
[1]

Data Analysis with R

Load, wrangle, and analyze your data using the world's
most powerful statistical programming language

Tony Fischetti

BIRMINGHAM - MUMBAI

Data Analysis with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1171215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-814-2

www.packtpub.com

www.packtpub.com

Credits

Author
Tony Fischetti

Reviewer
Dipanjan Sarkar

Commissioning Editor
Akram Hussain

Acquisition Editor
Meeta Rajani

Content Development Editor
Anish Dhurat

Technical Editor
Siddhesh Patil

Copy Editor
Sonia Mathur

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Tony Fischetti is a data scientist at College Factual, where he gets to use R
everyday to build personalized rankings and recommender systems. He graduated
in cognitive science from Rensselaer Polytechnic Institute, and his thesis was
strongly focused on using statistics to study visual short-term memory.

Tony enjoys writing and contributing to open source software, blogging at
http://www.onthelambda.com, writing about himself in third person, and sharing
his knowledge using simple, approachable language and engaging examples.

The more traditionally exciting of his daily activities include listening to records,
playing the guitar and bass (poorly), weight training, and helping others.

Because I'm aware of how incredibly lucky I am, it's really hard to
express all the gratitude I have for everyone in my life that helped
me—either directly, or indirectly—in completing this book. The
following (partial) list is my best attempt at balancing thoroughness
whilst also maximizing the number of people who will read this
section by keeping it to a manageable length.

First, I'd like to thank all of my educators. In particular, I'd like to
thank the Bronx High School of Science and Rensselaer Polytechnic
Institute. More specifically, I'd like the Bronx Science Robotics Team,
all it's members, it's team moms, the wonderful Dena Ford and
Cherrie Fleisher-Strauss; and Justin Fox. From the latter institution,
I'd like to thank all of my professors and advisors. Shout out to Mike
Kalsher, Michael Schoelles, Wayne Gray, Bram van Heuveln, Larry
Reid, and Keith Anderson (especially Keith Anderson).

http://www.onthelambda.com

I'd like to thank the New York Public Library, Wikipedia, and other
freely available educational resources. On a related note, I need to
thank the R community and, more generally, all of the authors of R
packages and other open source software I use for spending their
own personal time to benefit humanity. Shout out to GNU, the R
core team, and Hadley Wickham (who wrote a majority of the R
packages I use daily).

Next, I'd like to thank the company I work for, College Factual, and
all of my brilliant co-workers from whom I've learned so much.

I also need to thank my support network of millions, and my many
many friends that have all helped me more than they will likely ever
realize.

I'd like to thank my partner, Bethany Wickham, who has been
absolutely instrumental in providing much needed and appreciated
emotional support during the writing of this book, and putting up
with the mood swings that come along with working all day and
writing all night.

Next, I'd like to express my gratitude for my sister, Andrea Fischetti,
who means the world to me. Throughout my life, she's kept me
warm and human in spite of the scientist in me that likes to get all
reductionist and cerebral.

Finally, and most importantly, I'd like to thank my parents. This
book is for my father, to whom I owe my love of learning and my
interest in science and statistics; and to my mother for her love and
unwavering support and, to whom I owe my work ethic and ability
to handle anything and tackle any challenge.

About the Reviewer

Dipanjan Sarkar is an IT engineer at Intel, the world's largest silicon company,
where he works on analytics, business intelligence, and application development.
He received his master's degree in information technology from the International
Institute of Information Technology, Bangalore. Dipanjan's area of specialization
includes software engineering, data science, machine learning, and text analytics.

His interests include learning about new technologies, disruptive start-ups, and data
science. In his spare time, he loves reading, playing games, and watching popular
sitcoms. Dipanjan also reviewed Learning R for Geospatial Analysis and R Data Analysis
Cookbook, both by Packt Publishing.

I would like to thank Bijal Patel, the project coordinator of this book,
for making the reviewing experience really interactive and enjoyable.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: RefresheR	 1

Navigating the basics	 1
Arithmetic and assignment	 2
Logicals and characters	 4
Flow of control	 6

Getting help in R	 7
Vectors	 8

Subsetting	 8
Vectorized functions	 10
Advanced subsetting	 12
Recycling	 13

Functions	 14
Matrices	 17
Loading data into R	 20
Working with packages	 23
Exercises	 24
Summary	 24

Chapter 2: The Shape of Data	 25
Univariate data	 25
Frequency distributions	 26
Central tendency	 30
Spread	 34
Populations, samples, and estimation	 37
Probability distributions	 39
Visualization methods	 44
Exercises	 49
Summary	 50

Table of Contents

[ii]

Chapter 3: Describing Relationships	 51
Multivariate data	 51
Relationships between a categorical and a continuous variable	 52
Relationships between two categorical variables	 57
The relationship between two continuous variables	 60

Covariance	 61
Correlation coefficients	 62
Comparing multiple correlations	 67

Visualization methods	 68
Categorical and continuous variables	 68
Two categorical variables	 69
Two continuous variables	 72
More than two continuous variables	 73

Exercises	 75
Summary	 76

Chapter 4: Probability	 77
Basic probability	 77
A tale of two interpretations	 83
Sampling from distributions	 84

Parameters	 85
The binomial distribution	 86

The normal distribution	 87
The three-sigma rule and using z-tables	 90

Exercises	 92
Summary	 93

Chapter 5: Using Data to Reason About the World	 95
Estimating means	 95
The sampling distribution	 98
Interval estimation	 101

How did we get 1.96?	 103
Smaller samples	 105
Exercises	 107
Summary	 108

Chapter 6: Testing Hypotheses	 109
Null Hypothesis Significance Testing	 109

One and two-tailed tests	 113
When things go wrong	 115
A warning about significance	 117
A warning about p-values	 117

Table of Contents

[iii]

Testing the mean of one sample	 118
Assumptions of the one sample t-test	 125

Testing two means	 125
Don't be fooled!	 127
Assumptions of the independent samples t-test	 129

Testing more than two means	 130
Assumptions of ANOVA	 133

Testing independence of proportions	 133
What if my assumptions are unfounded?	 135
Exercises	 137
Summary	 138

Chapter 7: Bayesian Methods	 141
The big idea behind Bayesian analysis	 142
Choosing a prior	 148
Who cares about coin flips	 151
Enter MCMC – stage left	 153
Using JAGS and runjags	 156
Fitting distributions the Bayesian way	 161
The Bayesian independent samples t-test	 165
Exercises	 167
Summary	 168

Chapter 8: Predicting Continuous Variables	 169
Linear models	 170
Simple linear regression	 172
Simple linear regression with a binary predictor	 179

A word of warning	 182
Multiple regression	 184
Regression with a non-binary predictor	 188
Kitchen sink regression	 190
The bias-variance trade-off	 192

Cross-validation	 194
Striking a balance	 197

Linear regression diagnostics	 200
Second Anscombe relationship	 201
Third Anscombe relationship	 202
Fourth Anscombe relationship	 203

Advanced topics	 206
Exercises	 208
Summary	 209

Table of Contents

[iv]

Chapter 9: Predicting Categorical Variables	 211
k-Nearest Neighbors	 212

Using k-NN in R	 215
Confusion matrices	 219
Limitations of k-NN	 220

Logistic regression	 221
Using logistic regression in R	 224

Decision trees	 226
Random forests	 232
Choosing a classifier	 234

The vertical decision boundary	 235
The diagonal decision boundary	 236
The crescent decision boundary	 237
The circular decision boundary	 238

Exercises	 240
Summary	 241

Chapter 10: Sources of Data	 243
Relational Databases	 244

Why didn't we just do that in SQL?	 248
Using JSON	 249
XML	 257
Other data formats	 265
Online repositories	 266
Exercises	 267
Summary	 267

Chapter 11: Dealing with Messy Data	 269
Analysis with missing data	 270

Visualizing missing data	 271
Types of missing data	 274

So which one is it?	 276
Unsophisticated methods for dealing with missing data	 276

Complete case analysis	 276
Pairwise deletion	 278
Mean substitution	 278
Hot deck imputation	 278
Regression imputation	 279
Stochastic regression imputation	 279

Multiple imputation	 280
So how does mice come up with the imputed values?	 281

Multiple imputation in practice	 283

Table of Contents

[v]

Analysis with unsanitized data	 290
Checking for out-of-bounds data	 291
Checking the data type of a column	 293
Checking for unexpected categories	 294
Checking for outliers, entry errors, or unlikely data points	 295
Chaining assertions	 296

Other messiness	 298
OpenRefine	 298
Regular expressions	 298
tidyr	 298

Exercises	 299
Summary	 300

Chapter 12: Dealing with Large Data	 301
Wait to optimize	 302
Using a bigger and faster machine	 303
Be smart about your code	 304

Allocation of memory	 304
Vectorization	 305

Using optimized packages	 307
Using another R implementation	 309
Use parallelization	 310

Getting started with parallel R	 312
An example of (some) substance	 315

Using Rcpp	 323
Be smarter about your code	 329
Exercises	 331
Summary	 331

Chapter 13: Reproducibility and Best Practices	 333
R Scripting	 334

RStudio	 335
Running R scripts	 337
An example script	 339
Scripting and reproducibility	 343

R projects	 344
Version control	 346
Communicating results	 348
Exercises	 357
Summary	 358

Index	 359

[vii]

Preface
I'm going to shoot it to you straight: there are a lot of books about data analysis
and the R programming language. I'll take it on faith that you already know why
it's extremely helpful and fruitful to learn R and data analysis (if not, why are you
reading this preface?!) but allow me to make a case for choosing this book to guide
you in your journey.

For one, this subject didn't come naturally to me. There are those with an innate
talent for grasping the intricacies of statistics the first time it is taught to them; I don't
think I'm one of these people. I kept at it because I love science and research and
knew that data analysis was necessary, not because it immediately made sense to
me. Today, I love the subject in and of itself, rather than instrumentally, but this only
came after months of heartache. Eventually, as I consumed resource after resource,
the pieces of the puzzle started to come together. After this, I started tutoring all of
my friends in the subject—and have seen them trip over the same obstacles that I
had to learn to climb. I think that coming from this background gives me a unique
perspective on the plight of the statistics student and allows me to reach them in a
way that others may not be able to. By the way, don't let the fact that statistics used
to baffle me scare you; I have it on fairly good authority that I know what I'm talking
about today.

Secondly, this book was born of the frustration that most statistics texts tend to be
written in the driest manner possible. In contrast, I adopt a light-hearted buoyant
approach—but without becoming agonizingly flippant.

Third, this book includes a lot of material that I wished were covered in more of
the resources I used when I was learning about data analysis in R. For example,
the entire last unit specifically covers topics that present enormous challenges to R
analysts when they first go out to apply their knowledge to imperfect real-world
data.

Preface

[viii]

Lastly, I thought long and hard about how to lay out this book and which order
of topics was optimal. And when I say long and hard I mean I wrote a library and
designed algorithms to do this. The order in which I present the topics in this
book was very carefully considered to (a) build on top of each other, (b) follow a
reasonable level of difficulty progression allowing for periodic chapters of relatively
simpler material (psychologists call this intermittent reinforcement), (c) group
highly related topics together, and (d) minimize the number of topics that require
knowledge of yet unlearned topics (this is, unfortunately, common in statistics). If
you're interested, I detail this procedure in a blog post that you can read at http://
bit.ly/teach-stats.

The point is that the book you're holding is a very special one—one that I poured my
soul into. Nevertheless, data analysis can be a notoriously difficult subject, and there
may be times where nothing seems to make sense. During these times, remember
that many others (including myself) have felt stuck, too. Persevere… the reward is
great. And remember, if a blockhead like me can do it, you can, too. Go you!

What this book covers
Chapter 1, RefresheR, reviews the aspects of R that subsequent chapters will assume
knowledge of. Here, we learn the basics of R syntax, learn R's major data structures,
write functions, load data and install packages.

Chapter 2, The Shape of Data, discusses univariate data. We learn about different data
types, how to describe univariate data, and how to visualize the shape of these data.

Chapter 3, Describing Relationships, goes on to the subject of multivariate data. In
particular, we learn about the three main classes of bivariate relationships and learn
how to describe them.

Chapter 4, Probability, kicks off a new unit by laying foundation. We learn about basic
probability theory, Bayes' theorem, and probability distributions.

Chapter 5, Using Data to Reason About the World, discusses sampling and estimation
theory. Through examples, we learn of the central limit theorem, point estimation
and confidence intervals.

Chapter 6, Testing Hypotheses, introduces the subject of Null Hypothesis Significance
Testing (NHST). We learn many popular hypothesis tests and their non-parametric
alternatives. Most importantly, we gain a thorough understanding of the
misconceptions and gotchas of NHST.

http://bit.ly/teach-stats
http://bit.ly/teach-stats

Preface

[ix]

Chapter 7, Bayesian Methods, introduces an alternative to NHST based on a more
intuitive view of probability. We learn the advantages and drawbacks of this
approach, too.

Chapter 8, Predicting Continuous Variables, thoroughly discusses linear regression.
Before the chapter's conclusion, we learn all about the technique, when to use it, and
what traps to look out for.

Chapter 9, Predicting Categorical Variables, introduces four of the most popular
classification techniques. By using all four on the same examples, we gain an
appreciation for what makes each technique shine.

Chapter 10, Sources of Data, is all about how to use different data sources in R. In
particular, we learn how to interface with databases, and request and load JSON and
XML via an engaging example.

Chapter 11, Dealing with Messy Data, introduces some of the snags of working with
less than perfect data in practice. The bulk of this chapter is dedicated to missing
data, imputation, and identifying and testing for messy data.

Chapter 12, Dealing with Large Data, discusses some of the techniques that can be used
to cope with data sets that are larger than can be handled swiftly without a little
planning. The key components of this chapter are on parallelization and Rcpp.

Chapter 13, Reproducibility and Best Practices, closes with the extremely important (but
often ignored) topic of how to use R like a professional. This includes learning about
tooling, organization, and reproducibility.

What you need for this book
All code in this book has been written against the latest version of R—3.2.2 at the
time of writing. As a matter of good practice, you should keep your R version up
to date but most, if not all, code should work with any reasonably recent version of
R. Some of the R packages we will be installing will require more recent versions,
though. For the other software that this book uses, instructions will be furnished pro
re nata. If you want to get a head start, however, install RStudio, JAGS, and a C++
compiler (or Rtools if you use Windows).

Preface

[x]

Who this book is for
Whether you are learning data analysis for the first time, or you want to deepen the
understanding you already have, this book will prove to an invaluable resource. If
you are looking for a book to bring you all the way through the fundamentals to the
application of advanced and effective analytics methodologies, and have some prior
programming experience and a mathematical background, then this is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will use the system.time function to time the execution."

A block of code is set as follows:

library(VIM)
aggr(miss_mtcars, numbers=TRUE)

Any command-line input or output is written as follows:

R --vanilla CMD BATCH nothing.R

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/Data_Analysis_With_R_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Data_Analysis_With_R_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Data_Analysis_With_R_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xii]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

RefresheR
Before we dive into the (other) fun stuff (sampling multi-dimensional probability
distributions, using convex optimization to fit data models, and so on), it would
be helpful if we review those aspects of R that all subsequent chapters will assume
knowledge of.

If you fancy yourself as an R guru, you should still, at least, skim through this
chapter, because you'll almost certainly find the idioms, packages, and style
introduced here to be beneficial in following along with the rest of the material.

If you don't care much about R (yet), and are just in this for the statistics, you can
heave a heavy sigh of relief that, for the most part, you can run the code given
in this book in the interactive R interpreter with very little modification, and just
follow along with the ideas. However, it is my belief (read: delusion) that by the
end of this book, you'll cultivate a newfound appreciation of R alongside a robust
understanding of methods in data analysis.

Fire up your R interpreter, and let's get started!

Navigating the basics
In the interactive R interpreter, any line starting with a > character denotes R asking
for input (If you see a + prompt, it means that you didn't finish typing a statement at
the prompt and R is asking you to provide the rest of the expression.). Striking the
return key will send your input to R to be evaluated. R's response is then spit back at
you in the line immediately following your input, after which R asks for more input.
This is called a REPL (Read-Evaluate-Print-Loop). It is also possible for R to read
a batch of commands saved in a file (unsurprisingly called batch mode), but we'll be
using the interactive mode for most of the book.

As you might imagine, R supports all the familiar mathematical operators as most
other languages:

RefresheR

[2]

Arithmetic and assignment
Check out the following example:

 > 2 + 2
 [1] 4

 > 9 / 3
 [1] 3

 > 5 %% 2 # modulus operator (remainder of 5 divided by 2)
 [1] 1

Anything that occurs after the octothorpe or pound sign, #, (or hash-tag for you
young'uns), is ignored by the R interpreter. This is useful for documenting the code
in natural language. These are called comments.

In a multi-operation arithmetic expression, R will follow the standard order of
operations from math. In order to override this natural order, you have to use
parentheses flanking the sub-expression that you'd like to be performed first.

 > 3 + 2 - 10 ^ 2 # ^ is the exponent operator
 [1] -95
 > 3 + (2 - 10) ^ 2
 [1] 67

In practice, almost all compound expressions are split up with intermediate
values assigned to variables which, when used in future expressions, are just like
substituting the variable with the value that was assigned to it. The (primary)
assignment operator is <-.

 > # assignments follow the form VARIABLE <- VALUE
 > var <- 10
 > var
 [1] 10
 > var ^ 2
 [1] 100
 > VAR / 2 # variable names are case-sensitive
 Error: object 'VAR' not found

Chapter 1

[3]

Notice that the first and second lines in the preceding code snippet didn't have an
output to be displayed, so R just immediately asked for more input. This is because
assignments don't have a return value. Their only job is to give a value to a variable,
or to change the existing value of a variable. Generally, operations and functions on
variables in R don't change the value of the variable. Instead, they return the result
of the operation. If you want to change a variable to the result of an operation using
that variable, you have to reassign that variable as follows:

 > var # var is 10
 [1] 10
 > var ^ 2
 [1] 100
 > var # var is still 10
 [1] 10
 > var <- var ^ 2 # no return value
 > var # var is now 100
 [1] 100

Be aware that variable names may contain numbers, underscores, and periods; this
is something that trips up a lot of people who are familiar with other programming
languages that disallow using periods in variable names. The only further
restrictions on variable names are that it must start with a letter (or a period and then
a letter), and that it must not be one of the reserved words in R such as TRUE, Inf,
and so on.

Although the arithmetic operators that we've seen thus far are functions in their own
right, most functions in R take the form: function_name (value(s) supplied to the
function). The values supplied to the function are called arguments of that function.

 > cos(3.14159) # cosine function
 [1] -1
 > cos(pi) # pi is a constant that R provides
 [1] -1
 > acos(-1) # arccosine function
 [1] 2.141593
 > acos(cos(pi)) + 10
 [1] 13.14159
 > # functions can be used as arguments to other functions

(If you paid attention in math class, you'll know that the cosine of π is -1, and that
arccosine is the inverse function of cosine.)

RefresheR

[4]

There are hundreds of such useful functions defined in base R, only a handful of
which we will see in this book. Two sections from now, we will be building our very
own functions.

Before we move on from arithmetic, it will serve us well to visit some of the odd
values that may result from certain operations:

 > 1 / 0
 [1] Inf
 > 0 / 0
 [1] NaN

It is common during practical usage of R to accidentally divide by zero. As you can
see, this undefined operation yields an infinite value in R. Dividing zero by zero
yields the value NaN, which stands for Not a Number.

Logicals and characters
So far, we've only been dealing with numerics, but there are other atomic data types
in R. To wit:

 > foo <- TRUE # foo is of the logical data type
 > class(foo) # class() tells us the type
 [1] "logical"
 > bar <- "hi!" # bar is of the character data type
 > class(bar)
 [1] "character"

The logical data type (also called Booleans) can hold the values TRUE or FALSE or,
equivalently, T or F. The familiar operators from Boolean algebra are defined for
these types:

 > foo
 [1] TRUE
 > foo && TRUE # boolean and
 [1] TRUE
 > foo && FALSE
 [1] FALSE
 > foo || FALSE # boolean or
 [1] TRUE
 > !foo # negation operator
 [1] FALSE

Chapter 1

[5]

In a Boolean expression with a logical value and a number, any number that is not 0
is interpreted as TRUE.

 > foo && 1
 [1] TRUE
 > foo && 2
 [1] TRUE
 > foo && 0
 [1] FALSE

Additionally, there are functions and operators that return logical values such as:

 > 4 < 2 # less than operator
 [1] FALSE
 > 4 >= 4 # greater than or equal to
 [1] TRUE
 > 3 == 3 # equality operator
 [1] TRUE
 > 3 != 2 # inequality operator
 [1] TRUE

Just as there are functions in R that are only defined for work on the numeric and
logical data type, there are other functions that are designed to work only with the
character data type, also known as strings:

 > lang.domain <- "statistics"
 > lang.domain <- toupper(lang.domain)
 > print(lang.domain)
 [1] "STATISTICS"
 > # retrieves substring from first character to fourth character
 > substr(lang.domain, 1, 4)
 [1] "STAT"
 > gsub("I", "1", lang.domain) # substitutes every "I" for "1"
 [1] "STAT1ST1CS"
 # combines character strings
 > paste("R does", lang.domain, "!!!")
 [1] "R does STATISTICS !!!"

RefresheR

[6]

Flow of control
The last topic in this section will be flow of control constructs.

The most basic flow of control construct is the if statement. The argument to an
if statement (what goes between the parentheses), is an expression that returns a
logical value. The block of code following the if statement gets executed only if the
expression yields TRUE. For example:

 > if(2 + 2 == 4)
 + print("very good")
 [1] "very good"
 > if(2 + 2 == 5)
 + print("all hail to the thief")
 >

It is possible to execute more than one statement if an if condition is triggered; you
just have to use curly brackets ({}) to contain the statements.

 > if((4/2==2) && (2*2==4)){
 + print("four divided by two is two...")
 + print("and two times two is four")
 + }
 [1] "four divided by two is two..."
 [1] "and two times two is four"
 >

It is also possible to specify a block of code that will get executed if the if conditional
is FALSE.

 > closing.time <- TRUE
 > if(closing.time){
 + print("you don't have to go home")
 + print("but you can't stay here")
 + } else{
 + print("you can stay here!")
 + }
 [1] "you don't have to go home"
 [1] "but you can't stay here"
 > if(!closing.time){
 + print("you don't have to go home")
 + print("but you can't stay here")
 + } else{
 + print("you can stay here!")
 + }
 [1] "you can stay here!"
 >

Chapter 1

[7]

There are other flow of control constructs (like while and for), but we won't directly
be using them much in this text.

Getting help in R
Before we go further, it would serve us well to have a brief section detailing how
to get help in R. Most R tutorials leave this for one of the last sections—if it is even
included at all! In my own personal experience, though, getting help is going to
be one of the first things you will want to do as you add more bricks to your R
knowledge castle. Learning R doesn't have to be difficult; just take it slowly, ask
questions, and get help early. Go you!

It is easy to get help with R right at the console. Running the help.start()
function at the prompt will start a manual browser. From here, you can do anything
from going over the basics of R to reading the nitty-gritty details on how R works
internally.

You can get help on a particular function in R if you know its name, by supplying
that name as an argument to the help function. For example, let's say you want to
know more about the gsub() function that I sprang on you before. Running the
following code:

 > help("gsub")
 > # or simply
 > ?gsub

will display a manual page documenting what the function is, how to use it, and
examples of its usage.

This rapid accessibility to documentation means that I'm never hopelessly lost
when I encounter a function which I haven't seen before. The downside to this
extraordinarily convenient help mechanism is that I rarely bother to remember the
order of arguments, since looking them up is just seconds away.

Occasionally, you won't quite remember the exact name of the function you're
looking for, but you'll have an idea about what the name should be. For this, you can
use the help.search() function.

 > help.search("chisquare")
 > # or simply
 > ??chisquare

For tougher, more semantic queries, nothing beats a good old fashioned web
search engine. If you don't get relevant results the first time, try adding the term
programming or statistics in there for good measure.

RefresheR

[8]

Vectors
Vectors are the most basic data structures in R, and they are ubiquitous indeed. In
fact, even the single values that we've been working with thus far were actually
vectors of length 1. That's why the interactive R console has been printing [1] along
with all of our output.

Vectors are essentially an ordered collection of values of the same atomic data type. Vectors
can be arbitrarily large (with some limitations), or they can be just one single value.

The canonical way of building vectors manually is by using the c() function (which
stands for combine).

 > our.vect <- c(8, 6, 7, 5, 3, 0, 9)
 > our.vect
 [1] 8 6 7 5 3 0 9

In the preceding example, we created a numeric vector of length 7 (namely, Jenny's
telephone number).

Note that if we tried to put character data types into this vector as follows:

 > another.vect <- c("8", 6, 7, "-", 3, "0", 9)
 > another.vect
 [1] "8" "6" "7" "-" "3" "0" "9"

R would convert all the items in the vector (called elements) into character data
types to satisfy the condition that all elements of a vector must be of the same
type. A similar thing happens when you try to use logical values in a vector with
numbers; the logical values would be converted into 1 and 0 (for TRUE and FALSE,
respectively). These logicals will turn into TRUE and FALSE (note the quotation
marks) when used in a vector that contains characters.

Subsetting
It is very common to want to extract one or more elements from a vector. For this,
we use a technique called indexing or subsetting. After the vector, we put an integer
in square brackets ([]) called the subscript operator. This instructs R to return the
element at that index. The indices (plural for index, in case you were wondering!) for
vectors in R start at 1, and stop at the length of the vector.

 > our.vect[1] # to get the first value
 [1] 8

Chapter 1

[9]

 > # the function length() returns the length of a vector
 > length(our.vect)
 [1] 7
 > our.vect[length(our.vect)] # get the last element of a vector
 [1] 9

Note that in the preceding code, we used a function in the subscript operator. In
cases like these, R evaluates the expression in the subscript operator, and uses the
number it returns as the index to extract.

If we get greedy, and try to extract an element at an index that doesn't exist, R will
respond with NA, meaning, not available. We see this special value cropping up from
time to time throughout this text.

 > our.vect[10]
 [1] NA

One of the most powerful ideas in R is that you can use vectors to subset other
vectors:

 > # extract the first, third, fifth, and
 > # seventh element from our vector
 > our.vect[c(1, 3, 5, 7)]
 [1] 8 7 3 9

The ability to use vectors to index other vectors may not seem like much now, but its
usefulness will become clear soon.

Another way to create vectors is by using sequences.

 > other.vector <- 1:10
 > other.vector
 [1] 1 2 3 4 5 6 7 8 9 10
 > another.vector <- seq(50, 30, by=-2)
 > another.vector
 [1] 50 48 46 44 42 40 38 36 34 32 30

Above, the 1:10 statement creates a vector from 1 to 10. 10:1 would have created the
same 10 element vector, but in reverse. The seq() function is more general in that it
allows sequences to be made using steps (among many other things).

Combining our knowledge of sequences and vectors subsetting vectors, we can get
the first 5 digits of Jenny's number thusly:

 > our.vect[1:5]
 [1] 8 6 7 5 3

RefresheR

[10]

Vectorized functions
Part of what makes R so powerful is that many of R's functions take vectors as
arguments. These vectorized functions are usually extremely fast and efficient. We've
already seen one such function, length(), but there are many many others.

 > # takes the mean of a vector
 > mean(our.vect)
 [1] 5.428571
 > sd(our.vect) # standard deviation
 [1] 3.101459
 > min(our.vect)
 [1] 0
 > max(1:10)
 [1] 10
 > sum(c(1, 2, 3))
 [1] 6

In practical settings, such as when reading data from files, it is common to have NA
values in vectors:

 > messy.vector <- c(8, 6, NA, 7, 5, NA, 3, 0, 9)
 > messy.vector
 [1] 8 6 NA 7 5 NA 3 0 9
 > length(messy.vector)
 [1] 9

Some vectorized functions will not allow NA values by default. In these cases, an
extra keyword argument must be supplied along with the first argument to the
function.

 > mean(messy.vector)
 [1] NA
 > mean(messy.vector, na.rm=TRUE)
 [1] 5.428571
 > sum(messy.vector, na.rm=FALSE)
 [1] NA
 > sum(messy.vector, na.rm=TRUE)
 [1] 38

Chapter 1

[11]

As mentioned previously, vectors can be constructed from logical values too.

 > log.vector <- c(TRUE, TRUE, FALSE)
 > log.vector
 [1] TRUE TRUE FALSE

Since logical values can be coerced into behaving like numerics, as we saw earlier, if
we try to sum a logical vector as follows:.

 > sum(log.vector)
 [1] 2

we will, essentially, get a count of the number of TRUE values in that vector.

There are many functions in R which operate on vectors and return logical vectors.
is.na() is one such function. It returns a logical vector—that is, the same length as
the vector supplied as an argument—with a TRUE in the position of every NA value.
Remember our messy vector (from just a minute ago)?

 > messy.vector
 [1] 8 6 NA 7 5 NA 3 0 9
 > is.na(messy.vector)
 [1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
 > # 8 6 NA 7 5 NA 3 0 9

Putting together these pieces of information, we can get a count of the number of NA
values in a vector as follows:

 > sum(is.na(messy.vector))
 [1] 2

When you use Boolean operators on vectors, they also return logical vectors of the
same length as the vector being operated on.

 > our.vect > 5
 [1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE

If we wanted to—and we do—count the number of digits in Jenny's phone number
that are greater than five, we would do so in the following manner:

 > sum(our.vect > 5)
 [1] 4

RefresheR

[12]

Advanced subsetting
Did I mention that we can use vectors to subset other vectors? When we subset
vectors using logical vectors of the same length, only the elements corresponding to
the TRUE values are extracted. Hopefully, sparks are starting to go off in your head.
If we wanted to extract only the legitimate non-NA digits from Jenny's number, we
can do it as follows:

 > messy.vector[!is.na(messy.vector)]
 [1] 8 6 7 5 3 0 9

This is a very critical trait of R, so let's take our time understanding it; this idiom will
come up again and again throughout this book.

The logical vector that yields TRUE when an NA value occurs in messy.vector (from
is.na()) is then negated (the whole thing) by the negation operator !. The resultant
vector is TRUE whenever the corresponding value in messy.vector is not NA.
When this logical vector is used to subset the original messy vector, it only extracts
the non-NA values from it.

Similarly, we can show all the digits in Jenny's phone number that are greater than
five as follows:

 > our.vect[our.vect > 5]
 [1] 8 6 7 9

Thus far, we've only been displaying elements that have been extracted from a
vector. However, just as we've been assigning and re-assigning variables, we can
assign values to various indices of a vector, and change the vector as a result. For
example, if Jenny tells us that we have the first digit of her phone number wrong (it's
really 9), we can reassign just that element without modifying the others.

 > our.vect
 [1] 8 6 7 5 3 0 9
 > our.vect[1] <- 9
 > our.vect
 [1] 9 6 7 5 3 0 9

Sometimes, it may be required to replace all the NA values in a vector with the value
0. To do that with our messy vector, we can execute the following command:

 > messy.vector[is.na(messy.vector)] <- 0
 > messy.vector
 [1] 8 6 0 7 5 0 3 0 9

Chapter 1

[13]

Elegant though the preceding solution is, modifying a vector in place is usually
discouraged in favor of creating a copy of the original vector and modifying the
copy. One such technique for performing this is by using the ifelse() function.

Not to be confused with the if/else control construct, ifelse() is a function that
takes 3 arguments: a test that returns a logical/Boolean value, a value to use if the
element passes the test, and one to return if the element fails the test.

The preceding in-place modification solution could be re-implemented with ifelse
as follows:

 > ifelse(is.na(messy.vector), 0, messy.vector)
 [1] 8 6 0 7 5 0 3 0 9

Recycling
The last important property of vectors and vector operations in R is that they can be
recycled. To understand what I mean, examine the following expression:

 > our.vect + 3
 [1] 12 9 10 8 6 3 12

This expression adds three to each digit in Jenny's phone number. Although it may
look so, R is not performing this operation between a vector and a single value.
Remember when I said that single values are actually vectors of the length 1? What is
really happening here is that R is told to perform element-wise addition on a vector
of length 7 and a vector of length 1. Since element-wise addition is not defined for
vectors of differing lengths, R recycles the smaller vector until it reaches the same
length as that of the bigger vector. Once both the vectors are the same size, then R,
element-by-element, performs the addition and returns the result.

 > our.vect + 3
 [1] 12 9 10 8 6 3 12

is tantamount to…

 > our.vect + c(3, 3, 3, 3, 3, 3, 3)
 [1] 12 9 10 8 6 3 12

If we wanted to extract every other digit from Jenny's phone number, we can do so
in the following manner:

 > our.vect[c(TRUE, FALSE)]
 [1] 9 7 3 9

RefresheR

[14]

This works because the vector c(TRUE, FALSE) is repeated until it is of the length 7,
making it equivalent to the following:

 > our.vect[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)]
 [1] 9 7 3 9

One common snag related to vector recycling that R users (useRs, if I may) encounter
is that during some arithmetic operations involving vectors of discrepant length,
R will warn you if the smaller vector cannot be repeated a whole number of times
to reach the length of the bigger vector. This is not a problem when doing vector
arithmetic with single values, since 1 can be repeated any number of times to match
the length of any vector (which must, of course, be an integer). It would pose a
problem, though, if we were looking to add three to every other element in Jenny's
phone number.

 > our.vect + c(3, 0)
 [1] 12 6 10 5 6 0 12
 Warning message:
 In our.vect + c(3, 0) :
 longer object length is not a multiple of shorter object length

You will likely learn to love these warnings, as they have stopped many useRs from
making grave errors.

Before we move on to the next section, an important thing to note is that in a lot
of other programming languages, many of the things that we did would have
been implemented using for loops and other control structures. Although there is
certainly a place for loops and such in R, oftentimes a more sophisticated solution
exists in using just vector/matrix operations. In addition to elegance and brevity,
the solution that exploits vectorization and recycling is often many, many times
more efficient.

Functions
If we need to perform some computation that isn't already a function in R a multiple
number of times, we usually do so by defining our own functions. A custom function
in R is defined using the following syntax:

 function.name <- function(argument1, argument2, ...){
 # some functionality
 }

Chapter 1

[15]

For example, if we wanted to write a function that determined if a number supplied
as an argument was even, we can do so in the following manner:

 > is.even <- function(a.number){
 + remainder <- a.number %% 2
 + if(remainder==0)
 + return(TRUE)
 + return(FALSE)
 + }
 >
 > # testing it
 > is.even(10)
 [1] TRUE
 > is.even(9)
 [1] FALSE

As an example of a function that takes more than one argument, let's generalize the
preceding function by creating a function that determines whether the first argument
is divisible by its second argument.

 > is.divisible.by <- function(large.number, smaller.number){
 + if(large.number %% smaller.number != 0)
 + return(FALSE)
 + return(TRUE)
 +
 }
 >
 > # testing it
 > is.divisible.by(10, 2)
 [1] TRUE
 > is.divisible.by(10, 3)
 [1] FALSE
 > is.divisible.by(9, 3)
 [1] TRUE

Our function, is.even(), could now be rewritten simply as:

 > is.even <- function(num){
 + is.divisible.by(num, 2)
 + }

RefresheR

[16]

It is very common in R to want to apply a particular function to every element of a
vector. Instead of using a loop to iterate over the elements of a vector, as we would
do in many other languages, we use a function called sapply() to perform this.
sapply() takes a vector and a function as its argument. It then applies the function
to every element and returns a vector of results. We can use sapply() in this manner
to find out which digits in Jenny's phone number are even:

 > sapply(our.vect, is.even)
 [1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE

This worked great because sapply takes each element, and uses it as the argument in
is.even() which takes only one argument. If you wanted to find the digits that are
divisible by three, it would require a little bit more work.

One option is just to define a function is.divisible.by.three() that takes only one
argument, and use that in sapply. The more common solution, however, is to define
an unnamed function that does just that in the body of the sapply function call:

 > sapply(our.vect, function(num){is.divisible.by(num, 3)})
 [1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE

Here, we essentially created a function that checks whether its argument is divisible
by three, except we don't assign it to a variable, and use it directly in the sapply
body instead. These one-time-use unnamed functions are called anonymous functions
or lambda functions. (The name comes from Alonzo Church's invention of the lambda
calculus, if you were wondering.)

This is somewhat of an advanced usage of R, but it is very useful as it comes up very
often in practice.

If we wanted to extract the digits in Jenny's phone number that are divisible by both,
two and three, we can write it as follows:

 > where.even <- sapply(our.vect, is.even)
 > where.div.3 <- sapply(our.vect, function(num){
 + is.divisible.by(num, 3)})
 > # "&" is like the "&&" and operator but for vectors
 > our.vect[where.even & where.div.3]
 [1] 6 0

Neat-O!

Chapter 1

[17]

Note that if we wanted to be sticklers, we would have a clause in the function bodies
to preclude a modulus computation, where the first number was smaller than the
second. If we had, our function would not have erroneously indicated that 0 was
divisible by two and three. I'm not a stickler, though, so the functions will remain as
is. Fixing this function is left as an exercise for the (stickler) reader.

Matrices
In addition to the vector data structure, R has the matrix, data frame, list, and array
data structures. Though we will be using all these types (except arrays) in this book,
we only need to review the first two in this chapter.

A matrix in R, like in math, is a rectangular array of values (of one type) arranged in
rows and columns, and can be manipulated as a whole. Operations on matrices are
fundamental to data analysis.

One way of creating a matrix is to just supply a vector to the function matrix().

 > a.matrix <- matrix(c(1, 2, 3, 4, 5, 6))
 > a.matrix
 [,1]
 [1,] 1
 [2,] 2
 [3,] 3
 [4,] 4
 [5,] 5
 [6,] 6

This produces a matrix with all the supplied values in a single column. We can
make a similar matrix with two columns by supplying matrix() with an optional
argument, ncol, that specifies the number of columns.

 > a.matrix <- matrix(c(1, 2, 3, 4, 5, 6), ncol=2)
 > a.matrix
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6

RefresheR

[18]

We could have produced the same matrix by binding two vectors, c(1, 2, 3) and
c(4, 5, 6) by columns using the cbind() function as follows:

 > a2.matrix <- cbind(c(1, 2, 3), c(4, 5, 6))

We could create the transposition of this matrix (where rows and columns are
switched) by binding those vectors by row instead:

 > a3.matrix <- rbind(c(1, 2, 3), c(4, 5, 6))
 > a3.matrix
 [,1] [,2] [,3]
 [1,] 1 2 3
 [2,] 4 5 6

or by just using the matrix transposition function in R, t().

 > t(a2.matrix)

Some other functions that operate on whole vectors are rowSums()/colSums() and
rowMeans()/colMeans().

 > a2.matrix
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6
 > colSums(a2.matrix)
 [1] 6 15
 > rowMeans(a2.matrix)
 [1] 2.5 3.5 4.5

If vectors have sapply(), then matrices have apply(). The preceding two functions
could have been written, more verbosely, as:

 > apply(a2.matrix, 2, sum)
 [1] 6 15
 > apply(a2.matrix, 1, mean)
 [1] 2.5 3.5 4.5

where 1 instructs R to perform the supplied function over its rows, and 2, over its
columns.

The matrix multiplication operator in R is %*%

 > a2.matrix %*% a2.matrix
 Error in a2.matrix %*% a2.matrix : non-conformable arguments

Chapter 1

[19]

Remember, matrix multiplication is only defined for matrices where the number of
columns in the first matrix is equal to the number of rows in the second.

 > a2.matrix
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6
 > a3.matrix
 [,1] [,2] [,3]
 [1,] 1 2 3
 [2,] 4 5 6
 > a2.matrix %*% a3.matrix
 [,1] [,2] [,3]
 [1,] 17 22 27
 [2,] 22 29 36
 [3,] 27 36 45
 >
 > # dim() tells us how many rows and columns
 > # (respectively) there are in the given matrix
 > dim(a2.matrix)
 [1] 3 2

To index the element of a matrix at the second row and first column, you need to
supply both of these numbers into the subscripting operator.

 > a2.matrix[2,1]
 [1] 2

Many useRs get confused and forget the order in which the indices must appear;
remember—it's row first, then columns!

If you leave one of the spaces empty, R will assume you want that whole dimension:

 > # returns the whole second column
 > a2.matrix[,2]
 [1] 4 5 6
 > # returns the first row
 > a2.matrix[1,]
 [1] 1 4

And, as always, we can use vectors in our subscript operator:

 > # give me element in column 2 at the first and third row
 > a2.matrix[c(1, 3), 2]
 [1] 4 6

RefresheR

[20]

Loading data into R
Thus far, we've only been entering data directly into the interactive R console. For
any data set of non-trivial size this is, obviously, an intractable solution. Fortunately
for us, R has a robust suite of functions for reading data directly from external files.

Go ahead, and create a file on your hard disk called favorites.txt that looks like
this:

flavor,number
pistachio,6
mint chocolate chip,7
vanilla,5
chocolate,10
strawberry,2
neopolitan,4

This data represents the number of students in a class that prefer a particular flavor
of soy ice cream. We can read the file into a variable called favs as follows:

 > favs <- read.table("favorites.txt", sep=",", header=TRUE)

If you get an error that there is no such file or directory, give R the full path name to
your data set or, alternatively, run the following command:

 > favs <- read.table(file.choose(), sep=",", header=TRUE)

The preceding command brings up an open file dialog for letting you navigate to the
file you've just created.

The argument sep="," tells R that each data element in a row is separated by a
comma. Other common data formats have values separated by tabs and pipes ("|").
The value of sep should then be "\t" and "|", respectively.

The argument header=TRUE tells R that the first row of the file should be interpreted
as the names of the columns. Remember, you can enter ?read.table at the console
to learn more about these options.

Reading from files in this comma-separated-values format (usually with the .csv file
extension) is so common that R has a more specific function just for it. The preceding
data import expression can be best written simply as:

 > favs <- read.csv("favorites.txt")

Chapter 1

[21]

Now, we have all the data in the file held in a variable of class data.frame. A
data frame can be thought of as a rectangular array of data that you might see in a
spreadsheet application. In this way, a data frame can also be thought of as a matrix;
indeed, we can use matrix-style indexing to extract elements from it. A data frame
differs from a matrix, though, in that a data frame may have columns of differing
types. For example, whereas a matrix would only allow one of these types, the data
set we just loaded contains character data in its first column, and numeric data in its
second column.

Let's check out what we have by using the head() command, which will show us the
first few lines of a data frame:

 > head(favs)
 flavor number
 1 pistachio 6
 2 mint chocolate chip 7
 3 vanilla 5
 4 chocolate 10
 5 strawberry 2
 6 neopolitan 4

 > class(favs)
 [1] "data.frame"
 > class(favs$flavor)
 [1] "factor"
 > class(favs$number)
 [1] "numeric"

I lied, ok! So what?! Technically, flavor is a factor data type, not a character type.

We haven't seen factors yet, but the idea behind them is really simple. Essentially,
factors are codings for categorical variables, which are variables that take on one
of a finite number of categories—think {"high", "medium", and "low"} or
{"control", "experimental"}.

Though factors are extremely useful in statistical modeling in R, the fact that R, by
default, automatically interprets a column from the data read from disk as a type
factor if it contains characters, is something that trips up novices and seasoned useRs
alike. Because of this, we will primarily prevent this behavior manually by adding
the stringsAsFactors optional keyword argument to the read.* commands:

 > favs <- read.csv("favorites.txt", stringsAsFactors=FALSE)
 > class(favs$flavor)
 [1] "character"

RefresheR

[22]

Much better, for now! If you'd like to make this behavior the new default, read the
?options manual page. We can always convert to factors later on if we need to!

If you haven't noticed already, I've snuck a new operator on you—$, the extract
operator. This is the most popular way to extract attributes (or columns) from a data
frame. You can also use double square brackets ([[and]]) to do this.

These are both in addition to the canonical matrix indexing option. The following
three statements are thus, in this context, functionally identical:

 > favs$flavor
 [1] "pistachio" "mint chocolate chip" "vanilla"
 [4] "chocolate" "strawberry" "neopolitan"
 > favs[["flavor"]]
 [1] "pistachio" "mint chocolate chip" "vanilla"
 [4] "chocolate" "strawberry" "neopolitan"
 > favs[,1]
 [1] "pistachio" "mint chocolate chip" "vanilla"
 [4] "chocolate" "strawberry" "neopolitan"

Notice how R has now printed another number in square
brackets—besides [1]—along with our output. This is to show
us that chocolate is the fourth element of the vector that was
returned from the extraction.

You can use the names() function to get a list of the columns available in a data
frame. You can even reassign names using the same:

 > names(favs)
 [1] "flavor" "number"
 > names(favs)[1] <- "flav"
 > names(favs)
 [1] "flav" "number"

Lastly, we can get a compact display of the structure of a data frame by using the
str() function on it:

 > str(favs)
 'data.frame': 6 obs. of 2 variables:
 $ flav : chr "pistachio" "mint chocolate chip" "vanilla"
"chocolate" ...
 $ number: num 6 7 5 10 2 4

Actually, you can use this function on any R structure—the property of functions
that change their behavior based on the type of input is called polymorphism.

Chapter 1

[23]

Working with packages
Robust, performant, and numerous though base R's functions are, we are by no
means limited to them! Additional functionality is available in the form of packages.
In fact, what makes R such a formidable statistics platform is the astonishing wealth
of packages available (well over 7,000 at the time of writing). R's ecosystem is second
to none!

Most of these myriad packages exist on the Comprehensive R Archive Network
(CRAN). CRAN is the primary repository for user-created packages.

One package that we are going to start using right away is the ggplot2 package.
ggplot2 is a plotting system for R. Base R has sophisticated and advanced
mechanisms to plot data, but many find ggplot2 more consistent and easier to use.
Further, the plots are often more aesthetically pleasing by default.

Let's install it!

 # downloads and installs from CRAN
 > install.packages("ggplot2")

Now that we have the package downloaded, let's load it into the R session, and test it
out by plotting our data from the last section:

 > library(ggplot2)
 > ggplot(favs, aes(x=flav, y=number)) +
 + geom_bar(stat="identity") +
 + ggtitle("Soy ice cream flavor preferences")

Figure 1.1: Soy ice cream flavor preferences

RefresheR

[24]

You're all wrong, Mint Chocolate Chip is way better!

Don't worry about the syntax of the ggplot function, yet. We'll get to it in good time.

You will be installing some more packages as you work through this text. In the
meantime, if you want to play around with a few more packages, you can install the
gdata and foreign packages that allow you to directly import Excel spreadsheets
and SPSS data files respectively directly into R.

Exercises
You can practice the following exercises to help you get a good grasp of the concepts
learned in this chapter:

•	 Write a function called simon.says that takes in a character string, and
returns that string in all upper case after prepending the string "Simon says: "
to the beginning of it.

•	 Write a function that takes two matrices as arguments, and returns a logical
value representing whether the matrices can be matrix multiplied.

•	 Find a free data set on the web, download it, and load it into R. Explore the
structure of the data set.

•	 Reflect upon how Hester Prynne allowed her scarlet letter to be decorated
with flowers by her daughter in Chapter 10. To what extent is this indicative
of Hester's recasting of the scarlet letter as a positive part of her identity. Back
up your thesis with excerpts from the book.

Summary
In this chapter, we learned about the world's greatest analytics platform, R. We started
from the beginning and built a foundation, and will now explore R further, based on
the knowledge gained in this chapter. By now, you have become well versed in the
basics of R (which, paradoxically, is the hardest part).You now know how to:

•	 Use R as a big calculator to do arithmetic
•	 Make vectors, operate on them, and subset them expressively
•	 Load data from disk
•	 Install packages

You have by no means finished learning about R; indeed, we have gone over mostly
just the basics. However, we have enough to continue ahead, and you'll pick up
more along the way. Onward to statistics land!

[25]

The Shape of Data
Welcome back! Since we now have enough knowledge about R under our belt, we
can finally move on to applying it. So, join me as we jump out of the R frying pan
and into the statistics fire.

Univariate data
In this chapter, we are going to deal with univariate data, which is a fancy way
of saying samples of one variable—the kind of data that goes into a single R vector.
Analysis of univariate data isn't concerned with the why questions—causes,
relationships, or anything like that; the purpose of univariate analysis is simply to
describe.

In univariate data, one variable—let's call it x—can represent categories like soy ice
cream flavors, heads or tails, names of cute classmates, the roll of a die, and so on. In
cases like these, we call x a categorical variable.

 > categorical.data <- c("heads", "tails", "tails", "heads")

Categorical data is represented, in the preceding statement, as a vector of character
type. In this particular example, we could further specify that this is a binary or
dichotomous variable, because it only takes on two values, namely, "heads" and
"tails."

Our variable x could also represent a number like air temperature, the prices of
financial instruments, and so on. In such cases, we call this a continuous variable.

 > contin.data <- c(198.41, 178.46, 165.20, 141.71, 138.77)

Univariate data of a continuous variable is represented, as seen in the preceding
statement, as a vector of numeric type. These data are the stock prices of a
hypothetical company that offers a hypothetical commercial statistics platform
inferior to R.

The Shape of Data

[26]

You might come to the conclusion that if a vector contains character types, it is a
categorical variable, and if it contains numeric types, it is a continuous variable. Not
quite! Consider the case of data that contains the results of the roll of a six-sided die.
A natural approach to storing this would be by using a numeric vector. However,
this isn't a continuous variable, because each result can only take on six distinct
values: 1, 2, 3, 4, 5, and 6. This is a discrete numeric variable. Other discrete numeric
variables can be the number of bacteria in a petri dish, or the number of love letters
to cute classmates.

The mark of a continuous variable is that it could take on any value between some
theoretical minimum and maximum. The range of values in case of a die roll have a
minimum of 1 and a maximum of 6, but it can never be 2.3. Contrast this with, say,
the example of the stock prices, which could be zero, zillions, or anything in between.

On occasion, we are unable to neatly classify non-categorical data as either
continuous or discrete. In some cases, discrete variables may be treated as if there is
an underlying continuum. Additionally, continuous variables can be discretized, as
we'll see soon.

Frequency distributions
A common way of describing univariate data is with a frequency distribution.
We've already seen an example of a frequency distribution when we looked at the
preferences for soy ice cream at the end of the last chapter. For each flavor of ice
cream (categorical variable), it depicted the count or frequency of the occurrences in
the underlying data set.

To demonstrate examples of other frequency distributions, we need to find some
data. Fortunately, for the convenience of useRs everywhere, R comes preloaded
with almost one hundred datasets. You can view a full list if you execute help
(package="datasets"). There are also hundreds more available from add on
packages.

The first data set that we are going to use is mtcars—data on the design and
performance of 32 automobiles that was extracted from the 1974 Motor Trend US
magazine. (To find out more information about this dataset, execute ?mtcars.)

Chapter 2

[27]

Take a look at the first few lines of this dataset using the head function:

> head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb

 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Check out the carb column, which represents the number of carburetors; by now
you should recognize this as a discrete numeric variable, though we can (and will!)
treat this as a categorical variable for now.

Running the carb vector through the unique function yields the distinct values that
this vector contains.

 > unique(mtcars$carb)
 [1] 4 1 2 3 6 8

We can see that there must be repeats in the carb vector, but how many? An easy
way for performing a frequency tabulation in R is to use the table function:

 > table(mtcars$carb)
 1 2 3 4 6 8
 7 10 3 10 1 1

From the result of the preceding function, we can tell that the are 10 cars with 2
carburetors and 10 with 4, and there is one car each with 6 and 8 carburetors. The
value with the most occurrences in a dataset (in this example, the carb column is
our whole data set) is called the mode. In this case, there are two such values, 2 and
4, so this dataset is bimodal. (There is a package in R, called modeest, to find modes
easily.)

Frequency distributions are more often depicted as a chart or plot than as a table of
numbers. When the univariate data is categorical, it is commonly represented as a
bar chart, as shown in the Figure 2.1:

The Shape of Data

[28]

The other data set that we are going to use to demonstrate a frequency distribution
of a continuous variable is the airquality dataset, which holds the daily air quality
measurements from May to September in NY. Take a look at it using the head and
str functions. The univariate data that we will be using is the Temp column, which
contains the temperature data in degrees Fahrenheit.

Figure 2.1: Frequency distribution of number of carburetors in mtcars dataset

It would be useless to take the same approach to frequency tabulation as we did in
the case of the car carburetors. If we did so, we would have a table containing the
frequencies for each of the 40 unique temperatures—and there would be far more if
the temperature wasn't rounded to the nearest degree. Additionally, who cares that
there was one occurrence of 63 degrees and two occurrences of 64? I sure don't! What
we do care about is the approximate temperature.

Our first step towards building a frequency distribution of the temperature data is to
bin the data—which is to say, we divide the range of values of the vector into a series
of smaller intervals. This binning is a method of discretizing a continuous variable.
We then count the number of values that fall into that interval.

Chapter 2

[29]

Choosing the size of bins to use is tricky. If there are too many bins, we run into
the same problem as we did with the raw data and have an unwieldy number
of columns in our frequency tabulation. If we make too few, however, we lose
resolution and may lose important information. Choosing the right number of bins
is more art than science, but there are certain commonly used heuristics that often
produce sensible results.

We can have R construct n number of equally-spaced bins for us by using the cut
function which, in its simplest use case, takes a vector of data and the number of bins
to create:

 > cut(airquality$Temp, 9)

We can then feed this result into the table function for a far more manageable
frequency tabulation:

 > table(cut(airquality$Temp, 9))

 (56,60.6] (60.6,65.1] (65.1,69.7] (69.7,74.2] (74.2,78.8]
8 10 14 16 26

 (78.8,83.3] (83.3,87.9] (87.9,92.4] (92.4,97]
35 22 15 7

Rad!

Remember when we used a bar chart to visualize the frequency distributions of
categorical data? The common method for visualizing the distribution of discretized
continuous data is by using a histogram, as seen in the following image:

Figure 2.2: Daily temperature measurements from May to September in NYC

The Shape of Data

[30]

Central tendency
One very popular question to ask about univariate data is What is the typical value?
or What's the value around which the data are centered?. To answer these questions, we
have to measure the central tendency of a set of data.

We've seen one measure of central tendency already: the mode. The
mtcars$carburetors data subset was bimodal, with a two and four carburetor
setup being the most popular. The mode is the central tendency measure that is
applicable to categorical data.

The mode of a discretized continuous distribution is usually considered to be the
interval that contains the highest frequency of data points. This makes it dependent
on the method and parameters of the binning. Finding the mode of data from a
non-discretized continuous distribution is a more complicated procedure, which
we'll see later.

Perhaps the most famous and commonly used measure of central tendency is the
mean. The mean is the sum of a set of numerics divided by the number of elements
in that set. This simple concept can also be expressed as a complex-looking equation:

x
x

n
= ∑

Where x (pronounced x bar) is the mean, x∑ is the summation of the elements
in the data set, and n is the number of elements in the set. (As an aside, if you are
intimidated by the equations in this book, don't be! None of them are beyond your
grasp—just think of them as sentences of a language you're not proficient in yet.)

The mean is represented as x when we are talking about the mean of a sample (or
subset) of a larger population, and µ when we are talking about the mean of the
population. A population may have too many items to compute the mean directly.
When this is the case, we rely on statistics applied to a sample of the population to
estimate its parameters.

Another way to express the preceding equation using R constructs is as follows:

 > sum(nums)/length(nums) # nums would be a vector of numerics

As you might imagine, though, the mean has an eponymous R function that is built-
in already:

 > mean(c(1,2,3,4,5))
 [1] 3

Chapter 2

[31]

The mean is not defined for categorical data; remember that mode is the only
measure of central tendency that we can use with categorical data.

The mean—occasionally referred to as the arithmetic mean to contrast with the far
less often used geometric, harmonic, and trimmed means—while extraordinarily
popular is not a very robust statistic. This is because the statistic is unduly affected
by outliers (atypically distant data points or observations). A paradigmatic example
where the robustness of the mean fails is its application to the different distributions
of income.

Imagine the wages of employees in a company called Marx & Engels, Attorneys at
Law, where the typical worker makes $40,000 a year while the CEO makes $500,000
a year. If we compute the mean of the salaries based on a sample of ten that contains
just the exploited class, we will have a fairly accurate representation of the average
salary of a worker at that company. If however, by the luck of the draw, our sample
contains the CEO, the mean of the salaries will skyrocket to a value that is no longer
representative or very informative.

More specifically, robust statistics are statistical measures that work well when
thrown at a wide variety of different distributions. The mean works well with one
particular type of distribution, the normal distribution, and, to varying degrees, fails
to accurately represent the central tendency of other distributions.

Figure 2.3: A normal distribution

The Shape of Data

[32]

The normal distribution (also called the Gaussian distribution if you want to impress
people) is frequently referred to as the bell curve because of its shape. As seen in
the preceding image, the vast majority of the data points lie within a narrow band
around the center of the distribution—which is the mean. As you get further and
further from the mean, the observations become less and less frequent. It is a
symmetric distribution, meaning that the side that is to the right of the mean is a
mirror image of the left side of the mean.

Not only is the usage of the normal distribution extremely common in statistics, but
it is also ubiquitous in real life, where it can model anything from people's heights
to test scores; a few will fare lower than average, and a few fare higher than average,
but most are around average.

The utility of the mean as a measure of central tendency becomes strained as the
normal distribution becomes more and more skewed, or asymmetrical.

If the majority of the data points fall on the left side of the distribution, with the right
side tapering off slower than the left, the distribution is considered positively skewed
or right-tailed. If the longer tail is on the left side and the bulk of the distribution is
hanging out to the right, it is called negatively skewed or left-tailed. This can be seen
clearly in the following images:

Figure 2.4a: A negatively skewed distribution

Figure 2.4b: A positively skewed distribution

Chapter 2

[33]

Luckily, for cases of skewed distributions, or other distributions for which the mean
is inadequate to describe, we can use the median instead.

The median of a dataset is the middle number in the set after it is sorted. Less
concretely, it is the value that cleanly separates the higher-valued half of the data and
the lower-valued half.

The median of the set of numbers {1, 3, 5, 6, 7} is 5. In the set of numbers
with an even number of elements, the mean of the two middle values is taken to be
the median. For example, the median of the set {3, 3, 6, 7, 7, 10} is 6.5. The
median is the 50th percentile, meaning that 50 percent of the observations fall below
that value.

 > median(c(3, 7, 6, 10, 3, 7))
 [1] 6.5

Consider the example of Marx & Engels, Attorneys at Law that we referred to earlier.
Remember that if the sample of employees' salaries included the CEO, it would give
our mean a non-representative value. The median solves our problem beautifully.
Let's say our sample of 10 employees' salaries was {41000, 40300, 38000, 500000,
41500, 37000, 39600, 42000, 39900, 39500}. Given this set, the mean salary is $85,880
but the median is $40,100—way more in line with the salary expectations of the
proletariat at the law firm.

In symmetric data, the mean and median are often very close to each other in value,
if not identical. In asymmetric data, this is not the case. It is telling when the median
and the mean are very discrepant. In general, if the median is less than the mean, the
data set has a large right tail or outliers/anomalies/erroneous data to the right of
the distribution. If the mean is less than the median, it tells the opposite story. The
degree of difference between the mean and the median is often an indication of the
degree of skewness.

This property of the median—resistance to the influence of outliers—makes it a
robust statistic. In fact, the median is the most outlier-resistant metric in statistics.

As great as the median is, it's far from being perfect to describe data just by its own.
To see what I mean, check out the three distributions in the following image. All three
have the same mean and median, yet all three are very different distributions.

Clearly, we need to look to other statistical measures to describe these differences.

The Shape of Data

[34]

Before going on to the next chapter, check out the summary function in R.

Figure 2.5: Three distributions with the same mean and median

Spread
Another very popular question regarding univariate data is, How variable are the data
points? or How spread out or dispersed are the observations? To answer these questions,
we have to measure the spread, or dispersion, of a data sample.

The simplest way to answer that question is to take the smallest value in the dataset
and subtract it by the largest value. This will give you the range. However, this
suffers from a problem similar to the issue of the mean. The range in salaries at the
law firm will vary widely depending on whether the CEO is included in the set.
Further, the range is just dependent on two values, the highest and lowest, and
therefore, can't speak of the dispersion of the bulk of the dataset.

One tactic that solves the first of these problems is to use the interquartile range.

What about measures of spread for categorical data?
The measures of spread that we talk about in this section are only
applicable to numeric data. There are, however, measures of spread or
diversity of categorical data. In spite of the usefulness of these measures,
this topic goes unmentioned or blithely ignored in most data analysis
and statistics texts. This is a long and venerable tradition that we will,
for the most part, adhere to in this book. If you are interested in learning
more about this, search for 'Diversity Indices’ on the web.

Chapter 2

[35]

Remember when we said that the median split a sorted dataset into two equal
parts, and that it was the 50th percentile because 50 percent of the observations fell
below its value? In a similar way, if you were to divide a sorted data set into four
equal parts, or quartiles, the three values that make these divides would be the first,
second, and third quartiles respectively. These values can also be called the 25th,
50th, and 75th percentiles. Note that the second quartile, the 50th percentile, and the
median are all equivalent.

The interquartile range is the difference between the third and first quartiles. If you
apply the interquartile range to a sample of salaries at the law firm that includes the
CEO, the enormous salary will be discarded with the highest 25 percent of the data.
However, this still only uses two values, and doesn't speak to the variability of the
middle 50 percent.

Well, one way we can use all the data points to inform our spread metric is by
subtracting each element of a dataset from the mean of the dataset. This will give
us the deviations, or residuals, from the mean. If we add up all these deviations, we
will arrive at the sum of the deviations from the mean. Try to find the sum of the
deviations from the mean in this set: {1, 3, 5, 6, 7}.

If we try to compute this, we notice that the positive deviations are cancelled out
by the negative deviations. In order to cope with this, we need to take the absolute
value, or the magnitude of the deviation, and sum them.

This is a great start, but note that this metric keeps increasing if we add more data to
the set. Because of this, we may want to take the average of these deviations. This is
called the average deviation.

For those having trouble following the description in words, the formula for average
deviation from the mean is the following:

()
1

1 N

i
i
x

N
µ

=

−∑

where µ is the mean, N is the number elements of the sample, and ix is the ith
element of the dataset. It can also be expressed in R as follows:

 > sum(abs(x - mean(x))) / length(x)

Though average deviation is an excellent measure of spread in its own right, its use
is commonly—and sometimes unfortunately—supplanted by two other measures.

The Shape of Data

[36]

Instead of taking the absolute value of each residual, we can achieve a similar
outcome by squaring each deviation from the mean. This, too, ensures that each
residual is positive (so that there is no cancelling out). Additionally, squaring the
residuals has the sometimes desirable property of magnifying larger deviations from
the mean, while being more forgiving of smaller deviations. The sum of the squared
deviations is called (you guessed it!) the sum of squared deviations from the mean
or, simply, sum of squares. The average of the sum of squared deviations from the

mean is known as the variance and is denoted by
2σ .

()22

1

1 N

i
i
x

N
σ µ

=

= −∑

When we square each deviation, we also square our units. For example, if our
dataset held measurements in meters, our variance would be expressed in terms of
meters squared. To get back our original units, we have to take the square root of the
variance:

()2
1

1 N

i
i
x

N
σ µ

=

= −∑

This new measure, denoted by σ, is the standard deviation, and it is one of the most
important measures in this book.

Note that we switched from referring to the mean as to referring it as µ. This was
not a mistake.

Remember that x was the sample mean, and µ represented the population mean.
The preceding equations use µ to illustrate that these equations are computing
the spread metrics on the population data set, and not on a sample. If we want to

describe the variance and standard deviation of a sample, we use the symbols
2s

and s instead of
2σ and σ respectively, and our equations change slightly:

()22

1

1
1

n

i
i

s x x
n =

= −
− ∑

()2
1

1
1

n

i
i

s x x
n =

= −
− ∑

Chapter 2

[37]

Instead of dividing our sum of squares by the number of elements in the set, we are
now dividing it by n-1. What gives?

To answer that question, we have to learn a little bit about populations, samples, and
estimation.

Populations, samples, and estimation
One of the core ideas of statistics is that we can use a subset of a group, study it, and
then make inferences or conclusions about that much larger group.

For example, let's say we wanted to find the average (mean) weight of all the people
in Germany. One way do to this is to visit all the 81 million people in Germany,
record their weights, and then find the average. However, it is a far more sane
endeavor to take down the weights of only a few hundred Germans, and use those
to deduce the average weight of all Germans. In this case, the few hundred people
we do measure is the sample, and the entirety of people in Germany is called the
population.

Now, there are Germans of all shapes and sizes: some heavier, some lighter. If we
only pick a few Germans to weigh, we run the risk of, by chance, choosing a group
of primarily underweight Germans or overweight ones. We might then come to
an inaccurate conclusion about the weight of all Germans. But, as we add more
Germans to our sample, those chance variations tend to balance themselves out.

All things being equal, it would be preferable to measure the weights of all Germans
so that we can be absolutely sure that we have the right answer, but that just isn't
feasible. If we take a large enough sample, though, and are careful that our sample
is well-representative of the population, not only can we get extraordinarily close to
the actual average weight of the population, but we can quantify our uncertainty.
The more Germans we include in our sample, the less uncertain we are about our
estimate of the population.

In the preceding case, we are using the sample mean as an estimator of the population
mean, and the actual value of the sample mean is called our estimate. It turns out that
the formula for population mean is a great estimator of the mean of the population
when applied to only a sample. This is why we make no distinction between the
population and sample means, except to replace the µ with x . Unfortunately,
there exists no perfect estimator for the standard deviation of a population for all
population types. There will always be some systematic difference in the expected
value of the estimator and the real value of the population. This means that there is
some bias in the estimator. Fortunately, we can partially correct it.

The Shape of Data

[38]

Note that the two differences between the population and the sample standard
deviation are that (a) the µ is replaced by x in the sample standard deviation, and
(b) the divisor n is replaced by n-1.

In the case of the standard deviation of the population, we know the mean µ. In the
case of the sample, however, we don't know the population mean, we only have
an estimate of the population mean based on the sample mean x . This must be
taken into account and corrected in the new equation. No longer can we divide by
the number of elements in the data set—we have to divide by the degrees of freedom,
which is n-1.

What in the world are degrees of freedom? And why is it n-1?
Let's say we were gathering a party of six to play a board game. In this
board game, each player controls one of six colored pawns. People start
to join in at the board. The first person at the board gets their pick of
their favorite colored pawn. The second player has one less pawn to
choose from, but she still has a choice in the matter. By the time the last
person joins in at the game table, she doesn't have a choice in what pawn
she uses; she is forced to use the last remaining pawn. The concept of
degrees of freedom is a little like this.
If we have a group of five numbers, but hold the mean of those numbers
fixed, all but the last number can vary, because the last number must
take on the value that will satisfy the fixed mean. We only have four
degrees of freedom in this case.
More generally, the degrees of freedom is the sample size minus the
number of parameters estimated from the data. When we are using the
mean estimate in the standard deviation formula, we are effectively
keeping one of the parameters of the formula fixed, so that only n-1
observations are free to vary. This is why the divisor of the sample
standard deviation formula is n-1; it is the degrees of freedom that we
are dividing by, not the sample size.
If you thought that the last few paragraphs were heady and theoretical,
you're right. If you are confused, particularly by the concept of degrees
of freedom, you can take solace in the fact that you are not alone; degrees
of freedom, bias, and subtleties of population vs. sample standard
deviation are notoriously confusing topics for newcomers to statistics.
But you only have to learn it only once!

Chapter 2

[39]

Probability distributions
Up until this point, when we spoke of distributions, we were referring to frequency
distributions. However, when we talk about distributions later in the book—or when
other data analysts refer to them—we will be talking about probability distributions,
which are much more general.

It's easy to turn a categorical, discrete, or discretized frequency distribution into
a probability distribution. As an example, refer to the frequency distribution of
carburetors in the first image in this chapter. Instead of asking What number of cars
have n number of carburetors?, we can ask, What is the probability that, if I choose a car at
random, I will get a car with n carburetors?

We will talk more about probability (and different interpretations of probability) in
Chapter 4, Probability but for now, probability is a value between 0 and 1 (or 0
percent and 100 percent) that measures how likely an event is to occur. To answer the
question What's the probability that I will pick a car with 4 carburetors?, the equation is:

() # 44 of car b carsP I will pick a car b car
number of total cars

=

You can find the probability of picking a car of any one particular number of
carburetors as follows:

 > table(mtcars$carb) / length(mtcars$carb)

1 2 3 4 6 8
 0.21875 0.31250 0.09375 0.31250 0.03125 0.03125

Instead of making a bar chart of the frequencies, we can make a bar chart of the
probabilities.

This is called a probability mass function (PMF). It looks the same, but now it maps
from carburetors to probabilities, not frequencies. Figure 2.6a represents this.

And, just as it is with the bar chart, we can easily tell that 2 and 4 are the number of
carburetors most likely to be chosen at random.

The Shape of Data

[40]

We could do the same with discretized numeric variables as well. The following
images are a representation of the temperature histogram as a probability mass
function.

Figure 2.6a: Probability mass function of number of carburetors

Figure 2.6b: Probability mass function of daily temperature measurements from May to September in NY

Chapter 2

[41]

Note that this PMF only describes the temperatures of NYC in the data we have.

There's a problem here, though— this PMF is completely dependent on the size of
bins (our method of discretizing the temperatures). Imagine that we constructed the
bins such that each bin held only one temperature within a degree. In this case, we
wouldn't be able to tell very much from the PMF at all, since each specific degree
only occurs a few times, if any, in the dataset. The same problem—but worse!—
happens when we try to describe continuous variables with probabilities without
discretizing them at all. Imagine trying to visualize the probability (or the frequency)
of the temperatures if they were measured to the thousandth place (for example,
{90.167, 67.361, ..}). There would be no visible bars at all!

What we need here is a probability density function (PDF). A probability density
function will tell us the relative likelihood that we will experience a certain
temperature. The next image shows a PDF that fits the temperature data that we've
been playing with; it is analogous to, but better than, the histogram we saw in the
beginning of the chapter and the PMF in the preceding figure.

The first thing you'll notice about this new plot is that it is smooth, not jagged or
boxy like the histogram and PMFs. This should intuitively make more sense, because
temperatures are a continuous variable, and there is likely to be no sharp cutoffs in
the probability of experiencing temperatures from one degree to the next.

Figure 2.7: Three distributions with the same mean and median

The Shape of Data

[42]

The second thing you should notice is that the units and the values on the y axis have
changed. The y axis no longer represents probabilities—it now represents probability
densities. Though it may be tempting, you can't look at this function and answer
the question What is the probability that it will be exactly 80 degrees?. Technically, the
probability of it being 80.0000 exactly is microscopically small, almost zero. But that's
okay! Remember, we don't care what the probability of experiencing a temperature
of 80.0000 is—we just care the probability of a temperature around there.

We can answer the question What's the probability that the temperature will be between
a particular range?. The probability of experiencing a temperature, say 80 to 90
degrees, is the area under the curve from 80 to 90. Those of you unfortunate readers
who know calculus will recognize this as the integral, or anti-derivative, of the PDF
evaluated over the range,

()
90

80
f x dx∫

where f(x) is the probability density function.

The next image shows the area under the curve for this range in pink. You can
immediately see that the region covers a lot of area—perhaps one third. According to
R, it's about 34 percent.

 > temp.density <- density(airquality$Temp)
 > pdf <- approxfun(temp.density$x, temp.density$y, rule=2)
 > integrate(pdf, 80, 90)
 0.3422287 with absolute error < 7.5e-06

Figure 2.8: PDF with highlighted interval

Chapter 2

[43]

We don't get a probability density function from the sample for free. The PDF has
to be estimated. The PDF isn't so much trying to convey the information about the
sample we have as attempting to model the underlying distribution that gave rise
to that sample.

To do this, we use a method called kernel density estimation. The specifics of kernel
density estimation are beyond the scope of this book, but you should know that the
density estimation is heavily governed by a parameter that controls the smoothness
of the estimation. This is called the bandwidth.

How do we choose the bandwidth? Well, it's just like choosing the size to make the
bins in a histogram: there's no right answer. It's a balancing act between reducing
chance or noise in the model and not losing important information by smoothing
over pertinent characteristics of the data. This is a tradeoff we will see time and time
again throughout this text.

Anyway, the great thing about PDFs is that you don't have to know calculus to
interpret PDFs. Not only are PDFs a useful tool analytically, but they make for
a top-notch visualization of the shape of data.

By the way…
Remember when we were talking about modes, and I said that finding
the mode of non-discretized continuously distributed data is a more
complicated procedure than for discretized or categorical data? The
mode for these types of univariate data is the peak of the PDF. So, in
the temperature example, the mode is around 80 degrees.

Figure 2.9: Three different bandwidths used on the same data.

The Shape of Data

[44]

Visualization methods
In an earlier image, we saw three very different distributions, all with the same mean
and median. I said then that we need to quantify variance to tell them apart. In the
following image, there are three very different distributions, all with the same mean,
median, and variance.

Figure 2.10: Three PDFs with the same mean, median, and standard deviation

If you just rely on basic summary statistics to understand univariate data, you'll
never get the full picture. It's only when we visualize it that we can clearly see, at a
glance, whether there are any clusters or areas with a high density of data points, the
number of clusters there are, whether there are outliers, whether there is a pattern
to the outliers, and so on. When dealing with univariate data, the shape is the most
important part (that's why this chapter is called Shape of Data!).

We will be using ggplot2's qplot function to investigate these shapes and visualize
these data. qplot (for quick plot) is the simpler cousin of the more expressive ggplot
function. qplot makes it easy to produce handsome and compelling graphics using
consistent grammar. Additionally, much of the skills, lessons, and know-how from
qplot are transferrable to ggplot (for when we have to get more advanced).

Chapter 2

[45]

What's ggplot2? Why are we using it?
There are a few plotting mechanisms for R, including the default one
that comes with R (called base R). However, ggplot2 seems to be a
lot of people's favorite. This is not unwarranted, given its wide use,
excellent documentation, and consistent grammar.
Since the base R graphics subsystem is what I learned to wield first, I've
become adept at using it. There are certain types of plots that I produce
faster using base R, so I still use it on a regular basis (Figure 2.8 to Figure
2.10 were made using base R!).
Though we will be using ggplot2 for this book, feel free to go your
own way when making your very own plots.

Most of the graphics in this section are going to take the following form:

 > qplot(column, data=dataframe, geom=...)

where column is a particular column of the data frame dataframe, and the geom
keyword argument specifies a geometric object—it will control the type of plot that
we want. For visualizing univariate data, we don't have many options for geom. The
three types that we will be using are bar, histogram, and density. Making a bar
graph of the frequency distribution of the number of carburetors couldn't be easier:

 > library(ggplot2)
 > qplot(factor(carb), data=mtcars, geom="bar")

Figure 2.11: Frequency distribution of the number of carburetors

The Shape of Data

[46]

Using the factor function on the carb column makes the plot look better in this
case.

We could, if we wanted to, make an unattractive and distracting plot by coloring all
the bars a different color, as follows:

 > qplot(factor(carb),
 + data=mtcars,
 + geom="bar",
 + fill=factor(carb),
 + xlab="number of carburetors")

Figure 2.12: With color and label modification

We also relabeled the x axis (which is automatically set by qplot) to more
informative text.

Chapter 2

[47]

It's just as easy to make a histogram of the temperature data—the main difference is
that we switch geom from bar to histogram:

 > qplot(Temp, data=airquality, geom="histogram")

Figure 2.13: Histogram of temperature data

Why doesn't it look like the first histogram in the beginning of the chapter, you ask?
Well, that's because of two reasons:

•	 I adjusted the bin width (size of the bins)
•	 I added color to the outline of the bars

The code I used for the first histogram looked as follows:

 > qplot(Temp, data=airquality, geom="histogram",
 + binwidth=5, color=I("white"))

The Shape of Data

[48]

Making plots of the approximation of the PDF are similarly simple:

 > qplot(Temp, data=airquality, geom="density")

Figure 2.14: PDF of temperature data

By itself, I think the preceding plot is rather unattractive. We can give it a little more
flair by:

•	 Filling the curve pink
•	 Adding a little transparency to the fill

 > qplot(Temp, data=airquality, geom="density",
 + adjust=.5, # changes bandwidth
 + fill=I("pink"),
 + alpha=I(.5), # adds transparency
 + main="density plot of temperature data")

Chapter 2

[49]

Figure 2.15: Figure 2.14 with modifications

Now that's a handsome plot!

Notice that we also made the bandwidth smaller than the default (1, which made the
PDF more squiggly) and added a title to the plot with the main function.

Exercises
Here are a few exercises for you to revise the concepts learned in this chapter:

•	 Write an R function to compute the interquartile range.
•	 Learn about windorized, geometric, harmonic, and trimmed means. To

what extent do these metrics solve the problem of the non-robustness of the
arithmetic mean?

•	 Craft an assessment of Virginia Woolf's impact on feminine discourse in
the 20th century. Be sure to address both prosaic and lyrical forms in your
response.

The Shape of Data

[50]

Summary
One of the hardest things about data analysis is statistics, and one of the hardest
things about statistics (not unlike computer programming) is that the beginning is
the toughest hurdle, because the concepts are so new and unfamiliar. As a result,
some might find this to be one of the more challenging chapters in this text.

However, hard work during this phase pays enormous dividends; it provides a
sturdy foundation on which to pile on and organize new knowledge.

To recap, in this chapter, we learned about univariate data. We also learned about:

•	 The types of univariate data
•	 How to measure the central tendency of these data
•	 How to measure the spread of these data
•	 How to visualize the shape of these data

Along the way, we also learned a little bit about probability distributions and
population/sample statistics.

I'm glad you made it through! Relax, make yourself a mocktail, and I'll see you at
Chapter 3, Describing Relationships shortly!

[25]

Describing Relationships
Is there a relationship between smoking and lung cancer? Do people who care for
dogs live longer? Is your university's admissions department sexist?

Tackling these exciting questions is only possible when we take a step beyond simply
describing univariate data sets—one step beyond!

Multivariate data
In this chapter, we are going to describe relationships, and begin working with
multivariate data, which is a fancy way of saying samples containing more than one
variable.

The troublemaker reader might remark that all the datasets that we've worked
with thus far (mtcars and airquality) have contained more than one variable.
This is technically true—but only technically. The fact of the matter is that we've
only been working with one of the dataset's variables at any one time. Note that
multivariate analytics is not the same as doing univariate analytics on more than
one variable–multivariate analyses and describing relationships involve several
variables at the same time.

To put this more concretely, in the last chapter we described the shape of, say, the
temperature readings in the airquality dataset.

 > head(airquality)
 Ozone Solar.R Wind Temp Month Day
 1 41 190 7.4 67 5 1
 2 36 118 8.0 72 5 2
 3 12 149 12.6 74 5 3
 4 18 313 11.5 62 5 4
 5 NA NA 14.3 56 5 5
 6 28 NA 14.9 66 5 6

Describing Relationships

[26]

In this chapter, we will be exploring whether there is a relationship between
temperature and the month in which the temperature was taken (spoiler alert:
there is!).

The kind of multivariate analysis you perform is heavily influenced by the type of
data that you are working with. There are three broad classes of bivariate (or two
variable) relationships:

•	 The relationship between one categorical variable and one continuous
variable

•	 The relationship between two categorical variables
•	 The relationship between two continuous variables

We will get into all of these in the next three sections. In the section after that, we
will touch on describing the relationships between more than two variables. Finally,
following in the tradition of the previous chapter, we will end with a section on how
to create your own plots to capture the relationships that we'll be exploring.

Relationships between a categorical and
a continuous variable
Describing the relationship between categorical and continuous variables is perhaps
the most familiar of the three broad categories.

When I was in the fifth grade, my class had to participate in an area-wide science
fair. We were to devise our own experiment, perform it, and then present it. For
some reason, in my experiment I chose to water some lentil sprouts with tap water
and some with alcohol to see if they grew differently.

When I measured the heights and compared the measurements of the teetotaller
lentils versus the drunken lentils, I was pointing out a relationship between a
categorical variable (alcohol/no-alcohol) and a continuous variable (heights of the
seedlings).

Note that I wasn't trying to make a broader statement about how
alcohol affects plant growth. In the grade-school experiment, I was just
summarizing the differences in the heights of those plants—the ones that
were in the experiment. In order to make statements or draw conclusions
about how alcohol affects plant growth in general, we would be exiting
the realm of exploratory data analysis and entering the domain of
inferential statistics, which we will discuss in the next unit.

Chapter 3

[27]

The alcohol could have made the lentils grow faster (it didn't), grow slower (it
did), or grow at the same rate as the tap water lentils. All three of these possibilities
constitute a relationship: greater than, less than, or equal to.

To demonstrate how to uncover the relationship between these two types of variables
in R, we will be using the iris dataset that is conveniently built right into R.

 > head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1 5.1 3.5 1.4 0.2 setosa
 2 4.9 3.0 1.4 0.2 setosa
 3 4.7 3.2 1.3 0.2 setosa
 4 4.6 3.1 1.5 0.2 setosa
 5 5.0 3.6 1.4 0.2 setosa
 6 5.4 3.9 1.7 0.4 setosa

This is a famous dataset and is used today primarily for teaching purposes. It gives
the lengths and widths of the petals and sepals (another part of the flower) of 150 Iris
flowers. Of the 150 flowers, it has 50 measurements each from three different species
of Iris flowers: setosa, versicolor, and virginica.

By now, we know how to take the mean of all the petal lengths:

 > mean(iris$Petal.Length)
 [1] 3.758

But we could also take the mean of the petal lengths of each of the three species to
see if there is any difference in the means.

Naively, one might approach this task in R as follows:

 > mean(iris$Petal.Length[iris$Species=="setosa"])
 [1] 1.462
 > mean(iris$Petal.Length[iris$Species=="versicolor"])
 [1] 4.26
 > mean(iris$Petal.Length[iris$Species=="virginica"])
 [1] 5.552

But, as you might imagine, there is a far easier way to do this:

 > by(iris$Petal.Length, iris$Species, mean)

 iris$Species: setosa
 [1] 1.462

Describing Relationships

[28]

 --
 iris$Species: versicolor
 [1] 4.26
 --
 iris$Species: virginica
 [1] 5.552

by is a handy function that applies a function to split the subsets of data. In this case,
the Petal.Length vector is divided into three subsets for each species, and then
the mean function is called on each of those subsets. It appears as if the setosas in
this sample have way shorter petals than the other two species, with the virginica
samples' petal length beating out versicolor's by a smaller margin.

Although means are probably the most common statistic to be compared between
categories, it is not the only statistic we can use to compare. If we had reason to
believe that the virginicas have a more widely varying petal length than the other
two species, we could pass the sd function to the by function as follows

 > by(iris$Petal.Length, iris$Species, sd)

Most often, though, we want to be able to compare many statistics between groups at
one time. To this end, it's very common to pass in the summary function:

 > by(iris$Petal.Length, iris$Species, summary)

 iris$Species: setosa
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 1.400 1.500 1.462 1.575 1.900
 --
 iris$Species: versicolor
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 3.00 4.00 4.35 4.26 4.60 5.10
 --
 iris$Species: virginica
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4.500 5.100 5.550 5.552 5.875 6.900

As common as this idiom is, it still presents us with a lot of dense information that
is difficult to make sense of at a glance. It is more common still to visualize the
differences in continuous variables between categories using a box-and-whisker plot:

Chapter 3

[29]

Figure 3.1: A box-and-whisker plot depicting the relationship between the petal lengths of the different iris
species in iris dataset

A box-and-whisker plot (or simply, a box plot if you have places to go, and you're
in a rush) displays a stunningly large amount of information in a single chart. Each
categorical variable has its own box and whiskers. The bottom and top ends of the
box represent the first and third quartile respectively, and the black band inside the
box is the median for that group, as shown in the following figure:

Figure 3.2: The anatomy of a box plot

Describing Relationships

[30]

Depending on whom you talk to and what you use to produce your plots, the edges
of the whiskers can mean a few different things. In my favorite variation (called
Tukey's variation), the bottom of the whiskers extend to the lowest datum within 1.5
times the interquartile range below the bottom of the box. Similarly, the very top of
the whisker represents the highest datum 1.5 interquartile ranges above the third
quartile (remember: interquartile range is the third quartile minus the first). This is,
coincidentally, the variation that ggplot2 uses.

The great thing about box plots is that not only do we get a great sense of the central
tendency and dispersion of the distribution within a category, but we can also
immediately spot the important differences between each category.

From the box plot in the previous image, it's easy to tell what we already know about
the central tendency of the petal lengths between species: that the setosas in this
sample have the shortest petals; that the virginica have the longest on average; and
that versicolors are in the middle, but are closer to the virginicas.

In addition, we can see that the setosas have the thinnest dispersion, and that the
virginica have the highest—when you disregard the outlier.

But remember, we are not saying anything, or drawing any conclusions yet about Iris
flowers in general. In all of these analyses, we are treating all the data we have as the
population of interest; in this example, the 150 flowers measured are our population
of interest.

Before we move on to the next broad category of relationships, let's look at the
airquality dataset, treat the month as the categorical variable, the temperature
as the continuous variable, and see if there is a relationship between the average
temperature across months.

 > by(airquality$Temp, airquality$Month, mean)
 airquality$Month: 5
 [1] 65.54839

 airquality$Month: 6
 [1] 79.1

 airquality$Month: 7
 [1] 83.90323

 airquality$Month: 8
 [1] 83.96774

 airquality$Month: 9
 [1] 76.9

Chapter 3

[31]

This is precisely what we would expect from a city in the Northern hemisphere:

Figure 3.3: A Box plot of NYC temperatures across months (May to September)

Relationships between two categorical
variables
Describing the relationships between two categorical variables is done somewhat
less often than the other two broad types of bivariate analyses, but it is just as fun
(and useful)!

To explore this technique, we will be using the dataset UCBAdmissions, which
contains the data on graduate school applicants to the University of California
Berkeley in 1973.

Before we get started, we have to wrap the dataset in a call to data.frame for
coercing it into a data frame type variable—I'll explain why, soon.

 ucba <- data.frame(UCBAdmissions)
 > head(ucba)
 Admit Gender Dept Freq
 1 Admitted Male A 512
 2 Rejected Male A 313
 3 Admitted Female A 89
 4 Rejected Female A 19
 5 Admitted Male B 353
 6 Rejected Male B 207

Describing Relationships

[32]

Now, what we want is a count of the frequencies of number of students in each of
the following four categories:

•	 Accepted female
•	 Rejected female
•	 Accepted male
•	 Rejected male

Do you remember the frequency tabulation at the beginning of the last chapter?
This is similar—except that now we are dividing the set by one more variable.
This is known as cross-tabulation or cross tab. It is also sometimes referred to as a
contingency table. The reason we had to coerce UCBAdmissions into a data frame is
because it was already in the form of a cross tabulation (except that it further broke
the data down into the different departments of the grad school). Check it out by
typing UCBAdmissions at the prompt.

We can use the xtabs function in R to make our own cross-tabulations:

 # the first argument to xtabs (the formula) should
 # be read as: frequency *by* Gender and Admission
 > cross <- xtabs(Freq ~ Gender+Admit, data=ucba)
 > cross
 Admit
 Gender Admitted Rejected
 Male 1198 1493
 Female 557 1278

Here, at a glance, we can see that there were 1198 males that were admitted, 557
females that were admitted, and so on.

Is there a gender bias in UCB's graduate admissions process? Perhaps, but it's hard
to tell from just looking at the 2x2 contingency table. Sure, there are fewer females
accepted than males, but there are also, unfortunately, far fewer females that applied
to UCB in the first place.

To aid us in either implicating UCB of a sexist admissions machine or exonerating
them, it would help to look at a proportions table. Using a proportions table, we
can easily compare the proportion of the total number of males who were accepted
versus the proportion of the total number of females who were accepted. If the
proportions are more or less equal, we can conclude that gender does not constitute a
factor in UCB's admissions process. If this is the case, gender and admission status is
said to be conditionally independent.

Chapter 3

[33]

 > prop.table(cross, 1)
 Admit
 Gender Admitted Rejected
 Male 0.4451877 0.5548123
 Female 0.3035422 0.6964578

Why did we supply 1 as an argument to prop.table? Look up the
documentation at the R prompt. When would we want to use prop.
table(cross, 2)?

Here, we can see that while 45 percent of the males who applied were accepted,
only 30 percent of the females who applied were accepted. This is evidence that the
admissions department is sexist, right? Not so fast, my friend!

This is precisely what a lawsuit lodged against UCB purported. When the issue was
looked into further, it was discovered that, at the department level, women and men
actually had similar admissions rates. In fact, some of the departments appeared
to have a small but significant bias in favor of women. Check out department A's
proportion table, for example:

 > cross2 <- xtabs(Freq ~ Gender + Admit, data=ucba[ucba$Dept=="A",])
 > prop.table(cross2, 1)
 Admit
 Gender Admitted Rejected
 Male 0.6206061 0.3793939
 Female 0.8240741 0.1759259

If there were any bias in admissions, these data didn't prove it. This phenomenon,
where a trend that appears in combined groups of data disappears or reverses when
broken down into groups is known as Simpson's Paradox. In this case, it was caused
by the fact that women tended to apply to departments that were far more selective.

This is probably the most famous case of Simpson's Paradox, and it is also why this
dataset is built into R. The lesson here is to be careful when using pooled data, and
look out for hidden variables.

Describing Relationships

[34]

The relationship between two continuous
variables
Do you think that there is a relationship between women's heights and their
weights? If you said yes, congratulations, you're right!

We can verify this assertion by using the data in R's built-in dataset, women, which
holds the height and weight of 15 American women from ages 30 to 39.

 > head(women)
 height weight
 1 58 115
 2 59 117
 3 60 120
 4 61 123
 5 62 126
 6 63 129
 > nrow(women)
 [1] 15

Specifically, this relationship is referred to as a positive relationship, because as one
of the variable increases, we expect an increase in the other variable.

The most typical visual representation of the relationship between two continuous
variables is a scatterplot.

A scatterplot is displayed as a group of points whose position along the x-axis is
established by one variable, and the position along the y-axis is established by the
other. When there is a positive relationship, the dots, for the most part, start in the
lower-left corner and extend to the upper-right corner, as shown in the following
figure. When there is a negative relationship, the dots start in the upper-left corner
and extend to the lower-right one. When there is no relationship, it will look as if the
dots are all over the place.

Chapter 3

[35]

Figure 3.4: Scatterplot of women's heights and weights

The more the dots look like they form a straight line, the stronger is the relationship
between two continuous variables is said to be; the more diffuse the points, the
weaker is the relationship. The dots in the preceding figure look almost exactly like a
straight line—this is pretty much as strong a relationship as they come.

These kinds of relationships are colloquially referred to as correlations.

Covariance
As always, visualizations are great—necessary, even—but on most occasions, we are
going to quantify these correlations and summarize them with numbers.

The simplest measure of correlation that is widely use is the covariance. For each
pair of values from the two variables, the differences from their respective means
are taken. Then, those values are multiplied. If they are both positive (that is, both
the values are above their respective means), then the product will be positive too.
If both the values are below their respective means, the product is still positive,
because the product of two negative numbers is positive. Only when one of the
values is above its mean will the product be negative.

()()
()

cov
1xy

x x y y
n
− −

=
−

∑

Describing Relationships

[36]

Remember, in sample statistics we divide by the degrees of freedom and not the
sample size. Note that this means that the covariance is only defined for two vectors
that have the same length.

We can find the covariance between two variables in R using the cov function. Let's
find the covariance between the heights and weights in the dataset, women:

 > cov(women$weight, women$height)
 [1] 69
 # the order we put the two columns in
 # the arguments doesn't matter
 > cov(women$height, women$weight)
 [1] 69

The covariance is positive, which denotes a positive relationship between the two
variables.

The covariance, by itself, is difficult to interpret. It is especially difficult to interpret
in this case, because the measurements use different scales: inches and pounds. It is
also heavily dependent on the variability in each variable.

Consider what happens when we take the covariance of the weights in pounds and
the heights in centimeters.

 # there are 2.54 centimeters in each inch
 # changing the units to centimeters increases
 # the variability within the height variable
 > cov(women$height*2.54, women$weight)
 [1] 175.26

Semantically speaking, the relationship hasn't changed, so why should the
covariance?

Correlation coefficients
A solution to this quirk of covariance is to use Pearson's correlation coefficient instead.
Outside its colloquial context, when the word correlation is uttered—especially by
analysts, statisticians, or scientists—it usually refers to Pearson's correlation.

Pearson's correlation coefficient is different from covariance in that instead of using
the sum of the products of the deviations from the mean in the numerator, it uses
the sum of the products of the number of standard deviations away from the mean.
These number-of-standard-deviations-from-the-mean are called z-scores. If a value
has a z-score of 1.5, it is 1.5 standard deviations above the mean; if a value has a
z-score of -2, then it is 2 standard deviations below the mean.

Chapter 3

[37]

Pearson's correlation coefficient is usually denoted by r and its equation is given as
follows:

()()
()1 x y

x x y y
r

n s s
− −

=
−

∑

which is the covariance divided by the product of the two variables' standard
deviation.

An important consequence of using standardized z-scores instead of the magnitude
of distance from the mean is that changing the variability in one variable does not
change the correlation coefficient. Now you can meaningfully compare values using
two different scales or even two different distributions. The correlation between
weight/height-in-inches and weight/height-in-centimeters will now be identical,
because multiplication with 2.54 will not change the z-scores of each height.

 > cor(women$height, women$weight)
 [1] 0.9954948
 > cor(women$height*2.54, women$weight)
 [1] 0.9954948

Another important and helpful consequence of this standardization is that the
measure of correlation will always range from -1 to 1. A Pearson correlation
coefficient of 1 will denote a perfectly positive (linear) relationship, a r of -1 will
denote a perfectly negative (linear) relationship, and a r of 0 will denote no (linear)
relationship.

Why the linear qualification in parentheses, though?

Intuitively, the correlation coefficient shows how well two variables are described
by the straight line that fits the data most closely; this is called a regression or trend
line. If there is a strong relationship between two variables, but the relationship
is not linear, it cannot be represented accurately by Pearson's r. For example, the
correlation between 1 to 100 and 100 to 200 is 1 (because it is perfectly linear), but a
cubic relationship is not:

 > xs <- 1:100
 > cor(xs, xs+100)
 [1] 1
 > cor(xs, xs^3)
 [1] 0.917552

Describing Relationships

[38]

It is still about 0.92, which is an extremely strong correlation, but not the 1 that you
should expect from a perfect correlation.

So Pearson's r assumes a linear relationship between two variables. There are,
however, other correlation coefficients that are more tolerant of non-linear
relationships. Probably the most common of these is Spearman's rank coefficient, also
called Spearman's rho.

Spearman's rho is calculated by taking the Pearson correlation not of the values, but
of their ranks.

What's a rank?
When you assign ranks to a vector of numbers, the lowest number gets
1, the second lowest gets 2, and so on. The highest datum in the vector
gets a rank that is equal to the number of elements in that vector.
In rankings, the magnitude of the difference in values of the elements is
disregarded. Consider a race to a finish line involving three cars. Let's
say that the winner in the first place finished at a speed three times that
of the car in the second place, and the car in the second place beat the car
in the third place by only a few seconds. The driver of the car that came
first has a good reason to be proud of herself, but her rank, 1st place, does
not say anything about how she effectively cleaned the floor with the other
two candidates.
Try using R's rank function on the vector c(8, 6, 7, 5, 3, 0, 9).
Now try it on the vector c(8, 6, 7, 5, 3, -100, 99999). The
rankings are the same, right?

When we use ranks instead, the pair that has the highest value on both the x and the
y axis will be c(1,1), even if one variable is a non-linear function (cubed, squared,
logarithmic, and so on) of the other. The correlations that we just tested will both
have Spearman rhos of 1, because cubing a value will not change its rank.

 > xs <- 1:100
 > cor(xs, xs+100, method="spearman")
 [1] 1
 > cor(xs, xs^3, method="spearman")
 [1] 1

Chapter 3

[39]

Figure 3.5: Scatterplot of y=x + 100 with regression line. r and rho are both 1

Figure 3.6: Scatterplot of 3y x= with regression line. r is .92, but rho is 1

Describing Relationships

[40]

Let's use what we've learned so far to investigate the correlation between the weight
of a car and the number of miles it gets to the gallon. Do you predict a negative
relationship (the heavier the car, the lower the miles per gallon)?

 > cor(mtcars$wt, mtcars$mpg)
 [1] -0.8676594

Figure 3.7: Scatterplot of the relationship between the weight of a car and its miles per gallon

That is a strong negative relationship. Although, in the preceding figure, note that the
data points are more diffuse and spread around the regression line than in the other
plots; this indicates a somewhat weaker relationship than we have seen thus far.

For an even weaker relationship, check out the correlation between wind speed and
temperature in the airquality dataset as depicted in the following image:

 > cor(airquality$Temp, airquality$Wind)
 [1] -0.4579879
 > cor(airquality$Temp, airquality$Wind, method="spearman")
 [1] -0.4465408

Chapter 3

[41]

Figure 3.8: Scatterplot of the relationship between wind speed and temperature

Comparing multiple correlations
Armed with our new standardized coefficients, we can now effectively compare the
correlations between different pairs of variables directly.

In data analysis, it is common to compare the correlations between all the numeric
variables in a single dataset. We can do this with the iris dataset using the
following R code snippet:

 > # have to drop 5th column (species is not numeric)
 > iris.nospecies <- iris[, -5]
 > cor(iris.nospecies)
 Sepal.Length Sepal.Width Petal.Length Petal.Width
 Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
 Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
 Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
 Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

This produces a correlation matrix (when it is done with the covariance, it is called
a covariance matrix). It is square (the same number of rows and columns) and
symmetric, which means that the matrix is identical to its transposition (the matrix
with the axes flipped). It is symmetrical, because there are two elements for each
pair of variables on either side of the diagonal line of 1s. The diagonal line is all 1's,
because every variable is perfectly correlated with itself. Which are the most highly
(positively) correlated pairs of variables? What about the most negatively correlated?

Describing Relationships

[42]

Visualization methods
We are now going to see how we can create these kinds of visualizations on our own.

Categorical and continuous variables
We have seen that box plots are a great way of comparing the distribution of a
continuous variable across different categories. As you might expect, box plots are
very easy to produce using ggplot2. The following snippet produces the box-and-
whisker plot that we saw earlier, depicting the relationship between the petal lengths
of the different iris species in the iris dataset:

 > library(ggplot)
 > qplot(Species, Petal.Length, data=iris, geom="boxplot",
 + fill=Species)

First, we specify the variable on the x-axis (the iris species) and then the continuous
variable on the y-axis (the petal length). Finally, we specify that we are using the iris
dataset, that we want a box plot, and that we want to fill the boxes with different
colors for each iris species.

Another fun way of comparing distributions between the different categories is by
using an overlapping density plot:

 > qplot(Petal.Length, data=iris, geom="density", alpha=I(.7),
 + fill=Species)

Here we need only specify the continuous variable, since the fill parameter will
break down the density plot by species. The alpha parameter adds transparency to
show more clearly the extent to which the distributions overlap.

Chapter 3

[43]

Figure 3.9: Overlapping density plot of petal length of iris flowers across species

If it is not the distribution you are trying to compare but some kind of single-value
statistic (like standard deviation or sample counts), you can use the by function to
get that value across all categories, and then build a bar plot where each category is
a bar, and the heights of the bars represent that category's statistic. For the code to
construct a bar plot, refer back to the last section in Chapter 1, RefresheR.

Two categorical variables
The visualization of categorical data is a grossly understudied domain and, in spite
of some fairly powerful and compelling visualization methods, these techniques
remain relatively unpopular.

Describing Relationships

[44]

My favorite method for graphically illustrating contingency tables is to use a mosaic
plot. To make mosaic plots, we will need to install and load the VCD (Visualizing
Categorical Data) package:

 > # install.packages("vcd")
 > library(vcd)
 >
 > ucba <- data.frame(UCBAdmissions)
 > mosaic(Freq ~ Gender + Admit, data=ucba,
 + shade=TRUE, legend=FALSE)

Figure 3.10: A mosaic plot of the UCBAdmissions dataset (across all departments)

The first argument to the mosaic function is a formula. This formula is meant to be
read as: display frequency broken down by gender and whether the applicant was admitted.
shade=TRUE adds a little life to the plot by adding colors to the boxes. The colors
are actually very meaningful, as is the legend we opted not to show with the final
parameter—but its meaning is beyond the scope of this section.

Chapter 3

[45]

The mosaic plot represents each cell of a 2x2 contingency table as a tile; the area of
the box is proportional to the number of observations in that cell. From this plot,
we can easily tell that (a) more men applied to UCB than women, (b) more applicants
were rejected than accepted, and (c) women were rejected at a higher proportion than male
applicants.

You remember how this was misleading, right? Let's look at the mosaic plot for only
department A:

 > mosaic(Freq ~ Gender+Admit, data=ucba[ucba$Dept=="A",],
 + shade=TRUE, legend=FALSE)

Figure 3.11: A mosaic plot of the UCBAdmissions dataset for department A

Hopefully, this plot makes the treachery of Simpson's paradox more apparent.
Notice how there were far fewer female applicants than males, but the admission
rates for the female applicants were much higher. Try visualizing the mosaic plots
for the other departments by yourself!

Describing Relationships

[46]

Two continuous variables
The canonical way of displaying relationships between two continuous variables is
via scatterplots. The scatterplot for the women's heights and weights that we saw
earlier in this chapter was produced with the following R code snippet:

 > qplot(height, weight, data=women, geom="point")

Whether you put height and weight first depends on which variable you want tied
to the x-axis.

What about that fancy regression line?!, you ask frantically. ggplot2 gracefully provides
this feature with just a few extra characters. The scatterplot of the relationship between
the weight of a car and its miles per gallon was produced as follows:

 > qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"),
 + method="lm", se=FALSE)'

Here, we are specifying that we want two kinds of geometric objects, point and
smooth. The latter is responsible for the regression line. method="lm" tells qplot that
we want to use a linear model to create the trend line.

If we leave out the method, ggplot2 will choose a method automatically; in this case,
it would default to a method of drawing a non-linear trend line called LOESS:

 > qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"), se=FALSE)

Figure 3.12: A scatterplot of the relationship between the weight of a car and its miles per gallon, and a trend-
line smoothed with LOESS

Chapter 3

[47]

The se=FALSE directive instructs ggplot2 not to plot the estimates of the error. We
will get to what this means in a later chapter.

More than two continuous variables
Finally, there is an excellent way to visualize correlation matrices like the one we saw
with the iris dataset in the section Comparing multiple correlations. To do this, we
have to install and load the corrgram package as follows:

 > # install.packages("corrgram")
 > library(corrgram)
 >
 > corrgram(iris, lower.panel=panel.conf, upper.panel=panel.pts)

Figure 3.13: A corrgram of the iris data set's continuous variables

With corrgrams, we can exploit the fact the correlation matrices are symmetrical
by packing in more information. On the lower left panel, we have the Pearson
correlation coefficients (never mind the small ranges beneath each coefficient for
now). Instead of repeating these coefficients for the upper right panel, we can show
a small scatterplot there instead.

Describing Relationships

[48]

We aren't limited to showing the coefficients and scatterplots in our corrgram,
though; there are many other options and configurations available:

 > corrgram(iris, lower.panel=panel.pie, upper.panel=panel.pts,
 + diag.panel=panel.density,
 + main=paste0("corrgram of petal and sepal ",
 + "measurements in iris data set"))

Figure 3.14: Another corrgram of the iris dataset's continuous variables

Notice that this time, we can overlay a density plot wherever there is a variable name
(on the diagonal) —just to get a sense of the variables' shapes. More saliently, instead
of text coefficients, we have pie charts in the lower-left panel. These pie charts are
meant to graphically depict the strength of the correlations.

Chapter 3

[49]

If the color of the pie is blue (or any shade thereof), the correlation is positive; the
bigger the shaded area of the pie, the stronger the magnitude of the correlation. If,
however, the color of the pie is red or a shade of red, the correlation is negative, and
the amount of shading on the pie is proportional to the magnitude of the correlation.

To top it all off, we added the main parameter to set the title of the plot. Note the use
of paste0 so that I could split the title up into two lines of code.

To get a better sense of what corrgram is capable of, you can view a live
demonstration of examples if you execute the following at the prompt:

 > example(corrgram)

Exercises
Try out the following exercises to revise the concepts learned so far:

•	 Look at the documentation on cor with help("cor"). You can see, in
addition to "pearson" and "spearman", there is an option for "kendall".
Learn about Kendall's tau. Why, and under what conditions, is it considered
better than Spearman's rho?

•	 For each species of iris, find the correlation coefficient between the sepal
length and width. Are there any differences? How did we just combine two
different types of the broad categories of bivariate analyses to perform a
complex multivariate analysis?

•	 Download a dataset from the web, or find another built-into-R dataset
that suits your fancy (using library(help = "datasets")). Explore
relationships between the variables that you think might have some
connection.

•	 Gustave Flaubert is well understood to be a classist misogynist and this,
of course, influenced how he developed the character of Emma Bovary.
However, it is not uncommon for the readers to identify and empathize with
her, and they are often devastated by the book's conclusion. In fact, translator
Geoffrey Wall asserts that Emma dies in a pain that is exactly adjusted to the
intensity of our preceding identification.

How can the fact that some sympathize with Emma be reconciled with
Flaubert's apparent intention? In your response, assume a post-structuralist
approach to authorial intent.

Describing Relationships

[50]

Summary
There were many new ideas introduced in this chapter, so kudos to you for making
it through! You're well on the way to being able to tackle some extraordinarily
interesting problems on your own!

To summarize, in this chapter, we learned that the relationships between two
variables can be broken down into three broad categories.

For categorical/continuous variables, we learned how to use the by function to
retrieve the statistics on the continuous variable for each category. We also saw
how we can use box-and-whisker plots to visually inspect the distributions of the
continuous variable across categories.

For categorical/categorical configurations, we used contingency and proportions
tables to compare frequencies. We also saw how mosaic plots can help spot
interesting aspects of the data that might be difficult to detect when just looking at
the raw numbers.

For continuous/continuous data we discovered the concepts of covariance
and correlations and explored different correlation coefficients with different
assumptions about the nature of the bivariate relationship. We also learned how
these concepts could be expanded to describe the relationship between more than
two continuous variables. Finally, we learned how to use scatterplots and corrgrams
to visually depict these relationships.

With this chapter, we've concluded the unit on exploratory data analysis, and we'll
be moving on to confirmatory data analysis and inferential statistics.

[51]

Probability
It's time for us to put descriptive statistics down for the time being. It was fun for a
while, but we're no longer content just determining the properties of observed data;
now we want to start making deductions about data we haven't observed. This leads
us to the realm of inferential statistics.

In data analysis, probability is used to quantify uncertainty of our deductions about
unobserved data. In the land of inferential statistics, probability reigns queen. Many
regard her as a harsh mistress, but that's just a rumor.

Basic probability
Probability measures the likeliness that a particular event will occur. When
mathematicians (us, for now!) speak of an event, we are referring to a set of
potential outcomes of an experiment, or trial, to which we can assign a probability of
occurrence.

Probabilities are expressed as a number between 0 and 1 (or as a percentage out
of 100). An event with a probability of 0 denotes an impossible outcome, and a
probability of 1 describes an event that is certain to occur.

The canonical example of probability at work is a coin flip. In the coin flip event,
there are two outcomes: the coin lands on heads, or the coin lands on tails.
Pretending that coins never land on their edge (they almost never do), those two
outcomes are the only ones possible. The sample space (the set of all possible
outcomes), therefore, is {heads, tails}. Since the entire sample space is covered by
these two outcomes, they are said to be collectively exhaustive.

Probability

[52]

The sum of the probabilities of collectively exhaustive events is always 1. In this
example, the probability that the coin flip will yield heads or yield tails is 1; it is
certain that the coin will land on one of those. In a fair and correctly balanced coin,
each of those two outcomes is equally likely. Therefore, we split the probability
equally among the outcomes: in the event of a coin flip, the probability of obtaining
heads is 0.5, and the probability of tails is 0.5 as well. This is usually denoted as
follows:

() 0.5P heads =

The probability of a coin flip yielding either heads or tails looks like this:

() 1P heads tails∪ =

And the probability of a coin flip yielding both heads and tails is denoted as follows:

() 0P heads tails∩ =

The two outcomes, in addition to being collectively exhaustive, are also mutually
exclusive. This means that they can never co-occur. This is why the probability of
heads and tails is 0; it just can't happen.

The next obligatory application of beginner probability theory is in the case of rolling
a standard six-sided die. In the event of a die roll, the sample space is {1, 2, 3, 4,
5, 6}. With every roll of the die, we are sampling from this space. In this event, too,
each outcome is equally likely, except now we have to divide the probability across
six outcomes. In the following equation, we denote the probability of rolling a 1 as
P(1):

()1 1/ 6P =

Rolling a 1 or rolling a 2 is not collectively exhaustive (we can still roll a 3, 4, 5, or
6), but they are mutually exclusive; we can't roll a 1 and 2. If we want to calculate
the probability of either one of two mutually exclusive events occurring, we add the
probabilities:

() () ()1 2 1 2 1/ 3P P P∪ = + =

Chapter 4

[53]

While rolling a 1 or rolling a 2 aren't mutually exhaustive, rolling 1 and not rolling a
1 are. This is usually denoted in this manner:

()1 1 1P ∪¬ =

These two events—and all events that are both collectively exhaustive and mutually
exclusive—are called complementary events.

Our last pedagogical example in the basic probability theory is using a deck of
cards. Our deck has 52 cards—4 for each number from 2 to 10 and 4 each of Jack,
Queen, King, and Ace (no Jokers!). Each of these 4 cards belong to one suit, either a
Heart, Club, Spade or Diamond. There are, therefore, 13 cards in each suit. Further,
every Heart and Diamond card is colored red, and every Spade and Club are black.
From this, we can deduce the following probabilities for the outcome of randomly
choosing a card:

() 4
52

P Ace =

() 8
52

P Queen King∪ =

() 26
52

P Black =

() 13
52

P Club =

() 39
52

P Club Heart Spade∪ ∪ =

() ()1P Club Heart Spade Diamond collectively exhaustive∪ ∪ ∪ =

What, then, is the probability of getting a black card and an Ace? Well, these events
are conditionally independent, meaning that the probability of either outcome does not
affect the probability of the other. In cases like these, the probability of event A and
event B is the product of the probability of A and the probability of B. Therefore:

() 26 / 52 4 / 52 2 / 52P Black Ace∩ = ∗ =

Probability

[54]

Intuitively, this makes sense, because there are two black Aces out of a possible 52.

What about the probability that we choose a red card and a Heart? These two
outcomes are not conditionally independent, because knowing that the card is red
has a bearing on the likelihood that the card is also a Heart. In cases like these, the
probability of event A and B is denoted as follows:

() () () () ()| |P A B P A P B A or P B P A B∩ =

Where P(A|B) means the probability of A given B. For example, if we represent A as
drawing a Heart and B as drawing a red card, P(A | B) means what's the probability
of drawing a heart if we know that the card we drew was red?. Since a red card is equally
likely to be a Heart or a Diamond, P(A|B) is 0.5. Therefore:

() () () 26 1 1|
52 2 4

P Heart Red P Red P Heart Red∩ = = ∗ =

In the preceding equation, we used the form P(B) P(A|B). Had we used the form
P(A) P(B|A), we would have got the same answer:

() () () 13 13 1| 1
52 52 4

P Heart Red P Heart P Red Heart∩ = = ∗ = =

So, these two forms are equivalent:

() () () ()| |P B P A B P A P B A=

For kicks, let's divide both sides of the equation by P(B). That yields the following
equivalence:

() () ()
()

|
|

P A P B A
P A B

P B
=

This equation is known as Bayes' Theorem. This equation is very easy to derive, but its
meaning and influence is profound. In fact, it is one of the most famous equations in
all of mathematics.

Chapter 4

[55]

Bayes' Theorem has been applied to and proven useful in an enormous amount of
different disciplines and contexts. It was used to help crack the German Enigma
code during World War II, saving the lives of millions. It was also used recently, and
famously, by Nate Silver to help correctly predict the voting patterns of 49 states in
the 2008 US presidential election.

At its core, Bayes' Theorem tells us how to update the probability of a hypothesis in
light of new evidence. Due to this, the following formulation of Bayes' Theorem is
often more intuitive:

() () ()
()
|

|
P E H P H

P H E
P E

=

where H is the hypothesis and E is the evidence.

Let's see an example of Bayes' Theorem in action!

There's a hot new recreational drug on the scene called Allighate (or Ally for short).
It's named as such because it makes its users go wild and act like an alligator. Since
the effect of the drug is so deleterious, very few people actually take the drug. In fact,
only about 1 in every thousand people (0.1%) take it.

Frightened by fear-mongering late-night news, Daisy Girl, Inc., a technology
consulting firm, ordered an Allighate testing kit for all of its 200 employees so that
it could offer treatment to any employee who has been using it. Not sparing any
expense, they bought the best kit on the market; it had 99% sensitivity and 99%
specificity. This means that it correctly identified drug users 99 out of 100 times, and
only falsely identified a non-user as a user once in every 100 times.

When the results finally came back, two employees tested positive. Though the two
denied using the drug, their supervisor, Ronald, was ready to send them off to get
help. Just as Ronald was about to send them off, Shanice, a clever employee from the
statistics department, came to their defense.

Ronald incorrectly assumed that each of the employees who tested positive were
using the drug with 99% certainty and, therefore, the chances that both were using it
was 98%. Shanice explained that it was actually far more likely that neither employee
was using Allighate.

How so? Let's find out by applying Bayes' theorem!

Probability

[56]

Let's focus on just one employee right now; let H be the hypothesis that one of the
employees is using Ally, and E represent the evidence that the employee tested
positive.

() () ()
()

|
|

,
P Positive Test AllyUser P AllyUser

P AllyUser Positive Test
P Testing positive in general

=

We want to solve the left side of the equation, so let's plug in values. The first part
of the right side of the equation, P(Positive Test | Ally User), is called the
likelihood. The probability of testing positive if you use the drug is 99%; this is what
tripped up Ronald—and most other people when they first heard of the problem.
The second part, P(Ally User), is called the prior. This is our belief that any one
person has used the drug before we receive any evidence. Since we know that only
.1% of people use Ally, this would be a reasonable choice for a prior. Finally, the
denominator of the equation is a normalizing constant, which ensures that the final
probability in the equation will add up to one of all possible hypotheses. Finally, the
value we are trying to solve, P(Ally user | Positive Test), is the posterior. It is
the probability of our hypothesis updated to reflect new evidence.

() ()
.99 .001|

,
P AllyUser Positive Test

P Testing positive in general
∗

=

In many practical settings, computing the normalizing factor is very difficult. In
this case, because there are only two possible hypotheses, being a user or not, the
probability of finding the evidence of a positive test is given as follows:

() ()
() ()
|

|

P Testing positive AllyUser P AllyUser

P Testing positive Not an AllyUser P Not an AllyUser+

Which is: (.99 * .001) + (.01 * .999) = 0.01098

Plugging that into the denominator, our final answer is calculated as follows:

() .99 .001| 0.090164
0.01098

P AllyUser Positive Test ∗
= =

Chapter 4

[57]

Note that the new evidence, which favored the hypothesis that the employee was
using Ally, shifted our prior belief from .001 to .09. Even so, our prior belief about
whether an employee was using Ally was so extraordinarily low, it would take some
very very strong evidence indeed to convince us that an employee was an Ally user.

Ignoring the prior probability in cases like these is known as base-rate fallacy. Shanice
assuaged Ronald's embarrassment by assuring him that it was a very common
mistake.

Now to extend this to two employees: the probability of any two employees both
using the drug is, as we now know, .01 squared, or 1 million to one. Squaring our
new posterior yields, we get .0081. The probability that both employees use Ally,
even given their positive results, is less than 1%. So, they are exonerated.

Sally is a different story, though. Her friends noticed her behavior had dramatically
changed as of late—she snaps at co-workers and has taken to eating pencils. Her
concerned cubicle-mate even followed her after work and saw her crawl into a
sewer, not to emerge until the next day to go back to work.

Even though Sally passed the drug test, we know that it's likely (almost certain) that
she uses Ally. Bayes' theorem gives us a way to quantify that probability!

Our prior is the same, but now our likelihood is pretty much as close to 1 as you can
get - after all, how many non-Ally users do you think eat pencils and live in sewers?

A tale of two interpretations
Though it may seem strange to hear, there is actually a hot philosophical debate
about what probability really is. Though there are others, the two primary camps
into which virtually all mathematicians fall are the frequentist camp and the
Bayesian camp.

The frequentist interpretation describes probability as the relative likelihood of
observing an outcome in an experiment when you repeat the experiment multiple
times. Flipping a coin is a perfect example; the probability of heads converges to 50%
as the number of times it is flipped goes to infinity.

The frequentist interpretation of probability is inherently objective; there is a true
probability out there in the world, which we are trying to estimate.

The Bayesian interpretation, however, views probability as our degree of belief about
something. Because of this, the Bayesian interpretation is subjective; when evidence
is scarce, there are sometimes wildly different degrees of belief among different
people.

Probability

[58]

Described in this manner, Bayesianism may scare many people off, but it is actually
quite intuitive. For example, when a meteorologist describes the probability of rain
as 70%, people rarely bat an eyelash. But this number only really makes sense within
a Bayesian framework because exact meteorological conditions are not repeatable, as
is required by frequentist probability.

Not simply a heady academic exercise, these two interpretations lead to different
methodologies in solving problems in data analysis. Many times, both approaches
lead to similar results. We will see examples of using both approaches to solve a
problem later in this book.

Though practitioners may strongly align themselves with one side over another,
good statisticians know that there's a time and a place for both approaches.

Though Bayesianism as a valid way of looking at probability is
debated, Bayes theorem is a fact about probability and is undisputed
and non-controversial.

Sampling from distributions
Observing the outcome of trials that involve a random variable, a variable whose value
changes due to chance, can be thought of as sampling from a probability distribution—
one that describes the likelihood of each member of the sample space occurring.

That sentence probably sounds much scarier than it needs to be. Take a die roll for
example.

Figure 4.1: Probability distribution of outcomes of a die roll

Chapter 4

[59]

Each roll of a die is like sampling from a discrete probability distribution for which
each outcome in the sample space has a probability of 0.167 or 1/6. This is an
example of a uniform distribution, because all the outcomes are uniformly as likely
to occur. Further, there are a finite number of outcomes, so this is a discrete uniform
distribution (there also exist continuous uniform distributions).

Flipping a coin is like sampling from a uniform distribution with only two outcomes.
More specifically, the probability distribution that describes coin-flip events is called
a Bernoulli distribution—it's a distribution describing only two events.

Parameters
We use probability distributions to describe the behavior of random variables
because they make it easy to compute with and give us a lot of information about
how a variable behaves. But before we perform computations with probability
distributions, we have to specify the parameters of those distributions. These
parameters will determine exactly what the distribution looks like and how it will
behave.

For example, the behavior of both a 6-sided die and a 12-sided die is modeled with
a uniform distribution. Even though the behavior of both the dice is modeled as
uniform distributions, the behavior of each is a little different. To further specify the
behavior of each distribution, we detail its parameter; in the case of the (discrete)
uniform distribution, the parameter is called n. A uniform distribution with
parameter n has n equally likely outcomes of probability 1 / n. The n for a 6-sided
die and a 12-sided die is 6 and 12 respectively.

For a Bernoulli distribution, which describes the probability distribution of an event
with only two outcomes, the parameter is p. Outcome 1 occurs with probability p,
and the other outcome occurs with probability 1 - p, because they are collectively
exhaustive. The flip of a fair coin is modeled as a Bernoulli distribution with p =
0.5.

Imagine a six-sided die with one side labeled 1 and the other five sides labeled 2. The
outcome of the die roll trials can be described with a Bernoulli distribution, too! This
time, p = 0.16 (1/6). Therefore, the probability of not rolling a 1 is 5/6.

Probability

[60]

The binomial distribution
The binomial distribution is a fun one. Like our uniform distribution described in the
previous section, it is discrete.

When an event has two possible outcomes, success or failure, this distribution
describes the number of successes in a certain number of trials. Its parameters are n,
the number of trials, and p, the probability of success.

Concretely, a binomial distribution with n=1 and p=0.5 describes the behavior of a
single coin flip—if we choose to view heads as successes (we could also choose to
view tails as successes). A binomial distribution with n=30 and p=0.5 describes the
number of heads we should expect.

Figure 4.2: A binomial distribution (n=30, p=0.5)

On average, of course, we would expect to have 15 heads. However, randomness is
the name of the game, and seeing more or fewer heads is totally expected.

Chapter 4

[61]

How can we use the binomial distribution in practice?, you ask. Well, let's look at an
application.

Larry the Untrustworthy Knave—who can only be trusted some of the time—gives
us a coin that he alleges is fair. We flip it 30 times and observe 10 heads.

It turns out that the probability of getting exactly 10 heads on 30 flips is about 2.8%*.
We can use R to tell us the probability of getting 10 or fewer heads using the pbinom
function:

 > pbinom(10, size=30, prob=.5)
 [1] 0.04936857

It appears as if the probability of this occurring, in a correctly balanced coin, is
roughly 5%. Do you think we should take Larry at his word?

*If you're interested
The way we determined the probability of getting exactly 10 heads is
by using the probability formula for Bernoulli trials. The probability of
getting k successes in n trials is equal to:

()1 n kkn
p p

k
− 

− 
 

where p is the probability of getting one success and:

()
!

! !
n n
k k n k
 

=  − 

If your palms are getting sweaty, don't worry. You don't have to
memorize this in order to understand any later concepts in this book.

The normal distribution
Do you remember in Chapter 2, The Shape of Data when we described the normal
distribution and how ubiquitous it is? The behavior of many random variables in
real life is very well described by a normal distribution with certain parameters.

Probability

[62]

The two parameters that uniquely specify a normal distribution are µ (mu) and σ
(sigma). µ, the mean, describes where the distribution's peak is located and σ, the
standard deviation, describes how wide or narrow the distribution is.

Figure 4.3: Normal distributions with different parameters

The distribution of heights of American females is approximately normally
distributed with parameters µ= 65 inches and σ= 3.5 inches.

Figure 4.4: Normal distributions with different parameters

Chapter 4

[63]

With this information, we can easily answer questions about how probable it is to
choose, at random, US women of certain heights.

As mentioned earlier in Chapter 2, The Shape of Data we can't really answer the
question What is the probability that we choose a person who is exactly 60 inches?, because
virtually no one is exactly 60 inches. Instead, we answer questions about how
probable it is that a random person is within a certain range of heights.

What is the probability that a randomly chosen woman is 70 inches or taller? If you
recall, the probability of a height within a range is the area under the curve, or the
integral over that range. In this case, the range we will integrate looks like this:

Figure 4.5: Area under the curve of the height distribution from 70 inches to positive infinity

 > f <- function(x){ dnorm(x, mean=65, sd=3.5) }
 > integrate(f, 70, Inf)
 0.07656373 with absolute error < 2.2e-06

The preceding R code indicates that there is a 7.66% chance of randomly choosing a
woman who is 70 inches or taller.

Probability

[64]

Luckily for us, the normal distribution is so popular and well studied, that there is a
function built into R, so we don't need to use integration ourselves.

 > pnorm(70, mean=65, sd=3.5)
 [1] 0.9234363

The pnorm function tells us the probability of choosing a woman who is shorter than
70 inches. If we want to find P (> 70 inches), we can either subtract this value by 1
(which gives us the complement) or use the optional argument lower.tail=FALSE.
If you do this, you'll see that the result matches the 7.66% chance we arrived at
earlier.

The three-sigma rule and using z-tables
When dealing with a normal distribution, we know that it is more likely to observe
an outcome that is close to the mean than it is to observe one that is distant—but just
how much more likely? Well, it turns out that roughly 68% of all the values drawn
from a random distribution lie within 1 standard deviation, or 1 z-score, away from
the mean. Expanding our boundaries, we find that roughly 95% of all values are
within 2 z-scores from the mean. Finally, about 99.7% of normal deviates are within 3
standard deviations from the mean. This is called the three-sigma rule.

Figure 4.6: The three-sigma rule

Chapter 4

[65]

Before computers came on the scene, finding the probability of ranges associated
with random deviates was a little more complicated. To save mathematicians from
having to integrate the Gaussian (normal) function by hand (eww!), they used
a z-table, or standard normal table. Though using this method today is, strictly
speaking, unnecessary, and it is a little more involved, understanding how it works
is important at a conceptual level. Not to mention that it gives you street cred as far
as statisticians are concerned!

Formally, the z-table tells us the values of cumulative distribution function at
different z-scores of a normal distribution. Less abstractly, the z-table tells us the area
under the curve from negative infinity to certain z-scores. For example, looking up
-1 on a z-table will tell us the area to the left of 1 standard deviation below the mean
(15.9%).

Z-tables only describe the cumulative distribution function (area under the curve) of
a standard normal distribution—one with a mean of 0 and a standard deviation of 1.
However, we can use a z-table on normal distributions with any parameters, µ and
σ. All you need to do is convert a value from the original distribution into a z-score.
This process is called standardization.

()X
Z

µ
σ
−

=

To use a z-table to find the probability of choosing a US woman at random who is
taller than 70 inches, we first have to convert this value into a z-score. To do this, we
subtract the mean (65 inches) from 70 and then divide that value by the standard
deviation (3.5 inches).

()70 65
1.43

3.5
−

=

Then, we find 1.43 on the z-table; on most z-table layouts, this means finding the
row labeled 1.4 (the z-score up to the tenths place) and the column ".03" (the value
in the hundredths place). The value at this intersection is .9236, which means that
the complement (someone taller than 70 inches) is 1-.9236 = 0.0764. This is the same
answer we got when we used integration and the pnorm function.

Probability

[66]

Exercises
Practise the following exercises to reinforce the concepts learned in this chapter:

•	 Recall the drug testing at Daisy Girl, Inc. earlier in the chapter. We used .1%
as our prior probability that the employee was using the drug. Why should
this prior have been even lower? Using a subjective Bayesian interpretation
of probability, estimate what the prior should have been given that the
employee was able to hold down a job and no one saw her/him act like an
alligator.

•	 Harken back to the example of the coin from Larry the Untrustworthy
Knave. We would expect the proportion of heads in a fair coin that is flipped
many times to be around 50%. In Larry's coin, the proportion was 2/3,
which is unlikely to occur. The probability of 20 heads in 30 flips was 2.1%.
However, find the probability of getting 40 heads in 60 flips. Even though
the proportions are the same, why is the probability of observing 40 heads
in 60 flips so significantly less probable? Understanding the answer to this
question is key to understanding sampling theory and inferential data
analysis.

•	 Use the binomial distribution and pbinom to calculate the probability of
observing 10 or fewer "1"s when rolling a fair 6-sided die 50 times. View
rolling a "1" as a success and not rolling "1" as a failure. What is the value of
the parameter, p?

•	 Use a z-table to find the probability of choosing a US woman at random who
is 60 inches or shorter. Why is this the same probability as choosing one who
is 70 inches or taller?

•	 Suppose a trolley is coming down the tracks, and its brakes are not working.
It is poised to run over five people who are hanging out on the tracks ahead
of it. You are next to a lever that can change the tracks that the trolley is
riding on. However, the second set of tracks has one person hanging out on
it, too.

°° Is it morally wrong to not pull the lever so that only one person is
hurt, rather than five?

°° How would a utilitarian respond? Next, what would Thomas
Aquinas say about this? Back up your thesis by appealing to the
Doctrine of the Double Effect in Summa Theologica. Also, what would
Kant say? Back up your response by appealing to the categorical
imperative introduced in the Foundation of the Metaphysic of Morals.

Chapter 4

[67]

Summary
In this chapter, we took a detour through probability land. You learned some basic
laws of probability, about sample spaces, and conditional independence. You also
learned how to derive Bayes' Theorem and learned that it provides the recipe for
updating hypotheses in the light of new evidence

We also touched upon the two primary interpretations of probability. In future
chapters, we will be employing techniques from both those approaches.

We concluded with an introduction to sampling from distributions and used
two—the binomial and the normal distributions—to answer interesting non-trivial
questions about probability.

This chapter laid the important foundation that supports confirmatory data analysis.
Making and checking inferences based on data is all about probability and, at this
point, we know enough to move on to have a great time testing hypotheses with
data!

[95]

Using Data to Reason
About the World

In Chapter 4, Probability, we mentioned that the mean height of US females is 65
inches. Now pretend we didn't know this fact—how could we find out what the
average height is?

We can measure every US female, but that's untenable; we would run out of money,
resources, and time before we even finished with a small city!

Inferential statistics gives us the power to answer this question using a very small
sample of all US women. We can use the sample to tell us something about the
population we drew it from. We can use observed data to make inferences about
unobserved data. By the end of this chapter, you too will be able to go out and collect
a small amount of data and use it to reason about the world!

Estimating means
In the example that is going to span this entire chapter, we are going to be examining
how we would estimate the mean height of all US women using only samples.
Specifically, we will be estimating the population parameters using samples' means
as an estimator.

I am going to use the vector all.us.women to represent the population. For
simplicity's sake, let's say there are only 10,000 US women.

 > # setting seed will make random number generation reproducible
 > set.seed(1)
 > all.us.women <- rnorm(10000, mean=65, sd=3.5)

Using Data to Reason About the World

[96]

We have just created a vector of 10,000 normally distributed random variables with
the same parameters as our population of interest using the rnorm function. Of
course, at this point, we can just call mean on this vector and call it a day—but that's
cheating! We are going to see that we can get really really close to the population
mean without actually using the entire population.

Now, let's take a random sample of ten from this population using the sample
function and compute the mean:

 > our.sample <- sample(all.us.women, 10)
 > mean(our.sample)
 [1] 64.51365

Hey, not a bad start!

Our sample will, in all likelihood, contain some short people, some normal people,
and some tall people. There's a chance that when we choose a sample that we choose
one that contains predominately short people, or a disproportionate number of tall
people. Because of this, our estimate will not be exactly accurate. However, as we
choose more and more people to include in our sample, those chance occurrences—
imbalanced proportions of the short and tall—tend to balance each other out.

Note that as we increase our sample size, the sample mean isn't always closer to the
population mean, but it will be closer on average.

We can test that assertion ourselves! Study the following code carefully and try
running it yourself.

 > population.mean <- mean(all.us.women)
 >
 > for(sample.size in seq(5, 30, by=5)){
 + # create empty vector with 1000 elements
 + sample.means <- numeric(1000)
 + for(i in 1:1000){
 + sample.means[i] <- mean(sample(all.us.women, sample.size))
 + }
 + distances.from.true.mean <- abs(sample.means - population.mean)
 + mean.distance.from.true.mean <- mean(distances.from.true.mean)
 + print(mean.distance.from.true.mean)
 + }
 [1] 1.245492
 [1] 0.8653313
 [1] 0.7386099
 [1] 0.6355692
 [1] 0.5458136
 [1] 0.5090788

Chapter 5

[97]

For each sample size from 5 to 30 (going up by 5), we will take 1000 different samples
from the population, calculate their mean, take the differences from the population
mean, and average them.

Figure 5.1: Accuracy of sample means as a function of sample size

As you can see, increasing the sample size gets us closer to the population mean.
Increasing the sample size also reduces the standard deviation between the means of
the samples.

Figure 5.2: The variability of sample means as a function of sample size

Using Data to Reason About the World

[98]

Knowing that, with all other things being equal, larger samples are preferable to
smaller ones, let's work with a sample size of 40 for right now. We'll take our sample
and estimate our population mean as follows:

 > mean(our.new.sample)
 [1] 65.19704

The sampling distribution
So, we have estimated that the true population mean is about 65.2; we know the
population mean isn't exactly 65.19704—but by just how much might our estimate
be off?

To answer this question, let's take repeated samples from the population again. This
time, we're going to take samples of size 40 from the population 10,000 times and
plot a frequency distribution of the means.

 > means.of.our.samples <- numeric(10000)
 > for(i in 1:10000){
 + a.sample <- sample(all.us.women, 40)
 + means.of.our.samples[i] <- mean(a.sample)
 + }

Figure 5.3: The sampling distribution of sample means

Chapter 5

[99]

This frequency distribution is called a sampling distribution. In particular, since we
used sample means as the value of interest, this is called the sampling distribution
of the sample means (whew!!). You can create a sampling distribution of any
statistic (median, variance, and so on), but when we refer to sampling distributions
throughout this chapter, we will be specifically referring to the sampling distribution
of sample means.

Check it out: the sampling distribution looks like a normal distribution—and that's
because it is a normal distribution.

For a large enough sample size, the sampling distribution of any population will be
approximately normal with a mean equal to the population mean, µ, and a standard
deviation of:

N
σ

where N is the sample size and σ is the population standard deviation. This is
called the central limit theorem, and it is among the most important theorems in all of
statistics.

Look back at the equation. Convince yourself that sample size is proportional to
the narrowness of the sampling distribution by noting that the sample size is in the
denominator.

The standard deviation of the sampling distribution tells us how variable a sample
of a certain size's mean can be from sample to sample. It also tells us how much we
expect certain samples' means to vary from the true population mean. The standard
deviation of the sampling distribution is called the standard error, and we can use it to
quantify our uncertainty about our estimate of the population mean.

If the standard error is small, an estimate from one sample is likely to be closer to
the true mean (because the sampling distribution is narrow). If our standard error is
big, the mean of any one particular sample is likely to be farther away from the true
mean, on average.

Okay, so I've convinced you that the standard error is a great statistic to use—but
how do we get it? Up until now, I've said that you can calculate it by either:

•	 Taking many many samples from the population and taking the standard
deviation of the sample means

•	 Dividing the standard deviation of the population by the square root of the
sample size

Using Data to Reason About the World

[100]

However, in practice, this isn't good enough: we don't want to take repeated samples
from the population for the same reason that we can't measure the heights of all
US women (because it would take too long and cost too much). And, in the case of
using the population standard deviation to get the standard error—well, we don't
know the population standard deviation—if we did, we would have already had
to calculate the population mean, and we wouldn't have to be estimating it with
sampling!

Ideally, we want to find the standard error using only one sample. Well, it turns out
that for sufficiently large samples, using the sample standard deviation, s, in the
standard error formula (instead of the population standard deviation, σ) is a good
enough approximation. Similarly, the mean of the sampling distribution is equal to
the population mean, but we can use our sample's mean as an estimate of that.

To reiterate, for a sample of sufficient size, we can pretend that the
sampling distribution of the sample means has a mean equal to the
sample's mean and a standard deviation of the sample's standard
deviation divided by the square root of the sample size. This standard
deviation of the sampling distribution is called the standard error,
and it is a very important number for quantifying the uncertainty of
our estimation of the population mean from the sample mean.

For a concrete example, let's use our sample of 40, our.new.sample:

 > mean(our.new.sample)
 [1] 65.19704
 > sd(our.new.sample)
 [1] 3.588447
 > sd(our.new.sample) / sqrt(length(our.new.sample))
 [1] 0.5673833

Our sample's mean and standard deviation is 65.2 and 3.59 respectively. The
standard error of the mean is 0.567.

Chapter 5

[101]

This means that the sampling distribution of the sample means would look
something like this:

Figure 5.4: Estimated sampling distribution of sample means based on one sample

Interval estimation
Again, we care about the standard error (the standard deviation of the sampling
distribution of sample means) because it expresses the degree of uncertainty we have
in our estimation. Because of this, it's not uncommon for statisticians to report the
standard error along with their estimate.

What's more common, though, is for statisticians to report a range of numbers to
describe their estimates; this is called interval estimation. In contrast, when we were
just providing the sample mean as our estimate of the population mean, we were
engaging in point estimation.

One common approach to interval estimation is to use confidence intervals. A
confidence interval gives us a range over which a significant proportion of the
sample means would fall when samples are repeatedly drawn from a population
and their means are calculated. Concretely, a 95% confidence interval is the range
that would contain 95% of the sample means if multiple samples were taken from
the same population. 95% confidence intervals are very common, but 90% and 99%
confidence intervals aren't rare.

Using Data to Reason About the World

[102]

Think about this for a second: if a 95% confidence interval contains 95% of the
sample means, that means that the 95% confidence interval covers 95% of the area of
the sampling distribution.

Figure 5.5: The 95% confidence interval of our estimate of the sample mean (64.085 to 66.31) covers 95% of the
area in the our estimated sampling distribution

Okay, so how do we find the bounds of the confidence interval? Think back to the
three-zs rule from the previous chapter on probability. Recall that about 95% of a
normal distribution's area is within two standard deviations of the mean. Well, if
the bounds of a confidence interval cover 95% of the sampling distribution, then the
bounds must be two standard deviations away from the mean on both sides! Since
the standard deviation of the distribution of interest (the sampling distribution of
sample means) is the standard error, the bounds of the confidence interval are the
mean minus 2 times the standard error and the mean plus 2 times the standard error.

In reality, two standard deviations (or two z-scores) away from the mean contain a
little bit more than 95% of the area of the distribution. To be more precise, the range
between -1.96 z-scores and 1.96 z-scores contains 95% of the area. Therefore, the
bounds of a 95% confidence interval are:

() ()1.96 1.96x s and x s− +

Chapter 5

[103]

where x is the sample mean and s is the sample standard deviation.

In our example, our bounds are:

 > err <- sd(our.new.sample) / sqrt(length(our.new.sample))
 > mean(our.new.sample) - (1.96*err)
 [1] 64.08497
 > mean(our.new.sample) + (1.96*err)
 [1] 66.30912

How did we get 1.96?
You can get this number yourself by using the qnorm function.

The qnorm function is a little like the opposite of the pnorm function that we
saw in the previous chapter. That function started with a p because it gave us a
probability—the probability that we would see a value equal to or below it in a
normal distribution. The q in qnorm stands for quantile. A quantile, for a given
probability, is the value at which the probability will be equal to or below that
probability.

I know that was confusing! Stated differently, but equivalently, a quantile for a given
probability is the value such that if we put it in the pnorm function, we get back that
same probability.

 > qnorm(.025)
 [1] -1.959964
 > pnorm(-1.959964)
 [1] 0.025

We showed earlier that 95% of the area under a curve of a probability distribution
is within 1.9599 z-scores away from the mean. We put .025 in the qnorm function,
because if the mean is right smack in the middle of the 95% confidence interval, then
there is 2.5% of the area to the left of the bound and 2.5% of the area to the right of
the bound. Together, this lower 2.5% and upper 2.5% make up the missing 5% of the
area.

Using Data to Reason About the World

[104]

Don't feel limited to the 95% confidence interval, though. You can figure out the
bounds of a 90% confidence interval using just the same procedure. In an interval
that contains 90% of the area of a curve, the bounds are the values for which 5% of
the area is to the left and 5% of the area is to the right of (because 5% and 5% make
up the missing 10%) the curve.

 > qnorm(.05)
 [1] -1.644854
 > qnorm(.95)
 [1] 1.644854
 > # notice the symmetry?

That means that for this example, the 90% confidence interval is 65.2 and 66.13 or
65.197 +- 0.933.

A warning about confidence intervals
There are many misconceptions about confidence intervals floating
about. The most pervasive is the misconception that 95% confidence
intervals represent the interval such that there is a 95% chance that the
population mean is in the interval. This is false. Once the bounds are
created, it is no longer a question of probability; the population mean is
either in there or it's not.
To convince yourself of this, take two samples from the same
distribution and create 95% confidence intervals for both of them. They
are different, right? Create a few more. How could it be the case that all
of these intervals have the same probability of including the population
mean?
Using a Bayesian interpretation of probability, it is possible to say that
there exists intervals for which we are 95% certain that it encompasses
the population mean, since Bayesian probability is a measure of our
certainty, or degree of belief, in something. This Bayesian response to
confidence intervals is called credible intervals, and we will learn about
them in Chapter 7, Bayesian Methods. The procedure for their construction
is very different to that of the confidence interval.

Chapter 5

[105]

Smaller samples
Remember when I said that the sampling distribution of sample means is
approximately normal for a large enough sample size? This caveat means that for
smaller sample sizes (usually considered to be below 30), the sampling distribution
of the sample means is not well approximated by a normal distribution. It is,
however, well approximated by another distribution: the t-distribution.

A bit of history…
The t-distribution is also known as the Student's t-distribution. It gets its
name from the 1908 paper that introduces it, by William Sealy Gosset
writing under the pen name Student. Gosset worked as a statistician at
the Guinness Brewery and used the t-distribution and the related t-test
to study small samples of the quality of the beer's raw constituents. He
is thought to have used a pen name at the request of Guinness so that
competitors wouldn't know that they were using the t statistic to their
advantage.

The t-distribution has two parameters, the mean and the degrees of freedom (or df).
For our purposes here, the 'degrees of freedom' is equal to our sample size, - 1. For
example, if we have a sample of 10 from some population and the mean is 5, then a
t-distribution with parameters mean=5 and df=9 describes the sampling distribution
of sample means with that sample size.

The t-distribution looks a lot like the normal distribution at first glance. However,
further examination will reveal that the curve is more flat and wide. This wideness
accounts for the higher level of uncertainty we have in regard to a smaller sample.

Figure 5.6: The normal distribution, and two t-distributions with different degrees of freedom

Using Data to Reason About the World

[106]

Notice that as the sample size (degrees of freedom) increases, the distribution
gets narrower. As the sample size gets higher and higher, it gets closer and closer
to a normal distribution. By 29 degrees of freedom, it is very close to a normal
distribution indeed. This is why 30 is considered a good rule of thumb for what
constitutes a good cut-off between large sample sizes and small sample sizes and,
thus, when deciding whether to use a normal distribution or a t-distribution as a
model for the sampling distribution.

Let's say that we could only afford taking the heights of 15 US women. What, then, is
our 95% interval estimation?

> small.sample <- sample(all.us.women, 15)
> mean(small.sample)
[1] 65.51277
> qt(.025, df=14)
[1] -2.144787
> # notice the difference
> qnorm(.025)
[1] -1.959964

Instead of using the qnorm function to get the correct multiplier to the standard
error, we want to find the quantile of the t-distribution at .025 (and .975). For this, we
use the qt function, which takes a probability and number of degrees of freedom.
Note that the quantile of the t-distribution is larger than the quantile of the normal
distribution, which will translate to larger confidence interval bounds; again, this
reflects the additional uncertainty we have in our estimate due to a smaller sample
size.

> err <- sd(small.sample) / sqrt(length(small.sample))
> mean(small.sample) - (2.145 * err)
[1] 64.09551
> mean(small.sample) + (2.145 * err)
[1] 66.93003

In this case, the bounds of our 95% confidence interval are 64.1 and 66.9.

Chapter 5

[107]

Exercises
Practise the following exercises to revise the concepts learned in this chapter:

•	 Write a function that takes a vector and returns the 95% confidence interval
for that vector. You can return the interval as a vector of length two: the
lower bound and the upper bound. Then, parameterize the confidence
coefficient by letting the user of your function choose their own confidence
level, but keep 95% as the default. Hint: the first line will look like this:
conf.int <- function(data.vector, conf.coeff=.95){

•	 Back when we introduced the central limit theorem, I said that the sampling
distribution from any distribution would be approximately normal. Don't take
my word for it! Create a population that is uniformly distributed using the
runif function and plot a histogram of the sampling distribution using the
code from this chapter and the histogram-plotting code from Chapter 2, The
Shape of Data. Repeat the process using the beta distribution with parameters
(a=0.5, b=0.5). What does the underlying distribution look like? What does
the sampling distribution look like?

•	 A formal and rigorous definition of knowledge and what constitutes
knowledge is still an open problem in epistemology. Since Plato and his
dialogues, a popular definition of knowledge is the Justified True Belief
(JTB) account. In this account, an agent can be said to know something, p,
if (a) p is true, (b) the agent believes that p is true, and (c) the agent is justified in
believing that p is true. In a 1963 paper, Edmund Gettier introduced examples
that seem to satisfy these conditions, but appear not to be true cases of
knowledge. Read Gettier's paper. Can the JTB account of knowledge be
modified to account for Gettier problems? Or should we reject the JTB account
of knowledge and start from scratch?

Using Data to Reason About the World

[108]

Summary
The central idea of this chapter is that making the leap from sample to population
carries a certain amount of uncertainty with it. In order to be good, honest analysts,
we need to be able to express and quantify this uncertainty.

The example we chose to illustrate this principle was estimating population mean
from a sample's mean. You learned that the uncertainty associated with inferring the
population mean from sample means is modeled by the sampling distribution of the
sample means. The central limit theorem tells us the parameters we can expect of this
sampling distribution. You learned that we could use these parameters on their own,
or in the construction of confidence intervals, to express our level of uncertainty
about our estimate.

I want to congratulate you for getting this far. The topics introduced in this chapter
are very often considered the most difficult to grasp in all of introductory data
analysis.

Your tenacity will be greatly rewarded, though; we have laid enough of a foundation
to be able to get into some real, practical topics. I promise the next chapter is a lot of
fun, and it is filled with interesting examples that you can start applying to real-life
problems right away!

[109]

Testing Hypotheses
The salt-and-pepper of inferential statistics is estimation and testing hypotheses. In
the last chapter, we talked about estimation and making certain inferences about the
world. In this chapter, we will be talking about how to test the hypotheses on how
the world works and evaluate the hypotheses using only sample data.

In the last chapter, I promised that this would be a very practical chapter, and I'm a
man of my word; this chapter goes over a broad range of the most popular methods
in modern data analysis at a relatively high level. Even so, this chapter might have
a little more detail than the lazy and impatient would want. At the same time, it
will have way too little detail than what the extremely curious and mathematically
inclined want. In fact, some statisticians would have a heart attack at the degree to
which I skip over the math involved with these subjects—but I won't tell if you don't!

Nevertheless, certain complicated concepts and math are beyond the scope of this
book. The good news is that once you, dear reader, have the general concepts down,
it is easy to deepen your knowledge of these techniques and their intricacies—
and I advocate that you do before making any major decisions based on the tests
introduced in these chapters.

Null Hypothesis Significance Testing
For better or worse, Null Hypothesis Significance Testing (NHST) is the most
popular hypothesis testing framework in modern use. So, even though there are
competing approaches that—at least in some cases—are better, you need to know
this stuff up and down!

Okay—Null Hypothesis Significance Testing—those are a bunch of big words. What
do they mean?

Testing Hypotheses

[110]

NHST is a lot like being a prosecutor in the United States' or Great Britain's justice
system. In these two countries—and a few others—the person being charged is
presumed innocent, and the burden of proving the defendant's guilt is placed on
the prosecutor. The prosecutor then has to argue that the evidence is inconsistent
with the defendant being innocent. Only after it is shown that the extant evidence
is unlikely if the person is innocent, does the court rule a guilty verdict. If the extant
evidence is weak, or is likely to be observed even if the dependent is innocent,
then the court rules not guilty. That doesn't mean the defendant is innocent (the
defendant may very well be guilty!)—it means that either the defendant was guilty,
or there was not sufficient evidence to prove guilt.

With simple NHST, we are testing two competing hypotheses: the null and the
alternative hypotheses. The default hypothesis is called the null hypothesis—it
is the hypothesis that our observation occurred from chance alone. In the justice
system analogy, this is the hypothesis that the defendant is innocent. The alternative
hypothesis is the opposite (or complementary) hypothesis; this would be like the
prosecutor's hypothesis.

The null hypothesis terminology was introduced by a statistician named R. A. Fischer
in regard to the curious case of Muriel Bristol: a woman who claimed that she could
discern, just by tasting it, whether milk was added before tea in a teacup or whether
the tea was poured before the milk. She is more commonly known as the lady tasting
tea.

Her claim was put to the test! The lady tasting tea was given eight cups; four had
milk added first, and four had tea added first. Her task was to correctly identify the
four cups that had tea added first. The null hypothesis was that she couldn't tell the
difference and would choose a random four teacups. The alternative hypothesis is, of
course, that she had the ability to discern wither the tea or milk was poured first.

It turned out that she correctly identified the four cups. The chances of randomly
choosing the correct four cups is 70 to 1, or about 1.4%. In other words, the chances
of that happening under the null hypothesis is 1.4%. Given that it is so very
unlikely to have occurred under the null hypothesis, we may choose to reject the
null hypothesis. If the null and alternative hypotheses are mutually exclusive and
collectively exhaustive, then a rejection of the null hypothesis is tantamount to an
acceptance of the alternative hypothesis.

We can't say anything for certain, but we can work with probabilities. In this
example, we wanted to prove or disprove the lady tasting tea's claims. We did not
try to evaluate the probability that the lady could tell the difference; we assumed
that she could not and tried to show that it was unlikely that she couldn't, given her
stellar performance on the assessment.

Chapter 6

[111]

So, here's the basic idea behind NHST as we know it so far:

1.	 Assume the opposite of what you are testing.
2.	 (Try to) show that the results you receive are unlikely given that assumption.
3.	 Reject the assumption.

We have heretofore been rather hand-wavy about what constitutes sufficient
unlikelihood to reject the null hypothesis and how we determine the probability in the
first place. We'll discuss this now.

In order to quantify how likely or unlikely the results we receive are, we need to
define a test statistic—some measure of the sample. The sampling distribution of the
test statistic will tell us which test statistics are most likely to occur by chance (under
the null hypothesis) with repeated trials of the experiment. Once we know what the
sampling distribution of the test statistic looks like, we can tell what the probability
of getting a result as extreme as we got is. This is called a p-value. If it is equal to or
below some pre-specified boundary, called an alpha level (α level), we decide that the
null hypothesis is a bad hypothesis and embrace the alternative hypothesis. Largely,
as a matter of tradition, an alpha level of .05 is used most often, though other levels
are occasionally used as well. So, if the observed result would only occur 5% or less
of the time (p-value < .05), we consider it a sufficiently unlikely event and reject the
null hypothesis. If the .05 cut-off sounds rather arbitrary, it's because it is.

So, here's our updated and expanded basic idea behind NHST:

1.	 Formulate a set of two hypotheses: a null hypothesis (often denoted as H0)
and an alternative hypothesis (often denoted H1)

°° H0: there is no effect
°° H1: there is an effect

2.	 Compute the test statistic.
3.	 Given the sampling distribution of the test statistic under the null hypothesis,

you can calculate the probability of obtaining a test statistic equal to or more
extreme than the one you calculated. This is the p-value. Find it.

4.	 If the probability of obtaining a test statistic being equal to or more extreme
than the one you calculated is sufficiently unlikely (equal to or less than your
alpha level), then you may reject the null hypothesis.

5.	 If the null and alternative hypotheses are collectively exhaustive, you may
embrace the alternative hypothesis.

Testing Hypotheses

[112]

The illustrative example that's going to make sense out of all of this is none other
than the gambit of Larry the Untrustworthy Knave that we met in Chapter 4,
Probability. If you recall, Larry, who can only be trusted some of the time, gave us a
coin that he alleges is fair. We flip it 30 times and observe 10 heads. Let's hypothesize
that the coin is unfair; let's formalize our hypotheses:

•	 H0 (null hypothesis): the probability of obtaining heads on this coin is .5
•	 H1 (alternative hypothesis): the probability of obtaining heads on this coin is

not .5

Let's just use the number of heads in our sample as the test statistic. What is the
sampling distribution of this test statistic? In other words, if the coin were fair, and
you repeated the flipping-30-times experiment many times, what is the relative
frequency of observing particular numbers of heads? We've seen it already! It's
the binomial distribution. A binomial distribution with parameters n=30 and p=0.5
describes the number of heads we should expect in 30 flips.

Figure 6.1: The sampling distribution of our coin-flip test statistic (the number of heads)

As you can see, the outcome that is the most likely is getting 15 heads (as you might
imagine). Can you see what the probability of getting 10 heads is? Fairly unlikely,
right?

Chapter 6

[113]

So, what's the p-value, and is it less than our pre-specified alpha level? Well, we
have already worked out the probability of observing 10 or fewer heads in Chapter 4,
Probability, as follows:

 > pbinom(10, size=30, prob=.5)
 [1] 0.04936857

It's less than .05. We can conclude the coin is unfair, right? Well, yes and no. Mostly
no. Allow me to explain.

One and two-tailed tests
You may reject the null hypothesis if the test statistic falls within a region under the
curve of the sampling distribution that covers 5% of the area (if the alpha level is .05).
This is called the critical region. Do you remember, in the last chapter, we constructed
95% confidence intervals that covered 95% percent of the sampling distribution?
Well, the 5% critical region is like the opposite of this. Recall that, in order to make a
symmetric 95% of the area under the curve, we had to start at the .025 quantile and
end at the .975 quantile, leaving 2.5% percent on the left tail and 2.5% of the right tail
uncovered.

Similarly, in order for the critical region of a hypothesis test to cover 5% of the most
extreme areas under the curve, the area must cover everything from the left of the
.025 quantile and everything to the right of the .975 quantile.

So, in order to determine that the 10 heads out of 30 flips is statistically significant,
the probability that you would observe 10 or fewer heads has to be less than .025.

There's a function built right into R, called binom.test, which will perform
the calculations that we have, until now, been doing by hand. In the most basic
incantation of binom.test, the first argument is the number of successes in a
Bernoulli trial (the number of heads), and the second argument is the number of
trials in the sample (the number of coin flips).

 > binom.test(10,30)

 Exact binomial test

 data: 10 and 30
 number of successes = 10, number of trials = 30, p-value = 0.09874
 alternative hypothesis: true probability of success is not equal to
0.5

Testing Hypotheses

[114]

 95 percent confidence interval:
 0.1728742 0.5281200
 sample estimates:
 probability of success
 0.3333333

If you study the output, you'll see that the p-value does not cross the significance
threshold.

Now, suppose that Larry said that the coin was not biased towards tails. To see if
Larry was lying, we only want to test the alternative hypothesis that the probability
of heads is less than .5. In that case, we would set up our hypotheses like this:

•	 H0: The probability of heads is greater than or equal to .5
•	 H1: The probability of heads is less than .5

This is called a directional hypothesis, because we have a hypothesis that asserts that
the deviation from chance goes in a particular direction. In this hypothesis suite, we
are only testing whether the observed probability of heads falls into a critical region
on only one side of the sampling distribution of the test statistic. The statistical test
that we would perform in this case is, therefore, called a one-tailed test—the critical
region only lies on one tail. Since the area of the critical region no longer has to be
divided between the two tails (like in the two-tailed test we performed earlier), the
critical region only contains the area to the left of the .05 quantile.

Figure 6.2: The three panels, from left to right, depict the critical regions of the left ("lesser") one-tailed,
two-tailed, and right ("greater") alternative hypotheses. The dashed horizontal line is meant to show that,
for the two-tailed tests, the critical region starts below p=.025, because it is being split between two tails.

For the one-tailed tests, the critical region is below the dashed horizontal line at p=.05.

As you can see from the figure, for the directional alternative hypothesis that heads
has a probability less than .5, 10 heads is now included in the green critical region.

Chapter 6

[115]

We can use the binom.test function to test this directional hypothesis, too. All we
have to do is specify the optional parameter alternative and set its value to "less"
(its default is "two.sided" for a two-tailed test).

 > binom.test(10,30, alternative="less")

 Exact binomial test

 data: 10 and 30
 number of successes = 10, number of trials = 30, p-value = 0.04937
 alternative hypothesis: true probability of success is less than 0.5
 95 percent confidence interval:
 0.0000000 0.4994387
 sample estimates:
 probability of success
 0.3333333

If we wanted to test the directional hypothesis that the probability of heads was
greater than .5, we would use alternative="greater".

Take note of the fact that the p-value is now less than .05. In fact, it is identical to the
probability we got from the pbinom function.

When things go wrong
Certainty is a card rarely used in the deck of a data analyst. Since we make
judgments and inferences based on probabilities, mistakes happen. In particular,
there are two types of mistakes that are possible in NHST: Type I errors and Type II
errors.

•	 A Type I error is when a hypothesis test concludes that there is an effect
(rejects the null hypothesis) when, in reality, no such effect exists

•	 A Type II error occurs when we fail to detect a real effect in the world and
fail to reject the null hypothesis even if it is false

Check the following table for errors encountered in the coin example:

Coin type Failure to reject null
hypothesis (conclude no
detectable effect)

Reject the null hypothesis
(conclude that there is an
effect)

Coin is fair Correct positive identification Type I error (false positive)
Coin is unfair Type II error (false negative) Correct identification

Testing Hypotheses

[116]

In the criminal justice system, Type I errors are considered especially heinous. Legal
theorist William Blackstone is famous for his quote: it is better that ten guilty persons
escape than one innocent suffer. This is why the court instructs jurors (in the United
States, at least) to only convict the defendant if the jury believes the defendant is
guilty beyond a reasonable doubt. The consequence is that if the jury favors the
hypothesis that the defendant is guilty, but only by a little bit, the jury must give the
defendant the benefit of the doubt and acquit.

This line of reasoning holds for hypothesis testing as well. Science would be
in a sorry state if we accepted alternative hypotheses on rather flimsy evidence
willy-nilly; it is better that we err on the side of caution when making claims about
the world, even if that means that we make fewer discoveries of honest-to-goodness,
real-world phenomena because our statistical tests failed to reach significance.

This sentiment underlies that decision to use an alpha level like .05. An alpha level
of .05 means that we will only commit a Type I error (false positive) 5% of the time.
If the alpha level were higher, we would make fewer Type II errors, but at the cost of
making more Type I errors, which are more dangerous in most circumstances.

There is a similar metric to the alpha level, and it is called the beta level (β level). The
beta level is the probability that we would fail to reject the null hypothesis if the
alternative hypothesis were true. In other words, it is the probability of making a
Type II error.

The complement of the beta level, 1 minus the beta level, is the probability of
correctly detecting a true effect if one exists. This is called power. This varies from
test to test. Computing the power of a test, a technique called power analysis, is a
topic beyond the scope of this book. For our purposes, it will suffice to say that it
depends on the type of test being performed, the sample size being used, and on the
size of the effect that is being tested (the effect size). Greater effects, like the average
difference in height between women and men, are far easier to detect than small
effects, like the average difference in the length of earthworms in Carlisle and in
Birmingham. Statisticians like to aim for a power of at least 80% (a beta level of .2).
A test that doesn't reach this level of power (because of a small sample size or small
effect size, and so on) is said to be underpowered.

Chapter 6

[117]

A warning about significance
It's perhaps regrettable that we use the term significance in relation to null-hypothesis
testing. When the term was first used to describe hypothesis tests, the word
significance was chosen because it signified something. As I wrote this chapter,
I checked the thesaurus for the word significant, and it indicated that synonyms
include notable, worthy of attention, and important. This is misleading in that it
is not equivalent to its intended, vestigial meaning. One thing that really confuses
people is that they think statistical significance is of great importance in and of itself.
This is sadly untrue; there are a few ways to achieve statistical significance without
discovering anything of significance, in the colloquial sense.

As we'll see later in the chapter, one way to achieve non-significant statistical
significance is by using a very large sample size. Very small differences, that make
little to no difference in the real world, will nevertheless be considered statistically
significant if there is a large enough sample size.

For this reason, many people make the distinction between statistical significance
and practical significance or clinical relevance. Many hold the view that hypothesis
testing should only be used to answer the question is there an effect? or is there a
discernable difference?, and that the follow-up questions is it important? or does it make a
real difference? should be addressed separately. I subscribe to this point of view.

To answer the follow-up questions, many use effect sizes, which, as we know,
capture the magnitude of an effect in the real world. We will see an example of
determining the effect size in a test later in this chapter.

A warning about p-values
P-values are, by far, the most talked about metric in NHST. P-values are also
notorious for lending themselves to misinterpretation. Of the many criticisms of
NHST (of which there are many, in spite of its ubiquity), the misinterpretation
of p-values ranks highly. The following are two of the most common
misinterpretations:

Testing Hypotheses

[118]

1.	 A p-value is the probability that the null hypothesis is true. This is not the
case. Someone misinterpreting the p-value from our first binomial test might
conclude that the chances of the coin being fair are around 10%. This is false.
The p-value does not tell us the probability of the hypothesis' truth or falsity.
In fact, the test assumes that the null hypothesis is correct. It tells us the
proportion of trials for which we would receive a result as extreme or more
extreme than the one we did if the null hypothesis was correct. I'm ashamed
to admit it, but I made this mistake during my first college introductory
statistics class. In my final project for the class, after weeks of collecting
data, I found my p-value had not passed the barrier of significance—it was
something like .07. I asked my professor if, after the fact, I could change my
alpha level to .1 so my results would be positive. In my request, I appealed
to the fact that it was still more probable than not that my alternative
hypothesis was correct—after all, if my p-value was .07, then there was a 93%
chance that the alternative hypothesis was correct. He smiled and told me to
read the relevant chapter of our text again. I appreciate him for his patience
and restraint in not smacking me right in the head for making such a stupid
mistake. Don't be like me.

2.	 A p-value is a measure of the size of an effect. This is also incorrect, but its
wrongness is more subtle than the first misconception. In research papers, it
is common to attach phrases like highly significant and very highly significant
to p-values that are much smaller than .05 (like .01 and .001). It is common to
interpret p-values such as these, and statements such as these, as signaling
a bigger effect than p-values that are only modestly less than .05. This is a
mistake; this is conflating statistical significance with practical significance. In
the previous section, we explained that you can achieve significant p-values
(sometimes very highly significant ones) for an effect that is, for all intents and
purposes, small and unimportant. We will see a very salient example of this
later in this chapter.

Testing the mean of one sample
An illustrative and fairly common statistical hypothesis test is the one sample t-test.
You use it when you have one sample and you want to test whether that sample
likely came from a population by comparing the mean against the known population
mean. For this test to work, you have to know the population mean.

Chapter 6

[119]

In this example, we'll be using R's built-in precip data set that contains precipitation
data from 70 US cities.

 > head(precip)
 Mobile Juneau Phoenix Little Rock Los Angeles Sacramento
 67.0 54.7 7.0 48.5 14.0 17.2

Don't be fooled by the fact that there are city names in there—this is a regular old
vector - it's just that the elements are labeled. We can directly take the mean of this
vector, just like a normal one.

 > is.vector(precip)
 [1] TRUE
 > mean(precip)
 [1] 34.88571

Let's pretend that we, somehow, know the mean precipitation of the rest of the
world—is the US' precipitation significantly different to the rest of the world's
precipitation?

Remember, in the last chapter, I said that the sampling distribution of sample means
for sample sizes under 30 were best approximated by using a t-distribution. Well,
this test is called a t-test, because in order to decide whether our samples' mean is
consistent with the population whose mean we are testing against, we need to see
where our mean falls in relation to the sampling distribution of population means. If
this is confusing, reread the relevant section from the previous chapter.

In order to use the t-test in general cases—regardless of the scale—instead of
working with the sampling distribution of sample means, we work with the
sampling distribution of the t-statistic.

Remember z-scores from Chapter 3, Describing Relationships? The t-statistic is like
a z-score in that it is a scale-less measure of distance from some mean. In the case
of the t-statistic, though, we divide by the standard error instead of the standard
deviation (because the standard deviation of the population is unknown). Since the
t-statistic is standardized, any population, with any mean, using any scale, will have
a sampling distribution of the t-statistic that is exactly the same (at the same sample
size, of course).

The equation to compute the t-statistic is this:

xt s
N

µ−
=

Testing Hypotheses

[120]

where x is the sample mean, µ is the population mean, s is the sample' standard
deviation, and N is the sample size.

Let's see for ourselves what the sampling distribution of the t-statistic looks like by
taking 10,000 samples of size 70 (the same size as our precip data set) and plotting
the results:

 # function to compute t-statistic
 t.statistic <- function(thesample, thepopulation){
 numerator <- mean(thesample) - mean(thepopulation)
 denominator <- sd(thesample) / sqrt(length(thesample))
 t.stat <- numerator / denominator
 return(t.stat)
 }

 # make the pretend population normally distributed
 # with a mean of 38
 population.precipitation <- rnorm(100000, mean=38)
 t.stats <- numeric(10000)
 for(i in 1:10000){
 a.sample <- sample(population.precipitation, 70)
 t.stats[i] <- t.statistic(a.sample, population.precipitation)
 }

 # plot
 library(ggplot2)
 tmpdata <- data.frame(vals=t.stats)
 qplot(vals, data=tmpdata, geom="histogram",
 color=I("white"),
 xlab="sampling distribution of t-statistic",
 ylab="frequency")

Chapter 6

[121]

Figure 6.3: The sampling distribution of the t-statistic

Ah, there's that familiar shape again!

Fortunately, the sampling distribution of the t-statistic is well known, so
we don't have to create our own. In fact, the sampling distribution for many test
statistics are well known, so we won't be running our own simulations of them
anymore. Lucky us!

Okay, so how does our sample's t-statistic compare to the t-distribution? Our
t-statistic, using our function from the last code-snippet, is:

 > t.statistic(precip, population.precipitation)
 [1] -1.901225

Testing Hypotheses

[122]

Though, you can work this out for yourself easily.

Figure 6.4: The t-distribution with 69 degrees of freedom. The t-statistic of our sample is shown as the dashed
line

Hmm, it looks like a pretty unlikely occurrence to me, but is it statistically
significant? First, let's formally define our hypotheses:

•	 H0 = the average (mean) precipitation in the US is equal to the known
average precipitation in the rest of the world

•	 H1 = the average (mean) precipitation in the US is different than the known
average precipitation in the rest of the world

Then, we prespecify an alpha level of .05, as is customary.

Since our hypothesis is non-directional (we only hypothesize that the precipitation in
the US is different than the world, not less or more), we define our critical region to
cover 5% of the area on each side of the curve.

 > qt(.025, df=69)
 [1] -1.994945
 > # the critical region is less than -1.995 and more than +1.995

Chapter 6

[123]

What does it look like now?

Figure 6.5: The previous figure with the critical region for non-directional hypothesis highlighted

Oh, too bad! It looks like our sample mean falls just out of the critical region. So, we
fail to reject the null hypothesis.

The cruel truth if we, for some reason, hypothesized that the US precipitation was
less than the average world precipitation is:

•	 H0 = mean US precipitation >= mean world precipitation
•	 H1 = mean US precipitation < mean world precipitation

We would have achieved significance at alpha = .05.

Figure 6.6: Figure 6.4 with directional critical region highlighted

Testing Hypotheses

[124]

Of course, we have no reason to think that US precipitation was less or more than the
world's average. And to change our hypothesis now would be cheating. You're not a
cheater, are you?

Now that we know what we're doing, we won't be manually calculating our test
statistics anymore; we'll just be using the test functions that R provides.

Let's use the function that R provides now. The one sample t-test can be performed
by the t.test function. In its most basic form, it takes a vector of sample
observations as its first argument and the population mean as its second argument..

> t.test(precip, mu=38)

 One Sample t-test

 data: precip
 t = -1.901, df = 69, p-value = 0.06148
 alternative hypothesis: true mean is not equal to 38
 95 percent confidence interval:
 31.61748 38.15395
 sample estimates:
 mean of x
 34.88571

Among other things, this test tells us that the t-statistic is 1.9 (just like we calculated
ourselves), the degrees of freedom were 69 (the sample size minus 1), and the
p-value, which is 0.06148. Like our plot with the two-tailed critical regions showed,
this p-value is greater than our prespecified alpha level of 0.05. We fail to reject the
null hypothesis.

Just for kicks, let's run the one-tailed hypothesis test:

 > t.test(precip, mu=38, alternative="less")

 One Sample t-test

 data: precip
 t = -1.901, df = 69, p-value = 0.03074
 alternative hypothesis: true mean is less than 38
 95 percent confidence interval:
 -Inf 37.61708
 sample estimates:
 mean of x
 34.88571

Now our p-value is < .05. C'est la vie.

Chapter 6

[125]

Note that the R output indicates that the alternative hypothesis which is
the true mean is less than 38—compare this with the last t-test output.

Assumptions of the one sample t-test
There are two main assumptions of the one sample t-test:

•	 The data are sampled from a normal distribution. This actually has more
to do with the sampling distribution of sample means being approximately
normal than the actual population. As we know, the sampling distribution
of sample means for sufficiently large sample sizes will always be normally
distributed, even if the population is not. In reality, this assumption can be
violated somewhat, and the results will be valid, especially for sample sizes
of over 30. We have nothing to worry about here. Usually, people check this
assumption by plotting the sample means and making sure it's kind-of normal,
though there are more formal ways of doing this, which we will see later. If the
assumption of normality is in question, we may want to use an alternative test,
like a non-parametric test; we'll see some examples at the end of this chapter.

•	 Independence of samples: Had we tested whether the US precipitation likely
came from the population of the entire world's precipitation, we would have
been violating this assumption. Why? Because we know that the US is a
member of the set (it is indeed 'in the world'), so of course it was drawn from
that population. This is why we tested whether the US precipitation was on
par with the rest of the world's precipitation. In other examples of the one
sample t-tests, this assumption basically requires that the sample be random.

Testing two means
An even more common hypothesis test is the independent samples t-test. You would
use this to check the equality of two samples' means. Concretely, an example of
using this test would be if you have an experiment where you are testing to see if
a new drug lowers blood pressure. You would give one group a placebo and the
other group the real medication. If the mean improvement in blood pressure was
significantly greater than the improvement with the placebo, you might infer that the
blood pressure medication works. Outside of more academic uses, web companies
use this test all the time to test the effectiveness of, for example, different internet ad
campaigns; they expose random users to either one of two types of ads and test if
one is more effective than the other. In web-business parlance, this is called an A-B
test, but that's just business-ese for controlled experiment.

Testing Hypotheses

[126]

The term independent means that the two samples are separate, and that data from
one sample doesn't affect data in the other. For example, if instead of having two
different groups in the blood pressure trial, we used the same participants to test
both the conditions (randomizing the order we administer the placebo and the real
medication), we would violate independence.

The dataset we will be using for this is the mtcars dataset that we first met in
Chapter 2, The Shape of Data and saw again in Chapter 3, Describing Relationships.
Specifically, we are going to test the hypothesis that the mileage is better for
manual cars than it is for cars with automatic transmission. Let's compare the
means and produce a boxplot:

 > mean(mtcars$mpg[mtcars$am==0])
 [1] 17.14737
 > mean(mtcars$mpg[mtcars$am==1])
 [1] 24.39231
 >
 > mtcars.copy <- mtcars
 > # make new column with better labels
 > mtcars.copy$transmission <- ifelse(mtcars$am==0,
 "auto", "manual")
 > mtcars.copy$transmission <- factor(mtcars.copy$transmission)
 > qplot(transmission, mpg, data=mtcars.copy,
 + geom="boxplot", fill=transmission) +
 + # no legend
 + guides(fill=FALSE)

Figure 6.7: Boxplot of the miles per gallon ratings for automatic cars and cars with manual transmission

Chapter 6

[127]

Hmm, looks different… but let's check that hypothesis formally. Our hypotheses are:

•	 H0 = mean of sample1 - mean of sample2 >= 0
•	 H1 = mean of sample1 - mean of sample2 < 0

To do this, we use the t.test function, too; only this time, we provide two vectors:
one for each sample. We also specify our directional hypothesis in the same way:

 > automatic.mpgs <- mtcars$mpg[mtcars$am==0]
 > manual.mpgs <- mtcars$mpg[mtcars$am==1]
 > t.test(automatic.mpgs, manual.mpgs, alternative="less")

 Welch Two Sample t-test

 data: automatic.mpgs and manual.mpgs
 t = -3.7671, df = 18.332, p-value = 0.0006868
 alternative hypothesis: true difference in means is less than 0
 95 percent confidence interval:
 -Inf -3.913256
 sample estimates:
 mean of x mean of y
 17.14737 24.39231

p < .05. Yipee!

There is an easier way to use the t-test for independent samples that doesn't require
us to make two vectors.

 > t.test(mpg ~ am, data=mtcars, alternative="less")

This reads, roughly, perform a t-test of the mpg column grouping by the am column in
the data frame mtcars. Confirm for yourself that these incantations are equivalent.

Don't be fooled!
Remember when I said that statistical significance was not synonymous with
important and that we can use very large sample sizes to achieve statistical
significance without any clinical relevance? Check this snippet out:

 > set.seed(16)
 > t.test(rnorm(1000000,mean=10), rnorm(1000000, mean=10))

 Welch Two Sample t-test

 data: rnorm(1e+06, mean = 10) and rnorm(1e+06, mean = 10)

Testing Hypotheses

[128]

 t = -2.1466, df = 1999998, p-value = 0.03183
 alternative hypothesis: true difference in means is not equal to 0
 95 percent confidence interval:
 -0.0058104638 -0.0002640601
 sample estimates:
 mean of x mean of y
 9.997916 10.000954

Here, two vectors of one million normal deviates each are created with a mean of 10.
When we use a t-test on these two vectors, it should indicate that the two vectors'
means are not significantly different, right?

Well, we got a p-value of less that .05—why? If you look carefully at the last line
of the R output, you might see why; the mean of the first vector is 9.997916, and
the mean of the second vector is 10.000954. This tiny difference, a meagre .003, is
enough to tip the scale into significant territory. However, I can think of very few
applications of statistics where .003 of anything is noteworthy even though it is,
technically, statistically significant.

The larger point is that the t-test tests for equality of means, and if the means aren't
exactly the same in the population, the t-test will, with enough power, detect this.
Not all tiny differences in population means are important, though, so it is important
to frame the results of a t-test and the p-value in context.

As mentioned earlier in the chapter, a salient strategy for putting the differences in
context is to use an effect size. The effect size commonly used in association with
the t-test is Cohen's d. Cohen's d is, conceptually, pretty simple: it is a ratio of the
variance explained by the "effect" and the variance in the data itself. Concretely,
Cohen's d is the difference in means divided by the sample standard deviation. A
high d indicates that there is a big effect (difference in means) relative to the internal
variability of the data.

I mentioned that to calculate d, you have to divide the difference in means by the
sample standard deviation—but which one? Although Cohen's d is conceptually
straightforward (even elegant!), it is also sometimes a pain to calculate by hand,
because the sample standard deviation from both samples has to be pooled.
Fortunately, there's an R package that let's us calculate Cohen's d—and other effect
size metrics, to boot, quite easily. Let's use it on the auto vs. manual transmission
example:

 > install.packages("effsize")
 > library(effsize)
 > cohen.d(automatic.mpgs, manual.mpgs)

Chapter 6

[129]

 Cohen's d

 d estimate: -1.477947 (large)
 95 percent confidence interval:
 inf sup
 -2.3372176 -0.6186766

Cohen's d is -1.478, which is considered a very large effect size. The cohen.d function
even tells you this by using canned interpretations of effect sizes. If you try this with
the two million element vectors from above, the cohen.d function will indicate that
the effect was negligible.

Although these canned interpretations were on target these two times, make sure
you evaluate your own effect sizes in context.

Assumptions of the independent samples
t-test
Homogeneity of variance (or homoscedasticity - a scary sounding word), in this
case, simply means that the variance in the miles per gallon of the automatic cars
is the same as the variance in miles per gallon of the manual cars. In reality, this
assumption can be violated as long as you use a Welch's T-test like we did, instead of
the Student's T-test. You can still use the Student's T-test with the t.test function,
like by specifying the optional parameter var.equal=TRUE. You can test for this
formally using var.test or leveneTest from the car package. If you are sure that
the assumption of homoscedasticity is not violated, you may want to do this because
it is a more powerful test (fewer Type II errors). Nevertheless, I usually use Welch's
T-test to be on the safe side. Also, always use Welch's test if the two samples' sizes
are different.

•	 The sampling distribution of the sample means is approximately normal:
Again, with a large enough sample size, it always is. We don't have a terribly
large sample size here, but in reality, this formulation of the t-test works even
if this assumption is violated a little. We will see alternatives in due time.

•	 Independence: Like I mentioned earlier, since the samples contain completely
different cars, we're okay on this front. For tests that, for example, use the
same participants for both conditions, you would use a Dependent Samples
T-test or Paired Samples T-test , which we will not discuss in this book. If
you are interested in running one of these tests after some research, use
t.test(<vector1>, <vector2>, paired=TRUE).

Testing Hypotheses

[130]

Testing more than two means
Another really common situation requires testing whether three or more means are
significantly discrepant. We would find ourselves in this situation if we had three
experimental conditions in the blood pressure trial: one groups gets a placebo, one
group gets a low dose of the real medication, and one groups gets a high dose of the
real medication.

Hmm, for cases like these, why don't we just do a series of t-tests? For example, we
can test the directional alternative hypotheses:

•	 The low dose of blood pressure medication lowers BP significantly more than
the placebo

•	 The high dose of blood pressure medication lowers BP significantly more
than the low dose

Well, it turns out that doing this first is pretty dangerous business, and the logic
goes like this: if our alpha level is 0.05, then the chances of making a Type I error for
one test is 0.05; if we perform two tests, then our chances of making a Type I error is
suddenly .09025 (near 10%). By the time we perform 10 tests at that alpha level, the
chances of us having making a Type I error is 40%. This is called the multiple testing
problem or multiple comparisons problem.

To circumvent this problem, in the case of testing three or more means, we use
a technique called Analysis of Variance, or ANOVA. A significant result from
an ANOVA leads to the inference that at least one of the means is significantly
discrepant from one of the other means; it does not lend itself to the inference that all
the means are significantly different. This is an example of an omnibus test, because it
is a global test that doesn't tell you exactly where the differences are, just that there
are differences.

You might be wondering why a test of equality of means has a name called Analysis
of Variance; it's because it does this by comparing the variance between cases to the
variance within cases. The general intuition behind an ANOVA is that the higher the
ratio of variance between the different groups than within the different groups, the
less likely that the different groups were sampled from the same population. This
ratio is called an F ratio.

For our demonstration of the simplest species of ANOVA (the one-way ANOVA),
we are going to be using the WeightLoss dataset from the car package. If you don't
have the car package, install it.

 > library(car)
 > head(WeightLoss)

Chapter 6

[131]

 group wl1 wl2 wl3 se1 se2 se3
 1 Control 4 3 3 14 13 15
 2 Control 4 4 3 13 14 17
 3 Control 4 3 1 17 12 16
 4 Control 3 2 1 11 11 12
 5 Control 5 3 2 16 15 14
 6 Control 6 5 4 17 18 18
 >
 > table(WeightLoss$group)

 Control Diet DietEx
 12 12 10

The WeightLoss dataset contains pounds lost and self esteem measurements for
three weeks for three different groups: a control group, one group just on a diet,
and one group that dieted and exercised. We will be testing the hypothesis that the
means of the weight loss at week 2 are not all equal:

•	 H0 = the mean weight loss at week 2 between the control, diet group, and
diet and exercise group are equal

•	 H1 = at least two of the means of weight loss at week 2 between the control,
diet group, and diet and exercise group are not equal

Before the test, let's check out a box plot of the means:

 > qplot(group, wl2, data=WeightLoss, geom="boxplot", fill=group)

Figure 6.8: Boxplot of weight lost in week 2 of trial for three groups: control, diet, and diet & exercise

Testing Hypotheses

[132]

Now for the ANOVA…

 > the.anova <- aov(wl2 ~ group, data=WeightLoss)
 > summary(the.anova)
 Df Sum Sq Mean Sq F value Pr(>F)
 group 2 45.28 22.641 13.37 6.49e-05 ***
 Residuals 31 52.48 1.693

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Oh, snap! The p-value (Pr(>F)) is 6.49e-05, which is .000065 if you haven't read
scientific notation yet.

As I said before, this just means that at least one of the comparisons between means
was significant—there are four ways that this could occur:

•	 The means of diet and diet and exercise are different
•	 The means of diet and control are different
•	 The means of control and diet and exercise are different
•	 The means of control, diet, and diet and exercise are all different

In order to investigate further, we perform a post-hoc test. Quite often, the post-hoc
test that analysts perform is a suite of t-tests comparing each pair of means (pairwise
t-tests).

But wait, didn't I say that was dangerous business? I did, but it's different now:

•	 We have already performed an honest-to-goodness omnibus test at the alpha
level of our choosing. Only after we achieve significance do we perform
pairwise t-tests.

•	 We correct for the problem of multiple comparisons

The easiest multiple comparison correcting procedure to understand is Bonferroni
correction. In its simplest version, it simply changes the alpha value by dividing it by
the number of tests being performed. It is considered the most conservative of all the
multiple comparison correction methods. In fact, many consider it too conservative
and I'm inclined to agree. Instead, I suggest using a correcting procedure called
Holm-Bonferroni correction. R uses this by default.

 > pairwise.t.test(WeightLoss$wl2, as.vector(WeightLoss$group))

 Pairwise comparisons using t tests with pooled SD

Chapter 6

[133]

 data: WeightLoss$wl2 and as.vector(WeightLoss$group)

 Control Diet
 Diet 0.28059 -
 DietEx 7.1e-05 0.00091

 P value adjustment method: holm

This output indicates that the difference in means between the Diet and Diet and
exercise groups is p < .001. Additionally, it indicates that the difference between
Diet and exercise and Control is p < .0001 (look at the cell where it says 7.1e-05).
The p-value of the comparison of just diet and the control is .28, so we fail to reject
the hypothesis that they have the same mean.

Assumptions of ANOVA
The standard one-way ANOVA makes three main assumptions:

•	 The observations are independent
•	 The distribution of the residuals (the distances between the values within the

groups to their respective means) is approximately normal
•	 Homogeneity of variance: If you suspect that this assumption is violated, you

can use R's oneway.test instead

Testing independence of proportions
Remember the University of California Berkeley dataset that we first saw when
discussing the relationship between two categorical variables in Chapter 3,
Describing Relationships. Recall that UCB was sued because it appeared as though
the admissions department showed preferential treatment to male applicants. Also
recall that we used cross-tabulation to compare the proportion of admissions across
categories.

If admission rates were, say 10%, you would expect about one out of every ten
applicants to be accepted regardless of gender. If this is the case—that gender has no
bearing on the proportion of admits—then gender is independent.

Small deviations from this 10% proportion are, of course, to be expected in the real
world and not necessarily indicative of a sexist admissions machine. However, if a
test of independence of proportions is significant, that indicates that a deviation as
extreme as the one we observed is very unlikely to occur if the variable were truly
independent.

Testing Hypotheses

[134]

A test statistic that captures divergence from an idealized, perfectly independent
cross tabulation is the chi-squared statistic 2χ statistic), and its sampling distribution
is known as a chi-square distribution. If our chi-square statistic falls into the critical
region of the chi-square distribution with the appropriate degrees of freedom, then
we reject the hypothesis that gender is an independent factor in admissions.

Let's perform one of these chi-square tests on the whole UCB Admissions dataset.

 > # The chi-square test function takes a cross-tabulation
 > # which UCBAdmissions already is. I am converting it from
 > # and back so that you, dear reader, can learn how to do
 > # this with other data that isn't already in cross-tabulation
 > # form
 > ucba <- as.data.frame(UCBAdmissions)
 > head(ucba)
 Admit Gender Dept Freq
 1 Admitted Male A 512
 2 Rejected Male A 313
 3 Admitted Female A 89
 4 Rejected Female A 19
 5 Admitted Male B 353
 6 Rejected Male B 207
 >
 > # create cross-tabulation
 > cross.tab <- xtabs(Freq ~ Gender+Admit, data=ucba)
 >
 > chisq.test(cross.tab)

 Pearson's Chi-squared test with Yates' continuity correction

 data: cross.tab
 X-squared = 91.6096, df = 1, p-value < 2.2e-16

The proportions are almost certainly not independent (p < .0001). Before you
conclude that the admissions department is sexist, remember Simpson's Paradox? If
you don't, reread the relevant section in Chapter 3, Describing Relationships.

Since the chi-square independence of proportion test can be (and is often used) to
compare a whole mess of proportions, it's sometimes referred to an omnibus test, just
like the ANOVA. It doesn't tell us what proportions are significantly discrepant, only
that some proportions are.

Chapter 6

[135]

What if my assumptions are unfounded?
The t-test and ANOVA are both considered parametric statistical tests. The word
parametric is used in different contexts to signal different things but, essentially,
it means that these tests make certain assumptions about the parameters of
the population distributions from which the samples are drawn. When these
assumptions are met (with varying degrees of tolerance to violation), the inferences
are accurate, powerful (in the statistical sense), and are usually quick to calculate.
When those parametric assumptions are violated, though, parametric tests can often
lead to inaccurate results.

We've spoken about two main assumptions in this chapter: normality and homogeneity
of variance. I mentioned that, even though you can test for homogeneity of variance
with the leveneTest function from the car package, the default t.test in R
removes this restriction. I also mentioned that you could use the oneway.test
function in lieu of aov if you don't have to have to adhere to this assumption when
performing an ANOVA. Due to these affordances, I'll just focus on the assumption of
normality from now on.

In a t-test, the assumption that the sample is an approximately normal distribution can
be visually verified, to a certain extent. The naïve way is to simply make a histogram
of the data. A more proper approach is to use a QQ-plot (quantile-quantile plot). You
can view a QQ-plot in R by using the qqPlot function from the car package. Let's use
it to evaluate the normality of the miles per gallon vector in mtcars.

 > library(car)
 > qqPlot(mtcars$mpg)

Figure 6.9: A QQ-plot of the mile per gallon vector in mtcars

Testing Hypotheses

[136]

A QQ-plot can actually be used to compare any sample from any theoretical
distribution, but it is most often associated with the normal distribution. The plot
depicts the quantiles of the sample and the quantiles of the normal distribution
against each other. If the sample were perfectly normal, the points would fall on
the solid red diagonal line—its divergence from this line signals a divergence from
normality. Even though it is clear that the quantiles for mpg don't precisely comport
with the quantiles of the normal distribution, its divergence is relatively minor.

The most powerful method for evaluating adherence to the assumption of normality
is to use a statistical test. We are going to use the Shapiro-Wilk test, because it's my
favorite, though there are a few others.

 > shapiro.test(mtcars$mpg)

 Shapiro-Wilk normality test

 data: mtcars$mpg
 W = 0.9476, p-value = 0.1229

This non-significant result indicates that the deviations from normality are not
statistically significant.

For ANOVAs, the assumption of normality applies to the residuals, not the actual
values of the data. After performing the ANOVA, we can check the normality of the
residuals quite easily:

 > # I'm repeating the set-up
 > library(car)
 > the.anova <- aov(wl2 ~ group, data=WeightLoss)
 >
 > shapiro.test(the.anova$residuals)

 Shapiro-Wilk normality test

 data: the.anova$residuals
 W = 0.9694, p-value = 0.4444

We're in the clear!

But what if we do violate our parametric assumptions!? In cases like these, many
analysts will fall back on using non-parametric tests.

Chapter 6

[137]

Many statistical tests, including the t-test and ANOVA, have non-parametric
alternatives. The appeal of these tests is, of course, that they are resistant to violations
of parametric assumptions—that they are robust. The drawback is that these tests are
usually less powerful than their parametric counterparts. In other words, they have
a somewhat diminished capacity for detecting an effect if there truly is one to detect.
For this reason, if you are going to use NHST, you should use the more powerful
tests by default, and switch only if you're assumptions are violated.

The non-parametric alternative to the independent t-test is called the Mann-Whitney
U test, though it is also known as the Wilcoxon rank-sum test. As you might expect by
now, there is a function to perform this test in R. Let's use it on the auto vs. manual
transmission example:

 > wilcox.test(automatic.mpgs, manual.mpgs)

 Wilcoxon rank sum test with continuity correction

 data: automatic.mpgs and manual.mpgs
 W = 42, p-value = 0.001871
 alternative hypothesis: true location shift is not equal to 0

Simple!

The non-parametric alternative to the one-way ANOVA is called the Kruskal-Wallis
test. Can you see where I'm going with this?

 > kruskal.test(wl2 ~ group, data=WeightLoss)

 Kruskal-Wallis rank sum test

 data: wl2 by group
 Kruskal-Wallis chi-squared = 14.7474, df = 2, p-value = 0.0006275

Super!

Exercises
Here are a few exercises for you to practise and revise the concepts learned in this
chapter:

•	 Read about data-dredging and p-hacking. Why is it dangerous not to
formulate a hypothesis, set an alpha level, and set a sample size before
collecting data and analyzing results?

Testing Hypotheses

[138]

•	 Use the command library(help="datasets") to find a list of datasets that
R has already built in. Pick a few interesting ones, and form a hypothesis
about each one. Rigorously define your null and alternative hypotheses
before you start. Test those hypotheses even if it means learning about other
statistical tests.

•	 How might you quantify the effect size of a one-way ANOVA. Look up
eta-squared if you get stuck.

•	 In ethics, the doctrine of moral relativism holds that there are no universal
moral truths, and that moral judgments are dependent upon one's culture
or period in history. How can moral progress (the abolition of slavery,
fairer trading practices) be reconciled with a relativistic view of morality? If
there is no objective moral paradigm, how can criticisms be lodged against
the current views of morality? Why replace existing moral judgments with
others if there is no standard to which to compare them to and, therefore, no
reason to prefer one over the other.

Summary
We covered huge ground in this chapter. By now, you should be up to speed on
some of the most common statistical tests. More importantly, you should have a
solid grasp of the theory behind NHST and why it works. This knowledge is far
more valuable than mechanically memorizing a list of statistical tests and clues for
when to use each.

You learned that NHST has its origin in testing whether a weird lady's claims about
tasting tea were true or not. The general procedure for NHST is to define your null
and alternative hypotheses, define and calculate your test statistic, determine the
shape and parameters of the sampling distribution of that test statistic, measure the
probability that you would observe a test statistic as or more extreme than the one
we observed (this is the p-value), and determine whether to reject or fail to reject
the null hypothesis based on the whether the p-value was below or above the alpha
level.

You then learned about one vs. two-tailed tests, Type I and Type II errors, and got
some warnings about terminology and common NHST misconceptions.

Chapter 6

[139]

Then, you learned a litany of statistical tests—we saw that the one sample t-test is
used in scenarios where we want to determine if a sample's mean is significantly
discrepant from some known population mean; we saw that independent samples
t-tests are used to compare the means of two distinct samples against each other;
we saw that we use one-way ANOVAs for testing multiple means, why it's
inappropriate to just perform a bunch of t-tests, and some methods of controlling
Type I error rate inflation. Finally, you learned how the chi-square test is used to
check the independence of proportions.

We then directly applied what you learned to real, fun data and tested real, fun
hypotheses. They were fun... right!?

Lastly, we discussed parametric assumptions, how to verify that they were met, and
one option for circumventing their violation at the cost of power: non-parametric
tests. We learned that the non-parametric alternative to the independent samples
t-test is available in R as wilcox.test, and the non-parametric alternative to the
one-way ANOVA is available in R using the kruskal.test function.

In the next chapter, we will also be discussing mechanisms for testing hypotheses,
but this time, we will be using an attractive alternative to NHST based on the famous
theorem by Reverend Thomas Bayes that you learned about in Chapter 4, Probability.
You'll see how this other method of inference addresses some of the shortcomings
(deserved or not) of NHST, and why it's gaining popularity in modern applied data
analysis. See you there!

[141]

Bayesian Methods
Suppose I claim that I have a pair of magic rainbow socks. I allege that whenever
I wear these special socks, I gain the ability to predict the outcome of coin tosses,
using fair coins, better than chance would dictate. Putting my claim to the test,
you toss a coin 30 times, and I correctly predict the outcome 20 times. Using a
directional hypothesis with the binomial test, the null hypothesis would be
rejected at alpha-level 0.05. Would you invest in my special socks?

Why not? If it's because you require a larger burden of proof on absurd claims,
I don't blame you. As a grandparent of Bayesian analysis Pierre-Simon Laplace
(who independently discovered the theorem that bears Thomas Bayes' name)
once said: The weight of evidence for an extraordinary claim must be proportioned
to its strangeness. Our prior belief—my absurd hypothesis—is so small that it
would take much stronger evidence to convince the skeptical investor, let alone
the scientific community.

Unfortunately, if you'd like to easily incorporate your prior beliefs into NHST,
you're out of luck. Or suppose you need to assess the probability of the null
hypothesis; you're out of luck there, too; NHST assumes the null hypothesis
and can't make claims about the probability that a particular hypothesis is true.
In cases like these (and in general), you may want to use Bayesian methods
instead of frequentist methods. This chapter will tell you how. Join me!

Bayesian Methods

[142]

The big idea behind Bayesian analysis
If you recall from Chapter 4, Probability, the Bayesian interpretation of probability
views probability as our degree of belief in a claim or hypothesis, and Bayesian
inference tells us how to update that belief in the light of new evidence. In that
chapter, we used Bayesian inference to determine the probability that employees
of Daisy Girl, Inc. were using an illegal drug. We saw how the incorporation of
prior beliefs saved two employees from being falsely accused and helped another
employee get the help she needed even though her drug screen was falsely negative.

In a general sense, Bayesian methods tell us how to dole out credibility to different
hypotheses, given prior belief in those hypotheses and new evidence. In the
drug example, the hypothesis suite was discrete: drug user or not drug user. More
commonly, though, when we perform Bayesian analysis, our hypothesis concerns a
continuous parameter, or many parameters. Our posterior (or updated beliefs) was
also discrete in the drug example, but Bayesian analysis usually yields a continuous
posterior called a posterior distribution.

We are going to use Bayesian analysis to put my magical rainbow socks claim
to the test. Our parameter of interest is the proportion of coin tosses that I can
correctly predict wearing the socks; we'll call this parameter θ, or theta. Our goal is to
determine what the most likely values of theta are and whether they constitute proof
of my claim.

Refer back to the section on Bayes' theorem in Chapter 4, Probability Recall that the
posterior was the prior times the likelihood divided by a normalizing constant. This
normalizing constant is often difficult to compute. Luckily, since it doesn't change
the shape of the posterior distribution, and we are comparing relative likelihoods
and probability densities, Bayesian methods often ignore this constant. So, all we
need is a probability density function to describe our prior belief and a likelihood
function that describes the likelihood that we would get the evidence we received
given different parameter values.

Chapter 7

[143]

The likelihood function is a binomial function, as it describes the behavior of Bernoulli
trials; the binomial likelihood function for this evidence is shown in Figure 7.1:

Figure 7.1: The likelihood function of theta for 20 out of 30 successful Bernoulli trials.

For different values of theta, there are varying relative likelihoods. Note that the
value of theta that corresponds to the maximum of the likelihood function is 0.667,
which is the proportion of successful Bernoulli trials. This means that in the absence
of any other information, the most likely proportion of coin flips that my magic socks
allow me to predict is 67%. This is called the Maximum Likelihood Estimate (MLE).

So, we have the likelihood function; now we just need to choose a prior. We will be
crafting a representation of our prior beliefs using a type of distribution called a beta
distribution, for reasons that we'll see very soon.

Since our posterior is a blend of the prior and likelihood function, it is common
for analysts to use a prior that doesn't much influence the results and allows the
likelihood function to speak for itself. To this end, one may choose to use a non-
informative prior that assigns equal credibility to all values of theta. This type of non-
informative prior is called a flat or uniform prior.

The beta distribution has two hyper-parameters, α (or alpha) and β (or beta). A beta
distribution with hyper-parameters α = β = 1 describes such a flat prior. We will
call this prior #1.

Bayesian Methods

[144]

These are usually referred to as the beta distribution's parameters. We
call them hyper-parameters here to distinguish them from our parameter
of interest, theta.

Figure 7.2: A flat prior on the value of theta. This beta distribution, with alpha and beta = 1, confers an equal
level of credibility to all possible values of theta, our parameter of interest.

This prior isn't really indicative of our beliefs, is it? Do we really assign as much
probability to my socks giving me perfect coin-flip prediction powers as we do to the
hypothesis that I'm full of baloney?

The prior that a skeptic might choose in this situation is one that looks more like the
one depicted in Figure 7.3, a beta distribution with hyper-parameters alpha = beta
= 50. This, rather appropriately, assigns far more credibility to values of theta that
are concordant with a universe without magical rainbow socks. As good scientists,
though, we have to be open-minded to new possibilities, so this doesn't rule out the
possibility that the socks give me special powers—the probability is low, but not
zero, for extreme values of theta. We will call this prior #2.

Chapter 7

[145]

Figure 7.3: A skeptic's prior

Before we perform the Bayesian update, I need to explain why I chose to use the beta
distribution to describe my priors.

The Bayesian update—getting to the posterior—is performed by multiplying the
prior with the likelihood. In the vast majority of applications of Bayesian analysis, we
don't know what that posterior looks like, so we have to sample from it many times
to get a sense of its shape. We will be doing this later in this chapter.

For cases like this, though, where the likelihood is a binomial function, using a
beta distribution for our prior guarantees that our posterior will also be in the beta
distribution family. This is because the beta distribution is a conjugate prior with
respect to a binomial likelihood function. There are many other cases of distributions
being self-conjugate with respect to certain likelihood functions, but it doesn't often
happen in practice that we find ourselves in a position to use them as easily as
we can for this problem. The beta distribution also has the nice property that it is
naturally confined from 0 to 1, just like the proportion of coin flips I can correctly
predict.

Bayesian Methods

[146]

The fact that we know how to compute the posterior from the prior and likelihood
by just changing the beta distribution's hyper-parameters makes things really easy in
this case. The hyper-parameters of the posterior distribution are:

new old number of successes
and

new old number of failures

α α

β β

= +

= +

That means the posterior distribution using prior #1 will have hyper-parameters
alpha=1+20 and beta=1+10. This is shown in Figure 7.4.

Figure 7.4: The result of the Bayesian update of the evidence and prior #1. The interval depicts the
95% credible interval (the densest 95% of the area under the posterior distribution). This interval

overlaps slightly with theta = 0.5.

A common way of summarizing the posterior distribution is with a credible interval.
The credible interval on the plot in Figure 7.4 is the 95% credible interval and
contains 95% of the densest area under the curve of the posterior distribution.

Do not confuse this with a confidence interval. Though it may look like it, this
credible interval is very different than a confidence interval. Since the posterior
directly contains information about the probability of our parameter of interest at
different values, it is admissible to claim that there is a 95% chance that the correct
parameter value is in the credible interval. We could make no such claim with
confidence intervals. Please do not mix up the two meanings, or people will laugh
you out of town.

Chapter 7

[147]

Observe that the 95% most likely values for theta contain the theta value 0.5, if only
barely. Due to this, one may wish to say that the evidence does not rule out the
possibility that I'm full of baloney regarding my magical rainbow socks, but the
evidence was suggestive.

To be clear, the end result of our Bayesian analysis is the posterior distribution
depicting the credibility of different values of our parameter. The decision to
interpret this as sufficient or insufficient evidence for my outlandish claim is a
decision that is separate from the Bayesian analysis proper. In contrast to NHST, the
information we glean from Bayesian methods—the entire posterior distribution—is
much richer. Another thing that makes Bayesian methods great is that you can make
intuitive claims about the probability of hypotheses and parameter values in a way
that frequentist NHST does not allow you to do.

What does that posterior using prior #2 look like? It's a beta distribution with
alpha = 50 + 20 and beta = 50 + 10:

 > curve(dbeta(x, 70, 60), # plot a beta distribution
 + xlab="θ", # name x-axis
 + ylab="posterior belief", # name y-axis
 + type="l", # make smooth line
 + yaxt='n') # remove y axis labels
 > abline(v=.5, lty=2) # make line at theta = 0.5

Figure 7.5: Posterior distribution of theta using prior #2

Bayesian Methods

[148]

Choosing a prior
Notice that the posterior distribution looks a little different depending on what
prior you use. The most common criticism lodged against Bayesian methods is that
the choice of prior adds an unsavory subjective element to analysis. To a certain
extent, they're right about the added subjective element, but their allegation that it is
unsavory is way off the mark.

To see why, check out Figure 7.6, which shows both posterior distributions (from
priors #1 and #2) in the same plot. Notice how priors #1 and #2—two very different
priors—given the evidence, produce posteriors that look more similar to each other
than the priors did.

Figure 7.6: The posterior distributions from prior #1 and #2

Chapter 7

[149]

Now direct your attention to Figure 7.7, which shows the posterior of both priors if
the evidence included 80 out of 120 correct trials.

Figure 7.7: The posterior distributions from prior #1 and #2 with more evidence

Note that the evidence still contains 67% correct trials, but there is now more
evidence. The posterior distributions are now far more similar. Notice that now
both of the posteriors' credible intervals do not contain theta = 0.5; with 80 out
of 120 trials correctly predicted, even the most obstinate skeptic has to concede that
something is going on (though they will probably disagree that the power comes
from the socks!).

Take notice also of the fact that the credible intervals, in both posteriors, are now
substantially narrowing, illustrating more confidence in our estimate.

Bayesian Methods

[150]

Finally, imagine the case where I correctly predicted 67% of the trials, but out of 450
total trials. The posteriors derived from this evidence are shown in Figure 7.8:

Figure 7.8: The posterior distributions from prior #1 and #2 with even more evidence

The posterior distributions are looking very similar—indeed, they are becoming
identical. Given enough trials—given enough evidence—these posterior
distributions will be exactly the same. When there is enough evidence available such
that the posterior is dominated by it compared to the prior, it is called overwhelming
the prior.

As long as the prior is reasonable (that is, it doesn't assign a probability of 0 to
theoretically plausible parameter values), given enough evidence, everybody's
posterior belief will look very similar.

There is nothing unsavory or misleading about an analysis that uses a subjective
prior; the analyst just has to disclose what her prior is. You can't just pick a prior
willy-nilly; it has to be justifiable to your audience. In most situations, a prior may
be informed by prior evidence like scientific studies and can be something that most
people can agree on. A more skeptical audience may disagree with the chosen prior,
in which case the analysis can be re-run using their prior, just like we did in the
magic socks example. It is sometimes okay for people to have different prior beliefs, and it is
okay for some people to require a little more evidence in order to be convinced of something.

Chapter 7

[151]

The belief that frequentist hypothesis testing is more objective, and therefore
more correct, is mistaken insofar as it causes all parties to have a hold on the same
potentially bad assumptions. The assumptions in Bayesian analysis, on the other
hand, are stated clearly from the start, made public, and are auditable.

To recap, there are three situations you can come across. In all of these, it makes
sense to use Bayesian methods, if that's your thing:

•	 You have a lot of evidence, and it makes no real difference which prior any
reasonable person uses, because the evidence will overwhelm it.

•	 You have very little evidence, but have to make an important decision given
the evidence. In this case, you'd be foolish to not use all available information
to inform your decisions.

•	 You have a medium amount of evidence, and different posteriors illustrate
the updated beliefs from a diverse array of prior beliefs. You may require
more evidence to convince the extremely skeptical, but the majority of
interested parties will be come to the same conclusions.

Who cares about coin flips
Who cares about coin flips? Well, virtually no one. However, (a) coin flips are a great
simple application to get the hang of Bayesian analysis; (b) the kinds of problems that a beta
prior and a binomial likelihood function solve go way beyond assessing the fairness of coin
flips. We are now going to apply the same technique to a real life problem that I
actually came across in my work.

For my job, I had to create a career recommendation system that asked the user a few
questions about their preferences and spat out some careers they may be interested
in. After a few hours, I had a working prototype. In order to justify putting more
resources into improving the project, I had to prove that I was on to something and
that my current recommendations performed better than chance.

In order to test this, we got 40 people together, asked them the questions,
and presented them with two sets of recommendations. One was the true
set of recommendations that I came up with, and one was a control set—the
recommendations of a person who answered the questions randomly. If my set of
recommendations performed better than chance would dictate, then I had a good
thing going, and could justify spending more time on the project.

Simply performing better than chance is no great feat on its own—I also wanted
really good estimates of how much better than chance my initial recommendations
were.

Bayesian Methods

[152]

For this problem, I broke out my Bayesian toolbox! The parameter of interest is the
proportion of the time my recommendations performed better than chance. If .05 and
lower were very unlikely values of the parameter, as far as the posterior depicted,
then I could conclude that I was on to something.

Even though I had strong suspicions that my recommendations were good, I used
a uniform beta prior to preemptively thwart criticisms that my prior biased the
conclusions. As for the likelihood function, it is the same function family we used for
the coin flips (just with different parameters).

It turns out that 36 out of the 40 people preferred my recommendations to the
random ones (three liked them both the same, and one weirdo liked the random ones
better). The posterior distribution, therefore, was a beta distribution with parameters
37 and 5.

 > curve(dbeta(x, 37, 5), xlab="θ",
 + ylab="posterior belief",
 + type="l", yaxt='n')

Figure 7.9: The posterior distribution of the effectiveness of my recommendations using a uniform prior

Again, the end result of the Bayesian analysis proper is the posterior distribution that
illustrates credible values of the parameter. The decision to set an arbitrary threshold
for concluding that my recommendations were effective or not is a separate matter.

Chapter 7

[153]

Let's say that, before the fact, we stated that if .05 or lower were not among the 95%
most credible values, we would conclude that my recommendations were effective.
How do we know what the credible interval bounds are?

Even though it is relatively straightforward to determine the bounds of the credible
interval analytically, doing so ourselves computationally will help us understand how
the posterior distribution is summarized in the examples given later in this chapter.

To find the bounds, we will sample from a beta distribution with hyper-parameters
37 and 5 thousands of times and find the quantiles at .025 and .975.

 > samp <- rbeta(10000, 37, 5)
 > quantile(samp, c(.025, .975))
 2.5% 97.5%
 0.7674591 0.9597010

Neat! With the previous plot already up, we can add lines to the plot indicating this
95% credible interval, like so:

 # horizontal line
 > lines(c(.767, .96), c(0.1, 0.1)
 > # tiny vertical left boundary
 > lines(c(.767, .769), c(0.15, 0.05))
 > # tiny vertical right boundary
 > lines(c(.96, .96), c(0.15, 0.05))

If you plot this yourself, you'll see that even the lower bound is far from the decision
boundary—it looks like my work was worth it after all!

The technique of sampling from a distribution many many times to obtain numerical
results is known as Monte Carlo simulation.

Enter MCMC – stage left
As mentioned earlier, we started with the coin flip examples because of the ease of
determining the posterior distribution analytically—primarily because of the beta
distribution's self-conjugacy with respect to the binomial likelihood function.

It turns out that most real-world Bayesian analyses require a more complicated
solution. In particular, the hyper-parameters that define the posterior distribution
are rarely known. What can be determined is the probability density in the posterior
distribution for each parameter value. The easiest way to get a sense of the shape
of the posterior is to sample from it many thousands of times. More specifically, we
sample from all possible parameter values and record the probability density at that
point.

Bayesian Methods

[154]

How do we do this? Well, in the case of just one parameter value, it's often
computationally tractable to just randomly sample willy-nilly from the space of
all possible parameter values. For cases where we are using Bayesian analysis to
determine the credible values for two parameters, things get a little more hairy.

The posterior distribution for more than one parameter value is a called a joint
distribution; in the case of two parameters, it is, more specifically, a bivariate
distribution. One such bivariate distribution can be seen in Figure 7.10:

Figure 7.10: A bivariate normal distribution

To picture what it is like to sample a bivariate posterior, imagine placing a bell jar on
top of a piece of graph paper (be careful to make sure Ester Greenwood isn't under
there!). We don't know the shape of the bell jar but we can, for each intersection
of the lines in the graph paper, find the height of the bell jar over that exact point.
Clearly, the smaller the grid on the graph paper, the higher resolution our estimate of
the posterior distribution is.

Chapter 7

[155]

Note that in the univariate case, we were sampling from n points, in the bivariate

case, we are sampling from
2n points (n points for each axis). For models with more

than two parameters, it is simply intractable to use this random sampling method.
Luckily, there's a better option than just randomly sampling the parameter space:
Markov Chain Monte Carlo (MCMC).

I think the easiest way to get a sense of what MCMC is, is by likening it to the
game hot and cold. In this game—which you may have played as a child—an object
is hidden and a searcher is blindfolded and tasked with finding this object. As the
searcher wanders around, the other player tells the searcher whether she is hot or
cold; hot if she is near the object, cold when she is far from the object. The other player
also indicates whether the movement of the searcher is getting her closer to the object
(getting warmer) or further from the object (getting cooler).

In this analogy, warm regions are areas were the probability density of the posterior
distribution is high, and cool regions are the areas were the density is low. Put in this
way, random sampling is like the searcher teleporting to random places in the space
where the other player hid the object and just recording how hot or cold it is at that
point. The guided behavior of the player we described before is far more efficient at
exploring the areas of interest in the space.

At any one point, the blindfolded searcher has no memory of where she has been
before. Her next position only depends on the point she is at currently (and the
feedback of the other player). A memory-less transition process whereby the next
position depends only upon the current position, and not on any previous positions,
is called a Markov chain.

The technique for determining the shape of high-dimensional posterior distributions
is therefore called Markov chain Monte Carlo, because it uses Markov chains to
intelligently sample many times from the posterior distribution (Monte Carlo
simulation).

The development of software to perform MCMC on commodity hardware is, for
the most part, responsible for a Bayesian renaissance in recent decades. Problems that
were, not too long ago, completely intractable are now possible to be performed on
even relatively low-powered computers.

Bayesian Methods

[156]

There is far more to know about MCMC then we have the space to discuss here.
Luckily, we will be using software that abstracts some of these deeper topics away
from us. Nevertheless, if you decide to use Bayesian methods in your own analyses
(and I hope you do!), I'd strongly recommend consulting resources that can afford to
discuss MCMC at a deeper level. There are many such resources, available for free,
on the web.

Before we move on to examples using this method, it is important that we bring
up this one last point: Mathematically, an infinitely long MCMC chain will give us
a perfect picture of the posterior distribution. Unfortunately, we don't have all the
time in the world (universe [?]), and we have to settle for a finite number of MCMC
samples. The longer our chains, the more accurate the description of the posterior.
As the chains get longer and longer, each new sample provides a smaller and smaller
amount of new information (economists call this diminishing marginal returns). There
is a point in the MCMC sampling where the description of the posterior becomes
sufficiently stable, and for all practical purposes, further sampling is unnecessary.
It is at this point that we say the chain converged. Unfortunately, there is no perfect
guarantee that our chain has achieved convergence. Of all the criticisms of using
Bayesian methods, this is the most legitimate—but only slightly.

There are really effective heuristics for determining whether a running chain has
converged, and we will be using a function that will automatically stop sampling
the posterior once it has achieved convergence. Further, convergence can be all but
perfectly verified by visual inspection, as we'll see soon.

For the simple models in this chapter, none of this will be a problem, anyway.

Using JAGS and runjags
Although it's a bit silly to break out MCMC for the single-parameter career
recommendation analysis that we discussed earlier, applying this method to this
simple example will aid in its usage for more complicated models.

In order to get started, you need to install a software program called JAGS, which
stands for Just Another Gibbs Sampler (a Gibbs sampler is a type of MCMC sampler).
This program is independent of R, but we will be using R packages to communicate
with it. After installing JAGS, you will need to install the R packages rjags,
runjags, and modeest. As a reminder, you can install all three with this command:

 > install.packages(c("rjags", "runjags", "modeest"))

Chapter 7

[157]

To make sure everything is installed properly, load the runjags package, and run
the function testjags(). My output looks something like this:

 > library(runjags)
 > testjags()
 You are using R version 3.2.1 (2015-06-18) on a unix machine,
 with the RStudio GUI
 The rjags package is installed
 JAGS version 3.4.0 found successfully using the command
 '/usr/local/bin/jags'

The first step is to create the model that describes our problem. This model is written
in an R-like syntax and stored in a string (character vector) that will get sent to JAGS
to interpret. For this problem, we will store the model in a string variable called our.
model, and the model looks like this:

 our.model <- "
 model {
 # likelihood function
 numSuccesses ~ dbinom(successProb, numTrials)

 # prior
 successProb ~ dbeta(1, 1)

 # parameter of interest
 theta <- numSuccesses / numTrials
 }"

Note that the JAGS syntax allows for R-style comments, which I included for clarity.

In the first few lines of the model, we are specifying the likelihood function. As we
know, the likelihood function can be described with a binomial distribution. The line:

 numSuccesses ~ dbinom(successProb, numTrials)

says the variable numSuccesses is distributed according to the binomial function
with hyper-parameters given by variable successProb and numTrials.

Bayesian Methods

[158]

In the next relevant line, we are specifying our choice of the prior distribution. In
keeping with our previous choice, this line reads, roughly: the successProb variable
(referred to in the previous relevant line) is distributed in accordance with the beta
distribution with hyper-parameters 1 and 1.

In the last line, we are specifying that the parameter we are really interested in is
the proportion of successes (number of successes divided by the number of trials). We
are calling that theta. Notice that we used the deterministic assignment operator (<-)
instead of the distributed according to operator (~) to assign theta.

The next step is to define the successProb and numTrials variables for shipping to
JAGS. We do this by stuffing these variables in an R list. We do this as follows:

 our.data <- list(
 numTrials = 40,
 successProb = 36/40
)

Great! We are all set to run the MCMC.

 > results <- autorun.jags(our.model,
 + data=our.data,
 + n.chains = 3,
 + monitor = c('theta'))

The function that runs the MCMC sampler and automatically stops at convergence
is autorun.jags. The first argument is the string specifying the JAGS model. Next,
we tell the function where to find the data that JAGS will need. After this, we
specify that we want to run 3 independent MCMC chains; this will help guarantee
convergence and, if we run them in parallel, drastically cut down on the time we
have to wait for our sampling to be done. (To see some of the other options available,
as always, you can run ?autorun.jags.) Lastly, we specify that we are interested in
the variable 'theta'.

After this is done, we can directly plot the results variable where the results of the
MCMC are stored. The output of this command is shown in Figure 7.11.

 > plot(results,
 + plot.type=c("histogram", "trace"),
 + layout=c(2,1))

Chapter 7

[159]

Figure 7.11: Output plots from the MCMC results. The top is a trace plot of theta values along the chain's
length. The bottom is a bar plot depicting the relative credibility of different theta values.

The first of these plots is called a trace plot. It shows the sampled values of theta
as the chain got longer. The fact that all three chains are overlapping around the
same set of values is, at least in this case, a strong guarantee that all three chains
have converged. The bottom plot is a bar plot that depicts the relative credibility
of different values of theta. It is shown here as a bar plot, and not a smooth curve,
because the binomial likelihood function is discrete. If we want a continuous
representation of the posterior distribution, we can extract the sample values from
the results and plot it as a density plot with a sufficiently large bandwidth:

 > # mcmc samples are stored in mcmc attribute
 > # of results variable
 > results.matrix <- as.matrix(results$mcmc)
 >

Bayesian Methods

[160]

 > # extract the samples for 'theta'
 > # the only column, in this case
 > theta.samples <- results.matrix[,'theta']
 >
 > plot(density(theta.samples, adjust=5))

And we can add the bounds of the 95% credible interval to the plot as before:

 > quantile(theta.samples, c(.025, .975))
 2.5% 97.5%
 0.800 0.975
 > lines(c(.8, .975), c(0.1, 0.1))
 > lines(c(.8, .8), c(0.15, 0.05))
 > lines(c(.975, .975), c(0.15, 0.05))

Figure 7.12: Density plot of the posterior distribution. Note that the x-axis starts here at 0.6

Rest assured that there is only a disagreement between the two credible intervals'
bounds in this example because the MCMC could only sample discrete values from
the posterior since the likelihood function is discrete. This will not occur in the other
examples in this chapter. Regardless, the two methods seem to be in agreement
about the shape of the posterior distribution and the credible values of theta. It is all
but certain that my recommendations are better than chance. Go me!

Chapter 7

[161]

Fitting distributions the Bayesian way
In this next example, we are going to be fitting a normal distribution to the
precipitation dataset that we worked with in the previous chapter. We will wrap up
with Bayesian analogue to the one sample t-test.

The results we want from this analysis are credible values of the true population
mean of the precipitation data. Refer back to the previous chapter to recall that the
sample mean was 34.89. In addition, we will also be determining credible values of the
standard deviation of the precipitation data. Since we are interested in the credible
values of two parameters, our posterior distribution is a joint distribution.

Our model will look a little differently now:

the.model <- "
model {
 mu ~ dunif(0, 60) # prior
 stddev ~ dunif(0, 30) # prior
 tau <- pow(stddev, -2)

 for(i in 1:theLength){
 samp[i] ~ dnorm(mu, tau) # likelihood function
 }
}"

This time, we have to set two priors, one for the mean of the Gaussian curve that
describes the precipitation data (mu), and one for the standard deviation (stddev).
We also have to create a variable called tau that describes the precision (inverse of
the variance) of the curve, because dnorm in JAGS takes the mean and the precision
as hyper-parameters (and not the mean and standard deviation, like R). We specify
that our prior for the mu parameter is uniformly distributed from 0 inches of rain to
60 inches of rain—far above any reasonable value for the population precipitation
mean. We also specify that our prior for the standard deviation is a flat one from 0 to
30. If this were part of any meaningful analysis and not just a pedagogical example,
our priors would be informed in part by precipitation data from other regions like
the US or my precipitation data from previous years. JAGS comes chock full of
different families of distributions for expressing different priors.

Next, we specify that the variable samp (which will hold the precipitation data) is
distributed normally with unknown parameters mu and tau.

Bayesian Methods

[162]

Then, we construct an R list to hold the variables to send to JAGS:

 the.data <- list(
 samp = precip,
 theLength = length(precip)
)

Cool, let's run it! On my computer, this takes 5 seconds.

 > results <- autorun.jags(the.model,
 + data=the.data,
 + n.chains = 3,
 + # now we care about two parameters
 + monitor = c('mu', 'stddev'))

Let's plot the results directly like before, while being careful to plot both the trace plot
and histogram from both parameters by increasing the layout argument in the call to
the plot function.

 > plot(results,
 + plot.type=c("histogram", "trace"),
 + layout=c(2,2))

Figure 7.13: Output plots from the MCMC result of fitting a normal curve to the built-in precipitation data set

Chapter 7

[163]

Figure 7.14 shows the distribution of credible values of the mu parameter without
reference to the stddev parameter. This is called a marginal distribution.

Figure 7.14: Marginal distribution of posterior for parameter 'mu'. Dashed line shows hypothetical population
mean within 95% credible interval

Remember when, in the last chapter, we wanted to determine whether the US' mean
precipitation was significantly discrepant from the (hypothetical) known population
mean precipitation of the rest of the world of 38 inches. If we take any value outside
the 95% credible interval to indicate significance, then, just like when we used the
NHST t-test, we have to reject the hypothesis that there is significantly more or less
rain in the US than in the rest of the world.

Before we move on to the next example, you may be interested in credible values
for both the mean and the standard deviation at the same time. A great type of
plot for depicting this information is a contour plot, which illustrates the shape of
a three-dimensional surface by showing a series of lines for which there is equal
height. In Figure 7.15, each line shows the edges of a slice of the posterior distribution
that all have equal probability density.

 > results.matrix <- as.matrix(results$mcmc)
 >
 > library(MASS)
 > # we need to make a kernel density

Bayesian Methods

[164]

 > # estimate of the 3-d surface
 > z <- kde2d(results.matrix[,'mu'],
 + results.matrix[,'stddev'],
 + n=50)
 >
 > plot(results.matrix)
 > contour(z, drawlabels=FALSE,
 + nlevels=11, col=rainbow(11),
 + lwd=3, add=TRUE)

Figure 7.15: Contour plot of the joint posterior distribution. The purple contour corresponds to the region with
the highest probability density

The purple contours (the inner-most contours) show the region of the posterior with
the highest probability density. These correspond to the most likely values of our
two parameters. As you can see, the most likely values of the parameters for the
normal distribution that best describes our present knowledge of US precipitation
are a mean of a little less than 35 and a standard deviation of a little less than 14. We
can corroborate the results of our visual inspection by directly printing the results
variable:

> print(results)

JAGS model summary statistics from 30000 samples (chains = 3;
adapt+burnin = 5000):

Chapter 7

[165]

 Lower95 Median Upper95 Mean SD Mode
mu 31.645 34.862 38.181 34.866 1.6639 34.895
stddev 11.669 13.886 16.376 13.967 1.2122 13.773

 MCerr MC%ofSD SSeff AC.10 psrf
mu 0.012238 0.7 18484 0.002684 1.0001
stddev 0.0093951 0.8 16649 -0.0053588 1.0001

Total time taken: 5 seconds

which also shows other summary statistics from our MCMC samples and some
information about the MCMC process.

The Bayesian independent samples t-test
For our last example in the chapter, we will be performing a sort-of Bayesian
analogue to the two-sample t-test using the same data and problem from the
corresponding example in the previous chapter—testing whether the means of the
gas mileage for automatic and manual cars are significantly different.

There is another popular Bayesian alternative to NHST, which uses
something called Bayes factors to compare the likelihood of the null and
alternative hypotheses.

As before, let's specify the model using non-informative flat priors:

the.model <- "
model {
 # each group will have a separate mu
 # and standard deviation
 for(j in 1:2){
 mu[j] ~ dunif(0, 60) # prior
 stddev[j] ~ dunif(0, 20) # prior
 tau[j] <- pow(stddev[j], -2)
 }
 for(i in 1:theLength){
 # likelihood function
 y[i] ~ dnorm(mu[x[i]], tau[x[i]])
 }
}"

Notice that the construct that describes the likelihood function is a little different
now; we have to use nested subscripts for the mu and tau parameters to tell JAGS
that we are dealing with two different versions of mu and stddev.

Bayesian Methods

[166]

Next, the data:

the.data <- list(
 y = mtcars$mpg,
 # 'x' needs to start at 1 so
 # 1 is now automatic and 2 is manual
 x = ifelse(mtcars$am==1, 1, 2),
 theLength = nrow(mtcars)
)

Finally, let's roll!

 > results <- autorun.jags(the.model,
 + data=the.data,
 + n.chains = 3,
 + monitor = c('mu', 'stddev'))

Let's extract the samples for both 'mu's and make a vector that holds the differences
in the mu samples between each of the two groups.

 > results.matrix <- as.matrix(results$mcmc)
 > difference.in.means <- (results.matrix[,1] –
 + results.matrix[,2])

Figure 7.16 shows a plot of the credible differences in means. The likely differences in
means are far above a difference of zero. We are all but certain that the means of the
gas mileage for automatic and manual cars are significantly different.

Figure 7.16: Credible values for the difference in means of the gas mileage between automatic and manual cars.
The dashed line is at a difference of zero

Chapter 7

[167]

Notice that the decision to mimic the independent samples t-test made us focus on
one particular part of the Bayesian analysis and didn't allow us to appreciate some of
the other very valuable information the analysis yielded. For example, in addition to
having a distribution illustrating credible differences in means, we have the posterior
distribution for the credible values of both the means and standard deviations of
both samples. The ability to make a decision on whether the samples' means are
significantly different is nice—the ability to look at the posterior distribution of the
parameters is better.

Exercises
Practise the following exercises to reinforce the concepts learned in this chapter:

•	 Write a function that will take a vector holding MCMC samples for a
parameter and plot a density curve depicting the posterior distribution and
the 95% credible interval. Be careful of different scales on the y-axis.

•	 Fitting a normal curve to an empirical distribution is conceptually easy, but
not very robust. For distribution fitting that is more robust to outliers, it's
common to use a t-distribution instead of the normal distribution, since the t
has heavier tails. View the distribution of the shape attribute of the built-in
rock dataset. Does this look normally distributed? Find the parameters of a
normal curve that is a fit to the data. In JAGS, dt, the t-distribution density
function, takes three parameters: the mean, the precision, and the degrees
of freedom that controls the heaviness of the tails. Find the parameters after
fitting a t-distribution to the data. Are the means similar? Which estimate of
the mean do you think is more representative of central tendency?

•	 In Theseus' paradox, a wooden ship belonging to Theseus has decaying
boards, which are removed and replaced with new lumber. Eventually, all
the boards in the original ship have been replaced, so that the ship is made
up of completely new matter. Is it still Theseus' ship? If not, at what point did
it become a different ship?

What would Aristotle say about this? Appeal to the doctrine of the Four
Causes. Would Aristotle's stance still hold up if—as in Thomas Hobbes'
version of the paradox—the original decaying boards were saved and used
to make a complete replica of Theseus' original ship?

Bayesian Methods

[168]

Summary
Although most introductory data analysis texts don't even broach the topic of
Bayesian methods, you, dear reader, are versed enough in this matter to start
applying these techniques to real problems.

We discovered that Bayesian methods could—at least for the models in this
chapter—not only allow us to answer the same kinds of questions we might use the
binomial, one sample t-test, and the independent samples t-test for, but provide a
much richer and more intuitive depiction of our uncertainty in our estimates.

If these approaches interest you, I urge you to learn more about how to extend these
to supersede other NHST tests. I also urge you to learn more about the mathematics
behind MCMC.

As with the last chapter, we covered much ground here. If you made it through,
congratulations!

This concludes the unit on confirmatory data analysis and inferential statistics. In the
next unit, we will be concerned less with estimating parameters, and more interested
in prediction. Last one there is a rotten egg!

[169]

Predicting Continuous
Variables

Now that we've fully covered introductory inferential statistics, we're now going to
shift our attention to one of the most exciting and practically useful topics in data
analysis: predictive analytics. Throughout this chapter, we are going to introduce
concepts and terminology from a closely related field called statistical learning or, as
it's (somehow) more commonly referred to, machine learning.

Whereas in the last unit, we were using data to make inferences about the world, this
unit is primarily about using data to make inferences (or predictions) about other
data. On the surface, this might not sound more appealing, but consider the fruits
of this area of study: if you've ever received a call from your credit card company
asking to confirm a suspicious purchase that you, in fact, did not make, it's because
sophisticated algorithms learned your purchasing behavior and were able to detect
deviation from that pattern.

Since this is the first chapter leaving inferential statistics and delving into predictive
analytics, it's only natural that we would start with a technique that is used for both
ends: linear regression.

At the surface level, linear regression is a method that is used both to predict the
values that continuous variables take on, and to make inferences about how certain
variables are related to a continuous variable. These two procedures, prediction and
inference, foundationally rely on the information from statistical models. Statistical
models are idealized representations of a theory meant to illustrate and explain a
process that generates data. A model is usually an equation, or series of equations,
with some number of parameters.

Predicting Continuous Variables

[170]

Throughout this chapter, remember the quote (generally attributed to) George Box:

All models are wrong but some are useful.

A model airplane or car might not be the real thing, but it can help us learn and
understand some pretty powerful properties of the object that is being modeled.

Although linear regression is, at a high level, conceptually quite simple, it is
absolutely indispensable to modern applied statistics, and a thorough understanding
of linear models will pay enormous dividends throughout your career as an analyst.

Linear models
A small baking outfit in upstate New York called No Scone Unturned keeps careful
records of the baked goods it produces. The left panel of Figure 8.1 is a scatterplot of
diameters and circumferences (in centimeters) of No Scone Unturned's cookies, and
depicts their relationship:

Figure 8.1: (left) A scatterplot of diameters and circumferences of No Scone Unturned's cookies; (right) the same
plot with a best fit regression line plotted over the data points

A straight line is the perfect thing to represent this data. After fitting a straight line
to the data, we can make predictions about the circumferences of cookies that we
haven't observed, like 11 or 0.7 (if you weren't playing truant in grade school, you'd
know there's a consistent and predictable relationship between the diameter of a
circle and the circle's circumference, namely π, but we'll ignore that for now).

Chapter 8

[171]

You may have learned that the equation that describes a line in a Cartesian plane is:

y mx b= +

where b is the y-intercept (the place where the line intersects with the vertical line at
0x =), and m is the slope (describing the direction and steepness of the line).

In linear regression, the equation describing y as a function of x is written as:

0 1y b b x= +

where 0b (sometimes 0β) is the y-intercept, and 1b (sometimes 1β) is the slope.
Collectively, the b s are known as the beta coefficients.

The equation of the line that best describes this data is:

0 3.1415y x= +

making 0b and 1b 0 and π respectively.

Knowing this, it is easy to predict the circumferences of cookies that we haven't
measured yet. The circumference of the cookie with a diameter of 11 centimeters is 0
+ 3.1415()11 or 34.558 and a cookie of 0.7 centimeters is 0 + 3.1415(0.7) or 2.2.

In predictive analytics' parlance, the variable that we are trying to predict is called
the dependent (or, sometimes, target) variable, because its values are dependent on
other variables. The variables that we use to predict the dependent variable are
called independent (or, sometimes, predictor) variables.

Before moving on to a less silly example, it is important to understand the proper
interpretation of the slope 1b : it describes how much the dependent variable
increases (or decreases) for each unit increase of the independent variable. In this
case, for every centimeter increase in a cookie's diameter, the circumference increases
π centimeters. In contrast, a negative 1b indicates that as the independent variable
increases, the dependent variable decreases.

Predicting Continuous Variables

[172]

Simple linear regression
On to a substantially less trivial example, let's say No Scone Unturned has been
keeping careful records of how many raisins (in grams) they have been using
for their famous oatmeal raisin cookies. They want to construct a linear model
describing the relationship between the area of a cookie (in centimeters squared) and
how many raisins they use, on average.

In particular, they want to use linear regression to predict how many grams of raisins
they will need for a 1-meter long oatmeal raisin cookie. Predicting a continuous
variable (grams of raisins) from other variables sounds like a job for regression! In
particular, when we use just a single predictor variable (the area of the cookies), the
technique is called simple linear regression.

The left panel of Figure 8.2 illustrates the relationship between the area of cookies
and the amount of raisins it used. It also shows the best-fit regression line:

Figure 8.2: (left) A scatterplot of areas and grams of raisins in No Scone Unturned's cookies with a best-fit
regression line; (right) the same plot with highlighted residuals

Note that, in contrast to the last example, virtually none of the data points actually
rest on the best-fit line—there are now errors. This is because there is a random
component to how many raisins are used.

Chapter 8

[173]

The right panel of Figure 8.2 draws dashed red lines between each data point and
what the best-fit line would predict is the amount of raisins necessary. These dashed
lines represent the error in the prediction, and these errors are called residuals.

So far, we haven't discussed how the best-fit line is determined. In essence, the line of
the best fit will minimize the amount of dashed line. More specifically, the residuals
are squared and all added up—this is called the Residual Sum of Squares (RSS).
The line that is the best fit will minimize the RSS. This method is called ordinary least
squares, or OLS.

Look at the two plots in Figure 8.3. Notice how the regression lines are drawn in ways
that clearly do not minimize the amount of red line. The RSS can be further minimized
by increasing the slope in the first plot, and decreasing it in the second plot:

Figure 8.3: Two regression lines that do not minimize the RSS

Now that there are differences between the observed values and the predicted
values—as there will be in every real-life linear regression you perform—the
equation that describes y , the dependent variable, changes slightly:

0 1y b b x ε= + +

Predicting Continuous Variables

[174]

The equation without the residual term only describes our prediction, ŷ ,
pronounced y hat (because it looks like y is wearing a little hat:)

0 1ŷ b b x= +

Our error term is, therefore, the difference between the value that our model predicts
and the actual empirical value for each observation i :

ˆi i iy yε = −

Formally, the RSS is:

()22

1 1

ˆ
n n

i i i
i i

RSS y yε
= =

= = −∑ ∑

Recall that this is the term that gets minimized when finding the best-fit line.

If the RSS is the sum of the squared residuals (or error terms), the mean of the
squared residuals is known as the Mean Squared Error (MSE), and is a very
important measure of the accuracy of a model.

Formally, the MSE is:

2

1

1 n

i
i

MSE
n

ε
=

= ∑

Occasionally, you will encounter the Root Mean Squared Error (RMSE) as a
measure of model fit. This is just the square root of the MSE, putting it in the same
units as the dependent variable (instead of units of the dependent variable squared).
The difference between the MSE and RMSE is like the difference between variance
and standard deviation, respectively. In fact, in both these cases (the MSE/RMSE and
variance/standard-deviation), the error terms have to be squared for the very same
reason; if they were not, the positive and negative residuals would cancel each other
out.

Now that we have a bit of the requisite math, we're ready to perform a simple linear
regression ourselves, and interpret the output. We will be using the venerable
mtcars data set, and try to predict a car's gas mileage (mpg) with the car's weight
(wt). We will also be using R's base graphics system (not ggplot2) in this section,
because the visualization of linear models is arguably simpler in base R.

Chapter 8

[175]

First, let's plot the cars' gas mileage as a function of their weights:

 > plot(mpg ~ wt, data=mtcars)

Here we employ the formula syntax that we were first introduced to in Chapter 3,
Describing Relationships and that we used extensively in Chapter 6, Testing Hypotheses.
We will be using it heavily in this chapter as well. As a refresher, mph ~ wt roughly
reads mpg as a function of wt.

Next, let's run a simple linear regression with the lm function, and save it to a
variable called model:

 > model <- lm(mpg ~ wt, data=mtcars)

Now that we have the model saved, we can, very simply, add a plot of the linear
model to the scatterplot we have already created:

 > abline(model)

Figure 8.4: The result of plotting output from lm

Predicting Continuous Variables

[176]

Finally, let's view the result of fitting the linear model using the summary function,
and interpret the output:

 > summary(model)

 Call:
 lm(formula = mpg ~ wt, data = mtcars)

 Residuals:
 Min 1Q Median 3Q Max
 -4.5432 -2.3647 -0.1252 1.4096 6.8727

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
 wt -5.3445 0.5591 -9.559 1.29e-10 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 3.046 on 30 degrees of freedom
 Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
 F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

The first block of text reminds us how the model was built syntax-wise (which can
actually be useful in situations where the lm call is performed dynamically).

Next, we see a five-number summary of the residuals. Remember that this is in units
of the dependent variable. In other words, the data point with the highest residual is
6.87 miles per gallon.

In the next block, labeled Coefficients, direct your attention to the two values
in the Estimate column; these are the beta coefficients that minimize the RSS.
Specifically, 0 37.285b = and 1 5.345b = − . The equation that describes the best-fit
linear model then is:

()37.285 5.345y x= + −

Remember, the way to interpret the 1b coefficient is for every unit increase of
the independent variable (it's in units of 1,000 pounds), the dependent variable
goes down (because it's negative) 5.345 units (which are miles per gallon). The 0b
coefficient indicates, rather nonsensically, that a car that weighs nothing would have
a gas mileage of 37.285 miles per gallon. Recall that all models are wrong, but some
are useful.

Chapter 8

[177]

If we wanted to predict the gas mileage of a car that weighed 6,000 pounds, our
equation would yield an estimate of 5.125 miles per gallon. Instead of doing the math
by hand, we can use the predict function as long as we supply it with a data frame
that holds the relevant information for new observations that we want to predict:

 > predict(model, newdata=data.frame(wt=6))
 1
 5.218297

Interestingly, we would predict a car that weighs 7,000 pounds would get -0.126
miles per gallon. Again, all models are wrong, but some are useful. For most
reasonable car weights, our very simple model yields reasonable predictions.

If we were only interested in prediction—and only interested in this particular
model—we would stop here. But, as I mentioned in this chapter's preface, linear
regression is also a tool for inference—and a pretty powerful one at that. In fact, we
will soon see that many of the statistical tests we were introduced to in Chapter 6 ,
Testing Hypotheses can be equivalently expressed and performed as a linear model.

When viewing linear regression as a tool of inference, it's important to remember
that our coefficients are actually just estimates. The cars observed in mtcars represent
just a small sample of all extant cars. If somehow we observed all cars and built a
linear model, the beta coefficients would be population coefficients. The coefficients
that we asked R to calculate are best guesses based on our sample, and, just like
our other estimates in previous chapters, they can undershoot or overshoot the
population coefficients, and their accuracy is a function of factors such as the sample
size, the representativeness of our sample, and the inherent volatility or noisiness of
the system we are trying to model.

As estimates, we can quantify our uncertainty in our beta coefficients using standard
error, as introduced in Chapter 5, Using Data to Reason About the World. The column
of values directly to the right of the Estimate column, labeled Std. Error, gives
us these measures. The estimates of the beta coefficients also have a sampling
distribution and, therefore, confidence intervals could be constructed for them.

Finally, because the beta coefficients have well defined sampling distributions (as
long as certain simplifying assumptions hold true), we can perform hypothesis tests
on them. The most common hypothesis test performed on beta coefficients asks
whether they are significantly discrepant from zero. Semantically, if a beta coefficient
is significantly discrepant from zero, it is an indication that the independent variable
has a significant impact on the prediction of the dependent variable. Remember
the long-running warning in Chapter 6, Testing Hypotheses though: just because
something is significant doesn't mean it is important.

Predicting Continuous Variables

[178]

The hypothesis tests comparing the coefficients to zero yield p-values; those p-values
are depicted in the final column of the Coefficients section, labeled Pr(>|t|). We
usually don't care about the significance of the intercept coefficient (b0), so we can
ignore that. Rather importantly, the p-value for the coefficient belonging to the wt
variable is near zero, indicating that the weight of a car has some predictive power
on the gas mileage of that car.

Getting back to the summary output, direct your attention to the entry called
Multiple R-squared. R-squared—also 2R or coefficient of determination—is, like
MSE, a measure of how good of a fit the model is. In contrast to the MSE though,
which is in units of the dependent variable, 2R is always between 0 and 1, and
thus, can be interpreted more easily. For example, if we changed the units of the
dependent variable from miles per gallon to miles per liter, the MSE would change,
but the 2R would not.

An 2R of 1 indicates a perfect fit with no residual error, and an 2R of 0 indicates
the worst possible fit: the independent variable doesn't help predict the dependent
variable at all.

Figure 8.5: Linear models (from left to right) with s of 0.75, 0.33, and 0.92

Chapter 8

[179]

Helpfully, the 2R is directly interpretable as the amount of variance in the
dependent variable that is explained by the independent variable. In this case, for
example, the weight of a car explains about 75.3% of the variance of the gas mileage.
Whether 75% constitutes a good 2R depends heavily on the domain, but in my field
(the behavioral sciences), an 2R of 75% is really good.

We will have to come back to the rest of information in the summary output in the
section about multiple regression.

Take note of the fact that the p-value of the F-statistic in the last line of
the output is the same as the p-value of the t-statistic of the only non-
intercept coefficient.

Simple linear regression with a binary
predictor
One of the coolest things about linear regression is that we are not limited to using
predictor variables that are continuous. For example, in the last section, we used the
continuous variable wt (weight) to predict miles per gallon. But linear models are
adaptable to using categorical variables, like am (automatic or manual transmission)
as well.

Normally, in the simple linear regression equation 0 1ŷ b b x= + , x will hold the
actual value of the predictor variable. In the case of a simple linear regression with
a binary predictor (like am), x will hold a dummy variable instead. Specifically, when
the predictor is automatic, x will be 0, and when the predictor is manual, x will
be 1.

More formally:

0 1ˆ 0 iy b b if x is automatic= +

0 1ˆ 1i iy b b if x is manual= +

Put in this manner, the interpretation of the coefficients changes slightly, since the
1b x will be zero when the car is automatic, 0b is the mean miles per gallon for

automatic cars.

Predicting Continuous Variables

[180]

Similarly, since 1b x will equal 1b when the car is manual, 1b is equal to the mean
difference in the gas mileage between automatic and manual cars.

Concretely:

 > model <- lm(mpg ~ am, data=mtcars)
 > summary(model)

 Call:
 lm(formula = mpg ~ am, data = mtcars)

 Residuals:
 Min 1Q Median 3Q Max
 -9.3923 -3.0923 -0.2974 3.2439 9.5077

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 17.147 1.125 15.247 1.13e-15 ***
 am 7.245 1.764 4.106 0.000285 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 4.902 on 30 degrees of freedom
 Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
 F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
 >
 >
 > mean(mtcars$mpg[mtcars$am==0])
 [1] 17.14737
 > (mean(mtcars$mpg[mtcars$am==1]) -
 + mean(mtcars$mpg[mtcars$am==0]))
 [1] 7.244939

The intercept term, 0b is 7.15, which is the mean gas mileage of the automatic cars,
and 1b is 7.24, which is the difference of the means between the two groups.

The interpretation of the t-statistic and p-value are very special now; a hypothesis
test checking to see if 1b (the difference in group means) is significantly different
from zero is tantamount to a hypothesis test testing equality of means (the students
t-test)! Indeed, the t-statistic and p-values are the same:

 # use var.equal to choose Students t-test
 # over Welch's t-test

Chapter 8

[181]

 > t.test(mpg ~ am, data=mtcars, var.equal=TRUE)

 Two Sample t-test

 data: mpg by am
 t = -4.1061, df = 30, p-value = 0.000285
 alternative hypothesis: true difference in means is not equal to 0
 95 percent confidence interval:
 -10.84837 -3.64151
 sample estimates:
 mean in group 0 mean in group 1
 17.14737 24.39231

Isn't that neat!? A two-sample test of equality of means can be equivalently expressed
as a linear model! This basic idea can be extended to handle non-binary categorical
variables too—we'll see this in the section on multiple regression.

Note that in mtcars, the am column was already coded as 1s (manuals) and 0s
(automatics). If automatic cars were dummy coded as 1 and manuals were dummy
coded as 0, the results would semantically be the same; the only difference is that
0b would be the mean of manual cars, and 1b would be the (negative) difference in

means. The 2R and p-values would be the same.

If you are working with a dataset that doesn't already have the binary predictor
dummy coded, R's lm can handle this too, so long as you wrap the column in a call to
factor. For example:

 > mtcars$automatic <- ifelse(mtcars$am==0, "yes", "no")
 > model <- lm(mpg ~ factor(automatic), data=mtcars)
 > model

 Call:
 lm(formula = mpg ~ factor(automatic), data = mtcars)

 Coefficients:
 (Intercept) factor(automatic)yes
 24.392 -7.245

Finally, note that a car being automatic or manual explains some of the variance in
gas mileage, but far less than weight did: this model's 2R is only 0.36.

Predicting Continuous Variables

[182]

A word of warning
Before we move on, a word of warning: the first part of every regression analysis
should be to plot the relevant data. To convince you of this, consider Anscombe's
quartet depicted in Figure 8.6

Figure 8.6: Four datasets with identical means, standard deviations, regression coefficients, and 2R

Anscombe's quartet holds four x-y pairs that have the same mean, standard
deviation, correlation coefficients, linear regression coefficients, and 2R s . In spite
of these similarities, all four of these data pairs are very different. It is a warning to
not blindly apply statistics on data that you haven't visualized. It is also a warning
to take linear regression diagnostics (which we will go over before the chapter's end)
seriously.

Chapter 8

[183]

Only two of the x-y pairs in Anscombe's quartet can be modeled with simple linear
regression: the ones in the left column. Of particular interest is the one on the bottom
left; it looks like it contains an outlier. After thorough investigation into why that
datum made it into our dataset, if we decide we really should discard it, we can
either (a) remove the offending row, or (b) use robust linear regression.

For a more or less drop-in replacement for lm that uses a robust version of OLS called
Iteratively Re-Weighted Least Squares (IWLS), you can use the rlm function from
the MASS package:

 > library(MASS)
 > data(anscombe)
 > plot(y3 ~ x3, data=anscombe)
 > abline(lm(y3 ~ x3, data=anscombe),
 + col="blue", lty=2, lwd=2)
 > abline(rlm(y3 ~ x3, data=anscombe),
 + col="red", lty=1, lwd=2)

Figure 8.7: The difference between linear regression fit with OLS and a robust linear regression fitted with IWLS

Predicting Continuous Variables

[184]

OK, one more warning
Some suggest that you should almost always use rlm in favor of lm. It's
true that rlm is the bee's knees, but there is a subtle danger in doing this
as illustrated by the following statistical urban legend.
Sometime in 1984, NASA was studying the ozone concentrations
from various locations. NASA used robust statistical methods that
automatically discarded anomalous data points believing most of them
to be instrument errors or errors in transmission. As a result of this, some
extremely low ozone readings in the atmosphere above Antarctica were
removed from NASA's atmospheric models. The very next year, British
scientists published a paper describing a very deteriorated ozone layer
in the Antarctic. Had NASA paid closer attention to outliers, they would
have been the first to discover it.
It turns out that the relevant part of this story is a myth, but the fact that it
is so widely believed is a testament to how possible it is.
The point is, outliers should always be investigated and not simply
ignored, because they may be indicative of poor model choice, faulty
instrumentation, or a gigantic hole in the ozone layer. Once the outliers
are accounted for, then use robust methods to your heart's content.

Multiple regression
More often than not, we want to include not just one, but multiple predictors
(independent variables), in our predictive models. Luckily, linear regression can
easily accommodate us! The technique? Multiple regression.

By giving each predictor its very own beta coefficient in a linear model, the target
variable gets informed by a weighted sum of its predictors. For example, a multiple
regression using two predictor variables looks like this:

0 1 1 2 2Ŷ b b X b X= + +

Now, instead of estimating two coefficients (0b and 1b), we are estimating three: the
intercept, the slope of the first predictor, and the slope of the second predictor.

Chapter 8

[185]

Before explaining further, let's perform a multiple regression predicting gas mileage
from weight and horsepower:

 > model <- lm(mpg ~ wt + hp, data=mtcars)
 > summary(model)

 Call:
 lm(formula = mpg ~ wt + hp, data = mtcars)

 Residuals:
 Min 1Q Median 3Q Max
 -3.941 -1.600 -0.182 1.050 5.854

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
 wt -3.87783 0.63273 -6.129 1.12e-06 ***
 hp -0.03177 0.00903 -3.519 0.00145 **

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 2.593 on 29 degrees of freedom
 Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
 F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12

Since we are now dealing with three variables, the predictive model can no longer
be visualized with a line; it must be visualized as a plane in 3D space, as seen in
Figure 8.8:

Figure 8.8: The prediction region that is formed by a two-predictor linear model is a plane

Predicting Continuous Variables

[186]

Aided by the visualization, we can see that both our predictions of mpg are informed
by both wt and hp. Both of them contribute negatively to the gas mileage. You can
see this from the fact that the coefficients are both negative. Visually, we can verify
this by noting that the plane slopes downward as wt increases and as hp increases,
although the slope for the later predictor is less dramatic.

Although we lose the ability to easily visualize it, the prediction region formed
by a more-than-two predictor linear model is called a hyperplane, and exists in
n-dimensional space where n is the number of predictor variables plus 1.

The astute reader may have noticed that the beta coefficient belonging to the wt
variable is not the same as it was in the simple linear regression. The beta coefficient
for hp, too, is different than the one estimated using simple regression:

 > coef(lm(mpg ~ wt + hp, data=mtcars))
 (Intercept) wt hp
 37.22727012 -3.87783074 -0.03177295
 > coef(lm(mpg ~ wt, data=mtcars))
 (Intercept) wt
 37.285126 -5.344472
 > coef(lm(mpg ~ hp, data=mtcars))
 (Intercept) hp
 30.09886054 -0.06822828

The explanation has to do with a subtle difference in how the coefficients should
be interpreted now that there is more than one independent variable. The proper
interpretation of the coefficient belonging to wt is not that as the weight of the car
increases by 1 unit (1,000 pounds), the miles per gallon, on an average, decreases
by -3.878 miles per gallon. Instead, the proper interpretation is Holding horsepower
constant, as the weight of the car increases by 1 unit (1,000 pounds), the miles per
gallon, on an average, decreases by -3.878 miles per gallon.

Similarly, the correct interpretation of the coefficient belonging to wt is Holding the
weight of the car constant, as the horsepower of the car increases by 1, the miles per
gallon, on an average, decreases by -0.032 miles per gallon. Still confused?

It turns out that cars with more horsepower use more gas. It is also true that cars
with higher horsepower tend to be heavier. When we put these predictors (weight
and horsepower) into a linear model together, the model attempts to tease apart the
independent contributions of each of the variables by removing the effects of the
other. In multivariate analysis, this is known as controlling for a variable. Hence, the
preface to the interpretation can be, equivalently, stated as Controlling for the effects
of the weight of a car, as the horsepower…. Because cars with higher horsepower tend
to be heavier, when you remove the effect of horsepower, the influence of weight
goes down, and vice versa. This is why the coefficients for these predictors are both
smaller than they are in simple single-predictor regression.

Chapter 8

[187]

In controlled experiments, scientists introduce an experimental condition on
two samples that are virtually the same except for the independent variable
being manipulated (for example, giving one group a placebo and one group real
medication). If they are careful, they can attribute any observed effect directly on
the manipulated independent variable. In simple cases like this, statistical control is
often unnecessary. But statistical control is of utmost importance in the other areas
of science (especially, the behavioral and social sciences) and business, where we are
privy only to data from non-controlled natural phenomena.

For example, suppose someone made the claim that gum chewing causes heart
disease. To back up this claim, they appealed to data showing that the more someone
chews gum, the higher the probability of developing heart disease. The astute skeptic
could claim that it's not the gum chewing per se that is causing the heart disease, but
the fact that smokers tend to chew gum more often than non-smokers to mask the
gross smell of tobacco smoke. If the person who made the original claim went back
to the data, and included the number of cigarettes smoked per day as a component
of a regression analysis, there would be a coefficient representing the independent
influence of gum chewing, and ostensibly, the statistical test of that coefficient's
difference from zero would fail to reject the null hypothesis.

In this situation, the number of cigarettes smoked per day is called a confounding
variable. The purpose of a carefully designed scientific experiment is to eliminate
confounds, but as mentioned earlier, this is often not a luxury available in certain
circumstances and domains.

For example, we are so sure that cigarette smoking causes heart disease that it
would be unethical to design a controlled experiment in which we take two random
samples of people, and ask one group to smoke and one group to just pretend to
smoke. Sadly, cigarette companies know this, and they can plausibly claim that it
isn't cigarette smoking that causes heart disease, but rather that the kind of people
who eventually become cigarette smokers also engage in behaviors that increase
the risk of heart disease—like eating red meat and not exercising—and that it's those
variables that are making it appear as if smoking is associated with heart disease.
Since we can't control for every potential confound that the cigarette companies can
dream up, we may never be able to thwart this claim.

Anyhow, back to our two-predictor example: examine the 2R value, and how it is
different now that we've included horsepower as an additional predictor. Our model
now explains more of the variance in gas mileage. As a result, our predictions will,
on an average, be more accurate.

Predicting Continuous Variables

[188]

Let's predict what the gas mileage of a 2,500 pound car with a horsepower of 275
(horses?) might be:

 > predict(model, newdata = data.frame(wt=2.5, hp=275))
 1
 18.79513

Finally, we can explain the last line of the linear model summary: the one with the
F-statistic and associated p-value. The F-statistic measures the ability of the entire
model, as a whole, to explain any variance in the dependent variable. Since it has a
sampling distribution (the F-distribution) and associated degrees, it yields a p-value,
which can be interpreted as the probability that a model would explain this much (or more)
of the variance of the dependent variable if the predictors had no predictive power. The fact
that our model has a p-value lower than 0.05 suggests that our model predicts the
dependent variable better than chance.

Now we can see why the p-value for the F-statistic in the simple linear regression
was the same as the p-value of the t-statistic for the only non-intercept predictor: the
tests were equivalent because there was only one source of predictive capability.

We can also see now why the p-value associated with our F-statistic in the multiple
regression analysis output earlier is far lower than the p-values of the t-statistics of
the individual predictors: the latter only captures the predictive power of each (one)
predictor, while the former captures the predictive power of the model as a whole
(all two).

Regression with a non-binary predictor
Back in a previous section, I promised that the same dummy-coding method that we
used to regress binary categorical variables could be adapted to handle categorical
variables with more than two values. For an example of this, we are going to use the
same WeightLoss dataset as we did in to illustrate ANOVA.

To review, the WeightLoss dataset contains pounds lost and self-esteem
measurements for three weeks for three different groups: a control group, one group
just on a diet, and one group that dieted and exercised. We will be trying to predict
the amount of weight lost in week 2 by the group the participant was in.

Instead of just having one dummy-coded predictor, we now need two. Specifically:

Chapter 8

[189]

1

1

2

2

1

0

1

0

j

j

i

i

X if participant i is in the diet only group

X otherwise

and
X if participant i is in the diet and exercise group

X otherwise

=

=

=

=

Consequently, the equations describing our predictive model are:

0 1 2 0

0 1 2 0 1

0 1 2 0 2

ˆ 0 0
ˆ 1 0
ˆ 0 1

i i

i i

i i

y b b b b if x is control
y b b b b b if x is diet only
y b b b b b if x is diet and exercise

= + + =
= + + = +
= + + = +

Meaning that the 0b is the mean of weight lost in the control group, 1b is the
difference in the weight lost between control and diet only group, and 2b is the
difference in the weight lost between the control and the diet and exercise group.

 > # the dataset is in the car package
 > library(car)
 > model <- lm(wl2 ~ factor(group), data=WeightLoss)
 > summary(model)

 Call:
 lm(formula = wl2 ~ factor(group), data = WeightLoss)

 Residuals:
 Min 1Q Median 3Q Max
 -2.100 -1.054 -0.100 0.900 2.900

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 3.3333 0.3756 8.874 5.12e-10 ***
 factor(group)Diet 0.5833 0.5312 1.098 0.281
 factor(group)DietEx 2.7667 0.5571 4.966 2.37e-05 ***

Predicting Continuous Variables

[190]

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 1.301 on 31 degrees of freedom
 Multiple R-squared: 0.4632, Adjusted R-squared: 0.4285
 F-statistic: 13.37 on 2 and 31 DF, p-value: 6.494e-05

As before, the p-values associated with the t-statistics are directly interpretable as
a t-test of equality of means with the weight lost by the control. Observe that the
p-value associated with the t-statistic of the factor(group)Diet coefficient is not
significant. This comports with the results from the pairwise-t-test from Chapter 6,
Testing Hypotheses.

Most magnificently, compare the F-statistic and the associated p-value in the
preceding code with the one in the aov ANOVA from Chapter 6, Testing Hypotheses.
They are the same! The F-test of a linear model with a non-binary categorical variable
predictor is the same as an NHST analysis of variance!

Kitchen sink regression
When the goal of using regression is simply predictive modeling, we often don't care
about which particular predictors go into our model, so long as the final model yields
the best possible predictions.

A naïve (and awful) approach is to use all the independent variables available to
try to model the dependent variable. Let's try this approach by trying to predict mpg
from every other variable in the mtcars dataset:

 > # the period after the squiggly denotes all other variables
 > model <- lm(mpg ~ ., data=mtcars)
 > summary(model)

 Call:
 lm(formula = mpg ~ ., data = mtcars)

 Residuals:
 Min 1Q Median 3Q Max
 -3.4506 -1.6044 -0.1196 1.2193 4.6271

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 12.30337 18.71788 0.657 0.5181
 cyl -0.11144 1.04502 -0.107 0.9161
 disp 0.01334 0.01786 0.747 0.4635
 hp -0.02148 0.02177 -0.987 0.3350

Chapter 8

[191]

 drat 0.78711 1.63537 0.481 0.6353
 wt -3.71530 1.89441 -1.961 0.0633 .
 qsec 0.82104 0.73084 1.123 0.2739
 vs 0.31776 2.10451 0.151 0.8814
 am 2.52023 2.05665 1.225 0.2340
 gear 0.65541 1.49326 0.439 0.6652
 carb -0.19942 0.82875 -0.241 0.8122

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 2.65 on 21 degrees of freedom
 Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
 F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

Hey, check out our R-squared value! It looks like our model explains 87% of the
variance in the dependent variable. This is really good—it's certainly better than
our simple regression models that used weight (wt) and transmission (am) with the
respective R-squared values, 0.753 and 0.36.

Maybe there's something to just including everything we have in our linear models.
In fact, if our only goal is to maximize our R-squared, you can always achieve this
by throwing every variable you have into the mix, since the introduction of each
marginal variable can only increase the amount of variance explained. Even if a
newly introduced variable has absolutely no predictive power, the worst it can do
is not help explain any variance in the dependent variable—it can never make the
model explain less variance.

This approach to regression analysis is often (non-affectionately) called kitchen-sink
regression, and is akin to throwing all of your variables against a wall to see what
sticks. If you have a hunch that this approach to predictive modeling is crummy, your
instinct is correct on this one.

To develop your intuition about why this approach backfires, consider building
a linear model to predict a variable of only 32 observations using 200 explanatory
variables, which are uniformly and randomly distributed. Just by random chance,
there will very likely be some variables that correlate strongly to the dependent
variable. A linear regression that includes some of these lucky variables will yield a
model that is surprisingly (sometimes astoundingly) predictive.

Remember that when we are creating predictive models, we rarely (if ever) care
about how well we can predict the data we already have. The whole point of
predictive analytics is to be able to predict the behavior of data we don't have. For
example, memorizing the answer key to last year's Social Studies final won't help
you on this year's final, if the questions are changed—it'll only prove you can get an
A+ on your last year's test.

Predicting Continuous Variables

[192]

Imagine generating a new random dataset of 200 explanatory variables and one
dependent variable. Using the coefficients from the linear model of the first random
dataset. How well do you think the model will perform?

The model will, of course, perform very poorly, because the coefficients in the model
were informed solely by random noise. The model captured chance patterns in the
data that it was built with and not a larger, more general pattern—mostly because
there was no larger pattern to model!

In statistical learning parlance, this phenomenon is called overfitting, and it happens
often when there are many predictors in a model. It is particularly frequent when
the number of observations is less than (or not very much larger than) the number of
predictor variables (like in mtcars), because there is a greater probability for the many
predictors to have a spurious relationship with the dependent variable.

This general occurrence—a model performing well on the data it was built with
but poorly on subsequent data—illustrates perfectly perhaps the most common
complication with statistical learning and predictive analytics: the bias-variance tradeoff.

The bias-variance trade-off

Figure 8.9: The two extremes of the bias-variance tradeoff:. (left) a (complicated) model with essentially zero
bias (on training data) but enormous variance, (right) a simple model with high bias but virtually no variance

Chapter 8

[193]

In statistical learning, the bias of a model refers to the error of the model introduced
by attempting to model a complicated real-life relationship with an approximation.
A model with no bias will never make any errors in prediction (like the cookie-
area prediction problem). A model with high bias will fail to accurately predict its
dependent variable.

The variance of a model refers to how sensitive a model is to changes in the data that
built the model. A model with low variance would change very little when built with
new data. A linear model with high variance is very sensitive to changes to the data
that it was built with, and the estimated coefficients will be unstable.

The term bias-variance tradeoff illustrates that it is easy to decrease bias at the expense
of increasing variance, and vice-versa. Good models will try to minimize both.

Figure 8.9 depicts two extremes of the bias-variance tradeoff. The left-most model
depicts a complicated and highly convoluted model that passes through all the data
points. This model has essentially no bias, as it has no error when predicting the
data that it was built with. However, the model is clearly picking up on random
noise in the data set, and if the model were used to predict new data, there would be
significant error. If the same general model were rebuilt with new data, the model
would change significantly (high variance).

As a result, the model is not generalizable to new data. Models like this suffer from
overfitting, which often occurs when overly complicated or overly flexible models are
fitted to data—especially when sample size is lacking.

In contrast, the model on the right panel of Figure 8.9 is a simple model (the simplest,
actually). It is just a horizontal line at the mean of the dependent variable, mpg. This
does a pretty terrible job modeling the variance in the dependent variable, and
exhibits high bias. This model does have one attractive property though—the model
will barely change at all if fit to new data; the horizontal line will just move up or
down slightly based on the mean of the mpg column of the new data.

To demonstrate that our kitchen sink regression puts us on the wrong side of the
optimal point in the bias-variance tradeoff, we will use a model validation and
assessment technique called cross-validation.

Predicting Continuous Variables

[194]

Cross-validation
Given that the goal of predictive analytics is to build generalizable models that
predict well for data yet unobserved, we should ideally be testing our models on
data unseen, and check our predictions against the observed outcomes. The problem
with that, of course, is that we don't know the outcomes of data unseen—that's why
we want a predictive model. We do, however, have a trick up our sleeve, called the
validation set approach.

The validation set approach is a technique to evaluate a model's ability to perform
well on an independent dataset. But instead of waiting to get our hands on a
completely new dataset, we simulate a new dataset with the one we already have.

The main idea is that we can split our dataset into two subsets; one of these subsets
(called the training set) is used to fit our model, and then the other (the testing set)
is used to test the accuracy of that model. Since the model was built before ever
touching the testing set, the testing set serves as an independent data source of
prediction accuracy estimates, unbiased by the model's precision attributable to its
modeling of idiosyncratic noise.

To get at our predictive accuracy by performing our own validation set, let's use the
sample function to divide the row indices of mtcars into two equal groups, create
the subsets, and train a model on the training set:

 > set.seed(1)
 > train.indices <- sample(1:nrow(mtcars), nrow(mtcars)/2)
 > training <- mtcars[train.indices,]
 > testing <- mtcars[-train.indices,]
 > model <- lm(mpg ~ ., data=training)
 > summary(model)
 ….. (output truncated)
 Residual standard error: 1.188 on 5 degrees of freedom
 Multiple R-squared: 0.988, Adjusted R-squared: 0.9639
 F-statistic: 41.06 on 10 and 5 DF, p-value: 0.0003599

Before we go on, note that the model now explains a whopping 99% of the variance
in mpg. Any 2R this high should be a red flag; I've never seen a legitimate model
with an R-squared this high on a non-contrived dataset. The increase in 2R is
attributable primarily due to the decrease in observations (from 32 to 16) and the
resultant increased opportunity to model spurious correlations.

Chapter 8

[195]

Let's calculate the MSE of the model on the training dataset. To do this, we will be
using the predict function without the newdata argument, which tells us the model
it would predict on given the training data (these are referred to as the fitted values):

 > mean((predict(model) - training$mpg) ^ 2)
 [1] 0.4408109

Cool, but how does it perform on the validation set?
 > mean((predict(model, newdata=testing) - testing$mpg) ^ 2)
 [1] 337.9995

My word!

In practice, the error on the training data is almost always a little less than the
error on the testing data. However, a discrepancy in the MSE between the training
and testing set as large as this is a clear-as-day indication that our model doesn't
generalize.

Let's compare this model's validation set performance to a simpler model with a
lower 2R , which only uses am and wt as predictors:

 > simpler.model <- lm(mpg ~ am + wt, data=training)
 > mean((predict(simpler.model) - training$mpg) ^ 2)
 [1] 9.396091
 > mean((predict(simpler.model, newdata=testing) - testing$mpg) ^ 2)
 [1] 12.70338

Notice that the MSE on the training data is much higher, but our validation set MSE
is much lower.

If the goal is to blindly maximize the 2R , the more predictors, the better. If the goal
is a generalizable and useful predictive model, the goal should be to minimize the
testing set MSE.

The validation set approach outlined in the previous paragraph has two important
drawbacks. For one, the model was only built using half of the available data.
Secondly, we only tested the model's performance on one testing set; at the slight of
a magician's hand, our testing set could have contained some bizarre hard-to-predict
examples that would make the validation set MSE too large.

Predicting Continuous Variables

[196]

Consider the following change to the approach: we divide the data up, just as before,
into set a and set b. Then, we train the model on set a, test it on set b, then train it on
b and test it on a. This approach has a clear advantage over our previous approach,
because it averages the out-of-sample MSE of two testing sets. Additionally, the
model will now be informed by all the data. This is called two-fold cross validation,
and the general technique is called k-fold cross validation.

The coefficients of the model will, of course, be different, but the actual
data model (the variables to include and how to fit the line) will be the
same.

To see how k-fold cross validation works in a more general sense, consider the
procedure to perform k-fold cross validation where k=5. First, we divide the data into
five equal groups (sets a, b, c, d, and e), and we train the model on the data from sets
a, b, c, and d. Then we record the MSE of the model against unseen data in set e. We
repeat this four more times—leaving out a different set and testing the model with
it. Finally, the average of our five out-of-sample MSEs is our five-fold cross validated
MSE.

Your goal, now, should be to select a model that minimizes the k-fold cross
validation MSE. Common choices of k are 5 and 10.

To perform k-fold cross validation, we will be using the cv.glm function from the
boot package. This will also require us to build our models using the glm function
(this stands for generalized linear models, which we'll learn about in the next chapter)
instead of lm. For current purposes, it is a drop-in replacement:

 > library(boot)
 > bad.model <- glm(mpg ~ ., data=mtcars)
 > better.model <- glm(mpg ~ am + wt + qsec, data=mtcars)
 >
 > bad.cv.err <- cv.glm(mtcars, bad.model, K=5)
 > # the cross-validated MSE estimate we will be using
 > # is a bias-corrected one stored as the second element
 > # in the 'delta' vector of the cv.err object
 > bad.cv.err$delta[2]
 [1] 14.92426
 >
 > better.cv.err <- cv.glm(mtcars, better.model, K=5)
 > better.cv.err$delta[2]
 [1] 7.944148

Chapter 8

[197]

The use of k-fold cross validation over the simple validation set approach has
illustrated that the kitchen-sink model is not as bad as we previously thought
(because we trained it using more data), but it is still outperformed by the far simpler
model that includes only am, wt, and qsec as predictors.

This out-performance by a simple model is no idiosyncrasy of this dataset; it is a
well-observed phenomenon in predictive analytics. Simpler models often outperform
overly complicated models because of the resistance of a simpler model to
overfitting. Further, simpler models are easier to interpret, to understand, and to use.
The idea that, given the same level of predictive power, we should prefer simpler
models to complicated ones is expressed in a famous principle called Occam's Razor.

Finally, we have enough background information to discuss the only piece of the
lm summary output we haven't touched upon yet: adjusted R-squared. Adjusted
2R attempts to take into account the fact that extraneous variables thrown into a

linear model will always increase its 2R . Adjusted 2R , therefore, takes the number
of predictors into account. As such, it penalizes complex models. Adjusted 2R
will always be equal to or lower than non-adjusted 2R (it can even go negative!).
The addition of each marginal predictor will only cause an increase in adjusted if
it contributes significantly to the predictive power of the model, that is, more than
would be dictated by chance. If it doesn't, the adjusted 2R will decrease. Adjusted
2R has some great properties, and as a result, many will try to select models that

maximize the adjusted 2R , but I prefer the minimization of cross-validated MSE as
my main model selection criterion.

Compare for yourself the adjusted 2R of the kitchen-sink model and a model using
am, wt, and qsec.

Striking a balance
As Figure 8.10 depicts, as a model becomes more complicated/flexible—as it starts
to include more and more predictors—the bias of the model continues to decrease.
Along the complexity axis, as the model begins to fit the data better and better, the
cross-validation error decreases as well. At a certain point, the model becomes overly
complex, and begins to fit idiosyncratic noise in the training data set—it overfits!
The cross-validation error begins to climb again, even as the bias of the model
approaches its theoretical minimum!

Predicting Continuous Variables

[198]

The very left of the plot depicts models with too much bias, but little variance. The
right side of the plot depicts models that have very low bias, but very high variance,
and thus, are useless predictive models.

Figure 8.10: As model complexity/flexibility increases, training error (bias) tends to be reduced. Up to a certain
point, the cross-validation error decreases as well. After that point, the cross-validation error starts to go up
again, even as the model's bias continues to decrease. After this point, the model is too flexible and overfits.

The ideal point in this bias-variance tradeoff is at the point where the cross-validation
error (not the training error) is minimized.

Okay, so how do we get there?

Although there are more advanced methods that we'll touch on in the section called
Advanced Topics, at this stage of the game, our primary recourse for finding our bias-
variance tradeoff sweet spot is careful feature selection.

Chapter 8

[199]

In statistical learning parlance, feature selection refers to selecting which predictor
variables to include in our model (for some reason, they call predictor variables
features).

I emphasized the word careful, because there are plenty of dangerous ways to do
this. One such method—and perhaps the most intuitive—is to simply build models
containing every possible subset of the available predictors, and choose the best one
as measured by Adjusted 2R or the minimization of cross-validated error. Probably,
the biggest problem with this approach is that it's computationally very expensive—
to build a model for every possible subset of predictors in mtcars, you would need
to build (and cross validate) 1,023 different models. The number of possible models
rises exponentially with the number of predictors. Because of this, for many real-
world modeling scenarios, this method is out of the question.

There is another approach that, for the most part, solves the problem of the
computational intractability of the all-possible-subsets approach: step-wise regression.

Stepwise regression is a technique that programmatically tests different predictor
combinations by adding predictors in (forward stepwise), or taking predictors out
(backward stepwise) according the value that each predictor adds to the model as
measured by its influence on the adjusted 2R . Therefore, like the all-possible-subsets
approach, stepwise regression automates the process of feature selection.

In case you care, the most popular implementation of this technique
(the stepAIC function in the MASS package) in R doesn't maximize
Adjusted 2R but, instead, minimizes a related model quality measure
called the Akaike Information Criterion (AIC).

There are numerous problems with this approach. The least of these is that it is not
guaranteed to find the best possible model.

One of the primary issues that people cite is that it results in lazy science by
absolving us of the need to think out the problem, because we let an automated
procedure make decisions for us. This school of thought usually holds that models
should be informed, at least partially, by some amount of theory and domain
expertise.

It is for these reasons that stepwise regression has fallen out of favor among many
statisticians, and why I'm choosing not to recommend using it.

Predicting Continuous Variables

[200]

Stepwise regression is like alcohol: some people can use it without incident, but some
can't use it safely. It is also like alcohol in that if you think you need to use it, you've
got a big problem. Finally, neither can be advertised to children.

At this stage of the game, I suggest that your main approach to balancing bias and
variance should be informed theory-driven feature selection, and paying close
attention to k-fold cross validation results. In cases where you have absolutely no
theory, I suggest using regularization, a technique that is, unfortunately, beyond
the scope of this text. The section Advanced topics briefly extols the virtues of
regularization, if you want more information.

Linear regression diagnostics
I would be negligent if I failed to mention the boring but very critical topic of the
assumptions of linear models, and how to detect violations of those assumptions.
Just like the assumptions of the hypothesis tests in Chapter 6, Testing Hypotheses linear
regression has its own set of assumptions, the violation of which jeopardize the
accuracy of our model—and any inferences derived from it—to varying degrees. The
checks and tests that ensure these assumptions are met are called diagnostics.

There are five major assumptions of linear regression:

•	 That the errors (residuals) are normally distributed with a mean of 0
•	 That the error terms are uncorrelated
•	 That the errors have a constant variance
•	 That the effect of the independent variables on the dependent variable are

linear and additive
•	 That multi-collinearity is at a minimum

We'll briefly touch on these assumptions, and how to check for them in this section
here. To do this, we will be using a residual-fitted plot, since it allows us, with some
skill, to verify most of these assumptions. To view a residual-fitted plot, just call the
plot function on your linear model object:

 > my.model <- lm(mpg ~ wt, data=mtcars)
 > plot(my.model)

Chapter 8

[201]

This will show you a series of four diagnostic plots—the residual-fitted plot is
the first. You can also opt to view just the residual-fitted plot with this related
incantation:

 > plot(my.model, which=1)

We are also going back to Anscombe's Quartet, since the quartet's aberrant
relationships collectively illustrate the problems that you might find with fitting
regression models and assumption violation. To re-familiarize yourself with the
quartet, look back to Figure 8.6.

Second Anscombe relationship
The first relationship in Anscombe's Quartet (y1 ~ x1) is the only one that can
appropriately be modeled with linear regression as is. In contrast, the second
relationship (y2 ~ x2) depicts a relationship that violates the requirement of a linear
relationship. It also subtly violates the assumption of normally distributed residuals
with a mean of zero. To see why, refer to Figure 8.11, which depicts its residual-fitted
plot:

Figure 8.11: The top two panels show the first and second relationships of Anscombe's quartet, respectively.
The bottom two panels depict each top panel's respective residual-fitted plot

Predicting Continuous Variables

[202]

A non-pathological residual-fitted plot will have data points randomly distributed
along the invisible horizontal line, where the y-axis equals 0. By default, this plot
also contains a smooth curve that attempts to fit the residuals. In a non-pathological
sample, this smooth curve should be approximately straight, and straddle the line at
y=0.

As you can see, the first Anscombe relationship does this well. In contrast, the
smooth curve of the second relationship is a parabola. These residuals could have
been drawn from a normal distribution with a mean of zero, but it is highly unlikely.
Instead, it looks like these residuals were drawn from a distribution—perhaps from
a normal distribution—whose mean changed as a function of the x-axis. Specifically,
it appears as if the residuals at the two ends were drawn from a distribution whose
mean was negative, and the middle residuals had a positive mean.

Third Anscombe relationship
We already dug deeper into this relationship when we spoke of robust regression
earlier in the chapter. We saw that a robust fit of this relationship more of less
ignored the clear outlier. Indeed, the robust fit is almost identical to the non-robust
linear fit after the outlier is removed.

On occasion, a data point that is an outlier in the y-axis but not the x-axis (like this
one) doesn't influence the regression line much—meaning that its omission wouldn't
cause a substantial change in the estimated intercept and coefficients.

A data point that is an outlier in the x-axis (or axes) is said to have high leverage.
Sometimes, points with high leverage don't influence the regression line much,
either. However, data points that have high leverage and are outliers very often exert
high influence on the regression fit, and must be handled appropriately.

Refer to the upper-right panel of Figure 8.12. The aberrant data point in the fourth
relationship of Anscombe's quartet has very high leverage and high influence. Note
that the slope of the regression line is completely determined by the y-position of
that point.

Chapter 8

[203]

Fourth Anscombe relationship
The following image depicts some of the linear regression diagnostic plots of the
fourth Anscombe relationship:

Figure 8.12: The first and the fourth Anscombe relationships and their respective residual-fitted plots

Although it's difficult to say for sure, this is probably in violation of the assumption
of constant variance of residuals (also called homogeneity of variance or homoscedasticity
if you're a fancy-pants).

Predicting Continuous Variables

[204]

A more illustrative example of the violation of homoscedasticity (or heteroscedasticity)
is shown in Figure 8.13:

Figure 8.13: A paradigmatic depiction of the residual-fitted plot of a regression model for which the assumption
of homogeneity of variance is violated

The preceding plot depicts the characteristic funnel shape symptomatic of residual-
fitted plots of offending regression models. Notice how on the left, the residuals vary
very little, but the variances grow as you go along the x-axis.

Bear in mind that the residual-fitted plot need not resemble a funnel—any residual-
fitted plot that very clearly shows the variance change as a function of the x-axis,
violates this assumption.

Chapter 8

[205]

Looking back on Anscombe's Quartet, you may think that the three relationships'
unsuitability for linear modeling was obvious, and you may not immediately see
the benefit of diagnostic plots. But before you write off the art (not science) of linear
regression diagnostics, consider that these were all relationships with a single
predictor. In multiple regression, with tens of predictors (or more), it is very difficult
to diagnose problems by just plotting different cuts of the data. It is in this domain
where linear regression diagnostics really shine.

Finally, the last hazard to be mindful of when linearly regressing is the problem of
collinearity or multicollinearity. Collinearity occurs when two (or more) predictors
are very highly correlated. This causes multiple problems for regression models,
including highly uncertain and unstable coefficient estimates. An extreme example of
this would be if we are trying to predict weight from height, and we had both height
in feet and height in meters as predictors. In its most simple case, collinearity can be
checked for by looking at the correlation matrix of all the regressors (using the cor
function); any cell that has a high correlation coefficient implicates two predictors
that are highly correlated and, therefore, hold redundant information in the model.
In theory, one of these predictors should be removed.

A more sneaky issue presents itself when there are no two individual predictors that
are highly correlated, but there are multiple predictors that are collectively correlated.
This is multicollinearity. This would occur to a small extent, for example, if instead of
predicting mpg from other variables in the mtcars data set, we were trying to predict a
(non-existent) new variable using mpg and the other predictors. Since we know that
mpg can be fairly reliably estimated from some of the other variables in mtcars, when
it is a predictor in a regression modeling another variable, it would be difficult to tell
whether the target's variance is truly explained by mpg, or whether it is explained by
mpg's predictors.

The most common technique to detect multicollinearity is to calculate each predictor
variable's Variance Inflation Factor (VIF). The VIF measures how much larger the
variance of a coefficient is because of its collinearity. Mathematically, the VIF of a
predictor, a , is:

() 2
...

1
1 b c d

VIF a
R + +

=
+

where 2
...b c dR + + is the 2R of a linear model predicting a from all other predictors

(, ,b c d and so on).

Predicting Continuous Variables

[206]

As such, the VIF has a lower bound of one (in the case that the predictor cannot be
predicted accurately from the other predictors). Its upper bound is asymptotically
infinite. In general, most view VIFs of more than four as cause for concern, and VIFs
of 10 or above indicative of a very high degree of multicollinearity. You can calculate
VIFs for a model, post hoc, with the vif function from the car package:

 > model <- lm(mpg ~ am + wt + qsec, data=mtcars)
 > library(car)
 > vif(model)
 am wt qsec
 2.541437 2.482952 1.364339

Advanced topics
Linear models are the biggest idea in applied statistics and predictive analytics.
There are massive volumes written about the smallest details of linear regression.
As such, there are some important ideas that we can't go over here because of space
concerns, or because it requires knowledge beyond the scope of this book. So you
don't feel like you're in the dark, though, here are some of the topics we didn't
cover—and that I would have liked to—and why they are neat.

•	 Regularization: Regularization was mentioned briefly in the subsection
about balancing bias and variance. In this context, regularization is a
technique wherein we penalize models for complexity, to varying degrees.
My favorite method of regularizing linear models is by using elastic-net
regression. It is a fantastic technique and, if you are interested in learning
more about it, I suggest you install and read the vignette of the glmnet
package:
 > install.packages("glmnet")
 > library(glmnet)
 > vignette("glmnet_beta")

•	 Non-linear modeling: Surprisingly, we can model highly non-linear
relationships using linear regression. For example, let's say we wanted to
build a model that predicts how many raisins to use for a cookie using the
cookie's radius as a predictor. The relationship between predictor and target
is no longer linear—it's quadratic. However, if we create a new predictor that
is the radius squared, the target will now have a linear relationship with the
new predictor, and thus, can be captured using linear regression. This basic
premise can be extended to capture relationships that are cubic (power of
3), quartic (power of 4), and so on; this is called polynomial regression. Other
forms of non-linear modeling don't use polynomial features, but instead,
directly fit non-linear functions to the predictors. Among these forms include
regression splines and Generalized Additive Models (GAMs).

Chapter 8

[207]

•	 Interaction terms: Just like there are generalizations of linear regression that
remove the requirement of linearity, so too are there generalizations of linear
regressions that eliminate the need for the strictly additive and independent
effects between predictors.
Take grapefruit juice, for example. Grapefruit juice is well known to block
intestinal enzyme CYP3A, and drastically effect how the body absorbs
certain medicines. Let's pretend that grapefruit juice was mildly effective at
treating existential dysphoria. And suppose there is a drug called Soma that
was highly effective at treating this condition. When alleviation of symptoms
is plotted as a function of dose, the grapefruit juice will have a very small
slope, but the Soma will have a very large slope. Now, if we also pretend that
grapefruit juice increases the efficiency of Soma absorption, then the relief
of dysphoria of someone taking both grapefruit juice and Soma will be far
higher than would be predicted by a multiple regression model that doesn't
take into account the synergistic effects of Soma and the juice. The simplest
way to model this interaction effect is to include the interaction term in the lm
formula, like so:
 > my.model <- lm(relief ~ soma*juice, data=my.data)

which builds a linear regression formula of the following form:

() () ()0 1 2 3ˆiy b b soma b juice b soma juice= + + + ×

where if 3b is larger than 1b and 2b then there is an interaction effect that is
being modeled. On the other hand, if 3b is zero and 1b and 2b are positive,
that suggests that the grapefruit juice completely blocks the effect of Soma
(and vice versa).

•	 Bayesian linear regression: Bayesian linear regression is an alternative
approach to the preceding methods that offers a lot of compelling benefits.
One of the major benefits of Bayesian linear regression—which echoes the
benefits of Bayesian methods as a whole—is that we obtain a posterior
distribution of credible values for each of the beta coefficients. This makes it
easy to make probabilistic statements about intervals in which the population
coefficient is likely to lie. This makes hypothesis testing very easy.

Predicting Continuous Variables

[208]

Another major benefit is that we are no longer held hostage to the
assumption that the residuals are normally distributed. If you were the good
person you lay claim to being on your online dating profiles, you would
have done the exercises at the end of the last chapter. If so, you would
have seen how we could use the t-distribution to make our models more
robust to the influence of outliers. In Bayesian linear regression, it is easy
to use a t-distributed likelihood function to describe the distribution of the
residuals. Lastly, by adjusting the priors on the beta coefficients and making
them sharply peaked at zero, we achieve a certain amount of shrinkage
regularization for free, and build models that are inherently resistant to
overfitting.

Exercises
Practice the following exercises to revise the concepts learned thus far:

•	 By far, the best way to become comfortable and learn the in-and-outs of
applied regression analysis is to actually carry out regression analyses. To this
end, you can use some of the many datasets that are included in R. To get a
full listing of the datasets in the datasets package, execute the following:
 > help(package="datasets")

There are hundreds of more datasets spread across the other several
thousand R packages. Even better, load your own datasets, and attempt to
model them.

•	 Examine and plot the data set pressure, which describes the relationship
between the vapor pressure of mercury and temperature. What assumption
of linear regression does this violate? Attempt to model this using linear
regression by using temperature squared as a predictor, like this:
 > lm(pressure ~ I(temperature^2), data=pressure)

Compare the fit between the model that uses the non-squared temperature
and this one. Explore cubic and quartic relationships between temperature
and pressure. How accurately can you predict pressure? Employ cross-
validation to make sure that no overfitting has occurred. Marvel at how
nicely physics plays with statistics sometimes, and wish that the behavioral
sciences would behave better.

Chapter 8

[209]

•	 Keep an eye out for provocative news and human-interest stories or popular
culture anecdotes that claim suspect causal relationships like gum chewing
causes heart disease or dark chocolate promotes weight loss. If these claims were
backed up using data from natural experiments, try to think of potential
confounding variables that invalidate the claim. Impress upon your friends
and family that the media is trying to take advantage of their gullibility and
non-fluency in the principles of statistics. As you become more adept at
recognizing suspicious claims, you'll be invited to fewer and fewer parties.
This will clear up your schedule for more studying.

•	 To what extent can Mikhail Gorbachev's revisionism of late Stalinism be
viewed as a precipitating factor in the fall of the Berlin Wall? Exceptional
responses will address the effects of Western interpretations of Marx on the
post-war Soviet Intelligentsia.

Summary
Whew, we've been through a lot in this chapter, and I commend you for sticking it
out. Your tenacity will be well rewarded when you start using regression analysis in
your own projects or research like a professional.

We started off with the basics: how to describe a line, simple linear relationships, and
how a best-fit regression line is determined. You saw how we can use R to easily plot
these best-fit lines.

We went on to explore regression analysis with more than one predictor. You
learned how to interpret the loquacious lm summary output, and what everything
meant. In the context of multiple regression, you learned how the coefficients are
properly interpreted as the effect of a predictor controlling for all other predictors.
You're now aware that controlling for and thinking about confounds is one of the
cornerstones of statistical thinking.

We discovered that we weren't limited to using continuous predictors, and that,
using dummy coding, we can not only model the effects of categorical variables, but
also replicate the functionalities, two-sample t-test and one-way ANOVA.

Predicting Continuous Variables

[210]

You learned of the hazards of going hog-wild and including all available predictors
in a linear model. Specifically, you've come to find out that reckless pursuit of
R^2 maximization is a losing strategy when it comes to building interpretable,
generalizable, and useful models. You've learned that it is far better to minimize
out-of-sample error using estimates from cross validation. We framed this
preference for test error minimization of training error minimization in terms
of the bias-variance tradeoff.

Penultimately, you learned the standard assumptions of linear regression and
touched upon some ways to determine whether our assumptions hold. You came
to understand that regression diagnostics isn't an exact science.

Lastly, you learned that there's much we haven't learned about regression analysis.
This will keep us humble and hungry for more knowledge.

[211]

Predicting Categorical
Variables

Our first foray into predictive analytics began with regression techniques for
predicting continuous variables. In this chapter, we will be discussing a perhaps
even more popular class of techniques from statistical learning known as
classification.

All these techniques have at least one thing in common: we train a learner on input,
for which the correct classifications are known, with the intention of using the
trained model on new data whose class is unknown. In this way, classification is
a set of algorithms and methods to predict categorical variables.

Whether you know it or not, statistical learning algorithms performing classification
are all around you. For example, if you've ever accidently checked the Spam
folder of your e-mail and been horrified, you can thank your lucky stars that there
are sophisticated classification mechanisms that your e-mail is run through to
automatically mark spam as such so you don't have to see it. On the other hand,
if you've ever had a legitimate e-mail sent to spam, or a spam e-mail sneak past
the spam filter into your inbox, you've witnessed the limitations of classification
algorithms firsthand: since the e-mails aren't being audited by a human one-by-one,
and are being audited by a computer instead, misclassification happens. Just like our
linear regression predictions differed from our training data to varying degrees, so
too do classification algorithms make mistakes. Our job is to make sure we build
models that minimize these misclassifications—a task which is not always easy.

There are many different classification methods available in R; we will be learning
about four of the most popular ones in this chapter—starting with k-Nearest
Neighbors.

Predicting Categorical Variables

[212]

k-Nearest Neighbors
You're at a train terminal looking for the right line to stand in to get on the train
from Upstate NY to Penn Station in NYC. You've settled into what you think is the
right line, but you're still not sure because it's so crowded and chaotic. Not wanting
to wait in the wrong line, you turn to the person closest to you and ask them where
they're going: "Penn Station," says the stranger, blithely.

You decide to get some second opinions. You turn to the second closest person
and the third closest person and ask them separately: Penn Station and Nova Scotia
respectively. The general consensus seems to be that you're in the right line, and
that's good enough for you.

If you've understood the preceding interaction, you already understand the idea
behind k-Nearest Neighbors (k-NN hereafter) on a fundamental level. In particular,
you've just performed k-NN, where k=3. Had you just stopped at the first person,
you would have performed k-NN, where k=1.

So, k-NN is a classification technique that, for each data point we want to classify,
finds the k closest training data points and returns the consensus. In traditional
settings, the most common distance metric is Euclidean distance (which, in two
dimensions, is equal to the distance from point a to point b given by the Pythagorean
Theorem). Another common distance metric is Manhattan distance, which, in two
dimensions, is equal to the sum of the length of the legs of the triangle connecting
two data points.

Figure 9.1: Two points on a Cartesian plane. Their Euclidean distance is 5. Their Manhattan distance is 3+4=7

Chapter 9

[213]

k-Nearest Neighbors is a bit of an oddball technique; most statistical learning
methods attempt to impose a particular model on the data and estimate the
parameters of that model. Put another way, the goal of most learning methods is to
learn an objective function that maps inputs to outputs. Once the objective function is
learned, there is no longer a need for the training set.

In contrast, k-NN learns no such objective function. Rather, it lets the data speak for
themselves. Since there is no actual learning, per se, going on, k-NN needs to hold on
to training dataset for future classifications. This also means that the training step is
instantaneous, since there is no training to be done. Most of the time spent during the
classification of a data point is spent finding its nearest neighbors. This property of
k-NN makes it a lazy learning algorithm.

Since no particular model is imposed on the training data, k-NN is one of the most
flexible and accurate classification learners there are, and it is very widely used. With
great flexibility, though, comes great responsibility—it is our responsibility that we
ensure that k-NN hasn't overfit the training data.

Figure 9.2: The species classification regions of the iris data set using 1-NN

Predicting Categorical Variables

[214]

In Figure 9.2, we use the built-in iris dataset. This dataset contains four continuous
measurements of iris flowers and maps each observation to one of three species: iris
setosa (the square points), iris virginica (the circular points), and iris versicolor (the
triangular points). In this example, we use only two of the available four attributes
in our classification for ease of visualization: sepal width and petal width. As you
can see, each species seems to occupy its own little space in our 2-D feature space.
However, there seems to be a little overlap between the versicolor and virginica data
points. Because this classifier is using only one nearest neighbor, there appear to be
small regions of training data-specific idiosyncratic classification behavior where
virginicas is encroaching the versicolor classification region. This is what it looks like
when our k-NN overfits the data. In our train station metaphor, this is tantamount to
asking only one neighbor what line you're on and the misinformed (or malevolent)
neighbor telling you the wrong answer.

k-NN classifiers that have overfit have traded low variance for low bias. It is
common for overfit k-NN classifiers to have a 0% misclassification rate on the
training data, but small changes in the training data harshly change the classification
regions (high variance). Like with regression (and the rest of the classifiers we'll be
learning about in this chapter), we aim to find the optimal point in the bias-variance
tradeoff—the one that minimizes error in an independent testing set, and not one that
minimizes training set misclassification error.

We do this by modifying the k in k-NN and using the consensus of more neighbors.
Beware - if you ask too many neighbors, you start to take the answers of rather
distant neighbors seriously, and this can also adversely affect accuracy. Finding
the "sweet spot", where k is neither too small or two large, is called hyperparameter
optimization (because k is called a hyperparameter of k-NN).

Figure 9.3: The species classification regions of the iris data set using 15-NN. The boundaries between the
classification regions are now smoother and less overfit

Chapter 9

[215]

Compare Figure 9.2 to Figure 9.3, which depicts the classification regions of the iris
classification task using 15 nearest neighbors. The aberrant virginicas are no longer
carving out their own territory in versicolor's region, and the boundaries between
the classification regions (also called decision boundaries) are now smoother—often
a trait of classifiers that have found the sweet spot in the bias-variance tradeoff. One
could imagine that new training data will no longer have such a drastic effect on the
decision boundaries—at least not as much as with the 1-NN classifier.

In the iris flower example, and the next example, we deal with
continuous predictors only. K-NN can handle categorical variables,
though—not unlike how we dummy coded categorical variables in
linear regression in the last chapter! Though we didn't talk about how,
regression (and k-NN) handles non-binary categorical variables, too.
Can you think of how this is done? Hint: we can't use just one dummy
variable for a non-binary categorical variable, and the number of dummy
variables needed is one less than the number of categories.

Using k-NN in R
The dataset we will be using for all the examples in this chapter is the
PimaIndiansDiabetes dataset from the mlbench package. This dataset is part of
the data collected from one of the numerous diabetes studies on the Pima Indians,
a group of indigenous Americans who have among the highest prevalence of Type
II diabetes in the world—probably due to a combination of genetic factors and
their relatively recent introduction to a heavily processed Western diet. For 768
observations, it has nine attributes, including skin fold thickness, BMI, and so on,
and a binary variable representing whether the patient had diabetes. We will be
using the eight predictor variables to train a classifier to predict whether a patient
has diabetes or not.

This dataset was chosen because it has many observations available, has a
goodly amount of predictor variables available, and it is an interesting problem.
Additionally, it is not unlike many other medical datasets that have a few predictors
and a binary class outcome (for example, alive/dead, pregnant/not-pregnant,
benign/malignant). Finally, unlike many classification datasets, this one has a good
mixture of both class outcomes; this contains 35% diabetes positive observations.
Grievously imbalanced datasets can cause a problem with some classifiers and
impair our accuracy estimates.

Predicting Categorical Variables

[216]

To get this dataset, we are going to run the following commands to install the
necessary package, load the data, and give the dataset a new name that is faster to
type:

 > # "class" is one of the packages that implement k-NN
 > # "chemometrics" contains a function we need
 > # "mlbench" holds the data set
 > install.packages(c("class", "mlbench", "chemometrics"))
 > library(class)
 > library(mlbench)
 > data(PimaIndiansDiabetes)
 > PID <- PimaIndiansDiabetes

Now, let's divide our dataset into a training set and a testing set using an 80/20 split.

 > # we set the seed so that our splits are the same
 > set.seed(3)
 > ntrain <- round(nrow(PID)*4/5)
 > train <- sample(1:nrow(PID), ntrain)
 > training <- PID[train,]
 > testing <- PID[-train,]

Now we have to choose how many nearest neighbors we want to use. Luckily,
there's a great function called knnEval from the chemometrics package that will
allow us to graphically visualize the effectiveness of k-NN with a different k using
cross-validation. Our objective measures of effectiveness will be the misclassification
rate, or, the percent of testing observations that are misclassified.

 > resknn <- knnEval(scale(PID[,-9]), PID[,9], train, kfold=10,
 + knnvec=seq(1,50,by=1),
 + legpos="bottomright")

There's a lot here to explain! The first three arguments are the predictor matrix, the
variables to predict, and the indices of the training data set respectively. Note that the
ninth column of the PID data frame holds the class labels—to get a matrix containing
just the predictors, we can remove the ninth column by using a negative column
index. The scale function that we call on the predictor matrix subtracts each value
in each column by the column's mean and divides each value by their respective
column's standard deviation—it converts each value to a z-score! This is usually
important in k-NN in order for the distances between data points to be meaningful.
For example, the distance between data points would change drastically if a column
previously measured in meters were re-represented as millimeters. The scale
function puts all the features in comparable ranges regardless of the original units.

Chapter 9

[217]

Note that for the third argument, we are not supplying the function with the training
data set, but the indices that we used to construct the training data set. If you are
confused, inspect the various objects we have in our workspace with the head
function.

The final three arguments indicate that we want to use a 10-fold cross-validation,
check every value of k from 1 to 50, and put the legend in the lower-left corner of the
plot.

The plot that this code produces is shown in Figure 9.4:

Figure 9.4: A plot illustrating test set error, cross-validated error, and training set error as a function of k in
k-NN. After about k=15, the test and CV error doesn't appear to change much

As you can see from the preceding plot, after about k=15, the test and cross-validated
misclassification error don't seem to change much. Using k=27 seems like a safe bet,
as measured by the minimization of CV error.

Predicting Categorical Variables

[218]

To see what it looks like when we underfit and use too many neighbors,
check out Figure 9.5, which expands the x-axis of the last figure to show
the misclassification error of using up to 200 neighbors. Notice that the
test and CV error start off high (at 1-NN) and quickly decrease. At about
70-NN, though, the test and CV error start to rise steadily as the classifier
underfits. Note also that the training error starts out at 0 for 1-NN (as
we would expect), but very sharply quickly increases as we add more
neighbors. This is a good reminder that our goal is not to minimize the
training set error but to minimize error on an independent dataset—either
a test set or an estimate using cross-validation.

Figure 9.5: A plot illustrating test set error, cross-validated error, and training set error and a function of k in
k-NN up to k=200. Notice how error increases as the number of neighbors becomes too large and causes the

classifier to overfit.

Let's perform the k-NN!

 > predictions <- knn(scale(training[,-9]),
 + scale(testing[,-9]),
 + training[,9], k=27)
 >

Chapter 9

[219]

 > # function to give correct classification rate
 > accuracy <- function(predictions, answers){
 + sum((predictions==answers)/(length(answers)))
 + }
 >
 > accuracy(predictions, testing[,9])
 [1] 0.7597403

It looks like using 27-NN gave us a correct classification rate of 76% (a
misclassification rate of 100% - 76% = 24%). Is that good? Well, let's put it in
perspective.

If we randomly guessed whether each testing observation was positive for diabetes,
we would expect a classification rate of 50%. But remember that the number of
non-diabetes observations outnumber the number of observations of diabetes
(non-diabetes observations are 65% of the total). So, if we built a classifier that
just predicted no diabetes for every observation, we would expect a 65% correct
classification rate. Luckily, our classifier performs significantly better than our naïve
classifier, although, perhaps, not as good as we would have hoped. As we'll learn as
the chapter moves on, k-NN is competitive with the accuracy of other classifiers—I
guess it's just a really hard problem!

Confusion matrices
We can get a more detailed look at our classifier's accuracy via a confusion matrix.
You can get R to give up a confusion matrix with the following command:

 > table(test[,9], preds)
 preds
 neg pos
 neg 86 9
 pos 28 31

The columns in this matrix represent our classifier's predictions; the rows represent
the true classifications of our testing set observations. If you recall from Chapter 3,
Describing Relationships, this means that the confusion matrix is a cross-tabulation
(or contingency table) of our predictions and the actual classifications. The cell in the
top-left corner represents observations that didn't have diabetes that we correctly
predicted as non-diabetic (true negatives). In contrast, the cell in the lower-right
corner represents true positives. The upper-left cell contains the count of false positives,
observations that we incorrectly predicted as having diabetes. Finally, the remaining
cell holds the number of false negatives, of which there are 28.

Predicting Categorical Variables

[220]

This is helpful for examining whether there is a class that we are systematically
misclassifying or whether our false negatives and false positive are significantly
imbalanced. Additionally, there are often different costs associated with false
negatives and false positives. For example, in this case, the cost of misclassifying a
patient as non-diabetic is great, because it impedes our ability to help a truly diabetic
patient. In contrast, misclassifying a non-diabetic patient as diabetic, although not
ideal, incurs a far less grievous cost. A confusion matrix lets us view, at a glance,
just what types of errors we are making. For k-NN, and the other classifiers in this
chapter, there are ways to specify the cost of each type of misclassification in order to
exact a classifier optimized for a particular cost-sensitive domain, but that is beyond
the scope of this book.

Limitations of k-NN
Before we move on, we should talk about some of the limitations of k-NN.

First, if you're not careful to use an optimized implementation of k-NN, classification
can be slow, since it requires the calculation of the test data point's distance to every
other data point; sophisticated implementations have mechanisms for partially
handling this.

Second, vanilla k-NN can perform poorly when the amount of predictor variables
becomes too large. In the iris example, we used only two predictors, which can
be plotted in two-dimensional space where the Euclidean distance is just the 2-D
Pythagorean theorem that we learned in middle school. A classification problem
with n predictors is represented in n-dimensional space; the Euclidean distance
between two points in high dimensional space can be very large, even if the data
points are similar. This, and other complications that arise from predictive analytics
techniques using a high-dimensional feature spaces, is, colloquially, known as the
curse of dimensionality. It is not uncommon for medical, image, or video data to have
hundreds or even thousands of dimensions. Luckily, there are ways of dealing with
these situations. But let's not dwell there.

Chapter 9

[221]

Logistic regression
Remember when I said, a thorough understanding of linear models will pay enormous
dividends throughout your career as an analyst in the previous chapter? Well, I wasn't
lying! This next classifier is a product of a generalization of linear regression that can
act as a classifier.

What if we used linear regression on a binary outcome variable, representing
diabetes as 1 and not diabetes as 0? We know that the output of linear regression is
a continuous prediction, but what if, instead of predicting the binary class (diabetes
or not diabetes), we attempted to predict the probability of an observation having
diabetes? So far, the idea is to train a linear regression on a training set where the
variables we are trying to predict are a dummy-coded 0 or 1, and the predictions
on an independent training set are interpreted as a continuous probability of class
membership.

It turns out this idea is not quite as crazy as it sounds—the outcome of the
predictions are indeed proportional to the probability of each observation's class
membership. The biggest problem is that the outcome is only proportional to the
class membership probability and can't be directly interpreted as a true probability.
The reason is simple: probability is, indeed, a continuous measurement, but it is
also a constrained measurement—it is bounded by 0 and 1. With regular old linear
regression, we will often get predicted outcomes below 0 and above 1, and it is
unclear how to interpret those outcomes.

But what if we had a way of taking the outcome of a linear regression (a linear
combination of beta coefficients and predictors) and applying a function to it
that constrains it to be between 0 and 1 so that it can be interpreted as a proper
probability? Luckily, we can do this with the logistic function:

() 1
1 xf x
e−

=
−

Predicting Categorical Variables

[222]

whose plot is depicted in Figure 9.6:

Figure 9.6: The logistic function

Note that no matter what value of x (the output of the linear regression) we
use—from negative infinity to positive infinity—the y (the output of the logistic
function) is always between 0 and 1. Now we can adapt linear regression to output
probabilities!

The function that we apply to the linear combination of predictors to change it into
the kind of prediction we want is called the inverse link function. The function that
transforms the dependent variable into a value that can be modeled using linear
regression is just called the link function. In logistic regression, the link function
(which is the inverse of the inverse link function, the logistic function) is called the
logit function.

()

0 1 1 2 2

0 1 1 2 2

ˆ

ˆ

Y b b X b X
linear regression

Y logistic b b X b X

= + + +

= + + +

�

�

Chapter 9

[223]

Before we get started using this powerful idea on our data, there are two other
problems that we must contend with. The first is that we can't use ordinary least
squares to solve for the coefficients anymore, because the link function is non-linear.
Most statistical software solves this problem using a technique called Maximum
Likelihood Estimation (MLE) instead, though there are other alternatives.

The second problem is that an assumption of linear regression (if you remember
from last chapter) is that the error distribution is normally distributed. In the context
of linear regression, this doesn't make sense, because it is a binary categorical
variable. So, logistic regression models the error distribution as a Bernoulli
distribution (or a binomial distribution, depending on how you look at it).

Generalized Linear Model (GLM)
If you are surprised that linear regression can be generalized enough
to accommodate classification, prepare to be astonished by generalized
linear models!
GLMs are a generalization of regular linear regression that allow for
other link functions to map from linear model output to the dependent
variable, and other error distributions to describe the residuals. In
logistic regression, the link function and error distribution is the logit and
binomial respectively. In regular linear regression, the link function is the
identity function (a function that returns its argument unchanged), and
the error distribution is the normal distribution.
Besides regular linear regression and logistic regression, there are
still other species of GLM that use other link functions and error
distributions. Another common GLM is Poisson regression, a technique
that is used to predict /model count data (number of traffic stops,
number of red cards, and so on), which uses the logarithm as the link
function and the Poisson distribution as its error distribution. The use
of the log link function constrains the response variable (the dependent
variable) so that it is always above 0.
Remember that we expressed the t-test and ANOVA in terms of the
linear model? So the GLM encompasses not only linear regression,
logistic regression, Poisson regression, and the like, but it also
encompasses t-tests, ANOVA, and the related technique called
ANCOVA (Analysis of Covariance). Pretty cool, eh?!

Predicting Categorical Variables

[224]

Using logistic regression in R
Performing logistic regression—an advanced and widely used classification
method—could scarcely be easier in R. To fit a logistic regression, we use the
familiar glm function. The difference now is that we'll be specifying our own error
distribution and link function (the glm calls of last chapter assumed we wanted the
regular linear regression error distribution and link function, by default). These are
specified in the family argument:

 > model <- glm(diabetes ~ ., data=PID, family=binomial(logit))

Here, we build a logistic regression using all available predictor variables.

You may also see logistic regressions being performed where the family argument
looks like family="binomial" or family=binomial()—it's all the same thing, I just
like being more explicit.

Let's look at the output from calling summary on the model.

 > summary(model)

 Call:
 glm(formula = diabetes ~ ., family = binomial(logit), data = PID)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -2.5566 -0.7274 -0.4159 0.7267 2.9297

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -8.4046964 0.7166359 -11.728 < 2e-16 ***
 pregnant 0.1231823 0.0320776 3.840 0.000123 ***
 glucose 0.0351637 0.0037087 9.481 < 2e-16 ***
 pressure -0.0132955 0.0052336 -2.540 0.011072 *
 ...

Chapter 9

[225]

The output is similar to that of regular linear regression; for example, we still get
estimates of the coefficients and associated p-values. The interpretation of the beta
coefficients requires a little more care this time around, though. The beta coefficient
of pregnant, 0.123, means that a one unit increase in pregnant (an increase in
the number of times being pregnant by one) is associated with an increase of
the logarithm of the odds of the observation being diabetic. If this is confusing,
concentrate on the fact that if the coefficient is positive, it has a positive impact
on probability of the dependent variable, and if the coefficient is negative, it has a
negative impact on the probability of the binary outcome. Whether positive means
higher probability of diabetes or higher probability of not diabetes' depends on how your
binary dependent variable is dummy-coded.

To find the training set accuracy of our model, we can use the accuracy function we
wrote from the last section. In order to use it correctly, though, we need to convert
the probabilities into class labels, as follows:

 > predictions <- round(predict(model, type="response"))
 > predictions <- ifelse(predictions == 1, "pos", "neg")
 > accuracy(predictions, PID$diabetes)
 [1] 0.7825521

Cool, we get a 78% accuracy on the training data, but remember: if we overfit,
our training set accuracy will not be a reliable estimate of performance on an
independent dataset. In order to test this model's generalizability, let's perform
k-fold cross-validation, just like in the previous chapter!

 > set.seed(3)
 > library(boot)
 > cv.err <- cv.glm(PID, model, K=5)
 > cv.err$delta[2]
 [1] 0.154716
 > 1 - cv.err$delta[2]
 [1] 0.845284

Wow, our CV-estimated accuracy rate is 85%! This indicates that it is highly unlikely
that we are overfitting. If you are wondering why we were using all available
predictors after I said that doing so was dangerous business in the last chapter, it's
because though they do make the model more complex, the extra predictors didn't
cause the model to overfit.

Predicting Categorical Variables

[226]

Finally, let's test the model on the independent test set so that we can compare this
model's accuracy against k-NN's:

 > predictions <- round(predict(model, type="response",
 + newdata=test))
 > predictions <- ifelse(predictions == 1, "pos", "neg")
 > accuracy(predictions, test[,9]) # 78%
 [1] 0.7792208

Nice! A 78% accuracy rate!

It looks like logistic regression may have given us a slight improvement over the
more flexible k-NN. Additionally, the model gives us at least a little transparency
into why each observation is classified the way it is—a luxury not available to us via
k-NN.

Before we move on, it's important to discuss two limitations of logistic regression.

•	 The first is that logistic regression proper does not handle non-binary
categorical variables—variables with more than two levels. There exists a
generalization of logistic regression, called multinomial regression, that can
handle this situation, but this is vastly less common than logistic regression.
It is, therefore, more common to see another classifier being used for a non-
binary classification problem.

•	 The last limitation of logistic regression is that it results in a linear decision
boundary. This means that if a binary outcome is not easily separated by a
line, plane, or hyperplane, then logistic regression may not be the best route.
May in the previous sentence is italicized because there are tricks you can
use to get logistic regression to spit out a non-linear decision boundary—
sometimes, a high performing one—as we'll see in the section titled Choosing
a classifier.

Decision trees
We now move on to one of the easily interpretable and most popular classifiers
there are out there: the decision tree. Decision trees—which look like an upside
down tree with the trunk on top and the leaves on the bottom—play an important
role in situations where classification decisions have to be transparent and easily
understood and explained. It also handles both continuous and categorical
predictors, outliers, and irrelevant predictors rather gracefully. Finally, the general
ideas behind the algorithms that create decision trees are quite intuitive, though the
details can sometimes get hairy.

Chapter 9

[227]

Figure 9.7 depicts a simple decision tree designed to classify motor vehicles into
either motorcycles, golf carts, or sedans.

has four wheels:a

motorcycle

golf cart sedan

weight<2211.04

Figure 9.7: A simple and illustrative decision tree that classifies motor vehicles into either motorcycles, golf
carts, and sedans

This is a rather simple decision tree with only three leaves (terminal nodes) and
two decision points. Note that the first decision point is (a) on a binary categorical
variable, and (b) results in one terminal node, motorcycle. The other branch contains
the other decision point, a continuous variable with a split point. This split point
was chosen carefully by the decision tree-creating algorithm to result in the most
informative split—the one that best classifies the rest of the observations as measured
by the misclassification rate of the training data.

Actually, in most cases, the decision tree-creating algorithm doesn't
choose a split that results in the lowest misclassification rate of the
training data, but chooses on that which minimizes either the Gini
coefficient or cross entropy of the remaining training observations.
The reasons for this are two-fold: (a) both the Gini coefficient and cross
entropy have mathematical properties that make them more easily
amendable to numerical optimization, and (b) it generally results in a
final tree with less bias.

Predicting Categorical Variables

[228]

The overall idea of the decision tree-growing algorithm, recursive splitting, is simple:

1.	 Step 1: Choose a variable and split point that results in the best classification
outcomes.

2.	 Step 2: For each of the resulting branches, check to see if some stopping
criteria is met. If so, leave it alone. If not, move on to next step.

3.	 Step 3: Repeat Step 1 on the branches that do not meet the stopping criteria.

The stopping criterion is usually either a certain depth, which the tree cannot grow
past, or a minimum number of observations, for which a leaf node cannot further
classify. Both of these are hyper-parameters (also called tuning parameters) of the
decision tree algorithm—just like the k in k-NN—and must be fiddled with in order
to achieve the best possible decision tree for classifying an independent dataset.

A decision tree, if not kept in check, can grossly overfit the data—returning an
enormous and complicated tree with a minimum leaf node size of 1—resulting in a
nearly bias-less classification mechanism with prodigious variance. To prevent this,
either the tuning parameters must be chosen carefully or a huge tree can be built and
cut down to size afterward. The latter technique is generally preferred and is, quite
appropriately, called pruning. The most common pruning technique is called cost
complexity pruning, where complex parts of the tree that provide little in the way of
classification power, as measured by improvement of the final misclassification rate,
are cut down and removed.

Enough theory—let's get started! First, we'll grow a full tree using the PID dataset
and plot the result:

 > library(tree)
 > our.big.tree <- tree(diabetes ~ ., data=training)
 > summary(our.big.tree)

 Classification tree:
 tree(formula = diabetes ~ ., data = training)
 Variables actually used in tree construction:
 [1] "glucose" "age" "mass" "pedigree" "triceps"
"pregnant"
 [7] "insulin"
 Number of terminal nodes: 16
 Residual mean deviance: 0.7488 = 447.8 / 598
 Misclassification error rate: 0.184 = 113 / 614
 > plot(our.big.tree)
 > text(our.big.tree)

Chapter 9

[229]

The resulting plot is depicted in Figure 9.10.

Figure 9.8: An unpruned and complex decision tree

The power of a decision tree—which is usually not competitive with other
classification mechanisms, accuracy-wise—is that the representation of the decision
rules are transparent, easy to visualize, and easy to explain. This tree is rather large
and unwieldy, which hinders its ability to be understood (or memorized) at a glance.
Additionally, for all its complexity, it only achieves an 81% accuracy rate on the
training data (as reported by the summary function).

We can (and will) do better! Next, we will be investigating the optimal size of the
tree employing cross-validation, using the cv.tree function.

 > set.seed(3)
 > cv.results <- cv.tree(our.big.tree, FUN=prune.misclass)
 > plot(cv.results$size, cv.results$dev, type="b")

Predicting Categorical Variables

[230]

In the preceding code, we are telling the cv.tree function that we want to prune
our tree using the misclassification rate as our objective metric. Then, we are plotting
the CV error rate (dev) and a function of tree size (size).

Figure 9.9: A plot cross-validated misclassification error as a function of tree size. Observe that tree of
size one performs terribly, and that the error rate steeply declines before rising slightly as the tree is overfit

and large sizes.

As you can see from the output (shown in Figure 9.9), the optimal size (number
of terminal nodes) of the tree seems to be five. However, a tree of size three is
not terribly less performant than a tree of size five; so, for ease of visualization,
interpretation, and memorization, we will be using a final tree with three terminal
nodes. To actually perform the pruning, we will be using the prune.misclass
function, which takes the size of the tree as an argument.

 > pruned.tree <- prune.misclass(our.big.tree, best=3)
 > plot(pruned.tree)
 > text(pruned.tree)
 > # let's test its accuracy
 > pruned.preds <- predict(pruned.tree, newdata=test, type="class")
 > accuracy(pruned.preds, test[,9]) # 71%
 [1] 0.7077922

Chapter 9

[231]

The final tree is depicted in Figure 9.10.

glucose <123.5

neg

neg pos

mass <30.05

Figure 9.10: Simpler decision tree with the same testing set performance as the tree in Figure 9.8

Rad! A tree so simple it can be easily memorized by medical personnel and achieves
the same testing-set accuracy as the unwieldy tree in figure 9.8: 71%! Now the
accuracy rate, by itself, is nothing to write home about, particularly because the naïve
classifier achieves a 65% accuracy rate. Nevertheless, the fact that a significantly
better classifier can be built from two simple rules—closely following the logic
physicians employ, anyway—is where decision trees have a huge leg up relative to
other techniques. Further, we could have bumped up this accuracy rate with more
samples and more careful hyper-parameter tuning.

Predicting Categorical Variables

[232]

Random forests
The final classifier that we will be discussing in this chapter is the aptly named
Random Forest and is an example of a meta-technique called ensemble learning. The
idea and logic behind random forests follows thusly:

Given that (unpruned) decision trees can be nearly bias-less high variance classifiers,
a method of reducing variance at the cost of a marginal increase of bias could greatly
improve upon the predictive accuracy of the technique. One salient approach to
reducing variance of decision trees is to train a bunch of unpruned decision trees on
different random subsets of the training data, sampling with replacement—this is
called bootstrap aggregating or bagging. At the classification phase, the test observation
is run through all of these trees (a forest, perhaps?), and each resulting classification
casts a vote for the final classification of the whole forest. The class with the highest
number of votes is the winner. It turns out that the consensus among many high-
variance trees on bootstrapped subsets of the training data results in a significant
accuracy improvement and vastly decreased variance.

Très bien ensemble!
Bagging is one example of an ensemble method—a meta-technique that
uses multiple classifiers to improve predictive accuracy. Nearly bias-
less/high-variance classifiers are the ones that seem to benefit the most
from ensemble methods. Additionally, ensemble methods are easiest to
use with classifiers that are created and trained rapidly, since method
ipso facto relies on a large number of them. Decision trees fit all of these
characteristics, and this accounts for why bagged trees and random
forests are the most common ensemble learning instruments.

So far, what we have chronicled describes a technique called bagged trees. But random
forests have one more trick up their sleeves! Observing that the variance can be
further reduced by forcing the trees to be less similar, random forests differ from
bagged trees by forcing the tree to only use a subset of its available predictors to split
on in the growing phase.

Many people begin confused as to how deliberately reducing the efficacy of the
component trees can possibly result in a more accurate ensemble. To clear this
up, consider that a few very influential predictors will dominate the expression of
the trees, even if the subsets contain little overlap. By constraining the number of
predictors a tree can use on each splitting phase, a more diverse crop of trees is built.
This results in a forest with lower variance than a forest with no constraints.

Chapter 9

[233]

Random forests are the modern darling of classifiers—and for good reason. For
one, they are often extraordinarily accurate. Second, since random forests use only
two hyper-parameters (the number of trees to use in the forest and the number of
predictors to use at each step of the splitting process), they are very easy to create,
and require little in the way of hyper-parameter tuning. Third, it is extremely
difficult for a random forest to overfit, and it doesn't happen very often at all, in
practice. For example, increasing the number of trees that make up the forest does
not cause the forest to overfit, and fiddling with the number-of-predictors hyper-
parameter can't possibly result in a forest with a higher variance than that of the
component tree that overfits the most.

One last awesome property of the random forest is that the training error rate that
it reports is a nearly unbiased estimator cross-validated error rate. This is because
the training error rate, at least that R reports using the predict function on a
randomForest with no newdata argument, is the average error rate of the classifier
tested on all the observations that were kept out of the training sample at each stage
of the bootstrap aggregation. Because these were independent observations, and not
used for training, it closely approximates the CV error rate. The error rate reported
on the remaining observations left out of the sample at every bagging step is called
the Out-Of-Bag (OOB) error rate.

The primary drawback to random forests is that they, to some extent, revoke the
chief benefit of decision trees: their interpretability; it is far harder to visualize the
behavior of a random forest than it is for any of the component trees. This puts the
interpretability of random forests somewhere between logistic regression (which is
marginally more interpretable) and k-NN (which is largely un-interpretable).

At long last, let's use a random forest on our dataset to classify observations as being
positive or negative for diabetes!

 > library(randomForest)
 > forest <- randomForest(diabetes ~ ., data=training,
 + importance=TRUE,
 + ntree=2000,
 + mtry=5)
 > accuracy(predict(forest), training[,9])
 [1] 0.7654723
 > predictions <- predict(forest, newdata = test)
 > accuracy(predictions, test[,9])
 [1] 0.7727273

Predicting Categorical Variables

[234]

In this incantation, we set the number of trees (ntree) to an arbitrarily high number
and set the number of predictors (mtry) to 5. Though it is not shown above, I used
the OOB error rate to guide in the choosing of this hyper-parameter. Had we left it
blank, it would have defaulted to the square root of the number of total predictors.

As you can see from the output of our accuracy function, the random forest is
competitive with the performance of our highest performing (on this dataset, at least)
classifier: logistic regression. On other datasets, with other characteristics, random
forests sometimes blow the competition out of the water.

Choosing a classifier
These are just four of the most popular classifiers out there, but there are many
more to choose from. Although some classification mechanisms perform better on
some types of datasets than others, it can be hard to develop an intuition for exactly
the ones they are suitable for. In order to help with this, we will be examining
the efficacy of our four classifiers on four different two-dimensional made-up
datasets—each with a vastly different optimal decision boundary. In doing so,
we will learn more about the characteristics of each classifier and have a better
sense of the kinds of data they might be better suited for.

The four datasets are depicted in Figure 9.11:

Figure 9.11: A plot depicting the class patterns of our four illustrative and contrived datasets

Chapter 9

[235]

The vertical decision boundary
The first contrived dataset we will be looking at is the one on the top-left panel of
Figure 9.11. This is a relatively simple classification problem, because, just by visual
inspection, you can tell that the optimal decision boundary is a vertical line. Let's see
each of our classifiers fair on this data set:

Figure 9.12: A plot of the decision boundaries of our four classifiers on our first contrived dataset

As you can see, all of our classifiers performed well on this simple data set; all of the
methods find an appropriate straight vertical line that is most representative of the
class division. In general, logistic regression is great for linear decision boundaries.
Decision trees also work well for straight decision boundaries, as long as the
boundaries are orthogonal to the axes! Observe the next dataset.

Predicting Categorical Variables

[236]

The diagonal decision boundary
The second dataset sports an optimal decision boundary that is a diagonal line—one
that is not orthogonal to the axes. Here, we start to see some cool behavior from
certain classifiers.

Figure 9.13: A plot of the decision boundaries of our four classifiers on our second contrived dataset

Though all four classifiers were reasonably effective in this data set's classification,
we start to see each of the classifiers' personality come out. First, the k-NN creates
a boundary that closely approximates the optimal one. The logistic regression,
amazingly, throws a perfect linear boundary at the exact right spot.

The decision tree's boundary is curious; it is made up of perpendicular zig-zags.
Though the optimal decision boundary is linear in the input space, the decision tree
can't capture its essence. This is because decision trees only split on a function of one
variable at a time. Thus, datasets with complex interactions may not be the best ones
to attack with a decision tree.

Finally, the random forest, being composed of sufficiently varied decision trees, is
able to capture the spirit of the optimal boundary.

Chapter 9

[237]

The crescent decision boundary
This third dataset, depicted in the bottom-left panel of Figure 9.11, exhibits a very
non-linear classification pattern:

Figure 9.14: A plot of the decision boundaries of our four classifiers on our third contrived dataset

In the preceding figure, our top performers are k-NN—which is highly effective
with non-linear boundaries—and random forest—which is similarly effective. The
decision tree is a little too jagged to compete at the top level. But the real loser here is
logistic regression. Because logistic regression returns linear decision boundaries, it
is ineffective at classifying these data.

To be fair, with a little finesse, logistic regression can handle these boundaries, too,
as we'll see in the last example. However, in highly non-linear situations, where
the nature of the non-linear boundary is unknown—or unknowable—logistic
regression is often outperformed by other classifiers that natively handle these
situations with ease.

Predicting Categorical Variables

[238]

The circular decision boundary
The last dataset we will be looking at, like the previous one, contains a non-linear
classification pattern.

Figure 9.15: A plot of the decision boundaries of our four classifiers on our fourth contrived dataset

Again, just like in the last case, the winners are k-NN and random forest, followed
by the decision tree with its jagged edges. And, again, the logistic regression
unproductively throws a linear boundary at a distinctively not-linear pattern.
However, stating that logistic regression is unsuitable for problems of this type is
both negligent and dead wrong.

With a slight change in the incantation of the logistic regression, the whole game is
changed, and logistic regression becomes the clear winner:

 > model <- glm(factor(dep.var) ~ ind.var1 +
 + I(ind.var1^2) + ind.var2 + I(ind.var2^2),
 + data=this, family=binomial(logit))

Chapter 9

[239]

Figure 9.16: A second-order (quadratic) logistic regression decision boundary

In the preceding figure, instead of modeling the binary dependent variable (dep.
var) as a linear combination of solely the two independent variables (ind.var1 and
ind.var2), we model it as a function of those two variables and those two variables
squared. The result is still a linear combination of the inputs (before the inverse
link function), but now the inputs contain non-linear transformations of the other
original inputs. This general technique is called polynomial regression and can be used
to create a wide variety of non-linear boundaries. In this example, just squaring the
inputs (resulting in a quadratic polynomial) outputs a classification circle that exactly
matches the optimal decision boundary, as you can see in Figure 9.16. Cubing the
original inputs (creating a cubic polynomial) suffices to describe the boundary in the
previous example.

In fact, a logistic regression containing polynomial terms of arbitrarily large order
can fit any decision boundary—no matter how non-linear and complicated. Careful,
though! Using high order polynomials is a great way to make sure you overfit your
data.

My general advice is to only use polynomial regression for cases where you know a
priori what polynomial form your boundaries take on—like an ellipse! If you must
experiment, keep a close eye on your cross-validated error rate to make sure you are
not fooling yourself into thinking that you are doing the right thing taking on more
and more polynomial terms.

Predicting Categorical Variables

[240]

Exercises
Practise the following exercises to get a firm grasp on the concepts learned so far:

•	 Did you notice that I put CV in italics when I said, Using k=27 seems like
a safe bet as measured by the minimization of CV error? Did you wonder
why? I (quite deliberately) made a gaffe in choosing the k in the k-NN from
Figure 9.4. My choice wasn't wrong, per se, but my choice of k may have been
informed by data that should have been unavailable to me. How might have
I committed a common but serious error in hyper-parameter tuning? How
might I have done things differently?

•	 Remember that we spent a long time talking about the assumptions of
linear regression? In contrast, we spent virtually no time discussing the
assumptions of logistic regression. Although logistic regression has less
stringent assumptions than its cousin, it is not assumption-free. Think
about what some assumptions of logistic regression might be. Confirm your
suspicions by doing research on the web. My omission of the assumptions
was not out of laziness, and (again) it was quite deliberate. As you progress
in your career of a data analyst, you will often come across exciting new
classification methods that you will, no doubt, want to put to use right away.
A trait that will set you apart from your more impulsive colleagues is one
that promotes careful examination and independent research into where
these techniques could go wrong.

•	 You may be surprised to learn that all of the classification techniques that
we discussed in this chapter can be adapted for use in regression (predicting
continuous variables)! The adaptation of logistic regression is obvious, but
think about how you might adapt the others for use in this purpose. Do some
research into it.

•	 To what extent can the rapid dismantling of the New Deal policies after
the death of Roosevelt be factored in to the concurrent rise of neoliberal
economic ideas and policies of post-war American intellectual thought?

Chapter 9

[241]

Summary
At a high level, in this chapter you learned about four of the most popular classifiers
out there: k-Nearest Neighbors, logistic regression, decision trees, and random forests. Not
only did you learn the basics and mechanics of these four algorithms, but you saw
how easy they were to perform in R. Along the way, you learned about confusion
matrices, hyper-parameter tuning, and maybe even a few new R incantations.

We also visited some more general ideas; for example, you've expanded your
understanding of the bias-variance tradeoff, saw how the GLM can perform great
feats, and became acquainted with ensemble learning and bootstrap aggregation.
It's also my hope that you've developed some intuition as to which classifiers to use
in different situations. Finally, given that we couldn't achieve perfect classification
on our diabetes dataset, I hope that you've gained an appreciation for the art and
difficulty of classification. Perhaps you've even caught the statistical learning bug
and want to try to beat our performance in this chapter! That would be great! There
are competitions on the web for people just like you—and it is a great way to hone
your skills. This, for better or worse, concludes our unit on predictive analytics.
In the final unit, we will be discussing some of the trials and tribulations of data
analysis as it tends to go in practice. Stay tuned!

[243]

Sources of Data
The previous two units (Confirmatory Data Analysis and Inferential Statistics and
Predictive Analytics), have focused on teaching both theory and practice in ideal data
scenarios, so that our more academic quests can be divorced from outside concerns
about the veracity or format of the data. To this end, we deliberately stayed away
from data sets not already built-into R or available from add-on packages. But very
few people I know get by in their careers using R by not importing any data from
sources outside R packages. Well, we very briefly touched upon how to load data
into R (the read.* commands) in the very first chapter of this book, did we not? So
we should be all set, right?

Here's the rub: I know almost as few people that can get by using simple CSVs and
tab-delimited text locally with the primary read.* commands as can get by not
using outside sources of data at all! The unfortunate fact is that many introductory
analytics texts largely disregard this reality. This produces many well-informed
new analysts who are nevertheless stymied on their first attempt to apply their
fresh knowledge to "real-world data". In my opinion, any text that purports to be a
practical resource for data analysts cannot afford to ignore this.

Luckily, due to largely undirected and unplanned personal research I do for blog
posts and my own edification using motley collections of publicly available data
sources in various formats, I—perhaps delusionally—consider myself fairly adept in
navigating this criminally overlooked portion of practical analytics. It is the body of
lessons I've learned during these wild data adventures that I'd like to impart to you
in this and the subsequent chapter, dear reader.

It's common for data sources to be not only difficult to load, for various reasons, but
to be difficult to work with because of errors, junk, or just general idiosyncrasies.
Because of this, this chapter and the next chapter, Dealing with messy data will have
a lot in common. This chapter will concentrate more on getting data from outside
sources and getting it into a somewhat usable form in R. The next chapter will
discuss particularly common gotchas while working with data in an imperfect world.

Sources of Data

[244]

I appreciate that not everyone has the interest or the time-availability to go on wild
goose hunts for publicly available data to answer questions formed on a whim.
Nevertheless, the techniques that we'll be discussing in this chapter should be very
helpful in handling the variety of data formats that you'll have to contend with in the
course of your work or research. Additionally, having the wherewithal to employ
freely available data on the web can be indispensable for learning new analytics
methods and technologies.

The first source of data we'll be looking at is that of the venerable relational database.

Relational Databases
Perhaps the most common external source of data is from relational databases. Since
this section is probably of interest to only those who work with databases—or at
least plan to—some knowledge of the basics of relational databases is assumed.

One way to connect to databases from R is to use the RODBC package. This allows one
to access any database that implements the ODBC common interface (for example,
PostgreSQL, Access, Oracle, SQLite, DB2, and so on). A more common method—for
whatever reason—is to use the DBI package and DBI-compliant drivers.

DBI is an R package that defines a generalized interface for communication between
different databases and R. Like with ODBC, it allows the same compliant SQL to run
on multiple databases. The DBI package alone is not sufficient for communicating
with any particular database from R; in order to use DBI, you must also install and
load a DBI-compliant driver for your particular database. Packages exist providing
drivers for many RDBMSs. Among them are RPostgreSQL, RSQLite, RMySQL, and
ROracle.

In order to most easily demonstrate R/DB communication, we will be using a SQLite
database. This will also most easily allow the prudent reader to create the example
database and follow along. The SQL we'll be using is standard, so you can really use
any DB you want, anyhow.

Our example database has two columns: artists and paintings. The artists
table contains a unique integer ID, an artist's name, and the year they were born. The
paintings table contains a unique integer ID, an artist ID, the name of the painting,
and its completion date. The artist ID in the paintings table is a foreign key that
references the artist ID in the artist table; this is how this database links paintings
to their respective painters.

Chapter 10

[245]

If you want to follow along, use the following SQL statements to create and populate
the database. If you're using SQLite, name the database art.db.

CREATE TABLE artists(
 artist_id INTEGER PRIMARY KEY,
 name TEXT,
 born_on INTEGER
);

CREATE TABLE paintings(
 painting_id INTEGER PRIMARY KEY,
 painting_artist INTEGER,
 painting_name TEXT,
 year_completed INTEGER,
 FOREIGN KEY(painting_artist) REFERENCES artists(artist_id)
);

INSERT INTO artists(name, born_on)
VALUES ("Kay Sage", 1898),
("Piet Mondrian", 1872),
("Rene Magritte", 1898),
("Man Ray", 1890),
("Jean-Michel Basquiat", 1960);

INSERT INTO paintings(painting_artist, painting_name, year_completed)
VALUES (4, "Orquesta Sinfonica", 1916),
(4, "La Fortune", 1938),
(1, "Tommorow is Never", 1955),
(1, "The Answer is No", 1958),
(1, "No Passing", 1954),
(5, "Bird on Money", 1981),
(2, "Place de la Concorde", 1943),
(2, "Composition No. 10", 1942),
(3, "The Human Condition", 1935),
(3, "The Treachery of Images", 1948),
(3, "The Son of Man", 1964);

Confirm for yourself that the following SQL commands yield the appropriate results
by typing them into the sqlite3 command line interface.

SELECT * FROM artists;

1 | Kay Sage | 1898
2 | Piet Mondrian | 1872

Sources of Data

[246]

3 | Rene Magritte | 1898
4 | Man Ray | 1890
5 | Jean-Michel Basquiat | 1960

SELECT * FROM paintings;

1 | 4 | Orquesta Sinfonica | 1916
2 | 4 | La Fortune | 1938
3 | 1 | Tommorow is Never | 1955
4 | 1 | The Answer is No | 1958
5 | 1 | No Passing | 1954
6 | 5 | Bird on Money | 1981
7 | 2 | Place de la Concorde | 1943
8 | 2 | Composition No. 10 | 1942
9 | 3 | The Human Condition | 1935
10 | 3 | The Treachery of Images | 1948
11 | 3 | The Son of Man | 1964

For our first act, we load the necessary packages, choose our database driver, and
connect to the database:

library(DBI)
library(RSQLite)
sqlite <- dbDriver("SQLite")
we read the art sqlite db from the current
working directory which can be get and set
with getwd() and setwd(), respectively
art_db <- dbConnect(sqlite, "./art.db")

Again, we are using sqlite for this example, but this procedure is applicable to all
DBI-compliant database drivers.

Let's now run a query against this database. Let's get a list of all the painting names
and their respective artist's name. This will require a join operation between the two
tables:

result <- dbSendQuery(art_db,
 "SELECT paintings.painting_name, artists.name
 FROM paintings INNER JOIN artists
 ON paintings.painting_artist=artists.artist_id;")
response <- fetch(result)
head(response)
dbClearResult(result)

Chapter 10

[247]

--

 painting_name name
1 Orquesta Sinfonica Man Ray
2 La Fortune Man Ray
3 Tommorow is Never Kay Sage
4 The Answer is No Kay Sage
5 No Passing Kay Sage

Here we used the dbSendQuery function to send a query to the database. Its first
and second arguments were the database handle variable (from the dbConnect
function) and the SQL statement, respectively. We store a handle to the result in a
variable. Next, the fetch function retrieves the response from the handle. By default,
it will retrieve all matches from the query, though this can be limited by specifying
the n argument (see help("fetch")). The result of the fetch is then stored in the
variable response. response is an R data frame like any other; we can do any of the
operations we've already learned with it. Finally, we clear the result, which is good
practice, because it frees resources.

For a slightly more involved query, let's try to find the average (mean) age of the
artists at the age they were when each of the paintings were completed. This still
requires a join, but this time we are selecting paintings.year_completed and
artists.born_on.

result <- dbSendQuery(art_db,
 "SELECT paintings.year_completed, artists.born_on
 FROM paintings INNER JOIN artists
 ON paintings.painting_artist=artists.artist_id;")
response <- fetch(result)
head(response)
dbClearResult(result)

 year_completed born_on
1 1916 1890
2 1938 1890
3 1955 1898
4 1958 1898
5 1954 1898
6 1981 1960

Sources of Data

[248]

At this time, row-wise subtraction and averaging can be performed simply:

mean(response$year_completed - response$born_on)

[1] 51.091

Finally, we close our connection to the database:

dbDisconnect(art_db)

Why didn't we just do that in SQL?
Why, indeed. Although this very simple example could have easily just been written
into the logic of the SQL query, for more complicated data analysis this simply won't
cut it. Unless you are using a really specialized database, many databases aren't
prepared for certain mathematical functions with regard to numerical accuracy.
More importantly, most databases don't implement advanced math functions at
all. Even if they did, they almost certainly wouldn't be portable between different
RDBMSs. There is great merit in having analytics logic reside in R so that if—for
whatever reason—you have to switch databases, your analysis code will remain
unchanged.

If SQL is your cup of tea, did you know you can use the sqldf
package to perform arbitrary SQL queries on data.frames?
There is a rising interest and (to a lesser extent) need in databases
that don't adhere to the relational paradigm. These so-called NoSQL
databases include the immensely popular Hadoop/HDFS, MongoDB,
CouchDB, Neo4j, and Redis, among many others. There are R packages
for communicating to most of these, too, including one for every one
of the databases mentioned here by name. Since the operation of all
of these packages is idiosyncratic and heavily dependent on which
species of NoSQL the database in question belongs to, your best bet for
learning how to use this is to read the help pages and/or vignettes for
each package.

Chapter 10

[249]

Using JSON
JavaScript Object Notation (JSON) is a standardized human-readable data format
that plays an enormous role in communication between web browsers to web
servers. JSON was originally borne out of a need to represent arbitrarily complex
data structures in JavaScript—a web scripting language—but it has since grown into
a language agnostic data serialization format.

It is a common need to import and parse JSON in R, particularly when working with
web data. For example, it is very common for websites to offer web services that take
an arbitrary query from a web browser, and return the response as JSON. We will
see an example of this very use case later in this section.

For our first look into JSON parsing for R, we'll use the jsonlite package to read a
small JSON string, which serializes some information about the best musical act in
history, The Beatles:

library(jsonlite)

example.json <- '
{
 "thebeatles": {
 "formed": 1960,
 "members": [
 {
 "firstname": "George",
 "lastname": "Harrison"
 },
 {
 "firstname": "Ringo",
 "lastname": "Starr"
 },
 {
 "firstname": "Paul",
 "lastname": "McCartney"
 },
 {
 "firstname": "John",
 "lastname": "Lennon"
 }
]
 }
}'

Sources of Data

[250]

the_beatles <- fromJSON(example.json)
print(the_beatles)

$thebeatles
$thebeatles$formed
[1] 1960

$thebeatles$members
 firstname lastname
1 George Harrison
2 Ringo Starr
3 Paul McCartney
4 John Lennon

We used the fromJSON function to read in the string. The result is an R list, whose
elements/attributes can be accessed via the $ operator, or the [[double square
bracket function/operator. For example, we can access the date when The Beatles
formed, in R, in the following two ways:

the_beatles$thebeatles$formed
the_beatles[["thebeatles"]][["formed"]]

[1] 1960
[1] 1960

In R, a list is a data structure that is kind of like a vector, but allows
elements of differing data types. A single list may contain numerics,
strings, vectors, or even other lists!

Now that we have the very basics of handling JSON down, let's move on to using it
in a non-trivial manner!

There's a music/social-media-platform called http://www.last.fmthat/ that
kindly provides a web service API that's free for public use (as long as you abide by
their reasonable terms). This API (Application Programming Interface) allows us
to query various points of data about musical artists by crafting special URLs. The
results of following these URLs are either a JSON or XML payload, which are directly
consumable from R.

http://www.last.fmthat/

Chapter 10

[251]

In this non-trivial example of using web data, we will be building a rudimentary
recommendation system. Our system will allow us to suggest new music to a
particular person based on an artist that they already like. In order to do this, we have
to query the Last.fm API to gather all the tags associated with particular artists. These
tags function a lot like genre classifications. The success of our recommendation system
will be predicated on the assumption that musical artists with overlapping tags are
more similar to each other than artists with disparate tags, and that someone is more
likely to enjoy similar artists than an arbitrary dissimilar artist.

Here's an example JSON excerpt of the result of querying the API for tags of a
particular artist:

{
 "toptags": {
 "tag": [
 {
 "count": 100,
 "name": "female vocalists",
 "url": "http://www.last.fm/tag/female+vocalists"
 },
 {
 "count": 71,
 "name": "singer-songwriter",
 "url": "http://www.last.fm/tag/singer-songwriter"
 },
 {
 "count": 65,
 "name": "pop",
 "url": "http://www.last.fm/tag/pop"
 }
]
 }
}

Here, we only care about the name of the tag—not the URL, or the count of occasions
Last.fm users applied each tag to the artist.

Let's first create a function that will construct the properly formatted query URL for
a particular artist. The Last.fm developer website indicates that the format is:

http://ws.audioscrobbler.com/2.0/?method=artist.
gettoptags&artist=<THE_ARTIST>&api_key=c2e57923a25c03f3d8b317b3c8622b
43&format=json

Sources of Data

[252]

In order to create these URLs based upon arbitrary input, we can use the paste0
function to concatenate the component strings. However, URLs can't handle certain
characters such as spaces; in order to convert the artist's name to a format suitable for
a URL, we'll use the URLencode function from the (preloaded) utils package.

URLencode("The Beatles")

[1] "The%20Beatles"

Now we have all the pieces to put this function together:

create_artist_query_url_lfm <- function(artist_name){
 prefix <- "http://ws.audioscrobbler.com/2.0/?method=artist.
gettoptags&artist="
 postfix <- "&api_key=c2e57923a25c03f3d8b317b3c8622b43&format=json"
 encoded_artist <- URLencode(artist_name)
 return(paste0(prefix, encoded_artist, postfix))
}

create_artist_query_url_lfm("Depeche Mode")

[1] "http://ws.audioscrobbler.com/2.0/?method=artist.
gettoptags&artist=Depeche%20Mode&api_key=c2e57923a25c03f3d8b317b3c8622
b43&format=json"

Fantastic! Now we make the web request, and parse the resulting JSON. Luckily, the
fromJSON function that we've been using can take a URL and automatically make the
web request for us. Let's see what it looks like:

fromJSON(create_artist_query_url_lfm("Depeche Mode"))

$toptags
$toptags$tag
 count name url
1 100 electronic http://www.last.fm/tag/electronic
2 87 new wave http://www.last.fm/tag/new+wave
3 59 80s http://www.last.fm/tag/80s
4 56 synth pop http://www.last.fm/tag/synth+pop

Chapter 10

[253]

Neat-o! If you take a close look at the structure, you'll see that the tag names are
stored in the name attribute of the tag attribute of the toptags attribute (whew!).
This means we can extract just the tag names with $toptags$tag$name. Let's write a
function that will take an artist's name, and return a list of the tags in a vector.

get_tag_vector_lfm <- function(an_artist){
 artist_url <- create_artist_query_url_lfm(an_artist)
 json <- fromJSON(artist_url)
 return(json$toptags$tag$name)
}

get_tag_vector_lfm("Depeche Mode")

--

 [1] "electronic" "new wave" "80s"
 [4] "synth pop" "synthpop" "seen live"
 [7] "alternative" "rock" "british"

Next, we have to go ahead and retrieve the tags for all artists. Instead of doing this
(and probably violating Last.fm's terms of service), we'll just pretend that there are
only six musical artists in the world. We'll store all of these artists in a list. This will
make it easy to use the lapply function to apply the get_tag_vector_lfm function
to each artist in the list. Finally, we'll name all the elements in the list appropriately:

our_artists <- list("Kate Bush", "Peter Tosh", "Radiohead",
 "The Smiths", "The Cure", "Black Uhuru")
our_artists_tags <- lapply(our_artists, get_tag_vector_lfm)
names(our_artists_tags) <- our_artists

print(our_artists_tags)

$`Kate Bush`
 [1] "female vocalists" "singer-songwriter" "pop"
 [4] "alternative" "80s" "british"

$`Peter Tosh`
 [1] "reggae" "roots reggae" "Rasta"
 [4] "roots" "ska" "jamaican"

Sources of Data

[254]

$Radiohead
 [1] "alternative" "alternative rock"
 [3] "rock" "indie"

$`The Smiths`
 [1] "indie" "80s" "post-punk"
 [4] "new wave" "alternative" "rock"

$`The Cure`
 [1] "post-punk" "new wave" "alternative"
 [4] "80s" "rock" "seen live"

$`Black Uhuru`
 [1] "reggae" "roots reggae" "dub"
 [4] "jamaica" "roots" "jamaican"

Now that we have all the artists' tags stored as a list of vectors, we need some way of
comparing the tag lists, and judge them for similarity.

The first idea that may come to mind is to count the number of tags each pair of
artists have in common. Though this may seem like a good idea at first glance,
consider the following scenario:

Artist A and artist B have hundreds of tags each, and they share three tags in
common; artist C and D each have two tags, both of which are mutually shared. Our
naive metric for similarity suggests that artists A and B are more similar than C and
D (by 50%). If your intuition tells you that C and D are more similar, though, we are
both in agreement.

To make our similarity measure comport more with our intuition, we will instead
use the Jaccard index. The Jaccard index (also Jaccard coefficient) between sets A and B,
(),J A B , is given by:

(), A B
J A B

A B
=
∩
∪

where ∩ is the set intersection (the common tags), ∪ is the set union (an
unduplicated list of all the tags in both sets), and X is the set X's cardinality (the
number of elements in that set).

Chapter 10

[255]

This metric has the attractive property that it is naturally constrained:

()0 , 1J A B≤ ≤

Let's write a function that takes two sets, and returns the Jaccard index. We'll employ
the built-in functions intersect and union.

jaccard_index <- function(one, two){
 length(intersect(one, two))/length(union(one, two))
}

Let's try it on The Cure and Radiohead:

jaccard_index(our_artists_tags[["Radiohead"]],
 our_artists_tags[["The Cure"]])

[1] 0.3333

Neat! Manual checking confirms that this is the right answer.

The next step is to construct a similarity matrix. This is a n n× matrix (where n is
the number of artists) that depicts all the pairwise similarity measurements. If this
explanation is confusing, look at the code output before reading the following code
snippet:

similarity_matrix <- function(artist_list, similarity_fn) {
 num <- length(artist_list)

 # initialize a num by num matrix of zeroes
 sim_matrix <- matrix(0, ncol = num, nrow = num)

 # name the rows and columns for easy lookup
 rownames(sim_matrix) <- names(artist_list)
 colnames(sim_matrix) <- names(artist_list)

 # for each row in the matrix
 for(i in 1:nrow(sim_matrix)) {
 # and each column
 for(j in 1:ncol(sim_matrix)) {
 # calculate that pair's similarity

Sources of Data

[256]

 the_index <- similarity_fn(artist_list[[i]],
 artist_list[[j]])
 # and store it in the right place in the matrix
 sim_matrix[i,j] <- round(the_index, 2)
 }
 }
 return(sim_matrix)
}

sim_matrix <- similarity_matrix(our_artists_tags, jaccard_index)
print(sim_matrix)

--

 Kate Bush Peter Tosh Radiohead The Smiths The Cure Black Uhuru
Kate Bush 1.00 0.05 0.31 0.25 0.21 0.04
Peter Tosh 0.05 1.00 0.02 0.03 0.03 0.33
Radiohead 0.31 0.02 1.00 0.31 0.33 0.04
The Smiths 0.25 0.03 0.31 1.00 0.44 0.05
The Cure 0.21 0.03 0.33 0.44 1.00 0.05
Black Uhuru 0.04 0.33 0.04 0.05 0.05 1.00

If you're familiar with some of these bands, you'll no doubt see that the similarity
matrix in the preceding output makes a lot of prima facie sense—it looks like our
theory is sound!

If you notice, the values along the diagonal (from the upper-left point to the
lower-right) are all 1. This is because the Jaccard index of two identical sets is always
1—and artists' similarity with themselves is always 1. Additionally, all the values
are symmetric with respect to the diagonal; whether you look up Peter Tosh and
Radiohead by column and then row, or vice versa, the value will be the same (.02).
This property means that the matrix is symmetric. This is a property of all similarity
matrices using symmetric (commutative) similarity functions.

Chapter 10

[257]

A similar (and perhaps more common) concept is that of a distance matrix
(or dissimilarity matrix). The idea is the same, but now the values that
are higher will refer to more musically distant pairs of artists. Also, the
diagonal will be zeroes, since an artist is the least musically different
from themselves than any other artist. If all the values of a similarity
matrix are between 0 and 1 (as is often the case), you can easily make it
into a distance matrix by subtracting 1 from every element. Subtracting
from 1 again will yield the original similarity matrix.

Recommendations can now be furnished, for listeners of one of the bands, by sorting
that artist's column in the matrix in a descending order; for example, if a user likes
The Smiths, but is unsure what other bands she should try listening to:

The Smiths are the fourth column
sim_matrix[order(sim_matrix[,4], decreasing=TRUE), 4]

--

The Smiths The Cure Radiohead Kate Bush Black Uhuru
 1.00 0.44 0.31 0.25 0.05
 Peter Tosh
 0.03

Of course, a recommendation of The Smiths for this user is nonsensical. Going
down the list, it looks like a recommendation of The Cure is the safest bet, though
Radiohead and Kate Bush may also be fine recommendations. Black Uhuru and Peter
Tosh are unsafe bets if all we know about the user's a fondness for The Smiths.

XML
XML, like JSON, is an absolutely ubiquitous format for data transfer over the
Internet. In addition to being used on the web, XML is also a popular data format for
application configuration files and the list. In fact, newer Microsoft Office documents
(with the extension .docx or .xlsx) are stored as XML files.

Here's what our simple Beatles dataset may look like in XML:

example_xml1 <- '
<the_beatles>
 <formed>1960</formed>
 <members>
 <member>

Sources of Data

[258]

 <first_name>George</first_name>
 <last_name>Harrison</last_name>
 </member>
 <member>
 <first_name>Ringo</first_name>
 <last_name>Starr</last_name>
 </member>
 <member>
 <first_name>Paul</first_name>
 <last_name>McCartney</last_name>
 </member>
 <member>
 <first_name>John</first_name>
 <last_name>Lennon</last_name>
 </member>
 </members>
</the_beatles>'

Much like JSON, XML is stored in a tree structure—this is called a DOM (Document
Object Model) tree in XML parlance. Each piece of information in an XML
document—surrounded by names in angle brackets—is called an element or node. In
the hierarchical structure, subnodes are called children. In the preceding code, formed
is a child of the_beatles, and member is a child of members. Each node may have
zero or more children who may have children nodes of their own. For example, the
members node has four children, each of whom have two children, first_name and
last_name. The common parent of all the elements (whether direct parent or great-
great-grandparent) is the root node, which doesn't have a parent.

As with JSON, XML and XML import functions is an enormous
topic. We'll only briefly cover some of the more common and basic
know-how in this chapter. Fortunately, R has a built-in help and
documentation. For this package, help(package="XML") indicates
that more documentation is available at the package's URL: http://
www.omegahat.org/RSXML

We will read the preceding XML with the XML package. If you don't have it already,
make sure you install it.

library(XML)
the_beatles <- xmlTreeParse(example_xml1)
print(names(the_beatles))

http://www.omegahat.org/RSXML
http://www.omegahat.org/RSXML

Chapter 10

[259]

[1] "doc" "dtd"

print(the_beatles$doc)

$file
[1] "<buffer>"

$version
[1] "1.0"

$children
$children$the_beatles
<the_beatles>
 <formed>1960</formed>
 <members>
 <member>
 <first_name>George</first_name>
 <last_name>Harrison</last_name>
 </member>

 </members>
</the_beatles>

attr(,"class")
[1] "XMLDocumentContent"

xmlTreeParse reads and parses the DOM, and stores it as an R list. The actual content is
stored in the children attribute of the doc attribute. We can access the year The Beatles
were formed like so:

print(xmlValue(the_beatlesdocchildren$the_beatles[["formed"]]))

[1] "1960"

Here, we use the xmlValue function to extract the value stored in the formed node.

Sources of Data

[260]

If we wanted to get to the first names of all the members, we have to store the root
node of the DOM, and iterate over the children of the members node. In particular,
we use the sapply function (which applies a function to each element of a vector)
over the children with a function that returns the xml value of the first_name node.
Concretely:

root <- xmlRoot(the_beatles)
sapply(xmlChildren(root[["members"]]), function(x){
 xmlValue(x[["first_name"]])
})

 member member member member
"George" "Ringo" "Paul" "John"

Though it's possible to work with the DOM in this manner, it is much more common
to interrogate XML using XPath.

XPath is kind of like an XML query language—like SQL, but for XML. It allows us
to select nodes that match a particular pattern or location. For matching, it uses path
expressions that identify nodes based on their name, location, or relationships with
other nodes.

This powerful tool also comes with a proportionally steep learning curve. Luckily, it
is somewhat easy to get started. In addition, there are a lot of great tutorials online.
The excellent tutorial that taught me XPath is available at http://www.w3schools.
com/xsl/xpath_intro.asp.

To use XPath, we have to re-import the XML using the xmlParse (not
XMLTreeParse) function, which uses a different optimized internal representation.
To replicate the results of the previous code snippet using XPath, we are going to use
the following XPath statement:

all_first_names <- "//member/first_name"

The preceding statement roughly translates to "for all member nodes anywhere
occurring anywhere in the document, get the child node named first_name".

the_beatles <- xmlParse(example_xml1)
getNodeSet(the_beatles, all_first_names)

[[1]]

http://www.w3schools.com/xsl/xpath_intro.asp
http://www.w3schools.com/xsl/xpath_intro.asp

Chapter 10

[261]

<first_name>George</first_name>

[[2]]
<first_name>Ringo</first_name>

[[3]]
<first_name>Paul</first_name>

[[4]]
<first_name>John</first_name>

attr(,"class")
[1] "XMLNodeSet"

Equivalent XPath expressions could also be written thus:

getNodeSet(the_beatles, "//first_name")
getNodeSet(the_beatles, "/the_beatles/members/member/first_name")

And just the XML values for each node can be extracted thus:

sapply(getNodeSet(the_beatles, all_first_names), xmlValue)

[1] "George" "Ringo" "Paul" "John"

There is more than one way to represent the same information in XML. The
following XML is another way of representing the same data about The Beatles. This
uses XML attributes instead of nodes for formed, first_name, and last_name:

example_xml2 <- '
<the_beatles formed="1990">
 <members>
 <member first_name="George" last_name="Harrison"/>
 <member first_name="Richard" last_name="Starkey"/>
 <member first_name="Paul" last_name="McCartney"/>
 <member first_name="John" last_name="Lennon"/>
 </members>
</the_beatles>'

In this case, retrieving a vector of all first names can be done using this snippet:

sapply(getNodeSet(the_beatles, "//member[@first_name]"),
 function(x){ xmlAttrs(x)[["first_name"]] })

Sources of Data

[262]

[1] "George" "Richard" "Paul" "John"

It may help understanding of XML processing in R to use it in a real-life example.

There is a repository of music information called MusicBrainz (http://
musicbrainz.org). Like Last.fm, this website kindly allows custom queries against
their info database, and returns the results in XML format.

We will use this service to extend the recommendation system that we created just
using tags from Last.fm by combining them with tags from MusicBrainz.

To query the database for a particular artist, the format is as follows:

http://musicbrainz.org/ws/2/artist/?query=artist:<THE_ARTIST>

For example, the query for Kate Bush is: http://musicbrainz.org/ws/2/
artist/?query=artist:Kate%20Bush

If you visit that link, you'll see that it returns an XML document that contains a list
of artists that match the search to varying degrees. The list contains, among others,
John Bush, Shelly Bush, and Bush. Luckily, the matches are in order of descending
matchiness and, for all the artists that we'll be working with, the correct artist is the
first artist in the node artist-list.

In case you can't view the link yourself, the following is essentially the structure of it:

<metadata xmlns="http://musicbrainz.org/ns/mmd-2.0#">
 <artist-list>
 <artist>
 <name>Kate Bush</name>
 <tag-list>
 <tag count="1">
 <name>kent</name>
 </tag>
 <tag count="1">
 <name>english</name>
 </tag>
 <tag count="3">
 <name>british</name>
 </tag>
 </tag-list>
 </artist>
 <artist-list>
</metadata>

http://musicbrainz.org
http://musicbrainz.org
http://musicbrainz.org/ws/2/artist/?query=artist:Kate%20Bush
http://musicbrainz.org/ws/2/artist/?query=artist:Kate%20Bush

Chapter 10

[263]

This means that the XPath expressions that selects all the tags (of the first artist) is
given by: //artist[1]/tag-list/tag/name

As with JSON/Last.fm, let's write the function that, for any given artist, returns the
appropriate query URL:

create_artist_query_url_mb <- function(artist){
 encoded_artist <- URLencode(artist)
 return(paste0("http://musicbrainz.org/ws/2/artist/?query=artist:",
 encoded_artist))
}

create_artist_query_url_mb("Depeche Mode")

[1] "http://musicbrainz.org/ws/2/artist/?query=artist:Depeche%20Mode"

Now, let's write the function that returns the list of tags for a particular artist.

Because nothing is ever easy, the XPath mentioned in the preceding code will not
work as is. This is because the MusicBrainz XML uses an XML namespace. Though
it makes our job (marginally) harder, an XML namespace is generally a good thing,
because it eliminates ambiguity when referring to element names between different
XML documents whose element names are arbitrarily defined by the developer.

As the response suggests, the namespace is given by http://musicbrainz.org/ns/
mmd-2.0#. In order to use this in our tag extraction function and XPath selecting, we
need to store and name this namespace first:

ns <- "http://musicbrainz.org/ns/mmd-2.0#"
names(ns)[1] <- "ns"

Now we have all we need to write the Music Brainz counterpart to the get_tag_
vector_lfm function.

get_tag_vector_mb <- function(an_artist, ns){
 artist_url <- create_artist_query_url_mb(an_artist)
 the_xml <- xmlParse(artist_url)
 xpath <- "//ns:artist[1]/ns:tag-list/ns:tag/ns:name"
 the_nodes <- getNodeSet(the_xml, xpath, ns)
 return(unlist(lapply(the_nodes, xmlValue)))
}

Sources of Data

[264]

get_tag_vector_mb("Depeche Mode", ns)

 [1] "electronica" "post punk" "alternative dance"
 [4] "electronic" "dark wave" "britannique"

Like fromJSON, xmlParse handles URLs natively.

Let's finish this up:

our_artists <- list("Kate Bush", "Peter Tosh", "Radiohead",
 "The Smiths", "The Cure", "Black Uhuru")
our_artists_tags_mb <- lapply(our_artists, get_tag_vector_mb, ns)
names(our_artists_tags_mb) <- our_artists

sim_matrix <- similarity_matrix(our_artists_tags_mb, jaccard_index)
print(sim_matrix)

 Kate Bush Peter Tosh Radiohead The Smiths The Cure Black Uhuru
Kate Bush 1.00 0.00 0.24 0.27 0.24 0.00
Peter Tosh 0.00 1.00 0.00 0.00 0.00 0.17
Radiohead 0.24 0.00 1.00 0.23 0.23 0.00
The Smiths 0.27 0.00 0.23 1.00 0.38 0.00
The Cure 0.24 0.00 0.23 0.38 1.00 0.00
Black Uhuru 0.00 0.17 0.00 0.00 0.00 1.00

> sim_matrix[order(sim_matrix[,4], decreasing=TRUE), 4]

 The Smiths The Cure Kate Bush Radiohead Peter Tosh Black Uhuru
 1.00 0.38 0.27 0.23 0.00 0.00

Chapter 10

[265]

This yields results that are quite similar to the recommendation system that uses tags
from only Last.fm. Personally, I like the former better, but how about we combine
both? We can do this easily by taking the set intersection of artists' tags between the
two services.

for(i in 1:length(our_artists_tags)){
 the_artist <- names(our_artists_tags)[i]
 # the_artist now holds the current artist's name
 combined_tags <- union(our_artists_tags[[the_artist]],
 our_artists_tags_mb[[the_artist]])
 our_artists_tags[[the_artist]] <- combined_tags
}

sim_matrix <- similarity_matrix(our_artists_tags, jaccard_index)
print(sim_matrix)

 Kate Bush Peter Tosh Radiohead The Smiths The Cure Black Uhuru
Kate Bush 1.00 0.04 0.29 0.24 0.19 0.03
Peter Tosh 0.04 1.00 0.01 0.03 0.03 0.29
Radiohead 0.29 0.01 1.00 0.29 0.30 0.03
The Smiths 0.24 0.03 0.29 1.00 0.40 0.05
The Cure 0.19 0.03 0.30 0.40 1.00 0.05
Black Uhuru 0.03 0.29 0.03 0.05 0.05 1.00

Super!

Other data formats
One of things that make R great is the wealth of high-quality add-on packages. As
you might expect, there are many of these add-on packages with the ability to import
data in a multitude of other formats. Whether it's an arcane markup-language, a
proprietary binary file, excel spreadsheet, and so on, there is almost certainly an R
package out there for you to handle it. But how to find them?

Sources of Data

[266]

One way is to browse the community maintained CRAN Task Views (https://
cran.r-project.org/web/views/). A task view is a way to browse for packages
related to a particular topic, domain, or special interest. The germane Task View,
here, is the Web Technologies Task View (https://cran.r-project.org/web/
views/WebTechnologies.html). You'll notice that jsonlite and the XML package
are mentioned on the first page.

The easiest way to discover these packages, though, is through your favorite web
browser. For example, if you are looking for a package to import YAML data (yet
another data serialization format), I might search R CRAN package yaml. If you use
a search engine that tracks you (don't fight the singularity), eventually a search of
only R yaml will suffice to get you where you need to go.

Developing fast and reliable information retrieval skills (like search-engine-fu)
is probably one of the most valuable assets of a statistical programmer—or any
programmer, for that matter. Cultivating these skills will serve you well, dear reader.

Online repositories
Look back to the Web Technologies task view we talked about in the previous
section. There are a tremendous amount of R packages specifically designed to
import data directly from specialized sources on the web. Among these are packages
to search for and retrieve the full text of academic articles in the Public Library of
Science journals (rplos), search for and download the full text of Wikipedia articles
(WikipediR), download data about Berlin from the German government (BerlinData),
interface with the Chromosome Counts Database (chromer), download historical
financial data (quantmod), and access the information in the PubChem chemistry
database (rpubchem).

These examples notwithstanding, given that there are many hundreds of immense
repositories of public data, it is far too much to expect the R community to have
a package specially built for every single one. Luckily, with the ability to handle
many different data formats under our belt, we can just download and import
the data from these repositories ourselves. The following are a few of my favorite
repositories. Perhaps some of them will have dedicated R packages for handling
them by the time you read this.

•	 data.gov: a huge repository of data from the US government in a variety of
formats including CSV, XML, and JSON

•	 data.gov.uk: the UK's equivalent repository

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/WebTechnologies.html
https://cran.r-project.org/web/views/WebTechnologies.html
data.gov
data.gov.uk

Chapter 10

[267]

•	 data.worldbank.org: a spot for data made available by the World Bank
including data on climate change, poverty, and aid effectiveness

•	 archive.ics.uci.edu/ml/: 333 (at time of writing) datasets of various
length and widths for testing statistical learning algorithms

•	 www.cdc.gov/nchs/data_access/ftp_data.htm: some health-related data
sets made available by the US Center of Disease Control

Exercises
Practice the following exercises to revise the concepts learned in this chapter:

•	 How did we waste computation in the similarity_matrix function?
•	 Both the Last.fm and the MusicBrainz API has a count value associated with

each tag, which can be taken to represent the extent to which the tag applied
to the artist. By ignoring this field, in both cases, we implicitly used a count
of 1 for every tag—making well-fitting tags just as important as relatively less
well-fitting ones. Rewrite the code to take count into account, and weigh each
tag proportionally to its count value. This will be challenging, but it will be
invaluable for understanding the material. It will also boost your confidence
as an R programmer once you finish. Go you!

•	 How else might you be able to extend and improve upon our ragtag
recommender system?

•	 The Efficient market hypothesis posits that since the price of financial
instruments reflects all the relevant information about its value at any given
time, it is impossible to consistently beat the market. Familiarize yourself with
the weak, semi-strong, and strong formulations of this hypothesis. Which, if
any, of the camps do you align with? Why? Be specific.

Summary
This chapter began with a discussion of relation databases. You've learned that the
DBI package defines a standard interface on which various database drivers build
upon. You then learned how to query these types of databases, and load the results
in R.

Next, you gained an appreciation for JSON and XML (right?!), and how to approach
the import of data from these formats. We then put our chops to the test by wielding
data provided to us by two different web service APIs.

data.worldbank.org
archive.ics.uci.edu/ml/
www.cdc.gov/nchs/data_access/ftp_data.htm

Sources of Data

[268]

I stealthily snuck in some fancy new R constructs in this chapter. For example, prior
to this chapter, we've never explicitly worked with lists before.

Finally, you've learned about how to look for information beyond which this chapter
can provide, and some other places that we can get data to play around with.

In the next chapter, we won't be talking about how to load data from different
sources—we'll be talking about how to deal with disorderly data that is already
loaded.

[269]

Dealing with Messy Data
As mentioned in the last chapter, analyzing data in the real world often requires
some know-how outside of the typical introductory data analysis curriculum. For
example, rarely do we get a neatly formatted, tidy dataset with no errors, junk, or
missing values. Rather, we often get messy, unwieldy datasets.

What makes a dataset messy? Different people in different roles have different
ideas about what constitutes messiness. Some regard any data that invalidates the
assumptions of the parametric model as messy. Others see messiness in datasets with
a grievously imbalanced number of observations in each category for a categorical
variable. Some examples of things that I would consider messy are:

•	 Many missing values (NAs)
•	 Misspelled names in categorical variables
•	 Inconsistent data coding
•	 Numbers in the same column being in different units
•	 Mis-recorded data and data entry mistakes
•	 Extreme outliers

Since there are an infinite number of ways that data can be messy, there's simply no
chance of enumerating every example and their respective solutions. Instead, we are
going to talk about two tools that help combat the bulk of the messiness issues that I
cited just now.

Dealing with Messy Data

[270]

Analysis with missing data
Missing data is another one of those topics that are largely ignored in most
introductory texts. Probably, part of the reason why this is the case is that many
myths about analysis with missing data still abound. Additionally, some of the
research into cutting-edge techniques is still relatively new. A more legitimate
reason for its absence in introductory texts is that most of the more principled
methodologies are fairly complicated—mathematically speaking. Nevertheless,
the incredible ubiquity of problems related to missing data in real life data
analysis necessitates some broaching of the subject. This section serves as a gentle
introduction into the subject and one of the more effective techniques for dealing
with it.

A common refrain on the subject is something along the lines of the best way to deal
with missing data is not to have any. It's true that missing data is a messy subject, and
there are a lot of ways to do it wrong. It's important not to take this advice to the
extreme, though. In order to bypass missing data problems, some have disallowed
survey participants, for example, to go on without answering all the questions on a
form. You can coerce the participants in a longitudinal study to not drop out, too.
Don't do this. Not only is it unethical, it is also prodigiously counter-productive;
there are treatments for missing data, but there are no treatments for bad data.

The standard treatment to the problem of missing data is to replace the missing data
with non-missing values. This process is called imputation. In most cases, the goal
of imputation is not to recreate the lost completed dataset but to allow valid statistical
estimates or inferences to be drawn from incomplete data. Because of this, the
effectiveness of different imputation techniques can't be evaluated by their ability
to most accurately recreate the data from a simulated missing dataset; they must,
instead, be judged by their ability to support the same statistical inferences as would
be drawn from the analysis on the complete data. In this way, filling in the missing
data is only a step towards the real goal—the analysis. The imputed dataset is rarely
considered the final goal of imputation.

There are many different ways that missing data is dealt with in practice—some are
good, some are not so good. Some are okay under certain circumstances, but not
okay in others. Some involve missing data deletion, while some involve imputation.
We will briefly touch on some of the more common methods. The ultimate goal of
this chapter, though, is to get you started on what is often described as the gold-
standard of imputation techniques: multiple imputation.

Chapter 11

[271]

Visualizing missing data
In order to demonstrate the visualizing patterns of missing data, we first have to
create some missing data. This will also be the same dataset that we perform analysis
on later in the chapter. To showcase how to use multiple imputation for a semi-
realistic scenario, we are going to create a version of the mtcars dataset with a few
missing values:

Okay, let's set the seed (for deterministic randomness), and create a variable to hold
our new marred dataset.

set.seed(2)
miss_mtcars <- mtcars

First, we are going to create seven missing values in drat (about 20 percent), five
missing values in the mpg column (about 15 percent), five missing values in the cyl
column, three missing values in wt (about 10 percent), and three missing values
in vs:

some_rows <- sample(1:nrow(miss_mtcars), 7)
miss_mtcars$drat[some_rows] <- NA

some_rows <- sample(1:nrow(miss_mtcars), 5)
miss_mtcars$mpg[some_rows] <- NA

some_rows <- sample(1:nrow(miss_mtcars), 5)
miss_mtcars$cyl[some_rows] <- NA

some_rows <- sample(1:nrow(miss_mtcars), 3)
miss_mtcars$wt[some_rows] <- NA

some_rows <- sample(1:nrow(miss_mtcars), 3)
miss_mtcars$vs[some_rows] <- NA

Now, we are going to create four missing values in qsec, but only for automatic
cars:

only_automatic <- which(miss_mtcars$am==0)
some_rows <- sample(only_automatic, 4)
miss_mtcars$qsec[some_rows] <- NA

Dealing with Messy Data

[272]

Now, let's take a look at the dataset:

> miss_mtcars
 mpg cyl disp hp drat wt qsec vs am gear
carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4
4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4
4
Datsun 710 22.8 4 108.0 93 3.85 NA 18.61 1 1 4
1
Hornet 4 Drive 21.4 6 258.0 110 NA 3.215 19.44 1 0 3
1
Hornet Sportabout 18.7 8 360.0 175 NA 3.440 17.02 0 0 3
2
Valiant 18.1 NA 225.0 105 NA 3.460 NA 1 0 3
1

Great, now let's visualize the missingness.

The first way we are going to visualize the pattern of missing data is by using the
md.pattern function from the mice package (which is also the package that we are
ultimately going to use for imputing our missing data). If you don't have the package
already, install it.

> library(mice)
> md.pattern(miss_mtcars)
 disp hp am gear carb wt vs qsec mpg cyl drat
12 1 1 1 1 1 1 1 1 1 1 1 0
 4 1 1 1 1 1 1 1 1 0 1 1 1
 2 1 1 1 1 1 1 1 1 1 0 1 1
 3 1 1 1 1 1 1 1 1 1 1 0 1
 3 1 1 1 1 1 0 1 1 1 1 1 1
 2 1 1 1 1 1 1 1 0 1 1 1 1
 1 1 1 1 1 1 1 1 1 0 1 0 2
 1 1 1 1 1 1 1 1 0 1 0 1 2
 1 1 1 1 1 1 1 0 1 1 0 1 2
 2 1 1 1 1 1 1 0 1 1 1 0 2
 1 1 1 1 1 1 1 1 0 1 0 0 3
 0 0 0 0 0 3 3 4 5 5 7 27

A row-wise missing data pattern refers to the columns that are missing for each row.
This function aggregates and counts the number of rows with the same missing data
pattern. This function outputs a binary (0 and 1) matrix. Cells with a 1 represent non-
missing data; 0s represent missing data. Since the rows are sorted in an increasing-
amount-of-missingness order, the first row always refers to the missing data pattern
containing the least amount of missing data.

Chapter 11

[273]

In this case, the missing data pattern with the least amount of missing data is the
pattern containing no missing data at all. Because of this, the first row has all 1s in
the columns that are named after the columns in the miss_mtcars dataset. The left-
most column is a count of the number of rows that display the missing data pattern,
and the right-most column is a count of the number of missing data points in that
pattern. The last row contains a count of the number of missing data points in each
column.

As you can see, 12 of the rows contain no missing data. The next most common
missing data pattern is the one with missing just mpg; four rows fit this pattern.
There are only six rows that contain more than one missing value. Only one of these
rows contains more than two missing values (as shown in the second-to-last row).

As far as datasets with missing data go, this particular one doesn't contain much. It
is not uncommon for some datasets to have more than 30 percent of its data missing.
This data set doesn't even hit 3 percent.

Now let's visualize the missing data pattern graphically using the VIM package. You
will probably have to install this, too.

library(VIM)
aggr(miss_mtcars, numbers=TRUE)

Figure 11.1: The output of VIM's visual aggregation of missing data. The left plot shows the proportion on
missing values for each column. The right plot depicts the prevalence of row-wise missing data patterns, like

md.pattern

Dealing with Messy Data

[274]

At a glance, this representation shows us, effortlessly, that the drat column accounts
for the highest proportion of missingness, column-wise, followed by mpg, cyl, qsec, vs,
and wt. The graphic on the right shows us information similar to that of the output
of md.pattern. This representation, though, makes it easier to tell if there is some
systematic pattern of missingness. The blue cells represent non-missing data, and the
red cells represent missing data. The numbers on the right of the graphic represent
the proportion of rows displaying that missing data pattern. 37.5 percent of the rows
contain no missing data whatsoever.

Types of missing data
The VIM package allowed us to visualize the missing data patterns. A related term,
the missing data mechanism, describes the process that determines each data point's
likelihood of being missing. There are three main categories of missing data
mechanisms: Missing Completely At Random (MCAR), Missing At Random
(MAR), and Missing Not At Random (MNAR). Discrimination based on missing
data mechanism is crucial, since it informs us about the options for handling the
missingness.

The first mechanism, MCAR, occurs when data's missingness is unrelated to the
data. This would occur, for example, if rows were deleted from a database at
random, or if a gust of wind took a random sample of a surveyor's survey forms off
into the horizon. The mechanism that governs the missingness of drat, mpg, cyl,
wt, and vs' is MCAR, because we randomly selected elements to go missing. This
mechanism, while being the easiest to work with, is seldom tenable in practice.

MNAR, on the other hand, occurs when a variable's missingness is related to the
variable itself. For example, suppose the scale that weighed each car had a capacity
of only 3,700 pounds, and because of this, the eight cars that weighed more than
that were recorded as NA. This is a classic example of the MNAR mechanism—
it is the weight of the observation itself that is the cause for its being missing.
Another example would be if during the course of trial of an anti-depressant drug,
participants who were not being helped by the drug became too depressed to
continue with the trial. At the end of the trial, when all the participants' level of
depression is accessed and recorded, there would be missing values for participants
whose reason for absence is related to their level of depression.

The last mechanism, missing at random, is somewhat unfortunately named. Contrary
to what it may sound like, it means there is a systematic relationship between
the missingness of an outcome variable' and other observed variables, but not the
outcome variable itself. This is probably best explained by the following example.

Chapter 11

[275]

Suppose that in a survey, there is a question about income level that, in its wording,
uses a particular colloquialism. Due to this, a large number of the participants in
the survey whose native language is not English couldn't interpret the question,
and left it blank. If the survey collected just the name, gender, and income, the
missing data mechanism of the question on income would be MNAR. If, however,
the questionnaire included a question that asked if the participant spoke English as
a first language, then the mechanism would be MAR. The inclusion of the Is English
your first language? variable means that the missingness of the income question can
be completely accounted for. The reason for the moniker missing at random is that
when you control the relationship between the missing variable and the observed variable(s)
it is related to (for example, What is your income? and Is English your first language?
respectively), the data are missing at random.

As another example, there is a systematic relationship between the am and qsec
variables in our simulated missing dataset: qsecs were missing only for automatic
cars. But within the group of automatic cars, the qsec variable is missing at random.
Therefore, qsec 's mechanism is MAR; controlling for transmission type, qsec is missing
at random. Bear in mind, though, if we removed am from our simulated dataset, qsec
would become MNAR.

As mentioned earlier, MCAR is the easiest type to work with because of the
complete absence of a systematic relationship in the data's missingness. Many
unsophisticated techniques for handling missing data rest on the assumption that the
data are MCAR. On the other hand, MNAR data is the hardest to work with since
the properties of the missing data that caused its missingness has to be understood
quantifiably, and included in the imputation model. Though multiple imputations
can handle the MNAR mechanisms, the procedures involved become more
complicated and far beyond the scope of this text. The MCAR and MAR mechanisms
allow us not to worry about the properties and parameters of the missing data. For
this reason, may sometimes find MCAR or MAR missingness being referred to as
ignorable missingness.

MAR data is not as hard to work with as MNAR data, but it is not as forgiving as
MCAR. For this reason, though our simulated dataset contains MCAR and MAR
components, the mechanism that describes the whole data is MAR—just one MAR
mechanism makes the whole dataset MAR.

Dealing with Messy Data

[276]

So which one is it?
You may have noticed that the place of a particular dataset in the missing data
mechanism taxonomy is dependent on the variables that it includes. For example,
we know that the mechanism behind qsec is MAR, but if the dataset did not include
am, it would be MNAR. Since we are the ones that created the data, we know the
procedure that resulted in qsec 's missing values. If we weren't the ones creating the
data—as happens in the real world—and the dataset did not contain the am column,
we would just see a bunch of arbitrarily missing qsec values. This might lead us to
believe that the data is MCAR. It isn't, though; just because the variable to which
another variable's missingness is systematically related is non-observed, doesn't
mean that it doesn't exist.

This raises a critical question: can we ever be sure that our data is not MNAR? The
unfortunate answer is no. Since the data that we need to prove or disprove MNAR
is ipso facto missing, the MNAR assumption can never be conclusively disconfirmed.
It's our job, as critically thinking data analysts, to ask whether there is likely an
MNAR mechanism or not.

Unsophisticated methods for dealing with
missing data
Here we are going to look at various types of methods for dealing with missing data:

Complete case analysis
This method, also called list-wise deletion, is a straightforward procedure that simply
removes all rows or elements containing missing values prior to the analysis. In the
univariate case—taking the mean of the drat column, for example—all elements of
drat that are missing would simply be removed:

> mean(miss_mtcars$drat)
[1] NA
> mean(miss_mtcars$drat, na.rm=TRUE)
[1] 3.63

Chapter 11

[277]

In a multivariate procedure—for example, linear regression predicting mpg from am,
wt, and qsec—all rows that have a missing value in any of the columns included in
the regression are removed:

listwise_model <- lm(mpg ~ am + wt + qsec,
 data=miss_mtcars,
 na.action = na.omit)
OR
complete.cases returns a boolean vector
comp <- complete.cases(cbind(miss_mtcars$mpg,
 miss_mtcars$am,
 miss_mtcars$wt,
 miss_mtcars$qsec))
comp_mtcars <- mtcars[comp,]
listwise_model <- lm(mpg ~ am + wt + qsec,
 data=comp_mtcars)

Under an MCAR mechanism, a complete case analysis produces unbiased estimates
of the mean, variance/standard deviation, and regression coefficients, which means
that the estimates don't systematically differ from the true values on average,
since the included data elements are just a random sampling of the recorded data
elements. However, inference-wise, since we lost a number of our samples, we are
going to lose statistical power and generate standard errors and confidence intervals
that are bigger than they need to be. Additionally, in the multivariate regression case,
note that our sample size depends on the variables that we include in the regression;
more the variables, more is the missing data that we open ourselves up to, and more
the rows that we are liable to lose. This makes comparing results across different
models slightly hairy.

Under an MAR or MNAR mechanism, list-wise deletion will produce biased
estimates of the mean and variance. For example, if am were highly correlated with
qsec, the fact that we are missing qsec only for automatic cars would significantly
shift our estimates of the mean of qsec. Surprisingly, list-wise deletion produces
unbiased estimates of the regression coefficients, even if the data is MNAR or MAR,
as long as the relevant variables are included in the regression equations. For this
reason, if there are relatively few missing values in a data set that is to be used in
regression analysis, list-wise deletion could be an acceptable alternative to more
principled approaches.

Dealing with Messy Data

[278]

Pairwise deletion
Also called available-case analysis, this technique is (somewhat unfortunately)
common when estimating covariance or correlation matrices. For each pair of
variables, it only uses the cases that are non-missing for both. This often means that
the number of elements used will vary from cell to cell of the covariance/correlation
matrices. This can result in absurd correlation coefficients that are above 1, making
the resulting matrices largely useless to methodologies that depend on them.

Mean substitution
Mean substitution, as the name suggests, replaces all the missing values with the
mean of the available cases. For example:

mean_sub <- miss_mtcars
mean_sub$qsec[is.na(mean_sub$qsec)] <- mean(mean_sub$qsec,
 na.rm=TRUE)
etc...

Although this seemingly solves the problem of the loss of sample size in the list-
wise deletion procedure, mean substitution has some very unsavory properties
of it's own. Whilst mean substitution produces unbiased estimates of the mean
of a column, it produces biased estimates of the variance, since it removes the
natural variability that would have occurred in the missing values had they not
been missing. The variance estimates from mean substitution will therefore be,
systematically, too small. Additionally, it's not hard to see that mean substitution
will result in biased estimates if the data are MAR or MNAR. For these reasons,
mean substitution is not recommended under virtually any circumstance.

Hot deck imputation
Hot deck imputation is an intuitively elegant approach that fills in the missing
data with donor values from another row in the dataset. In the least sophisticated
formulation, a random non-missing element from the same dataset is shared with a
missing value. In more sophisticated hot deck approaches, the donor value comes
from a row that is similar to the row with the missing data. The multiple imputation
techniques that we will be using in a later section of this chapter borrows this idea
for one of its imputation methods.

The term hot deck refers to the old practice of storing data in decks of
punch cards. The deck that holds the donor value would be hot because
it is the one that is currently being processed.

Chapter 11

[279]

Regression imputation
This approach attempts to fill in the missing data in a column using regression to
predict likely values of the missing elements using other columns as predictors. For
example, using regression imputation on the drat column would employ a linear
regression predicting drat from all the other columns in miss_mtcars. The process
would be repeated for all columns containing missing data, until the dataset is
complete.

This procedure is intuitively appealing, because it integrates knowledge of the
other variables and patterns of the dataset. This creates a set of more informed
imputations. As a result, this produces unbiased estimates of the mean and
regression coefficients under MCAR and MAR (so long as the relevant variables are
included in the regression model.

However, this approach is not without its problems. The predicted values of the
missing data lie right on the regression line but, as we know, very few data points lie
right on the regression line—there is usually a normally distributed residual (error)
term. Due to this, regression imputation underestimates the variability of the missing
values. As a result, it will result in biased estimates of the variance and covariance
between different columns. However, we're on the right track.

Stochastic regression imputation
As far as unsophisticated approaches go, stochastic regression is fairly evolved. This
approach solves some of the issues of regression imputation, and produces unbiased
estimates of the mean, variance, covariance, and regression coefficients under MCAR
and MAR. It does this by adding a random (stochastic) value to the predictions of
regression imputation. This random added value is sampled from the residual (error)
distribution of the linear regression—which, if you remember, is assumed to be a
normal distribution. This restores the variability in the missing values (that we lost in
regression imputation) that those values would have had if they weren't missing.

However, as far as subsequent analysis and inference on the imputed dataset goes,
stochastic regression results in standard errors and confidence intervals that are
smaller than they should be. Since it produces only one imputed dataset, it does
not capture the extent to which we are uncertain about the residuals and our
coefficient estimates. Nevertheless, stochastic regression forms the basis of still more
sophisticated imputation methods.

There are two sophisticated, well-founded, and recommended methods of dealing
with missing data. One is called the Expectation Maximization (EM) method, which
we do not cover here. The second is called Multiple Imputation, and because it is
widely considered the most effective method, it is the one we explore in this chapter.

Dealing with Messy Data

[280]

Multiple imputation
The big idea behind multiple imputation is that instead of generating one set of
imputed data with our best estimation of the missing data, we generate multiple
versions of the imputed data where the imputed values are drawn from a
distribution. The uncertainty about what the imputed values should be is reflected in
the variation between the multiply imputed datasets.

We perform our intended analysis separately with each of these m amount of
completed datasets. These analyses will then yield m different parameter estimates
(like regression coefficients, and so on). The critical point is that these parameter
estimates are different solely due to the variability in the imputed missing values, and
hence, our uncertainty about what the imputed values should be. This is how multiple
imputation integrates uncertainty, and outperforms more limited imputation methods
that produce one imputed dataset, conferring an unwarranted sense of confidence in
the filled-in data of our analysis. The following diagram illustrates this idea:

Figure 11.2: Multiple imputation in a nutshell

Chapter 11

[281]

So how does mice come up with the imputed
values?
Let's focus on the univariate case—where only one column contains missing data
and we use all the other (completed) columns to impute the missing values—before
generalizing to a multivariate case.

mice actually has a few different imputation methods up its sleeve, each best suited
for a particular use case. mice will often choose sensible defaults based on the data
type (continuous, binary, non-binary categorical, and so on).

The most important method is what the package calls the norm method. This method
is very much like stochastic regression. Each of the m imputations is created by
adding a normal "noise" term to the output of a linear regression predicting the
missing variable. What makes this slightly different than just stochastic regression
repeated m times is that the norm method also integrates uncertainty about the
regression coefficients used in the predictive linear model.

Recall that the regression coefficients in a linear regression are just estimates of the
population coefficients from a random sample (that's why each regression coefficient
has a standard error and confidence interval). Another sample from the population
would have yielded slightly different coefficient estimates. If through all our
imputations, we just added a normal residual term from a linear regression equation
with the same coefficients, we would be systematically understating our uncertainty
regarding what the imputed values should be.

To combat this, in multiple imputation, each imputation of the data contains
two steps. The first step performs stochastic linear regression imputation using
coefficients for each predictor estimated from the data. The second step chooses
slightly different estimates of these regression coefficients, and proceeds into the next
imputation. The first step of the next imputation uses the slightly different coefficient
estimates to perform stochastic linear regression imputation again. After that, in the
second step of the second iteration, still other coefficient estimates are generated
to be used in the third imputation. This cycle goes on until we have m multiply
imputed datasets.

How do we choose these different coefficient estimates at the second step of each
imputation? Traditionally, the approach is Bayesian in nature; these new coefficients
are drawn from each of the coefficients' posterior distribution, which describes
credible values of the estimate using the observed data and uninformative priors.
This is the approach that norm uses. There is an alternate method that chooses these
new coefficient estimates from a sampling distribution that is created by taking
repeated samples of the data (with replacement) and estimating the regression
coefficients of each of these samples. mice calls this method norm.boot.

Dealing with Messy Data

[282]

The multivariate case is a little more hairy, since the imputation for one column
depends on the other columns, which may contain missing data of their own.

For this reason, we make several passes over all the columns that need imputing,
until the imputation of all missing data in a particular column is informed by
informed estimates of the missing data in the predictor columns. These passes over
all the columns are called iterations.

So that you really understand how this iteration works, let's say we are performing
multiple imputation on a subset of miss_mtcars containing only mpg, wt and drat.
First, all the missing data in all the columns are set to a placeholder value like the
mean or a randomly sampled non-missing value from its column. Then, we visit mpg
where the placeholder values are turned back into missing values. These missing
values are predicted using the two-part procedure described in the univariate case.
Then we move on to wt; the placeholder values are turned back into missing values,
whose new values are imputed with the two-step univariate procedure using mpg
and drat as predictors. Then this is repeated with drat. This is one iteration. On
the next iteration, it is not the placeholder values that get turned back into random
values and imputed but the imputed values from the previous iteration. As this
repeats, we shift away from the starting values and the imputed values begin
to stabilize. This usually happens within just a few iterations. The dataset at the
completion of the last iteration is the first multiply imputed dataset. Each m starts the
iteration process all over again.

The default in mice is five iterations. Of course, you can increase this number if you
have reason to believe that you need to. We'll discuss how to tell if this is necessary
later in the section.

Methods of imputation
The method of imputation that we described for the univariate case, norm, works best
for imputed values that follow an unconstrained normal distribution—but it could
lead to some nonsensical imputations otherwise. For example, since the weights in
wt are so close to 0 (because it's in units of a thousand pounds) it is possible for the
norm method to impute a negative weight. Though this will no doubt balance out
over the other m-1 multiply imputed datasets, we can combat this situation by using
another method of imputation called predictive mean matching.

Predictive mean matching (mice calls this pmm) works a lot like norm. The difference
is that the norm imputations are then used to find the d closest values to the imputed
value among the non-missing data in the column. Then, one of these d values is
chosen as the final imputed value—d=3 is the default in mice.

Chapter 11

[283]

This method has a few great properties. For one, the possibility of imputing a
negative value for wt is categorically off the table; the imputed value would have to
be chosen from the set {1.513, 1.615, 1.835}, since these are the three lowest weights.
More generally, any natural constraint in the data (lower or upper bounds, integer
count data, numbers rounded to the nearest one-half, and so on) is respected with
predictive mean matching, because the imputed values appear in the actual non-
missing observed values. In this way, predictive mean matching is like hot-deck
imputation. Predictive mean matching is the default imputation method in mice for
numerical data, though it may be inferior to norm for small datasets and/or datasets
with a lot of missing values.

Many of the other imputation methods in mice are specially suited for one particular
data type. For example, binary categorical variables use logreg by default; this is like
norm but uses logistic regression to impute a binary outcome. Similarly, non-binary
categorical data uses multinomial regression—mice calls this method polyreg.

Multiple imputation in practice
There are a few steps to follow and decisions to make when using this powerful
imputation technique:

•	 Are the data MAR?: And be honest! If the mechanism is likely not MAR, then
more complicated measures have to be taken.

•	 Are there any derived terms, redundant variables, or irrelevant variables in
the data set?: Any of these types of variables will interfere with the regression
process. Irrelevant variables—like unique IDs—will not have any predictive
power. Derived terms or redundant variables—like having a column for
weight in pounds and grams, or a column for area in addition to a length and
width column—will similarly interfere with the regression step.

•	 Convert all categorical variables to factors, otherwise mice will not be able to
tell that the variable is supposed to be categorical.

•	 Choose number of iterations and m: By default, these are both five. Using
five iterations is usually okay—and we'll be able to tell if we need more. Five
imputations are usually okay, too, but we can achieve more statistical power
from more imputed datasets. I suggest setting m to 20, unless the processing
power and time can't be spared.

•	 Choose an imputation method for each variable: You can stick with the
defaults as long as you are aware of what they are and think they're the
right fit.

Dealing with Messy Data

[284]

1.	 Choose the predictors: Let mice use all the available columns as
predictors as long as derived terms and redundant/irrelevant
columns are removed. Not only does using more predictors result in
reduced bias, but it also increases the likelihood that the data is MAR.

2.	 Perform the imputations
3.	 Audit the imputations
4.	 Perform analysis with the imputations
5.	 Pool the results of the analyses

Before we get down to it, let's call the mice function on our data frame with missing
data, and use its default arguments, just to see what we shouldn't do and why:

we are going to set the seed and printFlag to FALSE, but
everything else will the default argument
imp <- mice(miss_mtcars, seed=3, printFlag=FALSE)
print(imp)

Multiply imputed data set
Call:
mice(data = miss_mtcars, printFlag = FALSE, seed = 3)
Number of multiple imputations: 5
Missing cells per column:
 mpg cyl disp hp drat wt qsec vs am gear carb
 5 5 0 0 7 3 4 3 0 0 0
Imputation methods:
 mpg cyl disp hp drat wt qsec vs am gear carb
"pmm" "pmm" "" "" "pmm" "pmm" "pmm" "pmm" "" "" ""
VisitSequence:
 mpg cyl drat wt qsec vs
 1 2 5 6 7 8
PredictorMatrix:
 mpg cyl disp hp drat wt qsec vs am gear carb
mpg 0 1 1 1 1 1 1 1 1 1 1
cyl 1 0 1 1 1 1 1 1 1 1 1
disp 0 0 0 0 0 0 0 0 0 0 0
 ...
Random generator seed value: 3

Chapter 11

[285]

The first thing we notice (on line four of the output) is that mice chose to create five
multiply imputed datasets, by default. As we discussed, this isn't a bad default, but
more imputation can only improve our statistical power (if only marginally); when
we impute this data set in earnest, we will use m=20.

The second thing we notice (on lines 8-10 of the output) is that it used predictive
mean matching as the imputation method for all the columns with missing data. If
you recall, predictive mean matching is the default imputation method for numeric
columns. However, vs and cyl are binary categorical and non-binary categorical
variables, respectively. Because we didn't convert them to factors, mice thinks these
are just regular numeric columns. We'll have to fix this.

The last thing we should notice here is the predictor matrix (starting on line 14). Each
row and column of the predictor matrix refers to a column in the dataset to impute.
If a cell contains a 1, it means that the variable referred to in the column is used
as a predictor for the variable in the row. The first row indicates that all available
attributes are used to help predict mpg with the exception of mpg itself. All the values
in the diagonal are 0, because mice won't use an attribute to predict itself. Note that
the disp, hp, am, gear, and carb rows all contain ̀ 0`s—this is because these variables are
complete, and don't need to use any predictors.

Since we thought carefully about whether there were any attributes that should be
removed before we perform the imputation, we can use mice's default predictor
matrix for this dataset. If there were any non-predictive attributes (like unique
identifiers, redundant variables, and so on) we would have either had to remove
them (easiest option), or instruct mice not to use them as predictors (harder).

Let's now correct the issues that we've discussed.

convert categorical variables into factors
miss_mtcars$vs <- factor(miss_mtcars$vs)
miss_mtcars$cyl <- factor(miss_mtcars$cyl)

imp <- mice(miss_mtcars, m=20, seed=3, printFlag=FALSE)
imp$method

 mpg cyl disp hp drat
 "pmm" "polyreg" "" "" "pmm"
 wt qsec vs am gear
 "pmm" "pmm" "logreg" "" ""
 carb
 ""

Dealing with Messy Data

[286]

Now mice has corrected the imputation method of cyl and vs to their correct
defaults. In truth, cyl is a kind of discrete numeric variable called an ordinal variable,
which means that yet another imputation method may be optimal for that attribute,
but, for the sake of simplicity, we'll treat it as a categorical variable.

Before we get to use the imputations in an analysis, we have to check the output. The
first thing we need to check is the convergence of the iterations. Recall that for imputing
data with missing values in multiple columns, multiple imputation requires iteration
over all these columns a few times. At each iteration, mice produces imputations—and
samples new parameter estimates from the parameters' posterior distributions—for
all columns that need to be imputed. The final imputations, for each multiply imputed
dataset m, are the imputed values from the final iteration.

In contrast to when we used MCMC in Chapter 7, Bayesian Methods the convergence
in mice is much faster; it usually occurs in just a few iterations. However, as
in Chapter 7, Bayesian Methods, visually checking for convergence is highly
recommended. We even check for it similarly; when we call the plot function on the
variable that we assign the mice output to, it displays trace plots of the mean and
standard deviation of all the variables involved in the imputations. Each line in each
plot is one of the m imputations.

plot(imp)

Figure 11.3: A subset of the trace plots produced by plotting an object returned by a mice imputation

Chapter 11

[287]

As you can see from the preceding trace plot on imp, there are no clear trends and
the variables are all overlapping from one iteration to the next. Put another way, the
variance within a chain (there are m chains) should be about equal to the variance
between the chains. This indicates that convergence was achieved.

If convergence was not achieved, you can increase the number of iterations that mice
employs by explicitly specifying the maxit parameter to the mice function.

To see an example of non-convergence, take a look at Figures 7 and 8
in the paper that describes this package written by the authors of the
package' themselves. It is available at http://www.jstatsoft.org/
article/view/v045i03.

The next step is to make sure the imputed values are reasonable. In general,
whenever we quickly review the results of something to see if they make sense, it is
called a sanity test or sanity check. With the following line, we're going to display the
imputed values for the five missing mpgs for the first six imputations:

impimpmpg[,1:6]

 1 2 3 4 5 6
Duster 360 19.2 16.4 17.3 15.5 15.0 19.2
Cadillac Fleetwood 15.2 13.3 15.0 13.3 10.4 17.3
Chrysler Imperial 10.4 15.0 15.0 16.4 10.4 10.4
Porsche 914-2 27.3 22.8 21.4 22.8 21.4 15.5
Ferrari Dino 19.2 21.4 19.2 15.2 18.1 19.2

http://www.jstatsoft.org/article/view/v045i03
http://www.jstatsoft.org/article/view/v045i03

Dealing with Messy Data

[288]

These sure look reasonable. A better method for sanity checking is to call
densityplot on the variable that we assign the mice output to:

densityplot(imp)

Figure 11.4: Density plots of all the imputed values for mpg, drat, wt, and qsec. Each imputation has its
own density curve in each quadrant

This displays, for every attribute imputed, a density plot of the actual non-missing
values (the thick line) and the imputed values (the thin lines). We are looking to
see that the distributions are similar. Note that the density curve of the imputed
values extend much higher than the observed values' density curve in this case.
This is partly because we imputed so few variables that there weren't enough data
points to properly smooth the density approximation. Height and non-smoothness
notwithstanding, these density plots indicate no outlandish behavior among the
imputed variables.

Chapter 11

[289]

We are now ready for the analysis phase. We are going to perform linear regression
on each imputed dataset and attempt to model mpg as a function of am, wt, and
qsec. Instead of repeating the analyses on each dataset manually, we can apply an
expression to all the datasets at one time with the with function, as follows:

imp_models <- with(imp, lm(mpg ~ am + wt + qsec))

We could take a peak at the estimated coefficients from each dataset using lapply on
the analyses attribute of the returned object:

lapply(imp_models$analyses, coef)

[[1]]
(Intercept) am wt qsec
 18.1534095 2.0284014 -4.4054825 0.8637856

[[2]]
(Intercept) am wt qsec
 8.375455 3.336896 -3.520882 1.219775

[[3]]
(Intercept) am wt qsec
 5.254578 3.277198 -3.233096 1.337469
.........

Finally, let's pool the results of the analyses (with the pool function), and call
summary on it:

pooled_model <- pool(imp_models)
summary(pooled_model)

 est se t df Pr(>|t|)
(Intercept) 7.049781 9.2254581 0.764166 17.63319 0.454873254
am 3.182049 1.7445444 1.824000 21.36600 0.082171407
wt -3.413534 0.9983207 -3.419276 14.99816 0.003804876
qsec 1.270712 0.3660131 3.471765 19.93296 0.002416595
 lo 95 hi 95 nmis fmi lambda
(Intercept) -12.3611281 26.460690 NA 0.3459197 0.2757138
am -0.4421495 6.806247 0 0.2290359 0.1600952
wt -5.5414268 -1.285641 3 0.4324828 0.3615349
qsec 0.5070570 2.034366 4 0.2736026 0.2042003

Dealing with Messy Data

[290]

Though we could have performed the pooling ourselves using the equations that
Donald Rubin outlined in his 1987 classic Multiple Imputation for Nonresponse in
Surveys, it is less of a hassle and less error-prone to have the pool function do it for
us. Readers who are interested in the pooling rules are encouraged to consult the
aforementioned text.

As you can see, for each parameter, pool has combined the coefficient estimate and
standard errors, and calculated the appropriate degrees of freedom. These allow us
to t-test each coefficient against the null hypothesis that the coefficient is equal to 0,
produce p-values for the t-test, and construct confidence intervals.

The standard errors and confidence intervals are wider than those that would have
resulted from linear regression on a single imputed dataset, but that's because it is
appropriately taking into account our uncertainty regarding what the missing values
would have been.

There are, at present time, a limited number of analyses that can be automatically
pooled by mice—the most important being lm/glm. If you recall, though, the
generalized linear model is extremely flexible, and can be used to express a wide
array of different analyses. By extension, we could use multiple imputation for not
only linear regression but logistic regression, Poisson regression, t-tests, ANOVA,
ANCOVA, and more.

Analysis with unsanitized data
Very often, there will be errors or mistakes in data that can severely complicate
analyses—especially with public data or data outside of your organization. For
example, say there is a stray comma or punctuation mark in a column that was
supposed to be numeric. If we aren't careful, R will read this column as character, and
subsequent analysis may, in the best case scenario, fail; it is also possible, however,
that our analysis will silently chug along, and return an unexpected result. This will
happen, for example, if we try to perform linear regression using the punctuation-
containing-but-otherwise-numeric column as a predictor, which will compel R to
convert it into a factor thinking that it is a categorical variable.

In the worst-case scenario, an analysis with unsanitized data may not error out or
return nonsensical results, but return results that look plausible but are actually
incorrect. For example, it is common (for some reason) to encode missing data with
999 instead of NA; performing a regression analysis with 999 in a numeric column
can severely adulterate our linear models, but often not enough to cause clearly
inappropriate results. This mistake may then go undetected indefinitely.

Chapter 11

[291]

Some problems like these could, rather easily, be detected in small datasets by
visually auditing the data. Often, however, mistakes like these are notoriously
easy to miss. Further, visual inspection is an untenable solution for datasets with
thousands of rows and hundreds of columns. Any sustainable solution must off-load
this auditing process to R. But how do we describe aberrant behavior to R so that it
can catch mistakes on its own?

The package assertr seeks to do this by introducing a number of data checking
verbs. Using assertr grammar, these verbs (functions) can be combined with
subjects (data) in different ways to express a rich vocabulary of data validation tasks.

More prosaically, assertr provides a suite of functions designed to verify the
assumptions about data early in the analysis process, before any time is wasted
computing on bad data. The idea is to provide as much information as you can about
how you expect the data to look upfront so that any deviation from this expectation
can be dealt with immediately.

Given that the assertr grammar is designed to be able to describe a bouquet of error-
checking routines, rather than list all the functions and functionalities that the
package provides, it would be more helpful to visit particular use cases.

Two things before we start. First, make sure you install assertr. Second, bear in
mind that all data verification verbs in assertr take a data frame to check as their
first argument, and either (a) returns the same data frame if the check passes, or (b)
produces a fatal error. Since the verbs return a copy of the chosen data frame if the
check passes, the main idiom in assertr involves reassignment of the returning
data frame after it passes the check.

a_dataset <- CHECKING_VERB(a_dataset,)

Checking for out-of-bounds data
It's common for numeric values in a column to have a natural constraint on
the values that it should hold. For example, if a column represents a percent of
something, we might want to check if all the values in that column are between 0
and 1 (or 0 and 100). In assertr, we typically use the within_bounds function in
conjunction with the assert verb to ensure that this is the case. For example, if we
added a column to mtcars that represented the percent of heaviest car's weight, the
weight of each car is:

library(assertr)
mtcars.copy <- mtcars

Dealing with Messy Data

[292]

mtcars.copy$Percent.Max.Wt <- round(mtcars.copy$wt /
 max(mtcars.copy$wt),
 2)

mtcars.copy <- assert(mtcars.copy, within_bounds(0,1),
 Percent.Max.Wt)

within_bounds is actually a function that takes the lower and upper bounds and
returns a predicate, a function that returns TRUE or FALSE. The assert function then
applies this predicate to every element of the column specified in the third argument.
If there are more than three arguments, assert will assume there are more columns
to check.

Using within_bounds, we can also avoid the situation where NA values are specified
as "999", as long as the second argument in within_bounds is less than this value.

within_bounds can take other information such as whether the bounds should be
inclusive or exclusive, or whether it should ignore the NA values. To see the options
for this, and all the other functions in assertr, use the help function on them.

Let's see an example of what it looks like when the assert function fails:

mtcars.copy$Percent.Max.Wt[c(10,15)] <- 2
mtcars.copy <- assert(mtcars.copy, within_bounds(0,1),
 Percent.Max.Wt)
--
Error:
Vector 'Percent.Max.Wt' violates assertion 'within_bounds' 2 times
(e.g. [2] at index 10)

We get an informative error message that tells us how many times the assertion was
violated, and the index and value of the first offending datum.

With assert, we have the option of checking a condition on multiple columns at the
same time. For example, none of the measurements in iris can possibly be negative.
Here's how we might make sure our dataset is compliant:

iris <- assert(iris, within_bounds(0, Inf),
 Sepal.Length, Sepal.Width,
 Petal.Length, Petal.Width)

or simply "-Species" because that
will include all columns *except* Species
iris <- assert(iris, within_bounds(0, Inf),
 -Species)

Chapter 11

[293]

On occasion, we will want to check elements for adherence to a more complicated
pattern. For example, let's say we had a column that we knew was either between
-10 and -20, or 10 and 20. We can check for this by using the more flexible verify verb,
which takes a logical expression as its second argument; if any of the results in the
logical expression is FALSE, verify will cause an error.

vec <- runif(10, min=10, max=20)
randomly turn some elements negative
vec <- vec * sample(c(1, -1), 10,
 replace=TRUE)

example <- data.frame(weird=vec)

example <- verify(example, ((weird < 20 & weird > 10) |
 (weird < -10 & weird > -20)))

or

example <- verify(example, abs(weird) < 20 & abs(weird) > 10)
passes

example$weird[4] <- 0
example <- verify(example, abs(weird) < 20 & abs(weird) > 10)
fails

Error in verify(example, abs(weird) < 20 & abs(weird) > 10) :
 verification failed! (1 failure)

Checking the data type of a column
By default, most of the data import functions in R will attempt to guess the data
type for each column at the import phase. This is usually nice, because it saves us
from tedious work. However, it can backfire when there are, for example, stray
punctuation marks in what are supposed to be numeric columns. To verify this, we
can use the assert function with the is.numeric base function:

iris <- assert(iris, is.numeric, -Species)

We can use the is.character and is.logical functions with assert, too.

Dealing with Messy Data

[294]

An alternative method that will disallow the import of unexpected data types is to
specify the data type that each column should be at the data import phase with the
colClasses optional argument:

iris <- read.csv("PATH_TO_IRIS_DATA.csv",
 colClasses=c("numeric", "numeric",
 "numeric", "numeric",
 "character"))

This solution comes with the added benefit of speeding up the data import process,
since R doesn't have to waste time guessing each column's data type.

Checking for unexpected categories
Another data integrity impropriety that is, unfortunately, very common is the
mislabeling of categorical variables. There are two types of mislabeling of categories
that can occur: an observation's class is mis-entered/mis-recorded/mistaken for that
of another class, or the observation's class is labeled in a way that is not consistent
with the rest of the labels. To see an example of what we can do to combat the former
case, read assertr's vignette. The latter case covers instances where, for example, the
species of iris could be misspelled (such as "versicolour", "verginica") or cases where
the pattern established by the majority of class names is ignored ("iris setosa", "i.
setosa", "SETOSA"). Either way, these misspecifications prove to be a great bane to
data analysts for several reasons. For example, an analysis that is predicated upon
a two-class categorical variable (for example, logistic regression) will now have
to contend with more than two categories. Yet another way in which unexpected
categories can haunt you is by producing statistics grouped by different values of a
categorical variable; if the categories were extracted from the main data manually—
with subset, for example, as opposed to with by, tapply, or aggregate—you'll be missing
potentially crucial observations.

If you know what categories you are expecting from the start, you can use the in_
set function, in concert with assert, to confirm that all the categories of a particular
column are squarely contained within a predetermined set.

passes
iris <- assert(iris, in_set("setosa", "versicolor",
 "virginica"), Species)

mess up the data
iris.copy <- iris
We have to make the 'Species' column not
a factor

Chapter 11

[295]

ris.copy$Species <- as.vector(iris$Species)
iris.copy$Species[4:9] <- "SETOSA"
iris.copy$Species[135] <- "verginica"
iris.copy$Species[95] <- "i. versicolor"

fails
iris.copy <- assert(iris.copy, in_set("setosa", "versicolor",
 "virginica"), Species)

Error:
Vector 'Species' violates assertion 'in_set' 8 times (e.g. [SETOSA] at
index 4)

If you don't know the categories that you should be expecting, a priori, the following
incantation, which will tell you how many rows each category contains, may help
you identify the categories that are either rare or misspecified:

by(iris.copy, iris.copy$Species, nrow)

Checking for outliers, entry errors, or unlikely
data points
Automatic outlier detection (sometimes known as anomaly detection) is something
that a lot of analysts scoff at and view as a pipe dream. Though the creation of
a routine that automagically detects all erroneous data points with 100 percent
specificity and precision is impossible, unmistakably mis-entered data points and
flagrant outliers are not hard to detect even with very simple methods. In my
experience, there are a lot of errors of this type.

One simple way to detect the presence of a major outlier is to confirm that every
data point is within some n number of standard deviations away from the mean of
the group. assertr has a function, within_n_sds—in conjunction with the insist
verb—to do just this; if we wanted to check that every numeric value in iris is
within five standard deviations of its respective column's mean, we could express so
thusly:

iris <- insist(iris, within_n_sds(5), -Species)

An issue with using standard deviations away from the mean (z-scores) for detecting
outliers is that both the mean and standard deviation are influenced heavily by
outliers; this means that the very thing we are trying to detect is obstructing our
ability to find it.

Dealing with Messy Data

[296]

There is a more robust measure for finding central tendency and dispersion than
the mean and standard deviation: the median and median absolute deviation. The
median absolute deviation is the median of the absolute value of all the elements of a
vector subtracted by the vector's median.

assertr has a sister to within_n_sds, within_n_mads, that checks every element
of a vector to make sure it is within n median absolute deviations away from its
column's median.

iris <- insist(iris, within_n_mads(4), -Species)
iris$Petal.Length[5] <- 15
iris <- insist(iris, within_n_mads(4), -Species)

Error:
Vector 'Petal.Length' violates assertion 'within_n_mads' 1 time (value
[15] at index 5)

In my experience, within_n_mads can be an effective guard against illegitimate
univariate outliers if n is chosen carefully.

The examples here have been focusing on outlier identification in the univariate
case—across one dimension at a time. Often, there are times where an observation
is truly anomalous but it wouldn't be evident by looking at the spread of each
dimension individually. assertr has support for this type of multivariate outlier
analysis, but a full discussion of it would require a background outside the scope of
this text.

Chaining assertions
The check assertr aims to make the checking of assumptions so effortless that the user
never feels the need to hold back any implicit assumption. Therefore, it's expected that
the user uses multiple checks on one data frame.

The usage examples that we've seen so far are really only appropriate for one or two
checks. For example, a usage pattern such as the following is clearly unworkable:

iris <- CHECKING_CONSTRUCT4(CHECKING_CONSTRUCT3(CHECKING_
CONSTRUCT2(CHECKING_CONSTRUCT1(this, ...), ...), ...), ...)

To combat this visual cacophony, assertr provides direct support for chaining
multiple assertions by using the "piping" construct from the magrittr package.

Chapter 11

[297]

The pipe operator of magrittr', %>%, works as follows: it takes the item on the left-
hand side of the pipe and inserts it (by default) into the position of the first argument
of the function on the right-hand side. The following are some examples of simple
magrittr usage patterns:

library(magrittr)
4 %>% sqrt # 2
iris %>% head(n=3) # the first 3 rows of iris
iris <- iris %>% assert(within_bounds(0, Inf), -Species)

Since the return value of a passed assertr check is the validated data frame, you can
use the magrittr pipe operator to tack on more checks in a way that lends itself to
easier human understanding. For example:

iris <- iris %>%
 assert(is.numeric, -Species) %>%
 assert(within_bounds(0, Inf), -Species) %>%
 assert(in_set("setosa", "versicolor", "virginica"), Species) %>%
 insist(within_n_mads(4), -Species)

or, equivalently

CHECKS <- . %>%
 assert(is.numeric, -Species) %>%
 assert(within_bounds(0, Inf), -Species) %>%
 assert(in_set("setosa", "versicolor", "virginica"), Species) %>%
 insist(within_n_mads(4), -Species)

iris <- iris %>% CHECKS

When chaining assertions, I like to put the most integral and general one right at the
top. I also like to put the assertions most likely to be violated right at the top so that
execution is terminated before any more checks are run.

There are many other capabilities built into the assertr multivariate outlier checking.
For more information about these, read the package's vignette, (vignette("assertr")).

On the magrittr side, besides the forward-pipe operator, this package sports some
other very helpful pipe operators. Additionally, magrittr allows the substitution at
the right side of the pipe operator to occur at locations other than the first argument.
For more information about the wonderful magrittr package, read its vignette.

Dealing with Messy Data

[298]

Other messiness
As we discussed in this chapter's preface, there are countless ways that a dataset
may be messy. There are many other messy situations and solutions that we
couldn't discuss at length here. In order that you, dear reader, are not left in the dark
regarding custodial solutions, here are some other remedies which you may find
helpful along your analytics journey:

OpenRefine
Though OpenRefine (formerly Google Refine) doesn't have anything to do with
R per se, it is a sophisticated tool for working with and for cleaning up messy
data. Among its numerous, sophisticated capabilities is the capacity to auto-detect
misspelled or mispecified categories and fix them at the click of a button.

Regular expressions
Suppose you find that there are commas separating every third digit of the numbers
in a numeric column. How would you remove them? Or suppose you needed to
strip a currency symbol from values in columns that hold monetary values so that
you can compute with them as numbers. These, and vastly more complicated text
transformations, can be performed using regular expressions (a formal grammar for
specifying the search patterns in text) and associate R functions like grep and sub.
Any time spent learning regular expressions will pay enormous dividends over your
career as an analyst, and there are many great, free tutorials available on the web for
this purpose.

tidyr
There are a few different ways in which you can represent the same tabular dataset.
In one form—called long, narrow, stacked, or entity-attribute-value model—each row
contains an observation ID, a variable name, and the value of that variable. For
example:

 member attribute value
1 Ringo Starr birthyear 1940
2 Paul McCartney birthyear 1942
3 George Harrison birthyear 1943
4 John Lennon birthyear 1940
5 Ringo Starr instrument Drums
6 Paul McCartney instrument Bass
7 George Harrison instrument Guitar
8 John Lennon instrument Guitar

Chapter 11

[299]

In another form (called wide or unstacked), each of the observation's variables are
stored in each column:

 member birthyear instrument
1 George Harrison 1943 Guitar
2 John Lennon 1940 Guitar
3 Paul McCartney 1942 Bass
4 Ringo Starr 1940 Drums

If you ever need to convert between these representations, (which is a somewhat
common operation, in practice) tidyr is your tool for the job.

Exercises
The following are a few exercises for you to strengthen your grasp over the concepts
learned in this chapter:

•	 Normally, when there is missing data for a question such as "What is your
income?", we strongly suspect an MNAR mechanism, because we live in a
dystopia that equates wealth with worth. As a result, the participants with
the lowest income may be embarrassed to answer that question. In the
relevant section, we assumed that because the question was poorly worded
and we could account for whether English was the first language of the
participant, the mechanism is MAR. If we were wrong about this reason, and
it was really because the lower income participants were reticent to admit
their income, what would the missing data mechanism be now? If, however,
the differences in income were fully explained by whether English was the
first language of the participant, what would the missing data mechanism be
in that case?

•	 Find a dataset on the web with missing data. What does it use to denote that
data is missing? Think about that dataset's missing data mechanism. Is there
a chance that this data is MNAR?

•	 Find a freely available government dataset on the web. Read the dataset's
description, and think about what assumptions you might make about the
data when planning a certain analysis. Translate these into actual code so that
R can check them for you. Were there any deviations from your expectations?

•	 When two autonomous individuals decide to voluntarily trade, the
transaction can be in both parties' best interests. Does it necessarily follow
that a voluntary trade between nations benefits both states? Why or why not?

Dealing with Messy Data

[300]

Summary
"Messy data"—no matter what definition you use—present a huge roadblock for
people who work with data. This chapter focused on two of the most notorious and
prolific culprits: missing data and data that has not been cleaned or audited
for quality.

On the missing data side, you learned how to visualize missing data patterns, and
how to recognize different types of missing data. You saw a few unprincipled ways
of tackling the problem, and learned why they were suboptimal solutions. Multiple
imputation, so you learned, addresses the shortcomings of these approaches
and, through its usage of several imputed data sets, correctly communicates our
uncertainty surrounding the imputed values.

On unsanitized data, we saw that the, perhaps, optimal solution (visually auditing
the data) was untenable for moderately sized datasets or larger. We discovered that
the grammar of the package assertr provides a mechanism to offload this auditing
process to R. You now have a few assertr checking "recipes" under your belt for
some of the more common manifestations of the mistakes that plague data that has
not been scrutinized.

[301]

Dealing with Large Data
In the previous chapter, we spoke of solutions to common problems that fall under
the umbrella term of messy data. In this chapter, we are going to solve some of the
problems related to working with large datasets.

Problems, in case of working with large datasets, can occur in R for a few reasons.
For one, R (and most other languages, for that matter) was developed during a
time when commodity computers only had one processor/core. This means that
the vanilla R code can't exploit multiple processor/multiple cores, which can
offer substantial speed-ups. Another salient reason why R might run into trouble
analyzing large datasets is because R requires the data objects that it works with to
be stored completely in RAM memory. If your dataset exceeds the capacity of your
RAM, your analyses will slow down to a crawl.

When one thinks of problems related to analyzing large datasets, they may think
of Big Data. One can scarcely be involved (or even interested) in the field of
data analysis without hearing about big data. I stay away from that term in this
chapter for two reasons: (a) the problems and techniques in this chapter will still
be applicable long after the buzzword begins to fade from public memory, and
(b) problems related to truly big data are relatively uncommon, and often require
specialized tools and know-how that is beyond the scope of this book.

Some have suggested that the definition of big data be data that is too big to fit in your
computer's memory at one time. Personally, I call this large data—and not just because
I have a penchant for splitting hairs! I reserve the term big data for data that is so
massive that it requires many hundreds of computers and special consideration in
order to be stored and processed.

Dealing with Large Data

[302]

Sometimes, problems related to high-dimensional data are considered large data
problems, too. Unfortunately, solving these problems often requires a background
and mathematics beyond the scope of this book, and we will not be discussing
high-dimensional statistics. This chapter is more about optimizing the R code to
squeeze higher performance out of it so that calculations and analyses with large
datasets become computationally tractable.

So, perhaps this chapter should more aptly be named High Performance R.
Unfortunately, this title is more ostentatious, and wouldn't fit the naming pattern
established by the previous chapter.

Each of the top-level sections in this chapter will discuss a specific technique for
writing higher performing R code.

Wait to optimize
Prominent computer scientist and mathematician Donald Knuth famously stated:

Premature optimization is the root of all evil.

I, personally, hold that money is the root of all evil, but premature optimization is
definitely up there!

Why is premature optimization so evil? Well, there are a few reasons. First,
programmers can sometimes be pretty bad at identifying what the bottleneck of
a program—the routine(s) that have the slowest throughput—is and optimize the
wrong parts of a program. Identification of bottlenecks can most accurately be
performed by profiling your code after it's been completed in an un-optimized form.

Secondly, clever tricks and shortcuts for speeding up code often introduce subtle
bugs and unexpected behavior. Now, the speedup of the code—if there is any!—
must be taken in context with the time it took to complete the bug-finding-and-fixing
expedition; occasionally, a net negative amount of time has been saved when all is
said and done.

Chapter 12

[303]

Lastly, since premature optimization literally necessitates writing your code in a
way that is different than you normally would, it can have deleterious effects on
the readability of the code and your ability to understand it when we look back on
it after some period of time. According to Structure and Interpretation of Computer
Programs, one of the most famous textbooks in computer science, Programs must be
written for people to read, and only incidentally for machines to execute. This reflects the
fact that the bulk of the time updating or expanding code that is already written is
spent on a human having to read and understand the code—not the time it takes for
the computer to execute it. When you prematurely optimize, you may be causing a
huge reduction in readability in exchange for a marginal gain in execution time.

In summary, you should probably wait to optimize your code until you are done,
and the performance is demonstrably inadequate.

Using a bigger and faster machine
Instead of rewriting critical sections of your code, consider running the code on a
machine with a faster processor, more cores, more RAM memory, faster bus speeds,
and/or reduced disk latency. This suggestion may seem like a glib cop-out, but
it's not. Sure, using a bigger machine for your analytics sometimes means extra
money, but your time, dear reader, is money too. If, over the course of your work, it
takes you many hours to optimize your code adequately, buying or renting a better
machine may actually prove to be the more cost-effective solution.

Going down this road needn't require that you purchase a high-powered machine
outrightly; there are now virtual servers that you can rent online for finite periods of
time at reasonable prices. Some of these virtual servers can be configured to have 2
terabytes of RAM and 40 virtual processors. If you are interested in learning more on
this option, look at the offerings of Digital Ocean, Amazon Elastic Compute Cloud,
or many other similar service providers.

Ask your employer or research advisor if this is a feasible option. If you are working
for a non-profit with a limited budget, you may be able to work out a deal with a
particularly charitable cloud computing service provider. Tell 'em that 'Tony' sent
you! But don't actually do that.

Dealing with Large Data

[304]

Be smart about your code
In many cases, the performance of the R code can be greatly improved by simple
restructuring of the code; this doesn't change the output of the program, just the way
it is represented. Restructurings of this type are often referred to as code refactoring.
The refactorings that really make a difference performance-wise usually have to do
with either improved allocation of memory or vectorization.

Allocation of memory
Refer all the way back to Chapter 5, Using Data to Reason About the World.
Remember when we created a mock population of women's heights in the US,
and we repeatedly took 10,000 samples of 40 from it to demonstrate the sampling
distribution of the sample means? In a code comment, I mentioned in passing that
the snippet numeric(10000) created an empty vector of 10,000 elements, but I never
explained why we did that. Why didn't we just create a vector of 1, and continually
tack on each new sample mean to the end of it
as follows:

set.seed(1)
all.us.women <- rnorm(10000, mean=65, sd=3.5)

means.of.our.samples.bad <- c(1)
I'm increasing the number of
samples to 30,000 to prove a point
for(i in 1:30000){
 a.sample <- sample(all.us.women, 40)
 means.of.our.samples.bad[i] <- mean(a.sample)
}

It turns out that R stores vectors in contiguous addresses in your computer's
memory. This means that every time a new sample mean gets tacked on to the end of
means.of.our.samples.bad, R has to make sure that the next memory block is free.
If it is not, R has to find a contiguous section of memory than can fit all the elements,
copy the vector over (element by element), and free the memory in the original
location. In contrast, when we created an empty vector of the appropriate number
of elements, R only had to find a memory location with the requisite number of free
contiguous addresses once.

Chapter 12

[305]

Let's see just what kind of difference this makes in practice. We will use the system.
time function to time the execution time of both the approaches:

means.of.our.samples.bad <- c(1)
system.time(
 for(i in 1:30000){
 a.sample <- sample(all.us.women, 40)
 means.of.our.samples.bad[i] <- mean(a.sample)
 }
)

means.of.our.samples.good <- numeric(30000)
system.time(
 for(i in 1:30000){
 a.sample <- sample(all.us.women, 40)
 means.of.our.samples[i] <- mean(a.sample)
 }
)

 user system elapsed
 2.024 0.431 2.465
 user system elapsed
 0.678 0.004 0.684

Although an elapsed time saving of less than one/two seconds doesn't seem like a
big deal, (a) it adds up, and (b) the difference gets more and more dramatic as the
number of elements in the vector increase.

By the way, this preallocation business applies to matrices, too.

Vectorization
Were you wondering why R is so adamant about keeping the elements of vectors
in adjoining memory locations? Well, if R didn't, then traversing a vector (like when
you apply a function to each element) would require hunting around the memory
space for the right elements in different locations. Having the elements all in a row
gives us an enormous advantage, performance-wise.

Dealing with Large Data

[306]

To fully exploit this vector representation, it helps to use vectorized functions—
which we were first introduced to in Chapter 1, RefresheR. These vectorized functions
call optimized/blazingly-fast C code to operate on vectors instead of on the
comparatively slower R code. For example, let's say we wanted to square each height
in the all.us.women vector. One way would be to use a for-loop to square each
element as follows:

system.time(
 for(i in 1:length(all.us.women))
 all.us.women[i] ^ 2
)

 user system elapsed
 0.003 0.000 0.003

Okay, not bad at all. Now what if we applied a lambda squaring function to each
element using sapply?

system.time(
 sapply(all.us.women, function(x) x^2)
)

 user system elapsed
 0.006 0.000 0.006

Okay, that's worse. But we can use a function that's like sapply and which allows us
to specify the type of return value in exchange for a faster processing speed:

> system.time(
+ vapply(all.us.women, function(x) x^2, numeric(1))
+)

 user system elapsed
 0.006 0.000 0.005

Still not great. Finally, what if we just square the entire vector?

system.time(
 all.us.women ^ 2
)

 user system elapsed
 0 0 0

Chapter 12

[307]

This was so fast that system.time didn't have the resolution to detect any processing
time at all. Further, this way of writing the squaring functionality was by far the
easiest to read.

The moral of the story is to use vectorized options whenever you can. All of core
R's arithmetic operators (+, -, ^, sqrt, log, and so on) are of this type. Additionally,
using the rowSums and colSums functions on matrices is faster than apply(A_
MATRIX, 1, sum) and apply(A_MATRIX, 1, sum) respectively, for much the same
reason.

Speaking of matrices, before we move on, you should know that certain matrix
operations are blazingly fast in R, because the routines are implemented in
compiled C and/or Fortran code. If you don't believe me, try writing and testing the
performance of OLS regression without using matrix multiplication.

If you have the linear algebra know-how, and have the option to rewrite a
computation that you need to perform using matrix operations, you should
definitely try it out.

Using optimized packages
Many of the functionalities in base R have alternative implementations available
in contributed packages. Quite often, these packages offer a faster or less memory-
intensive substitute for the base R equivalent. For example, in addition to adding a
ton of extra functionality, the glmnet package performs regression far faster than glm
in my experience.

For faster data import, you might be able to use fread from the data.table package
or the read_* family of functions from the readr package. It is not uncommon for
data import tasks that used to take several hours to take only a few minutes with
these read functions.

For common data manipulation tasks—like merging (joining), conditional selection,
sorting, and so on—you will find that the data.table and dplyr packages offer
incredible speed improvements. Both of these packages have a ton of useRs that
swear by them, and the community support is solid. You'd be well advised to
become proficient in one of these packages when you're ready.

Dealing with Large Data

[308]

As it turns out, the sqldf package that I mentioned in passing in
Chapter 10, Sources of Data—the one that can perform SQL queries on
data frames—can sometimes offer performance improvements for
common data manipulation tasks, too. Behind the scenes, sqldf (by
default) loads your data frame into a temporary SQLite database,
performs the query in the database's SQL execution environment,
returns the results from the database in the form of a data frame, and
destroys the temporary database. Since the queries run on the database,
sqldf can (a) sometimes perform the queries faster than the equivalent
native R code, and (b) somewhat relaxes the constraint that the data
objects, which R uses, be held completely in memory.

The constraint that the data objects in R must be able to fit into memory can be a
real obstacle for people who work with datasets that are rather large, but just shy
of being big enough to necessitate special tools. Some can thwart this constraint by
storing their data objects in a database, and only using selected subsets (that will
fit in the memory). Others can get by using random samples of the available data
instead of requiring the whole dataset to be held at once. If none of these options
sound appealing, there are packages in R that will allow importing data that is larger
than the memory available by directly referring to the data as it's stored on your
hard disk. The most popular of these seem to be ff and bigmemory. There is a cost to
this, however; not only are the operations slower than they would be if they were
in memory, but since the data is processed piecemeal—in chunks—many standard
R functions won't work on them. Be that as it may, the ffbase and the biganalytics
packages provide methods to restore some of the functionality lost for the two
packages respectively. Most notably, these packages allow ff and bigmemory objects to
be used in the biglm package, which can build generalized linear models using data
that is too big to fit in the memory.

biglm can also be used to build generalized linear models using data
stored in a database!

Remember the CRAN Task Views we talked about in the last chapter? There is a
whole Task View dedicated to High Performance Computing (https://cran.r-
project.org/web/views/HighPerformanceComputing.html). If there is a
particular statistical technique that you'd like to find an optimized alternative for,
this is the first place I'd check.

https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html

Chapter 12

[309]

Using another R implementation
R is both a language and an implementation of that language. So far, when we've
been talking about the R environment/platform, we've been talking about the GNU
Project started by R. Ihaka and R. Gentlemen at the University of Auckland in 1993
and hosted at http://www.r-project.org. Since R has no standard specification,
this canonical implementation serves as R's de facto specification. If a project is
able to implement this specification—and rewrite the GNU-R functionality-for-
functionality and bug-for-bug—any valid R code can be run on that implementation.

Sometime around 2009, various other implementation of R started to crop up.
Among these are Renjin (running on the Java Virtual Machine), pqR (which stands
for Pretty Quick R, and written in a mix of C, R, and Fortran), FastR (which is
written in Java), and Riposte (which is written mainly in C++). These alternative
implementations promise compelling improvements to GNU-R, such as automatic
multithreading (parallelization), ability to handle larger data, and tighter integration
with Java.

Unfortunately, none of these projects are complete as yet. Because of this, not
everything you'd expect has been implemented; some of your favorite packages may
stop working, and by and large, these implementations are difficult to install. For
these reasons, I would only recommend this for very advanced users and/or for the
extremely desperate.

Although it doesn't qualify as another R implementation, there is another R
distribution that is gaining popularity—put out by a commercial enterprise named
Revolution Analytics—called Revolution R Enterprise. This distribution boasts
automatic parallelization for certain rewritten functions, improved ability to work on
and model datasets that will not fit in RAM (for certain rewritten functions), facilities
for distributed computing, and tighter integration with big data databases. This is a
paid distribution of R, but you can it use for free if you are a student or for a discount
if you work in the non-profit public service sector.

Revolution Analytics also puts out a free alternative distribution of R called
Revolution R Open. The primary benefit of this distribution, from a performance
perspective, is the ease with which it can be installed and used with the high
performance Intel Math Kernel Library (MKL). The MKL is a drop-in substitute for
the linear algebra libraries that are bundled automatically with GNU-R. While the
linear algebra library that ships with GNU-R is single-threaded, the MKL can exploit
multiple cores transparently. This makes computations like matrix decomposition,
matrix inversion, and vectorized math (very common whether explicitly used or not)
much faster.

http://www.r-project.org

Dealing with Large Data

[310]

Before we go on, it should be noted that you don't have to use Revolution R Open to
take advantage of the MKL or any other multi-threaded linear algebra libraries like
OpenBLAS, ATLAS, and Accelerate (which comes with OS X and is Mac only)—I
don't. However, linking GNU-R with these other libraries can sometimes get messy
and requires care. Interested readers can find instructions on how to do this linking
on the web, mostly in the form of blog posts from R enthusiasts.

The Macintosh version of Revolution R Open, by default, integrates with
the multi-threaded Accelerate framework, instead of MKL.

Use parallelization
As we saw in this chapter's introduction, one of the limitations of R (and most
other programming languages) was that it was created before commodity personal
computers had more than one processor or core. As a result, by default, R runs only
one process and, thus, makes use of one processor/core at a time.

If you have more than one core on your CPU, it means that when you leave your
computer alone for a few hours during a long running computation, your R task is
running on one core while the others are idle. Clearly this is not ideal; if your R task
took advantage of all the available processing power, you can get massive speed
improvements.

Parallel computation (of the type we'll be using) works by starting multiple processes
at the same time. The operating system then assigns each of these processes to
a particular CPU. When multiple processes run at the same time, the time to
completion is only as long as the longest process, as opposed to the time to complete
all the processes added together.

Chapter 12

[311]

Figure 12.1: diagram of the parallelization and the resultant reduced time to completion

For example, let's say we have four processes in a task that takes 1 second to
complete. Without using parallelization, the task would take 4 seconds, but with
parallelization on four cores, the task would take 1 second.

A word of warning: This is the ideal scenario; but in practice, the cost of
starting multiple processes constitutes an overhead that will result in the
time to completion not scaling linearly with the number of cores used.

All this sounds great, but there's an important catch; each process has to be able
to run independent of the output of the other processes. For example, if we wrote
an R program to compute the nth number in the Fibonacci sequence, we couldn't
divide that task up into smaller processes to run in parallel, because the n Fibonacci
number depends on what we compute as the n-1th Fibonacci number (and so on, ad
infinitum). The parallelization of the type we'll be using in this chapter only works
on problems that can be split up into processes, such that the processes don't depend
on each other and there's no communication between processes. Luckily, there are
many problems like this in data analysis! Almost as luckily, R makes it easy to use
parallelization on problems of this type!

Dealing with Large Data

[312]

Problems of the nature that we just described are sometimes known as embarrassingly
parallel problems, because the entire task can be broken down into independent
components very easily. As an example, summing the numbers in a numeric vector of
100 elements is an embarrassingly parallel problem, because we can easily sum the
first 50 elements in one process and the last 50 in another, in parallel, and just add
the two numbers at the end to get the final sum. The pattern of computation we just
described is sometimes referred to as split-apply-combine, divide and conquer, or map/
reduce.

Using parallelization to tackle the problem of summing 100
numbers is silly, since the overhead of the splitting and combining
will take longer than it would to just sum up all the 100 elements
serially. Also, sum is already really fast and vectorized.

Getting started with parallel R
Getting started with parallelization in R requires minimal setup, but that setup varies
from platform to platform. More accurately, the setup is different for Windows than
it is for every other operating system that R runs on (GNU/Linux, Mac OS X, Solaris,
*BSD, and others).

If you have don't have a Windows computer, all you have to do to start is to load the
parallel package:

You don't have to install this if your copy of R is new
library(parallel)

If you use Windows, you can either (a) switch to the free operating system that over
97 percent of the 500 most powerful supercomputers in the world use, or (b) run the
following setup code:

library(parallel)
cl <- makeCluster(4)

You may replace the 4 with however many processes you want to automatically split
your task into. This is usually set to the number of cores available on your computer.
You can query your system for the number of available cores with the following
incantation:

detectCores()

[1] 4

Chapter 12

[313]

Our first silly (but demonstrative) application of parallelization is the task of sleeping
(making a program become temporarily inactive) for 5 seconds, four different times.
We can do this serially (not-parallel) as follows:

for(i in 1:4){
 Sys.sleep(5)
}

Or, equivalently, using lapply:

lapply will pass each element of the
vector c(1, 2, 3, 4) to the function
we write but we'll ignore it
lapply(1:4, function(i) Sys.sleep(5))

Let's time how long this task takes to complete by wrapping the task inside the
argument to the system.time function:

system.time(
 lapply(1:4, function(i) Sys.sleep(5))
)
--
 user system elapsed
 0.059 0.074 20.005

Unsurprisingly, it took 20 (4*5) seconds to run. Let's see what happens when we run
this in parallel:

#######################
NON-WINDOWS VERSION
#######################
system.time(
 mclapply(1:4, function(i) Sys.sleep(5), mc.cores=4)
)

###################
WINDOWS VERSION
###################
system.time(
 parLapply(cl, 1:4, function(i) Sys.sleep(5))
)
--
 user system elapsed
 0.021 0.042 5.013

Dealing with Large Data

[314]

Check that out! 5 seconds! Just what you would expect if four processes were
sleeping for 5 seconds at the same time!

For the non-windows code, we simply use the mclapply (the non-Windows parallel
counterpart to lapply) instead of lapply, and pass in another argument named
mc.cores, which tells mclapply how many processes to automatically split the
independent computation into.

For the windows code, we use parLapply (the Windows parallel counterpart to lapply).
The only difference between lapply and parLapply that we've used here is that parLapply
takes the cluster we made with the makeCluster setup function as its first argument.
Unlike mclapply, there's no need to specify the number of cores to use, since the
cluster is already set up to the appropriate number of cores.

Before R got the built-in parallel package, the two main packages that
allowed for parallelization were multicore and snow. multicore used
a method of creating different processes called forking that was supported
on all R-running OSs except Windows. Windows users used the more
general snow package to achieve parallelization. snow , which stands
for Simple Network of Workstations, not only works on non-Windows
computers as well but also on a cluster of different computers with
identical R installations. multicore did not support cluster computing
across physical machines like snow does.

Since R version 2.14, the functionality of both the multicore and snow
packages have essentially been merged into the parallel package. The
multicore package has since been removed from CRAN.

From now on, when we refer to the Windows counterpart to X, know that
we really mean the snow counterpart to X, because the functions of snow
will work on non-Windows OSs and clusters of machines. Similarly, by
the non-Windows counterparts, we really mean the counterparts cannibalized
from the multicore package.

You would ask, Why don't we just always use the snow functions? If you
have the option to use the multicore /forking parallelism (you are
running processes on just one non-Windows physical machine), the
multicore parallelism tends to be light-weight. For example, sometimes
the creation of a snow cluster with makeCluster can set off firewall
alerts. It is safe to allow these connections, by the way.

Chapter 12

[315]

An example of (some) substance
For our first real application of parallelization, we will be solving a problem that is
loosely based on a real problem that I had to solve during the course of my work. In
this formulation, we will be importing an open dataset from the web that contains
the airport code, latitude coordinates, and longitude coordinates for 13,429 US
airports. Our task will be to find the average (mean) distance from every airport to
every other airport. For example, if LAX, ALB, OLM, and JFK were the only extant
airports, we would calculate the distances between JFK to OLM, JFK to ALB, JFK to
LAX, OLM to ALB, OLM to LAX, and ALB to LAX, and take the arithmetic mean of
these distances.

Why are we doing this? Besides the fact that it was inspired by an actual, real life
problem—and that I covered this very problem in no fewer than three blog posts—
this problem is perfect for parallelization for two reasons:

•	 It is embarrassingly parallel—This problem is very amenable to splitting-
applying-and-combining (or map/reduction); each process can take a few
(several hundreds, really) of the airport-to-airport combinations, the results
can then be summed and divided by the number of distance calculations
performed.

•	 It exhibits combinatorial explosion—The term combinatorial explosion refers
to the problems that grow very quickly in size or complexity due to the role of
combinatorics in the problem's solution. For example, the number of distance
calculations we have to perform exhibits polynomial growth as a function
of the number of airports we use. In particular, the number of different

calculations is given by the binomial coefficient, 2
n 
 
  , or n (n-1)/2. 100 airports

require 4,950 distance calculations; all 13,429 airports require 90,162,306
distance calculations. Problems of this type usually require techniques like
those discussed in this chapter in order to be computationally tractable.

The birthday problem: Most people are unfazed by the fact that it takes
a room of 367 to guarantee that two people in the room have the same
birthday. Many people are surprised, however, when it is revealed that it
only requires a room full of 23 people for there to be a 50 percent chance
of two people sharing the same birthday (assuming that birthdays occur
on each day with equal probability). Further, it only takes a room full
of 60 for there to be over a 99 percent chance that a pair will share a
birthday. If this surprises you too, consider that the number of pairs of
people that could possibly share their birthday grows polynomially with
the number of people in the room. In fact, the number of pairs that can
share a birthday grows just like our airport problem—then the number
of birthday pairs is exactly the number of distance calculations we would
have to perform if the people were airports.

Dealing with Large Data

[316]

First, let's write the function to compute the distance between two latitude/longitude
pairs.

Since the Earth isn't flat (strictly speaking, it's not even a perfect sphere), the distance
between the longitude and latitude degrees is not constant—meaning, you can't just
take the Euclidean distance between the two points. We will be using the Haversine
formula for the distances between the two points. The Haversine formula is given as
follows:

() ()
()()

2 2
1 2sin / 2 cos cos sin

2.arctan 2 , 1

.

a

c a a

distance r x

φ φ φ λ= ∆ + + + ∆

= −

=

where ϕ and λ are the latitude and longitude respectively, r is the Earth's radius, and
Δ is the difference between the two latitudes or longitudes.

haversine <- function(lat1, long1, lat2, long2, unit="km"){
 radius <- 6378 # radius of Earth in kilometers
 delta.phi <- to.radians(lat2 - lat1)
 delta.lambda <- to.radians(long2 - long1)
 phi1 <- to.radians(lat1)
 phi2 <- to.radians(lat2)
 term1 <- sin(delta.phi/2) ^ 2
 term2 <- cos(phi1) * cos(phi2) * sin(delta.lambda/2) ^ 2
 the.terms <- term1 + term2
 delta.sigma <- 2 * atan2(sqrt(the.terms), sqrt(1-the.terms))
 distance <- radius * delta.sigma
 if(unit=="km") return(distance)
 if(unit=="miles") return(0.621371*distance)
}

Everything must be measured in radians (not degrees), so let's make a helper
function for conversion to radians, too:

to.radians <- function(degrees){
 degrees * pi / 180
}

Chapter 12

[317]

Now let's load the dataset from the web. Since it's from an outside source and it
might be messy, this is an excellent chance to use our assertr chops to make sure
the foreign data set matches our expectations: the dataset is 13,429 observations long,
it has three named columns, the latitude should be 90 or below, and the longitude
should be 180 or below.

We'll also just start with a subset of all the airports. Because we are going to be taking
a random sample of all the observations, we'll set the random number generator seed
so that my calculations will align with yours, dear reader.

set.seed(1)

the.url <- "http://opendata.socrata.com/api/views/rxrh-4cxm/rows.
csv?accessType=DOWNLOAD"
all.airport.locs <- read.csv(the.url, stringsAsFactors=FALSE)

library(magrittr)
library(assertr)
CHECKS <- . %>%
 verify(nrow(.) == 13429) %>%
 verify(names(.) %in% c("locationID", "Latitude", "Longitude")) %>%
 assert(within_bounds(0, 90), Latitude) %>%
 assert(within_bounds(0,180), Longitude)

all.airport.locs <- CHECKS(all.airport.locs)

Let's start off with 400 airports
smp.size <- 400

choose a random sample of airports
random.sample <- sample((1:nrow(all.airport.locs)), smp.size)
airport.locs <- all.airport.locs[random.sample,]
row.names(airport.locs) <- NULL

head(airport.locs)

 locationID Latitude Longitude
1 LWV 38.7642 87.6056
2 LS77 30.7272 91.1486
3 2N2 43.5919 71.7514
4 VG00 37.3697 75.9469

Dealing with Large Data

[318]

Now let's write a function called single.core that computes the average distance
between every two pairs of airports not using any parallel computation. For each lat/
long pair, we need to find the distance between it and the rest of the lat/longs pairs.
Since the distance between point a and b is the same as the distance between b and
a, for every row, we need only compute the distance between it and the remaining
rows in the airport.locs data frame:

single.core <- function(airport.locs){
 running.sum <- 0
 for(i in 1:(nrow(airport.locs)-1)){
 for(j in (i+1):nrow(airport.locs)){
 # i is the row of the first lat/long pair
 # j is the row of the second lat/long pair
 this.dist <- haversine(airport.locs[i, 2],
 airport.locs[i, 3],
 airport.locs[j, 2],
 airport.locs[j, 3])
 running.sum <- running.sum + this.dist
 }
 }
 # Now we have to divide by the number of
 # distances we took. This is given by
 return(running.sum /
 ((nrow(airport.locs)*(nrow(airport.locs)-1))/2))
}

Now, let's time it!

system.time(ave.dist <- single.core(airport.locs))
print(ave.dist)

 user system elapsed
 5.400 0.034 5.466
 [1] 1667.186

All right, 5 and a half seconds for 400 airports.

Chapter 12

[319]

In order to use the parallel surrogates for lapply, let's rewrite the function to use
lapply. Observe the output of the following incantation:

We'll have to limit the output to the
first 11 columns
combn(1:10, 2)[,1:11]
--
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 1 1 1 1 1 1 1 1
[2,] 2 3 4 5 6 7 8 9 10
 [,10] [,11]
[1,] 2 2
[2,] 3 4

The preceding function used the combn function to create a matrix that contains all
pairs of two numbers from 1 to 10, stored as columns in two rows. If we use the
combn function with a vector of integer numbers from 1 to n (where n is the number
of airports in our dataframe), each column of the resultant matrix will refer to all the
different indices with which to index the airport data frame in order to obtain all the
possible pairs of airports. For example, let's go back to the world where LAX, ALB,
OLM, and JFK were the only extant airports; consider the following:

small.world <- c("LAX", "ALB", "OLM", "JFK")
all.combs <- combn(1:length(small.world), 2)

for(i in 1:ncol(all.combs)){
 from <- small.world[all.combs[1, i]]
 to <- small.world[all.combs[2, i]]
 print(paste(from, " <-> ", to))
}
--
[1] "LAX <-> ALB"
[1] "LAX <-> OLM"
[1] "LAX <-> JFK"
[1] "ALB <-> OLM" # back to olympia
[1] "ALB <-> JFK"
[1] "OLM <-> JFK"

Dealing with Large Data

[320]

Formulating our solution around this matrix of indices, we can use lapply to loop
over the columns in the matrix:

small.world <- c("LAX", "ALB", "OLM", "JFK")
all.combs <- combn(1:length(small.world), 2)

instead of printing each airport pair in a string,
we'll return the string
results <- lapply(1:ncol(all.combs), function(x){
 from <- small.world[all.combs[1, x]]
 to <- small.world[all.combs[2, x]]
 return(paste(from, " <-> ", to))
})

print(results)

[[1]]
[1] "LAX <-> ALB"

[[2]]
[1] "LAX <-> OLM"

[[3]]
[1] "LAX <-> JFK"
........

In our problem, we will be returning numerics from the anonymous function in lapply.
However, because we are using lapply, the results will be a list. Because we can't call
sum on a list of numerics, we will use the unlist function to turn the list into a vector.

unlist(results)

[1] "LAX <-> ALB" "LAX <-> OLM" "LAX <-> JFK"
[4] "ALB <-> OLM" "ALB <-> JFK" "OLM <-> JFK"

We have everything we need to rewrite the single.core function using lapply.

single.core.lapply <- function(airport.locs){
 all.combs <- combn(1:nrow(airport.locs), 2)
 numcombs <- ncol(all.combs)
 results <- lapply(1:numcombs, function(x){

Chapter 12

[321]

 lat1 <- airport.locs[all.combs[1, x], 2]
 long1 <- airport.locs[all.combs[1, x], 3]
 lat2 <- airport.locs[all.combs[2, x], 2]
 long2 <- airport.locs[all.combs[2, x], 3]
 return(haversine(lat1, long1, lat2, long2))
 })
 return(sum(unlist(results)) / numcombs)
}

system.time(ave.dist <- single.core.lapply(airport.locs))
print(ave.dist)

 user system elapsed
 5.890 0.042 5.968
 [1] 1667.186

This particular solution is a little bit slower than our solution with the double for
loops, but it's about to pay enormous dividends; now we can use one of the parallel
surrogates for lapply to solve the problem:

#######################
NON-WINDOWS VERSION
#######################
multi.core <- function(airport.locs){
 all.combs <- combn(1:nrow(airport.locs), 2)
 numcombs <- ncol(all.combs)
 results <- mclapply(1:numcombs, function(x){
 lat1 <- airport.locs[all.combs[1, x], 2]
 long1 <- airport.locs[all.combs[1, x], 3]
 lat2 <- airport.locs[all.combs[2, x], 2]
 long2 <- airport.locs[all.combs[2, x], 3]
 return(haversine(lat1, long1, lat2, long2))
 }, mc.cores=4)
 return(sum(unlist(results)) / numcombs)
}

###################
WINDOWS VERSION
###################
clusterExport(cl, c("haversine", "to.radians"))

multi.core <- function(airport.locs){
 all.combs <- combn(1:nrow(airport.locs), 2)

Dealing with Large Data

[322]

 numcombs <- ncol(all.combs)
 results <- parLapply(cl, 1:numcombs, function(x){
 lat1 <- airport.locs[all.combs[1, x], 2]
 long1 <- airport.locs[all.combs[1, x], 3]
 lat2 <- airport.locs[all.combs[2, x], 2]
 long2 <- airport.locs[all.combs[2, x], 3]
 return(haversine(lat1, long1, lat2, long2))
 })
 return(sum(unlist(results)) / numcombs)
}

system.time(ave.dist <- multi.core(airport.locs))
print(ave.dist)

 user system elapsed
 7.363 0.240 2.743
 [1] 1667.186

Before we interpret the output, direct your attention to the first line of the Windows
segment. When mclapply creates additional processes, these processes share the
memory with the parent process, and have access to all the parent's environment.
With parLapply, however, the procedure that spawns new processes is a little different
and requires that we manually export all the functions and libraries we need to load
onto each new process beforehand. In this example, we need the new workers to
have the haversine and to.radians functions.

Now to the output of the last code snippet. On my Macintosh machine with four
cores, this brings what once was a 5.5 second affair down to a 2.7 second affair. This
may not seem like a big deal, but when we expand and start to include more than
just 400 airports, we start to see the multicore version really pay off.

To demonstrate just what we've gained from our hassles in parallelizing the
problem, I ran this on a GNU/Linux cloud server with 16 cores, and recorded the
time it took to complete the calculations for different sample sizes with 1, 2, 4, 8, and
16 cores. The results are depicted in the following image:

Chapter 12

[323]

Figure 12.2: The running times for the average-distance-between-all-airports task at different sample sizes for
1, 2, 4, 8, and 16 cores. For reference, the dashed line is the 4 core performance curve, the top most curve is the

single core performance curve, and the bottom most curve is the 16 core curve.

It may be hard to tell from the plot, but the estimated times to completion for the task
running on 1, 2, 4, 8, and 16 cores are 2.4 hours, 1.2 hours, 36 minutes, 19 minutes,
and 17 minutes respectively. Using parallelized R on a 4-core machine—which is not
an uncommon setup at the time of writing—has been able to shave a full two hours
of the task's running time! Note the diminishing marginal returns on the number of
cores used; there is barely any difference between the performances of the 8 and 16
cores. C'est la vie.

Using Rcpp
Contrary to what I sometimes like to believe, there are other computer programming
languages than just R. R—and languages like Python, Perl, and Ruby—are
considered high-level languages, because they offer a greater level of abstraction
from computer representations and resource management than the lower-level
languages. For example, in some lower level languages, you must specify the data
type of the variables you create and manage the allocation of RAM manually—C,
C++, and Fortran are of this type.

Dealing with Large Data

[324]

The high level of abstraction R provides allows us to do amazing things very
quickly—like import a data set, run a linear model, and plot the data and regression
line in no more than 4 lines of code! On the other hand, nothing quite beats the
performance of carefully crafted lower-level code. Even so, it would take hundreds
of lines of code to run a linear model in a low-level language, so a language like that
is inappropriate for agile analytics.

One solution is to use R abstractions when we can, and be able to get down to lower-
level programming where it can really make a large difference. There are a few paths
for connecting R and lower-level languages, but the easiest way by far is to combine
R and C++ with Rcpp.

There are differences in what is considered high-level. For this reason,
you will sometimes see people and texts (mostly older texts) refer to C
and C++ as a high-level language. The same people may consider R,
Python, and so on as very high-level languages. Therefore, the level of a
language is somewhat relative.

A word of warning before we go on: This is an advanced topic, and this section will
(out of necessity) gloss over some (most) of the finer details of C++ and Rcpp. If
you're wondering whether a detailed reading will pay off, it's worth taking a peek
at the conclusion of this section to see how many seconds it took to complete the
average-distance-between-all-airports task that would have taken over 2 hours to
complete unoptimized.

If you decide to continue, you must install a C++ compiler. On GNU/Linux this is
usually done through the system's package manager. On Mac OS X, XCode must
be installed; it is available free in the App Store. For Windows, you must install the
Rtools available at http://cran.r-project.org/bin/windows/Rtools/. Finally,
all users need to install the Rcpp package. For more information, consult sections 1.2
and 1.3 of the Rcpp FAQ (http://dirk.eddelbuettel.com/code/rcpp/Rcpp-FAQ.
pdf).

Essentially, our integration of R and C++ is going to take the form of us rewriting
certain functions in in C++, and calling them in R. Rcpp makes this very easy; before
we discuss how to write C++ code, let's look at an example. Put the following code
into a file, and name it our_cpp_function.cpp:

#include <Rcpp.h>

// [[Rcpp::export]]
double square(double number){
 return(pow(number, 2));
}

http://cran.r-project.org/bin/windows/Rtools/
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-FAQ.pdf
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-FAQ.pdf

Chapter 12

[325]

Congratulations, you've just written a C++ program! Now, from R, we'll read the
C++ file, and make the function available to R. Then, we'll test out our new function.

library(Rcpp)

sourceCpp("our_cpp_functions.cpp")

square(3)

[1] 9

The first two lines with text have nothing to do with our function, per se.
The first line is necessary for C++ to integrate with R. The second line (//
[[Rcpp::export]]) tells R that we want the function directly below it to be available
for use (exported) within R. Functions that aren't exported can only be used in the
C++ file, internally.

The // is a comment in C++, and it works just like # in R. C++ also has
another type of comment that can span multiple lines. These multiline
comments start with /* and end with */.

Throughout this section, we'll be adding functions to our_cpp_functions.cpp and
re-sourcing the file from R to use the new C++ functions.

The following modest square function can teach us a lot about the differences
between the C++ code and R code. For example, the preceding C++ function is
roughly equivalent to the following in R:

square <- function(number){
 return(number^2)
}

The two doubles denote that the return value and the argument respectively, are
both of data type double. double stands for double precision floating point number,
which is roughly equivalent to R's more general numeric data type.

The second thing to notice is that we raise numbers to powers using the pow function,
instead of using the ^ operator, like in R. This is a minor syntactical difference. The
third thing to note is that each statement in C++ ends with a semicolon.

Dealing with Large Data

[326]

Believe it or not, we now have enough knowledge to rewrite the to.radians
function in C++.

/* Add this (and all other snippets that
 start with "// [[Rcpp::export]]")
 to the C++ file, not the R code. */

// [[Rcpp::export]]
double to_radians_cpp(double degrees){
 return(degrees * 3.141593 / 180);
}
with goes with our R code
sourceCpp("our_cpp_functions.cpp")
to_radians_cpp(10)

[1] 0.174533

Incredibly, with the help of some search-engine-fu or a good C++ reference, we can
rewrite the whole haversine function in C++ as follows:

// [[Rcpp::export]]
double haversine_cpp(double lat1, double long1,
 double lat2, double long2,
 std::string unit="km"){
 int radius = 6378;
 double delta_phi = to_radians_cpp(lat2 - lat1);
 double delta_lambda = to_radians_cpp(long2 - long1);
 double phi1 = to_radians_cpp(lat1);
 double phi2 = to_radians_cpp(lat2);
 double term1 = pow(sin(delta_phi / 2), 2);
 double term2 = cos(phi1) * cos(phi2)
 term2 = term2 * pow(sin(delta_lambda/2), 2);
 double the_terms = term1 + term2;
 double delta_sigma = 2 * atan2(sqrt(the_terms),
 sqrt(1-the_terms));
 double distance = radius * delta_sigma;

 /* if it is anything *but* km it is miles */
 if(unit != "km"){
 return(distance*0.621371);
 }

 return(distance);
}

Chapter 12

[327]

Now, let's re-source it, and test it...

sourceCpp("our_cpp_functions.cpp")
haversine(51.88, 176.65, 56.94, 154.18)
haversine_cpp(51.88, 176.65, 56.94, 154.18)
--
[1] 1552.079
[1] 1552.079

Are you surprised to see that R and the C++ are so similar?

The only things that are unfamiliar in this new function are the following:

•	 the int data type (which just holds an integer)
•	 the std::string data type (which holds a string, or a character vector, in R

parlance)
•	 the if statement (which is identical to R's)

Other than those things, this is just building upon what we've already learned with
the first function.

Our last matter of business is to rewrite the single.core function in C++. To build
up to that, let's first write a C++ function called sum2 that takes a numeric vector and
returns the sum of all the numbers:

// [[Rcpp::export]]
double sum2(Rcpp::NumericVector a_vector){
 double running_sum = 0;
 int length = a_vector.size();
 for(int i = 0; i < length; i++){
 running_sum = running_sum + a_vector(i);
 }
 return(running_sum);
}

There are a few new things in this function:

•	 We have to specify the data type of all the variables (including function
arguments) in C++, but what's the data type of the R vector that we're to pass
in to sum2? The import statement at the top of the C++ file allows us to use
the Rcpp::NumericVector data type (which does not exist in standard C++).

•	 To get the length of a NumericVector (like we would in R with the length
function), we use the .size() method.

Dealing with Large Data

[328]

•	 The C++ for loop is a little different than its R counterpart. To wit, it takes
three fields, separated by semicolons; the first field initializes a counter
variable, the second field specifies the conditions under which the for loop
will continue (we'll stop iterating when our counter index is the length of the
vector), and the third is how we update the counter from iteration to iteration
(i++ means add 1 to i). All in all, this for loop is equivalent to a for loop in R
that starts with for(i in 1:length).

•	 The way to subscript a vector in C++ is by using parentheses, not brackets.
We will also be using parentheses when we start subscripting matrices.

At every iteration, we use the counter as an index into the NumericVector, and
extract the current element, we update the running sum with the current element,
and when the loop ends, we return the running sum.

Please note before we go on that the first element of any vector in C++ is the 0th
element, not the first. For example, the third element of a vector called victor is
victor[3] in R, whereas it would be victor(2) in C++. This is why the second field
of the for loop is i < length and not i <= length.

Now, we're finally ready to rewrite the single.core function from the last section in
C++!

// [[Rcpp::export]]
double single_core_cpp(Rcpp::NumericMatrix mat){
 int nrows = mat.nrow();
 int numcomps = nrows*(nrows-1)/2;
 double running_sum = 0;
 for(int i = 0; i < nrows; i++){
 for(int j = i+1; j < nrows; j++){
 double this_dist = haversine_cpp(mat(i,0), mat(i,1),
 mat(j,0), mat(j,1));

 running_sum = running_sum + this_dist;
 }
 }
 return running_sum / numcomps;
}

Nothing here should be too new. The only two new components are that we are
taking a new data type, a Rcpp::NumericMatrix, as an argument, and that we are
using .nrow() to get the number of rows in a matrix.

Chapter 12

[329]

Let's try it out! When we used the R function single.core, we called it with the
whole airport data.frame as an argument. But since the C++ function takes a matrix
of latitude/longitude pairs, we will simply drop the first column (holding the airport
name) from the airport.locs data frame, and convert what's left into a matrix.

sourceCpp("our_cpp_functions.cpp")
the.matrix <- as.matrix(all.airport.locs[,-1])
system.time(ave.dist <- single_core_cpp(the.matrix))
print(ave.dist)
--
 user system elapsed
 0.012 0.000 0.012
 [1] 1667.186

Okay, the task that used to take 5.5 seconds now takes less than one tenth of a second
(and the outputs match, to boot!) Astoundingly, we can perform the task on all the
13,429 airports quite easily now:

the.matrix <- as.matrix(all.airport.locs[,-1])
system.time(ave.dist <- single_core_cpp(the.matrix))
print(ave.dist)

 user system elapsed
 12.310 0.080 12.505
 [1] 1869.744

Using Rcpp, it takes a mere 12.5 seconds to calculate and average 90,162,306
distances—a feat that would have taken even a 16 core server 17 minutes to
complete.

Be smarter about your code
In a blog post that I penned showcasing the performance of this task under various
optimization methods, I took it for granted that calculating the distances on the full
dataset with the unparallelized/un-Rcpp-ed code would be a multi-hour affair—but
I was seriously mistaken.

Shortly after publishing the post, a clever R programmer commented on it stating
that they were able to slightly rework the code so that the serial/pure-R code
took less than 20 seconds to complete with all the 13,429 observations. How?
Vectorization.

single.core.improved <- function(airport.locs){
 numrows <- nrow(airport.locs)

Dealing with Large Data

[330]

 running.sum <- 0
 for (i in 1:(numrows-1)) {
 this.dist <- sum(haversine(airport.locs[i,2],
 airport.locs[i, 3],
 airport.locs[(i+1):numrows, 2],
 airport.locs[(i+1):numrows, 3]))
 running.sum <- running.sum + this.dist
 }
 return(running.sum / (numrows*(numrows-1)/2))
}

system.time(ave.dist <- single.core.improved(all.airport.locs))
print(ave.dist)
--
 user system elapsed
 15.537 0.173 15.866
 [1] 1869.744

Not even 16 seconds. It's worth following what this code is doing.

There is only one for loop that is making its rounds down the number of rows in the
airport.locs data frame. On each iteration of the for loop, it calls the haversine
function just once. The first two arguments are the latitude and longitude of the
row that the loop is on. The third and fourth arguments, however, are the vectors of
the latitudes and longitudes below the current row. This returns a vector of all the
distances from the current airport to the airports below it in the dataset. Since the
haversine function could just as easily take vectors instead of single numbers, there
is no need for a second for loop.

So the haversine function was already vectorized, I just didn't realize it. You'd think
that this would be embarrassing for someone who professes to know enough about
R to write a book about it. Perhaps it should be. But I found out that one of the best
ways to learn—especially about code optimization—is through experimentation and
making mistakes.

For example, when I started learning about writing high performance R code for
both fun and profit, I made quite a few mistakes. One of my first blunders/failed
experiments was with this very task; when I first learned about Rcpp, I used it to
translate the to.radians and haversine functions only. Having the loop remain
in R proved to only give a slight performance edge—nothing compared to the
12.5 second business we've achieved together. Now I know that the bulk of the
performance degradation was due to the millions of function calls to haversine—
not the actual computation in the haversine function. You could learn that and
other lessons most effectively by continuing to try and messing up on your own.

Chapter 12

[331]

The moral of the story: when you think you've vectorized your code enough, find
someone smarter than you to tell you that you're wrong.

Exercises
Practice the following exercises to revise the concepts learned so far:

•	 Is multiple imputation amenable to parallel computation? Why or why not?
•	 How is the way we call to.radians wasteful? Is there any way to refactor

our code to use to.radians in a more efficient way?
•	 When I was gathering the data from Figure 12.2, I didn't check every sample

size from 1 to the full data set; yet, I've obtained a smooth curve. What I did
was test the performance of a handful of sample sizes from 100 to only 2,000.

Then I used nls (non-linear least squares) to fit an equation of the form
2.x n

(where n is the sample size) to the data points, and extrapolated with this
equation after solving for x. What are some benefits and drawbacks of this
approach? Do this on your own machine, if applicable. Do your performance
curves match mine?

•	 There is a thought among some scholars that there is an incongruence
between Adam Smith's two Seminal Works, The Wealth of Nations and The
Theory of Moral Sentiments, namely that the preoccupation of self-interest
of the former is at odds with the stress placed on the role of what Smith
referred to as sympathy (caring for the well-being of others) in guiding moral
judgments in the latter. Why are these scholars wrong?

Summary
We began this chapter by explaining some of the reasons why large datasets
sometimes present a problem for unoptimized R code, such as no auto-parallelization
and no native support for out-of-memory data. For the rest of the chapter we
discussed specific routes to optimizing R code in order to tackle large data.

First, you learned of the dangers of optimizing code too early. Next, we saw—much
to the relief of slackers everywhere—that taking the lazy way out (and buying or
renting a more powerful machine) is often the more cost-effective solution.

After that, we saw that a little knowledge about the dynamics of memory allocation
and vectorization in R can often go a long way in performance gains.

Dealing with Large Data

[332]

The next two sections focused less on changing our R code and more on changing
how we use our code. Specifically, we discovered that there are often performance
gains to be had by just changing the packages we use and/or our implementation of
the R language.

In another section, you learned how parallelization works and what "embarrassing
parallel" problems are. Then we restructured the code solving a real-world problem
to employ parallelization. You learned how to do this for both Windows and non-
Windows systems, and saw the performance gains you might expect to see when
you parallelize embarrassingly parallel problems.

After that, we solved the same example from the last section using Rcpp and saw
that:

•	 Connecting R and C++ doesn't have to be as scary as it sounds
•	 The performance often blows all other alternatives out of the water.

We conclude with a parable that suggests that learning how to write performant R
code is a journey and an art rather than a topic that can be mastered at once.

[333]

Reproducibility and Best
Practices

At the close of some programming texts, the user, now knowing the intricacies of
the subject of the text, is nevertheless bewildered on how to actually get started with
some serious programming. Very often, discussion of the tooling, environment, and
the like—the things that inveterate programmers of language x take for granted—are
left for the reader to figure out on their own.

Take R, for example—when you click on the R icon on your system, a rather Spartan
window with a text-based interface appears imploring you to enter commands
interactively. Are you to program R in this manner? By typing commands one-at-
a-time into this window? This was, more or less, permissible up until this point in
the book, but it just won't cut it when you're out there on your own. For any kind
of serious work—requiring the rerunning of analyses with modifications, and so
on—you need knowledge of the tools and typical workflows that professional R
programmers use.

To not leave you in this unenviable position of not knowing how to get started, dear
reader, we will be going through a whole chapter's worth of information on typical
workflows and common/best practices.

You may have also noticed (via the enormous text at the top of this page) that
the subject discussed in the previous paragraphs is sharing the spotlight with
reproducibility. What's this, then?

Reproducibility is the ability for you, or an independent party, to repeat a study,
experiment, or line of inquiry. This implies the possession of all the relevant and
necessary materials and information. It is one of the principal tenets of scientific
inquiry. If a study is not replicable, it is simply not science.

Reproducibility and Best Practices

[334]

If you are a scientist, you are likely already aware of the virtues of reproducibility
(if not, shame on you!). If you're a non-scientist data analyst, there is great merit
in your taking reproducibility seriously, too. For one, starting an analysis with
reproducibility in mind requires a level of organization that makes your job a
whole lot easier, in the medium and long run. Secondly, the person who is likely
going to be reproducing your analyses the most is you; do yourself a favor, and take
reproducibility seriously so that when you need to make changes to an analysis, alter
your priors, update your data source, adjust your plots and figures, or rollback to
an established checkpoint, you make things easier on yourself. Lastly—and true to
the intended spirit of reproducibility—it makes for more reliable and trustworthy
dissemination of information.

By the way, all these benefits still hold even if you are working for a private (or
otherwise confidential) enterprise, where the analyses are not to be repeated or
known about outside of the institution. The ability of your coworkers to follow
the narrative of your analysis is invaluable, and can give your firm a competitive
edge. Additionally, the ability for supervisors to track and audit your progress is
helpful—if you're honest. Finally, keeping your analyses reproducible will make
your coworkers' lives much easier when you finally drop everything to go live on the
high seas.

Anyway, we are talking about best practices and reproducibility in the same chapter
because of the intimate relationship between the two goals. More explicitly, it is best
practice for your code to be as reproducible as possible.

Both reproducibility and best practices are wide and diverse topics, but the
information in this chapter should give you a great starting point.

R Scripting
The absolute first thing you should know about standard R workflows is that
programs are not generally written directly at the interactive R interpreter. Instead,
R programs are usually written in a text file (with a .r or .R file extension). These are
usually referred to as R scripts. When these scripts are completed, the commands
in this text file are usually executed all at once (we'll get to see how, soon). During
development of the script, however, the programmer usually executes portions of
the script interactively to get feedback and confirm proper behavior. This interactive
component to R scripting allows for building each command or function iteratively.

Chapter 13

[335]

I've known some serious R programmers who copy and paste from their favorite text
editor into an interactive R session to achieve this effect. To most people, particularly
beginners, the better solution is to use an editor that can send R code from the script
that is actively being written to an interactive R console, line-by-line (or block-by-
block). This provides a convenient mechanism to run code, get feedback, and tweak
code (if need be) without having to constantly switch windows.

If you're a user of the venerable Vim editor, you may find that the Vim-R-plugin
achieves this nicely. If you use the equally revered Emacs editor, you may find
that Emacs Speaks Statistics (ESS) accomplishes this goal. If you don't have any
compelling reason not to, though, I strongly suggest you use RStudio to fill this
need. RStudio is a powerful, free Integrated Development Environment (IDE) for
R. Not only does RStudio give you the ability to send blocks of code to be evaluated
by the R interpreter as you write your scripts but it also provides all the affordances
you'd expect from the most advanced of IDEs such as syntax highlighting, an
interactive debugger, code completion, integrated help and documentation, and
project management. It also provides some very helpful R-specific functionality
like a mechanism for visualizing a data frame in memory as a spreadsheet and an
integrated plot window. Lastly, it is very widely used within the R community, so
there is an enormous amount of help and support available.

Given that RStudio is so helpful, some of the remainder of the chapter will assume
you are using it.

RStudio
First things first—go to http://www.rstudio.com, and navigate to the downloads
page. Download and install the Open Source Edition of the RStudio Desktop
application.

When you first open RStudio, you may only see three panes (as opposed to the four
paned windows in Figure 13.1). If this is the case, click the button labeled e in Figure
13.1, and click R Script from the dropdown. Now the RStudio window should look a
lot like the one from Figure 13.1.

The first thing you should know about the interface is that all of the panels serve
more than one function. The pane labeled a is the source code editor. This will be
the pane wherein you edit your R scripts. This will also serve as the editor panel for
LaTeX, C++, or RMarkdown, if you are writing these kinds of files. You can work
on multiple files at the same time using tabs to switch from document to document.
Panel a will also serve as a data viewer that will allow you to view datasets loaded in
memory in a spreadsheet-like manner.

http://www.rstudio.com

Reproducibility and Best Practices

[336]

Panel b is the interactive R console, which is functionally equivalent to the interactive
R console that shipped with R from CRAN. This pane will also display other helpful
information or the output of various goings-on in secondary or tertiary tabs.

Panel c allows you to see the objects that you have defined in your global
environment. For example, if you load a dataset from disk or the web, the name of
the dataset will appear in this panel; if you click on it, RStudio will open the dataset
in the data viewer in panel a. This panel also has a tab labeled History, that you can
use to view R statements we've executed in the past.

Panel d is the most versatile one; depending on which of its tabs are open, it can be a
file explorer, a plot-displayer, an R package manager, and a help browser.

Figure 13.1: RStudio's four-panel interface in Mac OS X (version 0.99.486)

The typical R script development workflow is as follows: R statements, expressions,
and functions are typed into the editor in panel a; statements from the editor are
executed in the console in panel b by putting the cursor on a chosen line and clicking
the Run button (component g from the figure), or by selecting multiple lines and
then clicking the Run button. If the outputs of any of these statements are plots,
panel d will automatically display these. The script is named and saved when the
script is complete (or, preferably, many times while you are writing it).

Chapter 13

[337]

To learn your way around the RStudio interface, write an R script called nothing.R
with the following content:

library(ggplot2)
nothing <- data.frame(a=rbinom(1000, 20, .5),
 b=c("red", "white"),
 c=rnorm(1000, mean=100, sd=10))
qplot(c, data=nothing, geom="histogram")
write.csv(nothing, "nothing.csv")

Execute the statements one by one. Notice that the histogram is automatically
displayed in panel d. After you are done, type and execute ?rbinom in the interactive
console. Notice how panel d displays the help page for this function? Finally, view
click on the object labeled nothing panel c and inspect the data set in the data viewer.

Running R scripts
There are a few ways to run saved R scripts, like nothing.R. First—and this is RStudio
specific—is to click the button labeled Source (component h). This is roughly
equivalent to highlighting the entire document and clicking Run.

Of course, we would like to run R scripts without being dependent on RStudio.
One way to do this is to use the source function in the interactive R console—either
RStudio's console, the console that ships with R from CRAN, or your operating
system's command prompt running R. The source function takes a filename as it's
first and only required argument. The filename specified will be executed, and when
it's done, it will return you to the prompt with all the objects from the R script now
in your workspace. Try this with nothing.R; executing the ls() command after the
source function ends should indicate that the nothing data frame is now in your
workspace. Calling the source() function is what happens under the hood when
you press the Source button in RStudio. If you have trouble making this work, make
sure that either (a) you specify the full path to the file nothing.R in the source()
function call, or (b) you use setwd() to make the directory containing nothing.R
your current working directory, before you execute source("nothing.R").

A third, less popular method is to use the R CMD BATCH command on your operating
system's command/terminal prompt. This should work on all systems, out of the
box, except Windows, which may require you to add the R binary folder (usually,
something like: C:\Program Files\R\R-3.2.1\bin) to your PATH variable. There
are instructions on how to accomplish this on the web.

Reproducibility and Best Practices

[338]

Your system's command prompt (or terminal emulator) will depend on
which operating system you use. Window users' command prompt is
called cmd.exe (which you can run by pressing Windows-key+R, typing
cmd, and striking enter). Macintosh users' terminal emulator is known
as Terminal.app, and is under /Applications/Utilities. If you
use GNU/Linux or BSD, you know where the terminal is.

Using the following incantation:

R CMD BATCH nothing.R

This will execute the code in the file, and automatically direct it's output into a file
named nothing.Rout, which can be read with any text editor.

R may have asked you, anytime you tried to quit R, whether you wanted to save your
workplace image. Saving your workplace image means that R will create a special file
in your current working directory (usually named .RData) containing all the objects
in your current workspace that will be automatically loaded again if you start R in
that directory. This is super useful if you are working with R interactively and you
want to exit R, but be able to pick up and write where you left off some other time.
However, this can cause issues with reproducibility, since another useR won't have
the same .RData file on their computer (and you won't have it when you rerun the
same script on another computer). For this reason, we use R CMD BATCH with the
--vanilla option:

R --vanilla CMD BATCH nothing.R

which means don't restore previously saved objects from .RData, don't save the workplace
image when the R script is done running, and don't read the any of the files that can store
custom R code that will automatically load in each R session, by default. Basically, this
amounts to don't do anything that would be able to be replicated using another
computer and R installation.

The final method—which is my preference—is to use the Rscript program that
comes with recent versions of R. On GNU/Linux, Macintosh, or any other Unix-
like system that supports R, this will automatically be available to use from the
command/terminal prompt. On Windows, the aforementioned R binary folder must
be added to your PATH variable.

Using Rscript is as easy as typing the following:

Rscript nothing.R

Chapter 13

[339]

Or, if you care about reproducibility (and you do!):

Rscript --vanilla nothing.R

This is the way I suggest you run R scripts when you're not using RStudio.

If you are using a Unix or Unix-like operating system (like Mac OS X or
GNU/Linux), you may want to put a line like #!/usr/bin/Rscript
--vanilla as the first line in your R scripts. This is called a shebang
line, and will allow you to run your R scripts as a program without
specifying Rscript at the prompt. For more information, read the article
Shebang (Unix) on Wikipedia.

An example script
Here's an example R script that we will be referring to for the rest of the chapter:

#!/usr/bin/Rscript --vanilla
###
##
nyc-sat-scores.R
##
Author: Tony Fischetti
tony.fischetti@gmail.com
##
###

##
Aim: to use Bayesian analysis to compare NYC's 2010
combined SAT scores against the average of the
rest of the country, which, according to
FairTest.com, is 1509
##

workspace cleanup
rm(list=ls())

options
options(echo=TRUE)
options(stringsAsFactors=FALSE)

Reproducibility and Best Practices

[340]

libraries
library(assertr) # for data checking
library(runjags) # for MCMC

make sure everything is all set with JAGS
testjags()
yep!

read data file
data was retrieved from NYC Open Data portal
direct link: https://data.cityofnewyork.us/api/views/zt9s-n5aj/rows.
csv?accessType=DOWNLOAD
nyc.sats <- read.csv("./data/SAT_Scores_NYC_2010.csv")

let's give the columns easier names
better.names <- c("id", "school.name", "n", "read.mean",
 "math.mean", "write.mean")
names(nyc.sats) <- better.names

there are 460 rows but almost 700 NYC schools
we will *assume*, then, that this is a random
sample of NYC schools

let's first check the veracity of this data...
#nyc.sats <- assert(nyc.sats, is.numeric,
n, read.mean, math.mean, write.mean)

It looks like check failed because there are "s"s for some
rows. (??) A look at the data set descriptions indicates
that the "s" is for schools # with 5 or fewer students.
For our purposes, let's just exclude them.

This is a function that takes a vector, replaces all "s"s
with NAs and make coverts all non-"s"s into numerics
remove.s <- function(vec){
 ifelse(vec=="s", NA, vec)
}

Chapter 13

[341]

nyc.sats$n <- as.numeric(remove.s(nyc.sats$n))
nyc.sats$read.mean <- as.numeric(remove.s(nyc.sats$read.mean))
nyc.sats$math.mean <- as.numeric(remove.s(nyc.sats$math.mean))
nyc.sats$write.mean <- as.numeric(remove.s(nyc.sats$write.mean))

Remove schools with fewer than 5 test takers
nyc.sats <- nyc.sats[complete.cases(nyc.sats),]

Calculate a total combined SAT score
nyc.sats$combined.mean <- (nyc.sats$read.mean +
 nyc.sats$math.mean +
 nyc.sats$write.mean)

Let's build a posterior distribution of the true mean
of NYC high schools' combined SAT scores.

We're not going to look at the summary statistics, because
we don't want to bias our priors

Specify a standard gaussian model
the.model <- "
model {
 # priors
 mu ~ dunif(0, 2400)
 stddev ~ dunif(0, 500)
 tau <- pow(stddev, -2)

 # likelihood
 for(i in 1:theLength){
 samp[i] ~ dnorm(mu, tau)
 }
}"

the.data <- list(
 samp = nyc.sats$combined.mean,
 theLength = length(nyc.sats$combined.mean)
)

results <- autorun.jags(the.model, data=the.data,
 n.chains = 3,
 monitor = c('mu', 'stddev'))

Reproducibility and Best Practices

[342]

View the results of the MCMC
print(results)

Plot the MCMC diagnostics
plot(results, plot.type=c("histogram", "trace"), layout=c(2,1))
Looks good!

Let's extract the MCMC samples of the mean and get the
bounds of the middle 95%
results.matrix <- as.matrix(results$mcmc)
mu.samples <- results.matrix[,'mu']
bounds <- quantile(mu.samples, c(.025, .975))

We are 95% sure that the true mean is between 1197 and 1232

Now let's plot the marginal posterior distribution for the mean
of the NYC high schools' combined SAT grades and draw the 95%
percent credible interval.
plot(density(mu.samples),
 main=paste("Posterior distribution of mean combined SAT",
 "score in NYC high schools (2010)", sep="\n"))
lines(c(bounds[1], bounds[2]), c(0, 0), lwd=3, col="red")

Given the results, the SAT scores for NYC high schools in 2010
are *incontrovertibly* not at par with the average SAT scores of
the nation.

There're a few things I'd like you to note about this R script, and it's adherence to
best practices.

First, the filename is nyc-sat-scores.R—not foo.R, do it.R, or any of that
nonsense; when you are looking through your files in six months, there will be no
question about what the file was supposed to do.

The second is that comments are sprinkled liberally throughout the entire script.
These commands serve to state the intentions and purpose of the analysis, separate
sections of code, and remind ourselves (or anyone who is reading) where the data
file came from. Additionally, comments are used to block out sections of code that
we'd like to keep in the script, but which we don't want to execute. In this example,
we commented out the statement that calls assert, since the assertion fails. With
these comments, anybody—even an R beginner—can follow along with the code.

Chapter 13

[343]

There are a few other manifestations of good practice on display in this script:
indention that aids in following the code flow, spaces and new-lines that enhance
readability, lines that are restricted to under 80 characters, and variables with
informative names (no foo, bar, or baz).

Lastly, take note of the remove.s function we employ instead of copy-and-pasting
ifelse(vec=="s", NA, …) four times. An angel loses its wings every time you
copy-and-paste code, since it is a notorious vector for mistakes.

Scripting and reproducibility
Put any code that is not one-off, and is meant to be run again, in a script. Even for
one-off code, you are better off putting it in a script, because (a) you may be wrong
(and often are) about not needing to run it again, (b) it provides a record of what
you've done (including, perhaps, unnoticed bugs), and (c) you may want to use
similar code at another time.

Scripting enhances reproducibility, because now, the only things we need to
reproduce this line of inquiry on another computer are the script and the data file.
If we didn't place all this code in a script, we would have had to copy and paste our
interactive R console history, which is ugly and messy to say the absolute least.

It's time to come clean about a fib I told in the preceding paragraph. In most cases,
all you need to reproduce the results are the data file(s) and the R script(s). In some
cases, however, some code you've written that works in your version of R may not
work on another person's version of R. Somewhat more common is that the code you
write, which uses a functionality provided by a package, may not work on another
version of that package.

For this reason, it's good practice to record the version of R and the packages you're
using. You can do this by executing sessionInfo(), and copying the output and
pasting it into your R script at the bottom. Make sure to comment all of these lines
out, or R will attempt to execute them the next time the script is run. For a prettier/
better alternative to sessionInfo(), use the session_info() function from the
devtools package. The output of devtools::session_info() for our example
script looks like this:

> devtools::session_info()
Session info ---------------------------------
 setting value
 version R version 3.2.1 (2015-06-18)
 system x86_64, darwin13.4.0
 ui RStudio (0.99.486)

Reproducibility and Best Practices

[344]

 language (EN)
 collate en_US.UTF-8
 tz America/New_York
 date 1969-07-20

Packages -------------------------------------
 package * version date source
 assertr * 1.0.0 2015-06-26 CRAN (R 3.2.1)
 coda 0.17-1 2015-03-03 CRAN (R 3.2.0)
 devtools 1.9.1 2015-09-11 CRAN (R 3.2.0)
 digest 0.6.8 2014-12-31 CRAN (R 3.2.0)
 lattice 0.20-33 2015-07-14 CRAN (R 3.2.0)
 memoise 0.2.1 2014-04-22 CRAN (R 3.2.0)
 modeest 2.1 2012-10-15 CRAN (R 3.2.0)
 rjags 3-15 2015-04-15 CRAN (R 3.2.0)
 runjags * 2.0.2-8 2015-09-14 CRAN (R 3.2.0)

The packages that we explicitly loaded are marked with an asterisk; all the other
packages listed are packages that are used by the packages we loaded. It is important
to note the version of these packages, too, as they can potentially cause cross-version
irreproducibility.

R projects
There are some (rare) cases where a single R script contains the totality of your
research/analyses. This may happen if you are doing simulation studies, for
example. For most cases, an analysis will consist of a script (or scripts) and at least
one data set. I refer to any R analysis that uses at least two files as an R project.

In R projects, special attention must be paid to how the files are stored relative to
each other. For example, if we stored the file SAT_Scores_NYC_2010.csv on our
desktop, the data import line would have read:

read.csv("/Users/bensisko/Desktop/SAT_Scores_NYC_2010.csv")

If you want to send this analysis to a contributor to be replicated, we would send
them the script and the data file. Even if we instructed them to place the file on their
desktop, the script would still not be reproducible. Our collaborators on Windows
and Unix would have to manually change the argument of read.csv to C:/Users/
jameskirk/Desktop/SAT_Scores_NYC_2010.csv or /home/katjaneway/Desktop/
SAT_Scores_NYC_2010.csv, respectively.

Chapter 13

[345]

A far better way to handle this situation is to organize all your files in a neat
hierarchy that will allow you to specify relative paths for your data imports. In this
case, it means making a folder called sat-scores (or something like that), which
contains the script nyc-sat-scores.R and a folder called data that contains the file
SAT_Scores_NYC_2010.csv:

Figure 13.2: A sample file/folder hierarchy for an R analysis project

The function call read.csv("./data/SAT_Scores_NYC_2010.csv") instructs R
to load the dataset inside the data folder in the current working directory. Now, if
we wanted to send our analysis to a collaborator, we would just send them the
folder (which we can compress, if we want), and it will work no matter what our
collaborator's username and operating system is. Additionally, everything is nice
and neat, and in one place. Note that we put a file called README.txt into the root
directory of our project. This file would contain information about the analysis,
instructions for running it, and so on. This is a common convention.

Anyway, never use absolute paths!

In projects that use more than one R script, some choose a slightly different project
layout. For example, let's say we divided our preceding script into load-and-clean-sat-
data.R and analyze-sat-data.R; we might choose a folder hierarchy that looks like this:

Figure 13.3: A sample file/folder hierarchy for a multiscript R analysis project

Reproducibility and Best Practices

[346]

Under this organizational paradigm, the two scripts are now placed in a folder called
code, and a new script master.R is placed in the project's root directory. master.R is
called driver script, and it will call our two non-driver scripts in the right order. For
example, master.R may look like this:

#!/usr/bin/Rscript --vanilla
source("./code/load-and-clean-sat-data.R")
source("./code/analyze-sat-data.R")

Now, our collaborator just has to execute master.R, which will, in turn, execute our
analysis scripts.

There are a few alternatives to using an R script as a driver. One
common alternative is to use a shell script as a driver. These scripts
contain code that is run by the operating system's command-line
interpreter. A downside of this approach is that shell scripts are, in
general, not portable across the Windows versus all-other-operating-
systems divide.
A common, but somewhat more advanced alternative, is to replace
master.R with a dependency-tracking build utility like make, shake,
sake, or drake. This offers a host of benefits including extensibility and
identification of redundant computations.

Version control
A very compelling benefit to our neat hierarchical organization scheme is that it
lends itself to easy integration with version control systems. Version control systems,
at a basic level, allow one to track changes/revisions to a set of files, and easily roll
back to previous states of the set of files.

A simple (and inadequate) approach is to compress your analysis project at regular
intervals, and post-fix the filename of each compressed copy with a timestamp. This
way, if you make a mistake, and would like to revert to a previous version, all you
have to do is delete your current project and un-compress the project from the time
you want to roll back to.

A far more sane solution is to use a remote file synchronization service that features
revision tracking. The most popular of these services at the time of writing is
Dropbox, though there are others such as TeamDrive and Box. These services allow
you to upload your project into the cloud. When you make changes to your local copy,
these services will track your changes, resynchronize the remotely stored copy, and
version your project for you. Now you can revert to a previous version of just one
file, instead of having to revert the entire project hierarchy.

Chapter 13

[347]

Beware! Some of these services have a limit on the number of revisions
they track. Make sure you look into this for the service that you choose
to use.

A great benefit of using one of these services is that any number of collaborators can
be invited to work on the project simultaneously. You can even set permissions for
the files each collaborator can read/write to. The service you choose should be able
to track the changes made by the collaborators, too.

Perhaps, the sanest solution is to use an actual version control system like Git,
Mercurial, Subversion, or CVS. These are traditionally used for software projects
that contain hundreds of files and many many contributors, but it's proving to be
a crackerjack solution to data analysts with just a few files and little to no other
contributors. These alternatives offer the most flexibility in terms of rollback, revision
tracking, conflict (incompatible changes) resolution, compression, and merging. The
combination of Git and GitHub (a remote Git repository hosting service) is proving
to be a particularly effective and common solution to statistical programmers.

Version control enhances reproducibility—since all the changes to the entire
project (scripts/data/folder-structure layouts) are documented, all the changes are
repeatable.

If your data files are small to medium, keeping them in your project will play nicely
with your version control solution; it will even offer great benefits like the assurance
that no one tampered with your data. If your data is too large, though, you might
look into other data storage solutions like remote database storage.

Package version management
Some R analysts, who rely heavily on the use of add-on CRAN packages,
may choose to use a tool to manage these packages and their versions.
The two most popular tools to do this are the package packrat and
checkpoint.
packrat, which is the more popular of the two, maintains a library of
the packages an analysis uses inside the project's root directory. This allows
the analysis and the packages it depends on to be version controlled.
checkpoint allows you to use the versions of CRAN packages as they
were on a particular date. An analyst would store the date of the CRAN
snapshot used at the top of a script, and the proper versions of these
packages would automatically download on a collaborator's machine.

Reproducibility and Best Practices

[348]

Communicating results
Unless an analysis is performed solely for the personal edification of the analyst,
the results are going to be communicated—either to teammates, your company,
your lab, or the general public. Some very advanced technologies are in place for R
programmers to communicate their results accurately and attractively.

Following the pattern of some of the other sections in this chapter, we will talk about
a range of approaches starting with a bad alternative and give an explanation for
why it's inadequate.

The terrible solution to the creating of a statistical report is to copy R output into a
Word document (or PowerPoint presentation) mixed with prose. Why is this terrible?
you ask? Because if one little thing about your analysis changes, you will have to re-
copy the new R output into the document, manually. If you do this enough times,
it's not a matter of if but a matter of when you will mess up and copy the wrong
thing, or forget to copy the new output, and so on. This method just opens up too
many vectors for mistakes. Additionally, any time you have to make a slight change
to a plot, update a data source, alter priors, or even change the number of multiple
imputation iterations to use, it requires a herculean effort on your part to keep the
document up to date.

All better solutions involve having R directly output the document that you will
use to communicate your results. RStudio (along with the knitr and rmarkdown
packages) makes it very easy for you to have your analysis spit out a paper rendered
with LaTeX, a slideshow presentation, or a self-contained HTML webpage. It's
even possible to have R directly output a Word document, whose contents are
dynamically created using R objects.

The least attractive, but easiest of the alternatives, is to use the Compile Notebook
function from the RStudio interface (the button labeled f in Figure 13.1). A pop-
up should appear asking you if you want the output in HTML, PDF, or a Word
document. Choose one and look at the output.

Chapter 13

[349]

Figure 13.4: An excerpt from the output of Compile Notebook on our example script

Sure, this may not be the prettiest document in the world, but at least it combines our
code (including our informative comments) and results (plots) in a single document.
Further, any change to our R script followed by recompiling the notebook will result
in a completely updated document for sharing. It's a little bit weird to have our
narrative told completely via comments, though, right?

Reproducibility and Best Practices

[350]

Literate programming is a novel programming paradigm put forth by genius computer
scientist Donald Knuth (who we mentioned in the previous chapter). This approach
involves interspersing computer code and prose in the same document. Whereas
the Compile Notebook feature doesn't allow for prose (except in code comments), the
RStudio/knitr/rmarkdown stack allows for an approach to report generation where
the prose/narrative plays a more integral part. To begin, click the New Document
button (component e), and choose R Markdown… from the dropdown. Choose a
title like example1 in the pop-up window, leave the default output format, and press
OK. You should see a document with some unfamiliar symbols in the editor. Finally,
click the button labeled Knit HTML (it's the button with the cute image of a ball of
yarn), and inspect the output.

Go back to the editor and re-read the code that produced the HTML output. This is
R Markdown: a lightweight markup language with easy-to-remember formatting
syntax elements and support for the embedded R code.

Besides the auto-generated header, the document consists of a series of two
components. The first of the components is stretches of prose written in Markdown.
With Markdown, a range of formatting options can be written in plain text that
can be rendered in many different output formats, like HTML and PDF. These
formatting options are simple: *This* produces italic text; **this** produces bold text.
For a handy cheat sheet of Markdown formatting options, click the question mark
icon (which appears when you are editing R Markdown [.Rmd] documents), and
choose Markdown Quick Reference from the dropdown.

The second component is snippets of R code called chunks. These chunks are put
between two sets of backticks (```). The set of three backticks that open a chunk
look like ```{r}. Between the curly braces, you can optionally name the chunk, and
you can specify any number of chunk options. Note that in example1.Rmd, the second
chunk uses the option echo=FALSE; this means that the code snippet plot(cars)
will not appear in the final rendered document, even though its output (namely, the
plot) will.

There's an element of R Markdown that I want to call out explicitly: inline R
code. During stretches of prose, any text between `r and ` is evaluated by the R
interpreter, and substituted with its result in the final rendered document. Without
this mechanism, any specific numbers/information related to the data objects (like
the number of observations in a dataset) have to be hardcoded into the prose. When
the code changed, the onus of visiting each of these hardcoded values to make sure
they are up to date was on the report author. Using inline R to offload this updating
onto R eliminates an entire class of common mistakes in report generation.

Chapter 13

[351]

What follows is a re-working of our SAT script in R Markdown. This will give us a
chance to look at this technology in more detail, and gain an appreciation for how it
can help us achieve our goals of easy-to-manage reproducible, literate research.

title: "NYC SAT Scores Analysis"
author: "Tony Fischetti"
date: "November 1, 2015"
output: html_document

Aim:
To use Bayesian analysis to compare NYC's 2010
combined SAT scores against the average of the
rest of the country, which, according to
FairTest.com, is 1509

```{r, echo=FALSE}
# options
options(echo=TRUE)
options(stringsAsFactors=FALSE)
```

We are going to use the `assertr` and `runjags`
packages for data checking and MCMC, respectively.
```{r}
# libraries
library(assertr)   # for data checking
library(runjags)   # for MCMC
```

Let's make sure everything is all set with JAGS!
```{r}
testjags()
```
Great!

This data was found in the NYC Open Data Portal:
https://nycopendata.socrata.com
```{r}
link.to.data <- "http://data.cityofnewyork.us/api/views/zt9s-n5aj/
rows.csv?accessType=DOWNLOAD"



Reproducibility and Best Practices

[ 352 ]

download.file(link.to.data, "./data/SAT_Scores_NYC_2010.csv")

nyc.sats <- read.csv("./data/SAT_Scores_NYC_2010.csv")
```

Let's give the columns easier names
```{r}
better.names <- c("id", "school.name", "n", "read.mean",
                  "math.mean", "write.mean")
names(nyc.sats) <- better.names
```

There are `r nrow(nyc.sats)` rows but almost 700 NYC schools. We will,
therefore, *assume* that this is a random sample of NYC schools.

Let's first check the veracity of this data...
```{r, error=TRUE}
nyc.sats <- assert(nyc.sats, is.numeric,
                   n, read.mean, math.mean, write.mean)
```

It looks like check failed because there are "s"s for some rows. (??)
A look at the data set descriptions indicates that the "s" is for
schools
with 5 or fewer students. For our purposes, let's just exclude them.

This is a function that takes a vector, replaces all "s"s
with NAs and make coverts all non-"s"s into numerics
```{r}
remove.s <- function(vec){
  ifelse(vec=="s", NA, vec)
}

nyc.sats$n          <- as.numeric(remove.s(nyc.sats$n))
nyc.sats$read.mean  <- as.numeric(remove.s(nyc.sats$read.mean))
nyc.sats$math.mean  <- as.numeric(remove.s(nyc.sats$math.mean))
nyc.sats$write.mean <- as.numeric(remove.s(nyc.sats$write.mean))
```

Now we are going to remove schools with fewer than 5 test takers
and calculate a combined SAT score
```{r}



Chapter 13

[ 353 ]

nyc.sats <- nyc.sats[complete.cases(nyc.sats), ]

# Calculate a total combined SAT score
nyc.sats$combined.mean <- (nyc.sats$read.mean +
                           nyc.sats$math.mean +
                           nyc.sats$write.mean)
```
Let's now build a posterior distribution of the true mean of NYC high
schools' combined SAT scores. We're not going to look at the summary
statistics, because we don't want to bias our priors.
We will use a standard gaussian model.

```{r, cache=TRUE, results="hide", warning=FALSE, message=FALSE}
the.model <- "
model {
  # priors
  mu ~ dunif(0, 2400)
  stddev ~ dunif(0, 500)
  tau <- pow(stddev, -2)

  # likelihood
  for(i in 1:theLength){
     samp[i] ~ dnorm(mu, tau)
  }
}"

the.data <- list(
  samp = nyc.sats$combined.mean,
  theLength = length(nyc.sats$combined.mean)
)

results <- autorun.jags(the.model, data=the.data,
                        n.chains = 3,
                        monitor = c('mu'))
```

Let's view the results of the MCMC.
```{r}
print(results)
```
Now let's plot the MCMC diagnostics
```{r, message=FALSE}



Reproducibility and Best Practices

[ 354 ]

plot(results, plot.type=c("histogram", "trace"), layout=c(2,1))
```

Looks good!

Let's extract the MCMC samples of the mean, and get the
bounds of the middle 95%
```{r}
results.matrix <- as.matrix(results$mcmc)
mu.samples <- results.matrix[,'mu']
bounds <- quantile(mu.samples, c(.025, .975))
```

We are 95% sure that the true mean is between
`r round(bounds[1], 2)` and `r round(bounds[2], 2)`.

Now let's plot the marginal posterior distribution for the mean
of the NYC high schools' combined SAT grades, and draw the 95%
percent credible interval.
```{r}
plot(density(mu.samples),
     main=paste("Posterior distribution of mean combined SAT",
                "score in NYC high schools (2010)", sep="\n"))
lines(c(bounds[1], bounds[2]), c(0, 0), lwd=3, col="red")
```

Given the results, the SAT scores for NYC high schools in 2010
are **incontrovertibly** not at par with the average SAT scores of
the nation.

This is some session information for reproducibility:
```{r}
devtools::session_info()
```


Chapter 13

[355]

This R Markdown, when rendered by knitting the HTML, looks like this:

Figure 13.5: An excerpt from the output of Knit HTML on our example R Markdown document

Now, that's a handsome document!

Reproducibility and Best Practices

[356]

A few things to note: First, our contextual narrative is no longer told through code
comments; the narrative, code, code output, and plots are all separate and easily
distinguished. Second, note that both, the number of observations in the data set and
the bounds of our credible interval, are dynamically woven into the final document.
If we change our priors, or use a different likelihood function (and we should—see
exercise #3), the bounds as they appear in our final report will be automatically
updated.

Finally, take a look at the chunk options we've used. We hid the code in our first
chunk so that we didn't clutter the final document with option setting. In the sixth
chunk, we used the option error=TRUE to let the renderer know that we expected
the contained code to fail. The printed error message nicely illustrates why we
had to spend the subsequent chunk on data cleaning. In the ninth chunk (the
one where we run the MCMC chains), we use quite a few options. cache=TRUE
caches the result of the chunk so that if the chunk's code doesn't change, we don't
have to wait for MCMC chains to converge everything we render the document.
We use results="hide" to hide the verbose output of autorun.jags. We use
warning=FALSE to suppress the warning emitted by autorun.jags informing us
that we didn't choose starting values for the chains. Lastly, we use message=FALSE
to quiet the message produced by a autorun.jags that the rjags namespace is
automatically being loaded. autorun.jags sure is chatty!

We may opt to use different chunk options depending on our intended audience.
For example, we could hide more of the code—and focus more on the output and
interpretation—if we were communicating the results to a party of non-statistical-
programmers. On the other hand, we would hide less of the code if we were using
the rendered HTML as a pedagogical document to teach budding R programmers
how to use R Markdown.

The HTML that is produced can now be uploaded—as a standalone document—to a
web server so that the results can be sent to others as a hyperlink. Bear in mind, too,
that we are not limited to knitting HTML; we could have just as easily knitted a PDF
or Word document. We could have also used R Markdown to produce a slideshow
presentation—I use this technology all the time at work.

You don't have to necessarily use RStudio to produce these handsome, dynamically-
generated reports (they can be rendered using only the knitr and rmarkdown
packages and a format conversion utility called pandoc), but RStudio makes writing
them so easy, you would need a really compelling reason to use any other editor.

Chapter 13

[357]

knitr is a beefy package indeed, and we only touched on the tip of the iceberg in
regard to what it is capable of; we didn't cover, for example, customizing the
reports with HTML, embedding Math equations into the reports, and using LaTeX
(instead of R Markdown) for increased flexibility. If you see that power in knitr, and
dynamically-generated literate documents in general, I urge you to learn more about
it.

Exercises
Practice the following exercises to revise the concept of reproducibility learned in
this chapter:

•	 Review: When we created the data frame nothing, we combined a vector of
1,000 binomially distributed random variables, 1,000 normally distributed
random variables, and a vector of two colors, red and white. Since all the
columns in a data frame have to be the same length, how did R allow this?
What is the property of vectors that allows this?

•	 Seek out, read, and attempt to understand the source code of some of your
favorite R packages. What version control system is the author of the package
using?

•	 Carefully review the analysis that was used as an example in this chapter. In
what manner can this analysis be improved upon? Look at the distribution of
the combined SAT scores in NYC schools. Why was modeling the SAT scores
with a Gaussian likelihood function a (very) bad choice? What could we have
done instead?

•	 If both a poor and a rich person are willing to buy a pair of sneakers for no
more than $40, who values the sneakers the most, and who should get the
sneakers in order for that resource to be allocated most efficiently? Couch
your answer in terms of the diminishing marginal utility of money. What
would the law of diminishing marginal utility say about the most equitable
income tax schema, with respect to different income levels?

Reproducibility and Best Practices

[358]

Summary
This last chapter—which was uncharacteristically light on theory—may be one of
the most important chapters in the whole book. In order to be a productive data
analyst using R, you simply must be acquainted with the tools and workflows of
professional R programmers.

The first topic we touched on was the link between best practices and
reproducibility, and why reproducibility is an integral part of a productive and sane
analyst's workflow. Next, we discussed the basics of R scripting, and how to run
completed scripts all at once. We saw how RStudio—R's best IDE—can help us while
we write these scripts by providing a mechanism to execute code, line-by-line, as
we write it. To really cement your understanding of R scripting, we saw an example
R script that illustrated clean design and adherence to best practices (informative
variable names, readable layout, myriad informative comments, and so on.)

Then, you learned of a few ways that you can organize multi-file analysis projects.
You saw how the correct organizational structure of analysis projects naturally lend
themselves to integration with version control—a powerful tool in the organized
analyst's utility belt. You learned how the benefits conferred by a sophisticated
version control system—ability to revert to previous versions, track all revisions,
and merge incompatible revisions—could potentially save an analyst from hours of
heartache.

Finally, you saw how to use the RStudio/knitr/rmarkdown stack to help us achieve
our goals of producing a reproducible report of your analyses. You learned the
dangers of ad-hoc/copy-and-paste manual report generation, and discovered that a
better solution is to charge R with creating the report itself. The simplest solution—
compiling a notebook—was, at least, better than manual alternatives, but produced
reports that were somewhat lacking in the flexibility and aesthetics departments.
You saw that, instead, we can use R Markdown to create fancy-pants, attractive,
dynamically-generated reports that cut down on errors, complement reproducibility,
and aid in the effective dissemination of information.

[359]

Index
A
alpha level (α level) 111
Analysis of Covariance (ANCOVA) 223
Analysis of Variance (ANOVA)

about 130-132
assumptions 133

anonymous functions 16
arguments 3
arithmetic operators 2
assignment operators 2-4

B
bagged trees technique 232
bagging 232
bandwidth 43
base R 45
batch mode 1
Bayes factors 165
Bayesian analysis 142-147
Bayesian independent samples t-test

performing 165-167
Bayesian interpretation 83, 142
Bayesian renaissance 155
Bayesian linear regression 207, 208
bell curve 32
beta level (β level) 116
bias-variance trade-off

about 193
balance, striking 197-200
cross-validation 194-197

binomial function 143
binomial distribution 112
bivariate relationship (two variable) 52

Bonferroni correction 132
bootstrap aggregating 232
box-and-whisker plot 55

C
categorical variable

and continuous variable, relationship be-
tween 52-56

relationships, describing 57-59
visualization methods 68, 69

central tendency
measuring 30-33

character data type 4, 5
chi-square distribution 134
chi-squared statistic 134
circular decision boundary 238, 239
classifier

circular decision boundary 238, 239
crescent decision boundary 237
diagonal decision boundary 236
selecting 234
vertical decision boundary 235

Cohen's d 128
coin flips 151-153
comments 2
Comprehensive R Archive Network

(CRAN) 23
confidence intervals

about 104
using 101

confusion matrix 219, 220
continuous variable

and categorical variable, relationship be-
tween 52-57

correlation coefficients 62-66

[360]

covariance 61, 62
multiple correlations, comparing 67
relationships, describing 60, 61

continuous variables
visualization methods 68, 69

controlled experiment 125
correlation coefficients 62-66
cost complexity pruning 228
covariance 61, 62
covariance matrix 67
credible interval 104
crescent decision boundary 237
cross tab 58
cross-tabulation 58

D
data

loading, in R 20-24
data formats 265, 266
decision trees 226-231
degrees of freedom 38
diagonal decision boundary 236
directional hypothesis 114
discrete numeric variable 26

E
Emacs Speaks Statistics (ESS) 335
ensemble learning 232
estimation 37, 38

F
flow of control constructs 6, 7
frequency distributions

about 26-29
examples 26

functions 14-17
frequentist interpretation 83

G
Gaussian distribution 32
Generalized Linear Model (GLM) 223
ggplot2

about 45
using 45

H
hash-tag 2
help.start() function 7
Holm-Bonferroni correction 132
hyper-parameters 143

I
ifelse() function 13
imputation

methods 282, 283
multiple imputation 283-290

independence of proportions
statistical significance 127, 128
testing 133, 134

independent 126
independent samples t-test

assumptions 129
using 125-127

indexing 8
Integrated Development

Environment (IDE) 335
interaction terms 207
interquartile range

using 34
interval estimation

about 101, 102
qnorm function, using 103, 104

inverse link function 222
Iteratively Re-Weighted Least

Squares (IWLS) 183

J
JAGS

using 156-160
JavaScript Object Notation (JSON) 249-257
joint distribution 154
Justified True Belief (JTB) 107

K
kernel density estimation 43
kitchen sink regression 190-192
k-Nearest Neighbors (k-NN)

about 217-219
confusion matrices 219, 220

[361]

limitations 220
using, in R 217-219

Kruskal-Wallis test 137

L
lambda functions 16
Last.fm developer

URL 251
left-tailed 32
linear models 170, 171
linear regression, diagnostics

about 200, 201
Anscombe relationship, fourth 203-206
Anscombe relationship, second 201, 202
Anscombe relationship, third 202

link function 222
logical data type 4, 5
logistic function 222
logistic regression

about 221
limitations 226
using 221-223
using, in R 224-226

logit function 222

M
machine 303
Mann-Whitney U test 137
marginal distribution 163
Markov Chain Monte Carlo (MCMC) 155
matrix

about 17-19
creating 17-19

Maximum Likelihood Estimation
(MLE) 223

mean height
estimating 95-98

Mean Squared Error (MSE) 174
measures of spread

for categorical data 34
missing data

analysis 270
assertions, chaining 296, 297
column data type, checking 293, 294

complete case analysis 276, 277
entry errors, checking 295
hot deck imputation 278
mean substitution 278
methods, for dealing 276
multiple imputation 280-282
outliers, checking 296
outliers, checking for 295
out-of-bounds data, checking for 291-293
pairwise distribution 278
regression imputation 279
stochastic regression imputation 279
types 274-276
unexpected categories, checking 294, 295
unlikely data points, checking 295
visualizing 271-274

multiple correlations
comparing 67

multiple means
testing 130-133

multiple regression 184-188
multivariate data 51, 52
MusicBrainz

URL 262

N
negatively skewed 32
NHST

about 109-112
default hypothesis 110
one-tailed test 113-115
p-values, warning 117, 118
significance, warning 117
two-tailed tests 113-115
Type I error 115, 116
Type II error 115, 116

non-binary predictor
regression with 188-190

non-linear modeling 206
normal distribution

about 88-90
fitting, to precipitation dataset 164, 165
three-sigma rule 90, 91
z-tables, using 90, 91

Not a Number (NaN) 4
not available (NA) 9

[362]

Null Hypothesis Significance
Testing. See NHST

null hypothesis terminology 110

O
one sample t-test

about 118-124
assumptions 125

one-tailed hypothesis test
running 124

one-tailed test 114
online repositories 266, 267
OpenRefine 298
optimized packages

using 307, 308
optimizing

ways 302, 303
Out-Of-Bag (OOB) 233

P
pairwise t-tests 132
parallelization

parallel R 312-323
using 310-312

parametric statistical tests 135
Pearson's correlation 62
polynomial regression 239
population 37, 38
positively skewed 32
power 116
predict function 233
prior

selecting 148-150
probability 77-82
probability density function (PDF) 41, 43
probability distributions

about 39-43
bandwidth, selecting 43
parameters 85
sampling from 84, 85

probability mass function (PMF) 39
pruning 228
p-value

about 111
warning 117

Q
qnorm function

using 103
qplot (quick plot) 44
quantile 103
quantile-quantile plot (QQ-plot)

using 135, 136

R
R

about 1
arithmetic operators 2, 3
assignment operators 2, 3
character data type 4, 5
data, loading 20-24
flow of control constructs 6, 7
help, obtaining 7
k-NN, using 218, 219
logical data type 4, 5
logistic regression 224, 225

random forests 232, 233
rank

assigning 64
R code

about 304, 329-331
memory, allocation 304, 305
vectorization 305-307

Rcpp
using 323-329

Read-Evaluate-Print-Loop (REPL) 1
recursive splitting 228
regression 63
regular expressions 298
regularization 206
relational database 244-248
Residual Sum of Squares (RSS) 173
results

communicating 348-357
right-tailed 32
R implementation

using 309, 310
rnorm function 96
Root Mean Squared Error (RMSE) 174
R projects 344-346

[363]

R Scripting
about 334, 335
RStudio 335-337
running 337-339

R scripts
example 339-343
running 337-339

RStudio 335-337
runjags

using 156-160

S
samples 37, 38
samples of one variable. See univariate data
sampling distribution 98-101
scatterplot 60
scripting

and reproducibility 343, 344
Shapiro-Wilk test 136
simple linear regression

about 172-179
warning 182-184
with binary predictor 179-181

Simpson's Paradox 59
skewness degree 33
smaller samples 105, 106
Spearman's rank coefficient (Spearman's

rho) 64
split point 227
spread

measuring 34-36
SQL query 248
standard deviation 36
standard error 99
subsetting 8

T
t-distribution (Student's

t-distribution) 105, 106
test statistic

defining 111
three-sigma rule 90, 91
tidyr 298, 299
trend line 63
theta 142
t-test 119

Tukey's variation 56
tuning parameters 228
Type I errors 115
Type II errors 115

U
univariate data 25, 26
unsanitized data

analysis 290, 291

V
vectorized functions 10, 11
vectors

about 8
advanced subsetting 12
building 8
recycling 13, 14
subsetting 8, 9
vectorized functions 10, 11

version control 346, 347
vertical decision boundary 235
visualization methods

about 44-49
of categorical data 68, 69
of continuous variables 68, 69
of multiple continuous variables 73-75
of two categorical data 69-71
of two continuous variables 72

Visualizing Categorical Data (VSD) 70

W
Wilcoxon rank-sum test 137

X
x bar 30
XML 257-265
XPath

URL 260

Z
z-scores 62
z-tables

using 90, 91

Thank you for buying
Data Analysis with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Predictive Analytics
with R
ISBN: 978-1-78216-935-2 Paperback: 332 pages

Get to grips with key data visualization and
predictive analytic skills using R

1.	 Acquire predictive analytic skills using various
tools of R.

2.	 Make predictions about future events by
discovering valuable information from data
using R.

3.	 Comprehensible guidelines that focus on
predictive model design with real-world data.

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine
learning methods and gain an insight into real-world
applications

1.	 Harness the power of R for statistical
computing and data science.

2.	 Use R to apply common machine learning
algorithms with real-world applications.

3.	 Prepare, examine, and visualize data for
analysis.

4.	 Understand how to choose between machine
learning models.

Please check www.PacktPub.com for information on our titles

Learning Data Mining with R
ISBN: 978-1-78398-210-3 Paperback: 314 pages

Develop key skills and techniques with R to create and
customize data mining algorithms

1.	 Develop a sound strategy for solving predictive
modeling problems using the most popular
data mining algorithms.

2.	 Gain understanding of the major methods of
predictive modeling.

3.	 Packed with practical advice and tips to help
you get to grips with data mining.

R for Data Science
ISBN: 978-1-78439-086-0 Paperback: 364 pages

Learn and explore the fundamentals of data science
with R

1.	 Familiarize yourself with R programming
packages and learn how to utilize them
effectively.

2.	 Learn how to detect different types of data
mining sequences.

3.	 A step-by-step guide to understanding R scripts
and the ramifications of your changes.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: RefresheR
	Navigating the basics
	Arithmetic and assignment
	Logicals and characters
	Flow of control

	Getting help in R
	Vectors
	Subsetting
	Vectorized functions
	Advanced subsetting
	Recycling

	Functions
	Matrices
	Loading data into R
	Working with packages
	Exercises
	Summary

	Chapter 2: The Shape of Data
	Univariate data
	Frequency distributions
	Central tendency
	Spread
	Populations, samples, and estimation
	Probability distributions
	Visualization methods
	Exercises
	Summary

	Chapter 3: Describing Relationships
	Multivariate data
	Relationships between a categorical and a continuous variable
	Relationships between two categorical variables
	The relationship between two continuous variables
	Covariance
	Correlation coefficients
	Comparing multiple correlations

	Visualization methods
	Categorical and continuous variables
	Two categorical variables
	Two continuous variables
	More than two continuous variables

	Exercises
	Summary

	Chapter 4: Probability
	Basic probability
	A tale of two interpretations
	Sampling from distributions
	Parameters
	The binomial distribution

	The normal distribution
	The three-sigma rule and using z-tables

	Exercises
	Summary

	Chapter 5: Using Data to Reason
About the World
	Estimating means
	The sampling distribution
	Interval estimation
	How did we get 1.96?

	Smaller samples
	Exercises
	Summary

	Chapter 6: Testing Hypotheses
	Null Hypothesis Significance Testing
	One and two-tailed tests
	When things go wrong
	A warning about significance
	A warning about p-values

	Testing the mean of one sample
	Assumptions of the one sample t-test

	Testing two means
	Don't be fooled!
	Assumptions of the independent samples t-test

	Testing more than two means
	Assumptions of ANOVA

	Testing independence of proportions
	What if my assumptions are unfounded?
	Exercises
	Summary

	Chapter 7: Bayesian Methods
	The big idea behind Bayesian analysis
	Choosing a prior
	Who cares about coin flips
	Enter MCMC – stage left
	Using JAGS and runjags
	Fitting distributions the Bayesian way
	The Bayesian independent samples t-test
	Exercises
	Summary

	Chapter 8: Predicting Continuous Variables
	Linear models
	Simple linear regression
	Simple linear regression with a binary predictor
	A word of warning

	Multiple regression
	Regression with a non-binary predictor
	Kitchen sink regression
	The bias-variance trade-off
	Cross-validation
	Striking a balance

	Linear regression diagnostics
	Second Anscombe relationship
	Third Anscombe relationship
	Fourth Anscombe relationship

	Advanced topics
	Exercises
	Summary

	Chapter 9: Predicting Categorical Variables
	k-Nearest Neighbors
	Using k-NN in R
	Confusion matrices
	Limitations of k-NN

	Logistic regression
	Using logistic regression in R

	Decision trees
	Random forests
	Choosing a classifier
	The vertical decision boundary
	The diagonal decision boundary
	The crescent decision boundary
	The circular decision boundary

	Exercises
	Summary

	Chapter 10: Sources of Data
	Relational Databases
	Why didn't we just do that in SQL?

	Using JSON
	XML
	Other data formats
	Online repositories
	Exercises
	Summary

	Chapter 11: Dealing with Messy Data
	Analysis with missing data
	Visualizing missing data
	Types of missing data
	So which one is it?

	Unsophisticated methods for dealing with missing data
	Complete case analysis
	Pairwise deletion
	Mean substitution
	Hot deck imputation
	Regression imputation
	Stochastic regression imputation

	Multiple imputation
	So how does mice come up with the imputed values?

	Multiple imputation in practice

	Analysis with unsanitized data
	Checking for out-of-bounds data
	Checking the data type of a column
	Checking for unexpected categories
	Checking for outliers, entry errors, or unlikely data points
	Chaining assertions

	Other messiness
	OpenRefine
	Regular expressions
	tidyr

	Exercises
	Summary

	Chapter 12: Dealing with Large Data
	Wait to optimize
	Using a bigger and faster machine
	Be smart about your code
	Allocation of memory
	Vectorization

	Using optimized packages
	Using another R implementation
	Use parallelization
	Getting started with parallel R
	An example of (some) substance

	Using Rcpp
	Be smarter about your code
	Exercises
	Summary

	Chapter 13: Reproducibility and Best Practices
	R Scripting
	RStudio
	Running R scripts
	An example script
	Scripting and reproducibility

	R projects
	Version control
	Communicating results
	Exercises
	Summary

	Index

