ubuntu:16.04 image with
localhost:5000/ubuntu:

$ docker tag ubuntu:16.04 localhost:5000/ubuntu

Then, to push the image to the local registry, execute this:

$ docker push localhost:5000/ubuntu

This Docker image is now stored locally and can be reused without accessing the public
network nor the Docker Hub or similar services.

Chapter 9

367

Using an S3 backend
An issue with a highly used local Docker registry is disk space management—it's finite. The
good news is that the Docker Registry handles easily an S3 backend (or Swift if we have an
internal OpenStack). For the record, Google Cloud and Azure storage are also supported. To
enable the S3 backend, only a few variables need to be set in the docker-compose.yml
file: the AWS region to contact, the keys, and the bucket name.

 REGISTRY_STORAGE: s3
 REGISTRY_STORAGE_S3_REGION: us-east-1
 REGISTRY_STORAGE_S3_BUCKET: registry-iacbook
 REGISTRY_STORAGE_S3_ACCESSKEY: AKIAXXXXXXXXX
 REGISTRY_STORAGE_S3_SECRETKEY: 1234abcde#

Destroy (docker-compose down) the previous example if you tried it, and start this
updated one:

$ docker-compose up

Now tag again an image locally:

$ docker tag ubuntu:16.04 localhost:5000/ubuntu

Then, push the image to the local registry:

$ docker push localhost:5000/ubuntu

Depending on your uplink speed, it will take more or less time for the Registry to sync the
layers we push with the AWS S3 backend.

We now have our own local registry with infinite storage!

See also
ff The Docker Registry documentation: https://docs.docker.com/registry/

configuration/

https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/

369

10
Maintaining Docker

Containers

In this chapter, we will cover the following recipes:

ff Testing Docker containers with BATS

ff Test-Driven Development (TDD) with Docker and ServerSpec

ff The workflow for creating automated Docker builds from Git

ff The workflow for connecting the Continuous Integration (CI) system

ff Scanning for vulnerabilities with Quay.io and Docker Cloud

ff Sending Docker logs to AWS CloudWatch Logs

ff Monitoring and getting information out of Docker

ff Debugging containers using sysdig

Introduction
In this chapter, we'll explore some advanced and highly interesting areas that probably most
developers today are already used to. Infrastructure code is still code, so it should be no
different than software code; the same principle should apply. This means that the Docker
code should be testable, the builds automatic, and the CI systems connected to our Git
servers so they could continuously apply the tests. In addition to this, security checks should
be part of the mandatory release process and the logs easy to access, even if the application
is scaled on multiple machines. Also note that containers shouldn't be black boxes, and highly
performant debugging tools should be available for us to do our work. The good news is that
these topics will be covered in this chapter, because all of this can be done easily.

Maintaining Docker Containers

370

Testing Docker containers with BATS
BATS (Bash Automated Testing System) allows you to have quick and easy tests in a very
natural language, without the need of a lot of dependencies. BATS can also grow in complexity
as per your requirement. In this section, we'll use Docker with Docker Compose to handle the
build and a Makefile to tie the dependencies between the build process and the BATS testing
process; this will make it easier to later integrate this process into a CI system.

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

ff A BATS installation (it's available for all major Linux distributions and Mac OS)

BATS Version 0.4.0 is used in this chapter.

How to do it…
Let's start with this simple Dockerfile that will install Apache and run it after clearing
the cache:

FROM debian:stable-slim
LABEL name="apache"
LABEL maintainer="John Doe <john@doe.com>"
LABEL version=1.0
RUN apt-get update -y \
 && apt-get install -y --no-install-recommends apache2=2.4.10-
10+deb8u7 \
 && apt-get clean \
 && rm -rf /var/lib/apt/lists/*
EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2ctl"]
CMD ["-D", "FOREGROUND"]

Chapter 10

371

For convenience, let's create a docker-compose.yml file so the image can be built and
run easily:

version: '2'

services:
 http:
 build: .
 image: demo-httpd
 ports:
 - "80:80"

This way, running docker-compose up will also build the image if absent. Alternatively,
to just build the image, use this code:

$ docker-compose build

Creating BATS tests
We'll now test two of the main actions this image is supposed to do:

ff Install Apache 2.4.10

ff Clean the APT cache

Start by creating a test folder at the root of our repository that will host the BATS tests:

$ mkdir test

Our first test is to verify that the installed version of Apache is 2.4.10, as required. How
would we do it manually? We'd probably just execute the following and check the output:

$ apache2ctl -v

Server version: Apache/2.4.10 (Debian)

This translates in Docker with our image in the following command (-v being the command
(CMD) for the apache2ctl ENTRYPOINT instruction):

$ docker run --rm demo-httpd:latest -v

Server version: Apache/2.4.10 (Debian)

Basically, now we just have to run grep for the correct version:

$ docker run --rm demo-httpd:latest -v | grep 2.4.10

Server version: Apache/2.4.10 (Debian)

Maintaining Docker Containers

372

If grep is successful, it returns 0:

$ echo $?

0

A simple BATS test for a command return code looks like this:

@test "test title" {
 run <some command>
 [$status -eq 0]
}

We now have everything we need to write our first BATS test in test/httpd.bats:

@test "Apache version is correct" {
 run docker run --rm demo-httpd:latest -v \| grep 2.4.10
 [$status -eq 0]
}

To execute our test, let's launch BATS with the folder containing the tests as arguments:

$ bats test

 � Apache version is correct

1 test, 0 failures

Good! We're now assured that the correct Apache version is installed.

Let's ensure the APT cache is cleaned after we build the image so we don't waste precious
space. Deleting the APT lists means the /var/lib/apt/lists folder will become empty,
so if you count the files in this folder after this, it should return 0:

$ ls -1 /var/lib/apt/lists | wc -l

However, we cannot just send this command to the container like we did for the Apache
version; the entry point is apache2ctl, and it needs to be overridden by sh on the docker
run command line. Here's the apt.bats test file, executing the shell command instead of
apache2ctl, expecting a successful execution and an output of 0:

@test "apt lists are empty" {
 run docker run --rm --entrypoint="/bin/sh" demo-httpd:latest -c "ls
-1 /var/lib/apt/lists | wc -l"
 [$status -eq 0]
 ["$output" = "0"]
}

Chapter 10

373

Execute the BATS tests:

$ bats test
 apt lists are empty
 Apache version is correct

2 tests, 0 failures

Using Makefile to glue it all together
Now this whole process might be a bit tedious in CI, with some additional steps needed
before the testing is done (the image needs to be built and made available before it is
tested, for example). Let's create a Makefile that will take care of the prerequisites for us:

test: bats

bats: build
 bats test

build:
 docker-compose build

Now when you execute the make test command, it will launch the bats suite, which
itself depends on building the image by docker-compose—a much simpler command to
integrate in the CI system of your choice:

$ make test

docker-compose build

Building http

Step 1 : FROM debian:stable-slim

 ---> d2103c196fde

[...]

Successfully built 1c4f46316f19

bats test

 � apt lists are empty

 � Apache version is correct

2 tests, 0 failures

Maintaining Docker Containers

374

See also
ff Information on BATS at https://github.com/sstephenson/bats

Test-Driven Development (TDD) with Docker
and ServerSpec

Docker containers might have a simpler language, but in the end, general concepts
remain common and still apply. Testing is good for quality, and writing tests first ensures
that we write code that would make a test pass, instead of writing tests after the code
is written, which would somehow lead to missed errors. To help us with this, we'll use
ServerSpec, based on RSpec, to initiate a TDD workflow along with writing and testing a
Docker container. Working like this usually ensures a very high quality of work overall
and very sustainable containers.

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

ff A working Ruby environment (including Bundler)

How to do it…
Our goal is to create an NGINX container following TDD principles. Before we start to code,
let's begin by setting up our environment.

Creating a ServerSpec environment using Bundler
ServerSpec comes as a gem (a Ruby package), and as we'll use Docker APIs, we'll need the
docker-api gem as well. For ease of deployment, let's create Gemfile containing our
dependencies inside a test group:

source 'https://rubygems.org'

group :test do
 gem 'serverspec'
 gem 'docker-api'
end

https://github.com/sstephenson/bats

Chapter 10

375

Install these dependencies using Bundler:

$ bundle install

Using docker-api 1.33.0

Using serverspec 2.37.2

[...]

Bundle complete! 2 Gemfile dependencies, 18 gems now installed.

Now we'll be able to execute rspec in our local context using Bundler:

$ bundle exec rspec

Initializing the tests
Let's start by creating our first Docker Rspec test that will just, for now, initialize the
libraries we need and build the Docker image before anything else. It looks like this in
spec/Dockerfile_spec.rb:

require "serverspec"
require "docker"

describe "Docker NGINX image" do
 before(:all) do
 @image = Docker::Image.build_from_dir('.')

 set :os, family: :debian
 set :backend, :docker
 set :docker_image, @image.id
 end
end

TDD – using the Debian Jessie base's Docker image
We now want to use a Debian stable for our project, which happens to be Debian 8 at the
moment. To know the current version of a Debian system, just look at the /etc/debian_
version file (on Red-Hat-based systems, it's under /etc/redhat_release):

$ cat /etc/debian_version

8.6

Maintaining Docker Containers

376

Good! Let's create a definition in ServerSpec, checking for the Debian version through
this command:

describe "Docker NGINX image" do
[...]
 def debian_version
 command("cat /etc/debian_version").stdout
 end
end

Now, the debian_version content can be easily queried, for example, by this check:

 it "installs Debian Jessie" do
 expect(debian_version).to include("8.")
 end

If this system is running Debian 8, then the test will pass. If the Dockerfile is empty, the
test will fail:

$ bundle exec rspec --color --format documentation

Docker image

 installs Debian Jessie (FAILED - 1)

Failures:

 1) Docker image installs Debian Jessie

 Failure/Error: @image = Docker::Image.build_from_dir('.')

 Docker::Error::ServerError:

 No image was generated. Is your Dockerfile empty?

Good! Our test has failed. Let's write the FROM instruction in Dockerfile that will make it pass;
this is because the current Debian stable is version 8:

FROM debian:stable-slim

Save the file and launch the test again:

$ bundle exec rspec --color --format documentation

Docker NGINX image

 installs Debian Jessie

Finished in 0.72234 seconds (files took 0.29061 seconds to load)

1 example, 0 failures

Good job! Our test has passed, meaning this really is Debian 8.

Chapter 10

377

TDD – installing the NGINX package
Our next objective is to install the nginx package. Let's write the Rspec test in
Dockerfile_spec.rb that will check for this:

describe "Docker NGINX image" do
[...]
 describe package('nginx') do
 it { should be_installed }
 end
end

Launch the test to be sure it fails:

$ bundle exec rspec --color --format documentation

Docker NGINX image

 installs Debian Jessie

 Package "nginx"

 should be installed (FAILED - 1)

It's now time to add the instructions to the Dockerfile on how to install NGINX:

RUN apt-get update -y \
 && apt-get install -y --no-install-recommends nginx=1.6.2-
5+deb8u4 \
 && apt-get clean \
 && rm -rf /var/lib/apt/lists/*

Relaunch the tests (it will take some time as it needs to build the image):

$ bundle exec rspec --color --format documentation

Docker NGINX image

 installs Debian Jessie

 Package "nginx"

 should be installed

Finished in 51.89 seconds (files took 0.3032 seconds to load)

2 examples, 0 failures

We're now sure the nginx package is installed.

Maintaining Docker Containers

378

TDD – running NGINX
Now that we have our image built with NGINX, execute it. Using ServerSpec, we can start a
container using the id attribute of the image we built earlier. In the Dockerfile_spec.rb
file, create and start the container using the image:

describe "Docker NGINX image" do
[...]
 describe 'Running the NGINX container' do
 before(:all) do
 @container = Docker::Container.create(
 'Image' => @image.id
)
 @container.start
 end
 end
end

Using standard ServerSpec checks, verify that an NGINX process is running:

 describe process("nginx") do
 it { should be_running }
 end

We can't stop here without cleaning up the container. We need to stop it when we're done with
the tests and delete it:

 after(:all) do
 @container.kill
 @container.delete(:force => true)
 end

Now we can run the test that will execute the container and fail upon checking for an nginx
process (we didn't write anything that would launch nginx):

$ bundle exec rspec --color --format documentation

Docker NGINX image

 installs Debian Jessie

 Package "nginx"

 should be installed

 Running the NGINX container

 Process "nginx"

 should be running (FAILED - 1)

Chapter 10

379

Now let's execute /usr/bin/nginx for our container in the foreground, specifically
in the Dockerfile:

EXPOSE 80
ENTRYPOINT ["/usr/sbin/nginx"]
CMD ["-g", "daemon off;"]

Rerun the tests to check whether the nginx process is now running as expected:

$ bundle exec rspec --color --format documentation

Docker NGINX image

 installs Debian Jessie

 Package "nginx"

 should be installed

 Running the NGINX container

 Process "nginx"

 should be running

Finished in 1.94 seconds (files took 0.30853 seconds to load)

3 examples, 0 failures

To add simplicity when integrating these tests in CI systems, let's create a simple Makefile:

test: rspec
rspec:
 bundle exec rspec --color --format documentation

Now a simple make test command will launch the ServerSpec tests.

Good job! We've built our first simple Docker container following TDD principles. We can now
build more complex and secure containers using this technique.

See also
ff RSpec at http://rspec.info/

ff Docker-api at https://github.com/swipely/docker-api

ff ServerSpec at http://serverspec.org/

http://rspec.info/
https://github.com/swipely/docker-api
http://serverspec.org/

Maintaining Docker Containers

380

The workflow for creating automated Docker
builds from Git

Building local containers is a nice thing to do, but what about its wide distribution? We can
use the Docker Hub service to store and distribute our containers (or its alternative Quay.io);
however, uploading each and every container and version manually will soon be a problem.
Consider you need to rebuild dozens of containers in an emergency, because of the existence
of another OpenSSL security bug; nobody would want to be the one to upload them one by
one, especially with the bad uplink at work. And as we're working with our Docker code using
branches and tags, it will be awesome to see the same behavior reflected automatically
on the remote Docker registry. This includes two of the Docker Hub (or Quay.io) features:
automatically build Docker images upon changes and serve them to the world. We'll do
exactly this in this section: create an automated build and distribution pipeline from our
code to GitHub to the Docker Hub.

Getting ready
To step through this recipe, you will need:

ff A free GitHub account

ff A free Docker Hub account

ff A Docker project

How to do it…
Our objective is to get a fully working Docker build pipeline. To achieve this, we'll use two free,
popular services: GitHub and the Docker Hub. Let's start with the code from the previous
section that helped us build an NGINX container; we can alternatively use any other repository
on GitHub containing at least a buildable Dockerfile. The code needs to actually be on
GitHub not just versioned using Git locally. The repository should look like this:

Chapter 10

381

This repository is ready to communicate with other build services.

Creating an automated build on the Docker Hub
The Docker Hub is one of the commercial services from the company that created Docker.
It's both a public Docker registry service (with private or public containers, depending on your
subscription) and a Docker image build service that can automatically create new images
when changes occur in the code. Go to https://hub.docker.com and log in or create an
account if you don't have any.

https://hub.docker.com

Maintaining Docker Containers

382

Click on Create Automated Build in the Create menu:

Choose the provider where the infrastructure code is hosted; in our case, it's GitHub:

Chapter 10

383

When the synchronization is done, choose the GitHub repository:

Finally, decide on a name for the image (it doesn't have to be the name of the GitHub
repository) and the namespace. The namespace could either be your username or an
organization if you have one. Write a short description and choose the visibility of the image:
private stuff should remain private, while public can stay public. Let's be careful about what
we ship:

Maintaining Docker Containers

384

Navigate to Build Settings of our Docker Hub's project to trigger an initial build:

Clicking on the Trigger button will create a build. This is done by having master as the
Branch type of our repository; tag the build with the latest tag. If, for some reason, the
Dockerfile of our project wasn't at the root, we could specify it here. This build also allows
us to manage different Dockerfile for different purposes, such as building the development
and production containers differently, among other options.

Once the build is complete (should happen in minutes), navigating to the Tags tab will show
the available tags (latest is the only one we have now) and the size of the image:

Chapter 10

385

The Dockerfile tab shows the content of the Dockerfile from which the image has been
built, while the Build Details tab will list all the builds and their details, including the build
output. This is very useful for debugging when things go wrong.

Configuring a GitHub to a Docker Hub-automated build pipeline
Now let's make a modification to the Dockerfile, for example, adding a label for the image's
name and version:

LABEL name="demo-nginx"
LABEL version=1.0

Commit and push this change to GitHub:

$ git add Dockerfile

$ git commit -m "added some missing labels"

[master f20017b] added some missing labels

 1 file changed, 2 insertions(+)

$ git push

Maintaining Docker Containers

386

What's happening on the Docker Hub? It automatically starts building a new image as soon as
it becomes aware of the change on GitHub:

A few seconds later, our newest build is available for everyone to use:

$ docker pull sjourdan/nginx-docker-demo

Building Docker images using Git tags
As we're happy with this release, we'd like it to be available as a 1.0 tag on the Docker Hub.
To do this, we'll need to complete two actions:

ff Configure the Docker Hub to build and tag according to Git tags and not just branches

ff Tag and push our release on Git

For the Docker Hub to build images with the same tags than the ones we set on Git, let's add
a new type called Tag in the Build Settings tab. This will now make the Docker Hub follow the
tags we set on Git. It will also build any other tag you may create in the future:

Chapter 10

387

Let's tag our code as 1.0 on Git so we can refer to it later:

$ git tag 1.0

$ git push --tags

Total 0 (delta 0), reused 0 (delta 0)

To https://github.com/sjourdan/nginx-docker-demo.git

 * [new tag] 1.0 -> 1.0

This just triggered a new build on the Docker Hub, using the tag 1.0, as we asked to match:

Maintaining Docker Containers

388

Everyone can now refer to this stable build and use it without fearing a breaking change from
the master branch; this branch will always be built with the latest tag:

$ docker pull sjourdan/nginx-docker-demo:1.0

Even better, from now on, our future Docker projects that need both this container and the
stability can simply start with the following line on the Dockerfile:

FROM sjourdan/nginx-docker-demo:1.0

We now have a nice initial workflow for building master and tagged, stable releases of
our containers.

The workflow for connecting the Continuous
Integration (CI) system

As people working with code and writing tests for it, there's no reason not to see those tests
executed in CI. The same way every program has language requirements, ours need to be
able to build Docker containers and execute some Ruby code. Being able to fully execute a
whole pile of tests automatically, upon any code check-in, is a major quality improvement step.
No one can test each and every possibility and regression and special cases from months
or maybe years ago. It's true in software code, and it's the same in infrastructure code as
well. Let's find an elegant and automated way to execute our infrastructure code tests in CI
systematically so this could be another dot connected to the bigger map.

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

ff A free Travis CI account

How to do it…
We'd like our RSpec integration tests to be executed automatically each time we commit
a change on Git. This is the perfect job for a CI system, such as Jenkins, the Circle CI, or
the Travis CI. Our only requirement is that the CI platform should build and execute Docker
containers and run RSpec tests. Docker support is good with Travis, and it works out of the
box. Jenkins would work equally well behind the firewall when properly configured, like most
other CI systems. Here's how to configure our CI platform to automatically execute tests on a
new commit:

1.	 Create a free account for the Travis CI or use your own (https://travis-ci.
org/).

https://travis-ci.org/
https://travis-ci.org/

Chapter 10

389

2.	 Click on the + button to add a new GitHub repository:

3.	 Enable the watching of the repository by Travis:

4.	 Now add a configuration file for Travis named .travis.yml at the root of the
repository. This file can contain a lot of information to do many things, but for now,
it should simply tell Travis that we need a Ruby environment in a recent Linux
distribution running Docker. Also, it should simply execute make test for
Makefile. In our case, this command will execute the RSpec tests:
sudo: required

language: ruby

dist: trusty

services:

 - docker

script: make test

5.	 Commit and push this file and it will trigger our first test on Travis:
$ git add .travis.yml

$ git commit -m "added travis.yml"

$ git push

Maintaining Docker Containers

390

6.	 Navigating back to the Travis CI, we can see the tests begin:

7.	 A few seconds later, the tests pass successfully, assuring us the build is consistent
with our expectations. Travis even gives easy access to the output of the commands:

We just initiated new steps for integrating automated tests in our workflow. This is getting
increasingly important as every project or team grows, and it's getting riskier to ship untested
containers into production.

It's also highly recommended that you include any other test that can be done
in this CI system, such as the Docker linters check from earlier in this book.
Quality can only go higher: the more the checks, the better. Building quicker
tests for a faster feedback loop will then be a new subject.

Chapter 10

391

As with every CI system, the final step after the tests are completed is to package, ship, and
deploy the containers. As exciting as this step is, it's also unfortunately far beyond the scope
of this book.

Scanning for vulnerabilities with Quay.io and
Docker Cloud

One major issue when working with containers is their deprecation and maintenance costs.
Too often, containers are built one day, shipped to production because they work, and
forgotten there until the next rebuild (which may not happen anytime soon). Libraries are
still libraries, and security fixes are pushed every day into distributions package repositories.
Sysadmins are used to patch the systems; however, now it's a total anti-pattern to update a
running container. Containers need to be rebuilt, exactly like developers are used to rebuilding
applications with updated libraries to get rid of bugged code. The exception is that we are
lucky enough to have tools that monitor each and every layer of our Docker images and tell
us how and when they are vulnerable, allowing us to simply rebuild and redeploy them.

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

ff A free account at Quay.io and/or a paid account at the Docker Hub

How to do it…
Using the free Quay.io account (by the CoreOS team), push an image to their Docker Registry
service after logging in using docker login. Here's how to do this using an earlier image
from this chapter:

$ docker tag sjourdan/nginx-docker-demo:1.0 quay.io/sjourdan/nginx-
docker-demo:1.0

$ docker push quay.io/sjourdan/nginx-docker-demo:1.0

The push refers to a repository [quay.io/sjourdan/nginx-docker-demo]

82819c620e5d: Pushed

d07a4f6d2067: Pushed

Maintaining Docker Containers

392

Quay.io has a very nice security feature: as Docker stores passwords in
plain text on the local workstation, it's possible to generate an encrypted
password from the settings tab of your Quay.io account not only for Docker
use, but also for Kubernetes, rkt, or Mesos. It's a much better option to use
this encrypted password to log in to the service.

After a while, in the Repository Tags tab of our image, we'll get a SECURITY SCAN summary:

In this example, we have issues to investigate further:

Chapter 10

393

Many vulnerabilities are displayed, but don't be frightened. In fact, none are fixable in our
case (click on Only show fixable to see what you can do). The reasons are multiple, such as
no fix is available currently, the vulnerability doesn't concern the platform we're running on,
and so on.

Here's a screenshot of a really vulnerable container and the Quay.io scanner giving helpful
advice on the available fixes:

Quay.io Security Scanner will also send reminders by e-mail with a summary of the
vulnerabilities found on all the containers it hosts on our account. So we don't have to
worry too much about missing out on important security issues.

Using Docker Security Scanning
There's a similar feature on the Docker Hub that uses a paid account, though still in preview
at the time of this writing. By default, Docker Security Scanning is not activated, so we have to
navigate to the billing tab of the account's interface and tick it to enable it:

Maintaining Docker Containers

394

From now on, when a new Docker image is created or pushed, the system will scan it quickly
and report issues, tag by tag. To access the report summary, just click on the Tag tab:

To see details (and the corresponding vulnerabilities), click on the tag number:

This layer has clear issues! But don't follow this blindly and double-check the said
vulnerabilities. All the critical issues in this example only concern Apple platforms
and we're running Linux containers.

How it works…
Under the hood, the Quay Security Scanner is based on Clair. Clair is an open source static
analysis vulnerability scanner by CoreOS that we can run ourselves or build tools upon. It
currently handles Debian, Ubuntu, Alpine, Oracle, and Red Hat security data sources. It gives
access to a simple API. Our custom tool can send each Docker image layer we're interested in
and get the corresponding vulnerabilities or fixes.

Chapter 10

395

See also
ff CoreOS Clair at https://github.com/coreos/clair/

Sending Docker logs to AWS CloudWatch
logs

When we run dozens or hundreds of containers in production, hopefully on a clustered
container platform, it soon becomes difficult and tedious to read, search, and process
logs—just like it was before when containers with services ran on dozens or hundreds of
physical or virtual servers. The problem is that traditional solutions don't work out of the
box to handle Docker logs. Luckily, AWS has a nice and easy log-aggregating service,
named AWS CloudWatch. Docker has a logging driver just for it. We'll send our Tomcat
logs to it right away!

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

ff An AWS account

How to do it…
To use AWS CloudWatch Logs, we need at least one log group. Use this book's chapter on
Terraform code to create a CloudWatch Logs group and a dedicated IAM user, or manually
create both.

As always, with AWS, it's highly recommended that you use a dedicated
IAM user for each AWS key pair we'll use. In our case, we can associate
the prebuilt IAM policy, named CloudWatchLogsFullAccess, with a new
dedicated user in order to be up and running quickly in a secured way.

https://github.com/coreos/clair/

Maintaining Docker Containers

396

The Docker daemon needs to run with the AWS credentials in the memory—it's not information
we pass to containers, as it's handled by the Docker daemon's log driver. To give the Docker
daemon access to the keys we created, let's create an added systemd configuration file for
the Docker service in /etc/systemd/system/docker.service.d/aws.conf:

[Service]
Environment="AWS_ACCESS_KEY_ID=AKIAJ..."
Environment="AWS_SECRET_ACCESS_KEY=SW+jdHKd.."

Don't forget to reload the systemd daemon and restart Docker to apply the changes:

$ sudo systemctl daemon-reload

$ sudo systemctl restart docker

We're now ready to talk to the AWS APIs through the Docker daemon.

Using the Docker run
Here's a simple way to execute the Tomcat 9 container that uses the awslogs driver. Utilize
the CloudWatch log group named docker_logs on the us-east-1 data center and
automatically create a new stream named www:

$ sudo docker run -d -p 80:8080 --log-driver="awslogs" --log-opt
awslogs-region="us-east-1" --log-opt awslogs-group="docker_logs" --
log-opt awslogs-stream="www" tomcat:9

Navigating over the AWS Console, the new log stream will appear under Search Log Group:

Clicking on the log stream name will give us access to all the output logs from our
Tomcat container:

Chapter 10

397

We now have access to unlimited log storage and search features, and the amount of effort
we put was very limited!

Using docker-compose
It's also possible to configure the logging driver using Docker Compose. Here's how it works
with creating a log stream named tomcat under the same log group in docker-compose.
yml:

version: '2'

services:
 tomcat:
 image: tomcat:9
 logging:
 driver: 'awslogs'
 options:
 awslogs-region: 'us-east-1'
 awslogs-group: 'docker_logs'
 awslogs-stream: 'tomcat'

Maintaining Docker Containers

398

Launch the compose as usual:

$ sudo docker-compose up

Creating network "ubuntu_default" with the default driver

[...]

tomcat_1 | WARNING: no logs are available with the 'awslogs' log
driver

The tomcat CloudWatch log stream is now automatically created and the logs flow into it.

Using systemd
Another useful way to launch containers is through the use of systemd. Here's how to create a
dynamically named log stream using the systemd unit name (in this case, tomcat.service).
This is useful on platforms that use multiple instances of the same container to let them all
send their logs separately. Here's a working Tomcat systemd service that is running Docker
and sending the logs to a dynamically allocated stream name in /etc/systemd/system/
tomcat.service:

[Unit]
Description=Tomcat Container Service
After=docker.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=/usr/bin/docker pull tomcat:9
ExecStartPre=-/usr/bin/docker kill %n
ExecStartPre=-/usr/bin/docker rm %n
ExecStart=/usr/bin/docker run --rm -p 80:8080 --log-driver=awslogs
--log-opt awslogs-region=us-east-1 --log-opt awslogs-
group=docker_logs --log-opt awslogs-stream=%n --name %n tomcat:9
ExecStop=/usr/bin/docker stop %n

[Install]
WantedBy=multi-user.target

Reload systemd and start the tomcat unit:

$ sudo systemctl daemon-reload

$ sudo systemctl start tomcat

Now a third log stream is created with the service name, with the systemd unit logs
streaming into it:

Chapter 10

399

Enjoy a centralized and powerful way of storing and accessing logs before you eventually
process them!

There's more...
The Docker daemon can stream logs not only to AWS, but also to the more common syslog.
This enables a lot of options (such as having traditional rsyslog setups and online services
compatible with the traditional format). Similarly, it not only sends the logs to journald,
but also supports the Graylog or Logstash GELF log format. The Fluentd unified logging layer
is also supported, while on the platform front, we find support for Splunk and Google Cloud
together with AWS CloudWatch logs.

Monitoring and getting information out of
Docker

It's often important to get some quick and useful information out of our Docker system when
weird problems arise or strange issues start to cripple our performance. What's going on in
the system? Is there a container taking up all of the memory? Maybe one minor container
just crashed and is eating up all of the CPU. All of this information shouldn't be hard to get,
but they are precious for building quality containers. We'll see two tools quite fit for the job:
the first one is simply the one shipped with Docker itself, and the second one is a totally
different tool by Google named cAdvisor—a web user interface with a lot of useful and
easy-to-get information.

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

Maintaining Docker Containers

400

How to do it...
There's a few ways to get information out of Docker. We'll explore the first one through the
main Docker program.

Using docker stats
To get live metrics about the running containers (CPU, memory, and network), we can use the
simple docker stats command:

$ docker stats

CONTAINER CPU % MEM USAGE / LIMIT MEM %
NET I/O BLOCK I/O PIDS

c2904d5b5c89 0.01% 892.9 MB / 8.326 GB 10.72%
258.2 GB / 10.27 GB 374 MB / 0 B 16

0641790f1b30 3.36% 894.4 MB / 8.326 GB 10.74%
258.2 GB / 11.12 GB 419.1 MB / 0 B 16

bc8d85e05be8 112.65% 891.4 MB / 8.326 GB 10.71%
179.6 GB / 536.5 GB 326.6 MB / 0 B 10

a7be664792b3 0.02% 45.37 MB / 8.326 GB 0.54%
17.85 GB / 17.72 GB 18.78 MB / 110.6 kB 18

ab2d4e922949 2.37% 70.34 MB / 8.326 GB 0.84%
83.15 MB / 550 MB 459.7 MB / 143.4 kB 17

08e685124dfd 0.01% 192 MB / 8.326 GB 2.31%
8.76 MB / 42.11 MB 1.499 MB / 14.05 MB 3

5893c5d6f43f 0.74% 546.1 MB / 8.326 GB 6.56%
46.74 MB / 40.22 MB 160.7 MB / 317.9 MB 74

7f21e405bdee 5.23% 8.184 MB / 8.326 GB 0.10%
30.14 GB / 30.28 GB 8.192 kB / 0 B 7

It's, however, not overwhelmingly helpful as it's using containers' IDs and not names,
and when running many containers, it can start becoming useless because it would be
unreadable. So we can use a trick: ask the stats (docker stats) of all the running
containers (docker ps) whose names we extracted using a Go template formatter
(--format):

$ docker stats $(docker ps --format '{{.Names}}')

CONTAINER CPU % MEM USAGE / LIMIT
MEM % NET I/O BLOCK I/O PIDS

sm_streammachine-slave_2 18.34% 889.4 MB / 8.326 GB
10.68% 258.2 GB / 10.27 GB 374 MB / 0 B 16

sm_streammachine-slave_1 28.39% 900.1 MB / 8.326 GB
10.81% 258.2 GB / 11.12 GB 419.1 MB / 0 B 16

Chapter 10

401

sm_streammachine-master_1 1.89% 890.4 MB / 8.326 GB
10.69% 179.6 GB / 536.5 GB 326.6 MB / 0 B 10

sm_proxy_1 0.02% 45.37 MB / 8.326 GB
0.54% 17.85 GB / 17.72 GB 18.78 MB / 110.6 kB 18

sm_cadvisor_1 1.62% 70.34 MB / 8.326 GB
0.84% 83.16 MB / 550 MB 459.7 MB / 143.4 kB 17

sm_analytics_1 0.01% 192 MB / 8.326 GB
2.31% 8.76 MB / 42.11 MB 1.499 MB / 14.05 MB 3

sm_elasticsearch_1 0.72% 546.1 MB / 8.326 GB
6.56% 46.74 MB / 40.22 MB 160.7 MB / 317.9 MB 74

sm_streamer_1 8.17% 8.184 MB / 8.326 GB
0.10% 30.15 GB / 30.29 GB 8.192 kB / 0 B 7

Using Google's cAdvisor tool
Google created a nice web tool to see what's going on in machines that run containers:
cAdvisor. It collects, organizes, and displays metrics about resource usage, container by
container, on a given host. Though not interactive, it's still powerful enough, given how easy it
is to install and use. To install and use it, simply run the cAdvisor Docker image with volume
access to all of the required system information, such as the following:

$ sudo docker run \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:rw \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

 --publish=8080:8080 \

 --detach=true \

 --name=cadvisor \

 google/cadvisor:latest

Or, if using docker-compose:

 cadvisor:
 volumes:
 - /:/rootfs:ro
 - /var/run:/var/run:rw
 - /sys:/sys:ro
 - /var/lib/docker/:/var/lib/docker:ro
 ports:
 - "8080:8080"
 image: google/cadvisor:latest
 restart: always

Maintaining Docker Containers

402

Navigating to the host's 8080 port (or whatever port you choose to publish) with a web
browser will present a web interface where we can navigate and see graphical information
about container usage on the host:

Or, we may have more general gauges giving live indication of resource usage:

Chapter 10

403

A very useful process table with top-like data from the underlying host is also available with
a container-aware context. All of these pieces of data are browsable and they help you gain
more in-depth information about a specific container and its content and usage:

cAdvisor can also be plugged in to many backend storage systems, such as Prometheus,
ElasticSearch, InfluxDB, Redis, statsD, and so on.

If you plan to let cAdvisor run permanently, it is a good idea to restrict access
using simple HTTP authentication. This is supported out of the box by cAdvisor
using --http_auth_file /cadvisor.htpasswd --http_auth_
realm my_message.

See also
ff cAdvisor GitHub at https://github.com/google/cadvisor

ff cAdvisor storage backends at https://github.com/google/cadvisor/blob/
master/docs/storage/README.md

https://github.com/google/cadvisor
https://github.com/google/cadvisor/blob/master/docs/storage/README.md
https://github.com/google/cadvisor/blob/master/docs/storage/README.md

Maintaining Docker Containers

404

Debugging containers using sysdig
Sysdig is an awesome tool that can be used for many purposes, including monitoring, logging,
process debugging, network analyzing, and exploring a system in depth. Plus, it includes
fantastic Linux container support. It's also scriptable and can be fed with recorded real traffic
packet captures for offline analysis. It's an incredible tool that each and every person working
with containers should at least know the basics of, and as infrastructure developers used
to working with code, we know how important debugging tools are. This is no different with
sysdig, and we'll now discover some of its fantastic features related to containers.

Getting ready
To step through this recipe, you will need:

ff A working Docker installation

ff Sysdig installed and running on the host

How to do it...
Installing sysdig is easy on most platforms, including CoreOS (http://www.sysdig.org/
install/). However, if you're in a hurry, here's a one liner that will do the job of installing
Sysdig on your Linux host. We'd probably choose a better way to deploy it programmatically
though, such as Ansible or Chef, through a Docker container or not:

$ curl -s
https://s3.amazonaws.com/download.draios.com/stable/install-sysdig |
sudo bash

Here's how to get an htop-like view of all the running containers on the system:

$ sudo csysdig --view=containers

http://www.sysdig.org/install/
http://www.sysdig.org/install/

Chapter 10

405

Navigating to the F2/Views menu helps you enter many different options to see what's
running, from processes to syslog to open files and even the Kubernetes, Marathon, or Mesos
integration. Want to see which container is draining all of the IO? You're at the right place:

Maintaining Docker Containers

406

Here's an example of a Tomcat container with a view of all the local and remote connections,
IPs, ports, protocols, bandwidth, IOs, and the corresponding commands—terribly useful to find
suspicious behavior:

Another useful tool is F5/Echo, grabbing what's transiting on this container: (un)encrypted
content, logs, output, and more. This is also very useful to maybe catch something wrong with
a container acting weird:

Chapter 10

407

Another very powerful tool from sysdig is F6/Dig. This basically offers nothing less than a
full-fledged strace for a container; imagine the debugging power it has:

The F8/Actions feature is a full Docker command integration tool available right from inside
sysdig. Select a container and we'll be able to enter it, read logs, see its image history, kill it,
and more:

Those commands are also always available right from the main interface: want to gain a shell
on this selected container? Just type b.

Maintaining Docker Containers

408

These are just a few of the many powerful things we can do with Sysdig using
Docker containers.

See also
ff More general sysdig usage examples at http://www.sysdig.org/wiki/

sysdig-examples/

http://www.sysdig.org/wiki/sysdig-examples/
http://www.sysdig.org/wiki/sysdig-examples/

409

Index
A
agent version

reference link 282
Alpine Linux alternative

used, for Go program 350, 351
Alpine Linux image 340
Amazon EC2 account

reference link 20
Amazon EC2 AMI Locator

reference link 57
Amazon Machine Image (AMI) 20
Amazon Web Services (AWS) 48

cloud-init, used 166, 167
AMI IDs

reference link 20
Ansible

applying, from Vagrant 42
Docker playbook, Vagrant used 41
used, with Vagrant to create

Docker host 40-43
Apache cookbook

applying 206, 207
generating 205
uploading 205, 206

Apache service
enabling 213, 214
starting 213, 214

application deployment
automating 313, 318, 319
database, creating 314, 315
dependencies, including 314
from git 316-318
from GitHub 316-318

automated Docker build
creating 380, 381
creating, on Docker Hub 381-385

AWS CLI
reference link 67

AWS CloudWatch page
reference link 73

AWS provider
configuring, in Terraform 48-50

AWS S3 Console
reference link 64

AWS security groups
used, with Terraform 54-56

B
Bash

executing, in an Ubuntu 16.04 container 336
Bash Automated Testing System (BATS) 370

Docker container, testing 370, 371
reference link 374
tests, creating 371, 372

Bats testing framework
reference link 276

Beaker
testing, for Puppet 271, 272

Bento Project
reference link 8

Berkshelf
MySQL cookbook, used 240-242
MySQL dependencies, used 240-242
reference link 248
used, for uploading cookbook

dependencies 243

410

block storage volumes
creating, on OpenStack 149

Bundler
used, for creating ServerSpec environment

374

C
cAdvisor tool 401

reference link 403
cAdvisor tool, storage backends

reference link 403
CentOS 7.2 272
CentOS 7 EC2 instance

Chef information, sharing 88
connection information, passing 88
creating 87
provisioning, Terraform used with Chef 85-89

CentOS 7 servers, on AWS
reference link 85

CentOS 7.x
used, with VMware 7, 8

CentOS image 340
starting 340

CentOS mirror
references 261

Chef
about 192
CentOS 7 EC2 instance, provisioning

Terraform used 85-89
Chef-Solo mode 192
client mode 192
cookbooks 194
environments 193
executing 192-195
nodes 193
organizations 193
plugins 193
recipes 194
resources 194
roles 193
run list 194
server mode 192
using, team working 326

Chef client
bootstrapping, on node 201-204
deploying, cloud-init used 184

using, as daemon 288, 289
Chef code

linting, with Foodcritic 250-258
Chef data bag

used, for centrally share
data with Puppet 230-236

Chef Development Kit (Chef DK) 192
Berkshelf tool 196
ChefSpec tool 196
Chef tool 196
contents 196
FoodCritic tool 196
installing 195, 196
references 197
Test Kitchen tool 196
URL, for downloading 195
URL, for installation 197

Chef encrypted data bags
accessing in CLI 300
MySQL root password, securing 304-306
Puppet server, preparing 302, 303
shared secret 299, 300
using 298-302
using, from recipe 301
workstation, preparing 304

Chef environments
attributes, overriding for environment 295
cookbook, fixing for environment 295
creating 293-295
environment, accessing from recipe 295
environment, obtaining from manifest 296
environment, setting to node 294
manual environment, creating in

Puppet server 296
node, bootstrapping with environment 294
node environment, selection 296
production environment, creating 294
r10k 297
reference link 298

Chef metadata.rb
reference link 216

Chef package
reference link 212

Chef run context
testing 260-262

Chef Server
URL 86

411

Chef Server organization
URL 186

Chef service
reference link 216

ChefSpec
unit testing with 259, 260, 266-271
reference link 271

Chef Supermarket
URL 239

Chef Vault
references 308

Chef Vault encryption
accessing from cookbook 307, 308
using 306, 307

Chef version upgrades
Berkshelf 40
Chef recipe 38
integrating 38
simulating, Vagrant used 36-40
testing 39
Test Kitchen, testing 40
Vagrant 40
Vagrant, integrating 38
Vagrant omnibus Chef plugin 37, 38
Vagrant VMs, controlling 40

Chef Zero 272
cloud-init

Chef client, authenticating against
Chef Server organization 186

combining, for IaaS 169
Docker TCP socket, enabling for network

access 189, 190
timezone, setting on CoreOS 188
used, for applying Chef cookbook

at bootstrap 186
used, for configuring CoreOS 178
used, for configuring etcd key

value store 179, 180
used, for configuring flannel 183, 184
used, for configuring fleet 181
used, for configuring locksmith 182
used, for configuring server

time zone 171, 172
used, for configuring systemd units 183
used, for configuring update strategy 182
used, for deploying Chef client 184

used, for deploying Chef
omnibus installer 185

used, for deploying remote Docker server 187
used, for executing commands 176, 177
used, for handling files 170
used, for managing credentials 172-174
used, for managing keys 172-174
used, for managing packages 174, 175
used, for managing repositories 174, 175
used, for managing users 172-174
used, on Amazon Web

Services (AWS) 166, 167
used, on Digital Ocean 166-168
used, on OpenStack 166-169

CloudWatch Logs
about 72
Docker logging driver 73, 74
enabling, for Docker with Terraform 72, 73

code
listing 325

commands
executing, cloud-init used 176, 177

compute instances
creating, on OpenStack 149-152

consistent systems
Chef client, executing as cron 290
Chef client, using as daemon 288, 289
Chef cron job, tweaking 291
convergence interval time, tweaking 290
maintaing, scheduled convergence

used 288-293
Consul

URL 107
container

building, with utilities 337, 338
debugging, sysdig used 404-408

contextual defaults
used, with Terraform 61-63

Continuous Integration (CI) system
about 108
connecting 388-391

cookbook dependencies
including 242
uploading, Berkshelf used 243

Cookstyle 250, 251

412

CoreOS
configuring, cloud-init used 178
Docker Containers, used with Vagrant 45
etcd key value store, configuring

cloud-init used 179, 180
flannel, configuring cloud-init used 183, 184
fleet, configuring cloud-init used 180, 181
locksmith, configuring cloud-init used 182
reference link 46, 178
systemd units, configuring

cloud-init used 183
update strategy, configuring

cloud-init used 182
CoreOS Clair

reference link 395
CoreOS cluster

reference link 179
CoreOS cluster members

creating 131, 132
CoreOS infrastructure

cloud-Init, integrating 134
CoreOS cluster members, creating 131, 132
DNS Integration 133
dynamic StatusCake monitoring,

integrating 135, 136
output, adding 132
provisioning, on Digital Ocean

with Terraform 130
SSH keys, handling 131

credentials
managing, cloud-init used 172-174

D
data

sharing, with container 337
data bag

stubbing, for searches 265, 266
used, for centrally share data 230-236

data sources
using 89, 90

Debian image 341
dependencies

handling 223-225
deploy resource documentation

reference link 320

Digital Ocean
cloud-init, used 166-168
CoreOS infrastructure, provisioning

with Terraform 130
directories

managing 216
managing, from template 217-223

directory creation
testing 264

discovery token
reference link 179

Docker
CloudWatch Logs, enabling

with Terraform 72, 73
Compose equivalent 18
deploying, with Chef 323, 324
local folder, sharing through Vagrant 14, 15
networking with 351, 352
NGINX Docker container,

used through Vagrant 14
ports, exposing in Vagrant 14
reference link 329
used, in Vagrant for Ghost blog

behind NGINX 16-18
used, with Terraform 94-97
used, with Vagrant 13

Docker-api
reference link 379

Docker base image
selecting 339

Docker Cloud
vulnerabilities, scanning with 391-393

Docker Compose
extending 361, 362
orchestrating with 359-361
reference link 363
using 397, 398

Docker Containers
testing, with BATS 370, 371
used, on CoreOS with Vagrant 44, 45

Dockerfile
linting 363
reference link 339

Dockerfile_lint 364, 365
Docker host

creating, Ansible used with Vagrant 40-43

413

Docker Hub
references 338

Docker image
building, Git tags used 386, 388
reference link 363
size, optimizing 343, 344
versioning, with tags 345, 346

Docker logs
sending, to AWS CloudWatch logs 395, 396

Docker Network 352
Docker Registry

reference link 367
Docker run

reference link 339
using 396, 397

Docker Security Scanning
using 393, 394

docker stats command
using 400

Docker Store
reference link 339

Docker Swarm cluster
using 163, 164

Docker Swarm manager
bootstraping, on Packet 158-160

Docker Swarm nodes
bootstraping, on Packet 161, 162

Docker system
information, monitoring 399, 400
information, obtaining 399, 400

Docker TCP socket
enabling, for network access 189, 190

Domain Specific Language (DSL) 194
droplet 167
DVM

reference link 113
dynamic code

notifications, used 226-230
dynamic container

auto-configuring 355-357
creating 354, 355

dynamic file
managing, from template 217-223

dynamic multiple hosts networking
deployments, speed up with Linked clones 24

named NAT Networks, used 25
simulating 22-24

dynamic StatusCake monitoring
integrating 135, 136

E
Elastic Container Registry (ECR) 66
Embedded Ruby (ERB) template 218
errors

intercepting, in tests 266
etcd

URL, for configuring 134
etcd key value store

configuring, cloud-init used 179, 180
external Chef cookbooks

managing 239, 240

F
FC003, FoodCritic

references 252
Fedora image 340
file creation

testing 264
files

handling, cloud-init used 170
managing 216

files content
testing 279, 280

files existence
testing 279, 280

flannel
configuring, cloud-init used 183, 184

fleet
configuring, cloud-init used 181

FoodCritic
about 251-253
URL 251

free hosted server Chef account
creating 197, 200, 201
URL 198
using 197, 200, 201

functional roles
creating 237, 238
reference link 238

414

G
git

using, team working 326
GitHub

access rights, setting 125
configuring 123
configuring, to Docker-Hub-automated

build pipeline 385, 386
managing, with Terraform 122, 123
organization, users adding to 124
teams, adding 124

GitHub Flow
about 114
reference link 114

GitHub Hubot
reference link 153

GitLab CE, and CI Runners, OpenStack
provisioning 146

Git repository
reference link 297

Git tags
used, for building Docker images 386-388

Golang application
building, with Docker 349
used, with Docker 349

Golang Docker image
used, to build Go program 350
used, to cross-compile Go program 349
used, to ship Go program 350

Golang image 342
Google Cloud Console

reference link 142
Google Compute Engine

three-tier infrastructure, provisioning on 137
Google Compute Firewall rule

creating 141
Google Compute HTTP instances

creating 138-141
Google Compute instances

load balancing 141, 142
Google MySQL Database

instance, creating 142-144
Google’s cAdvisor tool

using 401-403
Guest Additions 5

H
Hadolint 364
HashiCorp Atlas

reference link 34
HashiCorp Configuration Language (HCL) 50
Heroku

about 153
addons, adding Terraform used 155
addons. managing Terraform used 153
application, creating with Terraform 154
apps. managing Terraform used 153
URL 153
using, with Terraform 155

Hiera
about 302
references 306
used, for centrally share

data with Puppet 230-236
Hiera-eyaml

used, with Puppet 298-302
HTTP 35
httpd package installation

testing 262, 263, 278

I
IaaS

cloud-init, combining 169
Terraform, combining 169

IAM Policies
reference link 75

IAM users
CloudWatch Logs 78
EC2 in read-only 77
managing, with Terraform 74, 75, 79, 80
restrictions, testing 76, 77
Simple Storage Service (S3) access 75, 76

Identity and Access Management (IAM) 74
infrastructure code

testing, Test Kitchen used for Chef 271, 272
infrastructure environments

changes, simulating 101, 102
change, targeting 102
planning 99, 100
simulating, Terraform used 98

415

infrastructure TDD
tests, writing 321, 322

integration testing
with ServerSpec 276-286

J
Java image 343

K
key pair

creating, on OpenStack 147
keys

managing, cloud-init used 172-174

L
Laravel

provision, enabling 32
public LAN networking 32, 33
shared folder 32
shell provisioning 31
used, for configuring NGINX 30
working, on LAN 30, 33

Lightweight Resources and Providers (LWRP)
reference link 242

Linux, Apache, MySQL, PHP (LAMP)
server 192

Linux distributions container image 341
listening ports

testing 279
local execution

using 89, 90
locksmith

about 182
configuring, cloud-init used 182

log group 395

M
Makefile

reference link 113
using 373

MariaDB cookbook
creating 208

MariaDB service
enabling 214, 215
starting 214, 215

meaningful outputs
generating, with Terraform 60, 61

Message Of The Day (MOTD) file 170
metadata.rb, Chef

reference link 226
multimachine recovery 331-333
multiple network

connecting, to container 353
multi-provider Vagrant environments

enabling 10, 11
MySQL cookbook

reference link 240, 248
used, with Berkshelf 240-242

MySQL dependencies
used, with Berkshelf 240-242

MySQL deployment
testing 243-247

N
networked 3-tier architecture app

application servers 26
database 26
NGINX reverse proxy 28, 29
simulating, with Vagrant 25, 26

networking
with Docker 351, 352

Nginx
executing, in Nginx container 336, 337

nginx-proxy
reference link 363

node
Chef client, bootstrapping on 201-204

Node.js application 26, 28
Node JS image 341
notifications

used, for dynamic code 226-230
ntegration

monitoring, with StatusCake 125, 126
NVM

reference link 113

416

O
object storage container

creating, on OpenStack 152
Ohai

information, accessing from
Chef recipe 311, 312

reference link 313
system information, accessing 308, 309
system information, manipulating 308, 309

Ohai plugins
reference link 313

omnibus installer 184
OpenStack

block storage volumes, creating 149
cloud-init, used 166-169
compute instances, creating 149-152
GitLab CE, and CI Runners,

provisioning on 146
key pair, creating 147
object storage container, creating 152
provider, configuring 147
security group, creating 148, 149

OVH
URL 146

P
packages

installing 204
managing, cloud-init used 174, 175

Packet
Docker Swarm manager,

bootstraping 158-160
Docker Swarm nodes, bootstraping 161, 162
project, creating Terraform used 157
scalable Docker Swarm cluster, creating on

bare metal 156
SSH keys, handling Terraform used 157
URL 156

PHP
URL 217

PHP cookbook
creating 209-212

PHP Docker image 343
platform

supporting 325

Platform-as-a-Service (PaaS) 153
PostgreSQL RDS Database

creating, Terraform used 67-71
private Docker registry

deploying, with S3 storage 365, 366
private Docker repositories

creating, Terraform used 66, 67
private registry

using 338
production

deploying to 327
Project Atomic

URL 364
Puppet

reference link 313
Puppet agent 201
Puppet code

linting, with puppet-lint 250-258
Puppet coding style 254
Puppet Collections

about 196
installing 197

Puppetfile
reference link 245

Puppet Hiera
reference link 236

PuppetLabs
reference link 320

PuppetLabs Mysql module, on Puppet Forge
reference link 248

Puppet Language Style
reference link 259

Puppet modules
managing 239, 240

Puppet notify
reference link 230

Puppet package
references 197

Puppet r10k
reference link 248

Puppet server 197
Puppet service

reference link 216
Puppet version

reference link 282
Python image 342

417

Q
Quay.io

references 339
vulnerabilities, scanning with 391-393

R
r10k, Puppet

reference link 298
Rbenv

reference link 113
README.md file

creating 255, 256, 258
recipes inclusion

testing 266
Red Hat Enterprise Linux (RHEL) image 340
Red Hat’s Docker

reference link 340
registry 66
Relational Database Service (RDS) 68
remote commands

executing, at bootstrap
Terraform used 92-94

remote Docker server
deploying, cloud-init used 187

repositories
managing, cloud-init used 174, 175

repository existence
testing 280

rspec-puppet
unit testing with 259, 260, 266-271
references 271

Ruby image 342
Ruby-on-Rails web application

deploying, in Docker 347, 348
RVM

reference link 113

S
S3 backend

using 366, 367
scalable Docker Swarm cluster

creating, on bare metal with Packet 156
scaleway

URL 156

scheduled convergence
used, for maintaining consistent

systems 288-293
scratch Docker image

using 350
Secure Shell (SSH) 5, 36, 54
security group

creating, on OpenStack 148
ServerSpec

environment, creating Bundler used 374
integration testing with 276-286
helper script, creating 278
reference link 276, 379

server time zone
configuring, cloud-init used 171

service status
testing 263, 279

Simple Storage Service (S3)
about 63
managing, with Terraform 63-66

Spec Helper 260
SSH key

creating, on AWS provider 51-53
handling 131
using, on AWS provider 51-53

staging
deploying to 327

state file
references 104

static file
managing 217

StatusCake
automated ping monitoring test,

creating 126, 127
HTTPS test, creating 127
monitoring integration 125, 126
URL 125, 135

sysdig
URL, for installation 404
used, for debugging container 404-408

sysdig, examples
reference link 408

systemd
using 398, 399

systemd socket activation
reference link 190

418

systemd units
configuring, cloud-init used 183

system information
accessing, with Ohai 308, 309
manipulating, with Ohai 308, 309

system services
managing 213

T
team workflow

changes, applying 121, 122
example 113, 114
Git repository, creating 114, 115
infrastructure code commit 117
initial infrastructure code, creating 115, 116
pull request, creating 118-121
Terraform code, validating 116, 117

templates
configured Ansible, applying 91, 92
local-exec Terraform provisioner 91
managing 216
using 89, 90

templates creation
testing 265

Terraform
applying 153
AWS provider, configuring in 48-50
AWS security groups, used 54-56
CloudWatch Logs, enabling for Docker 72, 73
code, maintaining 108
combining, for IaaS 169
contextual defaults, used 61-63
CoreOS infrastructure, provisioning

on Digital Ocean 130
Docker container, used 110-113
Docker, used 94-97
GitHub, managing 122, 123
Heroku, application creating 154
Heroku, using 155
IAM users, managing with 74, 75, 79, 80
infrastructure environments, handling 82-85
infrastructure state, sharing 103, 104
meaningful outputs, generating with 60, 61
production flag, setting 85
remotely, sharing with Consul 107
remotely, sharing with S3 105-107

sharing, with Git 104, 105
Simple Storage Service (S3),

managing with 63-66
state file, sharing 108
style, validating 109, 110
syntax, validating 108, 109
tfstate isolated, maintaining 85
used, for adding Heroku addons 155
used, for bootstraping Docker Swarm

manager 158-160
used, for bootstraping Docker Swarm

nodes 161, 162
used, for creating Packet project 157
used, for creating PostgreSQL RDS

Database 67-71
used, for creating private Docker

repositories 66, 67
used, for creating Ubuntu EC2

instance 56-58
used, for executing remote commands at

bootstrap 92-94
used, for handling Packet SSH keys 157
used, for managing Heroku addons 153
used, for managing Heroku apps 153
used, for provisioning CentOS 7 EC2 instance

with Chef 85-89
used, for simulating infrastructure

environments 98
Terraform, Docker container

reference link 110
Test-Driven Development (TDD)

about 287, 320
workflow, using 320, 321, 328
Debian Jessie base’s Docker image,

used 375, 376
NGINX executing 378, 379
NGINX package, installing 377
with, Docker 374
with, ServerSpec 374

Test Kitchen
configuring 272
reference link 276
testing with 273-276
used, for testing infrastructure code 271, 272

tests
initializing 375

419

three-tier infrastructure
API credentials, generating for

Google project 138
Google Compute Firewall rule, creating 141
Google Compute HTTP instances,

creating 138-141
Google Compute instances,

load balancing 141, 142
Google MySQL Database,

instance creating 142-144
outputs, adding 145
provisioning, on Google Compute Engine 137

U
Ubuntu 16.04 container

Bash, executing 336
Ubuntu EC2 instance

creating, Terraform used 56-58
scaling 59

Ubuntu image 339
Ubuntu Xenial (16.04 LTS)

using 3-5
Vagrant box, adding 2, 3

unit testing
with ChefSpec 259, 260, 266-271
with rspec-puppet 259, 260, 266-271

unprivileged users
security 357, 358

update strategy
configuring, cloud-init used 182

users
managing, cloud-init used 172-174

V
Vagrant 272

Ansible, used to create Docker host 40-43
Docker, used 13
Docker, used for Ghost blog

behind NGINX 16-18
URL, for downloading 2
used, for simulating Chef version

upgrades 36, 37, 40
used, with AWS EC2 19-22
used, with Docker 19-22

Vagrant boxes
references 2

Vagrant environment
access, sharing 33-35
ghost engine, considerations 35
provisioning 34

Vagrant plugins
reference link 2

Vagrant VM
customizing 12
hostname, setting 12
informational message, displaying to user 13
minimum Vagrant version, specifying 13
new box version check, disabling

at startup 12
specific box version, using 12

VirtualBox Guest Additions
enabling, in Vagrant 5-7

virtualhost_spec.rb
testing, from apache cookbook 263, 264

VMware
CentOS 7.x, used 7, 8
reference link 7

VMware vCenter plugin
reference link 8

VMware vCloud Air plugin
reference link 8

VMware vCloud Director plugin
reference link 8

VMware VM capabilities
extending 8, 10

VMware vSphere plugin
reference link 8

vulnerabilities
scanning, with Docker Cloud 391-393
scanning, with Quay.io 391-393

W
Windows Management

Instrumentation (WMI) 309
WordPress

reference link 316, 320
working systems

rebuilding 329, 330, 334

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Vagrant Development Environments

	Introduction
	Adding an Ubuntu Xenial (16.04 LTS) Vagrant box
	Using a disposable Ubuntu Xenial (16.04) in seconds
	Enabling VirtualBox Guest Additions
in Vagrant
	Using a disposable CentOS 7.x with VMware in seconds
	Extending the VMware VM capabilities
	Enabling multiprovider Vagrant environments
	Customizing a Vagrant VM
	Using Docker with Vagrant
	Using Docker in Vagrant for a Ghost blog behind NGINX
	Using Vagrant remotely with AWS EC2 and Docker
	Simulating dynamic multiple host networking
	Simulating a networked three-tier architecture app with Vagrant
	Show your work on the LAN while working with Laravel
	Sharing access to your Vagrant environment with the world
	Simulating Chef upgrades using Vagrant
	Using Ansible with Vagrant to create a Docker host
	Using Docker containers on CoreOS with Vagrant

	Chapter 2: Provisioning IaaS with Terraform

	Introduction
	Configuring the Terraform AWS Provider
	Creating and using an SSH key pair to use on AWS
	Using AWS security groups with Terraform
	Creating an Ubuntu EC2 instance with Terraform
	Generating meaningful outputs with Terraform
	Using contextual defaults with Terraform
	Managing S3 storage with Terraform
	Creating private Docker repositories with Terraform
	Creating a PostgreSQL RDS database with Terraform
	Enabling CloudWatch Logs for Docker with Terraform
	Managing IAM users with Terraform

	Chapter 3: Going Further with Terraform

	Introduction
	Handling different environments with Terraform
	Provisioning a CentOS 7 EC2 instance with Chef using Terraform
	Using data sources, templates, and local execution
	Executing remote commands at bootstrap using Terraform
	Using Docker with Terraform
	Simulating infrastructure changes using Terraform
	Teamwork – sharing Terraform infrastructure state
	Maintaining a clean and standardized Terraform code
	One Makefile to rule them all
	Team workflow example
	Managing GitHub with Terraform
	External monitoring integration with StatusCake

	Chapter 4: Automating Complete Infrastructures with Terraform

	Introduction
	Provisioning a complete CoreOS
	infrastructure on Digital Ocean
with Terraform
	Provisioning a three-tier infrastructure on Google Compute Engine
	Provisioning a GitLab CE + CI runners on OpenStack
	Managing Heroku apps and add-ons using Terraform
	Creating a scalable Docker Swarm cluster on bare metal with Packet

	Chapter 5: Provisioning the Last Mile with Cloud-Init

	Introduction
	Using cloud-init on AWS, Digital Ocean, or OpenStack
	Handling files using cloud-init
	Configuring the server's time zone using cloud-init
	Managing users, keys, and credentials using cloud-init
	Managing repositories and packages using cloud-init
	Running commands during boot using
cloud-init
	Configuring CoreOS using cloud-init
	Deploying Chef Client from start to finish using cloud-init
	Deploying a remote Docker server using cloud-init	

	Chapter 6: Fundamentals of Managing Servers with Chef and Puppet

	Introduction
	Getting started with Chef (notions and tools)
	Installing the Chef Development Kit (Chef DK)
	Creating and using a free Hosted Chef server account
	Automatically bootstrapping a Chef client on a node
	Installing packages using Chef
	Managing services using Chef
	Managing files, directories, and templates using Chef
	Handling dependencies using Chef
	More dynamic code using notifications
	Centrally sharing data using a data bag
	Creating functional roles
	Managing external cookbooks the Berkshelf way

	Chapter 7: Testing and Writing Better Infrastructure Code with Chef
and Puppet

	Introduction
	Linting infrastructure code using Foodcritic or Cookstyle
	Unit testing infrastructure code with ChefSpec
	Testing infrastructure code using Test Kitchen
	Integration testing infrastructure code with ServerSpec

	Chapter 8: Maintaining Systems Using Chef and Puppet

	Introduction
	Maintaining consistent systems using scheduled convergence
	Creating Chef environments
	Using encrypted data bags
	Using Chef Vault encryption
	Accessing and manipulating system information with Ohai
	Automating application deployment (a WordPress example)
	Using a TDD Chef workflow
	Planning for the worse – train to rebuild working systems

	Chapter 9: Working with Docker

	Introduction
	Docker usage overview
	Choosing the right Docker base image
	Optimizing the Docker image size
	Versioning Docker images with tags
	Deploying a Ruby-on-Rails web application in Docker
	Building and using Golang applications with Docker
	Networking with Docker
	Creating more dynamic containers
	Auto-configuring dynamic containers
	Better security with unprivileged users
	Orchestrating with Docker Compose
	Linting a Dockerfile
	Deploying a private Docker registry with S3 storage

	Chapter 10
: Maintaining Docker Containers
	Introduction
	Testing Docker containers with BATS
	Test-Driven Development with Docker and Serverpec
	The workflow for creating automated Docker builds from Git
	The workflow for connecting the Continuous Integration system
	Scanning for vulnerabilities with Quay.io and Docker Cloud
	Sending Docker logs to AWS CloudWatch logs
	Monitoring and getting information out of Docker
	Debugging containers using sysdig

	Index

