’ 20™ ANNIVERSARY EDITION (

APPLIED
CRYPTOGRAPHY

Protocols, Algorithms,
and Source Code in C

BRUCE SCHNEIER

WILEY

Contents

Introduction xiii
Foreword by Whitfield Diffie xvii
Preface xxi
How 1O READ THIS BOOK XXii
ACKNOWLEDGMENTS XXIV
About the Author XXV

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

1 FOUNDATIONS 1
TERMINOLOGY 1
STEGANOGRAPHY 9
SUBSTITUTION CIPHERS AND TRANSPOSITION CIPHERS 10
SimpLE XOR 13
ONE-TIME PADS 15
COMPUTER ALGORITHMS 17
LARGE NUMBERS 17

PART I CRYPTOGRAPHIC PROTOCOLS

2 PROTOCOL BUILDING BLOCKS 21
INTRODUCTION TO PROTOCOLS 21
COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY 28
ONE-WAY FUNCTIONS 29
ONE-WAY HasH FUNCTIONS 30
COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPHY 31
DIGITAL SIGNATURES 34
DIGITAL SIGNATURES WITH ENCRYPTION 41
RANDOM AND PSEUDO-RANDOM-SEQUENCE GENERATION 44

vi

Contents

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4

3 BASIC PROTOCOLS 47
KEY EXCHANGE 47
AUTHENTICATION 52
AUTHENTICATION AND KEY EXCHANGE 56

FORMAL ANALYSIS OF AUTHENTICATION AND KEY-EXCHANGE PROTOCOLS

MuLTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 68
SECRET SPLITTING 70

SECRET SHARING 71

CRYPTOGRAPHIC PROTECTION OF DATABASES 73

4 INTERMEDIATE PROTOCOLS 75
TIMESTAMPING SERVICES 75
SUBLIMINAL CHANNEL 79
UNDENIABLE DIGITAL SIGNATURES 81
DESIGNATED CONFIRMER SIGNATURES 82
PROXY SIGNATURES 83
GROUP SIGNATURES 84
FAIL-STOP DIGITAL SIGNATURES 85
COMPUTING WITH ENCRYPTED DATA 85
BiT COMMITMENT 86
FAIR COIN FLIPs 89
MENTAL POKER 92
ONE-WAY ACCUMULATORS 95
ALL-OR-NOTHING DISCLOSURE OF SECRETS 96
Key Escrow 97

5 ADVANCED PROTOCOLS 101
ZERO-KNOWLEDGE PROOFS 101
ZERO-KNOWLEDGE PROOFS OF IDENTITY 109
BLIND SIGNATURES 112
IDENTITY-BASED PUBLIC-KEY CRYPTOGRAPHY 115
OBLIVIOUS TRANSFER 116
OBLIVIOUS SIGNATURES 117
SIMULTANEOUS CONTRACT SIGNING 118
DiGITAL CERTIFIED MAIL 122
SIMULTANEOUS EXCHANGE OF SECRETS 123

6 ESOTERIC PROTOCOLS 125
SECURE ELECTIONS 125
SECURE MULTIPARTY COMPUTATION 134
ANONYMOUS MESSAGE BROADCAST 137
DigitaL CASH 139

Contents

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

10.1
10.2
10.3
10.4
10.5

vii

PART I CRYPTOGRAPHIC TECHNIQUES

7 KEY LENGTH 151
SYMMETRIC KEY LENGTH 151
PuBLiC-KEY KEY LENGTH 158
COMPARING SYMMETRIC AND PUBLIC-KEY KEY LENGTH 165
BIRTHDAY ATTACKS AGAINST ONE-WAY HASH FUNCTIONS 165
How LoNG SHOULD A KEY BE? 166
CAVEAT EMPTOR 168

8 KEY MANAGEMENT 169
GENERATING KEYS 170
NONLINEAR KEYSPACES 175
TRANSFERRING KEYS 176
VERIFYING KEYS 178
UsING Keys 179
UrDATING KEYS 180
STORING KEYS 180
Backur Keys 181
ComMPROMISED KEYS 182
LireTIME OF KEYS 183
DEeSTROYING KEYS 184
PuBLIC-KEY KEY MANAGEMENT 185

9 ALGORITHM TYPES AND MODES 189
ELEcTRONIC CODEBOOK MODE 189
BLock RerLAY 191
CIPHER BLOCK CHAINING MODE 193
STREAM CIPHERS 197
SELF-SYNCHRONIZING STREAM CIPHERS 198
CIPHER-FEEDBACK MODE 200
SYNCHRONOUS STREAM CIPHERS 202
OuTpPUT-FEEDBACK MODE 203
COUNTER MODE 205
OTHER BLOCK-CIPHER MODES 206
CHOOSING A CIPHER MODE 208
INTERLEAVING 210
Brock CIPHERS VERSUS STREAM CIPHERS 210

10 USING ALGORITHMS 213
CHOOSING AN ALGORITHM 214
PuBLIC-KEY CRYPTOGRAPHY VERSUS SYMMETRIC CRYPTOGRAPHY 216
ENCRYPTING COMMUNICATIONS CHANNELS 216
ENCRYPTING DATA FOR STORAGE 220
HARDWARE ENCRYPTION VERSUS SOFTWARE ENCRYPTION 223

viii Contents

10.6 COMPRESSION, ENCODING, AND ENCRYPTION 226
10.7 DETECTING ENCRYPTION 226

10.8 HIDING CIPHERTEXT IN CIPHERTEXT 227

10.9 DESTROYING INFORMATION 228

PART Il CRYPTOGRAPHIC ALGORITHMS

11 MATHEMATICAL BACKGROUND 233
11.1 INFORMATION THEORY 233
11.2 ComprLEXiTY THEORY 237
11.3 NUMBER THEORY 242
11.4 FACTORING 255
11.5 PrRIME NUMBER GENERATION 258
11.6 DIiSCRETE LOGARITHMS IN A FINITE FIELD 261

12 DATA ENCRYPTION STANDARD (DES) 265
12.1 BACKGROUND 265
12.2. DEeScCRIPTION OF DES 270
12.3 Security orF DES 278
12.4 DIFFERENTIAL AND LINEAR CRYPTANALYSIS 285
12.5 THE REAL DESIGN CRITERIA 293
12.6 DES VARIANTS 294
12.7 How SECURE Is DES Tobpay? 300

13 OTHER BLOCK CIPHERS 303
13.1 Lucirer 303
13.2 MADRYGA 304
13.3 NewDES 306
13.4 FEAL 308
13.5 REDOC 311
13.6 LOKI 314
13.7 KHUFU AND KHAFRE 316
13.8 RC2 318
13.9 IDEA 319
13.10 MMB 325
13.11 CA-1.1 327
13.12 Skipjack 328

14 STILL OTHER BLOCK CIPHERS 331
14.1 GOST 331
14.2. CAST 334
14.3 BLowrisH 336
14.4 SAFER 339
14.5 3-Way 341

Contents

14.6
14.7
14.8
14.9
14.10
14.11
14.12

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10

CraB 342

SXAL8/MBAL 344

RC5 344

OTHER BLOCK ALGORITHMS 346
THEORY OF BLOCK CIPHER DESIGN 346
UsING ONE-WAY HASH FUNCTIONS 351
CHOOSING A BLOCK ALGORITHM 354

15 COMBINING BLOCK CIPHERS 357
DoOUBLE ENCRYPTION 357
TRIPLE ENCRYPTION 358
DOUBLING THE BLOCK LENGTH 363
OTHER MULTIPLE ENCRYPTION SCHEMES 363
CDMF KEY SHORTENING 366
WHITENING 366
CASCADING MULTIPLE BLOCK ALGORITHMS 367
COMBINING MULTIPLE BLOCK ALGORITHMS 368

16 PSEUDO-RANDOM-SEQUENCE
GENERATORS AND STREAM CIPHERS 369

LINEAR CONGRUENTIAL GENERATORS 369
LINEAR FEEDBACK SHIFT REGISTERS 372
DESIGN AND ANALYSIS OF STREAM CIPHERS 379
STREAM CIPHERS USING LFSRs 381
A5 389
HucHEes XPD/KPD 389
NANOTEQ 390
RAMBUTAN 390
ADDITIVE GENERATORS 390
GIFFORD 392
ALGORITHM M 393
PKZIP 394

17 OTHER STREAM CIPHERS AND REAL

RANDOM-SEQUENCE GENERATORS 397

RC4 397

SEAL 398

WAKE 400

FEEDBACK WITH CARRY SHIFT REGISTERS 402

STREAM CIPHERS USING FCSRs 405

NONLINEAR-FEEDBACK SHIFT REGISTERS 412

OTHER STREAM CIPHERS 413

SYSTEM-THEORETIC APPROACH TO STREAM-CIPHER DESIGN 415

COMPLEXITY-THEMATIC APPROACH TO STREAM-CIPHER DESIGN 416

OTHER APPROACHES TO STREAM-CIPHER DESIGN 418

X Contents

17.11 CASCADING MULTIPLE STREAM CIPHERS 419
17.12 CHOOSING A STREAM CIPHER 420
17.13 GENERATING MULTIPLE STREAMS FROM A
SINGLE PSEUDO-RANDOM-SEQUENCE GENERATOR 420
17.14 REAL RANDOM-SEQUENCE GENERATORS 421

18 ONE-WAY HASH FUNCTIONS 429
18.1 BACKGROUND 429
18.2 SNEFRU 431
18.3 N-HAsH 432
18.4 MD4 435
18.5 MDS5 436
18.6 MD2 441
18.7 SECURE HASH ALGORITHM (SHA) 441
18.8 RIPE-MD 445
18.9 HAVAL 445
18.10 OTHER ONE-WAY HASH FUNCTIONS 446
18.11 ONE-WAY HASH FUNCTIONS USING SYMMETRIC BLOCK ALGORITHMS 446
18.12 USING PuBLIC-KEY ALGORITHMS 455
18.13 CHOOSING A ONE-WAY HASH FUNCTION 455
18.14 MESSAGE AUTHENTICATION CODES 455

19 PUBLIC-KEY ALGORITHMS 461
19.1 BACKGROUND 461
19.2 KNAPSACK ALGORITHMS 462
19.3 RSA 466
19.4 POHLIG-HELLMAN 474
19.5 RABIN 475
19.6 ELGAMAL 476
19.7 MCcCELIECE 479
19.8 ELLIPTIC CURVE CRYPTOSYSTEMS 480
19.9 LUC 481
19.10 FINITE AUTOMATON PUBLIC-KEY CRYPTOSYSTEMS 482

20 PUBLIC-KEY DIGITAL SIGNATURE ALGORITHMS 483
20.1 DIGITAL SIGNATURE ALGORITHM (DSA) 483
20.2 DSA VARIANTS 494
20.3 GOST DIGITAL SIGNATURE ALGORITHM 495
20.4 DISCRETE LOGARITHM SIGNATURE SCHEMES 496
20.5 ONG-SCHNORR-SHAMIR 498
20.6 ESIGN 499
20.7 CELLULAR AUTOMATA 500
20.8 OTHER PUBLIC-KEY ALGORITHMS 500

21 IDENTIFICATION SCHEMES 503
21.1 FEIGE-FIAT-SHAMIR 503

Contents Xi

21.2
21.3
21.4

22.1
22.2
22.3
22.4
22.5
22.6
22.7

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
23.10
23.11
23.12
23.13
23.14
23.15
23.16

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10
24.11

GUILLOU-QUISQUATER 508
SCHNORR 510
CONVERTING IDENTIFICATION SCHEMES TO SIGNATURE SCHEMES 512

22 KEY-EXCHANGE ALGORITHMS 513
Dirrie-HELLMAN 513
STATION-TO-STATION PROTOCOL 516
SHAMIR’S THREE-PASS PROTOCOL 516
COMSET 517
ENCRYPTED KEY EXCHANGE 518
FORTIFIED KEY NEGOTIATION 522
CONFERENCE KEY DISTRIBUTION AND SECRET BROADCASTING 523

23 SPECIAL ALGORITHMS FOR PROTOCOLS 527
MuLTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 527
SECRET-SHARING ALGORITHMS 528
SUBLIMINAL CHANNEL 531
UNDENIABLE DIGITAL SIGNATURES 536
DESIGNATED CONFIRMER SIGNATURES 539
COMPUTING WITH ENCRYPTED DATA 540
FAalr CoIN FrLips 541
ONE-WAY ACCUMULATORS 543
ALL-OR-NOTHING DISCLOSURE OF SECRETS 543
FAIR AND FAILSAFE CRYPTOSYSTEMS 546
ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE 548
BLIND SIGNATURES 549
OBLIVIOUS TRANSFER 550
SEZCURE MULTIPARTY COMPUTATION 551
PROBABILISTIC ENCRYPTION 552
QUANTUM CRYPTOGRAPHY 554

PART IV THE REAL WORLD

24 EXAMPLE IMPLEMENTATIONS 561
IBM SECRET-KEY MANAGEMENT PROTOCOL 561
MITRENET 562
ISDN 563
STU-III 565
KERBEROS 566
KRYPTOKNIGHT 571
SESAME 572
IBM COMMON CRYPTOGRAPHIC ARCHITECTURE 573
ISO AUTHENTICATION FRAMEWORK 574
PRIVACY-ENHANCED MAIL (PEM) 577
MESSAGE SECURITY PROTOCOL (MSP) 584

Xil Contents

24.12 PReETTY GOOD PRIVACY (PGP) 584

24.13 SMART CARDS 587

24.14 PuBLIC-KEY CRYPTOGRAPHY STANDARDS (PKCS) 588
24.15 UNIVERSAL ELECTRONIC PAYMENT SYSTEM (UEPS) 589
24.16 CuLipPER 591

24.17 CAPSTONE 593

24.18 AT&T MoODEL 3600 TELEPHONE SECURITY DEVICE (TSD)

25 POLITICS 597
25.1 NATIONAL SECURITY AGENCY (NSA) 597
25.2 NATIONAL COMPUTER SECURITY CENTER (NCSC) 599

594

25.3 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)

25.4 RSA DATA SECURITY, INC. 603
25.5 PuBLIC KEY PARTNERS 604

600

25.6 INTERNATIONAL ASSOCIATION FOR CRYPTOGRAPHIC RESEARCH (IACR)

25.7 RACE INTEGRITY PRIMITIVES EVALUATION (RIPE) 605
25.8 CONDITIONAL ACCESS FOR EUROPE (CAFE) 606
25.9 ISO/IEC 9979 607
25.10 PROFESSIONAL, CIVIL LIBERTIES, AND INDUSTRY GROUPS
25.11 ScIl.crYpT 608
25.12 CYPHERPUNKS 609
25.13 PATENTS 609
25.14 U.S. EXPORT RULES 610
25.15 FOREIGN IMPORT AND EXPORT OF CRYPTOGRAPHY 617
25.16 LEGAL ISSUES 618

Afterword by Matt Blaze 619

PARTV SOURCE CODE

Source Code 623

References 675

608

605

xiii

Introduction

I first wrote Applied Cryptography in 1993. Two years later, I wrote the greatly
expanded second edition. At this vantage point of two decades later, it can be hard to
remember how heady cryptography’s promise was back then. These were the early
days of the Internet. Most of my friends had e-mail, but that was because most of
my friends were techies. Few of us used the World Wide Web. There was nothing yet
called electronic commerce.

Cryptography was being used by the few who cared. We could encrypt our e-mail
with PGP, but mostly we didn’t. We could encrypt sensitive files, but mostly we
didn’t. I don’t remember having the option of a usable full-disk encryption product,
at least one that I would trust to be reliable.

What we did have were ideas—research and engineering ideas—and that was
the point of Applied Cryptography. My goal in writing the book was to collect
all the good ideas of academic cryptography under one cover and in a form that
non-mathematicians could read and use.

What we also had, more important than ideas, was the unshakable belief that
technology trumped politics. You can see it in John Perry Barlow’s 1996 “Declara-
tion of the Independence of Cyberspace,” where he told governments, “You have
no moral right to rule us, nor do you possess any methods of enforcement that we
have reason to fear.” You can see it three years earlier in cypherpunk John Gilmore’s
famous quote: “The Net interprets censorship as damage and routes around it.” You
can see it in the pages of Applied Cryptography. The first paragraph of the Preface,
which I wrote in 1993, says, “There are two kinds of cryptography in this world:
cryptography that will stop your kid sister from reading your files, and cryptography
that will stop major governments from reading your files. This book is about the
latter.”

This was the promise of cryptography. It was the promise behind everything—
from file and e-mail encryption to digital signatures, digital certified mail, secure
election protocols, and digital cash. The math would give us all power and security,

xiv Introduction

because math trumps everything else. It would topple everything from government
sovereignty to the music industry’s attempts at stopping file sharing.

The “natural law” of cryptography is that it’s much easier to use than it is to
break. To take a hand-waving example, think about basic encryption. Adding a sin-
gle bit to a key, say from a 64-bit key to a 65-bit key, adds at most a small amount of
work to encrypt and decrypt. But it doubles the amount of work to break. Or, more
mathematically, encryption and decryption work grows linearly with key length,
but cryptanalysis work grows exponentially. It’s always easier for the communica-
tors than the eavesdropper.

It turned out that this was all true, but less important than we had believed. A
few years later, we realized that cryptography was just math, and that math has no
agency. In order for cryptography to actually do anything, it has to be embedded in
a protocol, written in a programming language, embedded in software, run on an
operating system and computer attached to a network, and used by living people.
All of those things add vulnerabilities and—more importantly—they’re more con-
ventionally balanced. That is, there’s no inherent advantage for the defender over
the attacker. Spending more effort on either results in linear improvements. Even
worse, the attacker generally has an inherent advantage over the defender, at least
today.

So when we learn about the NSA through the documents provided by Edward
Snowden, we find that most of the time the NSA breaks cryptography by circum-
venting it. The NSA hacks the computers doing the encryption and decryption. It
exploits bad implementations. It exploits weak or default keys. Or it “exfiltrates”—
NSA-speak for steals—keys. Yes, it has some mathematics that we don’t know
about, but that’s the exception. The most amazing thing about the NSA as revealed
by Snowden is that it isn’t made of magic.

This doesn’t mean that cryptography is useless: far from it. What cryptography
does is raise both the cost and risk of attack. Data zipping around the Internet unen-
crypted can be collected wholesale with minimal effort. Encrypted data has to be
targeted individually. The NSA—or whoever is after your data—needs to target you
individually and attack your computer and network specifically. That takes time
and manpower, and is inherently risky. No organization has enough budget to do
that to everyone; they have to pick and choose. While ubiquitous encryption won'’t
eliminate targeted collection, it does have the potential to make bulk collection
infeasible. The goal is to leverage the economics, the physics, and the math.

There’s one more problem, though—one that the Snowden documents have illus-
trated well. Yes, technology can trump politics, but politics can also trump tech-
nology. Governments can use laws to subvert cryptography. They can sabotage the
cryptographic standards in the communications and computer systems you use.
They can deliberately insert backdoors into those same systems. They can do all
of those, and then forbid the corporations implementing those systems to tell you
about it. We know the NSA does this; we have to assume that other governments
do the same thing.

Never forget, though, that while cryptography is still an essential tool for security,
cryptography does not automatically mean security. The technical challenges of
implementing cryptography are far more difficult than the mathematical challenges

Introduction XV

of making the cryptography secure. And remember that the political challenges of
being able to implement strong cryptography are just as important as the technical
challenges. Security is only as strong as the weakest link, and the further away you
get from the mathematics, the weaker the links become.

The 1995 world of Applied Cryptography, Second Edition, was very different from
today’s world. That was a singular time in academic cryptography, when I was able
to survey the entire field of research and put everything under one cover. Today,
there’s too much, and the task of compiling it all is just too great. For those who
want a more current book, I recommend Cryptography Engineering, which I wrote
in 2010 with Niels Ferguson and Tadayoshi Kohno. But for a review of those heady
times of the mid-1990s, and an introduction to what has become an essential tech-
nology of the Internet, Applied Cryptography still holds up surprisingly well.

—Minneapolis, Minnesota, and Cambridge, Massachusetts, January 2015

xvii

Foreword
By Whitfield Diffie

The literature of cryptography has a curious history. Secrecy, of course, has always
played a central role, but until the First World War, important developments appeared
in print in a more or less timely fashion and the field moved forward in much the
same way as other specialized disciplines. As late as 1918, one of the most influential
cryptanalytic papers of the twentieth century, William F. Friedman’s monograph The
Index of Coincidence and Its Applications in Cryptography, appeared as a research
report of the private Riverbank Laboratories [577]. And this, despite the fact that the
work had been done as part of the war effort. In the same year Edward H. Hebern of
Oakland, California filed the first patent for a rotor machine [710], the device destined
to be a mainstay of military cryptography for nearly 50 years.

After the First World War, however, things began to change. U.S. Army and Navy
organizations, working entirely in secret, began to make fundamental advances in
cryptography. During the thirties and forties a few basic papers did appear in the
open literature and several treatises on the subject were published, but the latter
were farther and farther behind the state of the art. By the end of the war the transi-
tion was complete. With one notable exception, the public literature had died. That
exception was Claude Shannon’s paper “The Communication Theory of Secrecy
Systems,” which appeared in the Bell System Technical Journal in 1949 [1432]. It
was similar to Friedman’s 1918 paper, in that it grew out of wartime work of Shan-
non’s. After the Second World War ended it was declassified, possibly by mistake.

From 1949 until 1967 the cryptographic literature was barren. In that year a dif-
ferent sort of contribution appeared: David Kahn'’s history, The Codebreakers [794].
It didn’t contain any new technical ideas, but it did contain a remarkably complete
history of what had gone before, including mention of some things that the govern-
ment still considered secret. The significance of The Codebreakers lay not just in its
remarkable scope, but also in the fact that it enjoyed good sales and made tens of
thousands of people, who had never given the matter a moment’s thought, aware of
cryptography. A trickle of new cryptographic papers began to be written.

xviii Foreword by Whitfield Diffie

At about the same time, Horst Feistel, who had earlier worked on identification
friend or foe devices for the Air Force, tock his lifelong passion for cryptography to
the IBM Watson Laboratory in Yorktown Heights, New York. There, he began devel-
opment of what was to become the U.S. Data Encryption Standard; by the early
1970s several technical reports on this subject by Feistel and his colleagues had been
made public by IBM [1482,1484,552].

This was the situation when I entered the field in late 1972. The cryptographic lit-
erature wasn’t abundant, but what there was included some very shiny nuggets.

Cryptology presents a difficulty not found in normal academic disciplines: the need
for the proper interaction of cryptography and cryptanalysis. This arises out of the fact
that in the absence of real communications requirements, it is easy to propose a sys-
tem that appears unbreakable. Many academic designs are so complex that the would-
be cryptanalyst doesn’t know where to start; exposing flaws in these designs is far
harder than designing them in the first place. The result is that the competitive pro-
cess, which is one strong motivation in academic research, cannot take hold.

When Martin Hellman and I proposed public-key cryptography in 1975 [496], one
of the indirect aspects of our contribution was to introduce a problem that does not
even appear easy to solve. Now an aspiring cryptosystem designer could produce
something that would be recognized as clever—something that did more than just
turn meaningful text into nonsense. The result has been a spectacular increase in
the number of people working in cryptography, the number of meetings held, and
the number of books and papers published.

In my acceptance speech for the Donald E. Fink award—given for the best expos-
itory paper to appear in an IEEE journal—which I received jointly with Hellman in
1980, I told the audience that in writing “Privacy and Authentication,” I had an
experience that I suspected was rare even among the prominent scholars who popu-
late the IEEE awards ceremony: I had written the paper I had wanted to study, but
could not find, when I first became seriously interested in cryptography. Had I been
able to go to the Stanford bookstore and pick up a modern cryptography text, I
would probably have learned about the field years earlier. But the only things avail-
able in the fall of 1972 were a few classic papers and some obscure technical reports.

The contemporary researcher has no such problem. The problem now is choosing
where to start among the thousands of papers and dozens of books. The contempo-
rary researcher, yes, but what about the contemporary programmer or engineer who
merely wants to use cryptography? Where does that person turn? Until now, it has
been necessary to spend long hours hunting out and then studying the research lit-
erature before being able to design the sort of cryptographic utilities glibly described
in popular articles.

This is the gap that Bruce Schneier’s Applied Cryptography has come to fill.
Beginning with the objectives of communication security and elementary examples
of programs used to achieve these objectives, Schneier gives us a panoramic view of
the fruits of 20 years of public research. The title says it all; from the mundane
objective of having a secure conversation the very first time you call someone to the
possibilities of digital money and cryptographically secure elections, this is where
you’ll find it.

Foreword by Whitfield Diffie XixX

Not satisfied that the book was about the real world merely because it went all
the way down to the code, Schneier has included an account of the world in which
cryptography is developed and applied, and discusses entities ranging from the Inter-
national Association for Cryptologic Research to the NSA.

When public interest in cryptography was just emerging in the late seventies and
early eighties, the National Security Agency (NSA), America’s official cryptographic
organ, made several attempts to quash it. The first was a letter from a long-time
NSA employee allegedly, avowedly, and apparently acting on his own. The letter
was sent to the IEEE and warned that the publication of cryptographic material was
a violation of the International Traffic in Arms Regulations (ITAR). This viewpoint
turned out not even to be supported by the regulations themselves—which con-
tained an explicit exemption for published material—but gave both the public prac-
tice of cryptography and the 1977 Information Theory Workshop lots of unexpected
publicity.

A more serious attempt occurred in 1980, when the NSA funded the American
Council on Education to examine the issue with a view to persuading Congress to
give it legal control of publications in the field of cryptography. The results fell far
short of NSA’s ambitions and resulted in a program of voluntary review of crypto-
graphic papers; researchers were requested to ask the NSA’s opinion on whether dis-
closure of results would adversely affect the national interest before publication.

As the eighties progressed, pressure focused more on the practice than the study
of cryptography. Existing laws gave the NSA the power, through the Department of
State, to regulate the export of cryptographic equipment. As business became more
and more international and the American fraction of the world market declined, the
pressure to have a single product in both domestic and offshore markets increased.
Such single products were subject to export control and thus the NSA acquired sub-
stantial influence not only over what was exported, but also over what was sold in
the United States.

As this is written, a new challenge confronts the public practice of cryptography.
The government has augmented the widely published and available Data Encryp-
tion Standard, with a secret algorithm implemented in tamper-resistant chips.
These chips will incorporate a codified mechanism of government monitoring. The
negative aspects of this “key-escrow” program range from a potentially disastrous
impact on personal privacy to the high cost of having to add hardware to products
that had previously encrypted in software. So far key escrow products are enjoying
less than stellar sales and the scheme has attracted widespread negative comment,
especially from the independent cryptographers. Some people, however, see more
future in programming than politicking and have redoubled their efforts to provide
the world with strong cryptography that is accessible to public scrutiny.

A sharp step back from the notion that export control law could supersede the
First Amendment seemed to have been taken in 1980 when the Federal Register
announcement of a revision to ITAR included the statement: “. .. provision has
been added to make it clear that the regulation of the export of technical data does
not purport to interfere with the First Amendment rights of individuals.” But the
fact that tension between the First Amendment and the export control laws has not

XX Foreword by Whitfield Diffie

gone away should be evident from statements at a conference held by RSA Data
Security. NSA’s representative from the export control office expressed the opinion
that people who published cryptographic programs were “in a grey area” with
respect to the law. If that is so, it is a grey area on which the first edition of this book
has shed some light. Export applications for the book itself have been granted, with
acknowledgement that published material lay beyond the authority of the Muni-
tions Control Board. Applications to export the enclosed programs on disk, how-
ever, have been denied.

The shift in the NSA’s strategy, from attempting to control cryptographic research
to tightening its grip on the development and deployment of cryptographic prod-
ucts, is presumably due to its realization that all the great cryptographic papers in
the world do not protect a single bit of traffic. Sitting on the shelf, this volume may
be able to do no better than the books and papers that preceded it, but sitting next
to a workstation, where a programmer is writing cryptographic code, it just may.

Whitfield Diffie
Mountain View, CA

Preface

There are two kinds of cryptography in this world: cryptography that will stop your
kid sister from reading your files, and cryptography that will stop major govern-
ments from reading your files. This book is about the latter.

If T take a letter, lock it in a safe, hide the safe somewhere in New York, then tell
you to read the letter, that’s not security. That’s obscurity. On the other hand, if I
take a letter and lock it in a safe, and then give you the safe along with the design
specifications of the safe and a hundred identical safes with their combinations so
that you and the world’s best safecrackers can study the locking mechanism—and
you still can’t open the safe and read the letter—that’s security.

For many years, this sort of cryptography was the exclusive domain of the mili-
tary. The United States’ National Security Agency (NSA), and its counterparts in
the former Soviet Union, England, France, Israel, and elsewhere, have spent billions
of dollars in the very serious game of securing their own communications while try-
ing to break everyone else’s. Private individuals, with far less expertise and budget,
have been powerless to protect their own privacy against these governments.

During the last 20 years, public academic research in cryptography has exploded.
While classical cryptography has been long used by ordinary citizens, computer
cryptography was the exclusive domain of the world’s militaries since World War IL.
Today, state-of-the-art computer cryptography is practiced outside the secured walls
of the military agencies. The layperson can now employ security practices that can
protect against the most powerful of adversaries—security that may protect against
military agencies for years to come.

Do average people really need this kind of security? Yes. They may be planning a
political campaign, discussing taxes, or having an illicit affair. They may be design-
ing a new product, discussing a marketing strategy, or planning a hostile business
takeover. Or they may be living in a country that does not respect the rights of pri-
vacy of its citizens. They may be doing something that they feel shouldn’t be illegal,

XXl Preface

but is. For whatever reason, the data and communications are personal, private, and
no one else’s business.

This book is being published in a tumultuous time. In 1994, the Clinton admin-
istration approved the Escrowed Encryption Standard (including the Clipper chip
and Fortezza card) and signed the Digital Telephony bill into law. Both of these ini-
tiatives try to ensure the government’s ability to conduct electronic surveillance.

Some dangerously Orwellian assumptions are at work here: that the government
has the right to listen to private communications, and that there is something
wrong with a private citizen trying to keep a secret from the government. Law
enforcement has always been able to conduct court-authorized surveillance if pos-
sible, but this is the first time that the people have been forced to take active mea-
sures to make themselves available for surveillance. These initiatives are not
simply government proposals in some obscure area; they are preemptive and unilat-
eral attempts to usurp powers that previously belonged to the people.

Clipper and Digital Telephony do not protect privacy; they force individuals to
unconditionally trust that the government will respect their privacy. The same law
enforcement authorities who illegally tapped Martin Luther King Jr.’s phones can
easily tap a phone protected with Clipper. In the recent past, local police authorities
have either been charged criminally or sued civilly in numerous jurisdictions—
Maryland, Connecticut, Vermont, Georgia, Missouri, and Nevada—for conducting
illegal wiretaps. It's a poor idea to deploy a technology that could some day facilitate
a police state.

The lesson here is that it is insufficient to protect ourselves with laws; we need to
protect ourselves with mathematics. Encryption is too important to be left solely to
governments.

This book gives you the tools you need to protect your own privacy; cryptography
products may be declared illegal, but the information will never be.

How 1O READ THIS BOOK

I wrote Applied Cryptography to be both a lively introduction to the field of cryp-
tography and a comprehensive reference. I have tried to keep the text readable with-
out sacrificing accuracy. This book is not intended to be a mathematical text.
Although I have not deliberately given any false information, I do play fast and loose
with theory. For those interested in formalism, there are copious references to the
academic literature.

Chapter 1 introduces cryptography, defines many terms, and briefly discusses pre-
computer cryptography.

Chapters 2 through 6 (Part I) describe cryptographic protocols: what people can do
with cryptography. The protocols range from the simple (sending encrypted mes-
sages from one person to another) to the complex (flipping a coin over the telephone)
to the esoteric (secure and anonymous digital money exchange). Some of these pro-
tocols are obvious; others are almost amazing. Cryptography can solve a lot of prob-
lems that most people never realized it could.

Preface xxiii

Chapters 7 through 10 (Part IT) discuss cryptographic techniques. All four chapters in
this section are important for even the most basic uses of cryptography. Chapters 7 and
8 are about keys: how long a key should be in order to be secure, how to generate keys,
how to store keys, how to dispose of keys, and so on. Key management is the hardest
part of cryptography and often the Achilles’ heel of an otherwise secure system. Chap-
ter 9 discusses different ways of using cryptographic algorithms, and Chapter 10 gives
the odds and ends of algorithms: how to choose, implement, and use algorithms.

Chapters 11 through 23 (Part III) list algorithms. Chapter 11 provides the mathe-
matical background. This chapter is only required if you are interested in public-key
algorithms. If you just want to implement DES (or something similar), you can skip
ahead. Chapter 12 discusses DES: the algorithm, its history, its security, and some
variants. Chapters 13, 14, and 15 discuss other block algorithms; if you want some-
thing more secure than DES, skip to the section on IDEA and triple-DES. If you want
to read about a bunch of algorithms, some of which may be more secure than DES,
read the whole chapter. Chapters 16 and 17 discuss stream algorithms. Chapter 18
focuses on one-way hash functions; MD5 and SHA are the most common, although
I discuss many more. Chapter 19 discusses public-key encryption algorithms, Chap-
ter 20 discusses public-key digital signature algorithms, Chapter 21 discusses public-
key identification algorithms, and Chapter 22 discusses public-key key exchange
algorithms. The important algorithms are RSA, DSA, Fiat-Shamir, and Diffie-
Hellman, respectively. Chapter 23 has more esoteric public-key algorithms and pro-
tocols; the math in this chapter is quite complicated, so wear your seat belt.

Chapters 24 and 25 (Part IV) turn to the real world of cryptography. Chapter 24
discusses some of the current implementations of these algorithms and protocols,
while Chapter 25 touches on some of the political issues surrounding cryptography.
These chapters are by no means intended to be comprehensive.

Also included are source code listings for 10 algorithms discussed in Part III. I was
unable to include all the code T wanted to due to space limitations, and crypto-
graphic source code cannot otherwise be exported. (Amazingly enough, the State
Department allowed export of the first edition of this book with source code, but
denied export for a computer disk with the exact same source code on it. Go figure.)
An associated source code disk set includes much more source code than I could fit
in this book; it is probably the largest collection of cryptographic source code out-
side a military institution. I can only send source code disks to U.S. and Canadian
citizens living in the U.S. and Canada, but hopefully that will change someday. If
you are interested in implementing or playing with the cryptographic algorithms in
this book, get the disk. See the last page of the book for details.

One criticism of this book is that its encyclopedic nature takes away from its
readability. This is true, but I wanted to provide a single reference for those who
might come across an algorithm in the academic literature or in a product. For those
who are more interested in a tutorial, I apologize. A lot is being done in the field;
this is the first time so much of it has been gathered between two covers. Even so,
space considerations forced me to leave many things out. I covered topics that I felt
were important, practical, or interesting. If I couldn’t cover a topic in depth, I gave
references to articles and papers that did.

XXIV Preface

I have done my best to hunt down and eradicate all errors in this book, but many
have assured me that it is an impossible task. Certainly, the second edition has far
fewer errors than the first. An errata listing is available from me and will be period-
ically posted to the Usenet newsgroup sci.crypt. If any reader finds an error, please
let me know. I'll send the first person to find each error in the book a free copy of the
source code disk.

Acknowledgments

The list of people who had a hand in this book may seem unending, but all are
worthy of mention. I would like to thank Don Alvarez, Ross Anderson, Dave Balen-
son, Karl Barrus, Steve Bellovin, Dan Bernstein, Eli Biham, Joan Boyar, Karen
Cooper, Whit Diffie, Joan Feigenbaum, Phil Karn, Neal Koblitz, Xuejia Lai, Tom
Leranth, Mike Markowitz, Ralph Merkle, Bill Patton, Peter Pearson, Charles
Pfleeger, Ken Pizzini, Bart Preneel, Mark Riordan, Joachim Schurman, and Marc
Schwartz for reading and editing all or parts of the first edition; Marc Vauclair for
translating the first edition into French; Abe Abraham, Ross Anderson, Dave
Banisar, Steve Bellovin, Eli Biham, Matt Bishop, Matt Blaze, Gary Carter, Jan
Camenisch, Claude Crépeau, Joan Daemen, Jorge Davila, Ed Dawson, Whit Diffie,
Carl Ellison, Joan Feigenbaum, Niels Ferguson, Matt Franklin, Rosario Gennaro,
Dieter Gollmann, Mark Goresky, Richard Graveman, Stuart Haber, Jingman He,
Bob Hogue, Kenneth Iversen, Markus Jakobsson, Burt Kaliski, Phil Karn, John
Kelsey, John Kennedy, Lars Knudsen, Paul Kocher, John Ladwig, Xuejia Lai, Arjen
Lenstra, Paul Leyland, Mike Markowitz, Jim Massey, Bruce McNair, William Hugh
Murray, Roger Needham, Clif Neuman, Kaisa Nyberg, Luke O’Connor, Peter Pear-
son, René Peralta, Bart Preneel, Yisrael Radai, Matt Robshaw, Michael Roe, Phil
Rogaway, Avi Rubin, Paul Rubin, Selwyn Russell, Kazue Sako, Mahmoud Salma-
sizadeh, Markus Stadler, Dmitry Titov, Jimmy Upton, Marc Vauclair, Serge Vaude-
nay, Gideon Yuval, Glen Zorn, and several anonymous government employees for
reading and editing all or parts of the second edition; Lawrie Brown, Leisa Condie,
Joan Daemen, Peter Gutmann, Alan Insley, Chris Johnston, John Kelsey, Xuejia Lai,
Bill Leininger, Mike Markowitz, Richard Outerbridge, Peter Pearson, Ken Pizzini,
Colin Plumb, RSA Data Security, Inc., Michael Roe, Michael Wood, and Phil Zim-
mermann for providing source code; Paul MacNerland for creating the figures for
the first edition; Karen Cooper for copyediting the second edition; Beth Friedman for
proofreading the second edition; Carol Kennedy for indexing the second edition; the
readers of sci.crypt and the Cypherpunks mailing list for commenting on ideas,
answering questions, and finding errois in the first edition; Randy Seuss for provid-
ing Internet access; Jeff Duntemann and Jon Erickson for helping me get started;
assorted random Insleys for the impetus, encouragement, support, conversations,
friendship, and dinners; and AT&T Bell Labs for firing me and making this all pos-
sible. All these people helped to create a far better book than I could have created
alone.

Bruce Schneier

About the Author

BRUCE SCHNEIER is an internationally renowned security technologist, called a
“security guru” by The Economist. He is the author of twelve books — including
his seminal work, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, and Secrets & Lies: Digital Security in a Networked World which has become
a classic as well as hundreds of articles, essays, and academic papers. His influen-
tial newsletter “Crypto-Gram” and blog “Schneier on Security” are read by over
250,000 people. Schneier is a fellow at the Berkman Center for Internet and Society
at Harvard Law School, a program fellow at the New America Foundation’s Open
Technology Institute, a board member of the Electronic Frontier Foundation, and an
Advisory Board member of the Electronic Privacy Information Center. He is also the
Chief Technology Officer of Resilient Systems, Inc. You can read his blog, essays,
and academic papers at www. schneier.com. He tweets at @schneierblog.

CHAPTER |

Foundations

1.1 TERMINOLOGY

Sender and Receiver

Suppose a sender wants to send a message to a receiver. Moreover, this sender
wants to send the message securely: She wants to make sure an eavesdropper can-
not read the message.

Messages and Encryption

A message is plaintext (sometimes called cleartext). The process of disguising a
message in such a way as to hide its substance is encryption. An encrypted message
is ciphertext. The process of turning ciphertext back into plaintext is decryption.
This is all shown in Figure 1.1.

(If you want to follow the ISO 7498-2 standard, use the terms “encipher” and
“decipher.” It seems that some cultures find the terms “encrypt” and “decrypt”
offensive, as they refer to dead bodies.)

The art and science of keeping messages secure is cryptography, and it is practiced
by cryptographers. Cryptanalysts are practitioners of cryptanalysis, the art and sci-
ence of breaking ciphertext; that is, seeing through the disguise. The branch of
mathematics encompassing both cryptography and cryptanalysis is cryptology and
its practitioners are cryptologists. Modern cryptologists are generally trained in the-
oretical mathematics—they have to be.

Original

Plaintext Ciphertext - Plaintext

Figure 1.1 Encryption and Decryption.

2 CHAPTER 1 Foundations

Plaintext is denoted by M, for message, or P, for plaintext. It can be a stream of
bits, a text file, a bitmap, a stream of digitized voice, a digital video image . . . what-
ever. As far as a computer is concerned, M is simply binary data. (After this chapter,
this book concerns itself with binary data and computer cryptography.) The plain-
text can be intended for either transmission or storage. In any case, M is the message
to be encrypted.

Ciphertext is denoted by C. It is also binary data: sometimes the same size as M,
sometimes larger. (By combining encryption with compression, C may be smaller
than M. However, encryption does not accomplish this.) The encryption function E,
operates on M to produce C. Or, in mathematical notation:

E(M)=C
In the reverse process, the decryption function D operates on C to produce M:
D(C)=M

Since the whole point of encrypting and then decrypting a message is to recover
the original plaintext, the following identity must hold true:

D(E(M)) =M

Authentication, Integrity, and Nonrepudiation

In addition to providing confidentiality, cryptography is often asked to do other
jobs:

— Authentication. It should be possible for the receiver of a message to
ascertain its origin; an intruder should not be able to masquerade as
someone else.

— Integrity. It should be possible for the receiver of a message to verify
that it has not been modified in transit; an intruder should not be able
to substitute a false message for a legitimate one.

— Nonrepudiation. A sender should not be able to falsely deny later that
he sent a message.

These are vital requirements for social interaction on computers, and are analo-
gous to face-to-face interactions. That someone is who he says he is . . . that some-
one’s credentials—whether a driver’s license, a medical degree, or a passport—are
valid . . . that a document purporting to come from a person actually came from that
person. . . . These are the things that authentication, integrity, and nonrepudiation
provide.

Algorithms and Keys

A cryptographic algorithm, also called a cipher, is the mathematical function used
for encryption and decryption. (Generally, there are two related functions: one for
encryption and the other for decryption.)

1.1 Terminology /3\

If the security of an algorithm is based on keeping the way that algorithm works
a secret, it is a restricted algorithm. Restricted algorithms have historical interest,
but are woefully inadequate by today’s standards. A large or changing group of users
cannot use them, because every time a user leaves the group everyone else must
switch to a different algorithm. If someone accidentally reveals the secret, everyone
must change their algorithm.

Even more damning, restricted algorithms allow no quality control or standard-
ization. Every group of users must have their own unique algorithm. Such a group
can’t use off-the-shelf hardware or software products; an eavesdropper can buy the
same product and learn the algorithm. They have to write their own algorithms and
implementations. If no one in the group is a good cryptographer, then they won’t
know if they have a secure algorithm.

Despite these major drawbacks, restricted algorithms are enorrously popular for
low-security applications. Users either don’t realize or don’t care about the security
problems inherent in their system.

Modern cryptography solves this problem with a key, denoted by K. This key might
be any one of a large number of values. The range of possible values of the key is called
the keyspace. Both the encryption and decryption operations use this key (i.e., they
are dependent on the key and this fact is denoted by the K subscript), so the functions
now become:

Those functions have the property that (see Figure 1.2):
DylEx(M)) =M

Some algorithms use a different encryption key and decryption key (see Figure
1.3). That is, the encryption key, K|, is different from the corresponding decryption
key, K,. In this case:

Ex,(M)=C
Dy, (C) =M
DKZ(EKI (M)) =M
All of the security in these algorithms is based in the key (or keys); none is based

in the details of the algorithm. This means that the algorithm can be published and
analyzed. Products using the algorithm can be mass-produced. It doesn’t matter if an

Key Key
Original

Plaintext - Ciphertext - Plaintext

Figure 1.2 Encryption and decryption with a key.

4 CHAPTER 1 Foundations

Encryption Decryption
Key Key

Original

Plaintext Ciphertext Plaintext
Encrypton

Figure 1.3 Encryption and decryption with two different keys.

eavesdropper knows your algorithm; if she doesn’t know your particular key, she
can’t read your messages.
A cryptosystem is an algorithm, plus all possible plaintexts, ciphertexts, and keys.

Symmetric Algorithms

There are two general types of key-based algorithms: symmetric and public-key.
Symmetric algorithms, sometimes called conventional algorithms, are algorithms
where the encryption key can be calculated from the decryption key and vice versa.
In most symmetric algorithms, the encryption key and the decryption key are the
same. These algorithms, also called secret-key algorithms, single-key algorithms, or
one-key algorithms, require that the sender and receiver agree on a key before they
can communicate securely. The security of a symmetric algorithm rests in the key;
divulging the key means that anyone could encrypt and decrypt messages. As long
as the communication needs to remain secret, the key must remain secret.

Encryption and decryption with a symmetric algorithm are denoted by:

EdM)=C
DiC)=M

Symmetric algorithms can be divided into two categories. Some operate on the
plaintext a single bit (or sometimes byte) at a time; these are called stream algo-
rithms or stream ciphers. Others operate on the plaintext in groups of bits. The
groups of bits are called blocks, and the algorithms are called block algorithms or
block ciphers. For modern computer algorithms, a typical block size is 64 bits—
large enough to preclude analysis and small enough to be workable. (Before com-
puters, algorithms generally operated on plaintext one character at a time. You can
think of this as a stream algorithm operating on a stream of characters.)

Public-Key Algorithms

Public-key algorithms (also called asymmetric algorithms) are designed so that
the key used for encryption is different from the key used for decryption. Further-
more, the decryption key cannot (at least in any reasonable amount of time) be cal-
culated from the encryption key. The algorithms are called “public-key” because
the encryption key can be made public: A complete stranger can use the encryption
key to encrypt a message, but only a specific person with the corresponding decryp-

1.1 Terminology /5\

tion key can decrypt the message. In these systems, the encryption key is often
called the public key, and the decryption key is often called the private key. The pri-
vate key is sometimes also called the secret key, but to avoid confusion with sym-
metric algorithms, that tag won’t be used here.

Encryption using public key K is denoted by:

EdM)=C

Even though the public key and private key are different, decryption with the cor-
responding private key is denoted by:

DiC)=M

Sometimes, messages will be encrypted with the private key and decrypted with
the public key; this is used in digital signatures (see Section 2.6). Despite the possi-
ble confusion, these operations are denoted by, respectively:

EK(M) - C
Dy(C)=M
Cryptanalysis

The whole point of cryptography is to keep the plaintext (or the key, or both)
secret from eavesdroppers (also called adversaries, attackers, interceptors, interlop-
ers, intruders, opponents, or simply the enemy). Eavesdroppers are assumed to have
complete access to the communications between the sender and receiver.

Cryptanalysis is the science of recovering the plaintext of a message without
access to the key. Successful cryptanalysis may recover the plaintext or the key. It
also may find weaknesses in a cryptosystem that eventually lead to the previous
results. (The loss of a key through noncryptanalytic means is called a compromise.)

An attempted cryptanalysis is called an attack. A fundamental assumption in
cryptanalysis, first enunciated by the Dutchman A. Kerckhoffs in the nineteenth
century, is that the secrecy must reside entirely in the key [794]. Kerckhoffs
assumes that the cryptanalyst has complete details of the cryptographic algorithm
and implementation. (Of course, one would assume that the CIA does not make a
habit of telling Mossad about its cryptographic algorithms, but Mossad probably
finds out anyway.) While real-world cryptanalysts don’t always have such detailed
information, it’s a good assumption to make. If others can’t break an algorithm,
even with knowledge of how it works, then they certainly won'’t be able to break it
without that knowledge.

There are four general types of cryptanalytic attacks. Of course, each of them
assumes that the cryptanalyst has complete knowledge of the encryption algo-
rithm used:

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of several
messages, all of which have been encrypted using the same encryption
algorithm. The cryptanalyst’s job is to recover the plaintext of as many
messages as possible, or better yet to deduce the key (or keys) used to

CHAPTER 1 Foundations

encrypt the messages, in order to decrypt other messages encrypted with
the same keys.

Given: C1 = Ek(Pl)r CZ = Ek(PQ), . .. Ci = Ek(Pz)

Deduce: Either Py, P,, . .. P; k; or an algorithm
to infer P; , ; from C;, | = E(P; , 1)

Known-plaintext attack. The cryptanalyst has access not only to the
ciphertext of several messages, but also to the plaintext of those messages.
His job is to deduce the key (or keys) used to encrypt the messages or an
algorithm to decrypt any new messages encrypted with the same key (or
keys).

Given: pl; Cl = Ek(Pl), PZ: C2 = Ek(Pz), PP Pl-, Cl- = Ek(Pl)

Deduce: Either &, or an algorithm
to infer P; ., from C;, | = E¢(P; . 1)

. Chosen-plaintext attack. The cryptanalyst not only has access to the

ciphertext and associated plaintext for several messages, but he also
chooses the plaintext that gets encrypted. This is more powerful than a
known-plaintext attack, because the cryptanalyst can choose specific
plaintext blocks to encrypt, ones that might yield more information about
the key. His job is to deduce the key (or keys) used to encrypt the messages
or an algorithm to decrypt any new messages encrypted with the same key
(or keys).

Given: Pl, C1 = Ek(P]), Pz, C2 = Ek(pz), e Pi, CI' = Ek(Pi),

where the cryptanalyst gets to choose Py, Py, ... P;
Deduce: Either k, or an algorithm to infer P; ., | from C;, | = Ex(P; . 1)

. Adaptive-chosen-plaintext attack. This is a special case of a chosen-

plaintext attack. Not only can the cryptanalyst choose the plaintext that is
encrypted, but he can also modify his choice based on the results of previ-
ous encryption. In a chosen-plaintext attack, a cryptanalyst might just be
able to choose one large block of plaintext to be encrypted; in an adaptive-
chosen-plaintext attack he can choose a smaller block of plaintext and
then choose another based on the results of the first, and so forth.

There are at least three other types of cryptanalytic attack.

5.

Chosen-ciphertext attack. The cryptanalyst can choose different cipher-
texts to be decrypted and has access to the decrypted plaintext. For exam-
ple, the cryptanalyst has access to a tamperproof box that does automatic
decryption. His job is to deduce the key.

Given: CI; P] = Dk(cl), Cz, PZ = D]((Cz), . .. Ci: Pi = Dk(cl)
Deduce: k

1.1 Terminology /7\
=

This attack is primarily applicable to public-key algorithms and will be
discussed in Section 19.3. A chosen-ciphertext attack is sometimes effec-
tive against a symmetric algorithm as well. (Sometimes a chosen-plaintext
attack and a chosen-ciphertext attack are together known as a chosen-text
attack.)

6. Chosen-key attack. This attack doesn’t mean that the cryptanalyst can
choose the key; it means that he has some knowledge about the relation-
ship between different keys. It’s strange and obscure, not very practical,
and discussed in Section 12.4.

7. Rubber-hose cryptanalysis. The cryptanalyst threatens, blackmails, or tor-
tures someone until they give him the key. Bribery is sometimes referred
to as a purchase-key attack. These are all very powerful attacks and often
the best way to break an algorithm.

Known-plaintext attacks and chosen-plaintext attacks are more common than
you might think. It is not unheard-of for a cryptanalyst to get a plaintext message
that has been encrypted or to bribe someone to encrypt a chosen message. You may
not even have to bribe someone; if you give a message to an ambassador, you will
probably find that it gets encrypted and sent back to his country for consideration.
Many messages have standard beginnings and endings that might be known to the
cryptanalyst. Encrypted source code is especially vulnerable because of the regular
appearance of keywords: #define, struct, else, return. Encrypted executable code has
the same kinds of problems: functions, loop structures, and so on. Known-plaintext
attacks (and even chosen-plaintext attacks) were successfully used against both the
Germans and the Japanese during World War II. David Kahn’s books [794,795,796]
have historical examples of these kinds of attacks. -

And don’t forget Kerckhoffs’s assumption: If the strength of your new cryptosys-
tem relies on the fact that the attacker does not know the algorithm’s inner work-
ings, you’re sunk. If you believe that keeping the algorithm’s insides secret
improves the security of your cryptosystem more than letting the academic com-
munity analyze it, you’re wrong. And if you think that someone won’t disassemble
your code and reverse-engineer your algorithm, you're naive. (In 1994 this hap-
pened with the RC4 algorithm—see Section 17.1.) The best algorithms we have are
the ones that have been made public, have been attacked by the world’s best cryp-
tographers for years, and are still unbreakable. (The National Security Agency
keeps their algorithms secret from outsiders, but they have the best cryptographers
in the world working within their walls—you don’t. Additionally, they discuss
their algorithms with one another, relying on peer review to uncover any weak-
nesses in their work.)

Cryptanalysts don’t always have access to the algorithms, as when the United
States broke the Japanese diplomatic code PURPLE during World War II [794]—but
they often do. If the algorithm is being used in a commercial security program, it is
simply a matter of time and money to disassemble the program and recover the algo-
rithm. If the algorithm is being used in a military communications system, it is sim-

8 CHAPTER 1 Foundations

ply a matter of time and money to buy (or steal) the equipment and reverse-engineer
the algorithm.

Those who claim to have an unbreakable cipher simply because they can’t break
it are either geniuses or fools. Unfortunately, there are more of the latter in the
world. Beware of people who extol the virtues of their algorithms, but refuse to
make them public; trusting their algorithms is like trusting snake oil.

Good cryptographers rely on peer review to separate the good algorithms from
the bad.

Security of Algorithms

Different algorithms offer different degrees of security; it depends on how hard
they are to break. If the cost required to break an algorithm is greater than the value
of the encrypted data, then you’re probably safe. If the time required to break an
algorithm is longer than the time the encrypted data must remain secret, then
you’re probably safe. If the amount of data encrypted with a single key is less than
the amount of data necessary to break the algorithm, then you're probably safe.

I say “probably” because there is always a chance of new breakthroughs in crypt-
analysis. On the other hand, the value of most data decreases over time. It is impor-
tant that the value of the data always remain less than the cost to break the security
protecting it.

Lars Knudsen classified these different categories of breaking an algorithm. In
decreasing order of severity [858]:

1. Total break. A cryptanalyst finds the key, K, such that Dy(C) =P.

2. Global deduction. A cryptanalyst finds an alternate algorithm, A, equiva-
lent to Dg(C), without knowing K.

3. Instance (or local) deduction. A cryptanalyst finds the plaintext of an inter-
cepted ciphertext.

4. Information deduction. A cryptanalyst gains some information about the
key or plaintext. This information could be a few bits of the key, some
information about the form of the plaintext, and so forth.

An algorithm is unconditionally secure if, no matter how much ciphertext a
cryptanalyst has, there is not enough information to recover the plaintext. In point
of fact, only a one-time pad (see Section 1.5) is unbreakable given infinite resources.
All other cryptosystems are breakable in a ciphertext-only attack, simply by trying
every possible key one by one and checking whether the resulting plaintext is mean-
ingful. This is called a brute-force attack (see Section 7.1).

Cryptography is more concerned with cryptosystems that are computationally
infeasible to break. An algorithm is considered computationally secure (sometimes
called strong) if it cannot be broken with available resources, either current or
future. Exactly what constitutes “available resources” is open to interpretation.

You can measure the complexity (see Section 11.1) of an attack in different ways:

1.2 Steganography /9\
—

1. Data complexity. The amount of data needed as input to the attack.

2. Processing complexity. The time needed to perform the attack. This is
often called the work factor.

3. Storage requirements. The amount of memory needed to do the attack.

As a rule of thumb, the complexity of an attack is taken to be the minimum of
these three factors. Some attacks involve trading off the three complexities: A faster
attack might be possible at the expense of a greater storage requirement.

Complexities are expressed as orders of magnitude. If an algorithm has a process-
ing complexity of 2'*%, then 2'*® operations are required to break the algorithm.
(These operations may be complex and time-consuming.) Still, if you assume that
you have enough computing speed to perform a million operations every second and
you set a million parallel processors against the task, it will still take over 10" years
to recover the key. That’s a billion times the age of the universe.

While the complexity of an attack is constant (until some cryptanalyst finds a bet-
ter attack, of course), computing power is anything but. There have been phenome-
nal advances in computing power during the last half-century and there is no reason
to think this trend won'’t continue. Many cryptanalytic attacks are perfect for paral-
lel machines: The task can be broken down into billions of tiny pieces and none of
the processors need to interact with each other. Pronouncing an algorithm secure
simply because it is infeasible to break, given current technology, is dicey at best.
Good cryptosystems are designed to be infeasible to break with the computing
power that is expected to evolve many years in the future.

Historical Terms

Historically, a code refers to a cryptosystem that deals with linguistic units:
words, phrases, sentences, and so forth. For example, the word “OCELOT” might be
the ciphertext for the entire phrase “TURN LEFT 90 DEGREES,” the word “LOL-
LIPOP” might be the ciphertext for “TURN RIGHT 90 DEGREES,” and the words
“BENT EAR” might be the ciphertext for “"HOWITZER.” Codes of this type are not
discussed in this book; see [794,795]. Codes are only useful for specialized circum-
stances. Ciphers are useful for any circumstance. If your code has no entry for
“ANTEATERS,” then you can’t say it. You can say anything with a cipher.

1.2 STEGANOGRAPHY

Steganography serves to hide secret messages in other messages, such that the
secret’s very existence is concealed. Generally the sender writes an innocuous mes-
sage and then conceals a secret message on the same piece of paper. Historical tricks
include invisible inks, tiny pin punctures on selected characters, minute differences
between handwritten characters, pencil marks on typewritten characters, grilles
which cover most of the message except for a few characters, and so on.

/N CHAPTER 1 Foundations
—~

More recently, people are hiding secret messages in graphic images. Replace the
least significant bit of each byte of the image with the bits of the message. The
graphical image won’t change appreciably—most graphics standards specify more
gradations of color than the human eye can notice—and the message can be stripped
out at the receiving end. You can store a 64-kilobyte message in a 1024 x 1024 grey-
scale picture this way. Several public-domain programs do this sort of thing.

Peter Wayner’s mimic functions obfuscate messages. These functions modify a
message so that its statistical profile resembles that of something else: the classi-
fieds section of The New York Times, a play by Shakespeare, or a newsgroup on the
Internet [1584,1585]. This type of steganography won't fool a person, but it might
fool some big computers scanning the Internet for interesting messages.

1.3 SuBsTITUTION CIPHERS AND TRANSPOSITION CIPHERS

Before computers, cryptography consisted of character-based algorithms. Different
cryptographic algorithms either substituted characters for one another or transposed
characters with one another. The better algorithms did both, many times each.
Things are more complex these days, but the philosophy remains the same. The
primary change is that algorithms work on bits instead of characters. This is actu-
ally just a change in the alphabet size: from 26 elements to two elements. Most good
cryptographic algorithms still combine elements of substitution and transposition.

Substitution Ciphers

A substitution cipher is one in which each character in the plaintext is substi-
tuted for another character in the ciphertext. The receiver inverts the substitution
on the ciphertext to recover the plaintext.

In classical cryptography, there are four types of substitution ciphers:

— A simple substitution cipher, or monoalphabetic cipher, is one in
which each character of the plaintext is replaced with a correspond-
ing character of ciphertext. The cryptograms in newspapers are sim-
ple substitution ciphers.

— A homophonic substitution cipher is like a simple substitution cryp-
tosystem, except a single character of plaintext can map to one of sev-
eral characters of ciphertext. For example, “A” could correspond to
either 5, 13, 25, or 56, “B” could correspond to either 7, 19, 31, or 42,
and so on.

— A polygram substitution cipher is one in which blocks of characters
are encrypted in groups. For example, “ABA” could correspond to
“RTQ,” “ABB” could correspond to “SLL,” and so on.

— A polyalphabetic substitution cipher is made up of multiple simple
substitution ciphers. For example, there might be five different sim-
ple substitution ciphers used; the particular one used changes with
the position of each character of the plaintext.

1.3 Substitution Ciphers and Transposition Ciphers /\
=

The famous Caesar Cipher, in which each plaintext character is replaced by the
character three to the right modulo 26 (“A” is replaced by “D,” “B” is replaced by
“E,” ..., "W" is replaced by “Z,” “X" is replaced by “A,” “Y” is replaced by “B,”
and “Z” is replaced by “C”) is a simple substitution cipher. It’s actually even sim-
pler, because the ciphertext alphabet is a rotation of the plaintext alphabet and not
an arbitrary permutation.

ROT13 is a simple encryption program commonly found on UNIX systems; it is
also a simple substitution cipher. In this cipher, “A” is replaced by “N,” “B” is
replaced by “O,” and so on. Every letter is rotated 13 places.

Encrypting a file twice with ROT13 restores the original file.

P=ROTI13 (ROT13 (P))

ROT13 is not intended for security; it is often used in Usenet posts to hide poten-
tially offensive text, to avoid giving away the solution to a puzzle, and so forth.

Simple substitution ciphers can be easily broken because the cipher does not hide
the underlying frequencies of the different letters of the plaintext. All it takes is
about 25 English characters before a good cryptanalyst can reconstruct the plaintext
[1434]. An algorithm for solving these sorts of ciphers can be found in [578,587,
1600,78,1475,1236,880]. A good computer algorithm is [703].

Homophonic substitution ciphers were used as early as 1401 by the Duchy of Man-
tua [794]. They are much more complicated to break than simple substitution ciphers,
but still do not obscure all of the statistical properties of the plaintext language. With
a known-plaintext attack, the ciphers are trivial to break. A ciphertext-only attack is
harder, but only takes a few seconds on a computer. Details are in [1261].

Polygram substitution ciphers are ciphers in which groups of letters are encrypted
together. The Playfair cipher, invented in 1854, was used by the British during
World War I [794]. It encrypts pairs of letters together. Its cryptanalysis is discussed
in [587,1475,880]. The Hill cipher is another example of a polygram substitution
cipher [732]. Sometimes you see Huffman coding used as a cipher; this is an insecure
polygram substitution cipher.

Polyalphabetic substitution ciphers were invented by Leon Battista in 1568 [794].
They were used by the Union army during the American Civil War. Despite the fact
that they can be broken easily [819,577,587,794] (especially with the help of com-
puters), many commercial computer security products use ciphers of this form
[1387,1390,1502]. (Details on how to break this encryption scheme, as used in Word-
Perfect, can be found in [135,139].) The Vigenere cipher, first published in 1586, and
the Beaufort cipher are also examples of polyalphabetic substitution ciphers.

Polyalphabetic substitution ciphers have multiple one-letter keys, each of which
is used to encrypt one letter of the plaintext. The first key encrypts the first letter of
the plaintext, the second key encrypts the second letter of the plaintext, and so on.
After all the keys are used, the keys are recycled. If there were 20 one-letter keys,
then every twentieth letter would be encrypted with the same key. This is called the
period of the cipher. In classical cryptography, ciphers with longer periods were sig-
nificantly harder to break than ciphers with short periods. There are computer tech-
niques that can easily break substitution ciphers with very long periods.

/N CHAPTER 1 Foundations

A running-key cipher—sometimes called a book cipher—in which one text is
used to encrypt another text, is another example of this sort of cipher. Even though
this cipher has a period the length of the text, it can also be broken easily [576,794].

Transposition Ciphers

In a transposition cipher the plaintext remains the same, but the order of charac-
ters is shuffled around. In a simple columnar transposition cipher, the plaintext is
written horizontally onto a piece of graph paper of fixed width and the ciphertext is
read off vertically (see Figure 1.4). Decryption is a matter of writing the ciphertext
vertically onto a piece of graph paper of identical width and then reading the plain-
text off horizontally.

Cryptanalysis of these ciphers is discussed in [587,1475]. Since the letters of the
ciphertext are the same as those of the plaintext, a frequency analysis on the cipher-
text would reveal that each letter has approximately the same likelihood as in
English. This gives a very good clue to a cryptanalyst, who can then use a variety of
techniques to determine the right ordering of the letters to obtain the plaintext.
Putting the ciphertext through a second transposition cipher greatly enhances secu-
rity. There are even more complicated transposition ciphers, but computers can
break almost all of them.

The German ADFGVX cipher, used during World War I, is a transposition cipher
combined with a simple substitution. It was a very complex algorithm for its day
but was broken by Georges Painvin, a French cryptanalyst [794].

Although many modern algorithms use transposition, it is troublesome because it
requires a lot of memory and sometimes requires messages to be only certain
lengths. Substitution is far more common.

Rotor Machines

In the 1920s, various mechanical encryption devices were invented to automate
the process of encryption. Most were based on the concept of a rotor, a mechanical
wheel wired to perform a general substitution.

A rotor machine has a keyboard and a series of rotors, and implements a version
of the Vigenere cipher. Each rotor is an arbitrary permutation of the alphabet, has 26
positions, and performs a simple substitution. For example, a rotor might be wired

Plaintext:coMPUTER GRAPHICS MAY BE SLOW BUT AT LEAST IT'S EXPENSIVE.

COMPUTERGR
APHICSMAYB
ESLOWBUTAT
LEASTITSEX
PENSIVE

Ciphertext: CAELP OPSEE MHLAN PIOSS UCWTI TSBIVEMUTE RATS! YAERB TX

Figure 1.4 Columnar transposition cipher.

1.4 Simple XOR /N
=

to substitute “F” for “A,” “U” for “B,” “L"” for “C,” and so on. And the output pins
of one rotor are connected to the input pins of the next.

For example, in a 4-rotor machine the first rotor might substitute “F” for “A,” the
second might substitute “Y” for “F,” the third might substitute “E” for “Y,” and the
fourth might substitute “C” for “E”; “C” would be the output ciphertext. Then
some of the rotors shift, so next time the substitutions will be different.

It is the combination of several rotors and the gears moving them that makes the
machine secure. Because the rotors all move at different rates, the period for an n-
rotor machine is 26”. Some rotor machines can also have a different number of posi-
tions on each rotor, further frustrating cryptanalysis.

The best-known rotor device is the Enigma. The Enigma was used by the Ger-
mans during World War II. The idea was invented by Arthur Scherbius and Arvid
Gerhard Damm in Europe. It was patented in the United States by Arthur Scherbius
[1383]. The Germans beefed up the basic design considerably for wartime use.

The German Enigma had three rotors, chosen from a set of five, a plugboard that
slightly permuted the plaintext, and a reflecting rotor that caused each rotor to oper-
ate on each plaintext letter twice. As complicated as the Enigma was, it was broken
during World War II. First, a team of Polish cryptographers broke the German
Enigma and explained their attack to the British. The Germans modified their
Enigma as the war progressed, and the British continued to cryptanalyze the new
versions. For explanations of how rotor ciphers work and how they were broken, see
[794,86,448,498,446,880,1315,1587,690]. Two fascinating accounts of how the
Enigma was broken are [735,796].

Further Reading

This is not a book about classical cryptography, so I will not dwell further on these
subjects. Two excellent precomputer cryptology books are [587,1475]; [448] presents
some modern cryptanalysis of cipher machines. Dorothy Denning discusses many of
these ciphers in [456] and [880] has some fairly complex mathematical analysis of the
same ciphers. Another older cryptography text, which discusses analog cryptogra-
phy, is [99]. An article that presents a good overview of the subject is [579]. David
Kahn’s historical cryptography books are also excellent [794,795,796].

1.4 SiMpLE XOR

XOR is exclusive-or operation: ‘*’ in C or ® in mathematical notation. It’s a stan-
dard operation on bits:

0®0=0
oel1=1
1®0=1
11=0
Also note that:
a®a=0

a®@b®b=a

/N CHAPTER 1 Foundations
—

The simple-XOR algorithm is really an embarrassment; it’s nothing more than a
Vigenere polyalphabetic cipher. It’s here only because of its prevalence in commer-
cial software packages, at least those in the MS-DOS and Macintosh worlds
[1502,1387]. Unfortunately, if a software security program proclaims that it has a
“proprietary” encryption algorithm—significantly faster than DES—the odds are
that it is some variant of this.

/* Usage: crypto key input_file output_file */

void main (int argc, char *argv[])
{

FILE *fi, *fo;

char *cp;

int c;

if ((cp = argv[1]) && *cp!="\0") {
if ((fi = fopen(argv[2], "rb")) != NULL) {
if ((fo = fopen(argv[3], "wb")) != NULL) ({
while ((c = getc(fi)) != EOF) {
if (!*cp) cp = argv([l];
c "= *(cptt);
putc(c,fo);
}
fclose(fo);
}
fclose(fi);

}

This is a symmetric algorithm. The plaintext is being XORed with a keyword to
generate the ciphertext. Since XORing the same value twice restores the original,
encryption and decryption use exactly the same program:

P®K=C
C®K=P

There’s no real security here. This kind of encryption is trivial to break, even
without computers [587,1475]. It will only take a few seconds with a computer.

Assume the plaintext is English. Furthermore, assume the key length is any small
number of bytes. Here’s how to break it:

1. Discover the length of the key by a procedure known as counting coinci-
dences [577]. XOR the ciphertext against itself shifted various numbers of
bytes, and count those bytes that are equal. If the displacement is a multi-
ple of the key length, then something over 6 percent of the bytes will be
equal. If it is not, then less than 0.4 percent will be equal (assuming a ran-
dom key encrypting normal ASCII text; other plaintext will have different
numbers). This is called the index of coincidence. The smallest displace-
ment that indicates a multiple of the key length is the length of the key.

1.5 One-Time Pads /\
—

2. Shift the ciphertext by that length and XOR it with itself. This removes
the key and leaves you with plaintext XORed with the plaintext shifted
the length of the key. Since English has 1.3 bits of real information per byte
(see Section 11.1), there is plenty of redundancy for determining a unique
decryption.

Despite this, the list of software vendors that tout this toy algorithm as being
“almost as secure as DES” is staggering [1387]. It is the algorithm (with a 160-bit
repeated “key”’) that the NSA finally allowed the U.S. digital cellular phone indus-
try to use for voice privacy. An XOR might keep your kid sister from reading your
files, but it won'’t stop a cryptanalyst for more than a few minutes.

1.5 ONEe-TIME PADS

Believe it or not, there is a perfect encryption scheme. It’s called a one-time pad, and
was invented in 1917 by Major Joseph Mauborgne and AT&T’s Gilbert Vernam
[794]. (Actually, a one-time pad is a special case of a threshold scheme; see Section
3.7.) Classically, a one-time pad is nothing more than a large nonrepeating set of
truly random key letters, written on sheets of paper, and glued together in a pad. In
its original form, it was a one-time tape for teletypewriters. The sender uses each
key letter on the pad to encrypt exactly one plaintext character. Encryption is the
addition modulo 26 of the plaintext character and the one-time pad key character.

Each key letter is used exactly once, for only one message. The sender encrypts
the message and then destroys the used pages of the pad or used section of the tape.
The receiver has an identical pad and uses each key on the pad, in turn, to decrypt
each letter of the ciphertext. The receiver destroys the same pad pages or tape sec-
tion after decrypting the message. New message—new key letters. For example, if
the message is:

ONETIMEPAD

and the key sequence from the pad is
TBFRGFARFM

then the ciphertext is
[PKLPSFHGQ

because

O+Tmod26=1
N +Bmod26=P
E+Fmod26=K
etc.

16 CHAPTER 1 Foundations

Assuming an eavesdropper can’t get access to the one-time pad used to encrypt
the message, this scheme is perfectly secure. A given ciphertext message is equally
likely to correspond to any possible plaintext message of equal size.

Since every key sequence is equally likely (remember, the key letters are gener-
ated randomly), an adversary has no information with which to cryptanalyze the
ciphertext. The key sequence could just as likely be:

POYYAEAAZX

which would decrypt to:

SALMONEGGS

or

BXFGBMTMXM

which would decrypt to:

GREENFLUID

This point bears repeating: Since every plaintext message is equally possible,
there is no way for the cryptanalyst to determine which plaintext message is the
correct one. A random key sequence added to a nonrandom plaintext message pro-
duces a completely random ciphertext message and no amount of computing power
can change that.

The caveat, and this is a big one, is that the key letters have to be generated ran-
domly. Any attacks against this scheme will be against the method used to generate
the key letters. Using a pseudo-random number generator doesn’t count; they
always have nonrandom properties. If you use a real random source—this is much
harder than it might first appear, see Section 17.14—it’s secure.

The other important point is that you can never use the key sequence again, ever.
Even if you use a multiple-gigabyte pad, if a cryptanalyst has multiple ciphertexts
whose keys overlap, he can reconstruct the plaintext. He slides each pair of cipher-
texts against each other and counts the number of matches at each position. If they
are aligned right, the proportion of matches jumps suddenly—the exact percentages
depend on the plaintext language. From this point cryptanalysis is easy. It’s like the
index of coincidence, but with just two “periods” to compare [904]. Don't do it.

The idea of a one-time pad can be easily extended to binary data. Instead of a one-
time pad consisting of letters, use a one-time pad of bits. Instead of adding the plain-
text to the one-time pad, use an XOR. To decrypt, XOR the ciphertext with the same
one-time pad. Everything else remains the same and the security is just as perfect.

This all sounds good, but there are a few problems. Since the key bits must be ran-
dom and can never be used again, the length of the key sequence must be equal to
the length of the message. A one-time pad might be suitable for a few short mes-
sages, but it will never work for a 1.544 Mbps communications channel. You can
store 650 megabytes worth of random bits on a CD-ROM, but there are problems.
First, you want exactly two copies of the random bits, but CD-ROMs are economi-

1.7 Large Numbers 17

cal only for large quantities. And second, you want to be able to destroy the bits
already used. CD-ROM has no erase facilities except for physically destroying the
entire disk. Digital tape is a much better medium for this sort of thing.

Even if you solve the key distribution and storage problem, you have to make sure
the sender and receiver are perfectly synchronized. If the receiver is off by a bit (or if
some bits are dropped during the transmission), the message won’t make any sense.
On the other hand, if some bits are altered during transmission (without any bits
being added or removed—something far more likely to happen due to random noise),
only those bits will be decrypted incorrectly. But on the other hand, a one-time pad
provides no authenticity.

One-time pads have applications in today’s world, primarily for ultra-secure low-
bandwidth channels. The hotline between the United States and the former Soviet
Union was (is it still active?) rumored to be encrypted with a one-time pad. Many
Soviet spy messages to agents were encrypted using one-time pads. These messages
are still secure today and will remain that way forever. It doesn’t matter how long
the supercomputers work on the problem. Even after the aliens from Andromeda
land with their massive spaceships and undreamed-of computing power, they will
not be able to read the Soviet spy messages encrypted with one-time pads (unless
they can also go back in time and get the one-time pads).

1.6 COMPUTER ALGORITHMS

There are many cryptographic algorithms. These are three of the most common:

— DES (Data Encryption Standard) is the most popular computer encryp-
tion algorithm. DES is a U.S. and international standard. It is a sym-
metric algorithm; the same key is used for encryption and decryption.

— RSA (named for its creators—Rivest, Shamir, and Adleman) is the
most popular public-key algorithm. It can be used for both encryption
and digital signatures.

— DSA (Digital Signature Algorithm, used as part of the Digital Signa-
ture Standard) is another public-key algorithm. It cannot be used for
encryption, but only for digital signatures.

These are the kinds of stuff this book is about.

1.7 LARGE NUMBERS

Throughout this book, I use various large numbers to describe different things in
cryptography. Because it is so easy to lose sight of these numbers and what they sig-
nify, Table 1.1 gives physical analogues for some of them.

These numbers are order-of-magnitude estimates, and have been culled from a
variety of sources. Many of the astrophysics numbers are explained in Freeman

/N
~

CHAPTER 1 Foundations

TABLE 1.1
Large Numbers

Physical Analogue

Number

Odds of being killed by lightning (per day)
Odds of winning the top prize in a U.S. state lottery
Odds of winning the top prize in a U.S. state lottery
and being killed by lightning in the same day
Odds of drowning (in the U.S. per year)
Odds of being killed in an automobile accident
(in the U.S. in 1993)
Odds of being killed in an automobile accident
(in the U.S. per lifetime)
Time until the next ice age
Time until the sun goes nova
Age of the planet
Age of the Universe
Number of atoms in the planet
Number of atoms in the sun
Number of atoms in the galaxy
Number of atoms in the Universe (dark matter excluded)
Volume of the Universe

If the Universe is Closed:
Total lifetime of the Universe

If the Universe is Open:

Time until low-mass stars cool off

Time until planets detach from stars

Time until stars detach from galaxies

Time until orbits decay by gravitational radiation
Time until black holes decay by the Hawking process
Time until all matter is liquid at zero temperature
Time until all matter decays to iron

Time until all matter collapses to black holes

1 in 9 billion (2%)
1 in 4,000,000 (222)

1in 2%
1 in 59,000 (2'6)

1in 6100 (25

1 in 88 (27)
14,000 (2'4) years
10° (2%) years
10° (2%) years
10'9(234) years
1051 (2170)

1057 (2190)

1067 (2223)

1077 (2265)

1084 (2280) Cm3

10! (2%7) years
10 (2°!) seconds

10 (2%7) years
10 (2%9) years
10" (2%) years
10% (2%7) years
10% (221%) years
10?22(62216) years
10" years
10 years

Dyson’s paper, “Time Without End: Physics and Biology in an Open Universe,” in
Reviews of Modern Physics, v. 52, n. 3, July 1979, pp. 447-460. Automobile accident
deaths are calculated from the Department of Transportation’s statistic of 163
deaths per million people in 1993 and an average lifespan of 69.7 years.

21

CHAPTER 2

Protocol Building Blocks

2.1 INTRODUCTION TO PROTOCOLS

The whole point of cryptography is to solve problems. (Actually, that’s the whole
point of computers—something many people tend to forget.) Cryptography solves
problems that involve secrecy, authentication, integrity, and dishonest people. You
can learn all about cryptographic algorithms and techniques, but these are academic
unless they can solve a problem. This is why we are going to look at protocols first.
A protocol is a series of steps, involving two or more parties, designed to accom-
plish a task. This is an important definition. A “series of steps” means that the pro-
tocol has a sequence, from start to finish. Every step must be executed in turn, and
no step can be taken before the previous step is finished. “Involving two or more
parties” means that at least two people are required to complete the protocol; one
person alone does not make a protocol. A person alone can perform a series of steps
to accomplish a task (like baking a cake), but this is not a protocol. (Someone else
must eat the cake to make it a protocol.) Finally, “designed to accomplish a task”
means that the protocol must achieve something. Something that looks like a pro-
tocol but does not accomplish a task is not a protocol—it’s a waste of time.
Protocols have other characteristics as well:

— Everyone involved in the protocol must know the protocol and all of
the steps to follow in advance.

— Everyone involved in the protocol must agree to follow it.

— The protocol must be unambiguous; each step must be well defined
and there must be no chance of a misunderstanding.

— The protocol must be complete; there must be a specified action for
every possible situation.

A CHAPTER 2 Protocol Building Blocks
—~

The protocols in this book are organized as a series of steps. Execution of the pro-
tocol proceeds linearly through the steps, unless there are instructions to branch to
another step. Each step involves at least one of two things: computations by one or
more of the parties, or messages sent among the parties.

A cryptographic protocol is a protocol that uses cryptography. The parties can be
friends and trust each other implicitly or they can be adversaries and not trust one
another to give the correct time of day. A cryptographic protocol involves some
cryptographic algorithm, but generally the goal of the protocol is something beyond
simple secrecy. The parties participating in the protocol might want to share parts
of their secrets to compute a value, jointly generate a random sequence, convince
one another of their identity, or simultaneously sign a contract. The whole point of
using cryptography in a protocol is to prevent or detect eavesdropping and cheating.
If you have never seen these protocols before, they will radically change your ideas
of what mutually distrustful parties can accomplish over a computer network. In
general, this can be stated as:

— It should not be possible to do more or learn more than what is spec-
ified in the protocol.

This is a lot harder than it looks. In the next few chapters I discuss a lot of proto-
cols. In some of them it is possible for one of the participants to cheat the other. In
others, it is possible for an eavesdropper to subvert the protocol or learn secret infor-
mation. Some protocols fail because the designers weren’t thorough enough in their
requirements definitions. Others fail because their designers weren’t thorough
enough in their analysis. Like algorithms, it is much easier to prove insecurity than
it is to prove security.

The Purpose of Protocols

In daily life, there are informal protocols for almost everything: ordering goods
over the telephone, playing poker, voting in an election. No one thinks much about
these protocols; they have evolved over time, everyone knows how to use them, and
they work reasonably well.

These days, more and more human interaction takes place over computer net-
works instead of face-to-face. Computers need formal protocols to do the same
things that people do without thinking. If you moved from one state to another and
found a voting booth that looked completely different from the ones you were used
to, you could easily adapt. Computers are not nearly so flexible.

Many face-to-face protocols rely on people’s presence to ensure fairness and secu-
rity. Would you send a stranger a pile of cash to buy groceries for you? Would you
play poker with someone if you couldn’t see him shuffle and deal? Would you mail
the government your secret ballot without some assurance of anonymity?

It is naive to assume that people on computer networks are honest. It is naive to
assume that the managers of computer networks are honest. It is even naive to
assume that the designers of computer networks are honest. Most are, but the dis-

2.1 Introduction to Protocols m
_~

honest few can do a lot of damage. By formalizing protocols, we can examine ways
in which dishonest parties can subvert them. Then we can develop protocols that
are immune to that subversion.

In addition to formalizing behavior, protocols abstract the process of accomplish-
ing a task from the mechanism by which the task is accomplished. A communica-
tions protocol is the same whether implemented on PCs or VAXs. We can examine
the protocol without getting bogged down in the implementation details. When we
are convinced we have a good protocol, we can implement it in everything from
computers to telephones to intelligent muffin toasters.

The Players

To help demonstrate protocols, I have enlisted the aid of several people (see Table
2.1). Alice and Bob are the first two. They will perform all general two-person pro-
tocols. As a rule, Alice will initiate all protocols and Bob will respond. If the proto-
col requires a third or fourth person, Carol and Dave will perform those roles. Other
actors will play specialized supporting roles; they will be introduced later.

Arbitrated Protocols

An arbitrator is a disinterested third party trusted to complete a protocol (see Fig-
ure 2.1a). Disinterested means that the arbitrator has no vested interest in the pro-
tocol and no particular allegiance to any of the parties involved. Trusted means that
all people involved in the protocol accept what he says as true, what he does as cor-
rect, and that he will complete his part of the protocol. Arbitrators can help com-
plete protocols between two mutually distrustful parties.

In the real world, lawyers are often used as arbitrators. For example, Alice is sell-
ing a car to Bob, a stranger. Bob wants to pay by check, but Alice has no way of
knowing if the check is good. Alice wants the check to clear before she turns the
title over to Bob. Bob, who doesn’t trust Alice any more than she trusts him, doesn’t
want to hand over a check without receiving a title.

TABLE 2.1

Dramatis Personae
Alice First participant in all the protocols
Bob Second participant in all the protocols
Carol Participant in the three- and four-party protocols
Dave Participant in the four-party protocols
Eve Eavesdropper
Mallory Malicious active attacker
Trent Trusted arbitrator
Walter Warden; he’ll be guarding Alice and Bob in some protocols
Peggy Prover

Victor Verifier

/N CHAPTER 2 Protocol Building Blocks
—~

Trent

Alice Bob Trent
— i i,
- »> - — — —»
B -
- After the fact
v v - ()
~
-
Evidence Evidence
(b) Adjudicated protocol
Alice Bob
” — et -~
m T LT T T T T T
= =N >

(c) Self-enforcing protocol

Figure 2.1 Types of protocols.

Enter a lawyer trusted by both. With his help, Alice and Bob can use the following
protocol to ensure that neither cheats the other:

(1) Alice gives the title to the lawyer.
(2) Bob gives the check to Alice.
(3) Alice deposits the check.

(4) After waiting a specified time period for the check to clear, the lawyer
gives the title to Bob. If the check does not clear within the specified time
period, Alice shows proof of this to the lawyer and the lawyer returns the
title to Alice.

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check
has cleared, and to give it back to her if the check does not clear. Bob trusts the
lawyer to hold the title until the check clears, and to give it to him once it does. The
lawyer doesn’t care if the check clears. He will do his part of the protocol in either
case, because he will be paid in either case.

2.1 Introduction to Protocols 25

In the example, the lawyer is playing the part of an escrow agent. Lawyers also act
as arbitrators for wills and sometimes for contract negotiations. The various stock
exchanges act as arbitrators between buyers and sellers.

Bankers also arbitrate protocols. Bob can use a certified check to buy a car from
Alice:

(1) Bob writes a check and gives it to the bank.

(2) After putting enough of Bob’s money on hold to cover the check, the bank
certifies the check and gives it back to Bob.

(3) Alice gives the title to Bob and Bob gives the certified check to Alice.
(4) Alice deposits the check.

This protocol works because Alice trusts the banker’s certification. Alice trusts
the bank to hold Bob’s money for her, and not to use it to finance shaky real estate
operations in mosquito-infested countries.

A notary public is another arbitrator. When Bob receives a notarized document
from Alice, he is convinced that Alice signed the document voluntarily and with her
own hand. The notary can, if necessary, stand up in court and attest to that fact.

The concept of an arbitrator is as old as society. There have always been people—
rulers, priests, and so on—who have the authority to act fairly. Arbitrators have a
certain social role and position in our society; betraying the public trust would jeop-
ardize that. Lawyers who play games with escrow accounts face almost-certain dis-
barment, for example. This picture of trust doesn’t always exist in the real world,
but it’s the ideal.

This ideal can translate to the computer world, but there are several problems
with computer arbitrators:

— It is easier to find and trust a neutral third party if you know who the
party is and can see his face. Two parties suspicious of each other are
also likely to be suspicious of a faceless arbitrator somewhere else on
the network.

— The computer network must bear the cost of maintaining an arbitra-
tor. We all know what lawyers charge; who wants to bear that kind of
network overhead?

— There is a delay inherent in any arbitrated protocol.

— The arbitrator must deal with every transaction; he is a bottleneck in
large-scale implementations of any protocol. Increasing the number
of arbitrators in the implementation can mitigate this problem, but
that increases the cost.

— Since everyone on the network must trust the arbitrator, he repre-
sents a vulnerable point for anyone trying to subvert the network.

/N CHAPTER 2 Protocol Building Blocks

Even so, arbitrators still have a role to play. In protocols using a trusted arbitrator,
the part will be played by Trent.

Adjudicated Protocols

Because of the high cost of hiring arbitrators, arbitrated protocols can be subdi-
vided into two lower-level subprotocols. One is a nonarbitrated subprotocol, exe-
cuted every time parties want to complete the protocol. The other is an arbitrated
subprotocol, executed only in exceptional circumstances—when there is a dispute.
This special type of arbitrator is called an adjudicator (see Figure 2.1b).

An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator,
he is not directly involved in every protocol. The adjudicator is called in only to
determine whether a protocol was performed fairly.

Judges are professional adjudicators. Unlike a notary public, a judge is brought in
only if there is a dispute. Alice and Bob can enter into a contract without a judge. A
judge never sees the contract until one of them hauls the other into court.

This contract-signing protocol can be formalized in this way:

Nonarbitrated subprotocol (executed every time):

(1) Alice and Bob negotiate the terms of the contract.
(2) Alice signs the contract.
(3) Bob signs the contract.

Adjudicated subprotocol (executed only in case of a dispute):

(4) Alice and Bob appear before a judge.
(5) Alice presents her evidence.

(6) Bob presents his evidence.

(7) The judge rules on the evidence.

The difference between an adjudicator and an arbitrator (as used in this book] is
that the adjudicator is not always necessary. In a dispute, a judge is called in to adju-
dicate. If there is no dispute, using a judge is unnecessary.

There are adjudicated computer protocols. These protocols rely on the parties to
be honest; but if someone suspects cheating, a body of data exists so that a trusted
third party could determine if someone cheated. In a good adjudicated protocol, the
adjudicator could also determine the cheater’s identity. Instead of preventing cheat-
ing, adjudicated protocols detect cheating. The inevitability of detection acts as a
preventive and discourages cheating.

Self-Enforcing Protocols

A self-enforcing protocol is the best type of protocol. The protocol itself guaran-
tees fairness (see Figure 2.1c). No arbitrator is required to complete the protocol. No
adjudicator is required to resolve disputes. The protocol is constructed so that there

2.1 Introduction to Protocols 27

cannot be any disputes. If one of the parties tries to cheat, th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>