
Ansible
From Beginner to Pro
—
Michael Heap

 Ansible
 From Beginner to Pro

 Michael Heap

Ansible: From Beginner to Pro

Michael Heap
Reading, Berkshire
United Kingdom

ISBN-13 (pbk): 978-1-4842-1660-6 ISBN-13 (electronic): 978-1-4842-1659-0
DOI 10.1007/978-1-4842-1659-0

Library of Congress Control Number: 2016952799

Copyright © 2016 by Michael Heap

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher's location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: Gary Schwartz
Technical Reviewer: Jo Rhett
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise Corrigan,

James DeWolf, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 Th is book is dedicated to Miss C. Amazing. Th anks for
believing in me, no matter what.

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

 ■Chapter 1: Getting Started .. 1

 ■Chapter 2: The Inventory File ... 19

 ■Chapter 3: Installing WordPress ... 31

 ■Chapter 4: Ansible Roles .. 49

 ■Chapter 5: Parameterizing Playbooks .. 63

 ■Chapter 6: Writing Your Own Modules .. 83

 ■Chapter 7: Orchestrating AWS .. 99

 ■Chapter 8: Testing with Test Kitchen .. 125

 ■Chapter 9: Advanced Ansible.. 137

 ■Chapter 10: Appendix A. Installing Ansible 159

 ■Chapter 11: Appendix B. YAML Files .. 163

Index .. 167

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

 ■Chapter 1: Getting Started .. 1

What Is Confi guration Management? .. 1

Infrastructure as Code .. 2

About Ansible .. 2

Puppet, Chef, and Other Confi guration Management Tools 3

Installing Ansible .. 4

Writing Your First Playbook ... 5

Creating a Test Environment with Vagrant .. 6

About VirtualBox and Vagrant ... 6

Installing VirtualBox and Vagrant .. 6

Creating Your Environment ... 7

An Introduction to Playbooks .. 10

Your First Playbook ... 11

Playbooks and Idempotency ... 16

Summary ... 17

 ■Chapter 2: The Inventory File ... 19

What’s an Inventory? ... 19

Running Without Vagrant ... 21

Confi guration Options in the Inventory .. 22

■ CONTENTS

viii

Inventory Variable Registration ... 24

Inventory Groups ... 25

An Example Inventory.. 27

Dynamic Inventories .. 28

Multiple Inventories ... 30

Summary ... 30

 ■Chapter 3: Installing WordPress ... 31

Installing WordPress .. 31

Environment Confi guration .. 31

Installing Dependencies .. 32

Installing PHP ... 32

Installing MySQL ... 33

Installing nginx ... 37

Tasks and Handlers .. 40

Downloading WordPress.. 41

Downloading it Yourself .. 42

Downloading it Automatically ... 42

Confi guring a WordPress Install .. 43

Making a Backup .. 46

Making It Idempotent .. 47

Summary ... 48

 ■Chapter 4: Ansible Roles .. 49

Ansible Galaxy ... 49

Role Structure ... 51

Splitting Up Your WordPress Playbook .. 53

Role Dependencies ... 58

■ CONTENTS

ix

Wrapper Roles .. 59

Creating Roles for Different Platforms .. 60

Tips for Writing Roles .. 61

Summary ... 62

 ■Chapter 5: Parameterizing Playbooks .. 63

Parameterizing Your WordPress Role .. 63

Customizing the WordPress Domain Name .. 65

Variable Locations ... 67

Role Defaults (Commonly Used) ... 67

Inventory Variables ... 68

Inventory Group Variables ... 68

Inventory Host Variables ... 69

Playbook Group Variables (Commonly Used) .. 70

Playbook Host Variables (Commonly Used) .. 70

Host Facts ... 70

Registered Variables (Commonly Used) .. 71

Set Facts ... 71

Playbook Variables.. 72

Playbook vars_prompt .. 72

Playbook vars_fi les .. 73

Role Variables (Commonly Used) .. 75

Block Variables ... 75

Task Variables ... 76

Extra Variables .. 77

Gathering Facts ... 77

Disabling Facts .. 79

Facts.d .. 79

Fact Caching ... 80

hostvars .. 80

■ CONTENTS

x

Working with Variables .. 80

Ansible’s Variable Philosophy .. 82

Summary ... 82

 ■Chapter 6: Writing Your Own Modules .. 83

About Ansible Modules .. 83

ansible-modules-core .. 83

ansible-modules-extras .. 83

Environment Setup .. 84

Writing a Module Using Bash .. 84

Writing a Module Using Python ... 88

Writing in Any Other Programming Language 95

Providing Facts via a Module .. 96

Summary ... 98

 ■Chapter 7: Orchestrating AWS .. 99

Creating an AWS Account .. 99

IAM Users ... 101

Key Pairs ... 102

Security Groups .. 103

Prerequisites ... 103

Creating an Instance ... 104

Deleting Instances .. 107

Managing Instance Cardinality ... 109

Provisioning Your New Instance ... 111

Running Your WordPress Playbook ... 113

Dynamic Inventories ... 116

Creating a VPC .. 119

Summary ... 124

■ CONTENTS

xi

 ■Chapter 8: Testing with Test Kitchen .. 125

About Test Kitchen ... 125

Installing Test Kitchen ... 126

An Introduction to ServerSpec .. 127

Writing Your First Test.. 128

More Lightweight Tests ... 131

Testing Your WordPress Role ... 133

Summary ... 136

 ■Chapter 9: Advanced Ansible.. 137

Ansible: The Command-Line Tool .. 137

Querying the Environment .. 138

ansible-vault ... 138

ansible-galaxy .. 143

ansible.cfg .. 151

Running in Serial ... 153

ansible-pull ... 154

Blocks ... 155

Summary ... 157

 ■Chapter 10: Appendix A. Installing Ansible 159

Ansible on Debian ... 159

Installing from Source .. 159

Building a .deb Package .. 160

Ansible on RedHat ... 160

Installing from Source .. 161

Building a .rpm Package ... 161

Ansible on Windows .. 162

■ CONTENTS

xii

 ■Chapter 11: Appendix B. YAML Files ... 163

Starting a YAML document .. 163

Data Types ... 163

Scalar ... 164

List .. 164

Map ... 164

Block Literals .. 165

Summary ... 166

Index .. 167

xiii

 About the Author

 Michael Heap is a polyglot software engineer,
committed to reducing complexity in systems and
making them more predictable. Working with a variety
of languages and tools, he shares his technical expertise
to audiences all around the world at user groups and
conferences.

 Day to day, Michael is a fixer. He works on
whatever needs an extra pair of hands both at his day
job and in open source projects. When not immersed in
technology, you’ll find him either playing various board
games or hiking through the countryside.

xv

 About the Technical
Reviewer

 Jo Rhett is a DevOps architect with more than 20 years
of experience conceptualizing and delivering large-
scale Internet services. He creates automation and
infrastructure to accelerate deployment and minimize
outages.

 Jo provides training on DevOps practices and
builds improvements for Puppet, MCollective, Chef,
and Ansible.

xvii

 Acknowledgments

 First and foremost, a huge thank you to Jo Rhett, the technical reviewer for this book. Both
questioning and informative at once, his comments helped shape this book into what it is
today. Without his guidance, it would have been but a shadow of its current state.

 Second, a big thanks to Apress and the editorial team for working with me through
some fairly tough deadlines. Special thanks to Nancy, my coordinating editor, and Gary,
my editor.

 Finally, I wouldn’t be here without Stuart Herbert. I worked with Stuart a few years
ago, and it was he who introduced me to Ansible through the work he was doing on our
QA team. I fell in love with its simplicity, and that was the start of the road that brought
me to write this book.

 Of course, I can’t forget you, dear reader! Thank you ever so much for purchasing
this book and giving up your time to read and learn all about Ansible. Hopefully, it will be
enlightening. I’d love to hear your thoughts once you get to the end!

1© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_1

 CHAPTER 1

 Getting Started

 Welcome to Ansible: Beginner to Pro ! Throughout this book, you’re going to be introduced
to facets of Ansible and how the program can be used to ensure that all of your machines
are configured correctly, whether it’s your local desktop or a fleet of remote servers.

 It’s important to note that this book mostly assumes that you’re on a Linux or OS X
machine. While it is possible to run Ansible on Windows, it is highly experimental and
not recommended for day-to-day use. If you are on a Windows machine, don’t worry! In
this chapter, we’ll explain how to use a virtualized Linux machine as your control system,
which means that you can run Ansible just like you’d be able to if you were running Linux
or OS X natively.

 We’re going to start off by taking a look at configuration management before
installing Ansible and writing our first playbook . A playbook is a text file that contains
instructions for Ansible to follow to ensure that the machine against which you’ve run
Ansible is in the correct state.

 By the end of this chapter, you will have Ansible installed and be able to run a
playbook that installs PHP, nginx, and MySQL.

 What Is Configuration Management?
 Configuration management was developed by the US Department of Defense in the 1950s
as a method of keeping track of hardware material items. Configuration management
is a way of handling changes in a system using a defined method so that the system
maintains its integrity over time. A log is kept of every change made to a system along
with documentation about who made the change, when the change was made, and why it
was made. This allows us to know the exact state of a system at any moment in time.

 Over the years, this process was refined and made official with many different
standards, starting with MIL-STD-480, through ISO-9000, and finally ending with ANSI/
EIA-649, the National Consensus Standard for Configuration Management (at the time
of this printing). As computers increased in popularity, the same practice was applied to
computer programs as well as to computer hardware. A running computer system is a
combination of many different factors, consisting not only of the version of the software
running, but also its configuration, host operating system, and even, in some cases,
its physical location. If any of these factors change, for all intents and purposes, it’s a
different computer system.

CHAPTER 1 ■ GETTING STARTED

2

 Initially, configuration management was about documenting the state of various
systems over time. However, as the available tools have improved, we seem to have
moved from an obligation to document that the system is in the desired state to declaring
the desired state and letting tools take care of it for us. We now define the system’s ideal
state rather than its current state, and Ansible ensures that everything is as it should be.
If it has to change versions of software or configuration files to make the system fit our
definition, Ansible will.

 Infrastructure as Code
 Historically, you would ensure that a system’s state matched what you expected and then
create a document certifying that this is the case. Today, we write that document as a
specification declaring the expected state of the system, then rely on tools such as Ansible
to implement the transformations required. Sure, we used to write small shell scripts that
would create a user or install and configure a specific software package, but that just isn’t
enough anymore. Infrastructure as code demands the same respect that we give to our
mission-critical software—code reviews, test suites, and proven software development
processes. All the things that you take for granted when writing code—version control,
design patterns, and so on—are not just for when you write code anymore. You can now
use the same techniques when defining your infrastructure as well.

 While the shell scripts that you’ve written and refined over the years may work on
a small number of servers, how will you cope when your company’s business suddenly
takes off and you have to provision a dozen new servers identically? With the advent of
services like Amazon AWS, Rackspace Cloud, and other cloud services, the number of
machines a system administrator has to deal with on a daily basis has increased by an
order of magnitude. This is before you even consider the productivity enhancements
for developers resulting from having infrastructure defined as code. Developers’ being
able to spin up an environment on a cloud service or locally on a virtual machine to
test their changes is amazing. The cycle time from when a developer writes code to
its being deployed to production drops, as the code has been tested not only on an
system identical to the production servers, but it’s also been tested using the exact same
provisioning and deployment tools. In conclusion, infrastructure as code is a big thing,
and it’s not going away anytime soon .

 About Ansible
 Ansible was first released by Michael DeHaan in 2012 as a small side project, and it has
had a meteoric rise in popularity, with over 17,000 stars and 1,410 unique contributors
on Github. Stars on Github are a way to follow a the progress of a project that you’re
interested in, but aren’t necessarily contributing code to. Beyond being a successful
open-source project, it has been successfully used in enterprise by companies like Apple
and NASA, who rely on it for their configuration management needs.

 The first AnsibleFest was held in Boston in 2013. In 2014, AnsibleFest went on
the road to New York City before moving to San Francisco for 2015. Developers and
operations staff from all over the world came together to talk about how Ansible has
helped them in their daily work lives and to discuss the future of Ansible.

CHAPTER 1 ■ GETTING STARTED

3

 At the time of this writing, Ansible 2.1 has been released, and 2.2 is under active
development. The developers of Ansible have maintained backward compatibility
between version 1 and version 2 while adding some very useful functionality, such as
blocks (a way to catch errors during execution using try / catch). Ansible 2.0 also supports
new playbook execution strategies, including standard linear execution and one that runs
a playbook as fast as possible.

 Ansible uses YAML files as its main source of information at run time. YAML is a data
representation language that is commonly used for configuration. If you haven’t used
YAML, don’t worry. YAML files are really simple to write, and by the time you’ve created
one or two, you’ll have the hang of it. If you’ve ever used JSON or XML, you should feel right
at home; however, while JSON and XML aren’t very human friendly, YAML is very easy to
read and use. It does come with some quirks though, such as being whitespace sensitive.
Nonetheless, if you’ve ever written any Python code, this shouldn’t be an issue for you.

 Which brings me to my next point — Ansible is written entirely in Python. The main
runner and all of the modules are Python 2.6 compatible, which means that they’ll work
with any version of Python2 above version 2.6. DeHaan choose Python for Ansible as it
meant that there would be no additional dependencies on the machines that you need to
manage. At this point in time, most other common configuration management systems
require you to install Ruby.

 Not only are there no additional language dependencies for your machines, but also
there are no additional dependencies at all. Ansible works by running commands via
SSH, so there’s no need to install any server software. This is a huge plus for two reasons :

 1. Your machines run your application without any CPU or
memory-hungry daemons running in the background.

 2. You get everything that SSH provides for free. You can use
advanced features, such as ControlPersist, Kerberos, and
jump hosts. In addition, there is no need to roll your own
authentication mechanism — you can let SSH take care
of it for you!

 Puppet, Chef, and Other Configuration Management
Tools
 CFEngine was the original configuration management system. However, most people
nowadays compare Ansible to tools such as Puppet and Chef , which are most commonly
used today. Puppet and Chef are more similar to each other than they are to Ansible, but they
can perform the same functions. While Puppet and Chef each use a central server to store
the desired state of machines and any metadata associated with them, Ansible doesn’t have
any central server at all (making it agentless). This is important, as when using tools such as
Puppet and Chef each server will check in periodically with the central server to see if there
are any updates. Ansible relies entirely on the end user pushing out the changes themselves.

 Ansible more closely resembles a tool called SaltStack (Salt), which also uses YAML
files for configuration and is also written in Python. Both Ansible and Salt are built primarily
as execution engines, where your system definition is just a list of commands to run,
abstracted behind reusable modules that provide an idempotent interface to your servers.
Thanks to most of Ansible’s modules and Salt’s state modules being idempotent, both tools
can be used to define the state of a machine before the tool will run and enforce that state.

CHAPTER 1 ■ GETTING STARTED

4

 As previously mentioned, Ansible uses an “agentless” model where changes are
pushed out to machines on demand. This is different than Puppet and Chef, where there
is a central server that is seen as the single source of truth, and machines periodically
check with the server to ensure that they have the latest copy of everything they need.
This has its advantages and disadvantages: the good news is that once you make changes,
you can instantly push these changes out to machines without waiting for a daemon
to check if there are any changes. The bad news is that you are responsible for getting
updates out to your machines, whereas with Puppet and Chef you can just commit your
changes and know that they’ll be rolled out soon. It’s worth mentioning that Ansible can
support this pull model as well, but we’ll talk about that a little later on in Chapter 9 .

 As mentioned earlier, Ansible uses SSH to connect from the host machine to other
systems. While this gives us a lot of confidence in its transport mechanism, it can also
be quite slow. Conversely, Salt uses ZeroMQ, which is very fast when bootstrapping a
connection and sending commands to the recipient.

 Installing Ansible
 Installing Ansible is easy. However, installing the correct version of Ansible isn’t quite
as easy.

 Ansible is available in the package repositories for operating systems such as Ubuntu
(apt-get) and Fedora (yum), but the versions in those repositories are usually several
releases out of date. As Ansible is under rapid development, you’ll want the latest release
available—either by building it yourself or installing it via a package manager.

 The easiest way to ensure that you always have the latest version available is to grab
the source code from https://github.com/ansible/ansible and build it yourself.

 ■ Note You’ll need a development environment set up to build Ansible from source code.
This involves having git , pip , and the Python development libraries installed. See Appendix
A, “Building Ansible,” for more information.

 Once you have all of the required dependencies installed, you can download Ansible
from Github and build it:

 git clone git://github.com/ansible/ansible.git --recursive
 cd ansible
 make
 sudo make install

 This will build and install the latest development version of Ansible for you from
source. If you’re running on a Debian or a RedHat Linux machine, you might prefer
to use dkpg or yum to install Ansible. Using dpkg or yum and installing via your system’s
package manager is preferred, as it provides a way to uninstall Ansible cleanly. For more
information on building Debian and RPM packages, see Appendix A, “Building Ansible.”

http://dx.doi.org/10.1007/978-1-4842-1659-0_9
https://github.com/ansible/ansible

CHAPTER 1 ■ GETTING STARTED

5

 If you’re running an operating system that doesn’t have yum or apt , you can install
Ansible via its Makefile. To install Ansible via the Makefile, all you have to do is run sudo
make install . This will copy Ansible into the correct location on your machine.

 If you don’t want to download the source code and install it yourself, you can use a
package manager such as apt , yum , or brew .

 If you’re on OS X, you can use Homebrew (http://brew.sh) to install Ansible. This
is almost identical to the make example above. All you need to do is type brew install
ansible and it’ll grab the latest version on record.

 If you’re on a Debian-based OS, you have two options: either use an Ansible PPA or
install via Pip.

 If you want to install via the PPA, you’ll need to enable it and update your apt cache.
If apt-add-repository doesn’t exist on your system, you may have to install python-
software-properties first, as follows:

 sudo apt-get install python-software-properties # if required
 sudo apt-add-repository ppa:ansible/ansible
 sudo apt-get update
 sudo apt-get install ansible

 If you’re on an OS that doesn’t support PPAs or if you’d prefer to use Pip, you can do
that too, as shown here:

 sudo pip install ansible

 ■ Note Ansible is not officially supported on Windows, but it is possible to get it running.
I would not recommend installing Ansible locally if you’re on Windows, but instead use
Vagrant’s local Ansible provisioner to run the tool. If you do want to try running it locally, read
the next paragraph.

 Finally, we come to Windows. Unfortunately, Ansible does not run on Windows
without quite a lot of work (and even then it’s not officially supported). Throughout
this book, we’ll be using a virtual machine to develop our playbook, which means that
installing Ansible on Windows isn’t strictly necessary. If you’re running on Windows, I’d
recommend not installing Ansible locally and instead running it from inside a virtual
machine that you create (which we’ll cover in the next section).

 If you’re determined to try running Ansible on Windows, you can find the
instructions to install it in Appendix A.

 Writing Your First Playbook
 Now that you have Ansible installed, you can start automating your infrastructure. You’ll
need an environment in which to test and a playbook to run. We’ll use a tool called
Vagrant to provide a disposable development environment and create a playbook that
installs a basic PHP and MySQL stack.

http://brew.sh/

CHAPTER 1 ■ GETTING STARTED

6

 Creating a Test Environment with Vagrant
 Before you write your first playbook, you’ll need an environment in which to test it. While
you could write playbooks to run against your local machine, I recommend testing them
in an environment where it doesn’t matter if things don’t quite work as intended, just in
case something goes wrong. To create these environments, I use Vagrant.

 If you’re new to Vagrant, keep on reading this chapter to learn what it is and how it
can help. If you’re familiar with Vagrant, or you’re eager to get started, feel free to skip to
the end of the chapter and run the commands provided to help you get up and running.

 About VirtualBox and Vagrant
 Throughout this book, we’ll be using a virtual machine against which we will run our
playbooks. This virtual machine will be provided using a combination of VirtualBox
(for the virtualization technology) and Vagrant (to automate the creation of virtualized
machines). Both of these tools are freely available online at http://virtualbox.com and
 http://vagrantup.com respectively.

 VirtualBox is a free virtualization tool developed by Oracle. It allows you to create
a virtual PC and install any operating system as though you were on physical hardware.
You can use VirtualBox as standalone software, but it works best when used with Vagrant,
which is essentially a scripting language for virtual machines.

 Vagrant is the glue that binds everything together. You could theoretically spin up a
VirtualBox machine yourself, then run Ansible on it, but Vagrant gives you a way to define
all of that programmatically. This configuration can then be committed with your code,
and any time it changes, everyone will have the latest version the next time they pull
updates down. Throughout this book we’ll be using a virtual machine, but it’s useful to
know that Vagrant can also be used to control real hardware.

 Installing VirtualBox and Vagrant

 ■ Note If you’re using some form of package manager, such as apt or yum , don’t use it
to install VirtualBox and Vagrant. Both of these tools are under active development, and the
versions provided in the repositories are usually several months out of date.

 VirtualBox is available online at https://www.virtualbox.org/wiki/Downloads for
many different platforms. VirtualBox is only available for 64-bit systems as of version 5.0.
While you can download an old release for 32-bit systems, I would recommend upgrading,
as the rest of this book assumes a 64-bit machine.

 Once you have VirtualBox installed, you can download Vagrant from https://www.
vagrantup.com/downloads.html . It should be as simple as downloading and running the
installer for your chosen operating system.

http://virtualbox.com/
http://vagrantup.com/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

CHAPTER 1 ■ GETTING STARTED

7

 If everything went well, you should be able to run VBoxManage --version and
 vagrant --version and see output that looks something like the following:

 $ VBoxManage --version
 5.0.6r103037
 $ vagrant --version
 Vagrant 1.7.4

 Creating Your Environment
 Now that you have all of your dependencies installed, it’s time to create the virtual
machine on which you’re going to install packages and then configure with Ansible.
Create a new folder called ansible-book and enter the following command: vagrant
init ubuntu/ trusty64

 This will create a file in that directory named Vagrantfile :

 $ mkdir ansible-book && cd ansible-book
 $ vagrant init ubuntu/trusty64

 A vagrantfile has been placed in this directory. You are now ready to “vagrant up”
your first virtual environment! Please read the comments in the vagrantfile as well as the
documentation on vagrantup.com for more information on using Vagrant.

 Once that file has been created, you can start your virtual machine by running
 vagrant up . This does a few things the first time you run it. First, it will check if a box with
the name ubuntu/trusty64 exists on your machine. If it does not, it will download it from
Atlas, a central box database that is maintained by Hashicorp (the team behind Vagrant).
I didn’t have the box on my machine, so it downloaded the box:

 $ vagrant up
 Bringing machine 'default' up with 'virtualbox' provider...
 ==> default: Box 'ubuntu/trusty64' could not be found. Attempting to find
and install...
 default: Box Provider: virtualbox
 default: Box Version: >= 0
 ==> default: Loading metadata for box 'ubuntu/trusty64'
 default: URL: https://atlas.hashicorp.com/ubuntu/trusty64
 ==> default: Adding box 'ubuntu/trusty64' (v20151111.0.0) for provider:
virtualbox
 default: Downloading: https://atlas.hashicorp.com/ubuntu/boxes/trusty64/
versions/20151111.0.0/providers/virtualbox.box
 ==> default: Successfully added box 'ubuntu/trusty64' (v20151111.0.0) for
'virtualbox'!

CHAPTER 1 ■ GETTING STARTED

8

 At this point, everything continues as though you already had the box on your system.
Vagrant imports a copy of the box into the current directory (ansible-book) so that you can
use the same image on several different projects. Then it uses VirtualBox to create a virtual
machine and boot it. You should see output on the screen that looks like the following:

 ==> default: Importing base box 'ubuntu/trusty64'...
 ==> default: Matching MAC address for NAT networking...
 ==> default: Checking if box 'ubuntu/trusty64' is up to date...
 ==> default: Setting the name of the VM: ansible-book_
default_1447596010857_ 88957
 ==> default: Clearing any previously set forwarded ports...
 ==> default: Clearing any previously set network interfaces...
 ==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
 ==> default: Forwarding ports...
 default: 22 => 2222 (adapter 1)
 ==> default: Booting VM...
 ==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection timeout. Retrying...
 default:
 default: Vagrant insecure key detected. Vagrant will automatically
replace
 default: this with a newly generated keypair for better security.
 default:
 default: Inserting generated public key within guest...
 default: Removing insecure key from the guest if it's present...
 default: Key inserted! Disconnecting and reconnecting using new SSH key...
 ==> default: Machine booted and ready!
 ==> default: Checking for host entries
 ==> default: Mounting shared folders...
 default: /vagrant => /Users/michael/ansible-book

 Your virtual machine is now created and running. You can check this by running
 vagrant status :

 $ vagrant status
 Current machine states:
 default running (virtualbox)

 You can also log in to the virtual machine by running the command vagrant ssh .
This will log in to the machine using a known SSH key that was generated when the
virtual machine was created. Once you’ve logged in, you can check that you have the
correct machine by running cat /etc/issue :

 vagrant@vagrant-ubuntu-trusty-64:~$ cat /etc/issue
 Ubuntu 14.04.3 LTS \n \ l

CHAPTER 1 ■ GETTING STARTED

9

 Congratulations! You’ve just created and started a virtual machine with Vagrant. Now
that you’ve done this, you’ll be able to follow along with me throughout the rest of the
book. As you don’t need this virtual machine quite yet, let’s destroy it by running vagrant
destroy :

 $ vagrant destroy
 default: Are you sure you want to destroy the 'default' VM? [y/N] y
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 ==> default: Removing hosts

 Once you run vagrant destroy , that machine is totally gone. Any changes that you
made to it have been lost, and the next time you run vagrant up , it will copy the base box
again so that you have a clean start.

 We need to make a change to the Vagrantfile that was generated, as by default
it creates virtual machines with 489mb of memory. For the software we need to run
successfully, the machine needs 1024mb of memory.

 Open the Vagrantfile in your editor and add the following to the end of the file, just
before the word end.

 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 end

 This tells Vagrant that it needs to create a virtual machine with 1024mb of memory.
 We also need to tell Vagrant that we want to run Ansible on this virtual machine by

adding some instructions to the Vagrantfile, just after the configuration you just added.
Right at the bottom and before the word end, add the following contents to the file:

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "provisioning/playbook.yml"
 end

 This tells Vagrant to use Ansible to run the playbook named playbook.yml inside a
folder named provisioning in the current directory.

 If you do not have Ansible installed on your machine (for example, because you’re
on Windows), you need to use the following configuration:

 config.vm.provision "ansible_local" do |ansible|
 ansible.playbook = "provisioning/playbook.yml"
 end

 The only difference between these two pieces of configuration is that one uses
 ansible and the other uses ansible_local . Using ansible will run Ansible (which we
installed earlier) on your local machine, while using ansible_local will log in to the
virtual machine and run it there instead. You don’t need to worry about installing it on
the virtual machine, as Vagrant will take care of the installation and configuration for you.

CHAPTER 1 ■ GETTING STARTED

10

 If you try to run vagrant up now, you’ll get an error, because that file doesn’t exist:

 $ vagrant up
 Bringing machine 'default' up with 'virtualbox' provider...
 There are errors in the configuration of this machine. Please fix
 the following errors and try again:

 ansible provisioner:
 * `playbook` for the Ansible provisioner does not exist on the host system:
/Users/michael/ansible-book/provisioning/playbook.yml

 Let’s create the files that we need in order to enable Vagrant to create a machine
without getting an error. To do this, create a folder named provisioning and a file inside
it named playbook.yml . Once those are created, you should be able to run vagrant
provision and have it attempt to create a virtual machine. Sadly, this will fail, as your
playbook is not a valid YAML file:

 ERROR! playbooks must be a list of plays
 Ansible failed to complete successfully. Any error output should be
 visible above. Please fix these errors and try again.

 This is a good sign, though. It means that Vagrant is trying to run Ansible on your
virtual machine, and it is failing to read the playbook, as it does not contain any plays
to run against your machine. You’re likely to encounter similar errors in the future, as
Ansible is quite picky when it comes to how its playbook files are formatted. We’ll take a
look at what this error message means and how to fix it in the next section.

 An Introduction to Playbooks
 Ansible playbooks are just YAML files that use special terminology to inform Ansible
about what it should do. Ansible expects to work its way through a list of commands and
arguments, as well as any configuration details that may be required. Tasks can be run
synchronously or asynchronously, depending on what’s required by the playbook. All of
this is defined using a very small piece of syntax that is easy to read by both humans and
computers. You’ll be introduced to the format very soon, and I’m sure you’ll be blown
away by how easy it is to work with!

 Playbooks more closely resemble a model of a system than they do a programming
language or script. With a few exceptions (which we’ll cover later), you define your
desired state on a system and let Ansible ensure that your machines are currently in
that state. For example, you can write a playbook that ensures that PHP is installed on
the target machine. If it isn’t installed, Ansible will install it for you using the package
manager that you tell it to use. If it does exist, Ansible will detect that and will not run any
commands. Let’s write that playbook now.

CHAPTER 1 ■ GETTING STARTED

11

 Your First Playbook

 ■ Note Playbooks are written as YAML files. YAML stands for YAML Ain’t Markup
Language, and it is in the same family of markup languages as JSON and XML. If you’re new
to YAML, see Appendix B for a brief introduction to the language.

 As mentioned previously, an Ansible playbook is just a specially-formatted YAML
file. It’s not a custom language that you have to learn (as is the case with Puppet) or
executable code (like with Chef)—it’s just plain old YAML.

 YAML files start by defining any additional metadata that needs to be attached to a
file (commonly known as front matter). As we have no metadata to add, we can simply
indicate that there is none available for this file by adding three dashes on their own line.
In our playbook, this will be the first line.

 As playbooks are just YAML files, they need to follow all of the same rules as a standard
YAML file does. For the most part, you’ll probably get tripped up by the fact that YAML
files are whitespace sensitive, meaning that tabs and spaces in your files actually mean
something. If you’ve ever written any Python code, then this shouldn’t be new to you.

 Once you’ve closed your front matter, the first thing that you need to do is to tell
Ansible where this playbook should run. You do this by specifying a host group on which
to run. We’ll cover more advanced usage of host groups later, but for now we’ll tell Ansible
to run on all available hosts by adding - hosts: all to our file on a new line. Your
playbook (located at provisioning/playbook.yml) should now look like this:

 - hosts: all

 Now that Ansible knows where to run, you can tell it what you want it to run. This is
done by adding a section named tasks . Inside tasks , you are going to tell Ansible to just
ping your machines to make sure that you can connect to them:

 - hosts: all
 tasks:
 - ping:

 You can now run Ansible on the machine by executing vagrant provision . You
should see output that looks like the following:

 $ vagrant provision
 ==> default: Running provisioner: ansible...

 PLAY [all]
**

CHAPTER 1 ■ GETTING STARTED

12

 GATHERING FACTS

 ok: [default]

 TASK: [ping]

 ok: [default]

 PLAY RECAP
**
 default : ok=2 changed=0 unreachable=0 failed=0

 ■ Note If your output doesn’t look like this, but instead shows a picture of a cow (yes, a
cow). It’s because you have the cowsay utility installed. To disable this utility, you can edit
 /etc/ansible/ansible.cfg and make sure that you have disabled this behavior by setting
 nocows=1 .

 The block that says TASK : [ping] lets you know that your action was executed
successfully. This shows that Ansible can connect to your host and talk to it. While this
playbook execution is quite small, it’s easy to follow what’s happening. As the playbook
increases in complexity, you can imagine that things will get more and more complicated,
and thus harder to follow. Thankfully, Ansible lets you add a name to each task to explain
its purpose. Let’s do that to our ping action now:

 - hosts: all
 tasks:
 - name: Make sure that we can connect to the machine
 ping:

 This time when Ansible runs, it will no longer say TASK: [ping] . Instead, it will
show the name that you provided:

 TASK: [Make sure that we can connect to the machine]

 ok: [default]

 Great! You can connect to your machines. Now what? You could connect to them
by running vagrant ssh too, but once you’re on there you’ll find yourself on an empty
machine with not much to do. Let’s add some more instructions that tell your virtual
machine to install some packages.

CHAPTER 1 ■ GETTING STARTED

13

 Together, we’re going to be installing some open-source software that’s developed in
 PHP . Let’s add PHP by adding another entry to the playbook.yml file so that it looks like
the following:

 - hosts: all
 tasks:
 - name: Make sure that we can connect to the machine
 ping:
 - name: Install PHP
 apt: name=php5-cli state=present update_cache=yes

 Previously, you used the ping module to connect to your machine. This time, you’ll
be using the apt module. The module to be used is specified before the colon, while any
arguments are specified afterward. The ping module has no arguments, while the apt
module has lots of them. You can find a list of all of the apt module’s arguments in the
Ansible documentation (http://docs.ansible.com/ansible/apt_module.html), but
we’re only going to be using two of them: name and state .

 Here, by using the apt module, we indicate that we want the package with the name
 php5-cli to be present. State can be any number of values, including latest, present, and
absent.

 If you run vagrant provision again, it should attempt to install the php5 package.
Unfortunately, it will fail, giving a message such as the following:

 TASK: [Install PHP]

 failed: [default] => {"failed": true}
 stderr: E: Could not open lock file /var/lib/dpkg/lock - open
(13: Permission denied)
 E: Unable to lock the administration directory (/var/lib/dpkg/), are you
root?

 It fails because, by default, Ansible will log in as the Vagrant user, which does not
have permission to install packages. This is where the become option (that controls which
user commands are run as) comes in handy. become can be added in two different places
in your playbook. It can be added next to the task that requires more permissions, or it
can be added on a per-playbook level, meaning that every command will be run with
 administrator permissions .

 If you wanted to add it to this specific action, you would add it like so:

 - name: Install PHP
 apt: name=php5-cli state=present update_cache=yes
 become: true

http://docs.ansible.com/ansible/apt_module.html

CHAPTER 1 ■ GETTING STARTED

14

 Instead, though, you will add it to your playbook, as you are going to be running
several commands that require sudo permissions. After adding it, your playbook will look
like this:

 - hosts: all
 become: true
 tasks:
 - name: Make sure that we can connect to the machine
 ping:
 - name: Install PHP
 apt: name=php5-cli state=present update_cache=yes

 Once you’ve saved this change and run vagrant provision again, Ansible should
tell you that PHP was installed successfully:

 TASK: [Install PHP]

 changed: [default]

 You can add more steps to install nginx and mySQL by adding more calls to the apt
module saying that you expect nginx and mysql-server-5.6 to be present.

 - hosts: all
 become: true
 tasks:
 - name: Make sure that we can connect to the machine
 ping:
 - name: Install PHP
 apt: name=php5-cli state=present update_cache=yes
 - name: Install nginx
 apt: name=nginx state=present
 - name: Install mySQL
 apt: name=mysql-server-5.6 state=present

 As with the php5-cli package, this should show up in your Ansible output when you
run vagrant provision again:

 TASK: [Install nginx]

 changed: [default]

 TASK: [Install mySQL]

 changed: [default]

CHAPTER 1 ■ GETTING STARTED

15

 At this point, you can log in to your virtual machine to make sure that everything
is installed as you would expect it to be. To do this, you run vagrant ssh to log in to
the system. Then, you can run a few commands to check whether certain programs are
installed:

 vagrant@vagrant-ubuntu-trusty-64:~$ which php
 /usr/bin/php
 vagrant@vagrant-ubuntu-trusty-64:~$ which nginx
 /usr/sbin/nginx
 vagrant@vagrant-ubuntu-trusty-64:~$ which mysqld
 /usr/sbin/mysqld

 Now, no matter how many times you destroy and recreate your virtual machine, those
packages will be installed automatically during the creation phase of the machine. If you
want, you can give it a try now by running vagrant destroy followed by vagrant up .

 Congratulations! You just put together your first playbook. It installs all of the
packages that you need, and it’s idempotent (more on that in the next section). All that
remains to do now is to clean it up a little bit by removing some tasks that aren’t required
and by removing duplication.

 The first thing to do is to delete the ping task. As you know that you can connect to
your machine, you do not need to perform the same action every time that you connect
to a machine. Following that, you can combine all of the calls to the apt module into one
using a construct named with_items .

 A brief explanation of how this works is that you provide a list of items inside a key
named with_items . Ansible will then call your task once for each item in the list. The
value of each item is available via the special {{item}} notation. Once you’ve made these
changes, your playbook should look like this:

 - hosts: all
 become: true
 tasks:
 - name: Install required packages
 apt: name={{item}} state=present update_cache=yes
 with_items:
 - php5-cli
 - nginx
 - mysql-server-5.6

 If you run vagrant provision again, it should collapse all output for that one task
into one block, leaving you with a much smaller amount of output.

 $ vagrant provision
 ==> default: Running provisioner: ansible...

 PLAY [all]
**

CHAPTER 1 ■ GETTING STARTED

16

 GATHERING FACTS

 ok: [default]

 TASK: [Install required packages]

 ok: [default] => (item=php5-cli,nginx,mysql-server-5.6)

 PLAY RECAP
**
 default : ok=2 changed=0 unreachable=0 failed=0

 At this point, you have a machine that has all of the dependencies that you need
installed on it, and you can run the playbook multiple times without worrying about side
effects.

 Playbooks and Idempotency
 Idempotent is a fancy word that means that you can do something multiple times and the
outcome will be the same. In Ansible terms, a playbook is considered idempotent if you
can run it multiple times and after the first run the machine is in a certain state, which
doesn’t change if you run the same playbook again at any point in time after that.

 Take the playbook that you just wrote, for example. The first time that you ran it, it
evaluated your playbook and applied the necessary transformations to ensure that PHP,
nginx, and MySQL were installed. You can see that in the Ansible output it says that things
were changed:

 PLAY [all]
**

 GATHERING FACTS

 ok: [default]

 TASK: [Install required packages]

 changed: [default] => (item=php5-cli,nginx,mysql-server-5.6)

 PLAY RECAP
**
 default : ok=2 changed=1 unreachable=0 failed=0

CHAPTER 1 ■ GETTING STARTED

17

 If you run this playbook again, instead of saying changed , it says ok . This is because
the apt module checks to see if a package is installed before attempting to install it. As the
packages are already installed, it won’t make any changes. This playbook is idempotent:

 PLAY [all]
**

 GATHERING FACTS

 ok: [default]

 TASK: [Install required packages]

 ok: [default] => (item=php5-cli,nginx,mysql-server-5.6)

 PLAY RECAP
**
 default : ok=2 changed=0 unreachable=0 failed=0

 Most of Ansible’s modules are idempotent, but if you resort to running commands
yourself using the command or shell modules, they will execute every time you run your
playbook. You can add conditions to tasks to tell them when to trigger, making your
custom commands idempotent too, but we’ll cover that later on in Chapter 6 .

 Summary
 Congratulations! You just installed Ansible and wrote your first playbook. That wasn’t too
painful, was it? Ansible is a very lightweight configuration management tool that uses
YAML files to define the state of a system.

 Playbooks consist of tasks, which are entries that designate a single action. These
tasks can be grouped together into roles, which can in turn be grouped into plays. The
goal of a play is to take a set of roles and apply them to a specific set of machines. These
roles will run multiple tasks, ensuring that the state of each machine is how you expect it
to be. We’ll be covering roles in Chapter 4 .

 The Ansible documentation for playbooks is excellent, and it should always be your first
point of reference for playbook syntax (http://docs.ansible.com/ansible/index.html).

 If you want to jump straight in and see some sample playbooks, there are lots of them
available in the ansible-examples repository on Github (https://github.com/ansible/
ansible-examples). Don’t worry if you don’t understand it all, as we’ll be building a more
complex playbook together, piece by piece, in Chapter 3 .

 You’ve used Vagrant and VirtualBox to create a test environment, and provisioned it
using vagrant provision , but by using the ansible-playbook command (covered in the
next chapter), you can run your playbook against any machine that has a running SSH
server. In the next chapter, we’ll be taking a deeper look at the inventory , a file that tells
Ansible where to run, which user to log in as, and more.

http://dx.doi.org/10.1007/978-1-4842-1659-0_6
http://dx.doi.org/10.1007/978-1-4842-1659-0_4
http://docs.ansible.com/ansible/index.html
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
http://dx.doi.org/10.1007/978-1-4842-1659-0_3

19© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_2

 CHAPTER 2

 The Inventory File

 In Chapter 1 , you put together a simple playbook and ran it against your Vagrant machine
using the vagrant provision command. You can run that same playbook against any
machine that also has a running SSH server by using the ansible-playbook command.
First, however, you need an inventory file .

 In this chapter, we’ll take a look at what an inventory file is, how to run ansible-
playbook without Vagrant, and how to leverage the inventory file when you have a
complex inventory of machines with which you need to interact.

 What’s an Inventory?
 In configuration management, the tool that you’re using needs to know which machines
it should run on. This is known as an inventory . Without an inventory, you would have
a set of playbooks that define your desired system state, but you wouldn’t know which
machines you needed to run them against.

 With Puppet and Chef, this information is stored on a central server. As there is no
central server in Ansible, we will need another way to get all of this information to the
code that runs to enforce the desired state. This is where the inventory file comes in.

 By default, Ansible will read /etc/ansible/hosts as its default inventory file. Using
this file is not recommended, though. You should maintain a different inventory file
for each project that you have and pass it to both the ansible and ansible-playbook
commands using the –i option. Here is an example of passing a custom inventory file to
 ansible before running the ping module :

 ansible all –i /path/to/inventory –m ping

 The inventory file in Ansible can be either an INI file or a JSON file . Most examples
that you’ll find will use an INI file, while JSON files are only used when the inventory is
dynamically generated (covered shortly). Using the INI format means that inventory files
are generally very simple. They can be as simple as a list of host names to run against.

 The following is an example of a simple inventory file:

 host1.example.com
 host2.example.com
 host3.example.com
 192.168.9.29

http://dx.doi.org/10.1007/978-1-4842-1659-0_1

CHAPTER 2 ■ THE INVENTORY FILE

20

 In this example, we define a list of hosts to run against. Ansible will run against each
of them in turn, starting with host1.example.com and ending with 192.168.9.29 . This is
the simplest kind of inventory file that you can have. There is no additional information
for any of the hosts; it is simply a list of hosts to run Ansible against.

 If you run SSHD on a non-standard port, you can specify this in your inventory file as
well. To do this, add a colon followed by the port number to the end of your hostname, as
follows:

 host1.example.com:50822

 If you are working with a large number of servers that share a common naming
scheme, Ansible may be able to help. Ansible supports ranges in the inventory file, so
instead of listing out every host by hand, you can use its range expansion functionality to
do it automatically, as shown here:

 host[1:3].example.com

 This is functionally equivalent to the following:

 host1.example.com
 host2.example.com
 host3.example.com

 Range expansion also supports leading zeros ([01:03]) and alphabetic ranges
([a:z]). Unfortunately, only the range a:z is supported; that is, you can’t specify a range
such as [aa:dz] , as Ansible does not know how to cope with this. If you need to define a
range like this, you need to use two ranges :

 host[a:d][a:z].example.com

 If you’re familiar with Python’s slice syntax, this may look familiar to you. As with
slice, you can specify an optional third parameter step :

 host[min:max:step].example.com

 Step allows you to specify the increment between each host. There aren’t many use
cases for this, but the inventory file supports it nonetheless:

 host[1:6:2].example.com

 is equivalent to:

 host1.example.com
 host3.example.com
 host5.example.com

CHAPTER 2 ■ THE INVENTORY FILE

21

 For some use cases, a simple list of host names to connect to will not be enough. The
machines to which you’re connecting may have different users enabled and may not use
your default SSH key. Fortunately, Ansible has a way for you to tell it which configuration
options to pass to SSH when it is trying to establish a connection. Let’s write an inventory
file now that connects to your running Vagrant machine explicitly. To do this, you’ll need
to provide an IP address, a custom username to use, and some authentication details.

 Running Without Vagrant
 So far, you’ve used vagrant provision to run Ansible. vagrant provision is just a
wrapper that runs the correct command depending on the provisioner that you are using.
In our case, it’s running the ansible-playbook command to apply our playbook to the
running Vagrant instance. If you were using Puppet or Chef, it would run the correct
commands for those tools instead.

 You can’t rely on Vagrant to run Ansible for you all of the time. You might be working
in an environment where you’re presented with a machine that has SSH running and
nothing else. You need to be able to run Ansible against these machines without the help
of Vagrant.

 To test running Ansible by hand, you’ll need to edit your vagrantfile and enable
private networking so that you can SSH into the machine. This is done by opening up the
 vagrantfile in your editor and uncommenting line 29 (config.vm.network "private_
network"). Save this file, then run vagrant halt && vagrant up to restart your machine
and enable this network. This ensures that the machine created will have an IP address
that you can use to connect. Once it has an IP address, you can pretend that it is not a
Vagrant-managed machine, but rather another computer accessible via the network
against which you need to run Ansible. This could be a machine that lives under your
desk, or a machine that lives somewhere in the cloud. To Ansible, it’s just a machine that
you can access.

 ansible-playbook supports lots of different parameters, but you only need to specify
a few to run Ansible. You need to tell ansible-playbook which servers you want to run on
via the inventory file, and which playbook to run:

 ansible-playbook –i <inventory_file> provisioning/playbook.yml

 Here’s a sample inventory file you can use to test running Ansible by hand. It
contains the IP address of the machine to connect to, which user to log in as, and the
path to a private key file to use. The private key is like a password, but it contains a private
cryptographic signature that is used to verify your identity:

 192.168.33.10 ansible_user=vagrant ansible_ssh_private_key_file=.vagrant/
machines/default/virtualbox/private_key

 Save this as inventory (this should all be on a single line), and then run the following
command. You should see the same output that you saw after running vagrant provision:

 ansible-playbook –i inventory provisioning/playbook. yml

CHAPTER 2 ■ THE INVENTORY FILE

22

 Configuration Options in the Inventory
 When you were running Ansible against your Vagrant instance, you had to set ansible_
user and ansible_ssh_private_key_file so that the correct credentials were used.

 The first set of options listed in Table 2-1 are related to the SSH connection that
Ansible uses to push commands to remote servers. For most servers, you will only need to
set ansible_user and ansible_ssh_private_key_file .

 Table 2-1. Common Inventory Configuration Options

 Configuration Option Explanation

 ansible_host This allows you to use a different name for a host
in the inventory file and in your playbooks than
its actual hostname. This can be useful when you
want to name a machine but its IP address can
change. For example, in your inventory file:

 alpha ansible_host=192.168.33.10

 You will be able to refer to the machine alpha
everywhere, but Ansible will connect to the IP
address 192.168.33.10 when trying to reach it.

 ansible_user The user to log in as to the remote machine via SSH.

 ansible_user=Michael

 would be the same as:

 ssh michael@host1.example.com

 ansible_port The port on which your SSH server is listening.
This is an alias for hostname:port .

 ansible_port=50822

 would be the same as:

 ssh host1.example.com –p 50822

 ansible_ssh_private_key_file The SSH key file used to log in.
 ansible_ssh_private_key_file=/path/to/id_rsa

 would be the same as

 ssh –i /path/to/id_rsa

 ansible_ssh_pass If the user you’re connecting to a machine as
requires a password, you can specify it in the
inventory file with ansible_ssh_pass .
 Note : This is highly insecure, and you should use
SSH key authentication or use the --ask-pass flag
on the command line to provide the password at
run time.

(continued)

CHAPTER 2 ■ THE INVENTORY FILE

23

 Here’s an example inventory file that uses some of these options:

 alpha.example.com ansible_user=bob ansible_port=50022
 bravo.example.com ansible_user=mary ansible_ssh_private_key_file=/path/to/
mary.key
 frontend.example.com ansible_port=50022
 yellow.example.com ansible_host=192.168.33.10

 This sets an alternative port for alpha and frontend and different usernames with
which to log in for alpha and bravo , specifies the key file for bravo , and says that yellow.
example.com is actually just the IP address 192.168.33.10. That’s a lot of additional
information for such a small inventory file! It doesn’t stop there, though. There are even
more options available to you.

Table 2-1. (continued)

 Configuration Option Explanation

 ansible_ssh_common_args Any additional arguments to provide to any calls
to SSH, SFTP, or SCP commands.

 ansible_ssh_common_args='-o
ForwardAgent=yes'

 would be the same as:

 ssh –o ForwardAgent=yes host1.example.com

 ansible_ssh_extra_args This is the same as ansible_ssh_common_args ,
but the arguments specified are only used when
Ansible runs an SSH command

 ansible_sftp_extra_args This is the same as ansible_ssh_common_args ,
but the arguments specified are only used when
Ansible runs an SFTP command

 ansible_scp_extra_args This is the same as ansible_ssh_common_args ,
but the arguments specified are only used when
Ansible runs an SCP command

CHAPTER 2 ■ THE INVENTORY FILE

24

 Table 2-2 lists privilege-escalation options. We’ll cover privilege escalation a little
later on when you’ll need to write some files to a location to which only the admin user
has access (see Chapter 3), but these are the relevant settings that you can use in your
 inventory file .

 These privilege-escalation options can be set in the inventory file, but they won’t
actually be used unless you set become: true in your playbooks.

 Given the following inventory file, alpha and bravo will both use the automation
user when become: true is set in a playbook. frontend will use the ansible user , and
 yellow will use root , which is the default:

 alpha.example.com ansible_become_user=automation
 bravo.example.com ansible_become_user=automation
 frontend.example.com ansible_become_user=ansible
 yellow.example. com

 It is important to note that this is not the user that was used to log in to the machine.
(We use ansible_user for that.) It is the user that you will change to when using become:
true . You need to make sure that whichever user you change to has the permissions to
perform the task you’re telling them to do.

 Inventory Variable Registration
 In addition to setting the special Ansible variables in the inventory, such as ansible_user
and ansible_become_user , you can set any variables that you may want to use later in
a playbook or template. However, adding variables to the inventory file is generally not

 Table 2-2. Inventory Options Related to Privilege Escalation

 Configuration Option Explanation

 ansible_become_method The method to use to gain superuser
privileges. Defaults to sudo , but it can
be any of the following: sudo , su , pbrun ,
 pfexec , or doas . Tools such as pbrun are
commercial security tools, which will not
apply most of the time. sudo is the best
choice for most people.

 ansible_become_user By default, become will elevate you to the
root level. If you have another user who
has the correct permissions to complete
the tasks that you’re running and want to
use that instead, you can use ansible_
become_user . This is equivalent to running
commands with the sudo –u myuser
command .

http://dx.doi.org/10.1007/978-1-4842-1659-0_3

CHAPTER 2 ■ THE INVENTORY FILE

25

the correct solution. There are several other places where you can define variables in
a playbook, most of which are a better fit for this information. If you find that you are
adding variables to an inventory file, think about whether this information really should
be in the inventory. Is it a default value? Is it something related to a specific class of
servers or a specific application? Chances are that there’s a better place for it to live. You
will learn more about the different options for variable placement in Chapter 5 .

 If you decide that the inventory file is the correct place to add your variable, it’s very
easy to do. For example, if you want a variable named vhost to be accessible in your
playbooks, you could define a host as follows:

 host1.example.com vhost=staging.example.com

 This can be useful in certain situations, such as when you run your staging and
production websites from the same host and need to differentiate which one you’re
working with via the inventory file. Imagine that you perform database changes as part of
your playbook, but you don’t want to impact the live deployment when testing on staging.
You can use the following inventory files to specify explicitly which database you want to
work with:

 $ cat staging-inventory
 alpha.example.com database_name=staging_db

 $ cat production-inventory
 alpha.example.com database_name=prod

 Here, the variable database_name will be available in your playbook so that you can
perform any actions that you need to on the correct database. All you need to do is to
provide the correct inventory file when you run Ansible. For example:

 ansible-playbook –i production-inventory playbook. yml

 Inventory Groups
 So far, we’ve worked with a simple list of hosts against which we will run Ansible. This
doesn’t match up to the real world, however, where we have web servers, databases, load
balancers, and more as targets. Being able to group these servers together and target
them as a single entity is important. Ansible supports this use case through the use of
 inventory groups .

 As your inventory files are in the INI file format, you can use the normal INI section-
heading syntax to define a group of servers, as follows:

 [web]
 host1.example.com
 host2.example.com

 [database]
 db.example.com

http://dx.doi.org/10.1007/978-1-4842-1659-0_5

CHAPTER 2 ■ THE INVENTORY FILE

26

 In this inventory file, we have two hosts denoted as web servers and one as a
database server. Square brackets are used as section markers in the INI format, so the
group name is set to whatever appears in the square brackets.

 When we run Ansible, we specify on which host groups our command should run. So
far, we’ve used the special group all to say “run on all hosts listed.” We could say web or
 database to instruct Ansible to run only on that group of servers. The following command
will run the ping module on the web group only:

 ansible web –i /path/to/inventory –m ping

 You can also set this up in a playbook by changing the hosts: value at the top of your
YAML file, as follows:

 - hosts: web
 tasks:
 - ping:

 Just as you can set variables for specific hosts, you can set variables for groups of
hosts as well. To do this, use a special header in your inventory file:

 [web:vars]
 apache_version=2.4
 engage_flibbit=true

 These variables will be available in the Ansible run for any hosts in the web group.
 You can even create groups of groups! Imagine that you have a set of servers in

production that are a mixture of CentOS 5 and CentOS 6 machines. Perhaps your
inventory file would look like the following:

 [web_centos5]
 host1.example.com
 host2.example.com

 [web_centos6]
 shinynewthing.example.com

 [database_centos5]
 database.example.com

 [reporting_centos6]
 reporting.example.com

 If you wanted to run something on just the CentOS 5 servers, you’d usually have
to specify both web_centos5 and database_centos5 . Instead, you can create a group of
groups using the :children suffix in your group name:

CHAPTER 2 ■ THE INVENTORY FILE

27

 [centos5:children]
 web_centos5
 database_centos5

 [centos6:children]
 web_centos6
 reporting_centos6

 Now, you just have to target centos5 hosts if you only want to run a command on
the CentOS 5 servers. Moreover, you can set variables for this new group as well. It’s just a
group, after all:

 [centos5:vars]
 apache_version=2.2

 [centos6:vars]
 apache_version=2.4

 Groups are very powerful and will be quite useful later on once we start defining
variables outside of our inventory file.

 An Example Inventory
 It’s time to recap some of the things you’ve learned so far in this chapter. Here’s an inventory
file for a fictional deployment containing a web server, a database, and a load balancer.
The environment was created over a period of time, which means that there are various
operating systems involved with different users and methods of accessing the machines :

 [web_centos5]
 fe1.example.com ansible_user=michael ansible_ssh_private_key_file=michael.
key
 fe2.example.com ansible_user=michael ansible_ssh_private_key_file=michael.
key

 [web_centos6]
 web[1:3].example.com ansible_user=automation ansible_port=50022 ansible_ssh_
private_key_file=/path/to/auto.key

 [database_centos6]
 db.example.com ansible_user=michael ansible_ssh_private_key_file=/path/to/
db.key

 [loadbalancer_centos6]
 lb.example.com ansible_user=automation ansible_port=50022 ansible_ssh_
private_key_file=/path/to/lb.key

CHAPTER 2 ■ THE INVENTORY FILE

28

 [web:children]
 web_centos5
 web_centos6

 [database:children]
 database_centos6

 [loadbalancer:children]
 loadbalancer_centos6

 The oldest machines are running CentOS 5, and they use my personal account as the
Ansible login. Newer machines have dedicated automation users with their own private
keys. The database machine uses my personal account, but it has a different SSH key.
Finally, the load balancer uses an automation user, but it doesn’t use the automation
key—it has its own special load balancer key .

 Finally, you group them all together. You want to be able to target web servers or
database servers as a group, no matter whether they’re CentOS 5 or CentOS 6. Although
the database group only has one child group in it for now, you may add CentOS 7 servers
in the future. Having a group ready to use will save you lots of time.

 Just by looking at this inventory file, you can see that there are seven machines in this
deployment (fe1 , fe2 , web1 , web2 , web3 , db , and lb). You know which user Ansible will
log in as and which key it will use to do so. You even know which port the SSH daemon is
running on.

 A well-written inventory file isn’t just something for Ansible to use; it’s documentation
about your deployment for new employees, contractors, and even for yourself when you
need to refer back to it.

 Dynamic Inventories
 When you have one or two servers to manage, maintaining an inventory file by hand
isn’t too much effort. What happens when you have to manage 100 servers? What about
1,000? While maintaining a list by hand is still possible with a huge (20,000+) number
of servers, at that point it can become quite error prone. Once you get to this number
of servers, you’re typically less likely to depend on a static text file for tracking your
inventory; instead, you will likely opt for something that has a little more structure, such
as a spreadsheet or a database. Wouldn’t it be great to use these tools as the source of
your inventory data?

 Ansible supports the concept of a dynamic inventory , which is a JSON file that
contains all of the data required about your machines. JSON is not as human-friendly as
the INI file format. It’s designed primarily to be read by machines. Ansible itself has some
opinions when it comes to this too, and it performs some checks when accessing the
inventory file that you provide. When you call Ansible, it will check to determine if the file
passed in as the inventory file is executable. If it is, the file will be executed, and Ansible
will switch to using its JSON parser to read the incoming data. If it’s not executable, it will
be read by Ansible with the assumption that it’s in the INI file format, and it will fail to be
parsed if it is a static JSON file.

CHAPTER 2 ■ THE INVENTORY FILE

29

 Using an executable allows you to read inventory data about your machines from
anywhere you can read data from. This could be sourced from anywhere: a remote API, a
local database, a set of files that you parse and collate—anything that you need in order to
populate a list of servers to run against.

 Ansible expects a specific JSON format to be returned by any executable that is used
to provide a machine inventory. It looks like the following:

 {"my_script": ["dev2", "dev"], "_meta": {"hostvars": {"dev2": {"ansible_
host": "dev2.example.com", "ansible_user": "ansible"}, "dev": {"ansible_
host": "dev.example.com", "ansible_port": "50022", "ansible_user":
"automation"}}}}

 The first key is the name of your script, and the value is the name of the host to be
used in the inventory file. Then, for each name there’s some metadata that contains the
SSH host to use, which user to log in as, and which SSH port to use.

 Imagine that you have a database listing all of your machines, and you want to
use that database as your inventory file. Your executable might look like the following
pseudo-code:

 machines = fetch_rows("SELECT hostname, user, key, port FROM active_
machines")
 hostnames = machines.map (m) => return m.hostname
 metadata = {
 'hostvars' => {}
 }
 foreach (machines as m) {
 metadata.hostvars[m.hostname] = {
 ansible_user => m.user,
 ansible_port => m.port,
 ansible_ssh_private_key_file => m.key
 }
 }
 output_json({
 'my_script' => hostnames,
 '_meta' => metadata
 })

 fetch_rows reads information from the database, then the rest of the script formats
the information into the structure that Ansible is expecting. Though this example reads
from a single location, you could read from multiple locations and combine the data in
your executable if you need to.

 There are lots of pre-built dynamic inventory solutions available for Ansible. The
documentation site itself has a great page listing the available options (http://docs.
ansible.com/ansible/intro_dynamic_inventory.html). If your hosts are in Amazon’s
AWS cloud, you might opt to use a dynamic inventory due to the cloud’s dynamic scaling

http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html

CHAPTER 2 ■ THE INVENTORY FILE

30

capabilities. Although a dynamic inventory does not necessarily have to be dynamic
(for example, if you maintain a database yourself), it is really helpful when you’re using
something like Amazon EC2 to create machines on demand. All that you need to do is to
create the machine and make sure that it has the correct tags, and the next time that you
run Ansible, it will be provisioned just like everything else.

 If you don’t use AWS but you do use OpenStack, use the dynamic inventory script for
OpenStack instead! There are over thirty dynamic inventory scripts available on Github
at https://github.com/ansible/ansible/tree/devel/contrib/inventory . Find one
that works for you and use it. If there isn’t one that works for you, write your own. You
already have all of the information that you need, and Ansible lets you reuse it rather than
duplicating the information in a static inventory file.

 Multiple Inventories
 Finally, what happens if you have a combination of physical hardware and cloud servers
in your infrastructure? You can’t source from cloud-based APIs exclusively, as they don’t
know about your physical machines, and you can’t possibly keep track of all of the cloud
servers by hand. Luckily, Ansible has a solution for that too.

 If the inventory path you pass to Ansible is a directory, Ansible will read every file in
that directory as an inventory and merge them together. This lets you have both a static
inventory file that you manage by hand as well as something like ec2.py that generates
an Amazon EC2 inventory dynamically. If your inventory is large, you could even have
multiple INI files broken down by datacenter or by role (or any arbitrary split that you can
think of), as well as a few executables that run to talk to multiple cloud providers. By the
time the data is collated by Ansible, it will treat it as one large inventory.

 Summary
 There’s much benefit to be derived from the Ansible inventory file. Not only can you
customize how you connect to machines, but you can also add them to groups (and
create groups of groups!) as well as set variables at a host or group level. You can also
generate an inventory dynamically using any executable application that returns JSON in
the format that Ansible is expecting.

 In the next chapter, we’re going to be writing a slightly more complicated playbook.
We’ll be taking the widely used open-source project WordPress and provisioning a server
with all of the required dependencies before deploying a WordPress installation that you
can log in to and blog about your journey throughout this book.

https://github.com/ansible/ansible/tree/devel/contrib/inventory

31© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_3

 CHAPTER 3

 Installing WordPress

 Now that you’re familiar with setting up an environment in which to develop your
Ansible playbooks, we’re going to put together a playbook that downloads and configures
 WordPress , a popular open-source blogging application.

 Installing WordPress
 WordPress (http://wordpress.org/) is a popular open-source tool that is developed in
PHP with a MySQL database as its data store. To deploy a working instance of WordPress,
you need a PHP version that is newer than PHP 5.2, a web server, and a MySQL install.

 In this chapter, we’ll install all of the required dependencies, fetch the WordPress
source files from their release page, and automatically install a new instance.

 Environment Configuration
 Before we get started, we need an environment in which to build this playbook. As we did
previously, we’ll be using Vagrant for this job. To do this, we’ll create a new Vagrant machine
so that we’re starting with a clean slate. Run the following commands in your terminal:

 mkdir ansible-wordpress
 cd ansible-wordpress
 vagrant init ubuntu/trusty64

 We’ll need to enable networking as we did last time, except that we’ll be using a
different IP address, just in case you want to run the environment that we set up last time
and this new environment simultaneously. In addition to setting up networking, we’ll
also need to allocate slightly more memory to the virtual machine, as MySQL Server 5.6
won’t start up with the 480 MB that Vagrant allocated by default. Once you’ve made these
changes, your vagrantfile should look like this:

 Vagrant.configure(2) do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.network "private_network", ip: "192.168.33.20"

http://wordpress.org/

CHAPTER 3 ■ INSTALLING WORDPRESS

32

 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 end
 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "provisioning/playbook.yml"
 end
 end

 This will create an empty machine with an IP address of 192.168.33.20 and 1 GB of
memory allocated when you run vagrant up , which is more than enough to get WordPress
installed and configured. Run vagrant up now to create your machine.

 Installing Dependencies
 To run WordPress, you will need three pieces of software: PHP, nginx, and MySQL. As in
Chapter 1 , you start by creating a simple playbook that shows that Ansible can run against
your Vagrant machine:

 mkdir provisioning
 touch provisioning/playbook.yml

 In provisioning/playbook.yml , we specify on which hosts the playbook should run
as well as a set of tasks to run. You start with your standard playbook, which proves that
you can talk to the environment on which you are testing. Once you’ve created it, run
 vagrant provision to make sure that everything will run as intended:

 - hosts: all
 become: true
 tasks:
 - name: Make sure we can connect
 ping:

 At this point, you should run vagrant up to create your virtual machine and prove
that you can connect to it.

 Installing PHP
 Now that you know Ansible will run, let’s install PHP. WordPress will run on any version of
PHP from 5.2 onward, but you should use the latest version available whenever possible.
At the time of this writing, that’s PHP 7. Unfortunately, PHP 7 is not yet available in the
Ubuntu repositories, as it’s quite new, so you’ll have to install it using a PPA. PPA stands
for Personal Package Archive, a way for individuals to build and distribute software that is
not available in the official repositories.

 Ansible ships with hundreds of built-in modules that provide you with the tools that
you need to complete common tasks. Enabling a repository is something that happens often
enough that Ansible will handle it for you. Using the apt_repository module, you can enable
the PPA just by passing in its name. Add the following to your playbook in the tasks section:

http://dx.doi.org/10.1007/978-1-4842-1659-0_1

CHAPTER 3 ■ INSTALLING WORDPRESS

33

 # PHP
 - name: Add the ondrej PHP PPA
 apt_repository: repo='ppa:ondrej/php'

 Once that’s installed, the next step is to install PHP. As you’ve added a PPA, you’ll
want to update the apt package cache before you try to install anything. You can do this
in the same task as the install, but I prefer to do it on its own so that it’s clear that it’s a
deliberate decision to update the cache rather than a side effect of installing a package:

 - name: Update the apt cache
 apt: update_cache=yes cache_valid_time=3600
 - name: Install PHP
 apt: name=php state=installed

 If you run vagrant provision again after adding these tasks, it should complete
successfully. To make sure that things are working as expected, you can run vagrant ssh
and log in to the machine. Once you’re logged in, run php --version and make sure that
it yields something similar to the following:

 $ php --version
 PHP 7.0.4-1+deb.sury.org~trusty+1 (cli) (NTS)
 Copyright (c) 1997-2016 The PHP Group

 That looks good to me, so let’s continue and install all of the other PHP packages that
you’ll need. Let’s use with_items to make the playbook easier to read.

 - name: Install PHP
 apt: name={{item}} state=installed
 with_items:
 - php
 - php-fpm
 - php-mysql
 - php-xml

 Unfortunately, installing PHP will also install Apache2, a web server that you don’t
want to use. There’s no way around this, but you can remove it as soon as it’s installed by
adding the following task to your playbook:

 - name: Remove apache2
 apt: name=apache2 state=removed

 Installing MySQL
 Once you have PHP installed (and Apache removed), you can move on to the next
dependency, MySQL. Add the following to your playbook:

 # MySQL

CHAPTER 3 ■ INSTALLING WORDPRESS

34

 - name: Install MySQL
 apt: name={{item}} state=installed
 with_items:
 - mysql-server-5.6
 - python-mysqldb

 It’s good to run Ansible regularly when developing a playbook, so you should run
 vagrant provision now to install all of the PHP and MySQL packages. It may take a few
minutes, but it should complete successfully.

 If all you want to do is to install MySQL, this is all that you need to do. However,
Ansible installs MySQL with an empty root password and leaves some of the test
databases accessible to anonymous users. Usually, you would run the mysql_secure_
installation script to tidy up all of these files, but as you’re running in an automated
environment, you’ll have to do the housekeeping yourself.

 Here are the tasks that you’re going to complete with Ansible:

 1. Change the default root password.

 2. Remove anonymous users.

 3. Remove test database and access to it.

 To change the default password, you need to generate a password to use. To do this,
you can use the openssl utility to generate a 15-character password. Add the following to
your playbook:

 - name: Generate new root password
 command: openssl rand -hex 7
 register: mysql_new_root_pass

 Here, we use a feature of Ansible that you haven’t seen before called register . The
 register keyword lets you save the return value of commands as a variable for use later
in a playbook.

 The next thing to do is to remove the anonymous users and test databases. This is
very straightforward, thanks to the mysql_db and mysql_user modules. You need to do
this before you change the root password so that Ansible can make the changes. Again,
you need to add some tasks to your playbook :

 - name: Remove anonymous users
 mysql_user: name="" state=absent

 - name: Remove test database
 mysql_db: name=test state=absent

 The final thing to do is to change the root password and output it to the screen. In
this situation, you’ll take the value previously returned by openssl and pass it to a MySQL
module to set the password. You need to set the password for every host that can access
the database as root. Use the special ansible_hostname variable that evaluates to the
current machine’s hostname and then set the password for the three different formats
used to denote localhost :

CHAPTER 3 ■ INSTALLING WORDPRESS

35

 - name: Update root password
 mysql_user: name=root host={{item}} password={{mysql_new_root_pass.
stdout}}
 with_items:
 - "{{ ansible_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost

 - name: Output new root password
 debug: msg="New root password is {{mysql_new_root_pass.stdout}}"

 In MySQL, you can have a different password for a single user for each place they’re
connecting from. You will use with_items to set the password for every host that you
know about, including ansible_hostname , a variable that is automatically populated
with the current machine’s hostname. To change the password, you use the mysql_user
module and pass in a username, host, and password. In this instance, you will be passing
in the STDOUT (the text that was returned to the terminal) from your openssl call as the
password for the root user.

 You are halfway through the work required to configure MySQL securely! Let’s
quickly recap what you’ve done so far:

 1. Installed MySQL server

 2. Removed anonymous users

 3. Removed the test database

 4. Generated a new root password

 5. Output the new root password to the screen

 This is actually quite a lot of work! At this point, your installation is secure, but
you’re not quite done. Ansible expects to be able to run database commands without a
password, which was fine when you didn’t have a root password, but will fail now that you
do. You need to write out a new config file (located at /root/.my.cnf) containing the new
root password so that the root user can run MySQL commands automatically.

 There are a few different options for writing files using Ansible (such as the copy
and template modules). As this is a multi-line file that contains variables, you’ll need
to use Ansible’s template module to populate its content. First, you need to create a
folder to hold your template and create the file that you are going to copy over. Run these
commands from your terminal (in the same directory as your vagrantfile) to create the
required folders and files:

 mkdir -p provisioning/templates/mysql
 touch provisioning/templates/mysql/my.cnf

 Once you’ve created my.cnf , edit it and make sure that it has the following contents :

 [client]
 user=root
 password={{ mysql_new_root_pass.stdout }}

CHAPTER 3 ■ INSTALLING WORDPRESS

36

 You also need to tell Ansible to copy this template into your environment; this is
done using the template module. Add the following task to your playbook:

 - name: Create my.cnf
 template: src=templates/mysql/my.cnf dest=/root/.my.cnf

 This file will contain the username and password for the root MySQL user. This is
required so as to allow Ansible to make changes without user intervention.

 It’s important to note that each time the playbook runs, a new root password will be
generated for the server. While it’s not a bad thing to rotate root passwords frequently,
this may not be the behavior that you are seeking. To disable this behavior, you can tell
Ansible not to run certain commands if a specific file exists. Ansible has a special creates
option that determines if a file exists before executing a module:

 - name: Generate new root password
 command: openssl rand -hex 7 creates=/root/.my.cnf
 register: mysql_new_root_pass

 If the file /root/.my.cnf does not exist, mysql_new_root_pass.changed will be true .
If it does exist, it will be set to false . You can use that in the rest of your playbook to skip
any steps that need not be run. Here’s a small set of example tasks that show the new root
password if .my.cnf does not exist and show a message if it already exists:

 - name: Generate new root password
 command: openssl rand -hex 7 creates=/root/.my.cnf
 register: mysql_new_root_pass
 # If /root/.my.cnf doesn't exist and the command is run
 - debug: msg="New root password is {{ mysql_new_root_pass.stdout }}"
 when: mysql_new_root_pass.changed
 # If /root/.my.cnf exists and the command is not run
 - debug: msg="No change to root password"
 when: not mysql_new_root_pass.changed

 Once you make the change to add creates=/root/.my.cnf , you should add a when
argument to all of the relevant operations. After making these changes, the MySQL section
of your playbook should look like this (the changes have been highlighted in bold) :

 # MySQL
 - name: Install MySQL
 apt: name={{item}}
 with_items:
 - mysql-server-5.6
 - python-mysqldb
 - name: Generate new root password
 command: openssl rand -hex 7 creates=/root/.my.cnf
 register: mysql_new_root_pass

CHAPTER 3 ■ INSTALLING WORDPRESS

37

 - name: Remove anonymous users
 mysql_user: name="" state=absent
 when: mysql_new_root_pass.changed
 - name: Remove test database
 mysql_db: name=test state=absent
 when: mysql_new_root_pass.changed
 - name: Output new root password
 debug: msg="New root password is {{mysql_new_root_pass.stdout}}"
 when: mysql_new_root_pass.changed
 - name: Update root password
 mysql_user: name=root host={{item}} password={{mysql_new_root_pass.stdout}}
 with_items:
 - "{{ ansible_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost
 when: mysql_new_root_pass.changed
 - name: Create my. cnf
 template: src=templates/mysql/my.cnf dest=/root/.my.cnf
 when: mysql_new_root_pass.changed

 Run vagrant provision now to generate a new root password and clean up your
MySQL installation. If you run vagrant provision again, you should see that all of these
steps are skipped:

 TASK [Remove anonymous users]
**
 skipping: [default]

 That’s the end of your MySQL setup. You’ve downloaded and installed all of the
packages required and secured it by disabling anonymous users and adding a root
password. That’s PHP and MySQL complete, but next you need to install a web server to
handle the incoming requests.

 Installing nginx
 You need to install and configure nginx before you can start to install WordPress. nginx
(which is an alternative to the well-known Apache web server) is the software that will
receive HTTP requests from your users and forward them to PHP, where WordPress will
handle the request and respond. There’s quite a lot of configuration to be done for nginx.
We will walk through this once we have nginx installed. Now, let’s install nginx by adding
the following to the end of playbook.yml :

 # nginx
 - name: Install nginx
 apt: name=nginx state=installed

CHAPTER 3 ■ INSTALLING WORDPRESS

38

 - name: Start nginx
 service: name=nginx state=running

 Run vagrant provision again to install nginx and start it running. If you visit
 192.168.33.20 in your web browser, you will see the “Welcome to nginx” page. This
isn’t what you want your users to see. You want them to see WordPress! Thus, you need
to change the default nginx virtual host to receive requests and forward them. Run these
commands in the same directory as your vagrantfile to create a template file that you’ll
use to configure nginx :

 mkdir -p provisioning/templates/nginx
 touch provisioning/templates/nginx/default

 You’ll also need to copy this file onto your remote machine using the template
module. Let’s add a task to your playbook to do this:

 - name: Create nginx config
 template: src=templates/nginx/default dest=/etc/nginx/sites-
available/ default

 If you run vagrant provision now, the config file will be overwritten with an empty
file. Let’s populate our template with the nginx configuration that you will need in order
to run WordPress. The following configuration example is taken from the WordPress
codex located at https://codex.wordpress.org/Nginx .

 Edit provisioning/templates/nginx/default and make sure that it contains the
following content:

 server {
 server_name book.example.com;
 root /var/www/book.example.com;

 index index.php;

 location = /favicon.ico {
 log_not_found off;
 access_log off;
 }

 location = /robots.txt {
 allow all;
 log_not_found off;
 access_log off;
 }

 location ~ /\. {
 deny all;
 }

https://codex.wordpress.org/Nginx

CHAPTER 3 ■ INSTALLING WORDPRESS

39

 location ~* /(?:uploads|files)/.*\.php$ {
 deny all;
 }

 location / {
 try_files $uri $uri/ /index.php?$args;
 }

 rewrite /wp-admin$ $scheme://$host$uri/ permanent;

 location ~*
^.+\.(ogg|ogv|svg|svgz|eot|otf|woff|mp4|ttf|rss|atom|jpg|jpeg|gif|png|ico|zi
p|tgz|gz|rar|bz2|doc|xls|exe|ppt|tar|mid|midi|wav|bmp|rtf)$ {
 access_log off;
 log_not_found off;
 expires max;
 }

 location ~ [^/]\.php(/|$) {
 fastcgi_split_path_info ^(.+?\.php)(/.*)$;
 if (!-f $document_root$fastcgi_script_name) {
 return 404;
 }
 include fastcgi_params;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_

name;
 fastcgi_pass php;
 }
 }

 This is a pretty standard nginx configuration file that prevents access to potentially
sensitive files and disables logging for common requests, such as favicon.ico and
 robots.txt .

 The way that nginx handles incoming PHP requests is to hand them off to a PHP
worker and wait for a response. To do this, it needs to know where the PHP workers live.
Using nginx terminology, these PHP workers are known as an upstream .

 You need to create an upstream definition in your configuration file so that nginx
knows where to pass the request on to. Add the following at the top of your template
before the opening server { line:

 upstream php {
 server unix:/run/php/php7.0-fpm.sock;
 }

CHAPTER 3 ■ INSTALLING WORDPRESS

40

 This means that any requests received will be handed off to the process listening on
that socket. You’ve called your upstream php , but you could easily have called it bananas
by using the following configuration:

 upstream bananas {
 server unix:/run/php/php7.0-fpm.sock;
 }

 Inside the upstream block, we provide a server to hand the request off to. In this
case, we’re passing the request off to a socket located at /run/php/php7.0-fpm.sock . To
determine which socket your PHP-FPM pool is listening on, you can log in with vagrant
ssh and run the following command:

 cat /etc/php/7.0/fpm/pool.d/www.conf | grep "listen ="

 nginx knows to use this upstream, as you tell it what to look for in your configuration file.
The following two lines are the most important:

 location ~ [^/]\.php(/|$) {

 This means that the configuration inside the braces only applies when the requested
filename ends in .php . Inside this block, there’s a line that contains fastcgi_pass :

 fastcgi_pass php;

 PHP-FPM (the PHP workers) implement the FastCGI protocol for receiving requests
and sending responses. FastCGI is out of the scope of this book, but what you’re doing
here is saying “Any time there’s a request that ends in .php , send it to the upstream named
 php using the FastCGI protocol.” This is enough so that nginx and PHP will work together
to serve user requests.

 Tasks and Handlers
 Once you run vagrant provision , your config file will be up to date. However, nginx needs
to be restarted in order to pick up the changes that you made to the configuration file. You
could add a task to restart nginx by adding the following to the end of your playbook:

 - name: Restart nginx
 service: name=nginx state=restarted

 However, this would restart nginx every time the playbook is run. The better
way to deal with things that need to be restarted when other things change is to use a
 handler . Handlers are just like tasks, but they can be triggered from anywhere. Delete the
 Restart nginx task if you added it and add the following to the bottom of your playbook.
 handlers: should be at the same level and indentation as tasks:

 handlers:
 - name: restart nginx
 service: name=nginx state=restarted

CHAPTER 3 ■ INSTALLING WORDPRESS

41

 This code will use the service module to restart nginx any time the handler is
triggered. Speaking of which, you can trigger it whenever your config file changes by
updating the task to look like the following:

 - name: Create nginx config
 template: src=templates/nginx/default dest=/etc/nginx/sites-available/
default

 notify: restart nginx

 If you run vagrant provision now, the handler will not be run. This is because
you just ran vagrant provision and deployed the nginx configuration, and Ansible has
detected that there are no changes required.

 You’ve made quite a lot of changes, running vagrant provision after each change.
This feels like a good opportunity to run vagrant destroy followed by vagrant up to
confirm that everything is installed and configured correctly.

 After running vagrant up , your new config should roll out and nginx should be
restarted. To test this, edit the hosts file on your host machine (not your virtual machine)
and add the IP address and domain that you’ve been using to the bottom:

 192.168.33.20 book.example.com

 All of the dependencies that you need in order to run WordPress are now installed.
If you want to make sure that you have everything configured correctly, you can log in
to the virtual machine with vagrant ssh , run the following commands, and then visit
 http://book.example.com in your browser. You should see the current time. If you do, it’s
working correctly!

 sudo mkdir –p /var/www/book.example.com
 echo "<?php echo date('H:i:s'); " | sudo tee /var/www/book.example.com/
index.php
 exit

 Downloading WordPress
 Now that your environment has been created, you can finally download WordPress.
You have two options available to do this: you can either download WordPress yourself
and use Ansible to copy it into your environment, or you can have Ansible download
WordPress for you.

 Each of these approaches has its pros and cons. If you download yourself, you’ll
know exactly what you’re getting, but then you’ll have to take the time to upgrade
WordPress yourself. If you download it automatically, you will always have the latest
version, but you’ll have no guarantee that things will work in the same way that they did
the last time you ran the playbook. I will cover both methods in this chapter.

http://book.example.com/

CHAPTER 3 ■ INSTALLING WORDPRESS

42

 Downloading it Yourself
 If you want to download WordPress yourself, you can go to https://wordpress.org/
and download the latest release. Create a folder within your provisioning folder called
 files and place it in there, naming it wordpress.zip . Alternatively, you can download
the latest release with a command-line HTTP client named curl :

 mkdir -p provisioning/files
 curl https://wordpress.org/latest.zip > provisioning/files/wordpress.zip

 The next step is to copy this into your environment. You only need it temporarily, so
you’ll copy it into the /tmp directory by adding the following to your playbook under the
 tasks section :

 # Wordpress
 - name: Copy wordpress.zip into tmp
 copy: src=files/wordpress.zip dest=/tmp/wordpress.zip

 That’s all there is to it. Each time you run Ansible, it will copy WordPress into your
environment, ready to use. You’ll get the same version each time, and once you’re ready to
upgrade, all you need to do is download a new file and overwrite files/wordpress.zip .
Any time that you run Ansible after that, it will use the new version.

 Downloading it Automatically
 Alternatively, you can have Ansible download it automatically for you. You can work
along with this section if you want to, but going forward in the book you’ll be expected
to use the manual method to download WordPress. This section is here just for
informational purposes.

 To do this, you will use a combination of the uri and get_url modules. Although
you’re downloading over HTTPS, you can never be too careful when downloading
applications from the Internet and executing them—even more so when doing it in an
automated manner.

 You start by using the uri module to fetch the sha1 hash of the latest WordPress
release, storing the value that you get back in a variable named wp_checksum . The
checksum is important, as this is what Ansible will use to make sure that the contents of
the zip file are what you’re expecting:

 # WordPress
 - name: Get WordPress checksum
 uri: url=https://wordpress.org/latest.zip.sha1 return_content=true
 register: wp_checksum

https://wordpress.org/

CHAPTER 3 ■ INSTALLING WORDPRESS

43

 Once you have the SHA1 checksum against which to compare, you can download
WordPress itself. This time, you will be using the get_url module. You specify a URL to
download, the destination where the file should be saved, and a checksum:

 - name: Download WordPress
 get_url: url=https://wordpress.org/latest.zip dest=/tmp/wordpress.zip
checksum="sha1:{{wp_checksum.content}}"

 Using this method, you’ll get the latest release of WordPress every time that you
run Ansible. Personally, I download the zip file myself and copy it into my environment.
However, knowing how to download files on demand and check their contents using a
checksum is useful, so I wanted to show you how to achieve the same thing using that
method as well.

 At this point, the arguments that you’re passing to Ansible are getting longer and
longer and have potentially started to wrap across multiple lines. Ansible supports a
second input format for module arguments that is designed for longer arguments. Take a
look at the preceding task, for example:

 - name: Download WordPress
 get_url: url=https://wordpress.org/latest.zip dest=/tmp/wordpress.zip
checksum="sha1:{{wp_checksum.content}}"

 This can be written with each argument on its own line, and it will perform the same
action:

 - name: Download WordPress
 get_url:
 url: https://wordpress.org/latest.zip
 dest: /tmp/wordpress.zip
 checksum: "sha1:{{wp_checksum.content}}"

 The only differences of note are that each argument is on its own line and the equals
sign has been replaced with a colon. You can use whichever format you prefer going
forward, as they are functionally equivalent.

 Configuring a WordPress Install

 ■ Note This book assumes going forward that you downloaded WordPress manually and
copied it to /tmp/wordpress.zip . If you changed your playbook to work along with the
previous section, be sure to undo any changes that you made.

 You’re almost there! You have all of your dependencies installed, and you have
WordPress downloaded. It’s time to unzip your release and get your blog up and running.

CHAPTER 3 ■ INSTALLING WORDPRESS

44

 The first thing that you’ll need to do is to extract wordpress.zip . Ansible ships with a
module named unarchive that knows how to extract several different archive formats:

 - name: Unzip WordPress
 unarchive: src=/tmp/wordpress.zip dest=/tmp copy=no creates=/tmp/
wordpress/wp-settings.php

 You should be getting more familiar with the arguments to most modules by now.
Both src and dest are showing up time and time again, for example. You may have
noticed that we added copy=no to our arguments. This tells Ansible that the file is already
in our environment. You should do this so that your command will work whether you
downloaded WordPress yourself or had Ansible do it for you.

 - name: Unzip WordPress
 unarchive: src=files/wordpress.zip dest=/tmp creates=/tmp/wordpress/wp-
settings.php

 If you were to change your task to look like the preceding code, you could delete the
call to copy that you added, as Ansible will copy the file into the environment for you.
Let’s keep the copy just in case, and set copy=no in your task:

 - name: Unzip WordPress
 unarchive: src=files/wordpress.zip dest=/tmp copy=no creates=/tmp/
wordpress/wp-settings.php

 If you run your playbook, Ansible will encounter an error when it tries to extract
WordPress:

 Failed to find handler for \"/tmp/wordpress.zip\". Make sure the required
command to extract the file is installed.

 This error is displayed because, by default, unzip is not installed. I like to have a task
install all of the common tools that I’ll need right at the top of my tasks list. Add this to
your playbook (before you install PHP):

 - name: Install required tools
 apt: name={{item}} state=installed
 with_items:
 - unzip

 If you run Ansible again after adding the task to install unzip, your playbook will
complete successfully. The zip file contained a folder named wordpress , which means
that all of the files that you need are located at /tmp/wordpress . However, this isn’t where
you told nginx that your application lives, so let’s copy all of the files that you’ll need into
the correct location. At the time of this writing, the copy module does not support copying
directories from one place to another on the remote server, so you’ll have to use the shell
module directly. You will also add a creates argument so that the command is idempotent:

CHAPTER 3 ■ INSTALLING WORDPRESS

45

 - name: Create project folder
 file: dest=/var/www/book.example.com state=directory
 - name: Copy WordPress files
 command: cp -a /tmp/wordpress/. /var/www/book.example.com creates=/var/
www/book.example.com/wp-settings.php

 Once this has run, visit http://book.example.com in your web browser; you should
see a WordPress installation screen. It tells you that you’ll need to know all of your
database credentials to start the installation process. You will not want to give WordPress
root access to your database, so let’s create a dedicated MySQL user to use by adding the
following tasks to your playbook:

 - name: Create WordPress MySQL database
 mysql_db: name=wordpress state=present
 - name: Create WordPress MySQL user
 mysql_user: name=wordpress host=localhost password=bananas
priv=wordpress.*:ALL

 This will create a database called wordpress and a user called wordpress with the
password bananas . The new user will have all of the privileges on the wordpress database,
but nothing else. After running Ansible to create the database and user, go back to your
web browser and continue the installation process .

 Once you’ve provided all of the relevant details, WordPress will tell you that it does
not have permission to write wp-config.php itself. This is good, as allowing your web
server to write config files itself is dangerous.

 ■ Tip You may be wondering why allowing a web server to write its own config files is
dangerous. Open-source tools may have unknown bugs and exploits that allow an attacker
to save files to disk on your server. Once there’s a file on your disk, they can execute it
to try to compromise your server. If your web server cannot write files at all, you are not
vulnerable to this kind of attack.

 Instead of allowing WordPress to write wp-config.php for you, you’re going to copy
the config file and have Ansible install it for you. Create provisioning/templates/
wordpress/wp-config.php and paste your config file into it. Once that’s done, add a task
to copy this file into the correct place:

 - name: Create wp-config
 template: src=templates/wordpress/wp-config.php dest=/var/www/book.
example.com/wp-config.php

 After adding this task, run Ansible again by running the vagrant provision
command in your terminal.

http://book.example.com/

CHAPTER 3 ■ INSTALLING WORDPRESS

46

 When you run Ansible, you may get an error message similar to the following :

 AnsibleError: ERROR! template error while templating string

 If you get this error message, take a look at the contents your wp-config.php file.
Do you see any place that has either {{ or }} in a string? Unfortunately, WordPress can
generate this string as part of its secret keys. However, as you’re using Ansible’s template
module, those characters have a special meaning. If your wp-config file contains them,
feel free to edit the file and change them to any other character.

 Once Ansible has run successfully, go back to your web browser and click “Run
the install.” It will ask you a few questions. Answer these questions and click on “Install
WordPress.” If you visit http://book.example.com now in your browser, you should see a
WordPress install up and running with a “Hello World” post waiting to greet you. If your
browser shows an error message relating to timeouts, make sure that you have added
 book.example.com to your hosts file, as discussed earlier in this chapter.

 Making a Backup
 If you were to destroy your environment right now and re-provision it, you would be 90
percent of the way to a WordPress install. You would end up at that final screen where
you need to provide details about your website. All of that information is stored in the
database, so let’s make a backup and have Ansible automatically import it .

 Log in to the environment with vagrant ssh and run the following commands to
create a backup SQL file to be used by your playbook:

 sudo su -
 mysqldump wordpress > /vagrant/provisioning/files/wp-database.sql
 exit
 exit

 The last step is to write a task to import this backup into your database. You need to do
a little extra work to make sure that you don’t overwrite databases that already exist. You
wouldn’t want to replace production databases with your development backup, would you?

 We’re going to use a new feature now, ignore_errors . Usually, when a command
fails with a non-zero exit code, Ansible throws the error back to you. Using ignore_
errors on a command tells Ansible that it’s OK for that command to fail:

 - name: Does the database exist?
 command: mysql -u root wordpress -e "SELECT ID FROM wordpress.wp_users
LIMIT 1;"
 register: db_exist
 ignore_errors: true

 This tries to select the first user from your WordPress database. This will fail if the
database doesn’t exist, which is your trigger to restore the database. You store the return
value in db_exist for use in later tasks. If you need to import the database, you’ll need to

http://book.example.com/

CHAPTER 3 ■ INSTALLING WORDPRESS

47

copy your database to the remote environment before you import it, so you will need two
tasks to perform the import :

 - name: Copy WordPress DB
 copy: src=files/wp-database.sql dest=/tmp/wp-database.sql
 when: db_exist.rc > 0
 - name: Import WordPress DB
 mysql_db: target=/tmp/wp-database.sql state=import name=wordpress
 when: db_exist.rc > 0

 Make sure to add these tasks to your playbook now. You only want to copy and
import the database when db_exist.rc is greater than 0. rc stands for return code, and
it is always zero when things are successful. It can be a number of values when things
fail, but is generally set to 1. If you run Ansible now, you should see that these tasks are
skipped, as your database already exists.

 Making It Idempotent
 If you run vagrant provision one more time, you’ll notice that you have a task that
says changed every time it runs. This isn’t ideal, as it could trigger handlers or have other
unintended side effects. You want your playbooks to say “OK” or “skipped” for every task
when you look at the output of your playbook run.

 The task that always says changed is the command that you run to check if the
database exists. The command module always reports that it changed something, as you
don’t know what the command actually does. Fortunately, you can suppress that using
 changed_when. changed_when is a field that controls whether Ansible thinks that a task
performed an action that made a change or not. If the expression provided evaluates to
 true , Ansible will record that a change was made and trigger any handlers that need to
run. If it evaluates to false , Ansible will record that no change was made, and no handlers
will be triggered.

 Here’s a simple example of how you can use changed_when . List out the contents of
the /tmp directory and if see the word "wordpress" occurs anywhere in the output. If so,
Ansible will report that the task changed something.

 - name: Example changed_when
 command: ls /tmp
 register: demo
 changed_when: '"wordpress" in demo.stdout'

 If the text "wordpress" is not found in the command’s output, Ansible will report
that the task did not change anything, showing OK in the output.

 Ansible checks if the expression evaluates to false to decide if a task changed
anything. As you never want the command that checks if the database exists to return
“changed,” you can specify changed_when: false to make it always return as OK.

CHAPTER 3 ■ INSTALLING WORDPRESS

48

 If you edit the task that checks the database so that it looks like the following, your
playbook will be fully idempotent again:

 - name: Does the database exist?
 command: mysql -u root wordpress -e "SELECT ID FROM wordpress.wp_users
LIMIT 1;"

 register: db_exist
 ignore_errors: true
 changed_when: false

 At this point, you can run vagrant destroy and then vagrant up to destroy your
environment and spin it up as an empty box. Ansible will run and automatically provision
your WordPress install for you. It may take a few minutes, as it’s installing all of your
dependencies as well as configuring WordPress.

 Summary
 Congratulations! You just automated an entire WordPress installation using Ansible.
You’ve built up a fairly complex playbook step by step using several different modules
to accomplish the tasks you needed. You installed and configured nginx and MySQL,
as well as downloaded or copied WordPress onto your remote machine. Each time
you encountered something that you had to do by hand, you looked into where that
information was being persisted and added some tasks to your playbook to automate it in
the future.

 Along the way, you learned about making your playbook idempotent when using the
 command module thanks to options such as ignore_errors and changed_when . Making
your playbooks idempotent is an important part of managing your infrastructure with
Ansible, so learning how to work with the command module in this way is very important.

 Although you’ve achieved a lot in this chapter, you may have noticed that as you
added more and more to this playbook, it became harder to work with. In the next
chapter, you’ll take a look at roles, a concept that lets you break your playbooks up into
distinct, reusable components, which you can piece together to deploy an application.

49© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_4

 CHAPTER 4

 Ansible Roles

 Thus far, you’ve installed all of the dependencies for WordPress and gotten an instance
of it configured. The playbook wasn’t the easiest thing to read, though, and it wasn’t very
reusable.

 In this chapter, we’re going to refactor this playbook so that it is split up into logical
sections . We’ll have one role that installs PHP, one for nginx, another for MySQL, and,
finally, one for WordPress. Not only will this make the playbooks easier to follow, but
it will also make them reusable. At present, if you wanted to install Drupal instead of
WordPress, you’d have to duplicate your entire dependency setup and change the end
of the playbook. Once we’re done with this chapter, you’ll be able to reuse all of the PHP,
nginx, and MySQL playbooks that you’ve already written in multiple projects.

 Playbooks and roles are very similar, yet very different at the same time. A playbook
is a standalone file that Ansible can run that contains all of the information required to set
a machine’s state to what you expect. This means that a playbook can contain variables,
tasks, handlers, roles, and even other playbooks, all in the same file. You don’t need any
other files to accomplish your task.

 You can think of a role as a playbook that is split up into multiple different files. Instead
of having a single file that contains everything that you need, there’s one file for variables,
one for tasks, and another for handlers. You can’t run a role on its own, though; you need to
include it inside a playbook along with the information about which hosts to run on.

 Roles are the mechanism that you use to package up tasks, handlers, and everything
else that you need into reusable components that you can glue together by including
them in a playbook.

 Ansible Galaxy
 Roles are a core concept in Ansible. They perform such a core function, in fact, that they
even have their own repository and accompanying command-line tool. Ansible Galaxy
is a website where people can upload roles that they have developed for other people to
use. If you want to examine some of these roles, go to https://galaxy.ansible.com/ and
explore. There are over 5,000 roles uploaded to this site as of this writing; peruse them
and use them in your own projects!

 As with any open code repository, there are both good and bad contributions. You can
search for a role and order the results by the number of downloads — the higher the number of
downloads, the more likely it is to be a good role. Each role will have a link to its source code,
so once you’re done reading this book, you should be able to review what it’s doing yourself.

https://galaxy.ansible.com/

CHAPTER 4 ■ ANSIBLE ROLES

50

 When installing a role, you can either install it globally on your machine or locally to
a project. As with any dependency, you want it to be local to your project in case multiple
projects want different versions of the same dependency. To download a role, you call the
 ansible-galaxy command, providing the -p (for path) flag to make it install the role in a
folder named roles . You should run the ansible-galaxy command in the same directory
where playbook.yml can be found.

 There are a few prolific role creators on Ansible Galaxy, but none more so than
Jeff Geerling (geerlingguy). I’ve used Jeff’s roles myself, and I find them to be of a
consistently high quality. Using one of Jeff’s roles as an example, this is how you’d
download it:

 ansible-galaxy install geerlingguy.git –p roles

 This will create a folder called roles and download the role into it. To use this role,
you need to create a playbook and include it. As usual, you need to tell Ansible which
servers to run on, but this time you’ll also provide a list of roles to include:

 - hosts: all
 roles:
 - geerlingguy.git

 If you run this playbook , the role will try to install git on the target machine. If you
want to test this out, you can add the roles section to playbook.yml before your list of
tasks and then run vagrant provision . Roles are executed before tasks in a playbook,
which means that the role output will be at the top of your vagrant provision output. It
should resemble Figure 4-1 :

 Figure 4-1. The output from Ansible when installing geerlingguy.git

CHAPTER 4 ■ ANSIBLE ROLES

51

 Jeff’s role handles installing git on both RedHat and Debian-based operating
systems. As your virtual machine is running Ubuntu (a Debian derivative), the RedHat
task is skipped and the Debian task is used to install the correct packages.

 Role Structure
 Now that you know how to run a role from a playbook, let’s create your own role. Using
the ansible-galaxy command-line tool, you can create a new role in your roles folder.
When creating roles, there is a naming convention that you should follow. Role names are
generally in the form <identifier>.<rolename> ; for example, geerlingguy.git . Just by
looking at the role name, you know that it’s a role by Jeff Geerling that installs Git.

 For my projects, I use “mheap” as my identifier, which means that a role that installs
PHP that is authored by me will be named mheap.php . Let’s create that role now. Run the
following commands in the same folder as playbook.yml :

 mkdir -p provisioning/roles
 cd provisioning/roles
 ansible-galaxy init mheap.php

 The init command will create a folder called mheap.php , which contains all of the
possible files for an Ansible role (see Figure 4-2).

 Most of the folders created are optional, but we’ll cover what each of them means
and what functionality each provides if you add content to the files within it.

 Figure 4-2. The structure of an empty role

CHAPTER 4 ■ ANSIBLE ROLES

52

• Every role should start with a README file. Explain the purpose
of the role, why it has been developed instead of using an existing
tool, and any variables that will be customizable in the role.

• defaults/main.yml is a configuration file that you can use to
define default values for variables used in your role. You can also
define variables in vars/main.yml that will override anything
in defaults/main.yml , as it has a much higher precedence.
For example, variables located in vars/main.yml will override
variables defined when gathering facts about a system, but
variables located in defaults/main.yml will not. You’ll learn
more about variable precedence in Chapter 5 .

• files is where you place files required during your role’s
execution. This could be static assets, configuration files—any
type of file. These files cannot be manipulated at all, however, just
copied.

• handlers/main.yml is where you will define handlers like
 restart nginx . Collecting all of the available handlers in one
place makes it really easy for people who use your module to see
what actions are available to them. Handlers can be called in the
same role, from other roles, and from the calling playbook.

• meta/main.yml is the metadata file for your role. You use this file
to define the metadata that Ansible Galaxy uses if you publish
your module. You can also define things like minimum Ansible
version, supported platforms, and any dependencies that your
role has.

• tasks/main.yml is where you’ll spend most of your time. This is
the tasks section that was in your playbook. Any actions defined
in this file will be executed by Ansible when your role runs.

• templates contains any files that you need to have processed
by the jinja2 templating language in order to interpolate any
variables required in the file before copying them onto your target
system.

• tests is a directory where you should create test playbooks that
consume your role. This is primarily used when testing your role
automatically using a continuous integration system, such as
Jenkins or Travis CI. A continuous integration system is a tool that
watches projects for changes and triggers actions automatically.
These actions typically run tests for the project, but can do
whatever you can express in a script.

 Although eight folders were just discussed, not all of them are mandatory. Your
role can be very useful, even if you only provide a tasks file. Most of the time, you’ll find
that you’re working in the tasks folder , with supporting files found in handlers and
 templates .

http://dx.doi.org/10.1007/978-1-4842-1659-0_5

CHAPTER 4 ■ ANSIBLE ROLES

53

 You may notice that each file inside a folder is called main. yml . This is the file name
that Ansible loads when including a role. For example, to load the tasks for your PHP
role, Ansible will attempt to load the file located at roles/mheap.php/tasks/main.yml .
You can work directly in this file, or you can create new files alongside it in the folder and
include those files in main.yml . For example, examine the tree shown in Figure 4-3 , where
 extensions.yml and php.yml exist at the same level as main.yml .

 Now you have a clean separation between the tasks that install the core PHP
packages and the tasks that install any additional extensions. You need to tell Ansible that
these files exist, which you do by editing main.yml so that it looks like the following:

 - include: 'php.yml'
 - include: 'extensions.yml'

 This uses YAML’s built-in include syntax, which incorporates one YAML file inside
another. When Ansible runs, all of these files will be merged together, but while you’re
developing the playbook, you have a clean separation of concerns.

 Splitting Up Your WordPress Playbook
 Let’s jump right into splitting up your monolithic playbook into some unique roles. You’ll
start by creating the roles that you’re going to need. Make sure that you’re in your roles
directory, and then run the following commands to generate some empty roles:

 ansible-galaxy init mheap.nginx
 ansible-galaxy init mheap.mysql
 ansible-galaxy init mheap.wordpress

 Once you’ve created these roles, update playbook.yml so that they are included. Add
your list of roles before the tasks section. The top of playbook.yml should look like the
following (with more tasks below it). If you added the git role earlier, delete it now:

 - hosts: all
 become: true
 roles:
 - mheap.php
 - mheap.nginx

 Figure 4-3. Example of how to split up tasks / main.yml in a role

CHAPTER 4 ■ ANSIBLE ROLES

54

 - mheap.mysql
 - mheap.wordpress
 tasks:
 - name: Install required packages
 ping:

 These new roles are currently empty, which means that if you run Ansible, they
won’t perform any actions. It’s safe to include empty roles in playbooks, as Ansible will
try to read any tasks defined in them and will find that there are none. You include empty
roles here so that when you start moving tasks into these roles in the next section, they
will be included by Ansible in the list of tasks to run.

 At this point, you should run vagrant provision to make sure that your playbook is
still formatted correctly. The Ansible run should finish successfully, as you didn’t delete
any tasks. The next thing to do is to start moving the tasks out of playbook.yml into the
roles that you just created.

 mheap.php
 Let’s start by populating your mheap.php role. Take the following four tasks that are related
to installing PHP and move them into roles/mheap.php/tasks/main.yml . After doing
this, roles/mheap.php/tasks/main.yml will contain the following four tasks:

 - name: Add the ondrej PHP PPA
 apt_repository: repo='ppa:ondrej/php'
 - name: Update the apt cache
 apt: update_cache=yes cache_valid_time=3600
 - name: Install PHP
 apt: name={{item}} state=installed
 with_items:
 - php
 - php-fpm
 - php-mysql
 - php-xml
 - name: Remove apache2
 apt: name=apache2 state=removed

 These tasks should no longer exist in playbook.yml . You include the mheap.php role
so that they will be included in the list of tasks to be run by Ansible, thanks to your listing
 mheap.php under the roles section. Save your role and playbook, and then run vagrant
provision again. These tasks will run, just as they did when they lived in playbook.yml .
However, this time you’ll notice that the PHP tasks have a slightly different header:

 TASK [mheap.php : Add the ondrej PHP PPA]

 ok: [default]

 TASK [mheap.php : Update the apt cache]
**
 ok: [default]

CHAPTER 4 ■ ANSIBLE ROLES

55

 TASK [mheap.php : Install PHP]

 ok: [default] => (item=[u'php', u'php-fpm', u'php-mysql'])

 TASK [mheap.php : Remove apache2]

 ok: [default]

 The name of the task is preceded by the name of the role. This makes it really easy
to work out where tasks are being included from when Ansible runs. By moving the PHP
part of the installation to a separate role, you just made your PHP role reusable. If you
need PHP on a machine in any playbook that you use in the future, you can add mheap.
php to your list of roles to run and it will install all of the relevant packages.

 Let’s continue to perform the same refactoring action for every task in the playbook
until the tasks section contains only two tasks: one that pings your machine and another
that installs common tools.

 mheap.mysql
 The next set of tasks to extract belongs to the mheap.mysql role. Open roles/mheap.
mysql/tasks/main.yml and move all of the MySQL-related tasks out of playbook.yml
and into the role’s task file. You’ll need to move the tasks named Install MySQL and
 Create my.cnf , as well as all tasks in between them.

 You might remember that our MySQL tasks used a template to populate my.cnf ,
which you’ll need to move so that it lives inside the new role. Take the file that can currently
be found at provisioning/templates/mysql/my.cnf and move it so that it is in the
 roles/mheap.mysql/templates directory. You can do this by running mv provisioning/
templates/mysql/my.cnf provisioning/roles/mheap.mysql/templates in the same
directory as your vagrantfile .

 Finally, you’ll need to make a small change to the template task in your mheap.mysql role.
The src parameter for the template task is currently templates/mysql/my.cnf , but now that
your template is part of a role, that path is not correct. Ansible automatically looks in a folder
named templates when using the template module in a role, so you need to change the src
parameter for this call to the template module to my.cnf , nothing more. Once you make that
change, the final task in roles/mheap.mysql/tasks/main.yml should look like the following:

 - name: Create my.cnf
 template: src=my.cnf dest=/root/.my.cnf
 when: mysql_new_root_pass.changed

 Run vagrant provision again to ensure that your new role works as intended. All of
the tasks relating to MySQL should now be prefixed with mheap.mysql in the output.

 You’re halfway through the migration! Migrating PHP and MySQL introduced you
to the changes that you need to make when moving from a single playbook to individual
roles. Migrating the remaining roles that install nginx and WordPress follows the same
steps, so let’s carry on and extract the tasks into the relevant roles .

CHAPTER 4 ■ ANSIBLE ROLES

56

 mheap.nginx
 There are only three tasks relating to nginx : one that installs nginx , one that ensures
 nginx is running, and one that copies a template. Move these three tasks out of playbook.
yml and into roles/mheap.nginx/tasks/main.yml . Looking at these tasks, you might
notice that there is a call to the template module. Just as you did with the MySQL role,
you’ll need to move this template so that it lives inside your new mheap.nginx role by
running mv provisioning/templates/nginx/default provisioning/roles/mheap.
nginx/templates and editing the "Create nginx config" task so that the src field
doesn’t contain any folders. It should just say default .:

 - name: Create nginx config
 template: src=default dest=/etc/nginx/sites-available/default
 notify: restart nginx

 This task also has a handler, which is something that we haven’t encountered
yet when working with roles. Just as you can define tasks in a role, you can also define
handlers for that role by editing handlers/main.yml . Open up roles/mheap.nginx/
handlers/main.yml and move your handler from playbook.yml to this new handlers
file. You don’t need the handlers heading, just the handler definition itself. Once you’ve
moved it, handlers/ main.yml will look like the following:

 # handlers file for mheap.nginx
 - name: restart nginx
 service: name=nginx state=restarted

 Remove the handlers heading from playbook.yml (as it should now be empty) and
run vagrant provision to test your playbook. The run should complete successfully,
leaving you with only the WordPress tasks to migrate .

 mheap.wordpress
 This is your most complicated role, with ten different tasks, but it’s nothing to be afraid of.
You can approach it just like the previous three roles, taking it step by step until it is fully
migrated. Start by moving the tasks out of playbook.yml . The first task to move is the one
named Copy wordpress.zip into tmp , and the last one is named Import WordPress
DB . Move these two tasks (and everything between them) out of playbook.yml and into
 roles/mheap.wordpress/tasks/main.yml .

 There is only one call to the template module in this set of tasks, so let’s tackle that first.
This should be getting familiar now. You’ll need to move the wp-config.php file so that it
lives inside your role. You can do this by running mv provisioning/templates/wordpress/
wp-config.php provisioning/roles/mheap.wordpress/templates . Don’t forget to
update your template task too—its src parameter should only contain wp-config.php now:

 - name: Create wp-config
 template: src=wp-config.php dest=/var/www/book.example.com/wp-config.php

CHAPTER 4 ■ ANSIBLE ROLES

57

 There are no handlers in this role, so we don’t have to migrate those. However, there is
one other thing that we have to migrate. Just as you moved the files relating to the template
module, you’ll also need to move the files relating to the copy module. Files that the
 template module uses live in the templates directory, but files that the copy module uses
live in the files directory. If you search tasks/main.yml for copy , you’ll find two tasks: one
that copies the WordPress ZIP file and one that copies the database backup onto the system.
The first thing to do is to move those files so that they live inside the mheap.wordpress role:

 mv provisioning/files/wordpress.zip provisioning/roles/mheap.wordpress/files
 mv provisioning/files/wp-database.sql provisioning/roles/mheap.wordpress/
files

 Next, you’ll need to update your copy tasks to remove the files/ section from the
 src parameter. As with templates, Ansible knows where to look for files used by the copy
module. Once you’ve done this, the tasks should look like the following:

 - name: Copy wordpress.zip into tmp
 copy: src=wordpress.zip dest=/tmp/wordpress.zip
 - name: Copy WordPress DB
 copy: src=wp-database.sql dest=/tmp/wp-database.sql
 when: db_exist.rc > 0

 mheap.common
 At this point, I would delete the ping task, as it was only required to prove that you could
connect to your machine. Regarding the task that installs common packages, I like to
keep such tasks in another role. Let’s create it now by running ansible-galaxy init
mheap.common in the roles folder. Move the task that installs your common packages into
 tasks/main.yml in your new role, and add mheap.common to the list of roles in playbook.
yml . As the tasks section will now be empty, feel free to delete it. Your playbook is looking
a lot slimmer already!

 - hosts: all
 become: true
 roles:
 - mheap.common
 - mheap.php
 - mheap.nginx
 - mheap.mysql
 - mheap.wordpress

 Make sure to run vagrant provision once more to ensure that things are still working.
Once you’ve done that, you’re done! You’ve refactored your playbook into five reusable
chunks. In the future, if you need PHP, just include mheap.php in your playbook . Need a
database? Include mheap.mysql . Roles are a really powerful way to keep your logic separate
while at the same time keeping it easy to access should you ever need it in the future.

CHAPTER 4 ■ ANSIBLE ROLES

58

 Creating a role from a playbook isn’t a complicated procedure. At its heart, it’s quite
mechanical. If you ever find yourself needing to extract a role from a playbook, follow
these steps:

 1. Move the tasks into tasks / main.yml .

 2. Move the handlers into handlers / main.yml .

 3. If any tasks use the template module, ensure that the files
required are in the templates directory. The src argument
to the module is now relative to the templates directory; for
example, src=posts/example.sql would evaluate to roles/
your.role/templates/posts/example.sql .

 4. If any tasks use the copy module, ensure that the files required
are in the files directory. The src argument to the module is
now relative to the files directory; for example, src=tools/
useful-tool would evaluate to roles/your.role/files/
tools/useful-tool .

 5. Move any variables used in this role (in tasks or in templates)
into defaults/main.yml . (You didn’t need to do this in this
chapter. We’ll cover variables in Chapter 5) .

 Role Dependencies
 Right now, your playbook will run and install all of the dependencies required to
configure your WordPress application. This is because you’ve explicitly specified that you
should run all of the roles that contain your prerequisites. This works fine while you’re the
one using mheap.wordpress , but what happens when someone who doesn’t understand
it fully tries to use it and omits a dependency?

 Remember the dependencies option that was mentioned earlier in meta/main.yml ?
You can use that to specify a role’s dependencies and have Ansible include them for
you automatically. Open roles/mheap.wordpress/main.yml and delete it all. All of
the information in here is optional, so let’s delete it and populate this file with only the
required information. Add the following content to the file:

 dependencies:
 - mheap.common
 - mheap.php
 - mheap.mysql
 - mheap.nginx

 This is a list of roles necessary for the playbook to run. Next, edit playbook.yml so that
only mheap.wordpress is in your list of roles. If you run vagrant provision again, you’ll
notice that all of the dependencies run before your mheap.wordpress role runs. Ansible
parses the metadata for each role it encounters and ensures that any dependencies listed are
run before that role. This means that people do not need to know what the dependencies of
your role are; they can simply include it in the list of roles to run and Ansible will look up the
dependencies recursively and automatically run them before the role that you included .

http://dx.doi.org/10.1007/978-1-4842-1659-0_5

CHAPTER 4 ■ ANSIBLE ROLES

59

 Wrapper Roles
 As roles need to be usable in lots of different situations, they tend to be highly
configurable. Sometimes, the ability to configure a role makes it more difficult to
work with than you’d like. There is a pattern that you can use to abstract some of this
configuration away into a “wrapper role.”

 By wrapping roles inside other roles, you can capture intent around how a role
should be used in another, separate role. Imagine that you have a role that is dedicated to
saying hello to people. This role is called mheap.hello and contains two files:

 In defaults / main.yml :

 your_name: World

 In tasks/main.yml :

 - name: Say hello
 debug: msg="Hello {{your_name}}"

 If you run this, it shows the following output:

 TASK [mheap.hello: Say hello]
 **
 ok: [default] => {
 "msg": "Hello World"
 }

 This is because we set a default value for your_name of World . If you wanted to
change the name used, you could set a variable in your playbook that overrides it.
However, if you always want it to say “Hello Michael,” having to add your name to every
playbook becomes a nuisance very quickly.

 The alternative is to wrap this role up in another role that contains only the variables
that you want to set. To do this, you create a role named mheap.hello__michael . It
doesn’t contain any tasks; it just specifies mheap.hello as a dependency:

 In meta/main.yml :

 dependencies:
 - role: mheap.hello
 your_name: Michael

 If you run vagrant provision again, you will see the following content:

 TASK [mheap.hello: Say hello]
 **
 ok: [default] => {
 "msg": "Hello Michael"
 }

CHAPTER 4 ■ ANSIBLE ROLES

60

 This is a great way to take custom configurations of a role and codify them into
something that can be checked into source control and used over and over again.
Although this is a simple example, imagine doing this with a MySQL role to specify
database usernames and passwords. Need a specific database on a machine? Just include
the mheap.mysql__foodatabase role!

 Creating Roles for Different Platforms
 Not all platforms are created equal. Being able to use the apt module for everything so
far has made our lives easier, but if we try to use our role on a Fedora machine, it won’t
work at all. Where possible, I try to avoid mixing platforms in a single deployment, but
sometimes this isn’t possible. In this situation, you need to do a little bit more work.

 Apache2 is a perfect of example of needing to do things slightly differently. The
package for Apache is called apache2 on Debian-based systems and httpd on Redhat-
based systems. In this situation, I tend to have three tasks files: main.yml , install-
debian.yml , and install-redhat.yml . All that main.yml is responsible for is including
the correct variable file and then delegating to the correct install script.

 In main.yml :

 - include_vars: "{{ ansible_os_family }}.yml"

 - include: install-debian.yml
 when: ansible_os_family == 'Debian'

 - include: install-redhat.yml
 when: ansible_os_family == 'RedHat'

 Instead of using when , I could have just used the following:

 - include: "install-{{ansible_os_family}}.yml"

 I prefer to use when rather than including a file based on ansible_os_family so that I
can see which OS families are supported by this role at a glance. We also include the correct
variable file automatically. The variable files have the same variable names but different values.

 In vars/Debian.yml:

 apache2_package_name: apache2

 In vars/RedHat.yml :

 apache2_package_name: httpd

 Then, in the relevant install script, use the correct Ansible module for the package
manager for that family.

CHAPTER 4 ■ ANSIBLE ROLES

61

 In tasks/install-debian.yml :

 - name: Install Apache
 apt: name={{apache2_package_name}} state=installed

 In tasks/install-redhat.yml :

 - name: Install Apache
 yum: name={{apache2_package_name}} state=installed

 This is a very common pattern, and it is the generally accepted way to develop a role
that works on multiple operating systems.

 It’s important to note that as of Ansible 2.0, there is a package module (http://docs.
ansible.com/ansible/package_module.html) that delegates to the correct package
manager for the current operating system. I did not use this module in the example
so that I could demonstrate how to use different modules depending on the current
operating system. If you were writing this yourself, you would write it as follows, and
Ansible would delegate to the correct package manager for the current operating system :

 - name: Install Apache
 package: name={{apache2_package_name}} state=present

 Tips for Writing Roles
 When creating a role, try to make sure that it is usable out of the box. If your role installs
a specific piece of software, make it install and configure a basic installation without any
user intervention. Provide extension points for people if they want to customize things
later, but don’t make them provide information up front. Use defaults/main.yml for this,
as this is easily overridden.

 Write a role that does exactly what you need it to and nothing more. It’s easy to get
side-tracked making a role work on every operating system and having it be super flexible.
Most of the benefit that you will get from roles is by doing just what you did in this chapter
 — extracting common functionality into roles that can be included in other playbooks.

 There are two kinds of roles: opinionated and un-opinionated. You’ll generally find
un-opinionated roles on Ansible Galaxy, as they have been designed to be re-usable.
They will support lots of different variables and let you use them however you need.

 When writing roles yourself, you’ll find that they are quite opinionated. These roles
are specific to your customer, a particular application, or even a certain instance of an
application. These roles do not need extension points, so instead of using variables, you
would tend to hardcode values in the role. This is less about making a role reusable and
more about codifying your intent.

http://docs.ansible.com/ansible/package_module.html
http://docs.ansible.com/ansible/package_module.html

CHAPTER 4 ■ ANSIBLE ROLES

62

 Summary
 Ansible roles are one of the most powerful parts of Ansible. They help keep your
playbooks clean and readable. They provide reusable definitions that you can include
whenever you need and customize with any variables that the role exposes. This is the
same as finding some common code in a development project and writing a function to
reduce duplication and provide a common abstraction.

 Going forward, we’ll be using the roles that we created in this chapter to deploy
multiple instances of WordPress in the same playbook. Before that, however, we need to
add variable support to our roles so that we can include the same role multiple times with
different parameters.

63© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_5

 CHAPTER 5

 Parameterizing Playbooks

 In the previous chapter, you worked on getting your playbook split up into various
reusable roles. These roles, however, all have a static configuration. Each time you use
them, they will install the same software with the same configuration, and you have no
way to tweak the values being used. If you want to change a configuration value, you have
to edit the role directly. As you can imagine, this is far from ideal, because when the role
updates, your changes will be lost.

 Ansible has great support for variables, allowing you to use them both in playbooks
and in files that are copied to the remote machine. You can use variables either as content
(for example, in a templated configuration file or to specify a list of packages to install in a
task) or as a way to decide what actions your playbook takes (such as whether you should
generate a new MySQL password, seen in Chapter 3).

 Variables in Ansible are global. This means that whether you declare a variable in
a role, in a playbook, or in any of the other locations available (which we’ll cover in this
chapter), it can be used by all roles and playbooks loaded during the Ansible run. This
further means that variables in a role are generally prefixed with the role name. For
example, if you were to make the list of packages to install in the PHP role configurable,
you would name the variable php_packages , not just packages .

 In this chapter, you’ll add variable support to your WordPress role so that it can be
used to configure a custom WordPress installation. Once you’ve done that, we’ll cover all
of the different places that variables can be defined in Ansible and how each one can be
used when you’re writing a playbook.

 Parameterizing Your WordPress Role
 Let’s make our WordPress role variable driven so that we can customize the installation
of each instance. As things currently stand, every install will use the same database
and have the same database credentials, which is insecure. This happens because the
database name and password are hardcoded in both the task that creates a database user
for WordPress and in the WordPress configuration file itself.

 Going back to your playbook, it currently looks like this:

 - hosts: all
 become: true
 roles:
 - mheap.wordpress

http://dx.doi.org/10.1007/978-1-4842-1659-0_3

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

64

 In addition to specifying a role to include in your playbook, you can specify any
variables that you may want to use in that role. Let’s update your playbook to specify
some new variables that you’ll use to make your playbook more secure. You’ll be using
a different syntax for requiring a role, as you need to tell Ansible which entry is the role
to run (done by prefixing it with role:). Any other values passed in at this time will be
treated as variables that can be used in your tasks or templates :

 - hosts: all
 become: true
 roles:
 - role: mheap.wordpress
 database_name: michaelwp
 database_user: michaelwp
 database_password: bananas18374

 All of the variables provided are database related. There are two places that need to
be updated in order to use these new variables instead of hardcoded values: your tasks
file that creates the user and database, and your wp-config file that WordPress reads so
that it knows which credentials to use to access the new database. Ansible knows to look
for variables that are wrapped in curly braces like so: {{variable_name}} . This syntax is
defined by Jinja2, which is the templating engine used by Ansible. We’ll cover Jinja2 in
more detail a little later on.

 Open up roles/mheap.wordpress/tasks/main.yml and change any place that has
the database name, user, or password hardcoded to use our new variables instead. I’ve
highlighted these places :

 - name: Create WordPress MySQL database
 mysql_db: name=" {{database_name}} " state=present
 - name: Create WordPress MySQL user
 mysql_user: name=" {{database_user}} " host=localhost password=" {{database_
password}} " priv=" {{database_name}} .*:ALL"
 - name: Does the database exist?
 command: mysql -u root {{database_name}} -e "SELECT ID FROM {{database_
name}}. wp_users LIMIT 1;"
 register: db_exist
 ignore_errors: true
 changed_when: false
 - name: Copy WordPress DB
 copy: src=files/wp-database.sql dest=/tmp/wp-database.sql
 when: db_exist.rc == 1
 - name: Import WordPress DB
 mysql_db: target=/tmp/wp-database.sql state=import name=" {{database_
name}} "
 when: db_exist.rc == 1

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

65

 You should run vagrant provision at this point to ensure that all of the new
databases and users are being created. Once that’s completed successfully, you’ll need to
update wp-config.php in the templates directory to use your variables as well. You use
the same curly-brace syntax in a template as you do in a playbook:

 /** The name of the database for WordPress */
 define('DB_NAME', '{{database_name}}');

 /** MySQL database username */
 define('DB_USER', '{{database_user}}');

 /** MySQL database password */
 define('DB_PASSWORD', '{{database_password}}');

 After making this change and running vagrant provision , you can log in using vagrant
ssh and then run cat /var/www/book.example.com/wp-config.php to make sure that your
new values are in the correct place. Finally, log out of the virtual machine by running exit.

 This is a great example of how variables can be used to make the deployment of
your application more secure. However, variables can be used for much more than
just database names and passwords! Let’s update your WordPress role so that not only
can you customize the database credentials, but you can also decide where on disk the
application lives and what content the default post on the website will contain!

 Customizing the WordPress Domain Name
 At the moment, the URL that WordPress runs on is hardcoded to book.example.com
in several places. This means that your role can only configure a single WordPress
installation. Let’s update the role so that instead of having a hardcoded domain, it accepts
the domain as a variable. Edit playbook.yml and add another variable that tells Ansible
the WordPress domain name. Call this one wp_domain and set it to book.example.com :

 - role: mheap.wordpress
 database_name: michaelwp
 database_user: michaelwp
 database_password: bananas18374
 wp_domain: book.example.com

 Now that you have a variable to use, you need to update every place that contains the
hardcoded location so it uses the variable instead. Searching for book.example.com in the
 roles directory shows that it is used in three locations:

 1. roles/mheap.nginx/templates/default

 2. roles/mheap.wordpress/files/wp-database.sql

 3. roles/mheap.wordpress/tasks/main.yml

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

66

 Let’s edit the nginx configuration first. Open up roles/mheap.nginx/templates/
default and edit lines 6 and 7 so that they use the wp_domain variable, as follows:

 server_name {{wp_domain}};
 root /var/www/{{wp_domain}};

 The next file in the list is wp-database.sql . This is quite a large one, so you might
want to perform a find and replace, replacing book.example.com with {{wp_domain}} .
There should be five changes to make in this file.

 Finally, you need to update your tasks file. Just like with wp-database.sql , you’ll
need to exchange any occurrences of book.example.com with {{wp_domain}} . There
should be four changes to make in this file .

 Once you’ve saved all of these changes, run vagrant provision again. It should
complete successfully without any tasks reporting that they changed anything. All you’ve
done so far is change hardcoded strings to variables — you haven’t changed their values.

 Finally, you come to specifying the default post title and content. Once again, you’ll
need to edit playbook.yml and add some new variables:

 - role: mheap.wordpress
 database_name: michaelwp
 database_user: michaelwp
 database_password: bananas18374
 wp_domain: /var/www/book.example.com
 initial_post_title: Hey There
 initial_post_content: >
 This is an example post. Change me to say something interesting.

 The default post title and content are controlled by the database file that you import,
so let’s open up wp-database.sql and make it use the variables that you defined instead
of hardcoded values. The default post title is “Hello world!” Search wp-database.sql for
this string and change it to use {{initial_post_title}} instead. Next, look at the field
just before the title (the one that starts with “Welcome to WordPress”). This is the default
post that will be imported. Delete everything between the single quotes and replace it
with {{initial_post_content}} .

 You’re almost done! There’s just one final change to make before you can test your new
variables. In your WordPress role, you use the copy module to get the wp-database.sql
file onto the remote machine. The copy module doesn’t do anything to the file — it just copies
it as is. To have your variables populated, you’ll need to use the template module instead.
To do this, edit roles/mheap.wordpress/tasks/main.yml and change the word “ copy ” to
“ template ” for the Copy WordPress DB task:

 - name: Copy WordPress DB
 template: src=wp-database.sql dest=/tmp/wp-database.sql
 when: db_exist.rc > 0

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

67

 As you’re now using the template module rather than the copy module, you also
need to change where wp-database.sql lives. Move it out of the files directory and into
the templates directory with the following command:

 mv provisioning/roles/mheap.wordpress/files/wp-database.sql provisioning/
roles/mheap.wordpress/templates

 At this point, it’s time to run Ansible again. As the database already exists, your new
 wp-database.sql file won’t be imported. It’s been a while since you destroyed the virtual
machine and tried to recreate it from scratch, so this seems like a good opportunity to
ensure that everything is working as intended.

 Run vagrant destroy followed by vagrant up in your terminal in the same
directory as your vagrantfile. Vagrant will destroy the virtual machine and create an
empty one for Ansible to run against. This will take a few minutes, so leave it running in
the background and keep reading this chapter.

 Variable Locations
 When I said that Ansible had great support for variables , I wasn’t exaggerating. Not only
can they be used in playbooks or files, but you can also define them in sixteen different
locations! While the Ansible documentation explains variable precedence across all
sixteen locations, it does not provide examples of how to use each one or, perhaps more
importantly, when to use each one. We’re going to take a look at each location and
explain when to use it to set a variable. The ones that are commonly used in playbooks
have been marked to give you an idea of common extension points.

 These locations are in the order of least to most important; that is, role defaults
have the lowest precedence when it comes to setting variable values and are overridden
by everything else. Inventory group variables override role defaults, but are themselves
overridden by the set_fact module.

 Role Defaults (Commonly Used)
 This is the defaults/main.yml file in your role. Variables set in this file have the lowest
precedence of any variables set, which makes it perfect for setting default values. For
example, in your_role/defaults/main.yml :

 your_name: World

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

68

 Inventory Variables
 When you created an inventory file for Ansible to connect to your Vagrant machine, you
used inventory variables . Most of the time you’ll only use inventory-specific variables in
the inventory file (such as ansible_user or ansible_ssh_private_key-file, which we
covered in Chapter 2), but you can set any variable you like. This variable will then only
be available on this host. For example:

 192.168.33.20 your_name=World

 You can also specify variables for a group of hosts or a group of groups, such as:

 [app]
 192.168.33.20
 192.168.33.21

 [admin]
 192.168.33.33

 [database]
 192.168.33.55

 [websites:children]
 app
 admin

 [app:vars]
 your_name=World

 [admin:vars]
 your_name=World

 [database:vars]
 your_name=Michael

 [websites:vars]
 php_version: 7

 Inventory Group Variables
 To set group variables for the inventory, your inventory needs to be in its own folder.
Create a folder called inventory and move your inventory file (covered in Chapter 2) into it;
that is, so your actual inventory file is located at inventory/inventory .

http://dx.doi.org/10.1007/978-1-4842-1659-0_2

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

69

 To use inventory group variables, you must create a folder called inventory/group_
vars , which can contain variable files for any groups that you have created, such as with
the following inventory/inventory file:

 [app]
 192.168.33.20
 192.168.33.21

 [admin]
 192.168.33.33

 [database]
 192.168.33.55

 To specify group variables for the hosts in this inventory file, you must have a folder
structure that looks like that in Figure 5-1 .

 Any variables that you define in inventory/group_vars/admin.yml will be available
on any hosts in the admin group.

 Inventory Host Variables
 Similar to inventory/group_vars , you can specify variables per host. Using the same
inventory file:

 [app]
 192.168.33.20
 192.168.33.21

 [admin]
 192.168.33.33

 [database]
 192.168.33.55

 Figure 5-1. Required directory structure for using inventory/group_vars

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

70

 You can create a folder structure that looks like that in Figure 5-2 .

 Any variables defined in 192.168.33.20.yml will be available on the host
 192.168.33.20 .

 Create inventory/host_vars/192.168.33.20.yml with the following contents:

 your_name: World

 This is functionally equivalent to having the following in your inventory file:

 192.168.33.20 your_name= World

 Playbook Group Variables (Commonly Used)
 Group variables can also be defined at the playbook level in a group_vars folder. They
look and behave exactly like the inventory group_vars folder, except that they are at the
same level as playbook.yml and have a slightly higher precedence.

 Playbook Host Variables (Commonly Used)
 Just like group variables, host variables can be defined at the playbook level. They’re
functionally equivalent to the inventory host_vars , but with a slightly higher precedence.

 Host Facts
 Ansible has the concept of a “fact,” which is information that is available about the current
host. There are facts available for lots of different information, including which operating
system the machine is running, what its IP address is, and even how much memory is
being used on the machine. These facts exist during an Ansible run as variables for you to
use in your playbooks and templates.

 Figure 5-2. Required directory structure for inventory/group_vars

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

71

 When Ansible runs, it runs the setup module to gather facts about a host. If you
define facts with the same names as role defaults or group or host variables, they will
be overwritten with the host facts (as host facts have a higher priority). If you register a
variable or use the set_fact module using the same name as a built-in fact, the host fact
will be overwritten.

 For example, the setup module returns a fact named ansible_all_ipv4_addresses ,
which is a list of all IPv4 addresses on the box. All facts are prefixed with ansible_ , so it is
difficult to overwrite them accidentally.

 To see which facts are available for a host, you can use the setup module as follows:

 ansible all –i /path/to/inventory –m setup

 Registered Variables (Commonly Used)
 When working within a playbook, you may want to save the output from modules to
access in a later step. For example, the following playbook stores filesystem information
about /etc/hosts in a variable called hosts_info :

 - hosts: all
 tasks:
 - stat: path=/etc/hosts
 register: hosts_info
 - debug: var=hosts_info

 If the variable hosts_info was defined in any location with a lower priority than
registered variables, it would now be overwritten. This can lead to bugs that are hard to
track down where a variable has one value before this task runs, but a different value after
the task has run. Using variable prefixes can help to avoid this.

 Set Facts
 You can also explicitly set facts in a playbook to be used later. In this simple example, we
set example_var to be a string:

 - hosts: all
 tasks:
 - set_fact: example_var="Hello world"
 - debug: var=example_var

 This is the simplest example of set_fact available. It only really starts to become
useful when you need to manipulate the results of another module call in a playbook.

 Here’s another simple example that shows off variable manipulation, taking the
output of the stat module and converting it to be upper case:

 - hosts: all

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

72

 tasks:
 - stat: path=/etc/hosts
 register: host_info
 - set_fact: example_var="{{host_info.stat.path|upper}}"
 - debug: var=example_var

 Playbook Variables
 You can set variables directly in a playbook if you want to override a few variables when
including roles, or if you just need to write a small playbook and want to keep everything
in the same file to minimize the number of files created.

 To define variables in a playbook, you just create a vars section at the same level as
 tasks :

 - hosts: all
 gather_facts: false
 vars:
 your_name: World
 tasks:
 - debug: msg="Hello {{your_name}}"

 Playbook vars_prompt
 When running a playbook, there may be information that you need to collect at runtime.
This may be sensitive information, such as passwords. (We’ll cover working with sensitive
data using Ansible vault later on.) At other times, this is information that can only be
provided by the end user at runtime, such as the password to use for the root user when
bootstrapping a system.

 You can collect this information from the end user by specifying a vars_prompt section
in your playbook. When you run the playbook, it will ask the questions you’ve specified and
record the answers, ready to be used as variables, as shown in the following snippet:

 --
 - hosts: all
 vars_prompt:
 - name: your_name
 prompt: "What is your name?"
 tasks:
 - debug: msg="Hello {{your_name}}"

 It’s important to note that when Ansible prompts you for a value, it does not show the
value as you type. This is in case you are entering any sensitive information. Otherwise, it
would be available if someone scrolled back through your history.

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

73

 $ ansible-playbook -i /path/to/inventory playbook.yml
 What is your name?:

 PLAY

 TASK [debug]

 ok: [localhost] => {
 "msg": "Hello Michael"
 }

 Playbook vars_files
 Playbooks will read group_vars and host_vars by default, but you can also instruct them
to read additional variable files via the vars_files parameter in a playbook. For example:

 - hosts: all
 vars_files:
 - michael.yml
 tasks:
 - debug: msg="Hello {{your_name}} from {{location}}"

 This playbook will load michael.yml in the same folder as that in which the playbook
is running. The format of these variable files is the same as group_vars and host_vars .

 While you can specify a static list of variable files, the real power of vars_files
becomes clear when you combine it with other variables. You can use variables such as
 ansible_os_family to include variables conditionally:

 - hosts: all
 vars_files:
 - "{{ ansible_os_family }}.yml"

 This will be interpreted by Ansible as something like Redhat.yml or Debian.yml
(depending on your operating system), allowing you to select files dynamically by
interpolating variables based on the current OS family.

 You can also read user input with a vars_prompt and use that to include a vars_
file , as follows:

 - hosts: all
 vars_prompt:
 - name: include_file
 prompt: "Which file should we include?"
 vars_files:
 - "{{include_file}}.yml"
 tasks:
 - debug: msg="Hello {{your_name}} from {{location}}"

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

74

 This playbook will take a user’s input and try to include a variables file with the same
name if that file exists. If it doesn’t exist, you will get an error. Here, I typed in unknown-
name , which is not a file that exists:

 Which file should we include?:
 ERROR! vars file unknown-name.yml was not found

 You can provide defaults for vars_files , and Ansible will include the first one that
it finds. This works really well when coupled with user inputs or variables. If you specify
a valid user, it will use that user; otherwise, it will fall back to default_user . Let’s take the
following playbook:

 - hosts: all
 vars_prompt:
 - name: include_file
 prompt: "Which file should we include?"
 vars_files:
 - ["{{include_file}}.yml", "default_user.yml"]
 tasks:
 - debug: msg="Hello {{your_name}} from {{location}}"

 Also see the folder structure in Figure 5-3 .

 Figure 5-3. Example files for the vars_files example

 If I provide the name “michael” at the prompt, it says hello to me, as michael.yml
exists and contains all of the variables it needs:

 TASK [debug]

 ok: [localhost] => {
 "msg": "Hello Michael from London"
 }

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

75

 If I provide the name “john” at the prompt, it can’t find a file named john.yml , so it
will fall back to default_user.yml , as it’s the first entry in the list that exists:

 TASK [debug]

 ok: [localhost] => {
 "msg": "Hello Unknown from Some Place"
 }

 By combining vars_prompt and vars_files , you can keep all of your configuration
in a version-controlled system while dynamically choosing which configuration to use at
runtime.

 Role Variables (Commonly Used)
 When using roles in a playbook, you can specify variables that should be used when
running that role. You used this earlier when setting values for the variables required by
your WordPress role:

 - hosts: all
 become: true
 roles:
 - role: mheap.wordpress
 database_name: michaelwp
 database_user: michaelwp
 database_password: bananas18374

 Block Variables
 A block in Ansible is a grouping of tasks. It allows for error handling in playbooks and
also for applying settings to groups of tasks all at once. For example, take a look at the
following tasks:

 - hosts: all
 tasks:
 - apt: name=apache2 state=installed
 become: true
 when: do_something.rc == 0

 - copy: content="Example File" dest=/var/www/hello.html
 become: true
 when: do_something.rc == 0

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

76

 Instead of specifying become and when for every task in this example, you can use a
block and specify it once for all tasks inside that block:

 - hosts: all
 tasks:
 - block:
 - apt: name=apache2 state=installed
 - copy: content="Example File" dest=/var/www/hello.html
 become: true
 when: do_something.rc == 0

 In addition to arguments such as become and when , you can use a block to provide
any variables that will only apply to tasks within that block. To do this, you provide the
 vars argument and place any variables that should be available underneath it:

 - hosts: all
 tasks:
 - block:
 - debug: msg="Hello {{your_name}}"
 - debug: msg="How are you {{your_name}}?"
 vars:
 your_name: Michael

 Task Variables
 In addition to block-level variables, you can specify variables at a per- task level :

 - hosts: all
 tasks:
 - debug: msg="Hello {{your_name}}"
 vars:
 your_name: Michael

 This isn’t terribly useful, as you can just specify the value directly in the task.
However, if the task uses the same value multiple times, it can be useful to make it a
variable. A good example of this is the Apache2 package.

 On Debian-based machines, the Apache2 configuration file lives at /etc/apache2/
apache2.conf . On RedHat-based machines, the Apache2 configuration file lives at /etc/
httpd/httpd.conf . Instead of providing apache2 or httpd multiple times, you can use a
task-level variable, as follows:

 - hosts: all
 tasks:

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

77

 - template: src=webserver.conf dest=”/etc/{{name}}/{{name}}.conf”
 vars:
 name: apache2

 We’ve reduced the duplication of apache2 in our task name by using task-specific
variables.

 Extra Variables
 Extra variables are specified at runtime and have the highest priority of all variables set.
This means that no matter where a value has been set, you can overwrite it if you really
want to do so:

 ansible-playbook –i /path/to/inventory playbook.yml –e 'your_name=Fred'

 You specify extra variables with the –e flag on the command line when you run
 ansible-playbook . You can specify multiple –e flags to set as many variables as you like.
For example, examine the following code:

 ansible-playbook –i /path/to/inventory playbook.yml –e 'your_name=Fred' –e
'my_name=Michael'

 Alternatively, you can specify additional variables in the JSON format:

 ansible-playbook –i /path/to/inventory playbook.yml –e '{"your_
name":"Fred","my_name":"Michael"}'

 If you have lots of additional variables, you may prefer to pass a filename that will be
read instead:

 ansible-playbook –i /path/to/inventory playbook.yml –e @large_variable_
file. json

 Gathering Facts
 When Ansible starts up, it uses the setup module to gather information about the current
host using as many different tools as possible. Two of the main fact engines are called
 facter and ohai . Running the setup module on my OS X machine returns over 3,500
lines of information from ohai . (See Figure 5-4 for an example.)

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

78

 Figure 5-4. Example files for vars_ files

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

79

 Everything within the ansible_facts key in the returned dictionary is available
as a variable in your playbooks and templates. There are lots of useful facts, such as
the architecture of the system, the current date/time, ipv4 and ipv6 information for all
network adapters available, and more. You can even work out how much memory is free
on the target machine with ansible_memfree_ mb .

 You can also take a look at the ansible_env variable , which contains all of the
environment variables available on a system. (Remember, you can use these in your
playbooks!) I highly recommend running the setup module and taking a look at all of
the information available. You can run the setup module by hand with the following
command:

 ansible all –i inventory –m setup

 Disabling Facts
 You may have noticed that Ansible takes a little while to start up when gathering facts
about the current host. If you don’t plan to use these facts, you can disable them in your
playbook by setting gather_facts to false :

 - hosts: all
 gather_facts: false
 tasks:
 - debug: msg="Hello Michael"

 Facts.d
 If you decide that the facts Ansible provides aren’t enough, you can create your own
facts on any machine. Ansible will read /etc/ansible/facts.d/*.fact and make
those available to you in your playbooks. It’s up to you to get those facts onto the
remote machine—you can put them there by hand, write a playbook to populate them,
or anything you like! So long as the files end with .fact , they’ll be loaded. They can
be in INI, JSON, or YAML format. You can use this mechanism to provide additional
information for use in playbooks on each machine you’re running.

 If a file exists at /etc/ansible/facts.d/users.fact with the following contents

 [michael]
 use_colours=1
 passwordless_sudo=0

 then these facts will be available under an ansible_local key. The filename used
becomes a key underneath ansible_local , and then each section in this file becomes
another key:

 “ansible_local”: {
 “users”: {
 “michael”: {

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

80

 “use_colours” : “1”,
 “passwordless_sudo” : “0”
 }
 }
 }

 Fact Caching
 If you make use of facts in your playbook but don’t want to pay the price of gathering facts
with every run of your playbook, you can use fact caching to speed things up. You have to
explicitly enable this in your ansible.cfg file and specify whether you want to use Redis
or JSON files as your data store for caching facts.

 To enable file-based caching, use the following configuration in ansible.cfg:

 [defaults]
 gathering = smart
 fact_caching = jsonfile
 fact_caching_connection = /path/to/cachedir
 fact_caching_timeout = 86400

 This sets the fact-gathering mechanism to be smart, which means that it will check
the fact cache before gathering facts. Then, we enable JSON file caching, specify a path to
store the files, and tell Ansible that cache files are valid for 86400 seconds (1 day).

 hostvars
 Finally, we come to hostvars . This is a special variable that stores information about
hosts other than the current machine. This allows you to look up details about other
machines to help you decide what to do in your playbook. For example, you could look up
the internal IP address of a machine given its public hostname:

 hostvars[‘database.example.com’][‘ansible_eth0‘][‘ipv4’][‘address’]

 hostvars is populated as Ansible accesses a host, which means that you can only
access facts about hosts that you’ve already seen. If you need facts about all machines
before they have been accessed, you can enable host caching and run a playbook that just
logs in to each machine and collects facts each day.

 Working with Variables
 Variables in Ansible are managed by the Jinja2 templating engine. The Jinja2 engine
is a powerful templating tool for Python projects. There are ports available in many
languages, such as Twig for PHP and Nunjucks for NodeJS. Jinja2 provides variable
substitution using the {{double_brace_syntax}} , but it is much more powerful than
mere substitution. It also provides dozens of data-manipulation tools, called filters .

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

81

 There are over 45 built-in filters in Jinja2 (http://jinja.pocoo.org/docs/
templates/#builtin-filters). You won’t use most of these filters much, but some
of the core filters, such as map , replace , rejectattr , selectattr , first , and last , are
indispensable once you start using modules that return data that you need to manipulate
and use later on, such as the Amazon AWS modules.

 For example, imagine that you have a list of all employees in your company, but you
only want to provide employees in the engineering department with accounts on your
machines. The following playbook takes a list of users and uses the Jinja2 selectattr
filter to reduce the list down to only those who are members of the engineering
department:

 - hosts: all
 vars:
 users:
 - name: Michael
 department: Engineering
 - name: John
 department: Engineering
 - name: Peter
 department: Finance
 tasks:
 - user: name="{{item.name}}" groups=developers append=yes
 with_items: "{{ users | selectattr('department', 'equalto',
'Engineering') | list }}"

 The users variable could come from anywhere—it doesn’t have to be hardcoded
in the playbook. You might have a script that generates a list of users that you use in
conjunction with vars_files , or you may pass it in on the command line as extra
parameters using the –e flag, both of which were shown earlier in this chapter.

 Variables are one of the core aspects of building flexible playbooks. One very
powerful pattern for building infrastructure as code is to separate your playbooks from
your data completely. This means that your playbooks use variables for everything,
and all of the data required to install a system is contained in variable files. If at any
point in the future you want to move to another tool or want to generate the data files
automatically, it’s very easy to do so, as all of the data required are specified separate from
the actual execution logic.

 This is relatively easy to do by using vars_files . The following playbook contains no
information about what to install, just the information required to know how to install the
relevant packages:

 - hosts: all
 vars_files:
 - php.yml
 tasks:
 - apt: name="{{item}}" state=installed
 with_items: php_packages

http://jinja.pocoo.org/docs/templates/#builtin-filters
http://jinja.pocoo.org/docs/templates/#builtin-filters

CHAPTER 5 ■ PARAMETERIZING PLAYBOOKS

82

 php.yml is a simple YAML file that contains the php_packages variable :

 php_packages:
 - php
 - php-fpm

 If you ever decide that Ansible isn’t the tool for you, it’s easy to switch if you use this
pattern. All of the data is contained in configuration files that can be used with other
tools, and all you’d need to do is to reimplement the equivalent of a playbook in whatever
tool you choose.

 Ansible’s Variable Philosophy
 You can define variables at various levels throughout an Ansible playbook, but Ansible’s
philosophy is that a variable should usually be defined only once. You must think about
where it should be placed rather than where it should be overridden, and you will avoid
the question “Which value of X is being used here?”

 Of course, there are exceptions to this rule, including defining default values for a
role. Ansible allows you to set a variable at one of sixteen possible levels. Most of the time,
however, you’ll only be setting it in one of the common locations.

 Summary
 Variables are at the very core of getting the most out of Ansible. Being able to perform actions
that are conditionally dependent on your environment and user-specified inputs means that
you can write your playbooks in such a way that they always do the correct thing, no matter
which environment they’re being run in. There are numerous locations where variables can
be supplied, and it’s up to you to decide where you will specify your variables for Ansible
to use. In the “Variables Locations” section earlier in this chapter, some of the locations are
marked as commonly used . These are the most common places to place variables based on
both my personal experience and an evaluation of open-source roles.

 In the next chapter, you’ll be writing your own module that creates users in your
WordPress install using the RPC API that’s available. You’ll look at writing the same
module in both Python (using the Ansible module helpers) and PHP to show that
modules can be written in any language. This will also help you understand the functions
that the Ansible helper provides that you would otherwise have to handle yourself.

83© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_6

 CHAPTER 6

 Writing Your Own Modules

 There are modules for all of the common system administration tasks available in
Ansible. There are currently 495 modules shipped with Ansible, which is a huge increase
over the 141 modules that shipped with it in October 2013.

 While writing this chapter, I thought about creating an iptables module, a htpasswd
module, and a haproxy module as an example, but Ansible ships with all of these
modules already. Instead, we’re going to be creating a wp_user module with which to
update user details in a WordPress install using Ansible via WordPress’ RPC API.

 About Ansible Modules
 All of the core modules in Ansible are developed in Python. They’re split into two sets of
modules: ansible-modules-core and ansible-modules-extras .

 ansible-modules-core
 ansible-modules-core contains all of the core modules that ship with Ansible, such as
 apt , template , and copy , and it is maintained by the Ansible core team. These modules
are rock solid and are reviewed by the core team extensively before any changes to them
are released.

 ansible-modules-extras
 The remaining modules are stored in ansible-modules-extras , and while they are
shipped in a standard install of Ansible, they are actually maintained by the community.
The extras repository contains modules such as debconf , bundler , and pagerduty . When
contributing to Ansible, if your change impacts an extras module, the maintainer of that
module, not the Ansible core team, is responsible for reviewing your changes.

CHAPTER 6 ■ WRITING YOUR OWN MODULES

84

 Environment Setup
 Before you start writing your module, you need to perform a little bit of environment setup
to allow you to test the module as you write it. This work is going to be totally separate from
the work we’ve done in previous chapters, so let’s create a new folder to work in:

 mkdir ansible-module
 cd ansible-module
 git clone git://github.com/ansible/ansible.git --recursive
 source ansible/hacking/env-setup
 chmod +x ansible/hacking/test-module

 We clone Ansible from Github and then source a file that manipulates your
environment and makes sure that when you run the ansible command it points to your
downloaded version rather than to the globally installed version. It also makes ansible/
hacking/test-module executable, which you’ll use later on to test your module.

 You may also need to install Ansible’s pyyaml and jinja2 dependencies. You can do
this via pip, the Python package manager:

 pip install pyyaml jinja2

 Writing a Module Using Bash
 If your module is simple, you might choose to write it in Bash. Most of the time, I wouldn’t
recommend this, as Python is usually available. However it’s a good tool for writing a
simple module. Let’s create a module that takes a file and converts it to uppercase. Create
a file named file_upper , and then make it executable:

 touch file_upper
 chmod +x file_upper

 Now, let’s create a module that just returns some data in order for you to get used
to developing and running a module. Ansible expects all of its modules to return a JSON
string, so let’s write a module that returns a JSON-encoded string under the “ content ”
key. Add the following to file_upper :

 #!/bin/ bash

 cat <<EOF
 {"content":"Hello World"}
 EOF

CHAPTER 6 ■ WRITING YOUR OWN MODULES

85

 Once you’ve added this content, save it and run ansible/hacking/test-module -m
file_upper so as to run your module as Ansible would do. For now, this will output your
return data to the screen:

 $ ansible/hacking/test-module -m file_upper
 * including generated source, if any, saving to: /Users/michael/.ansible_
module_generated
 * this may offset any line numbers in tracebacks/debuggers!

 RAW OUTPUT
 {"content":"Hello World"}

 PARSED OUTPUT
 {
 "content": "Hello World"
 }

 Great! You just wrote your first Ansible module and tested it with the built-in Ansible
 test-module script. It doesn’t actually do anything yet, though. Let’s make it more useful.
The next thing to do is to read the arguments that Ansible provides.

 The way that Ansible provides arguments to modules is by writing the arguments to
a file and then passing the path to that file to the module. You can update your module
to show the file that is provided by substituting Hello World with $1 and running your
module again. Your module should now look like the following:

 #!/bin/bash
 cat <<EOF
 {"content":"$1"}
 EOF

 Once you’ve made this change, you can run the test-module script again and
inspect the module’s output. This time, when you run the test-module script, provide
some arguments using the –a flag:

 $ ansible/hacking/test-module -m file_upper -a foo=bar

 PARSED OUTPUT
 {
 "content": "/Users/michael/.ansible_test_module_arguments"
 }

CHAPTER 6 ■ WRITING YOUR OWN MODULES

86

 Your module now outputs a path to a file, which is what you were expecting to
see. This file contains the arguments passed to Ansible. Examine this file to see which
parameters were passed in:

 $ cat /Users/michael/.ansible_test_module_arguments
 foo= bar

 As you can see, the parameters that you specified when calling test-module have
been stored in this file. Thankfully, the format in which Ansible provides parameters to us
is very easy for Bash to parse. In your module, you can use source to include this file, as
the key=value format is what Bash uses to define variables. If you include your arguments
file using source , the variable $foo will be available with the value bar . Your module
should be updated to look like the following:

 #!/bin/bash

 source $1

 cat <<EOF
 {"content":"$foo"}
 EOF

 Run your module again, and see your foo parameter being used in your module:

 $ ansible/hacking/test-module -m file_upper -a foo=bar

 PARSED OUTPUT
 {
 "content": "bar"
 }

 ■ Note Although this works, sourcing user-provided input is very dangerous as it
evaluates and runs the code provided. While it works for the purposes of creating an
example module, it is not something that you should ever do in the real world.

 The last thing left to do is to implement your actual module logic. The code in your
module so far is just boilerplate to read variables in and output a result from your module.

 You need to make the module accept a filename as a parameter, then make all
characters in that file uppercase. To do this, you can use the tr command to translate
from lowercase to uppercase characters. Once you’ve translated the characters, you can
write the new content to the filename provided and return JSON for Ansible to work with.
To do all of this, your script needs to look like the following:

 #!/bin/bash

 source $1

CHAPTER 6 ■ WRITING YOUR OWN MODULES

87

 content=$(cat $file | tr '[:lower:]' '[:upper:]')
 echo $content > $file
 cat << EOF
 {"content":"$content"}
 EOF

 The next time that you run the module, the file that is specified will be converted to
uppercase. (Make sure that the file exists first!)

 $ ansible/hacking/test-module -m file_upper -a file=example_file.txt

 At this point, your module performs the action you would expect, but it is still
missing additional metadata that Ansible requires. Ansible modules should be
 idempotent , which means that you can run them multiple times and they will always
have the same output. Modules report back whether any changes were made using the
 changed attribute in the returned JSON. You can support this in your module by checking
to see if the content is the same both before and after you perform your transform:

 #!/bin/bash

 source $1

 original=$(cat $file)
 content=$(echo $original | tr '[:lower:]' '[:upper:]')

 if [["$original" == "$content"]]; then
 CHANGED="false"
 else
 CHANGED="true"
 echo $content > $file
 fi

 cat <<EOF
 {"changed":$CHANGED, "content":"$content"}
 EOF

 This file now contains all of the information that Ansible requires in order to run as a
standalone module. Give it a go with a file that contains lowercase text. The first time that
you run it, you’ll notice that changed is true . If you run the module again on the same file,
your module will report that changed is false . Your module is now idempotent.

 Of course, this module is still not complete. It has the security implications of
 sourcing an untrusted file and contains no error handling if the provided filename does
not exist. However, it introduced us to how to write modules for Ansible and how to test
them using test-module .

 If you were to go away and write a new Ansible module today, I’d recommend using
Python rather than Bash to accomplish your goal. It is generally preferable to write
modules in Python and then call an external process using the subprocess module
whenever you need the power of the shell.

CHAPTER 6 ■ WRITING YOUR OWN MODULES

88

 However, there are some reasons why you may choose to write a module in Bash
rather than in Python, such as reusing a toolkit that already exists or that relies on other
shell commands. Make your decisions on a case-by-case basis, and use the correct tool
for the job that needs to be accomplished.

 Writing a Module Using Python
 As Ansible doesn’t care which language you use to create a module, writing a module in
Python can be very similar to writing a module in Bash. Your script is called with a file
path containing your arguments as the first parameter. You can use Python to read and
parse this file and build out your module. However, Ansible ships with a library called
 ansible.module_utils.basic that provides all of the boilerplate that you’d otherwise
have to write yourself in every module. Core Ansible modules are all built using ansible.
module_utils.basic as well.

 Create a file called wp_user with the following contents:

 #!/usr/bin/python
 from ansible.module_utils.basic import *

 def main():
 module = AnsibleModule(
 argument_spec = dict(
 name = dict(required=True)
)
)

 params = module.params
 module.exit_json(changed=True, name=params['name'])

 if __name__ == '__main__':
 main()

 This code provides you with a basic Ansible module that takes a single argument,
 name. ansible.module_utils.basic will take care of parsing all of the arguments and
validating that they are required and in the correct format. If you try to run the module
without any arguments, you will see an error :

 PARSED OUTPUT
 {
 "failed": true,
 "invocation": {
 "module_args": {}
 },
 "msg": "missing required arguments: name"
 }

CHAPTER 6 ■ WRITING YOUR OWN MODULES

89

 All of the provided parameters are available in the params dict, which is populated
with module.params . You will use module.exit_json (which is provided by Ansible itself)
to output values back to Ansible and stop the module’s execution.

 If you call the module with a name argument, you can see that both changed and name
are returned, as well as information about how the module was invoked:

 $ ansible/hacking/test-module -m wp_user -a name="foo"

 PARSED OUTPUT
 {
 "changed": true,
 "invocation": {
 "module_args": {
 "name": "foo"
 }
 },
 "name": "foo"
 }

 At this point, you can start thinking about what parameters your user-management
module for WordPress will need. At a minimum, you will need to specify the URL of the
WordPress installation and your user’s username, password, and display name. You can
update your module definition to require these parameters :

 module = AnsibleModule(
 argument_spec = dict(
 url = dict(required=True),
 username = dict(aliases=['name'], required=True),
 password = dict(required=True),
 display_name = dict(required=False)
)
)

 A few additional options are needed in this module definition. First, you need to
specify that name is an alias for username . This is useful when changing the name of
parameters in a module to maintain backward compatibility. It is also not required that
the display_name argument be specified, as you won’t update it if it is not specified.

 Make sure that all of that is working by running your module now, providing both the
name and password, but without providing the url argument :

 $ ansible/hacking/test-module -m wp_user -a 'name="michael" password="pass"'
 PARSED OUTPUT
 {
 "failed": true,
 "invocation": {
 "module_args": {
 "name": "foo",
 "username": "foo",

CHAPTER 6 ■ WRITING YOUR OWN MODULES

90

 "password": "pass"
 }
 },
 "msg": "missing required arguments: url"
 }

 Note how name is also available for use as username in invocation.module_args .
This is because you told Ansible that username is an alias for name in your module
definition by using the following code:

 username = dict(aliases=['name'], required=True),

 The error message returned from the test-module script tells you that you’re missing
 url , but not display_name , as only url is required. If you run your module with all of the
required fields, you should see the same output that contains invocation information and
a name as you saw before:

 $ ansible/hacking/test-module -m wp_user -a 'name="michael" password="pass"
url="http://book.example.com" display_name="Michael"'

 PARSED OUTPUT
 {
 "changed": true,
 "invocation": {
 "module_args": {
 "display_name": "Michael",
 "name": "michael",
 "password": “pass”,
 "url": "http://book.example.com",
 "username": "michael"
 }
 },
 "name": "michael"
 }

 At this point, your module definition is done, and you can start implementing your
module. WordPress automatically enables it’s XML-RPC API, so you can start working
with it right away.

 To make a call to the RPC endpoint, you need to send a correctly formatted request
to http://book.example.com/xmlrpc.php . To do this, you can use Python’s built-in
 xmlrpclib module . Import xmlrpclib at the top of your code, and you can then start
using it. At the top of your module is the module definition, exactly the same as it was
before. Below that, though, you can see that you are connecting to your RPC server and
making a request to an example endpoint to make sure that everything is working as
intended. The boldfaced lines in the following code are what has changed:

 #!/usr/bin/python
 from ansible.module_utils.basic import *
 import xmlrpclib

http://book.example.com/xmlrpc.php

CHAPTER 6 ■ WRITING YOUR OWN MODULES

91

 def main():
 module = AnsibleModule(
 argument_spec = dict(
 url = dict(required=True),
 username = dict(aliases=['name'], required=True),
 password = dict(required=False),
 display_name = dict(required=False)
)
)

 params = module.params

 server = xmlrpclib.ServerProxy('%s/xmlrpc.php' % params['url'],
use_datetime=True)

 res = server.demo.sayHello()

 module.exit_json(changed=True, name=res)

 if __name__ == '__main__':
 main()

 You’ve made a request to the demo.sayHello endpoint in WordPress’s RPC API.
All this endpoint does is to return the string “Hello!”, which means that you can use it to
test your connectivity. If you run your module with the preceding code, you can see that
things are working as intended:

 PARSED OUTPUT
 {
 "changed": true,
 "invocation": {
 "module_args": {
 …
 }
 },
 "name": "Hello!"
 }

 By reading the WordPress documentation , you can see that the action used to
change user details is wp.editProfile (https://codex.wordpress.org/XML-RPC_
WordPress_API/Users#wp.editProfile). From this documentation, you can see that you
can set a user’s first_name , last_name , url , display_name , nickname , nicename (which
the documentation defines as “A string that contains a nicer looking name
for the user.”) , and bio via the endpoint. Now, update your module definition to
support all of these parameters:

https://codex.wordpress.org/XML-RPC_WordPress_API/Users#wp.editProfile
https://codex.wordpress.org/XML-RPC_WordPress_API/Users#wp.editProfile

CHAPTER 6 ■ WRITING YOUR OWN MODULES

92

 module = AnsibleModule(
 argument_spec = dict(
 url = dict(required=True),
 username = dict(aliases=['name'], required=True),
 password = dict(required=False),
 first_name = dict(required=False),
 last_name = dict(required=False),
 user_url = dict(required=False),
 display_name = dict(required=False),
 nickname = dict(required=False),
 nicename = dict(required=False),
 bio = dict(required=False)
)
)

 The names are taken directly from the WordPress documentation, except for url ,
which became user_url , as you’re already using url as a parameter. The next step
is to update your module to call wp.editProfile with the details that you pass in as
arguments to your module.

 Next, you iterate over all of the parameters provided, skipping username , password ,
and url . You must also rename the user_url key to url , as that is what WordPress will be
expecting. Finally, you make the request by replacing res = server.demo.sayHello()
with the following code:

 details = {}
 skip_fields = ['username','name','password','url']
 mappings = {"user_url": "url"}
 for k, v in params.iteritems():
 if k in skip_fields:
 continue
 if v:
 if k in mappings:
 k = mappings[k]
 details[k] = v
 res = server.wp.editProfile(1, params['username'], params['password'],
details)

 If you run this code using the following command and then log in to your WordPress
install’s admin area (http://book.example.com/wpadmin/profile.php), you can see that
the profile has been updated:

 $ ansible/hacking/test-module -m wp_user -a 'name="michael" url="http://
book.example.com" password="password" first_name="Michael" last_name="Heap"
user_url="http://michaelheap.com"'

 At the moment, your module always returns changed: true , as it makes a request
to WordPress even if you’re not going to change any details. To make your module
idempotent, you need to fetch the user’s details and determine whether the values that
you’re providing are different from the values currently on record. To fetch user details,

CHAPTER 6 ■ WRITING YOUR OWN MODULES

93

you use the wp.getUsers endpoint. There is a getUser endpoint, but that expects you to
specify a user ID, which you do not know. Instead, you fetch all users and search through
them until you find the current user. Add the code to search the existing users between
the line that starts server = xmlrpclib and the one that contains details = {} :

 server = xmlrpclib.ServerProxy('%s/xmlrpc.php' % params['url'], use_
datetime=True)
 existing_users = server.wp.getUsers(1, params['username'],
params['password'])
 current_user = None
 for u in existing_users:
 if u['username'] == params['username']:
 current_user = u
 break

 You do know that the user will exist, as you’re logging in as the user, so you can
just search until you find a username that matches the one that you’re using to log in.
You save this user as current_user for use later. Then, just before you make a call to
 wp.editProfile , you iterate over all of the keys in detail and compare them with the
current values. If any values don’t match, you update the user details to the new values
and mark the user as changed. If the user has changed, you can make a request to
WordPress; otherwise, you don’t need to make the request:

 is_changed=False
 for k,v in details.iteritems():
 if current_user[k] != details[k]:
 current_user[k] = details[k]
 is_changed = True

 if is_changed:
 server.wp.editProfile(1, params['username'], params['password'],

details)

 The next step is to return is_changed in your call to module.exit_json so that any
handlers will be triggered correctly. You should also return the user so that the details are
available if anyone wants to register a variable and use them later:

 module.exit_json(changed=is_changed, user=dict(current_user))

 At this point, you have only one last thing to implement: check mode. Ansible can
run a playbook and tell you if anything would have changed without actually changing
anything. This is useful for getting an idea of what a playbook run will do. You have to tell
Ansible explicitly that your module supports check mode by adding supports_check_
mode=True to your module definition :

 module = AnsibleModule(
 argument_spec = dict(...),
 supports_check_mode=True
)

CHAPTER 6 ■ WRITING YOUR OWN MODULES

94

 Once you’ve done this, you need to make sure that the call that makes the change
isn’t actually executed. You already check to see if anything has changed before making
the request, so you can reuse that same if statement for check mode as well:

 if is_changed and not module.check_mode:
 server.wp.editProfile(1, params['username'], params['password'],

details)

 You need to make one more small change, as Ansible provides an additional
parameter of _ansible_check_mode , which we’re not interested in when updating a user.
Add this to skip_fields to make sure that you don’t accidentally try to use it:

 skip_fields = ['_ansible_check_mode', 'username','name','password','url']

 This brings us to the end of your first Ansible module. You can run it multiple times,
and it will have the same result every time. If the user already contains all of the details
you supply, then overwriting them with the same details won’t make any difference. This
means that your module is idempotent!

 This module actually goes one step further and will only make changes if it needs
to do so, making it totally nullipotent (which means that it will run exactly once to make
the changes, then it won’t run again barring external changes). You only needed to write
50 lines of code, and 30 percent of that was your module definition. Keep that in mind
when reading the next section, which walks you through writing a module in another
programming language. Here’s the entire module:

 import xmlrpclib
 from ansible.module_utils.basic import *

 def main():
 module = AnsibleModule(
 argument_spec = dict(
 url = dict(required=True),
 username = dict(aliases=['name'], required=True),
 password = dict(required=False),
 first_name = dict(required=False),
 last_name = dict(required=False),
 user_url = dict(required=False),
 display_name = dict(required=False),
 nickname = dict(required=False),
 nicename = dict(required=False),
 bio = dict(required=False)
),
 supports_check_mode=True
)
 params = module.params
 server = xmlrpclib.ServerProxy('%s/xmlrpc.php' % params['url'], use_
datetime=True)

CHAPTER 6 ■ WRITING YOUR OWN MODULES

95

 existing_users = server.wp.getUsers(1, params['username'], params['password'])
 current_user = None
 for u in existing_users:
 if u['username'] == params['username']:
 current_user = u
 break

 details = {}
 skip_fields = ['_ansible_check_mode', 'username','name','password','url']
 mappings = {"user_url": "url"}
 for k, v in params.iteritems():
 if k in skip_fields:
 continue
 if v:
 if k in mappings:
 k = mappings[k]
 details[k] = v

 is_changed=False
 for k,v in details.iteritems():
 if current_user[k] != details[k]:
 current_user[k] = details[k]
 is_changed = True
 if is_changed and not module.check_mode:
 server.wp.editProfile(1, params['username'], params['password'], details)

 module.exit_json(changed=is_changed, user=dict(current_user))

 if __name__ == '__main__':

 main()

 Using ansible.module_utils can really help keep your modules focused. ansible.
module_utils provides you with lots of things for free, such as argument parsing and
validation, as well as methods to easily return data to Ansible from the module.

 Writing in Any Other Programming Language
 You don’t have to use Python to write Ansible modules—you can use any programming
language you like. However, without ansible.module_utils.basic , you would need to
implement the argument handling yourself. Even basic argument parsing can get quite
complicated. Here’s an example of how to parse the key=value format in PHP and return
the input values back to Ansible:

 #!/usr/bin/env php

 <?php

 $args = file_get_contents($argv[1]);

 $params = [];
 $currentParam = '';

CHAPTER 6 ■ WRITING YOUR OWN MODULES

96

 foreach (array_merge(explode(" ", $args),['=']) as $part) {
 if (strpos($part, "=") !== false) {
 if ($currentParam) {
 list($k, $v) = explode("=", $currentParam, 2);
 $v = preg_replace('/"([^""]+)"/', '$1', $v);
 $params[$k] = $v;
 }
 $currentParam = $part;
 } else {
 $currentParam .= ' '.$part;
 }
 }

 echo json_encode($params);

 This code just parses your argument list. You would have to implement all of the
validation to make sure that required parameters are provided. You’d have to do all of this
validation before you even started implementing your business logic too.

 However, this is a valid Ansible module, so feel free to save it as demo_php and then
try running it with test-module if you have PHP installed on your machine:

 $ ansible/hacking/test-module -m demo_php -a 'name="michael" url="http://
book.example.com" password="password" first_name="Michael" last_name="Heap"'

 This should just return the input values:

 PARSED OUTPUT
 {
 "first_name": "Michael",
 "last_name": "Frank",
 "name": "michael",
 "password": "password",
 "url": "http://book.example.com"
 }

 If you’re planning on writing modules in a language other than Python, you could
wrap your argument parsing and validation code into a shared package, which you
could include and use in each module, so it’s not actually as bad as it sounds. However,
 AnsibleModule gives you so much for free that it makes sense to write Ansible modules
in Python when possible. Who knows, maybe you could even contribute them back to
Ansible so that others can make use of them as well?

 Providing Facts via a Module
 In addition to providing actions, modules can deliver facts to be used in the rest of your
run. When your module returns, you can provide a special ansible_facts key that is a
dictionary of key => value pairs. Any keys in this dictionary will be available as facts.

CHAPTER 6 ■ WRITING YOUR OWN MODULES

97

 In this section, you’re going to update your module to provide a new fact, wp_
current_users . This will contain the list of users in your WordPress installation.

 To be able to display this variable, you will write a playbook that uses your new module.
Create a file called play.yml in the same folder as wp_user , with the following contents:

 - hosts: all
 gather_facts: false
 tasks:
 - name: Update User
 wp_user: username=michael password=password url="http://book.example.

com" first_name="Michael"

 - debug: var=wp_existing_users

 To run this playbook, you need to specify a custom module path to ansible-playbook
with –M . By default, Ansible reads its own, built-in modules folder that contains the core
modules that you’ve already used, such as apt and template . The exact path read is
different depending on your operating system. To use your new wp_user module, you need
to set your module path to the current directory so that it can pick up the wp_user module:

 ansible-playbook -i 'localhost,' -M . -c local play.yml

 If you run this now, Ansible will tell you that wp_existing_users is an undefined
variable. Now, let’s update your module to return some facts. At the bottom of your
module, update the module.exit_json line to return another key, ansible_facts :

 facts = {}
 module.exit_json(changed=is_changed, user=dict(current_user), ansible_
facts=facts)

 Finally, you need to update your module to populate this new facts variable. As you
still have your list of existing_users from your earlier call to wp.getUsers , you can reuse
that value and return it as a fact, naming it wp_existing_users :

 facts = {
 "wp_existing_users": existing_users
 }

 Once you’ve done this, save the module and run ansible-playbook again. This time,
your debug call should output a list of users that exist in your WordPress install:

 $ ansible-playbook -i 'localhost,' -M . -c local play.yml

 PLAY

 TASK [Update User]

 ok: [localhost]

CHAPTER 6 ■ WRITING YOUR OWN MODULES

98

 TASK [debug]

 ok: [localhost] => {
 "wp_existing_users": [
 {
 "bio": "",
 "display_name": "michael",
 "email": "m@michaelheap.com",
 "first_name": "Michael",
 "last_name": "Heap",
 "nicename": "michael",
 "nickname": "michael",
 "registered": "2016-03-07T20:29:20",
 "roles": [
 "administrator"
],
 "url": "http://michaelheap.com",
 "user_id": "1",
 "username": "michael"
 }
]
 }

 Anything returned under ansible_facts is now available, as with any other variable.
You can use these facts in playbooks, template files, or anywhere you would normally use
a variable. If any of your facts share their name with another, preexisting variable, one of
them will be overwritten (depending on the variable precedence rules discussed earlier).
To avoid this, you may want to namespace your variables with your module name. In this
case, your fact name would become wp_user_existing_users .

 Summary
 When it comes down to deciding whether to create a role or write a module to perform
the actions that you need, it’s not an easy choice. If you need to perform multiple steps
that are related but which don’t need to make any complex requests to external services,
then a role is the correct decision. A good example of this is creating a database, setting
up users, and importing an example SQL file.

 If you need to interact with an external data source, such as an API, then a module is
the better choice, as you have the full power of a programming language at your disposal,
rather than just using the command module and curl . Modules tend to do one thing and
do it well, accepting several variables that can be used to configure their behavior to allow
for flexibility and reuse.

 In the next chapter, you’re going to be introduced to Amazon AWS, a cloud-based
hosting platform that can provide Internet-accessible virtual machines. So far, you’ve always
run your Ansible playbooks against a Vagrant virtual machine. With AWS, you’re going to be
running that same playbook against a machine that other people can access as well.

99© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_7

 CHAPTER 7

 Orchestrating AWS

 So far, we’ve been using Ansible as a provisioning tool, but it can do far more than that.
In this chapter, we’re going to be taking a look at Ansible’s orchestration capabilities.
Specifically, we’ll be interacting with Amazon’s AWS (Amazon Web Services) platform to
create a virtual private cloud and spin up some servers within it.

 Creating an AWS Account
 Before you can use AWS, you’ll need to head to https://aws.amazon.com/ and create an
account by clicking Sign Up in the top-right corner (see Figure 7-1).

 It’s quite a long sign-up process, which asks you for your address and billing details.
AWS does have a free tier that includes 750 hours per month of virtual machine usage,
but they still require billing details up front. Once you’ve provided all of the details that
Amazon needs, you’ll go through their identity-verification step. This is where Amazon
calls you and asks you to input a PIN using your keypad to prove that the contact number
you provided belongs to you (see Figure 7-2).

 Figure 7-1. Sign up for Amazon Web Services

https://aws.amazon.com/

CHAPTER 7 ■ ORCHESTRATING AWS

100

 Choose the Basic (free) support plan when prompted and click Continue
(see Figure 7-3).

 Figure 7-2. Provide a telephone number for Amazon to confirm your identity

 Figure 7-3. Select Basic support, as you do not need paid support at this point in time

CHAPTER 7 ■ ORCHESTRATING AWS

101

 At this point, you have a fully activated AWS account. Click “Sign in to the console”
and log in with the email and password that you just set to get started. Once you’ve logged
in, select “N. Virginia” in the top right corner and change your region to be “US West
(Oregon)”. This is the same region that this book has been tested against. Some details
such as AMI IDs (covered later) change between regions, so it is important that you are in
the same region whilst working along with the book.

 IAM Users
 Amazon provides a set of root credentials that give you full access to your account, but
you should not use these credentials anywhere. Instead, you should create an IAM
(Identity and Access Management) user that only has permissions to do exactly what
you need. To get started, click Services at the top of the screen and select IAM from the
Security & Identity menu. This is where you’ll create your restricted user.

 Before you create a user, you need to create a set of permissions to add to it. To do
this, click Groups in the sidebar on the left side and click Create New Group at the top of
the screen. Name your group AnsibleGroup and click on Next. The next screen may look
quite intimidating, but it’s not as bad as you think. Here, you can set up different levels of
access including full access and read-only. You’ll be giving your user full access to specific
services, so search for FullAccess in the search box.

 You’ll want to give your user the AmazonEC2FullAccess and AmazonVPCFullAccess
policies, so find each of them in the list and click on the checkbox next to each (see
Figure 7-4).

 Click Next Step followed by Create Group. Next, click Users in the sidebar on the left
side, then click on Create New Users at the top. Type AnsibleBook into the first box that
appears (see Figure 7-5). This is the name for your IAM user. Make sure that “Generate an
access key for each user” is checked before clicking on Create.

 Figure 7-4. Add AmazonEC2FullAccess and AmazonVPCFullAccess to your IAM user

CHAPTER 7 ■ ORCHESTRATING AWS

102

 You should see a screen that says that the user was created successfully. Click
Download Credentials and keep them somewhere safe. You’ll need them soon, and
there’s no way to recover them once you leave this page. Once you’re done, click Close
to return to the IAM user-management page. You should see AnsibleBook in the list of
users. Click on this user, and then click Add User to Groups. Select AnsibleGroup and
click Add to Groups.

 This is everything that you need to do to set up a limited-access user. Your new user
can only access Amazon EC2 and Amazon VPC. If anyone managed to compromise your
access token and use it, they wouldn’t be able to use any other services, such as Amazon
S3 (file storage) or Amazon RDS (databases), as your user does not have the required
 permissions .

 Key Pairs
 There are two kinds of keys required when working with Amazon AWS. The first is your
API key, which allows you to control your virtual machines using Amazon’s public API.
These can be found in the credentials.csv file that you downloaded earlier in this
chapter. The second is an SSH key, which will be used to log in to any machines that you
create in this chapter.

 To log in to any of the machines, you need to specify an SSH key pair for Amazon to
preload onto the machine. You don’t have a key pair yet, so let’s create one for you to use .

 To create a key pair, click on Services at the top of the screen and select EC2. Then,
select Key Pairs under the Network & Security heading in the sidebar on the left. Create a
key pair by clicking on Create Key Pair and providing a name. I’ve called my key pair
 aws-ansible , but you can call it whatever you like (see Figure 7-6).

 Figure 7-5. Create a new user

CHAPTER 7 ■ ORCHESTRATING AWS

103

 Once you create the keys, it will trigger a download of the private portion of those
keys. You can find the downloaded file in your Downloads folder. Mine is called aws-
ansible.pem , as I called my key pair aws-ansible . Keep aws-ansible.pem nice and safe,
as you’ll need it to log in to the machines that you’re about to create.

 Security Groups
 By default, created machines have a firewall that blocks all communication into and
out of the instance. To run Ansible and access your website, you’ll need to allow traffic
through on two ports: 22 for SSH and 80 for HTTP. Click on Security Groups in the left-
side sidebar, underneath the Network & Security heading.

 Create a new security group, naming it ssh-and-http and giving it a short
description. Next, click on Add Rule, and click in to the drop-down that says Custom TCP
Rule. Change this to SSH, and change the drop-down under the Source header to be My
IP . This means that only your current IP address will be allowed to SSH into the machine .

 Click Add Rule again, but this time select HTTP from the drop-down. Under the
Source header, make sure it is set to Anywhere. This means that everyone can access your
website. Finally, click Create to save this security group. You may want to configure this
security group differently for production nodes, but this is suitable for the testing that
you’re going to perform.

 Prerequisites
 To talk to the AWS API, Ansible uses a library named Boto. You’ll need to install this
library with Pip, just like you installed packages such as Jinja2 earlier in this book:

 $ pip install boto

 Once this is done, you’re ready to start writing playbooks that interact with AWS.

 Figure 7-6. Create an SSH key pair that you’ll use to log in to the machines

CHAPTER 7 ■ ORCHESTRATING AWS

104

 Creating an Instance
 Now that you have all of the groundwork done, you can use Ansible to create a virtual
machine. The playbook that you’re about to create is completely separate from any work
that you’ve done so far, so create a new folder named ansible-aws . Inside this folder,
create a file named playbook.yml with the following contents:

 - hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ping:

 Ansible playbooks can be categorized as one of two types of playbook: orchestration
or provisioning . Up until this point, you’ve been writing provisioning playbooks that log in
to a remote machine and configure it using the information defined in the playbook. This
new playbook is the other kind—an orchestration playbook. An orchestration playbook
does not connect to any remote machines to perform its tasks. Instead, it runs everything
on your local machine. This is because orchestration playbooks tend to use public APIs to
accomplish their work rather than running shell commands against a remote machine.

 As this is an orchestration playbook and you don’t have a remote machine to
connect to, you should add connection : local to your playbook. This tells Ansible that
it should run on the local machine instead of trying to SSH to a remote machine (as there
isn’t one available). We do this because the AWS modules in Ansible do not run against
a remote host. Instead, they make HTTP requests to the Amazon API to perform actions
such as creating a virtual machine. Run this playbook to make sure that everything works
as expected. (Using localhost as the inventory filename is a shorthand way to specify a
hostname instead of an inventory file at runtime. (Don’t forget the comma at the end!)

 $ ansible-playbook -i 'localhost,' playbook.yml

 PLAY [Create AWS resources]
**

 TASK [ping]
**
 ok: [localhost]

 PLAY RECAP

 localhost : ok=1 changed=0 unreachable=0 failed=0

 Ansible ran fine, which means that you can start updating your playbook to talk to
AWS to create a virtual machine using EC2.

CHAPTER 7 ■ ORCHESTRATING AWS

105

 ■ Note If your playbook does not finish successfully, make sure that you have
 connection: local set in your playbook and that the machine you’re logged in to has
Ansible installed.

 At this point, you have a decision to make. To connect to AWS, you need to provide
your access token to Boto. You can do this in one of two ways: either you create a ~/.aws/
credentials file that contains the relevant details, or you pass your access key, secret,
and region in to every call to the EC2 module in your playbook. For this book, I’m going
to be using the AWS config file approach. To configure Boto, create a file at ~/.aws/
credentials with the following contents:

 [default]
 aws_access_key_id = <your_access_key_here>
 aws_secret_access_key = <your_secret_key_here>
 region = us-west-2

 For more information about the AWS config file, see http://amzn.to/1MiS96A .
 The EC2 module is one of the more complicated modules that Ansible provides.

There are 40 different options that you can provide (though thankfully only three of them
are required). You need to specify the region in which you want to create an instance, the
ID of the image to use (in this case, we’re using the latest version of Ubuntu, 16.04), and
what size of instance to create :

 - name: Create AWS resources
 hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ec2:
 image: ami-b9ff39d9
 region: us-west-2
 instance_type: t2.micro
 instance_tags:
 Name: Demo

 If you run your playbook again, Ansible will pick up your AWS credentials from your
 Boto configuration file and create an instance called Demo for you:

 $ ansible-playbook -i 'localhost,' playbook.yml

 PLAY [Create AWS resources]
**

http://amzn.to/1MiS96A

CHAPTER 7 ■ ORCHESTRATING AWS

106

 TASK [ec2]

 changed: [localhost]

 PLAY RECAP

 localhost : ok=1 changed=1 unreachable=0 failed=0

 Once your playbook has finished running, you can go back to the AWS console
that you used to create your users and click on Services at the top, followed by EC2. You
should see that it says “1 Running instances” under the Resources header. Click on that to
see the details of your newly created instance (see Figure 7-7).

 Under the Instance State column, you should see that it is now running.
Congratulations, you just created a virtual machine on Amazon’s EC2 platform using just
ten lines of configuration!

 Select your instance, then click on Actions, Instance State, and then click Terminate.
This will stop the instance so that it doesn’t cost you any money. Once you’ve confirmed
the termination, the instance will shut down and the instance state will be terminated.
Terminated instances stay in your console for a short period of time before automatically
expiring.

 Figure 7-7. A machine has been created by your playbook and Ansible

CHAPTER 7 ■ ORCHESTRATING AWS

107

 Deleting Instances
 You just used the AWS console to delete the instance that you created, but you don’t want
to have to log in and do that every time that you create a virtual machine. In addition to
providing a way to create running instances, Ansible also provides ways to delete them.

 The first way to delete instances is to use the state=absent parameter in the EC2
module, as follows:

 --
 - name: Delete AWS resources
 hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ec2:
 region: us-west-2
 instance_ids: ['i-0736f00b2cfad8957']
 state: absent

 While this technically works, it’s not the friendliest way to destroy instances. You
need to know the specific instance IDs of the instances that you want to delete. If you
want to use the state=absent method without specifying the instance IDs yourself,
you can use the ec2_remote_facts module to gather information about any running
instances for you. If you want to see what information is returned by the ec2_remote_
facts module, you can use the following playbook (see Figure 7-8):

 - name: View AWS machines
 hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ec2_remote_facts:
 region: us-west-2
 filters:
 "instance-state-name": running
 register: instance_list
 - debug: var=instance_list

CHAPTER 7 ■ ORCHESTRATING AWS

108

 Once you have the data required, you need to use Jinja2’s map filter to convert the
data into the format that is required. Use the set_fact module to save this list of instance
IDs as a variable called instance_ids :

 - name: Delete AWS resources
 hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ec2_remote_facts:
 region: us-west-2
 filters:
 "instance-state-name": running
 register: instance_list

 Figure 7-8. Example output from ec2_remote_facts

CHAPTER 7 ■ ORCHESTRATING AWS

109

 - set_fact:
 instance_ids: "{{instance_list.instances|map(attribute='id')|list}}"

 - ec2:
 region: us-west-2
 instance_ids: "{{instance_ids}}"
 state: absent

 If you run this playbook, it will stop all instances that are currently running. Use
the instance-state-name filter to select only instances that are currently running.
If you wanted, you could filter this by availability zone, DNS name, key pair used to
access the instance, or any of the 82 filters (at the time of this writing) available on the
AWS website (http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_
DescribeInstances.html).

 A common use case for ec2_remote_facts is to select machines based on user-
supplied data. In your playbook that created a machine, you tagged the instance with
the name Demo . You can use that as a filter to stop only that machine by changing your
 ec2_remote_facts task filters to look like the following:

 - ec2_remote_facts:
 region: us-west-2
 filters:
 "tag:Name=Demo"
 register: instance_list

 You don’t have to search just on Name. Tags are free-form text, allowing you to
provide whatever you like as the value. A common practice is to tag each machine with its
role (for example, web, database, and so on) and use that to search for all instances with
a specific role. We’ll use the tag filter in the next section to search for instances belonging
to a specific project.

 Managing Instance Cardinality
 An alternative way to control the number of instances is by using the exact_count
parameter. This lets you specify the exact number of instances that should be running.
Let’s update your playbook to create two instances that are tagged with a project called
 AnsibleScaling :

 - name: Create AWS resources
 hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ec2:
 image: ami-9abea4fb
 region: us-west-2

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html

CHAPTER 7 ■ ORCHESTRATING AWS

110

 instance_type: t2.micro
 instance_tags:
 project: AnsibleScaling
 count_tag:
 project: AnsibleScaling
 exact_count: 2

 Notice that we specify instance_tags , which are tags to apply to any instances
launched, and count_tag , which is the search to use when ensuring that you have exactly
two instances running. If you click on one of the launched instances in the console and
then click on Tags in the bottom pane, you’ll see that there is a Project tag with the value
 AnsibleScaling . This is very useful metadata that you could use in your playbooks. For
example, using the ec2_remote_facts module, you could select only instances for this
 project :

 tasks:
 - ec2_remote_facts:
 region: us-west-2
 filters:
 "instance-state-name": running
 "tag:project": AnsibleScaling
 register: instance_list

 However, you don’t need to do this when using exact_count . Instead, you can just
set exact_count to zero and have Ansible make sure that there are no instances running
that match the tags that you specified in count_tag . Update your playbook to say exact_
count: 0 , and now run it again to make Ansible shut down the running instances:

 $ ansible-playbook -i 'localhost,' playbook.yml

 PLAY [Create AWS resources]
**

 TASK [ec2]

 changed: [localhost]

 PLAY RECAP

 localhost : ok=1 changed=1 unreachable=0 failed= 0

CHAPTER 7 ■ ORCHESTRATING AWS

111

 Using exact_count is the easiest way to scale your deployment of machines up
or down, but you do not have as much control over which instances are shut down as
you do when using a combination of ec2_remote_facts and the AWS EC2 module with
 state=absent .

 At this point, log in to your AWS console and make sure that there are no running
instances. If there are, click on them and then click on Actions > Instance State >
Terminate to shut them down. Once you’ve done this, you should have no running
instances showing in the console.

 Provisioning Your New Instance
 Creating instances with Ansible is nice and easy, but just like when we used Vagrant
to create a virtual machine, the new node doesn’t actually do anything yet. It’s just a
standard Ubuntu installation waiting for your instructions.

 Although you can’t run vagrant provision against this new machine, you can use
 ansible-playbook to run one of your existing playbooks against it. Let’s install WordPress
on this machine using the mheap.wordpress role you created earlier.

 First, you need to set up your local environment so that you’ll have everything you
need. Create a folder named aws-wordpress . This will be your working directory when
working with Ansible and AWS:

 mkdir aws-wordpress
 cd aws-wordpress
 touch manage-instances.yml
 touch install-wordpress.yml

 You’ll also need to make a copy of your roles folder and copy it into the playbook
directory so that the PHP, MySQL, nginx, and WordPress roles that you wrote earlier will
be available. There is a better way to handle reusable roles, which we’ll cover in the next
chapter, but for now we’ll just copy them by hand:

 cp -r ~/ansible-wordpress/provisioning/roles ./

 Once you’ve done this, your folder structure should look like that in Figure 7-9 .

CHAPTER 7 ■ ORCHESTRATING AWS

112

 The next thing to do is to create your virtual machine on AWS. Open up manage-
instances.yml and add the following content:

 - name: Manage AWS resources
 hosts: all
 connection: local
 gather_facts: False
 tasks:
 - ec2:
 image: ami-9abea4fb
 region: us-west-2
 instance_type: t2.micro
 instance_tags:
 project: AnsibleWordPress
 count_tag:
 project: AnsibleWordPress
 exact_count: 1
 group: ssh-and-http
 key_name: aws-ansible

 There’s quite a lot going on in this playbook, so let’s recap what you’ve done :

• You use the exact_count parameter to scale the number of
instances required for your project up or down.

• You also tag the created instances with a project called
 AnsibleWordPress so that you can identify them later on.

 Figure 7-9. The aws-wordpress folder structure

CHAPTER 7 ■ ORCHESTRATING AWS

113

• Next, you specify group to tell Ansible which security group to add
the machine into.

• Finally, you added the key_name parameter to tell Amazon to
allow access to the created machine from the user who has the
private aws-ansible key.

 Run this playbook to create your instances, and then take a look at your AWS console
to make sure that the instance was created and is running:

 $ ansible-playbook -i 'localhost,' manage-instances.yml

 PLAY [Create AWS resources]
**

 TASK [ec2]

 changed: [localhost]

 PLAY RECAP

 localhost : ok=1 changed=1 unreachable=0 failed=0

 Once your instance is created, you can finally log in and run commands on it using
Ansible.

 Running Your WordPress Playbook
 Before you can run an Ansible playbook against your new instance, you need to be able to
connect to it. This involves creating an inventory file that contains the hostname of your
instance.

 Log in to the AWS console and select your running instance from the list of
machines. Make sure that the Description tab is selected in the bottom pane, then copy
the value that is displayed against the Public DNS label. This is a dynamically-generated
hostname that you can use to access your machine. Create a file called inventory and
place this hostname on the first line. Here’s what my particular inventory file looks like:

 $ cat inventory
 ec2-52-38-106-235.us-west-2.compute.amazonaws.com

 The next thing to do is to write a simple playbook that connects to the machine
using the ping module. Update install-wordpress.yml so that it contains the following
playbook:

 - name: Install WordPress
 hosts: all
 tasks:

CHAPTER 7 ■ ORCHESTRATING AWS

114

 - ping:

 If you try to run this as you would normally, an Ansible error will occur, telling you
that it could not connect to the remote machine:

 $ ansible-playbook -i inventory install-wordpress.yml

 PLAY [Install WordPress]

 TASK [setup]

 fatal: [ec2-52-38-106-235.us-west-2.compute.amazonaws.com]: UNREACHABLE!
=> {"changed": false, "msg": "SSH encountered an unknown error during the
connection. We recommend you re-run the command using -vvvv, which will
enable SSH debugging output to help diagnose the issue", "unreachable":
true}

 This happens because you have not told Ansible which user to log in as or which SSH
key pair to use. By default, it will try to log in as the current user (michael, in my case)
with the default SSH key for the current machine. There are two ways to tell Ansible which
credentials to use. You can provide them either in the inventory file or on the command
line at run time. For now, let’s provide them in the inventory file as we did when we were
testing against a Vagrant machine. Update your inventory file to set ansible_user and
 ansible_ssh_private_key_file :

 $ cat inventory
 ec2-52-38-106-235.us-west-2.compute.amazonaws.com ansible_user=ubuntu
ansible_ssh_private_key_file=~/Downloads/aws-ansible.pem

 Run $ ansible-playbook -i inventory install-wordpress.yml again to ping
your AWS instance. If that works, great! If not, you may be hitting a bug that exists when
using extra-long hostnames with Ansible. If it did indeed fail, to solve the issue create a
file named ansible.cfg at the same level as inventory with the following contents (we’ll
cover ansible.cfg in Chapter 9 .):

 [ssh_connection]
 control_path = %(directory)s/%%h-%%r

 After making this change, I ran my playbook again, and everything connected fine:

 $ ansible-playbook -i inventory install-wordpress.yml

 PLAY [Install WordPress]

 TASK [setup]

http://dx.doi.org/10.1007/978-1-4842-1659-0_9

CHAPTER 7 ■ ORCHESTRATING AWS

115

 ok: [ec2-54-186-48-55.us-west-2.compute.amazonaws.com]

 TASK [ping]
**
 ok: [ec2-54-186-48-55.us-west-2.compute.amazonaws.com]

 PLAY RECAP

 ec2-54-186-48-55.us-west-2.compute.amazonaws.com :
ok=2 changed=0 unreachable=0 failed=0

 Now that you can connect to your instance, you can update install-wordpress.
yml . Edit install-wordpress.yml to include become: true , as you need administrator
privileges. You also need to include the mheap.wordpress role and specify any required
parameters:

 - name: Install WordPress
 hosts: all
 become: true
 tasks:
 - ping:
 roles:
 - role: mheap.wordpress
 database_name: michaelwp
 database_user: michaelwp
 database_password: bananas18374
 wp_domain: aws.example.com
 initial_post_title: Hey There
 initial_post_content: >
 This is running on AWS

 Run the playbook with ansible-playbook -i inventory install-wordpress.yml, and
relax while Ansible runs and configures everything that you need.

 Once the playbook has finished running, you can log in to the machine via SSH and
make sure that everything is configured as expected:

 ssh -i ~/Downloads/aws-ansible.pem ubuntu@ec2-52-38-106-235.us-west-2.
compute.amazonaws.com

 You should check that nginx is installed and that the correct version of PHP is
installed, in addition to making sure that WordPress is in the correct location:

 ubuntu@ip-172-31-44-122:~$ which nginx
 /usr/sbin/nginx

 ubuntu@ip-172-31-44-122:~$ php --version
 PHP 7.0.5-2+deb.sury.org~trusty+1 (cli) (NTS)

CHAPTER 7 ■ ORCHESTRATING AWS

116

 Copyright (c) 1997-2016 The PHP Group
 Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2016, by Zend
Technologies

 ubuntu@ip-172-31-44-122:~$ ls /var/www/aws.example.com/
 index.php wp-blog-header.php wp-cron.php wp-mail.php
 license.txt wp-comments-post.php wp-includes wp-settings.php
 readme.html wp-config.php wp-links-opml.php wp-signup.php
 wp-activate.php wp-config-sample.php wp-load.php wp-trackback.php
 wp-admin wp-content wp-login.php xmlrpc. php

 Dynamic Inventories
 Before you could use Ansible to provision your new AWS instance, you had to log in to
the AWS console and look up the public DNS name of the instance and add it to your
inventory file. This works when you have one or two machines, but when you get to 50 or
100 machines, it quickly becomes an issue.

 Thankfully, Ansible supports the concept of dynamic inventories. A dynamic
inventory contains all of the same information that is contained in a normal inventory file,
but it is in JSON format rather than INI format. When you pass an inventory file with the
 –i option in to ansible-playbook , Ansible will check if that file is executable. If it is, it will
try to run it instead of reading its contents, and it will use the text that the file outputs as
its inventory file. This lets you keep machine information in a variety of different locations
and join them together dynamically with a script.

 The most common use for dynamic inventories is to run Ansible against a set of
machines that are dynamically created using a cloud provider such as AWS. There are
scripts available for a wide variety of cloud providers, such as AWS, DigitalOcean, Google
Compute Engine, and OpenStack. In this section, you’re going to be using the AWS
dynamic inventory script (named ec2.py) to access your machines.

 Download ec2.py from https://raw.github.com/ansible/ansible/devel/
contrib/inventory/ec2.py and ec2.ini from https://raw.githubusercontent.
com/ansible/ansible/devel/contrib/inventory/ec2.ini and save them in your
 aws-wordpress folder. ec2.py is a Python script that talks to the AWS API and fetches
information about your running instances. It uses Boto, just like Ansible, so you don’t
have to tell it how to authenticate with AWS. It will use the same ~/.aws/credentials file
that you created earlier.

 As you’re using an IAM user that doesn’t have access to all the different services
that AWS provides, you’ll need to edit ec2.ini to configure the script to access only
things that your user has permission to access (EC2 and VPC). Open ec2.ini in your
editor and search for rds = False (it should be around line 63). Uncomment this line
by removing the # from the beginning of the line. Then, go a few lines down to the line
that says elasticache = False and remove the # from the beginning of that line as
well. You don’t use RDS or Elasticache, so your user does not have access to them. If you
left them commented out, ec2.py would default to True for both of them, try to access
running instances within them, and return an error, as you’re forbidden from using those
endpoints.

https://raw.github.com/ansible/ansible/devel/contrib/inventory/ec2.py
https://raw.github.com/ansible/ansible/devel/contrib/inventory/ec2.py
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.ini
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.ini

CHAPTER 7 ■ ORCHESTRATING AWS

117

 Once you’ve done this, you can run python ec2.py to see what information is
returned from the AWS API. The first section is hostvars , which contains information
about each running host. In your case, there’s only one instance, which means that there’s
only one entry. It contains information about what instance type you’re running on,
which key you use to access the machine, what state the machine is in, and more. All of
this information is available to use in your playbooks via the special hostvars variable.

 Beneath this, you have a set of fields that have a key and then a list of hostnames. If
you take a small sample of the available keys, you get an idea of what is available to use as
a hosts: value in your playbooks:

 "key_aws_ansible": [
 "52.38.106.235"
],
 "security_group_ssh_and_http": [
 "52.38.106.235"
],
 "tag_project_AnsibleWordPress": [
 "52.38.106.235"
],
 "type_t2_micro": [
 "52.38.106.235"
],
 "us-west-2": [
 "52.38.106.235"
],

 As you can see, we can target a machine by the fact that it used a key named
 aws-ansible , by the fact that it’s in the ssh-and-http security group, or by the fact that it
has a tag named project with the value of AnsibleWordpress . You can also run against
machines based on their type (in this case, t2.micro) or the region to which they were
deployed. This is only a sample of all of the available groups. I would advise running
 python ec2.py yourself and taking a look at the rest.

 Although this is in a JSON format, it behaves just as an INI inventory would. For
example, the tag_project_AnsibleWordpress group looks like the following in JSON
format:

 "tag_project_AnsibleWordPress": [
 "52.38.106.235"
],

 In traditional INI format, it’d look like this:

 [tag_project_AnsibleWordPress]
 52.38.106.235

CHAPTER 7 ■ ORCHESTRATING AWS

118

 This means that each of the keys in the JSON returned are available for you to use as
a hosts target in a playbook. To target only hosts that have a Project tag with the value
 AnsibleWordPress , I would create a playbook that looks like the following:

 - name: Install WordPress
 hosts: tag_project_AnsibleWordPress
 become: true
 tasks:
 - ping:

 Update install-wordpress.yml so that it targets tag_project_AnsibleWordPress
rather than all hosts. Let’s run Ansible using ec2.py as your inventory file and make sure
that things still run as expected:

 $ ansible-playbook -i ec2.py install-wordpress.yml

 If you get an error that states that it looks like ec2.py should be an executable
inventory script, you need to make ec2.py executable. To do this, run chmod +x ec2.py .
Run ansible-playbook again, and watch it try to log in to your instance after dynamically
finding it via the AWS API.

 Sadly, you’ll get an error here too. Remember earlier when you tried to use Ansible,
but it logged in to the AWS machine as the current user, so you had to update your
inventory file? Unfortunately, you can’t do that anymore, as you’re using ec2.py . Instead,
you need to specify these details at runtime using the command-line options -u and
 --key-file like so:

 $ ansible-playbook -i ec2.py -u ubuntu --key-file ~/Downloads/aws-ansible.
pem install-wordpress.yml

 PLAY [Install WordPress]

 TASK [setup]

 ok: [52.38.106.235]

 (more output...)

 TASK [ping]
**
 ok: [52.38.106.235]

 PLAY RECAP

 52.38.106.235 : ok=17 changed=0 unreachable=0 failed=0

CHAPTER 7 ■ ORCHESTRATING AWS

119

 As you can see, your run finished successfully, using 52.38.106.235 as the hostname
for the machine. This proves that ec2.py was used as your inventory file, and that the
credentials you supplied on the command line were used.

 If you’re going to use the same username and key file for every run, you can create
an ansible.cfg file in the directory from which you run ansible-playbook with the
following contents:

 [defaults]
 remote_user=ubuntu
 private_key_file=~/Downloads/aws-ansible.pem

 This will automatically set the user and key to use when you call ansible-playbook .
Once you have this file, you can go back to calling ansible-playbook with just an
inventory file and playbook:

 $ ansible-playbook -i ec2.py install-wordpress.yml

 I’d advise running ec2.py and looking at the values returned before deciding which
groups you want to use to run Ansible. Personally, I tend to use tags, targeting a class of
servers such as tag_class_web or tag_class_db before getting more specific projects
with tag_project_<project> . You can even get really specific and target a specific node
with tag_Name_<name> if necessary.

 Creating a VPC
 Now that you’ve been introduced to creating instances on AWS using Ansible, you can
think about what is required to spin up a whole set of instances using a brand new AWS
account. To get your last instance running, you had to create a security group by hand,
and you used the default VPC (virtual private cloud) to launch it into. You can think of a
VPC as a container that holds everything else, including security groups and instances.

 In this section, you’re going to

• create a new VPC and a new subnet,

• make those subnets accessible over the Internet, and

• create a security group and launch some instances into the newly
created VPC.

 Ansible contains modules for dealing with all of these different concepts.
 The first thing that you need to do is to create a VPC. You create this first, as you need to

tell everything else to which VPC they should attach themselves. If you don’t specify a VPC,
it will use the default VPC (this is what happened when you created an instance earlier).

CHAPTER 7 ■ ORCHESTRATING AWS

120

 Let’s create a new playbook to handle the creation of your VPC and everything inside
it. Create a file named full-environment.yml . This new playbook will start just like the
 manage-instances playbook, specifying a local connection and disabling fact-gathering
before running the ping module :

 - name: Create AWS resources
 hosts: all
 connection: local
 gather_facts: False
 vars:
 aws_region: us-west-2
 tasks:
 - ping:

 Once you have this, you’re ready to start creating your VPC. The first thing to do is to
create a new VPC to which the nodes you are creating will be attached. To do this, you use
the ec2_vpc module. When creating a VPC, you need to specify an IPv4 block to be used by
that VPC. You’re going to be using 10.0.0.0/16 as your CIDR, which means that this VPC
can give out IP addresses in the 10.0.0.0–10.0.255.255 range. You also need to specify
that you want this VPC to be accessible via the Internet with internet_gateway . Finally,
you give the VPC an Environment tag so that Ansible knows how to check if it already exists
the next time you run your playbook. Add the following task to full-environment.yml :

 - name: Create VPC
 ec2_vpc:
 region: "{{aws_region}}"
 cidr_block: 10.0.0.0/16
 internet_gateway: true
 resource_tags:
 Environment: Development
 register: vpc

 This registers a VPC within AWS that is tagged with Environment : Development and
is Internet accessible (internet_gateway: true). If you run your playbook again, Ansible
will check if a VPC with that tag already exists and do nothing if it finds one. Run this
playbook to create your VPC:

 $ ansible-playbook -i inventory full-environment.yml

 Now that you have a VPC, you can start registering new services that live within it.
The next thing to create is a subnet. When creating a subnet, you need to specify which
VPC to attach it to and the IP block to use in that subnet via the cidr argument :

 - name: Create subnets
 ec2_vpc_subnet:
 region: "{{aws_region}}"
 vpc_id: "{{vpc.vpc.id}}"
 cidr: "10.0.0.0/24"
 resource_tags:

CHAPTER 7 ■ ORCHESTRATING AWS

121

 Environment: "Development"
 register: subnets

 In the first task, you stored the output from the module in a variable called vpc . In
this task, you feed that into the ec2_vpc_subnet module as the vpc_id parameter. This
means that you will always create subnets in the VPC referenced in the previous task. You
specify your CIDR (10.0.0.0/24 allows the IPv4 range 10.0.0.0-10.0.0.255) and a tag
so that Ansible can identify this subnet again later before registering the response in a
variable named subnets .

 This subnet will need Internet access, which is available via the Internet gateway we
added when we set up the VPC. You can use the ec2_vpc_route_table module to add a
route to the Internet for your new subnet :

 - name: Enable subnet Internet access
 ec2_vpc_route_table:
 vpc_id: "{{vpc.vpc.id}}"
 region: "{{aws_region}}"
 tags:
 Name: Public
 subnets:
 - "{{ subnets.subnet.id }}"
 routes:
 - dest: 0.0.0.0/0
 gateway_id: "igw"

 The next thing to do is to create some security group rules to allow people to access
your instances. Previously, you created these by hand in the console. This time, you’ll
use the ec2_group module to do it. This module takes a few more options, namely rules
and rules_egress. Rules is a list of protocols, ports, and IP addresses to allow inbound
connections from, while rules_egress is a list of protocols, ports, and IP addresses to
allow your new node to communicate with. Make sure that the cidr_ip for port 22 is your
public IP or you won’t be able to log in to the machines:

 - name: Create security group
 ec2_group:
 region: "{{aws_region}}"
 name: "demo-ansible-group"
 description: "Demo Ansible Security Group"
 vpc_id: "{{vpc.vpc.id}}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 57.10.128.11/32
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0

CHAPTER 7 ■ ORCHESTRATING AWS

122

 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0
 register: security_group

 In addition to specifying which VPC to create the security group within, a group
name, and a description, you also have to specify these lists of rules and rules_egress .
These rules are what controls who can talk to instances running in your VPC, and what
they can talk to. Let’s take a look at the rules that we’ve configured:

 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 57.10.128.11/32

 The first one is on port 22, your SSH port. In this one, your CIDR block should be
set to be your IP address plus /32 , which means that only your specific IP address will
be allowed. If you want to allow SSH access from everywhere, you can use 0.0.0.0/0 ,
but that is not recommended, as it would allow anyone to connect to your machine and
potentially brute force your password. Let’s look at the next one:

 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0

 Port 80, however, should be accessible from everywhere! You’re going to be hosting a
website, after all. To ensure that everyone can see it, you specify 0.0.0.0/0 as your CIDR
block.

 Moving on to rules_egress , you have no restrictions around what your instances
can talk to. This means that you can allow it to talk to everything by specifying 0.0.0.0/0
again:

 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0

 You’re almost ready to create some virtual machines . The last thing that you need to
do is to provide AWS with an SSH key pair that you’re going to use to log in to the machine.
Previously, we created the aws-ansible.pem key using Amazon’s web interface, but in a
totally automated world, you don’t want to have to perform any actions by hand. If you
don’t already have an SSH key to use, you can create one with the following commands:

 cd ~/. ssh
 ssh-keygen –t rsa

CHAPTER 7 ■ ORCHESTRATING AWS

123

 This will create a file at ~/.ssh/id_rsa.pub that you’ll use in your next task. To
upload that to AWS, you use the ec2_key module. As always, specify the region and a
name. You also use the with_file helper to read a file off disk. You’ve previously used
 with_items to loop over a list of items. with_file sends the contents of the file specified
to the module as {{item}} :

 - name: Create SSH key
 ec2_key:
 region: "{{aws_region}}"
 name: ansible-key
 key_material: "{{item}}"
 with_file: /Users/michael/.ssh/id_rsa.pub
 register: ssh_key

 At this point, you have everything you need to create an instance!
 You created a VPC, which is like the big box that holds all of your subnets, security

groups, and instances. Next, you created a subnet inside that VPC that you’re going to
launch instances into. You need to control access to these instances, so you created a
security group to control access to ports from certain IP addresses, before uploading an
SSH key that you will use to log in to the machine. It’s time to create an instance using all
of the data you’ve stored in registered variables so far.

 Let’s go back to using the EC2 module that you used earlier. This time, though,
instead of specifying security group names, you’ll use your security_group variable from
the previous task. You also need to specify which subnet to launch the instance into by
using your subnets variable from earlier:

 - name: Create instances
 ec2:
 image: ami-9abea4fb
 region: "{{aws_region}}"
 instance_type: t2.micro
 instance_tags:
 project: AnsibleAuto
 count_tag:
 project: AnsibleAuto
 exact_count: 1
 group_id: "{{security_group.group_id}}"
 vpc_subnet_id: "{{subnets.subnet.id}}"
 key_name: "{{ssh_key.results[0].key.name}}"
 wait: yes
 assign_public_ip: true
 register: instances
 - debug: msg="{{instances.tagged_instances[0].public_dns_name}}"

 Congratulations! Once you run your playbook again, you’ll have an entire VPC
created, with subnets, security groups, and a custom SSH key uploaded. As a bonus, you’ll
even have a running instance inside that VPC using all of the things that you just created!

CHAPTER 7 ■ ORCHESTRATING AWS

124

To make sure it works, try to log in to that machine now by running ssh -i ~/.ssh/
id_rsa ubuntu@<hostname> . The public hostname of the machine should be at the end of
your playbook run output . For example:

 TASK [debug]

 ok: [localhost] => {
 "msg": "ec2-54-186-135-136.us-west-2.compute.amazonaws.com"
 }

 If you can log in, everything was set up correctly. Nice job! If you can’t log in, there
are a few things to check:

• Do you have an Internet_gateway in your call to the ec2_vpc_
module ?

• Do you call the ec2_vpc_route_table module to associate your
subnet with the gateway?

• Are you using the correct IP address for port 22 in your security
group?

• Has the instance booted up yet? Give it a minute or two and try
again.

 Summary
 This chapter introduced you to Amazon AWS, including how you can use it to create
virtual machines in the cloud and how to deploy your applications to them. By using
the EC2 modules in Ansible, you can automate the process of environment creation and
deployment, making creating new testing environments for your QA team or stakeholders
as easy as running ansible-playbook .

 Ansible playbooks are runnable documentation about your infrastructure and
deployment. If something is executable, you should do tests to prove that it does what you
think it does. In the next chapter, we’re going to take a look at Test Kitchen, a test runner,
and ServerSpec, an assertion library for testing server state.

125© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_8

 CHAPTER 8

 Testing with Test Kitchen

 You’ve come a long way since you first started writing Ansible playbooks, but your
workflow so far is missing something. You currently write a playbook, run it against a
Vagrant machine, and then log in and inspect the results by hand. While this works, it’s
not foolproof, and it definitely doesn’t scale once you start working with more than a
handful of servers. Writing tests for playbooks is a good idea, as it means that you can
prove that the playbook does what you expect it to do.

 In this chapter, we’re going to take a look at a tool named Test Kitchen , or Kitchen ,
for short. Using Kitchen , you specify a playbook to run and the expected state of a
system after it runs, and then have Kitchen automatically test that your expectations are
met. Once you have these tests in place, you can safely change your playbooks without
worrying about introducing any regressions.

 About Test Kitchen
 Kitchen is a an infrastructure testing tool that you can use to create a machine and test
that it’s in the expected state once your provisioning tool has finished running. The idea
behind Kitchen is that you define a driver to use (what to use to create your environment),
a playbook to run, and a platform to run your playbook against (for example, Ubuntu).
All of this information combines to create a single unit under test. In your Kitchen
configuration file, you can specify multiple combinations of playbooks and machines
to run against, which can run concurrently, allowing you to test your playbooks against
multiple operating systems at the same time .

 By defining your expected behavior using Kitchen, you can make sweeping changes
to your playbooks without worrying if the actual behavior has changed slightly in a way
that will break everything. You will use an assertion library named ServerSpec to define
your expected state. ServerSpec is another tool in our provisioning toolkit, and it supports
everything ranging from asserting that a file exists all the way to making sure that a
specific kernel module is loaded. ServerSpec builds on top of RSpec, which is a popular
test framework for Ruby.

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

126

 Installing Test Kitchen
 The first thing that you need to do is to install Test Kitchen. Kitchen is a Ruby-based tool,
and it is installable from rubygems.org . If you’ve ever done any Chef work before, you
might actually have it installed already! If you don’t, the recommended way to install
Kitchen is via Bundler (http://bundler.io/). To install Bundler, you’ll need Ruby and
Rubygems installed. Run the following command to install Bundler:

 gem install bundler

 If you see an error about permissions, your gem directory may not be writable by the
current user. If this happens, you can either fix the permissions or install Bundler as root
with sudo gem bundler .

 Once you have Bundler, you’ll need to create a file that tells Bundler what to install.
Create a new folder named ansible-kitchen to test your Kitchen setup. Once you’ve
created this folder, create a new file inside it named Gemfile with the following contents:

 source 'https://rubygems.org'
 gem 'test-kitchen', '~> 1.0'
 gem 'kitchen-ansible', '~> 0.44'
 gem 'kitchen-vagrant', '~> 0.11'

 Save this file and then run bundle install --path vendor/bundle in the terminal
in the same folder. This will download all of the dependencies that you need to run
Kitchen. As you’ve used Bundler to install the dependencies, any commands that you run
need to be prefixed with bundle exec so that your system uses the correct version.

 Once that’s all done, run bundle exec kitchen version to make sure that the
binary is available to use and to output the version of Kitchen to the screen. You’ll be
working with Kitchen version 1.11.1. It’s a stable product, so anything that you do here
should work in future versions without any issues.

 In addition to Kitchen, you need a few other gems for your tests to run. First, you
need to tell Kitchen how to integrate with Ansible playbooks. This is achieved via the
 kitchen-ansible gem, which you installed on line 3 of your Gemfile .

 You also need an environment in which to run your playbook. As you’ve been using
Vagrant and Virtualbox so far, let’s reuse them in your Kitchen tests. You require the
 kitchen-vagrant driver on line 4 of your Gemfile, which provides instructions to Kitchen
on how to interact with Vagrant.

 Kitchen needs a virtualization provider to create the machines against which your
playbook will run. The kitchen-vagrant gem will allow Test Kitchen to automatically
generate a vagrantfile like the one you wrote by hand, and likewise automatically run
 vagrant up to create the new environment. It will then run your playbook inside this
virtual environment before running your ServerSpec tests to verify that the machine is in
the intended state.

http://bundler.io/

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

127

 At this point, you’re ready to start using Test Kitchen. You’re going to be calling a lot
of different commands throughout this chapter, so I want to take a minute to explain what
they all do:

• kitchen create : Creates the environment that Test Kitchen will
use. This environment will be created using Vagrant.

• kitchen login : Log in to an environment and run any
commands you like

• kitchen converge : Runs your Ansible playbook inside the
created environment

• kitchen verify : Runs your ServerSpec tests against the
environment

• kitchen destroy : Destroys your environment, meaning that the
next converge will be run in a clean environment

• kitchen test : A helper method that runs kitchen create &&
 kitchen converge && kitchen verify && kitchen destroy . If
your tests do not pass, the environment will still be available to
 kitchen login to examine. If your tests do pass, the environment
is automatically destroyed.

 An Introduction to ServerSpec
 ServerSpec is another Ruby tool, but you don’t need to be a Ruby expert to use it. The
syntax used to create tests feels very familiar, even when you’ve never used it before. This
is because of its use of verbose matchers that make it feel like you’re writing plain English.

 You’ll need to install ServerSpec just like you installed Kitchen — that is, using Bundler.
Edit your Gemfile, adding a new line to require ServerSpec at the end. Your file should
now look like this:

 source 'https://rubygems.org'
 gem 'test-kitchen', '~> 1.0'
 gem 'kitchen-ansible', '~> 0.44'
 gem 'kitchen-vagrant', '~> 0.11'
 gem 'serverspec', '~> 2.36'

 Finally, run bundle update to download the serverspec dependency. You should
now have all of the dependencies that you need in order to start writing some tests for a
role. You’ll start by running a really simple test to make sure that everything is working as
intended before you move on to testing the WordPress role that you wrote.

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

128

 Writing Your First Test
 Your very first test is going to be a nice simple one. You’ll run a playbook that installs
 nginx , and you will write a test that makes sure that both the package is installed and
nginx is listening on the correct port.

 Start by defining your environment. This is done by creating a .kitchen.yml file
and defining a driver , provisioner, and platform for the test. Create .kitchen.yml in your
 ansible-kitchen directory with the following contents:

 driver:
 name: vagrant

 provisioner:
 name: ansible_playbook
 playbook: playbook.yml
 hosts: all
 require_chef_for_busser: false
 require_ruby_for_busser: true

 platforms:
 - name: ubuntu
 driver_config:
 box: "ubuntu/trusty64"

 suites:
 - name: default

 verifier:
 ruby_bindir: '/usr/bin'

 Here, you’re telling Kitchen to use Vagrant to manage your test machines, and you
want to use your standard ubuntu/trusty64 image as you did when you provisioned a
machine by hand. After creating this file, you can run bundle exec kitchen create to
boot up the machine to be ready for use.

 If you want to log in and check what’s on the machine, you can run bundle exec
kitchen login . This is the same as running vagrant ssh , and it will drop you into a shell
inside the virtual machine. There won’t be anything there yet, so log out by typing exit .

 The next thing to do is to create a playbook to run. You already told Kitchen that
you’ll be calling your playbook playbook.yml in your .kitchen.yml , so create playbook.
yml in the same directory as your .kitchen.yml, with a really simple task list:

 - hosts: all
 tasks:
 - apt: name=nginx state=installed
 - service: name=nginx state=restarted

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

129

 To get your changes onto the machine, you have to converge the machine by running
 bundle exec kitchen converge . This is just a fancy way of saying “run Ansible on the
machine please.” Two of the options you used in your .kitchen.yml come into play now:

 require_chef_for_busser: false
 require_ruby_for_busser: true

 kitchen-ansible starts by installing Ansible and other dependencies on the machine
that you just spun up. One of those dependencies is called busser , which is how the tests
that you’re going to write soon get into the correct place on the machine. Historically,
 kitchen-ansible required you to install Chef, as it ships with an embedded version of
Ruby and included the busser gem itself. This was the easiest way to support multiple
platforms. However, as of version 0.0.17, kitchen-ansible has provided a method to
install busser directly. In your .kitchen.yml , you instruct kitchen-ansible not to install
Chef, but rather to use Ruby directly to install busser, using the options just shown.

 If you run kitchen converge , you’ll see a lot of output, which is kitchen-ansible
installing all of the dependencies it needs. Once Ansible has been installed, it will run
your playbook against the virtual machine that it has created, showing some output that
looks like this:

 PLAY

 TASK [setup]

 ok: [localhost]

 TASK [apt]

 changed: [localhost]

 TASK [service]

 changed: [localhost]

 PLAY RECAP
 **
 localhost : ok=3 changed=2 unreachable=0 failed=0

 Finished converging <default-ubuntu> (0m51.93s).

 kitchen-ansible sets up some custom role and module paths so that Ansible inside
the virtual machine is looking in the correct place, then it runs Ansible, installing nginx as
intended. You can log in with bundle exec kitchen login now and check if nginx was
installed (and it was!):

 $ bundle exec kitchen login
 vagrant@default-ubuntu:~$ which nginx
 /usr/sbin/nginx

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

130

 Logging in and checking by hand worked in this situation, but it’s something
that you’d have to do by hand every time you changed your playbook. Now, let’s use
ServerSpec to write a test that proves that nginx was installed successfully.

 Start by logging out of the virtual machine by typing exit and pressing Enter. Next, let’s
bootstrap the test environment by creating the required folders and an example test file:

 mkdir -p test/integration/default/serverspec

 This creates an integration tests folder for use with Rspec , the test framework
in which ServerSpec runs. You then say that you’re going to test the default suite using
the serverspec assertion library. You also need to create a few other files inside test/
integration/default/serverspec .

 The first is spec_helper.rb . This includes serverspec and configures it for use with
Kitchen:

 require 'serverspec'
 set :backend, :exec

 The next thing to do is to write your first test file. Create a file named default_spec.
rb next to spec_helper.rb . This is called default_spec because your suite name is
 default , and serverspec tests must all end in _spec.rb . If you’ve ever done any Rspec
testing before, the following should look quite familiar. If you’ve never seen Rspec , it’s still
not too hard to follow:

 require 'spec_helper'

 describe 'nginx installation' do
 context package('nginx') do
 it { should be_installed }
 end
 end

 The describe line just sets the scene and explains that you’re testing your nginx
installation. The context line, however, uses the package resource from serverspec
and adds an assertion using the word it . It reads just like English — you’re looking at the
package nginx, and it should be installed. If you run bundle exec kitchen verify in the
same directory as .kitchen.yml , it will install serverspec on the virtual machine and run
your tests. You should see some output at the end that looks like this:

 -----> Running serverspec test suite
 /usr/bin/ruby1.9.1 -I/tmp/verifier/suites/serverspec -I/tmp/
verifier/gems/gems/rspec-support-3.4.1/lib:/tmp/verifier/gems/gems/rspec-
core-3.4.4/lib /tmp/verifier/gems/bin/rspec --pattern /tmp/verifier/suites/
serverspec/**/*_spec.rb --color --format documentation --default-path /
tmp/verifier/suites/serverspec

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

131

 nginx installation
 Package "nginx"
 should be installed

 Finished in 0.1532 seconds (files took 0.60615 seconds to load)
 1 example, 0 failures

 Congratulations! You just wrote your first ServerSpec test. You can add another check
to make sure that nginx is listening on port 80 by default. Underneath the end keyword of
your context package('nginx') block, add another test:

 context port(80) do
 it { should be_listening }
 end

 As before, it reads just like English. You’re describing port 80, and it should be
listening. Running kitchen verify again tells you that it is in fact listening. If you wish,
you can even add some more intrusive checks by examining what nginx is returning. Add
the following context block after context port(80) :

 context command('curl http://localhost') do
 its(:stdout) do
 should contain 'Welcome to nginx'
 end
 end

 This shells out and uses curl to make a request to localhost . Then, it inspects
the stdout of the curl command to make sure that it contains “Welcome to nginx”
somewhere on the page. As it does, this test should pass too! Feel free to change any of the
assertions and run kitchen verify again to make sure that they do actually fail when the
condition is not being met.

 More Lightweight Tests
 I’m not sure how long it took you, but running kitchen test and waiting for it to create a
VM, install Ansible, run your playbook, and run tests took far too long for me to be happy
with it. I spent over five minutes waiting for three tests to run:

 -----> Kitchen is finished. (5m34.42s)

 Fortunately, you can improve on this performance. Run bundle exec kitchen destroy
to remove your Vagrant virtual machine and free up resources, then open up .kitchen.yml .
You’re going to change the driver from Vagrant to Docker , as Docker instances are much
faster to create. You’ll also need to change your driver config so that it specifies the correct
 Docker image to use. Your . kitchen.yml should now look like the following:

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

132

 driver:
 name: docker
 use_sudo: false

 provisioner:
 name: ansible_playbook
 playbook: playbook.yml
 hosts: all
 require_chef_for_busser: false
 require_ruby_for_busser: true

 platforms:
 - name: ubuntu
 driver_config:
 image: ubuntu:14.04

 suites:
 - name: default

 verifier:
 ruby_bindir: '/usr/bin'

 Next, you’ll need to update your Gemfile to remove kitchen-vagrant and add
 kitchen-docker . Ensure that it looks like the following:

 source 'https://rubygems.org'
 gem 'test-kitchen', '~> 1.0'
 gem 'kitchen-ansible', '~> 0.44'
 gem 'kitchen-docker', '~> 2.5'
 gem 'serverspec', '~> 2.36'

 If you’ve already got Docker installed, great! Just run bundle exec kitchen test , and
things should run just as well as they did previously. If you don’t have Docker, follow the
instructions on the Docker website (https://docs.docker.com/engine/installation/)
to get it installed and configured. Make sure that you’re using a recent version of Docker
(1.8+). Operating systems such as Ubuntu have Docker in their repositories, but it’s usually
a really old version, such as 1.4, which won’t work with Kitchen.

 Once you’ve got Docker installed, run bundle exec kitchen test to spin up a
container and use it to test your playbook. The Docker container is of much lighter weight
than a Virtualbox VM, and it doesn’t take nearly as many resources. A complete kitchen
test was almost two minutes faster on this machine:

 -----> Kitchen is finished. (3m49.42s)

 If you’d rather stick with Vagrant for your testing, feel free to do so. I prefer Docker
due to the smaller amount of resources required, but they’re both just virtualization tools.
So long as there’s a machine available, Test Kitchen doesn’t care what’s providing it.

https://docs.docker.com/engine/installation/

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

133

 Testing Your WordPress Role
 Now that you’ve been introduced to Test Kitchen and its supporting tools, you can start to
write tests for something more substantial. Remember the WordPress role that you wrote
in Chapter 3 ? You can write tests to ensure that all of the relevant packages are installed
and that things are configured as expected.

 The first thing to do is to bootstrap your WordPress role with the relevant tests.
To do this, you need to change directory to the ansible-wordpress directory that you
created earlier. In the same directory as playbook.yml (this should be in a folder named
 provisioning), create a file named .kitchen.yml with the following contents; this will
configure your Test Kitchen environment using the Docker driver:

 driver:
 name: docker
 use_sudo: false

 provisioner:
 name: ansible_playbook
 playbook: playbook.yml
 hosts: all
 require_chef_for_busser: false
 require_ruby_for_busser: true
 platforms:
 - name: ubuntu
 driver_config:
 image: ubuntu:14.04

 suites:
 - name: default

 verifier:
 ruby_bindir: '/usr/bin'

 This .kitchen.yml file configures Kitchen to run your existing playbook.yml. The
 playbook.yml that exists in the same directory as .kitchen.yml should look like the
following:

 - hosts: all
 become: true
 roles:
 - role: mheap.wordpress
 database_name: michaelwp
 database_user: michaelwp
 database_password: bananas18374
 initial_post_title: Hey There
 initial_post_content: >
 This is an example post. Change me to say something interesting

http://dx.doi.org/10.1007/978-1-4842-1659-0_3

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

134

 As you used Bundler to install Test Kitchen earlier, Kitchen was installed locally to
the project on which you were working. This means that Test Kitchen is not available in
your ansible-wordpress folder. Make sure that you’re in the same folder as playbook.
yml and create a Gemfile with the following contents:

 source 'https://rubygems.org'
 gem 'test-kitchen', '~> 1.0'
 gem 'kitchen-ansible', '~> 0.44'
 gem 'kitchen-docker', '~> 2.5'
 gem 'serverspec', '~> 2. 36'

 Run bundle install --path vendor/bundle to download all of the dependencies
for this project. Once this completes, if you run bundle exec kitchen converge it will
create a Docker container and run your playbook against it, installing WordPress and
all of its dependencies. Run bundle exec kitchen converge now, as it may take a little
while to download and install all of your dependencies.

 Once it’s finished running, you need to write some tests. Like last time, you need to
create the correct directory structure and a serverspec helper:

 mkdir -p test/integration/default/serverspec

 You create your serverspec helper at test/integration/default/serverspec/
spec_helper.rb :

 require 'serverspec'
 set :backend, :exec

 At this point, the only remaining thing to do is to write some tests for your role. To
do this, create a file named default_spec.rb in the same directory as spec_helper.rb .
You’re going to make sure that PHP, nginx, and MySQL are installed, as well as make sure
that our initial post has the correct title by logging in to the database:

 require 'spec_helper'
 describe 'nginx installation' do
 context package('nginx') do
 it { should be_installed }
 end

 context service('nginx') do
 it { should be_running }
 end
 end

 describe 'mysql installation' do
 context package(‘mysql-server-5.6') do
 it { should be_installed }
 end

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

135

 context service('mysql') do
 it { should be_running }
 end
 end

 describe 'php installation' do
 context package('php') do
 it { should be_installed }
 end
 context service('php7.0-fpm') do
 it { should be_running }
 end

 context command('php --version') do
 its (:stdout) { should contain 'PHP 7' }
 end
 end

 describe 'wordpress' do
 context file('/var/www/book.example.com/wp-config.php') do
 it { should exist }
 end

 context command('mysql -u root michaelwp -e "SELECT post_title FROM
wp_posts WHERE id=1;"') do
 its (:stdout) { should contain 'Hey There' }
 end
 end

 Notice how we split each set of tests up into its own section, using the describe
syntax to show what we’re testing. Once you’ve added these tests, you can run kitchen
verify and watch the tests pass:

 nginx installation
 Package "nginx"
 should be installed
 Service "nginx"
 should be running

 mysql installation

 should be installed
 Service "mysql"
 should be running

 php installation
 Package "php"
 should be installed

CHAPTER 8 ■ TESTING WITH TEST KITCHEN

136

 Service "php7.0-fpm"
 should be running
 Command "php --version"
 stdout
 should contain "PHP 7"

 wordpress
 File "/var/www/book.example.com/wp-config.php"
 should exist
 Command "mysql -u root michaelwp -e "SELECT post_title FROM wp_posts WHERE
id=1;""

 stdout
 should contain "Hey There"

 Finished in 0.35718 seconds (files took 0.51265 seconds to load)
 9 examples, 0 failures

 Any time that you change your WordPress role in the future, you can run these tests
again and make sure that they still pass. This gives you confidence in any changes that
you decide to make, meaning that you can refactor your playbook safely without worrying
that you’re going to break existing installations that also use this playbook. So long as the
tests pass, you know that all of the relevant software is installed and configured correctly.

 Summary
 In this chapter, you learned about Test Kitchen and how you can use it to test your Ansible
playbooks. As mentioned in the opening section, writing tests for playbooks is a good
idea, as it means that you can prove that the playbook does what you expect it to do.

 Although you wrote tests in this chapter to make sure that all of the packages
required for your WordPress install to function were indeed installed, you wouldn’t
usually do this. Each role used should contain its own set of tests. The tests to prove that
the PHP packages were installed would be stored alongside the PHP role. The nginx tests
would be stored alongside the nginx role. The MySQL tests would be stored alongside
the MySQL role. This means that you should be able to depend on a role knowing that
it has its own set of tests, which ensures that it behaves as expected. You do not need to
duplicate these tests in your own role. All that you need to test is the behavior that your
role provides. In this case, it is that WordPress was installed and configured correctly.

 In the next (and last!) chapter, we’ll be taking a look at some of more advanced
features of Ansible such as ansible-vault and ansible-pull , and when they could come
in handy for you.

137© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_9

 CHAPTER 9

 Advanced Ansible

 Well, here we are — the final chapter of Ansible: From Beginner to Pro ! After starting at
the beginning with an introduction to playbooks and inventory files and working our
way through roles, variables, provisioning, orchestration, and testing, we now arrive at
our final chapter, where we’ll go through some of the advanced Ansible features. You
probably won’t use these on a daily basis; however, they are good to know just in case you
need them someday.

 Ansible: The Command-Line Tool
 In addition to running playbooks with ansible-playbook , Ansible provides the ansible
 command-line tool for running ad-hoc commands. While I would normally recommend
writing a playbook for everything so that you can commit it to version control and have an
audit log of all that is happening, running ad-hoc commands does have its place.

 We’ve used the ansible command-line tool a few times so far in this book, but we’ve
never really looked at what it actually does. Think of the ansible command-line tool as
a way to run any single task from a playbook. You can provide a set of hosts on which
to run, a module to run, and any arguments that it may need. You can also specify any
options that you would usually indicate in a playbook or inventory file, such as how to
connect to remote servers and any privilege-escalation options. However, this is not to
say that you can’t use ansible.cfg and an inventory file to customize everything without
using command-line flags.

 To use the ansible command-line tool to install nginx on all hosts in the Web group
in your inventory, you would invoke it like this:

 ansible web –i /path/to/inventory –m apt –a 'name=nginx state=installed'

 This can be useful for upgrading packages on demand when security issues are
found, but there is less value in performing the upgrade this way over using a playbook
to do the same thing, as you don’t have the reproducibility that you get with a playbook
when using the Ansible command-line tool directly.

CHAPTER 9 ■ ADVANCED ANSIBLE

138

 Querying the Environment
 One very useful implementation of the ansible command-line tool is to query the
environment using the setup and shell modules. For example, you can find all machines
where the install version of nginx is 1.4.6, as follows:

 ansible web -i inventory -m shell -a 'dpkg -s nginx | grep Version | grep 1.4.6'

 This command will report success on all machines that matched, and report failed
on all machines on which the version doesn’t match; for example, when running against
an inventory file that contains two machines—one running the correct version and one
that isn’t—you’ll get the following output:

 host1.example.com | success | rc=0 >>
 Version: 1.4.6-1ubuntu3.5

 host2.example.com | FAILED | rc=1 >>

 You can also use ansible to fetch information about the environment. You can use
a combination of the setup module and filter arguments to show just the information
about your default ipv4 connection on a machine:

 $ ansible all -i inventory -m setup -a 'filter=ansible_default_ipv4'

 192.168.33.20 | SUCCESS => {
 "ansible_facts": {
 "ansible_default_ipv4": {
 "address": "10.0.2.15",
 "alias": "eth0",
 "broadcast": "10.0.2.255",
 "gateway": "10.0.2.2",
 "interface": "eth0",
 "macaddress": "08:00:27:86:81:4f",
 "mtu": 1500,
 "netmask": "255.255.255.0",
 "network": "10.0.2.0",
 "type": "ether"
 }
 },
 "changed": false
 }

 ansible-vault
 Ansible Vault is Ansible’s file-encryption tool. When working with sensitive data, such as
access keys or passwords, you probably don’t want to store them in plain text anywhere
in your repository. Ansible Vault is a command-line tool for encrypting files using the

CHAPTER 9 ■ ADVANCED ANSIBLE

139

AES cipher. Since AES is based on a shared secret, you need to provide a secret key when
creating the file and the same shared secret when attempting to read the file (for example,
when running a playbook). Being able to commit your secrets with the rest of your
playbooks makes life nice and easy for everyone involved. All that they need to do is to
grab a copy of the playbooks and know the shared secret to be able to run them.

 Let’s create a simple example that uses an encrypted variable file as a data source
and that creates a file on disk. To keep things clean, let’s create a new playbook by
running the following commands:

 mkdir -p ansible-encrypted/roles
 cd ansible-encrypted
 touch Vagrantfile playbook.yml

 Edit the vagrantfile and add the following content:

 Vagrant.configure(2) do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.network "private_network", ip: "192.168.33.50"

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end
 end

 Once you’ve done that, edit playbook.yml and add the following content:

 - hosts: all
 roles:
 - mheap.demo

 Finally, you’ll need to create your role. You can use ansible-galaxy to bootstrap an
empty role:

 cd roles
 ansible-galaxy init mheap.demo
 cd ..

 Now you have everything that you need to create an environment in which to test
 ansible-vault . Run vagrant up to create the environment, and then run your empty role.

 The next thing to do is to make your role do something. Open up roles/mheap.demo/
tasks/main.yml and add a task that writes a file out to disk:

 - copy: content="{{introduction}}" dest=/tmp/encrypted_output

CHAPTER 9 ■ ADVANCED ANSIBLE

140

 We use the copy module to take the contents of a variable and write it out to /tmp/
encrypted_output . You also need to edit roles/mheap.demo/vars/main.yml and make
sure that the introduction variable is set:

 introduction: Hello, my name is Michael

 At this point, you can run vagrant up to create a virtual machine, run your playbook
and write out your file. Imagine that your introduction is sensitive and that you don’t
want people to be able to read it unless they know the password. You can use ansible-
vault to encrypt your variables file:

 $ ansible-vault encrypt roles/mheap.demo/vars/main.yml
 New Vault password:
 Confirm New Vault password:
 Encryption successful

 Vault will ask you for a password and then to confirm that password. Once you’ve
provided a password, Vault will encrypt the file and write it to disk. If you look at the file,
you will see that the data is no longer in plain text:

 $ cat roles/mheap.demo/vars/main.yml

 $ANSIBLE_VAULT;1.1;AES256
 3235393239383137653031663739333737313135393066653835653434323333613766356539
32653138623736353266303233653366613830616638356435640a666239386366303139646
562306161393061333534333832643336313038323334613332386364636263666431666362
346538653064363737333363343936310a65343662616530333634333764386234353437396
362646266346438663830643265373561383766393231393261336263343032333263383730
6261366538396166653339313132656464643062316233323039333937643836666132633632

 If you try to run vagrant provision again, you’ll see an error: - ERROR! Decryption
failed . This happens because Ansible doesn’t have the password required to decrypt
the variables file. If you were running this using ansible-playbook rather than using
 vagrant provision , you’d add the --ask-vault-pass flag as follows:

 ansible-playbook –i /path/to/inventory playbook.yml --ask-vault-pass

 As you’re using vagrant provision , you need to tell Ansible to prompt for a vault
password via the vagrantfile. On line 6 of your Vagrantfile (the line after ansible.playbook
= "playbook.yml"), add the following:

 ansible.ask_vault_pass = true

 This tells Vagrant to specify --ask-vault-pass when calling Ansible. Run vagrant
provision again and provide the password that you used to encrypt the variables file.
This time, the Ansible run should complete without any issues, and if you use vagrant
ssh to log in to your environment, you should see that /tmp/encrypted_output was
created and that it contains your introduction.

CHAPTER 9 ■ ADVANCED ANSIBLE

141

 If you wanted to change the value of your introduction, you need to edit the
 variables file. As it’s an encrypted file, you can’t just open the file in your editor. Instead,
you use the ansible-vault edit command to decrypt and edit the fil e:

 $ ansible-vault edit roles/mheap.demo/vars/main.yml

 Once you’ve entered the password and made your changes, save the file and close
your editor to allow ansible-vault to encrypt the new value and write the file to disk.
If you run vagrant provision again, it will prompt you for the vault password and then
write your introduction out to disk in your environment.

 Encrypting an introduction doesn’t seem like much, but it’s initiated you into
the basics of ansible-vault and the commands that you’ll need when working with
information that is sensitive, such as passwords or SSL certificate keys for a web server.

 There are some other useful ansible-vault subcommands that are worth knowing,
which are spelled out in Table 9-1 .

 Table 9-1. Ansible-Vault Subcommands

 Command Explanation

 ansible-vault create Create a new encrypted file:

 ansible-vault create role/mheap.demo/vars/another.yml

 ansible-vault encrypt Encrypt an existing file:

 ansible-vault encrypt role/mheap.demo/vars/main.yml

 ansible-vault decrypt Decrypt an existing encrypted file:

 ansible-vault decrypt role/mheap.demo/vars/main.yml

 ansible-vault edit Temporarily decrypt an encrypted file for editing:

 ansible-vault edit role/mheap.demo/vars/main.yml

 ansible-vault view Show the contents of an existing encrypted file:

 a nsible-vault view role/mheap.demo/vars/main.yml

 ansible-vault rekey Change the key used to encrypt/decrypt an Ansible
Vault – managed file:

 ansible-vault rekey role/mheap.demo/vars/main.yml

 If you need to use ansible-vault in a totally automated environment where there
isn’t a person available to type in the vault password, you can specify a path to a file that
contains the password. If you want to use this option, specify the --vault-password-file
option when running ansible-playbook . Alternatively, you can specify the
 vault_password_file option in ansible.cfg to set a default. This is useful for
automatically creating new virtual machines when reacting to customer demand. When
a new machine is created, you don’t want to require a human to be present to type in the

CHAPTER 9 ■ ADVANCED ANSIBLE

142

decryption key. In this situation, you’d make sure that the decryption key is stored on the
default image used to create new servers. By passing the location of this decryption key
to Ansible using the --vault-password-file option, you remove the requirement for a
human to be present.

 Finally, it’s important to note that although your data is encrypted in a data file, it
will be decrypted so that Ansible can use its contents during the playbook run. By default,
this information will be displayed on the screen when you run Ansible in verbose mode
(by adding -v to your ansible-playbook command). This isn’t ideal, as it will expose
your sensitive information on the screen.

 You can see this by creating an example task that counts the number of characters in
your secret string:

 - shell: echo '{{introduction}}' | wc -c

 If you run ansible-playbook in verbose mode, it will show your secret content
(“This is a test”).

 $ ansible-playbook -i /path/to/inventory playbook.yml --ask-vault-pass –v

 TASK [mheap.demo : command]
**
 changed: [192.168.33.50] => {"changed": true, "cmd": "echo 'This is a test'
| wc", "delta": "0:00:00.004062", "end": "2016-04-25 20:06:11.501487",
"rc": 0, "start": "2016-04-25 20:06:11.497425", "stderr": "", "stdout":
" 1 4 15", "stdout_lines": [" 1 4 15"],
"warnings": []}

 To hide this from the output, you can add another parameter to your task —no_log: true:

 - shell: echo '{{introduction}}' | wc -c
 no_log: true

 This hides the output when Ansible is run in verbose mode:

 $ ansible-playbook -i /path/to/inventory playbook.yml --ask-vault-pass –v

 TASK [mheap.demo : command]
**
 changed: [192.168.33.50] => {"censored": "the output has been hidden due to
the fact that 'no_log: true' was specified for this result"}

 While counting the number of characters in your secret string is a fairly contrived
example, imagine storing MySQL usernames and passwords, or SSL certificate keys
that need to be deployed. If someone that should not be able to see the playbooks
somehow gets access, they still won’t be able to see any sensitive information, as they
won’t know the value of your secret key.

CHAPTER 9 ■ ADVANCED ANSIBLE

143

 It’s worth mentioning that as awesome as ansible-vault is, it has one huge
limitation at the moment: you can only use one shared secret per playbook run. This
means that if you have multiple encrypted files and some of them use a different vault
password, you can’t use them in the same playbook run.

 ansible-galaxy
 We briefly covered Ansible Galaxy in Chapter 4 , “Ansible Roles,” but there’s a little more
to Ansible Galaxy than that. In addition to using it to bootstrap new roles with ansible-
galaxy init , in contains an entire set of other subcommands. The Ansible Galaxy
command-line tool has two real responsibilities: installing roles locally and managing
your roles on the Ansible Galaxy website. Let’s start with how we can use it to manage
local roles.

 ansible-galaxy init
 Previously, we used Ansible Galaxy to scaffold a new role using ansible-galaxy init
<roleName> . This creates all of the required folders for a role in the current directory. Role
names tend to be in the form <identifier>.<role> . For example, if I were to write a role
that installs Apache, I would name it mheap.apache :

 $ ansible-galaxy init mheap.apache

 Running this command would create the structure shown in Figure 9-1 .

 Figure 9-1. Default Ansible role structure

http://dx.doi.org/10.1007/978-1-4842-1659-0_4

CHAPTER 9 ■ ADVANCED ANSIBLE

144

 ansible-galaxy install
 Beyond creating your own roles, you can install a role from the Ansible Galaxy website
with ansible-galaxy install <roleName> . If you wanted to install Jeff Geerling’s git
module, you could call ansible-galaxy as follows:

 $ ansible-galaxy install geerlingguy.git

 This will download the git module into your default Ansible role path (/etc/
ansible/roles by default) and make it available to all playbooks that you run on that
machine. If you want to keep your dependencies close to your actual playbooks, ansible-
galaxy supports a –p option for specifying where the role should be downloaded. To
download to the roles directory in the current folder, just add –p roles to the end of
your install command:

 $ ansible-galaxy install geerlingguy.git –p roles

 If you have a large list of dependencies, you may want to document this in your
repository. The Ansible Galaxy command-line tool can be fed a file that contains all of
your dependencies, and it will download all of the roles listed in there. This file is usually
named requirements.txt :

 $ ansible-galaxy install –r requirements.txt

 This is what requirements.txt may look like if you wanted to install both the git
role and the apache module:

 geerlingguy. git
 mheap.apache

 While this works for roles that have been published on Ansible Galaxy, sometimes
you need a role that has been developed internally and cannot be open-sourced. This
happens quite a lot in corporate environments where automation is important, but code
is very sensitive to the business. Thankfully, in version 1.8, Ansible added another format
for defining your role dependencies: requirements.yml .

 Using a YAML file to define your dependencies allows you to specify lots of additional
metadata about each role, meaning that you can install roles from Ansible Galaxy or private
source-control systems while keeping complete control over which version of a role to install.

 Using requirements.yml , you can configure the source, version, source-control
system, and even the name of the role under which it is saved. Here’s an example
 requirements.yml that shows off the available options (you wouldn’t use all of these
options at once; they’re here for demonstrative purposes):

 # from galaxy
 - src: yatesr.timezone

 # from GitHub
 - src: https://github.com/bennojoy/nginx

CHAPTER 9 ■ ADVANCED ANSIBLE

145

 # from GitHub, overriding the name and specifying a specific tag
 - src: https://github.com/bennojoy/nginx
 version: master
 name: nginx_role

 # from a webserver, where the role is packaged in a tar.gz
 - src: https://some.webserver.example.com/files/master.tar.gz
 name: http-role

 # from Bitbucket
 - src: git+http://bitbucket.org/willthames/git-ansible-galaxy
 version: v1.4

 # from Bitbucket, alternative syntax and caveats
 - src: http://bitbucket.org/willthames/hg-ansible-galaxy
 scm: hg

 # from GitLab or other git-based scm
 - src: git@gitlab.company.com:mygroup/ansible-base.git
 scm: git
 version: 0.1.0

 (from http://docs.ansible.com/ansible/galaxy.html#advanced-control-over-
role-requirements-files)

 ansible-galaxy list
 Once you’ve used ansible-galaxy install to install a role, you can use ansible-galaxy
list to see which roles you have available locally:

 $ ansible-galaxy list
 - geerlingguy.git, 1.1.1

 In this case, I only have one role installed locally, version 1.1.1 of geerlingguy’s git
role. By default, ansible-galaxy list will check your globally installed roles list (usually
 /etc/ansible/roles). If you want to check another folder on your local machine, you
can use the –p option, just like you would do when installing to another folder:

 $ ansible-galaxy list -p roles
 - mheap.demo, (unknown version)

 Here, we list all of the roles available in the roles folder in the current directory.
 mheap.demo is a sample role that I’ve developed locally, so there is no version information
available.

http://docs.ansible.com/ansible/galaxy.html#advanced-control-over-role-requirements-files
http://docs.ansible.com/ansible/galaxy.html#advanced-control-over-role-requirements-files

CHAPTER 9 ■ ADVANCED ANSIBLE

146

 ansible-galaxy remove
 If you want to uninstall any roles, you can use the ansible-galaxy remove command. By
default, it removes modules from your globally installed roles folder:

 $ ansible-galaxy remove geerlingguy.git
 - successfully removed geerlingguy.git

 As always, you can change the directory in which Ansible manages the roles using
the –p flag. Using this flag, you can also remove my demo module:

 $ ansible-galaxy remove -p roles mheap.demo
 - successfully removed mheap.demo

 If you run ansible-galaxy list or ansible-galaxy list –p roles now, you’ll see
that both the git module and the demo module have been removed.

 ansible-galaxy search
 When looking for roles, there are two different interfaces that you can use to search for
them. The first is to visit https://galaxy.ansible.com/explore #/ and browse via the
web interface. The second way to search is to use the ansible-galaxy command-line
tool itself. There are several command-line options available, but the simplest way to
search is to specify a keyword that you’re looking for, and it will search the role name and
description. If you wanted to search for git , you could run the following command:

 $ ansible-galaxy search git
 Found 160 roles matching your search:

 Name Description
 ---- -----------
 rooland-provisioning.gitlab GitLab Git web interface
 geerlingguy.gitlab GitLab Git web interface
 qgerome.gitlab GitLab Git web interface
 zzet.gitlab Undev Gitlab installation
 samdoran.gitlab Install GitLab CE Omnibus
 meantheory.gitlab installs gitlab
 jasonrsavino.git Install GIT
 kbrebanov.git Installs git
 AsianChris.git git installation
 bastly.git-publisher Git deploy
 andrewrothstein.git git role
 blackstar257.git Installs git
 manala.git Handle git
 marklee77.gitlab GitLab web service
 davidkarban.git Install git
 haroldb.gitlab-runner GitLab Runner

https://galaxy.ansible.com/explore

CHAPTER 9 ■ ADVANCED ANSIBLE

147

 Alternatively, you can search by role author by providing the --author flag. In this
case, we want to search for roles by geerlingguy . (There are 67 of them so far!)

 $ ansible-galaxy search --author geerlingguy

 Found 67 roles matching your search:

 Name Description
 ---- -----------
 geerlingguy.samba Samba for RHEL/CentOS.
 geerlingguy.tomcat6 Tomcat 6 for RHEL/CentOS and Debian/
Ubuntu.
 geerlingguy.php-pear PHP PEAR library installation.
 geerlingguy.nfs NFS installation for Linux.
 geerlingguy.repo-puias PUIAS repository for RHEL/CentOS.
 geerlingguy.phergie Phergie - a PHP IRC bot
 geerlingguy.gogs Gogs: Go Git Service

 You can also search by Ansible Galaxy tags. This is useful when you’re looking for
roles that fit into a certain category, but that category may not be listed in the role name
or description, such as virtualization:

 $ ansible-galaxy search --galaxy-tags virtualization

 Found 8 roles matching your search:

 Name Description
 ---- -----------
 debops.libvirtd Manage libvirtd instance with KVM support
 thebinary.lxd Installs LXD on Ubuntu and performs base
configuration as given in get started guide
 lesmyrmidons.docker Docker for Debian 64Bit.
 debops.docker Install and configure Docker Engine
 mediapeers.virtualbox Installs virtualbox and phpvirtualbox on a
headless Ubuntu server
 zavalit.docker Provision a Docker plattform on your host
 lciolecki.virtualenvwrapper Ansible role install and configure
virtualenvwrapper
 goern.virt-who Sets up virt-who on RHEL

 Finally, you can search for roles that support your operating system. The available
platforms are as follows:

• Amazon

• Debian

• EL

• eos

CHAPTER 9 ■ ADVANCED ANSIBLE

148

• Fedora

• FreeBSD

• GenericBSD

• GenericLinux

• GenericUnix

• IOS

• Junos

• opensuse

• SLES

• SmartOS

• Solaris

• Ubuntu

• Windows

 You can also combine these search options. To show all PHP7-related roles that will
run on Ubuntu, you can use the following search:

 $ ansible-galaxy search php7 --platforms=ubuntu

 Found 222 roles matching your search:
 Name Description
 ---- -----------
 theqwan-chengwei.ubuntuphpfpm7 ['ubuntu install php7-
fpm']
 chusiang.php7 Deploy PHP 7 (php-fpm)
for
 itcraftsmanpl.php7 Installs and configure
PHP 7
 MatthewMi11er.php A role to configure php
 mjanser.phpmyadmin Installs phpMyAdmin
 AsianChris.php5 php and php modules

 ansible-galaxy info
 Once you’ve found a role that looks like the one you want, you can use ansible-galaxy
info <roleName> to view information about that role:

 $ ansible-galaxy info geerlingguy.git

CHAPTER 9 ■ ADVANCED ANSIBLE

149

 The first piece of information shown is about the latest version of the role. It contains
the role description, the most recent commit hash and message (if the role is managed by
a version-control system), and metadata such as the download and fork count:

 Role: geerlingguy.git
 description: Git version control software
 active: True
 commit: b4f85aa9ad5368def602809847ef0367bbb407f9
 commit_message: Fix Ansible 2.x deprecation warnings.
 commit_url: https://github.com/geerlingguy/ansible-role-git/commit/
b4f85aa9ad5368def602809847ef0367bbb407f9
 company: Midwestern Mac, LLC
 created: 2014-03-01T02:53:28.033Z
 dependencies: []
 download_count: 8207
 forks_count: 22

 After this, the command will show information specific to Ansible Galaxy, such as
the module’s tags, which platforms it supports, and the minimum version of Ansible
required to run the module. This information is populated from both meta.yml inside the
role and the data supplied when publishing a role to Ansible Galaxy:

 galaxy_info:
 author: geerlingguy
 company: Midwestern Mac, LLC
 galaxy_tags: ['development', 'system']
 license: license (BSD, MIT)
 min_ansible_version: 1.9
 platforms: [{'name': 'EL', 'versions': ['all']}, {'name':
'Debian', 'versions': ['all']}, {'name': 'Ubuntu', 'versions': ['all']}]
 github_branch:
 github_repo: ansible-role-git
 github_user: geerlingguy
 id: 431
 install_date: Sat Apr 23 16:27:36 2016
 intalled_version: 1.1.1
 is_valid: True
 issue_tracker_url: https://api.github.com/repos/geerlingguy/ansible-
role-git/issues{/number}
 license: license (BSD, MIT)
 min_ansible_version: 1.9
 modified: 2016-04-23T18:32:03.698Z
 namespace: geerlingguy
 open_issues_count: 2
 path: /usr/local/etc/ansible/roles
 scm: None
 src: geerlingguy.git
 stargazers_count: 24

CHAPTER 9 ■ ADVANCED ANSIBLE

150

 travis_status_url: https://travis-ci.org/geerlingguy/ansible-role-
git.svg?branch=master
 version:
 watchers_count: 6

 ansible-galaxy login and import/delete
 If you want to use Ansible Galaxy as a role publisher, you’ll need to log in. Running
 ansible-galaxy login will prompt you for your Github credentials, as Ansible Galaxy
uses Github as its primary authentication method. These credentials are never sent to
Ansible Galaxy, but rather are used to create a Github access token via the Github API.
If you’d rather do this yourself, you can create one on Github and provide it to Ansible
Galaxy by running ansible-galaxy login --github-token <token> .

 Once you're logged in, you can start managing your roles. The first thing that you can
do is import a role:

 ansible-galaxy import github_username repo_name

 This will import a role into Ansible Galaxy so that other users can install it. For other
people to be able to use your role, you’ll need to do three things:

 1. Write the role and implement any tasks it needs.

 2. Upload the role to Github.

 3. Use ansible-galaxy import to register the role with
Ansible Galaxy.

 Make sure that you give your role a description and populate both galaxy_tags and
 platforms in meta/main.yml , or Ansible Galaxy will fail to import the role:

 $ ansible-galaxy import mheap ansible-role-demo

 Successfully submitted import request 10504
 Starting import 10504: role_name=ansible-role-demo repo=mheap/ansible-role-
demo ref=
 Retrieving Github repo mheap/ansible-role-demo
 Accessing branch: master
 Parsing and validating meta/main.yml
 Parsing galaxy_tags
 Parsing platforms
 Adding dependencies
 Parsing and validating README
 Adding repo tags as role versions
 Import completed
 Status SUCCESS : warnings=0 errors=0

CHAPTER 9 ■ ADVANCED ANSIBLE

151

 If at any point in the future you decide that your role should no longer exist on
Ansible Galaxy, you can use the ansible-galaxy delete command to remove it. Just like
 import , you specify a Github username and repository name, and Ansible Galaxy will
work out the correct role name. If I wanted to delete the role that I just imported, I’d run
the following command:

 $ ansible-galaxy delete mheap ansible-role-demo
 Role mheap.ansible-role-demo deleted

 This will remove the role from Ansible Galaxy, but it will still be available on
Github for people to use if they use requirements.yml to point to it directly. Make sure
to publish a license for use with your role so that people know what terms apply when
using your code. If you’re not sure which license to apply to your role, take a look at
 http://choosealicense.com/ to help you make a decision.

 ansible.cfg
 Most Ansible options can be set as defaults via ansible.cfg . This is an INI format file
(just like your inventory) that can be used to set default values for all of the options that
you can specify at runtime, and more! Ansible will look for this file in its default location
(usually /etc/ansible/ansible.cfg) and in the current directory. This means that you
can ship an ansible.cfg file in your project.

 You can see a commented example file that contains all of the available options at
 https://raw.githubusercontent.com/ansible/ansible/devel/examples/ansible.cfg ,
but I want to highlight some of the more useful options in Table 9-2 .

 Table 9-2. ansible.cfg Configuration Options

 Configuration Option Explanation

 nocows Remember all the way back in Chapter 1 where Ansible may
(or may not) have shown you ASCII cows in your output? If
you have cowsay installed, Ansible will format your task output
using the cowsay utility (https://en.wikipedia.org/wiki/
Cowsay). If you don’t want this behavior, you can disable cowsay
in ansible.cfg .

 [defaults]

 nocows = 1

 Inventory The inventory filename to use. This can be a standard text file or
an executable inventory script such as ec2.py (as discussed in
Chapter 2). For example:

 [defaults]

 inventory = ./ec2.py

(continued)

http://choosealicense.com/
https://raw.githubusercontent.com/ansible/ansible/devel/examples/ansible.cfg
http://dx.doi.org/10.1007/978-1-4842-1659-0_1
https://en.wikipedia.org/wiki/Cowsay
https://en.wikipedia.org/wiki/Cowsay
http://dx.doi.org/10.1007/978-1-4842-1659-0_2

CHAPTER 9 ■ ADVANCED ANSIBLE

152

Table 9-2. (continued)

 Configuration Option Explanation

 remote_port If you run your SSH server on a non-standard port, you can set
 remote_port , and Ansible will use that by default without your
having to set it in your inventory file. For example:

 [defaults]

 remote_port = 22345

 gathering By default, Ansible will attempt to gather facts about your
servers. If you don’t use them and want to avoid adding
 gather_facts: False to all of your playbooks, you can disable
facts via ansible.cfg :

 [defaults]

 gathering = explicit

 remote_user The user to log in as. Ansible will run as the current user by
default (I’m logged in as michael , so Ansible will set the remote
user to be michael).
 If you have a dedicated user for running Ansible (which is
recommended), you can set it as a default in ansible.cfg . For
example, to set the default user to be dedicateduser :

 [defaults]

 remote_user = dedicateduser

 private_key_file A path to an SSH key file to use to log in to the remote machines.

 [defaults]

 private_key_file = /path/to/id_rsa

 become_user The user to change to when using privilege escalation via
 become: true . By default, you will become the root user, but
you can change this via become_user . It’s important to note that
this comes under a different header in the config file:

 [privilege_escalation]

 become_user = admin

 become_ask_pass When using become: true , you may need to specify --ask-become-
pass when running ansible-playbook to make Ansible prompt
you for a sudo password. If you need to supply a sudo password,
you can make Ansible always prompt by setting become_ask_pass :

 [privilege_escalation]

 become_ask_pass = True

CHAPTER 9 ■ ADVANCED ANSIBLE

153

 If you created an ansible.cfg file with all of the preceding options, it would look
like this:

 [defaults]
 nocows = 1
 inventory = ./ec2.py
 remote_port = 22345
 gathering = explicit
 remote_user = dedicateduser
 private_key_file = /path/to/id_rsa

 [privilege_escalation]
 become_user = admin
 become_ask_pass = True

 Running in Serial
 By default, Ansible will run against all hosts referenced in a playbook in parallel. If our
inventory contains ten hosts, the following playbook will run the mheap.demo role against
all of them at the same time:

 - hosts: all
 roles:
 - mheap.demo

 If this isn’t the behavior you want, you can tell Ansible that it should only run on a
certain number of hosts at a time to avoid taking every member of a cluster offline at the
same time:

 - hosts: all
 serial: 3
 roles:
 - mheap.demo

 By adding serial: 3 , you are telling Ansible that it should only run on three hosts at
a time. It will run on the first three and wait for the play to complete on all of them before
moving on to the next three. If you prefer, you can specify this as a percentage rather than
a raw number:

 - hosts: all
 serial: 40%
 roles:
 - mheap.demo

CHAPTER 9 ■ ADVANCED ANSIBLE

154

 Given this configuration, Ansible will run on the first 40 percent of hosts specified,
then the next 40 percent, and then the final 20 percent. When the number of hosts does
not divide cleanly, the final group will contain all of the remaining hosts.

 By default, Ansible will run on every host specified. If a host fails, no more tasks will
run on that host, and Ansible will move on to the next available host. If you want to tell
Ansible not to run on the remaining hosts if Ansible fails on a host, you can use
 max_fail_percentage to stop Ansible if a certain percentage of hosts fail:

 - hosts: all
 serial: 40%
 max_fail_percent: 10
 roles:
 - mheap.demo

 If more than 10 percent of servers fail to complete their Ansible run, the rest of the
play will be aborted. If you want to stop as soon as a single server fails, you can set this
option to zero:

 - hosts: all
 serial: 40%
 max_fail_percent: 0
 roles:
 - mheap.demo

 It’s important to note that the failed percentage must exceed the value that you
specify. This means that if you want to abort the run if half of your servers fail to complete
a play, you should set max_fail_percentage to 49 , not 50 .

 ansible-pull
 One of Ansible’s greatest strengths is that you push changes out from your control
machine to all of the hosts in your inventory. If you find that this model doesn’t work
for you, and you want all of your machines to pull down the latest changes periodically,
you can use ansible-pull . If you decide to choose this direction for your deployments,
you’ll need to make sure that Ansible is installed on all of the machines you have in your
inventory. You can use Ansible to do this! For example, if your machines are all running
Ubuntu: ansible all -i /path/to/inventory –m apt –a name=ansible .

 This uses Ansible in ad-hoc mode to install Ansible on all of your remote servers.
Once you have Ansible installed, you can try running ansible-pull by hand to make
sure that it works. ansible-pull supports all of the common options from ansible and
 ansible-playbook . In addition, you need to specify the URL of a git repository to clone,
but that’s all.

CHAPTER 9 ■ ADVANCED ANSIBLE

155

 Log in to one of your remote servers and run the following command, replacing the
git URL with a valid repository path:

 $ ansible-pull -U git@example.com/ansible-site.git -i 'localhost,' –c
'local' playbook.yml

 Ansible will clone the repository provided with the –U option and then run ansible-
playbook using the provided options. If you were to do the same thing without ansible-
pull, you could run the following commands:

 git clone git@example.com/ansible-site.git
 cd ansible-site.git
 ansible-playbook –i 'localhost,' -c 'local' playbook.yml

 ansible-pull wraps all of this up into a nicer interface.
 Once you’ve proven that ansible-pull works, you can set up a cronjob to run

 ansible-pull automatically at certain times. Every 15-30 minutes is a sensible value
for this. To do this, run crontab –e as the user that should run Ansible and add the
following line:

 MAILTO=you@example.com
 */30 * * * * ansible-pull -U git@example.com/ansible-site.git -i
'localhost,' –c 'local' playbook.yml

 This will automatically run ansible-pull every 30 minutes as the configured
user and send the output to the email address specified. If you’re not interested in
the standard output, you can redirect it to /dev/null as follows (you will still get error
messages emailed to you, just not the standard output):

 MAILTO=you@example.com
 */30 * * * * ansible-pull -U git@example.com/ansible-site.git -i
'localhost,' –c 'local' playbook.yml > /dev/null

 If you were so inclined, you could even do this with Ansible! There’s no support for
setting MAILTO using Ansible, but to set up the preceding cronjob automatically in every
host in an inventory file, you can use the following command:

 ansible all -i inventory -m setup -a 'name="Ansible Pull" minute="*/30"
job="ansible-pull -U git@example.com/ansible-site.git -i \\'localhost,\\' –c
\\'local\\' playbook.yml"'

 Blocks
 With the version 2.0 release, Ansible added the concept of blocks to playbooks. Blocks
allow a logical grouping of tasks and enable you to specify options such as when and
 become for multiple tasks instead of specifying them for each task, one at a time.

CHAPTER 9 ■ ADVANCED ANSIBLE

156

 If you have a playbook that requires some tasks to be run with elevated privileges
and others that need to run as a normal user, you can use block to split the tasks. For
example, the following playbook installs and configures apache2 as root before copying a
configuration file into the home directory of the default user:

 - hosts: all
 tasks:
 - block:
 - apt: name=apache2 state=installed
 - template: name=vhost.conf dest=/etc/apache2/sites-enabled/vhost.conf
 become: true

 - copy: name=s3.cfg dest=~/.s3.cfg

 Beyond providing task grouping, blocks introduce a way to handle errors in playbooks.
If you’re familiar with try/catch from most programming languages, Ansible has an
equivalent with block/rescue . If any tasks fail within a block statement, any other tasks
below it will not execute, and the playbook will jump into the corresponding rescue block:

 - hosts: all
 tasks:
 - block:
 - command: /bin/false
 - debug: msg="I will never run as the task above fails"
 rescue:
 - debug: msg="This will run because the block failed"
 always:
 - debug: msg="This runs no matter what happens"

 In this case, Ansible will output “This will run because the block failed” followed by
“This runs no matter what happens.” This is because the false command has a non-zero
return code, which Ansible interprets as an error.

 If the command passes, the rescue block is never triggered:

 - hosts: all
 tasks:
 - block:
 - command: /bin/true
 - debug: msg="I will run as the task above succeeded"
 rescue:
 - debug: msg="This will run because the block failed"
 always:
 - debug: msg="This runs no matter what happens"

CHAPTER 9 ■ ADVANCED ANSIBLE

157

 In this example, Ansible will output “I will run as the task above succeeded” followed
by “This runs no matter what happens.” The rescue section isn’t run, as none of the tasks
in the block section failed. There is no way to catch specific errors with different rescue
blocks (as you can catch typed exceptions in most programming languages); either
something failed and it is caught by the rescue block, or it didn’t and the rescue block was
not called.

 Blocks can be very useful when you need to scope a setting to multiple tasks instead
of specifying it multiple times. If you run any commands to determine a system’s state
and register the results in a variable, you can wrap up several tasks in a block and apply a
single when to them all, keeping your execution logic in one place.

 Summary
 While you may not use the tools in this chapter in every playbook that you write, they are
definitely worth knowing. Ansible Galaxy can help you manage your roles, and Ansible
Vault can keep your sensitive information secure, allowing you to share playbooks safely
in the knowledge that only those with the passphrase can see your secrets.

 In addition to covering Galaxy and Vault, we took a look at blocks, ansible-pull ,
 ansible.cfg , and the Ansible tool itself, which can be very useful for ad-hoc querying
and bootstrapping servers. Make sure to look at all of the options presented in this
chapter, as you could save a lot of time later on by setting smart defaults.

 You’ve made it all the way to the end of the book! Hopefully, you’ve found it useful
and are looking forward to using Ansible going forward. There’s much more to Ansible
than we could possibly cover in a single book, and I’m sure you’ll be encountering lots of
things that we only briefly touched upon as your playbooks get more and more complex.

 The Ansible documentation (http://docs.ansible.com/) is a great resource,
documenting advanced features such as lookup, tagging, and some alternative testing
strategies. As always, the Ansible source code itself is worth looking at, particularly the
core modules (https://github.com/ansible/ansible-modules-core). The source code
will never lie to you, so if you find that you can’t accomplish what you’re trying to do
based on the documentation, double check the code to see what’s actually going on. You
might even be able to contribute a new feature!

 Finally, I’d investigate dynamic inventories with a particular focus on using hostvars
to extract data from dynamically created machines before using that data to make
decisions and populate config files on other machines. Making your playbooks entirely
data driven allows you to scale as and when you need it.

 Thanks for making it to the end with me! If you have any questions or feedback, feel
free to get in contact with me. I’m m@michaelheap.com , and I’ll be sure to get back to you.
Good luck in your adventures with Ansible in the future!

http://docs.ansible.com/
https://github.com/ansible/ansible-modules-core

159© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_10

 CHAPTER 10

 Appendix A. Installing
Ansible

 Depending on which operating system you use, there are various ways to install Ansible.
On Linux, you can either install Ansible from source or build a packaged version of
Ansible that you install with your system’s package manager. This appendix will cover
building Ansible on both Debian-based and RedHat-based Linux systems, as well as how
to install Ansible on Windows.

 Ansible on Debian
 Debian is both the name of a family of Linux distributions and the name of a specific
Linux distribution. If you’re using Debian, Ubuntu, or Linux Mint (or any other
Debian-based operating system), you can follow the instructions in this section to
install Ansible from source.

 Installing from Source
 The easiest way to get the most up-to-date version of Ansible available is to install it from
source. To build Ansible, you’ll need to start by installing some development packages on
your machine. Once you’ve installed the required packages, you’ll clone Ansible’s source
code from Github and use its makefile to install Ansible onto your machine.

 Here are all of the commands required to install Ansible from source on a
Debian-based machine :

 sudo apt-get update
 sudo apt-get install build-essential git python-pip python-dev libffi-dev
libssl-dev
 sudo pip install setuptools --upgrade
 git clone git://github.com/ansible/ansible.git --recursive
 cd ansible
 make
 sudo make install

CHAPTER 10 ■ APPENDIX A. INSTALLING ANSIBLE

160

 Building a .deb Package
 While installing from source installs the latest version of Ansible, it makes uninstalling
Ansible quite difficult. As Ansible simply copies files into the correct directory when
installing from source, nothing tracks which files were created (and so it doesn’t know
which files to remove). By building a Debian package (a .deb file), you can utilize all of
the same installation and removal tools that standard system packages use.

 Building a .deb file from the Ansible source code requires all of the same
dependencies as installing from source, as well as some system packages that are
required to build your .deb package. The following commands will install all of the
required packages and build a Debian package that you can use to install Ansible.

 sudo apt-get update
 sudo apt-get install build-essential git python-pip python-dev libffi-dev
libssl-dev asciidoc devscripts debhelper cdbs
 sudo pip install setuptools --upgrade
 git clone git://github.com/ansible/ansible.git --recursive
 cd ansible
 make deb

 Once the make deb command completes, you can locate your built Debian package
with the following command:

 $ find . -name "*.deb"
 ./deb-build/unstable/ansible_2.2.0-0.git201607051907.d0ccedc.devel~unstable_all.deb

 Before you can install this package, you’ll need to install a few dependencies that
Ansible needs by running the following command:

 sudo apt-get install python-jinja2 python-paramiko sshpass python- markupsafe

 Once you’ve got all of the dependencies you need installed, you can install Ansible
from the Debian package you just built:

 $ sudo dpkg -i ./deb-build/unstable/ansible_2.2.0-0.git201607051907.d0ccedc.
devel~unstable_all.deb

 At this point, you can run ansible --version to prove that Ansible is installed.
 Because you built a package for Ansible, if you ever decide that you want to uninstall

it, it’s as simple as running sudo apt-get remove ansible .

 Ansible on RedHat
 Like Debian, RedHat is the name of both a specific version of Linux (RedHat Enterprise
Linux, commonly known as RHEL) and a family of operating systems derived from
it, such as CentOS and Fedora. The commands used to build and install Ansible are
different, but the process is exactly the same.

CHAPTER 10 ■ APPENDIX A. INSTALLING ANSIBLE

161

 Installing from Source
 Once again, the easiest way to get the most up-to-date version of Ansible available
is to install it from source. To build Ansible, you’ll need to start by installing some
development packages on your machine. Once you’ve installed the required packages,
you’ll clone Ansible’s source code from Github and use its makefile to install Ansible
onto your machine.

 Here are all of the commands required to install Ansible from source on a RedHat-based
machine:

 sudo yum install epel-release
 sudo yum clean all
 sudo yum install git gcc python-pip python-devel libffi-devel openssl-devel
 sudo pip install setuptools --upgrade
 git clone git://github.com/ansible/ansible.git --recursive
 cd ansible
 make
 sudo make install

 Building a .rpm Package
 As on Debian, installing Ansible from source makes uninstalling it quite difficult. By
building an RPM (RedHat Package Management) file, you can utilize all of the same
installation and removal tools that standard system packages use.

 Building an RPM from the Ansible source code requires all of the same dependencies
as installing from source, as well as some system packages that are required to build your
RPM package. The following commands will install all of the required packages and build
a RPM package that you can use to install Ansible:

 sudo yum install epel-release
 sudo yum clean all
 sudo yum install git gcc python-pip python-devel libffi-devel openssl-devel
asciidoc rpm-build
 sudo pip install setuptools --upgrade
 git clone git://github.com/ansible/ansible.git --recursive
 cd ansible
 make rpm

 Once the make rpm command completes, you can locate your built RPM package
with the following command:

 $ find . -name "*noarch.rpm"
 ./rpm-build/ansible-2.2.0-0.git201607051907.d0ccedc.devel.el7.centos.noarch.rpm

CHAPTER 10 ■ APPENDIX A. INSTALLING ANSIBLE

162

 Once you have this, you can install your newly-built RPM using yum :

 sudo yum install ./rpm-build/ansible-2.2.0-0.git201607051907.d0ccedc.devel.
el7.centos.noarch.rpm

 At this point, you can run ansible --version to prove that Ansible is installed.
 Because you built a package for Ansible, if you ever decide that you want to uninstall

it, it’s as simple as running sudo yum remove ansible .

 Ansible on Windows
 I’ve had limited success running Ansible on Windows under a POSIX environment, and I
wouldn’t recommend it to anyone but the most curious reader.

 To run Ansible on Windows natively, follow these steps:

 1. Install babun from http://babun.github.io/ . This is a
preconfigured install of Cygwin, a POSIX environment with
development tools for Windows.

 2. Once that is installed, you’ll need to run pact install
python-openssl python-crypto in a terminal. This installs
some required libraries. You’ll also need easy_install and
 pip . To get these, run wget https://bootstrap.pypa.io/
ez_setup.py followed by python ez_setup.py then easy_
install pip .

 3. At this point, you’re almost ready to install Ansible
on Windows. You can use Pip to install the required
dependencies by running pip install jinja2 pyyaml
requests before running git clone --recursive
https://github.com/ansible/ansible to download Ansible.

 4. Finally, you need to install Ansible. To do this, run cd ansible
&& make install . At this point, you should be able to run
 ansible --help, ansible-playbook --help, ansible-
galaxy --help, and ansible-vault --help , and it should
output the help text for each command.

 Following these instructions, you may be able to use a Windows host as an Ansible
control machine. However, this is not supported, and the official recommendation is to
run a virtual Linux machine via Vagrant on Windows and install Ansible on your virtual
machine. This will then serve as your control machine.

http://babun.github.io/
https://bootstrap.pypa.io/ez_setup.py
https://bootstrap.pypa.io/ez_setup.py
https://github.com/ansible/ansible
https://github.com/ansible/ansible

163© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0_11

 CHAPTER 11

 Appendix B. YAML Files

 YAML (which is a recursive acronym that stands for YAML Ain’t Markup Language) is a
data-serialization language that is designed to be both human and machine readable.
It was first proposed in 2001, and it was designed to be easily mapped to common data
types in high-level languages, namely lists, maps, and scalar values.

 YAML is a whitespace-sensitive language. This leads to YAML files being extremely
readable by humans thanks to their familiar indentation to denote nested data. In
addition to being readable, YAML has support for data referencing, where you can define
a block of data once and reference it elsewhere in a YAML document (though Ansible
does not make use of this feature).

 Starting a YAML document
 YAML files may optionally start with some YAML directives. There are currently only two
available directives according to the YAML specification:

 1. %YAML – This is used to set the YAML version of the document.

 2. %TAG – This is used to define a tag shorthand. Tags are used to
define data types within a YAML document.

 These directives are placed at the top of your YAML file and are terminated by three
dashes on their own line. In practice, most YAML documents do not specify any directives
at all, opting to start the file with three dashes on the first line, signaling that the entire file
is a YAML document.

 Data Types
 As mentioned, YAML was designed to natively support lists, maps, and scalar values. These
three data types make up the core of most data structures used in application development
today. Each of the data types has several different formats that they can take.

CHAPTER 11 ■ APPENDIX B. YAML FILES

164

 Scalar
 Let’s start with scalar values. A scalar value is the simplest data structure available,
and it means that the value is a string or a number. In YAML, you can use scalar values
whenever you need to. In this example, you set the value of name to be Michael and the
value of power_level to 9001 :

 name: Michael
 power_level: 9001

 List
 Lists in YAML can take one of two forms. Let’s start with the one used most commonly.
In this example, we define a list of sentences that describe Ansible:

 ansible_statements:
 - Easy to learn
 - Powerful
 - Extensive module support

 Each item in a list must start with a dash and must be indented underneath the
key to which it belongs. In this case, ansible_statements is a list containing all of our
sentences. Alternatively, you can define a list in YAML using its more compact, single-line
format, as follows:

 ansible_statements: [Easy to learn, Powerful, Extensive module support]

 While either of these formats will work for defining a list, the first one shown is much
more common in Ansible playbooks .

 Map
 A map is a set of key => value pairs. In other languages, it is commonly known as an
 associative array or a hashmap . You’ve actually seen a map already, when you looked at
scalar values:

 name: Michael
 power_level: 9001

CHAPTER 11 ■ APPENDIX B. YAML FILES

165

 Though the values shown here are scalar values, the data structure as a whole is a
map—each line has both a key and a value. In addition to spanning multiple lines, this
data can be represented on a single line. This is known as an inline block :

 { name: Michael, power_level: 9001 }

 Maps can be more complicated than this simple example, utilizing all of the available
data types. For example, note the following:

 person:
 first_name: Michael
 last_name: Heap
 skills:
 - Ansible
 - Golang
 - Python
 - PHP
 likes: [dogs, walking, programming]
 favorites:
 drink: Pepsi Max
 color: Red
 other:
 - key: value
 another: val
 - key: foo
 another: bar

 As you can see, you can have maps of maps, maps of lists, lists of maps, and plain old
scalar values. By mixing and matching the data types available, you can build up a rich
definition of your data that both humans and machines can read .

 Block Literals
 Finally, there are block literals. These are not a data type exactly, but they are very useful
to know about. When defining a variable in Ansible, you may want to set its contents to be
a very long string. You can use the block literal syntax to do this:

 message: >
 This is a message that is
 going to span several lines
 but is going to be placed on
 a single line when evaluated

CHAPTER 11 ■ APPENDIX B. YAML FILES

166

 When the YAML parser reads this declaration, it will read all of the available text into
the message variable, stripping the new lines out of the content. If you wanted YAML to
keep the new lines in the content, you could use the pipe operator rather than the greater
than sign, as follows:

 message: |
 This is a message that is
 going to span several lines
 whilst keeping whitespace
 intact

 Summary
 YAML is a data-definition language designed for humans and computers alike. Ansible
only uses a subset of its available features, but those features are powerful enough to do
anything you need to do in a playbook.

 The YAML specification is much larger than this document, and it has support
for repeated data and custom data types. If you want to learn more about YAML, the
Wikipedia page is a fantastic reference, covering all of the available features in an
accessible way (https://en.wikipedia.org/wiki/YAML).

https://en.wikipedia.org/wiki/YAML

 A, B
 Agentless model , 4
 Amazon Web Services (AWS)

 account creation , 99
 IAM users , 101–102
 instance. Instance
 key pairs , 102
 prerequisites , 103
 security groups , 103
 support plan , 100
 telephone number , 100

 Ansible program , 1
 confi guration management

 about it , 2–3
 agentless model , 4
 CFEngine , 3
 defi nition , 1
 infrastructure , 2
 installation , 4–5
 Puppet and Chef , 3
 SaltStack , 3

 Debian , 159
 .deb package , 160
 playbooks , 1, 5, 10

 administrator
permissions , 13–14

 apt module , 14
 environment , 7–10
 front matter , 11
 idempotent , 16–17
 PHP , 13
 task management , 12
 test environment , 6
 vagrant provision , 11, 14–15
 VirtualBox and Vagrant , 6
 YAML fi les , 11

 RedHat , 160–161
 .rpm package , 161–162
 Windows , 162

 C
 CFEngine , 3
 Chef , 3
 Command-line tool

 ad-hoc commands , 137
 ansible.cfg , 151

 confi guration options , 151–153
 ansible-galaxy

 info , 148–149
 init , 143
 install , 144–145
 list , 145
 login and import/delete , 150–151
 remove , 146
 search , 146–148

 ansible-vault , 138–143
 nginx , 137
 query environment , 138
 serial running

 ansible-pull , 154–155
 blocks , 155–157
 mheap.demo , 153

 Continuous integration system , 52

 D, E, F
 Debian

 installation , 159
 source , 159

 .deb package , 160
 DeHaan, Michael , 2
 Dynamic inventories , 28–30, 116–119

 Index

167© Michael Heap 2016
M. Heap, Ansible, DOI 10.1007/978-1-4842-1659-0

■ INDEX

168

 G
 Galaxy

 dependencies option , 58
 diff erent platforms , 60–61
 geerlingguy.git , 50
 meaning , 49
 prolifi c role creators , 50
 role structure , 51

 continuous integration
system , 52

 fi les , 51–52
 main.yml fi le , 53
 structure of , 51

 WordPress playbook
 mheap.common , 57–58
 mheap.mysql , 55
 mheap.nginx , 56
 mheap.php , 54–55
 mheap.wordpress , 56–57
 roles , 53

 wrapper roles , 59

 H
 Hashmap/associative array , 164

 I, J, K
 Instance

 AnsibleScaling , 109–110
 Boto confi guration fi le , 105
 connection , 104
 contents , 104
 creation , 105
 delete , 107–109
 dynamic inventories , 116–119
 EC2 module , 105
 machine creation , 106
 managing cardinalities , 109–110
 orchestration/provisioning

playbook , 104
 provision

 AWS console , 113
 aws-wordpress , 111
 folder structure , 112
 manage-instances.yml , 112
 points , 112

 virtual machine , 104
 VPC , 119–124
 WordPress playbook , 113–116

 Inventory fi le , 19
 confi guration options , 22, 24
 defi nition , 19
 dynamic data , 28–30
 fi ctional deployment , 27–28
 groups , 25–27
 INI fi le/JSON fi le , 19
 load balancer key , 28
 multiple inventories , 30
 parameter step , 20
 ping module , 19
 privilege escalation option , 24
 range expansion , 20
 vagrant , 21
 variable registration , 24–25

 L
 Lightweight tests , 131–132

 M
 mheap.common , 57–58
 mheap.mysql , 55
 mheap.nginx , 56
 mheap.php , 54–55
 mheap.wordpress , 56–57
 Modules , 83

 ansible-modules-core , 83
 ansible-modules-extras , 83
 bash , 84–88
 environment setup , 84
 facts , 96–98
 programming language , 95–96
 python , 90

 demo.sayHello endpoint , 91
 documentation , 91
 error message , 88, 90
 if statement , 94
 module defi nition , 93
 output , 89
 parameters , 89, 91–92
 source code , 93
 url argument , 89
 wp.editProfi le , 93
 wp_user fi le , 88
 xmlrpclib module , 90

 Multiple inventories , 30
 MySQL

 confi guration , 35
 contents , 35

■ INDEX

169

 fi le existing , 36
 folders and fi les , 35
 playbook , 33–34
 query operation , 36–37
 register keyword , 34
 root password and output , 34
 tasks , 34

 N
 nginx , 37–40

 O
 Orchestration . See Amazon

Web Services (AWS)

 P, Q
 Parameterized playbooks

 disable facts
 caching facts , 80
 facts.d , 79–80
 gather_facts , 79
 hostvars , 80

 fact gathering , 77–79
 playbook variable

 block , 75–76
 extra variables , 77
 facts , 70
 group , 70
 host , 70
 playbook , 72
 registered variables , 71
 roles , 75
 set facts , 71
 task , 76–77
 vars_fi les , 73–75
 vars_prompt , 72

 variable locations , 67
 directory

structure , 69–70
 folder structure , 69
 group variables , 68
 host , 69–70
 inventory variables , 68
 role defaults , 67

 variables , 63
 core aspects , 81
 fi lters , 80
 philosophy , 82

 php_packages variable , 82
 source code , 81

 WordPress (see WordPress role)
 PHP installation , 32–33
 Puppet , 3

 R
 RedHat Package

Management (RPM) , 160–161
 .rpm package , 161–162
 Roles

 diff erents , 49
 galaxy (see Galaxy)
 logical sections , 49
 writing options , 61

 S
 SaltStack , 3
 Scalar value , 164
 ServerSpec , 127

 T, U
 Testing tools , 125

 context block and port , 131
 driver , 128
 Kitchen (see Test Kitchen)
 kitchen-ansible , 129
 Lightweight tests , 131–132
 nginx , 128
 output results , 129–130
 playbook.yml , 128
 ServerSpec , 127
 spec_helper.rb , 130
 WordPress role , 133–136

 Test Kitchen
 commands , 127
 defi nition , 125
 installation , 126
 use of , 125
 virtualization , 126

 V
 Vagrant , 6, 21
 VirtualBox and Vagrant , 6
 Virtual private cloud (VPC)

 cidr argument , 120
 creation , 119

■ INDEX

170

 EC2 module , 123
 environment , 120
 full-environment.yml , 120
 output , 124
 ping module , 120
 rules , 122
 rules_egress , 122
 security group rules , 121
 subnet , 121
 virtual machines , 122

 W, X
 Windows , 162
 WordPress

 backups , 46–47
 confi guration , 43–44
 dependencies

 Ansible playbooks , 32
 MySQL , 33–37
 PHP installation , 32–33

 download , 41
 automatic downloading , 42–43
 curl , 42
 tasks section , 42

 environment
confi guration , 31

 error message , 46
 idempotent , 47
 installation , 31
 meaning , 45
 nginx , 37–40
 role

 confi guration fi le , 63
 domain name , 65–67
 source code , 64
 tasks/templates , 64
 testing tools , 133–136

 tasks and handlers , 40–41
 Wrapper roles , 59

 Y, Z
 YAML fi les , 11

 Ain’t markup language , 163
 data types

 block literals , 165
 lists , 164
 map , 164–165
 scalar , 163

 document , 163

Virtual private cloud (VPC) (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started
	What Is Configuration Management?
	Infrastructure as Code
	About Ansible
	Puppet, Chef, and Other Configuration Management Tools
	Installing Ansible

	Writing Your First Playbook
	Creating a Test Environment with Vagrant
	About VirtualBox and Vagrant
	Installing VirtualBox and Vagrant
	Creating Your Environment

	An Introduction to Playbooks
	Your First Playbook
	Playbooks and Idempotency

	Summary

	Chapter 2: The Inventory File
	What’s an Inventory?
	Running Without Vagrant
	Configuration Options in the Inventory
	Inventory Variable Registration
	Inventory Groups
	An Example Inventory
	Dynamic Inventories
	Multiple Inventories
	Summary

	Chapter 3: Installing WordPress
	Installing WordPress
	Environment Configuration
	Installing Dependencies
	Installing PHP
	Installing MySQL
	Installing nginx
	Tasks and Handlers

	Downloading WordPress
	Downloading it Yourself
	Downloading it Automatically

	Configuring a WordPress Install
	Making a Backup

	Making It Idempotent
	Summary

	Chapter 4: Ansible Roles
	Ansible Galaxy
	Role Structure
	Splitting Up Your WordPress Playbook
	mheap.php
	mheap.mysql
	mheap.nginx
	mheap.wordpress
	mheap.common

	Role Dependencies
	Wrapper Roles
	Creating Roles for Different Platforms

	Tips for Writing Roles
	Summary

	Chapter 5: Parameterizing Playbooks
	Parameterizing Your WordPress Role
	Customizing the WordPress Domain Name

	Variable Locations
	Role Defaults (Commonly Used)
	Inventory Variables
	Inventory Group Variables
	Inventory Host Variables
	Playbook Group Variables (Commonly Used)
	Playbook Host Variables (Commonly Used)
	Host Facts
	Registered Variables (Commonly Used)
	Set Facts
	Playbook Variables
	Playbook vars_prompt
	Playbook vars_files
	Role Variables (Commonly Used)
	Block Variables
	Task Variables
	Extra Variables

	Gathering Facts
	Disabling Facts
	Facts.d
	Fact Caching
	hostvars

	Working with Variables
	Ansible’s Variable Philosophy
	Summary

	Chapter 6: Writing Your Own Modules
	About Ansible Modules
	ansible-modules-core
	ansible-modules-extras

	Environment Setup
	Writing a Module Using Bash
	Writing a Module Using Python
	Writing in Any Other Programming Language
	Providing Facts via a Module
	Summary

	Chapter 7: Orchestrating AWS
	Creating an AWS Account
	IAM Users
	Key Pairs
	Security Groups

	Prerequisites
	Creating an Instance
	Deleting Instances
	Managing Instance Cardinality
	Provisioning Your New Instance
	Running Your WordPress Playbook
	Dynamic Inventories
	Creating a VPC

	Summary

	Chapter 8: Testing with Test Kitchen
	About Test Kitchen
	Installing Test Kitchen
	An Introduction to ServerSpec
	Writing Your First Test
	More Lightweight Tests
	Testing Your WordPress Role
	Summary

	Chapter 9: Advanced Ansible
	Ansible: The Command-Line Tool
	Querying the Environment
	ansible-vault
	ansible-galaxy
	ansible-galaxy init
	ansible-galaxy install
	ansible-galaxy list
	ansible-galaxy remove
	ansible-galaxy search
	ansible-galaxy info
	ansible-galaxy login and import/delete

	ansible.cfg

	Running in Serial
	ansible-pull
	Blocks

	Summary

	Chapter 10: Appendix A. Installing Ansible
	Ansible on Debian
	Installing from Source

	Building a .deb Package
	Ansible on RedHat
	Installing from Source

	Building a .rpm Package
	Ansible on Windows

	Chapter 11: Appendix B. YAML Files
	Starting a YAML document
	Data Types
	Scalar
	List
	Map
	Block Literals

	Summary

	Index

