

Git Best Practices Guide

Master the best practices of Git with the help of
real-time scenarios to maximize team efficiency
and workflow

Eric Pidoux

BIRMINGHAM - MUMBAI

Git Best Practices Guide

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1141114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-373-0

www.packtpub.com

Credits

Author
Eric Pidoux

Reviewers
Paulo Alcantara

Edward E Griebel Jr

Scott M. Spear

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Melita Lobo

Technical Editors
Pratik More

Humera Shaikh

Copy Editor
Sayanee Mukherjee

Project Coordinator
Kinjal Bari

Proofreaders
Paul Hindle

Samantha Lyon

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Eric Pidoux has a Master's degree in Computer Science from Miage Aix-Marseille
and is currently working as a lead web developer at createur.ch, Lausanne,
Switzerland. He started learning PHP 10 years ago and is now a Symfony2 ninja
who likes coding as well as drinking beer.

He has worked as a technical reviewer on GitLab Repository Management and
Extending Symfony2 Web Application Framework, both by Packt Publishing.

I would like to dedicate this book to my father and thank all my
friends and, of course, my awesome family.

About the Reviewers

Paulo Alcantara is a software engineer at C.E.S.A.R, a company based in Recife,
Brazil. He works on UEFI firmware development, where he has an equivalent
experience of over 4 years. His previous employers include Intel Corporation, Nokia
Institute of Technology, and ProFUSION embedded systems. He graduated from
high school and is a free software hacker who is interested in filesystems, storages,
bootloaders, operating systems, and BIOS/UEFI firmware. He has experience working
with C, C++, x86 assembly language, Python, Lisp, Perl, and Bash. He is the author of
NTFS and XFS filesystem drivers of the SYSLINUX bootloader. He is also the excore
developer of the PySide project and contributed to BlueZ (Linux Bluetooth stack) and
Enlightenment Foundation Libraries (EFL). Currently, in his free time, he works on
a BSD-licensed UEFI driver for the UDF/ECMA-167 filesystem.

I would like to thank my team and project manager at C.E.S.A.R
(Victor Gouveia, Mauro Faccenda, Thiago Carneiro, Carlos Leal, and
Tarciana Mello) and my parents, especially my mother (Morgana
Oliveira) who made me enough coffee to get the review on this
book done.

Edward E Griebel Jr has been developing enterprise software for over 20 years in
C, C++, and Java. He has a Bachelor of Science degree in Computer Engineering. He is
currently a middleware architect at a leading payroll and financial services provider in
the US, focusing on systems integration and UI and server development.

Scott M. Spear owns and operates Webmasters by Design LLC, a web design and
development business. He has a Bachelor of Science degree in Computer Management
Information Systems and a Master of Business Administration degree, with over
a decade of web design, development, and hosting experience. He has experience
in a variety of areas, including web design, development, and hosting, and he also
specializes in dynamic website design and development, using technologies such
as PHP, MySQL, CSS, Ajax, jQuery, and Zend Framework. Additionally, Scott is
experienced in Photoshop, Dreamweaver, WordPress, and Joomla!.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Starting a Git Repository	 5

Configuring Git	 5
Initializing a new repository	 5
Cloning an existent repository	 6
Working with the repository	 7

Adding a file	 8
Committing a file	 8
Pushing a file	 9
Removing a file	 10
Checking the status	 10
Ignoring files	 12

Summary	 12
Chapter 2: Working in a Team Using Git	 13

Creating a server repository	 13
Local	 14
SSH	 14
Git	 15
HTTPS	 16

Pushing data on remote repositories – Jim's case	 16
Pulling data from the repository	 17
Creating a patch	 17
Working with branches	 18

Creating a branch	 18
Checking out a branch	 18
Playing with a branch	 19
The difference between branches	 19

Table of Contents

[ii]

Tracking branches	 19
Deleting a branch from the remote	 20

Merging	 20
Fast forward merge	 20
Merge commit	 22
Other merging strategies	 23

Rebase	 23
Cherry-pick	 25
Using tags	 26

Creating and deleting tags	 26
Summary	 27

Chapter 3: Finding and Resolving Conflicts	 29
Finding content inside your repository	 29

Searching file content	 29
Showing the current status	 30
Exploring the repository history	 31
Viewing changes	 33

Stashing your changes	 34
Cleaning your mistakes	 35

Reverting uncommitted changes	 35
The git reset command	 35
Editing a commit	 37
Canceling a commit	 38
Rewriting commit history	 38
Solving merge conflicts	 38
Searching errors with git bisect	 40

Fixing errors by practical examples	 41
Summary	 44

Chapter 4: Going Deeper into Git	 45
Migrating an SVN repository to Git	 45

Preparing for SVN to Git migration	 46
Migrating from SVN to Git	 46
Cleaning your commits	 47
Pushing content on Git	 47
Migrating branches and tags	 47
Another easy way to migrate	 48

Using Git within an SVN environment	 49
Setting up your repository	 49
Working with Git SVN	 50

Table of Contents

[iii]

Managing Git submodules	 51
Adding a submodule	 51
Cloning a project with submodules	 52
Removing a submodule	 53
Using a subtree instead of a submodule	 53

Adding a subproject with a subtree	 54
Contributing on a subtree	 54

Creating and applying patches	 55
Creating a patch	 55
Mailing the patch	 56
Applying the patch	 57

Git hooks	 57
Client hooks	 57
Server hooks	 58
More about hooks	 58
Installing a hook	 59

A hook example	 60
Customizing Git	 62
Summary	 63

Chapter 5: Using Git for Continuous Integration	 65
Creating an efficient branching system	 65

Git flow	 66
Feature branches	 67
Release branches	 68
Hotfix branches	 69

BPF – Branch Per Feature	 71
Working with Continuous Integration using Git	 72
Git tools you might like	 73

Git GUI clients	 73
On Linux	 74
On Windows	 75
On Mac	 78

Repository management	 79
Summary	 81

Index	 83

Preface
Git is a decentralized versioning system that was created by Linus Torvalds (also the
creator of Linux Kernel) under the GNU license. It was developed to be simple and
efficient. Its aim is to manage the content evolution of a file tree.

This book is an easy-to-follow guide to understand the basic to the deepest levels
of Git's abilities. As a Git user (beginner or experienced), you will face some basic
questions, such as: how do you find the code you changed just a few weeks ago?
Is it possible to work with other team members using Git? In case of conflict, how
can I resolve it?

Git Best Practices Guide will help you to answer these questions by increasing
your skills on Git (learning a practical way to use Git commands with examples).

If you are an SVN user, we will also see how it is possible to easily migrate an
SVN repository to Git with a step-by-step guide.

Starting with the basics of Git, this book will lead you to the advanced features,
making you more self confident when there are merge conflicts or issues while
finding content.

The last part of this book will teach you how to improve your workflow using Git.
More and more companies or team members use Agile as a workflow process, leaving
behind old-fashioned processes such as waterfall, cascade, iterative enhancement,
and so on. As a versioning system, Git has to be a part of this process. In this book, we
will see how to take your workflow to another level by creating an efficient branching
system, using Continuous Integration, and discovering repository managers.

Preface

[2]

What this book covers
Chapter 1, Starting a Git Repository, covers the basics of Git, describing how to create a
repository and start committing files.

Chapter 2, Working in a Team Using Git, explains the best practices to work with other
developers as a team by pointing out the useful commands.

Chapter 3, Finding and Resolving Conflicts, covers all tips and commands that are
useful to fix mistakes, resolve conflicts, search inside the commit history, and so on.

Chapter 4, Going Deeper into Git, explains the hard commands or not-so-commonly-used
commands such as applying patch, using submodules, and migrating from SVN.

Chapter 5, Using Git for Continuous Integration, explains how to improve the team
workflow by using Continuous Integration.

What you need for this book
To run commands provided in this book, you need the Git software.

Who this book is for
If you are a Git user (beginner or experienced), you want to learn all Git features
without heavy theory, or you need to have a practical book to use Git, then this book
is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If the repository is public, it will create a folder and everything inside the folder."

Any command-line input or output is written as follows:

Erik@server:~/git/myRepoName$ git log

commit df9448ff53864d8cfc6f78fd8831fd363d63a28b

Author: Erik <erik@mymail.com>

Date: Thu July 10 06:44:47 2014 +0000

Preface

[3]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on Begin Import."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[4]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Starting a Git Repository
This chapter covers the basics needed to understand the topics discussed in this
book, and of course, to improve your skills in Git. Commands in this chapter are
used every day by all Git users. Some of them will not be explained in detail; they
will be explained in another chapter.

In this chapter, you will learn about:

•	 Initializing a repository
•	 Cloning an existing repository
•	 Adding and committing files
•	 Pushing commits on remote repositories

Configuring Git
Before you start working on Git, you have to configure your name and e-mail
by using the following commands:

Erik@local:~$git config --global user.name "Erik"

Erik@local:~$git config --global user.email erik@domain.com

Initializing a new repository
If you want to create a repository in an existing project, just type the following
command line:

Erik@local:~$ cd myProject

Erik@local:~/myProject$ git init .

Starting a Git Repository

[6]

Otherwise, you have to create an empty directory and type git init inside it,
as shown:

Erik@local:~$ mkdir myProject

Erik@local:~$ cd myProject

Erik@local:~/myProject$ git init

This will create a folder named .git inside the current directory that contains the
following files used by Git:

•	 Config: This is used with the configuration for the local Git repository
•	 HEAD: This lists a file that is the current head branch
•	 Refs directory: This contains references to a commit for a branch

Cloning an existent repository
With Git, it is possible to clone an existent repository to work on it.

There are several possibilities to clone a repository, but the http, git, and ssh
protocols are used the most.

If the repository is public, it will create a folder and everything inside the folder.
However, if the repository is private or protected, you have to enter an access
information or provide a private ssh key. For example, if you want to clone
a Symfony2 repository, type this line to clone it using myProjectName as the
folder name:

Erik@local:~/myProject$ git clone https://github.com/symfony/symfony.
gitmyProjectName

Initialized empty Git repository in /var/www/myProjectName/.git/

remote: Counting objects: 7820, done.

remote: Compressing objects: 100% (2490/2490), done.

remote: Total 7820 (delta 4610), reused 7711 (delta 4528)

Receiving objects: 100% (7820/7820), 1.40 MiB | 479 KiB/s, done.

Resolving deltas: 100% (4610/4610), done.

Checking out files: 100% (565/565), done.

Note that the name after the clone command is optional.
If there is no parameter after the repository location, the
repository name will be used.

Chapter 1

[7]

You probably read the line about compressing objects. In fact, before sending any
content, Git compresses objects to speed the transmission.

We will see more uses of the clone command in the next chapter.

Working with the repository
We have to take a few minutes to look at the life cycle of a file inside Git.

A file will go through the following states, and the Git command line will take the
file from one state to another. We will explain each state and its command line.

STAGED

UNMODIFIED

MODIFIED

File is edited

File is staged

UNTRACKED

REMOVE

ADD

COMMIT

R
E
M

O
V
E

The important part of this schema is the triangle between the three states
UNMODIFIED, MODIFIED, and STAGED. This triangle is an infinite loop.
Indeed, every time you change a file, its state is set to modified, and then staged;
when you commit the file, it returns to the unmodified state, and so on.

UNTRACKED is the first state where the file is created, but this isn't tracked by Git.

To change the state of a file, you have to add it.

Starting a Git Repository

[8]

Adding a file
When you start an empty repository and add a file, it will be in the untracked state,
which means that it isn't in the Git repository.

To track a file, you have to execute this command line:

Erik@local:~/myProject$ touch MyFileName.txt

Erik@local:~/myProject$ echo "test" > MyFileName.txt

Erik@local:~/myProject$ git add MyFileName.txt

So, your file is now tracked by Git.

If you want to add all files because you already have something inside the directory
while you create the repository, add a period (.) just after git add to specify to take
all files inside the current directory:

Erik@local:~/myProject$ echo "hello" > MyFile2.txt

Erik@local:~/myProject$ echo "hello" > MyFile3.txt

Erik@local:~/myProject$ git add .

The file is currently staged and ready to be committed inside the repository.

Committing a file
As soon as your file is tracked, all changes will be notified by Git, and you have to
commit the change on the repository.

Remember to commit your change as soon as possible
(not for every line, but it's a marker to validate what
you have done).

The commit command is local to your own repository, nobody except you can see it.

The commit command line offers various options. For example, you can commit
a file, as shown in the following example:

Erik@local:~/myProject$ git commit -m 'This message explains the changes'
MyFileName.txt

To commit everything, use the following command:

Erik@local:~/myProject$ git commit -m 'My commit message'

Chapter 1

[9]

You will create a new commit object in the Git repository. This commit is referenced
by an SHA-1 checksum and includes various data (content files, content directories,
the commit history, the committer, and so on). You can show this information by
executing the following command line:

Erik@local:~/myProject$ git log

It will display something similar to the following:

Commit f658e5f22afe12ce75cde1h671b58d6703ab83f5

Author: Eric Pidoux <contact@eric-pidoux.com>

Date: Mon Jun 2 22:54:04 2014 +0100

My commit message

The file is in the unmodified state because you just committed the change; you can
push the files in the remote repository.

Pushing a file
Once committed, you can push the files in the remote repository. It can be on a
bare repository, using init with the git init --bare command, so just type the
following command:

Erik@local:~/myProject$ git push /home/erik/remote-repository.git

If you create a remote repository on another server, you have to configure your local
Git repository.

If you use Git 2.0 or later, the previous command will print out something like this
on the screen:

Warning: push.default is unset; its implicit value is changing in

Git 2.0 from 'matching' to 'simple'. To squelch this message

and maintain the current behavior after the default changes, use:

gitconfig --global push.default matching

To squelch this message and adopt the new behavior now, use:

gitconfig --global push.default simple

The 'matching' value from the push.default configuration variable denotes that
git push will push all your local branches to the branches with the same name on
the remote. This makes it easy to accidentally push a branch you didn't intend to.

Starting a Git Repository

[10]

The 'simple' value from the push.default configuration variable denotes that git
push will push only the current branch to the branch that git pull will pull from; it
also checks that their names match. This is a more intuitive behavior, which is why
the default should be changed to this configuration value.

Firstly, check if a remote repository is defined:

Erik@local:~/myProject$ git remote

If it's not, define the remote repository named origin:

Erik@local:~/myProject$ git remote add origin http://github.com/
myRepoAddress.git

Now, push the changes using the following command:
Erik@local:~/myProject$ git push -u origin master

After this, you will have a resume of what was pushed.

In fact, the remote repository will check the current Head (the reference to the
commit) and compare it with its own. If there are differences between them,
it will fail.

Removing a file
If you don't want a file anymore, there are two ways to remove it:

•	 Delete the file manually and commit the changes. This will delete the file
locally and on the repository. Use the following command line
Erik@local:~/myProject$ git commit -m 'delete this file'

•	 Delete the file only through Git:
Erik@local:~/myProject$ git rm --cached MyFileName.txt

Checking the status
There is a way to display the working tree status, that is, the files that have changed
and those that need to be pushed, and of course, there is a way to display the conflicts:

Erik@local:~/myProject$ git status

If everything is correct and up to date, you will get this result:

Erik@local:~/myProject$ git status

On branch master

nothing to commit, working directory clean

Chapter 1

[11]

If you add a file, Git will warn you to track it by using the git add command:

Erik@local:~/myProject$ touch text5.txt

Erik@local:~/myProject$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

text5.txt

nothing added to commit but untracked files present (use "git add" to
track)

If you edit MyFile2.txt and type git status again, then you will have new lines:

Erik@local:~/myProject$ echo "I am changing this file" > MyFile2.txt

Erik@local:~/myProject$ git status

On branch master

Changes to be committed:

(use "gitreset HEAD<file>..." to unstage)

#

new file: text5.txt

Changes not staged for commit:

(use "git add <file>…" to update what will be committed)

#

modified: MyFile2.txt

#

On these lines, separate paragraphs display all files in each state. The MyFile2.txt
file is not tracked by Git and text5.txt is ready to be committed.

If you add text5.txt using the git add command, you will notice the
following changes:

Erik@local:~/myProject$ git add MyFile2.txt

Erik@local:~/myProject$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: text5.txt

modified: MyFile2.txt

#

Starting a Git Repository

[12]

Ignoring files
Git can easily ignore some files or folders from your working tree. For example,
consider a website on which you are working, and there is an upload folder that you
might not push on the repository to avoid having test images in your repository.

To do so, create a .gitignore file inside the root of your working tree:

Erik@local:~/myProject$ touch .gitignore

Then, add this line in the file; it will untrack the upload folder and its contents:

upload

Files or folders you define in this file will not be tracked by Git anymore.

You can add some easy regex, such as the following:

•	 If you want to ignore all PHP files, use the following regex:
*.php

•	 If you want to ignore all files having p or l at the end of its name,
use the following regex:
*.[pl]

•	 If you want to ignore all temporary files (finishing by ~), use the
following regex:
*~

If the file is already pushed on the repository, the file is tracked by Git. To remove it,
you will have to use the gitrmcommand line by typing this:

Erik@local:~/myProject$ git rm --cached MyFileName.txt

Summary
In this chapter, we saw the basics of Git: how to create a Git repository, how to put
content in it, and how to push data to a remote repository.

In the next chapter, we will see how to use Git with a team and manage all
interactions with a remote repository.

Working in a Team Using Git
This chapter introduces the aim of Git: team work.

A lot of programmers use Git every day; however often, they are not working
alone but as part of a team. Git is a powerful versioning tool to work together,
without erasing someone else's content. In the examples of this chapter, we will
use the following conditions:

•	 Three programmers working together on a simple website project
•	 They install Git, but nothing is created
•	 They own a dedicated server with Git, SSH, and GitLab installed on it

Creating a server repository
In the first chapter, we saw how to create a simple local Git repository, but now, it's
time to create a server repository that will store and manage the code. Of course, for
our example, it will be created by GitLab, but not everyone wants GitLab or GitHub.

A server repository, also called "bare repository", is a Git repository
without a working copy.

Git can use four protocols to transport data:

•	 Local
•	 Secure Shell (SSH)
•	 Git
•	 HTTP

Working in a Team Using Git

[14]

We will see how and when to use these protocols. We will also distinguish between
the pros and cons of each protocol.

For all protocols, we have to create the bare repository by executing these lines on
the server's command lines.

Erik@server:~$ mkdir webproject
#Create the folder
Erik@server:~$ cd webproject
#go inside it
Erik@server:~/webproject$ git init --bare
Initialized empty Git repository in /home/erik/webproject

With these commands, we create a directory web project and initialize an empty Git
bare repository.

Local
The local protocol is the basic protocol; the remote repository is a local directory.
This protocol is used if all members have access to the remote repository (through
NFS, for example).

Now, every programmer has to clone it in local:

Erik@local:~$ git clone /opt/git/webproject.git

For example, we assume that Jim, one of the programmers, has already written some
code lines. Jim has to initialize a local Git repository inside the directory and set a
remote location for the bare repository:

Jim@local:~/webproject$ git init
Jim@local:~/webproject$ git remote add origin /opt/git/webproject.git

The following are the pros and cons of the local protocol:

Pros Cons
Easy to share with other members Hard to set up a shared network
Fast access on the repository Fast only if the file access is fast

SSH
Secure Shell (SSH) is the most used protocol, especially if, as in our example,
the remote repository is on a distant server.

Chapter 2

[15]

Now, every programmer has to first clone it in local:

Erik@local:~$ git clone ssh://username@server/webproject.git

Using the SSH protocol, programmers have to install their SSH keys on the remote
repository in order to push to and pull from it. Otherwise, they have to specify the
password on each remote command.

For our Jim's case:

Jim@local:~/webproject$ git init
Jim@local:~/webproject$ git remote add origin ssh://username@server/
webproject.git

The following are the pros and cons of the SSH protocol:

Pros Cons
Easy to share using a remote server No anonymous access
SSH compresses data while transport, which
makes it fast

Git
The Git transport is similar to SSH, but without any security. You can't push data on
it by default, but you can activate this feature. This isn't a good idea at all! Anyone
who finds the repository address can push data. Like in all cases, the programmer
has to clone it in local, as follows:

Erik@local:~$ git clone git://username@server/webproject.git

For our Jim's case:

Jim@local:~/webproject$ git init
Jim@local:~/webproject$ git remote add origin git://username@server/
webproject.git

The following are the pros and cons of the Git transport:

Pros Cons
Faster than the others No security (the Git transport is the same

as SSH, without the security layer)

Working in a Team Using Git

[16]

HTTPS
The HTTPS protocol is the easiest to set up. Anyone who has access to the web server
can clone it.

The programmers start to clone it in local:

Erik@local:~$ git clone https://server/webproject.git

And, of course, in our Jim's case:

Jim@local:~/webproject$ git init .
Jim@local:~/webproject$ git remote add origin http://server/webproject.
git

Pros Cons
Easy to set up Very slow data transport

Pushing data on remote repositories –
Jim's case
So, Jim initializes a new Git repository in the directory, where he starts coding,
and he adds the remote repository with the SSH protocol. He has to commit and
push what he coded earlier. This is how he did it:

Jim@local:~/webproject$ git add .

Jim@local:~/webproject$ git commit -m 'add my code'

[master (commit racine) 83fcc8a] add my code

2 files changed, 0 insertions(+), 0 deletions(-)

create mode 100644 index.html

create mode 100644 readme.txt

Jim@local:~/webproject$ git push –u origin master

Counting objects: 3, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 225 bytes | 0 byte/s, done.

Total 3 (delta 0), reused 0 (delta 0)

Now, the remote repository contains two files (index.html and readme.txt).

Chapter 2

[17]

Pulling data from the repository
The other programmers have to pull data to get the new files.

Every time you start working on a project, you have to pull
data from the remote repository to maintain and ensure that
the code is up to date.

The following command is used to pull data:

Erik@local:~/webproject$ git pull origin master

This command will check and compare your local commit hash to the remote hash.
If the remote is the latest, it will try to merge data with the local master branch.
This command is the equivalent of executing git fetch (get remote data) and
git merge (merge to your branch).

The name of one of our remote repository is origin, and master is the current
local branch.

Creating a patch
Let's explain what a patch is with an example. An external programmer was called
by Jim to make small fixes in a part of the project, but Jim didn't want to give him
access to the repository, thus preventing him from pushing data. So, he decides to
make a patch and sends it by e-mail to Jim:

External@local:~/webproject$ git format-patch origin patch-webproject.
patch

This command will create .patch files per commit and the external programmer will
send the e-mail with it. So, he decides to make a patch and send it by e-mail to Jim.

Jim can import the patch by executing this:

Jim@local:~/webproject$ git apply /tmp/patch-webproject.patch

This command will apply the patch, but it doesn't create commits.

So, to generate a series of commits, use the git am command:

Jim@local:~/webproject$ git am /tmp/patch-webproject.patch

Working in a Team Using Git

[18]

Working with branches
Git allows you to create branches, that is, named pointers to commits. You can work
on different branches independently from each other. The default branch is most
often called master.

A branch pointer in Git is 41 bytes large: 40 bytes of characters and an additional
new line character. So, it explains why Git is very fast and cheap in terms of
resource consumption.

If you decide to work on a branch, you have to checkout the branch. This means that
Git restructures the working tree with the content of the commit to which the branch
points and moves the HEAD pointer to the new branch.

The first command to know is:

Jim@local:~/webproject$ git branch

This command will display all available local branches for the repository. Inside the
given list, the current working branch has the prefix *.

If you want to see all branches, including the remote branches, you will have to
execute the following command:

Jim@local:~/webproject$ git branch -a

Creating a branch
You can create a branch with the git branch command. This command allows you
to create a new branch using a commit. So, Git will create the branch and populate
it with the files from the given commit. If you don't provide a commit, it will use the
last (or HEAD) commit:

Jim@local:~/webproject$ git branch test

Checking out a branch
To start using a branch, you have to check it out. If you do so, Git will ignore files
from other branches and prepare to listen to changes on specific files only:

Jim@local:~/webproject$ git checkout test
#Do some changes inside the readme.txt file
Jim@local:~/webproject$ git commit -a -m 'edit readme'
Jim@local:~/webproject$ git checkout master

Chapter 2

[19]

After performing a checkout on master, check the content of the readme.txt file.
You will see that the content is the former content.

Playing with a branch
There are several commands useful for some features of branches. Firstly, you can
easily rename a branch executing this:

Jim@local:~/webproject$ git branch -m old_name new_name

To change the current branch, you can bypass the old_name variable:
Jim@local:~/webproject$ git branch -m new_name

Then, you can delete a branch:

Jim@local:~/webproject$ git branch -d test

You might get an error if there are uncommitted changes. You can force it:

Jim@local:~/webproject$ git branch -D test

Finally, you can push the changes of a branch to a remote repository.

While executing the push command, you can specify the remote branch to use:

Jim@local:~/webproject$ gitpush origin test

After performing a checkout on master, check the content of the readme.txt file.
You will see that the content is the old one.

The difference between branches
To see the difference between two branches, you can execute this:

Jim@local:~/webproject$ git diff master test

Tracking branches
With Git, a branch can track another branch. This allows you to use the commands
pull and push, without specifying the branch and repository.

For example, if you clone a Git repository, your local master branch is created as a
tracking branch for the master branch of the origin repository.

Working in a Team Using Git

[20]

To set up a tracking branch, execute this:

Jim@local:~/webproject$ git checkout -b new_branch origin/branch_to_track
#Or you can use this
Jim@local:~/webproject$ git branch new_branch origin/master
Jim@local:~/webproject$ git branch --track new_branch origin/master

Similarly, you can specify to not track a remote branch:

Jim@local:~/webproject$ git branch --no-track new_branch origin/master
#You can later update this branch and track origin/master
Jim@local:~/webproject$ git branch -u origin/master new_branch

Deleting a branch from the remote
Use this command if you want to delete a branch in the remote repository:

Erik@local:~/webproject$ git branch -d origin/test

Merging
A very nice process in Git allows you to combine the changes of two branches.
This is called merging.

The git merge command performs a merge. You can merge changes from one
branch to the current branch via the following command. Your local master branch
is created as a tracking branch for the master branch of the origin repository:

Erik@local:~/webproject$ git checkout master
Erik@local:~/webproject$ git merge test

This command will merge test branch changes inside your current checked-out branch.

Fast forward merge
If the commits that are merged are direct predecessors of the HEAD pointer of the
current branch, Git simplifies things by performing a so-called fast forward merge.
This fast forward merge simply moves the HEAD pointer of the current branch to the
last commit of the branch that is being merged.

Chapter 2

[21]

This process is depicted in the following diagram. The first picture assumes that the
master branch is checked out and you want to merge the changes of the branch labeled
branch into your master branch. Each commit points to its predecessor (parent).

Commit 1 Commit 2 Commit 3

master

branch

This diagram shows the current state of the repository. Now, we have to checkout
to the master branch and merge the branch on it.

Erik@local:~/webproject$ git checkout master
Erik@local:~/webproject$ git merge branch

After the fast forward merge, the master branch will point to the last commit,
as shown in the following diagram:

Commit 1 Commit 2 Commit 3

branch

master

Working in a Team Using Git

[22]

Merge commit
If commits are merged and are not from the same branch, it will lead to a three-way
merge between the last commits of the two branches:

Commit 1 Commit 2

Commit 3

Commit 4

master

branch

The result of this merge commit will be created on the current branch, with the
changes of the last commit from both branches:

Commit 1 Commit 2

Commit 3

Commit 4

branch

Merged commit

master

To use this strategy (without fast forward), you can use this command:

Erik@local:~/webproject$ git merge --no-ff

Chapter 2

[23]

Other merging strategies
The merge command has certain parameters. You need to be certain as to when you
will use them.

With the -s parameter, you can specify some merge strategies. There are two kinds
of strategies; ours and theirs:

Erik@local:~/webproject$ git merge -s ours test
Erik@local:~/webproject$ git merge -s theirs test

The result of an ours strategy is that everything from the merged branch will be
ignored. The theirs strategy will do the exact opposite.

For example, if we are try to push our modifications on index.html, and Git tells
us that something is wrong because Jim pushed the useless changes on index.html
earlier, you can apply the ours strategy, which will replace the changes made by Jim
and use your file.

If Jim made the same changes that you made, but in a better way, you can apply
the theirs strategy. It will remove your changes to use the file provided by Jim.

There is one strategy left; this is the recursive strategy. It allows you to specify the
–x parameter to prefer your local/remote changes if there are conflicts from the two
merged branches:

Erik@local:~/webproject$ git merge -s recursive -x ours test
Erik@local:~/webproject$ git merge -s recursive -x theirs test

Be careful to not mix the ours or theirs strategy with the
recursive strategy. The consequences will be different!

Rebase
As we just saw, the merge command combines the changes from two branches.
The rebase command will take the changes from the first branch and apply
them to the other branch.

In the rebase command do not merge commit!

Working in a Team Using Git

[24]

The following diagram displays the current state of our repository. We have the
master branch pointed on Commit 3 and a branch pointed to Commit 4:

Commit 1 Commit 2

Commit 4

branch

master

Commit 3

Our goal is to rebase branch from master, so we need to checkout on master and
rebase it:

Erik@local:~/webproject$ git checkout branch
Erik@local:~/webproject$ git rebase master

The rebase command can be used if you want to get a feature (commits) from
one branch to another and be sure to be close to the tip of the upstream branch.
As we just saw, the command applies the changes from the branch called branch
to the master branch.

In this schema, commit 4 is applied on master by using the name commit4bis,
and the original commit 4 is deleted by the garbage collector.

Commit 1 Commit 2

Commit 4

branch

master

Commit 3 Commit 4

Chapter 2

[25]

The --interactive option will stop after each commit to change messages,
add files, or perform whatever else you want to.

There are some options for this command:

•	 Pick: This means that the commit is included
•	 Reword: This is similar to pick, and will let you alter the commit message
•	 Edit: This one will let you amend the commit
•	 Squash: This combines several commits into one
•	 Fixup: This is similar to Squash, without the possibility to change the

commit message
•	 Exec: This lets you run the shell commands on a commit

The merge command will create a new commit when merging
two branches. The rebase command will apply the commits
from one branch to another.

Cherry-pick
This command lets you select a commit from a branch to apply it to another.
The patch will be considered as a new commit in the selected branch.

Let's try to understand this by exploring the following example: Jim creates the jim
branch from master and adds a new file in it:

Jim@local:~/webproject$ git checkout -b jim
Jim@local:~/webproject$ touch home.html
Jim@local:~/webproject$ git add home.html
Jim@local:~/webproject$ git commit -m 'add homepage'
Jim@local:~/webproject$ echo "<html>…</html>" > home.html
Jim@local:~/webproject$ git commit -a -m 'add content inside home'

As you can see, Jim creates the home.html file, adds it into Git, and commits
it. Then he edits it and commits again. Now, let's see the commit history for
this branch:

Jim@local:~/webproject$ git log --oneline
4f6ec45 add content inside home
22c45b7 add homepage

Working in a Team Using Git

[26]

Now, Jim will apply the first commit to the master branch:

Jim@local:~/webproject$ git checkout master
Jim@local:~/webproject$ git cherry-pick 22c45b7

Let's imagine that the cherry-pick went wrong and Jim wants to abort it:

Jim@local:~/webproject$ git cherry-pick --abort

However, if you want to roll back a cherry-pick, you have two ways to do it:

•	 If it's in a private branch, you can use the git rebase command
•	 If it's already in a public branch, use the git revert command

Using tags
Git has the option to tag a commit in the repository so that you find it easier.
Most commonly, tags are used to mark an application version on a commit.

Creating and deleting tags
The command to create a tag is very easy:

Jim@local:~/webproject$ git tag 1.0.0
#Annotated tag contains a small description
Jim@local:~/webproject$ git tag 1.0.0 -m 'Release 1.0.0'
#Use a commit
Jim@local:~/webproject$ git tag 1.0.0 -m 'Release 1.0.0' commit_hash

Tags can also be deleted, but by default, it will only be inside your local repository.
If you want to push the deleted one, you have to specify it. First, list all the available
tags and delete the last tag:

Jim@local:~/webproject$ git tag
0.1.0
0.1.5
0.2.0
0.9.0
1.0.0
Jim@local:~/webproject$ git tag -l 0.1.*
0.1.0
0.1.5
Jim@local:~/webproject$ git tag -d 1.0.0
#Push it remotely
Jim@local:~/webproject$ git push origin tag 1.0.0

Chapter 2

[27]

As I said earlier, tags are commonly used to mark a state of a release. They are called
release tags.

By convention, the tag name will be major_version.minor_version.patch_
version; for example, 1.0.0.

The patch version is incremented if there are backwards-compatible
bug fixes.
The minor version is incremented if there are bug fixes other than the
backwards-compatible fix.
The major version is incremented if there is at least one
backward-incompatible bug fix.

After performing a check out on master, check the content of the readme.txt file.
You will see that the content is the old one.

Summary
In this chapter, we saw how to work within a team using Git, which is very common
for most developers. Now, you understand what a branch is, how we can merge them,
and how to rebase one branch on another. We also saw how to tag a commit. Now
you are ready to prepare and work on your Git repository, but there is something
that has been left behind: what should you do if there are conflicts? The next chapter
is dedicated to this question. We will see how to find something in your repository,
explore the repository, and most importantly, how to fix conflicts and errors.

Finding and Resolving
Conflicts

This chapter covers a part of Git that you will definitely meet: conflicts. How can we
resolve them?

While working together as a team on a project, you will work on the same files.
The pull command won't work because there are conflicts, and you might have
tried some Git commands and things got bad. In this chapter, we will find solutions
to these conflicts and see how we can fix them. We will cover the following topics:

•	 Finding content inside your Git repository
•	 Stashing your changes
•	 Fixing errors by practical examples

Finding content inside your repository
Sometimes, you will need to find something inside all your files. You can, of course,
find it with the search feature of your OS, but Git already knows all your files.

Searching file content
To search text inside your files, simply use the following command:

Erik@server:~$ git grep "Something to find"

Erik@server:~$ git grep -n body

Master:Website.Index.html:4: <body>

Master:Website.Index.html:12: </body>

Finding and Resolving Conflicts

[30]

It will display every match to the given keyword inside your code. All lines use the
[commitref]:[filepath]:[linenumber]:[matchingcontent] pattern.

Notice that [commitref] isn't displayed on all Git versions.

You can also specify the commit references that grep will use to search the keyword:

Erik@server:~$ git grep -n body d32lf56 p88e03d HEAD~3

Master:Website.Index.html:4: <body>

Master:Website.Index.html:12: </body>

In this case, grep will look into the d32lf56, p88e03d, and third commit starting by
the head pointer.

Your repository has to be encoded in UTF-8;
otherwise, the grep command won't work.

Git allows you to use regex inside the search feature by replacing somethingToFind
with a regex.

You can use the logical operators (or and and), as shown in the following command:

Erik@server:~$ git grep -e myRegex1 --or -e myRegex2

Erik@server:~$ git grep -e myRegex1 --and -e myRegex2

Let's see this with an example. We only have a test.html page inside our last
commit, and we want to find whether or not there is a word with an uppercase
alphabetic value and numeric values:

Erik@server:~$ git grep -e [A-Z] --and -e [0-9] HEAD

Master:Website.Test.html:6: TEST01

With the grep command, you can delve deeper, but it's not necessary to discuss this
topic here because you won't use it every day!

Showing the current status
The git status command is helpful if you have to analyze your repository:

Erik@server:~$ git status

On branch master

Your branch is ahead of 'origin/master' by 2 commits

Chapter 3

[31]

(use "git push" to publish your local commits)

Changes not staged for commit:

(use "git add<file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: myFile1

modified: myFile2

#

Untracked files:

(use "git add<file>..." to include in what will be committed)

#

newFile.txt

no changes added to commit (use "git add" and/or "git commit -a")

Git analyzes the local repository in comparison to the remote repository. In this case,
you have to add newFile.txt, commit myFile1 and myFile2, and push them to the
remote repository.

Exploring the repository history
The best way to explore the past commits inside your repository is to use the git
log command. For this part, we will assume that there are only two commits.

To display all commits, use the following commands:

Erik@server:~$ git log --all

Commit xxxxxxxxxxx

Author: Jim <jim@mail.com>

Date: Sun Jul 20 15:10:12 2014 -0300

Fix front bugs on banner

Commit xxxxxxxxxxx

Author: Erik <erik@mail.com>

Date: Sat Jul 19 07:06:14 2014 -0300

Add the crop feature on website backend

This is probably not what you want. After several days of work, you will have plenty
of these commits, so how will you filter it?

Finding and Resolving Conflicts

[32]

The power of the git log command is that you can quickly find anything in
all commits.

Let's go for a quick overview of what Git is able to find. We will start by finding
the last commit:

Erik@server:~$ git log -1

Commit xxxxxxxxxxx

Author: Jim <jim@mail.com>

Date: Sun Jul 20 15:10:12 2014 -0300

Fix front bugs on banner

The number after the git log command indicates that it is the first commit
from Head.

Too easy! Let's try to find what the last commit of Erik is:

Erik@server:~$ git log --author=Erik -1

Commit xxxxxxxxxxx

Author: Erik <erik@mail.com>

Date: Sat Jul 19 07:06:14 2014 -0300

Add the crop feature on website backend

Now, let's find it between two dates:

Erik@server:~$ git log --author=Erik --before "2014-07-20" --after "2014-
07-18"

Commit xxxxxxxxxxx

Author: Erik <erik@mail.com>

Date: Sat Jul 19 07:06:14 2014 -0300

Add the crop feature on website backend

As I told you earlier, there are a lot of parameters to the git log command. You can
see all of them using the git help log command.

The stat parameter is really useful:

Erik@server:~$ git log --author=Jim --stat

Commit xxxxxxxxxxx

Author: Jim <jim@mail.com>

Date: Sun Jul 20 15:10:12 2014 -0300

Fix front bugs on banner

Chapter 3

[33]

index.php | 1 +

 1 file changed, 1 insertion(+)

This parameter allows you to view a summary of the changes made in each commit.
If you want to see the full changes, try the -p parameter.

Remember that the git log command has a file parameter to restrict the search to
the git log [file] file.

Viewing changes
There are two ways to see changes in a repository: git diff and git show.

The git diff command lets you see the changes that are not committed. For example,
we have an index.php file and replace the file content by a line. Just before the lines,
you will see a plus (+) or minus (-) sign. The + sign means that content was added and
the – sign denotes that it was removed:

Erik@server:~$ git diff

diff --git a/index.php b/index.php

indexb4d22ea..748ebb2 100644

--- a/index.php

+++ b/index.php

@@ -1,11 +1 @@

-<html>

-

-<head>

-<title>Git is great!</title>

-</head>

-<body>

-<?php

- echo 'Git is great';

-?>

-</body>

-</html>

+ I added a line

Finding and Resolving Conflicts

[34]

If you want to analyze a commit, I suggest you to use the git show command.
It will display the full list of changes of the commit:

Erik@server:~$ git show commitId

There is a way to do the opposite, that is, to display commits for a file with
git blame:

Erik@server:~$ git blameindex.php

e4bac680 (Erik 2014-07-20 19:00:47 +0200 1) I added a line

Stashing your changes
Git has a command that allows you to save the current state of the local working
repository and go back to the last committed revision with git stash.

This is really helpful when you have to develop an urgent fix. After this, you can
restore the stashed changes and continue with your development.

To use this command, just execute the following command snippet:

Erik@server:~$ git stash

#Do your fix and then unstash edit

Erik@server:~$ git stash pop

Of course, you can do more with this command, such as save a list of stashes:

Erik@server:~$ git stash

#See the list of available stashes

Erik@server:~$ git stash list

#Apply the second stash

Erik@server:~$ git stash apply stash@"1}

#Delete a stash

Erik@server:~$ git stash drop stash@"1}

#Or delete all stashes

Erik@server:~$ git stash clear

Let's suppose that your stash concerns a feature and you haven't created a dedicated
branch for it. You can simply create a branch executing this command:

Erik@server:~$ git stash branch mynewbranchname

Remember this command is only for urgent fixes. If you want to add a new feature,
you should use a new branch.

Chapter 3

[35]

Cleaning your mistakes
The first thing to know is that you can always clean your mistake with Git.
Sometimes this will be hard or painful for your code, but you can do it!

Let's start this section with how to remove untracked files:

Erik@server:~$ git clean -n

The –n option will make a dry-run (it's always important to see what will happen
before you regret it).

If you want to also remove directories and hidden files, use this one:

Erik@server:~$ git clean -fdx

With these options, you will delete new directories (-d) and hidden files (-x) and be
able to force them (-f).

Reverting uncommitted changes
To explain this section, we will use an example. Let's suppose you edited a file on the
production working directory, but didn't commit it. On your last push, you edited
it, and the changes in production aren't needed anymore. So, your goal is to erase
changes on this file and reset the file to the last committed version:

Erik@server:~$ git checkout the_filename

This command is really nice if you want to restore a deleted file. You can also specify
a commit pointer to use (useful if you stash your changes):

Erik@server:~$ rm myfile.txt

Erik@server:~$ git checkout HEAD myfile.txt

The git reset command
The git reset command will allow you to go back to a previous state (for example,
commit). The git reset command has three options (soft, hard, or mixed, by default).

In general, the git reset command's aim is to take the current branch, reset it
to point somewhere else, and possibly bring the index and work tree along. More
concretely, if the master branch (currently checked out) looks like the first row (in the
following figure) and you want it to point to B and not C, you will use this command:

Erik@server:~$ git reset B

Finding and Resolving Conflicts

[36]

The following diagram shows exactly what happened with the previous command.
The HEAD pointer was reset from C to B:

A B C

BA

HEAD
master

HEAD
master

The following table explains what the options really move:

Option Head pointer Working tree Staging area

Soft Yes No No
Mixed Yes No Yes
Hard Yes Yes Yes

The three options that you can provide on the reset command can be
easily explained:

•	 --hard: This option is the simplest. It will restore the content to the given
commit. All the local changes will be erased. The git reset --hard
command means git reset --hard HEAD, which will reset your files
to the previous version and erase your local changes.

•	 --mixed: This option resets the index, but not the work tree. It will reset your
local files, but the differences found during the process will be marked as
local modifications if you analyze them using git status. It's very helpful
if you make some bugs on previous commits and want to keep your
local changes.

•	 --soft: This option will keep all your files, such as mixed, intact. If you use
git status, it will appear as changes to commit. You can use this option
when you have not committed files as expected, but your work is correct.
So you just have to recommit it the way you want.

The git reset command doesn't remove untracked files; use git clean instead.

Chapter 3

[37]

Editing a commit
There are several tricks to edit your last commit.

If you want to edit the description of your last commit, use the following line:

Erik@server:~$ git commit --amend

Let's suppose that your last commit contains buggy code; you can specify that your
changes on the file are part of the last commit:

Erik@server:~$ git add filename.txt

Erik@server:~$ git commit -v -amend

Now I want to remove a file I included accidentally in the last commit (because this
file deserves a new commit):

Erik@server:~$ git reset HEAD^1 filename.txt

Erik@server:~$ git commit --amend -v

Erik@server:~$ git commit -v filename.txt

You might ask yourself what the HEAD^ and HEAD~ notations are.

It is just a shorthand to specify commits without using the commit ID.

HEAD~ is short for HEAD~1 and is the commit's first parent. HEAD~2 stands for the
commit's grandparents.

HEAD^ also refers to the commit's first parent.

Of course, you can use them together, such as HEAD~3^2, which means the commit's
second generation ancestor of HEAD. Let's check the following scheme to clearly
understand it:

Commit 1 Commit 2 Commit 3 Commit 4

HEAD~1HEAD~2^1

HEAD~3 HEAD~2 HEAD^1

HEAD~1^1 HEAD

Finding and Resolving Conflicts

[38]

Canceling a commit
The git revert command allows you to "cancel" your last unpushed commit. I used
quotes around cancel because Git doesn't drop the commit; it creates a new commit
that executes the opposite of your commit. A pushed commit is irreversible, so you
cannot change it.

Firstly, let's have a look at the last commits:

Erik@server:~$ git log

commite4bac680c5818c70ced1205cfc46545d48ae687e

Author: Eric Pidoux

Date: Sun Jul 20 19:00:47 2014 +0200

replace all

commit0335a5f13b937e8367eff35d78c259cf2c4d10f7

Author: Eric Pidoux

Date: Sun Jul 20 18:23:06 2014 +0200

commitindex.php

We want to cancel the 0335… commit:

Erik@server:~$ git revert 0335a5f13

Canceling this commit isn't necessary to enter the full commit ID, but just the first
characters. Git will find it, but you will have to enter at least six characters to be sure
that there isn't another commit that starts with the same characters.

Rewriting commit history
Sometimes a situation will occur where you want to remove a file from all
commits because it contains confidential information. You can do it by using
git filter-branch:

Erik@server:~$ git filter-branch --index-filter 'git rm --cached
--ignore-unmatch myconfidentialfilename.txt' HEAD

I used the –ignore-unmatch option because gitrm will fail if the file is absent from
the tree.

Solving merge conflicts
When you are working with several branches, a conflict will probably occur while
merging them. It appears if two commits from different branches modify the same
content and Git isn't able to merge them.

Chapter 3

[39]

If it occurs, Git will mark the conflict and you have to resolve it.

For example, Jim modified the index.html file on a feature branch and Erik has to
edit it on another branch. When Erik merges the two branches, the conflict occurs.

Git will tell you to edit the file to resolve the conflict. In this file, you will find
the following:

<<<<<<< HEAD

Changes from Erik

=======

Changes from Jim

>>>>>>> b2919weg63bfd125627gre1911c8b08127c85f8

The <<<<<<< characters indicate the start of the merge conflict, the ====== characters
indicate the break points used for comparison, and >>>>>>> indicate the end of
the conflict.

To resolve a conflict, you have to analyze the differences between the two changes
and merge them manually. Don't forget to delete the signs added by Git. After
resolving it, simply commit the changes.

If your merge conflict is too complicated to resolve because you can't easily find the
differences, Git provides a useful tool to help you.

Git's diff helps you to find differences:

Diff --git erik/mergetestjim/mergetest

Index.html 88h3d45..92f62w 130634

--- erik/mergetest

+++ jim/mergetest

@@ -1,3 +1,4 @@

<body>

+I added this code between

This is the file content

-I added a third line of code

+And this is the last one

So, what happened? The command displays some lines with the changes, with the
+ mark coming from origin/master; those marked with – are from your local
repository, and of course, the lines without a mark are common to both repositories.

Finding and Resolving Conflicts

[40]

Searching errors with git bisect
The git bisect command allows you to run a binary search through the commit
history to find a commit that has an issue.

For example, you pulled the last commits and the website isn't working anymore.
You know that before the last pull everything was okay! So you have to find the
commit ID before it crashes and the last ID after the pull:

Erik@server:~$ git bisect start

Erik@server:~$ git bisect bad commitIDAfterThePull

Erik@server:~$ git bisect good commitIDBefore

Now, the bisecting loop begins and Git will check for an alternative commit.
Reset the given commit and tell Git whether the website is working:

Erik@server:~$git bisect badcommitID

Git will search again and again to find which commit crashed the website:

Erik@server:~$ git show theCommitID

Here we are! Instead of trying to locate a bug inside all your files, you have a
shortened list of files.

If you don't want to reset to a given commit and test the website, you can create a
bash script and tell Git to use it. The script has to return 0 if the condition is fulfilled,
and nonzero if it isn't.

For example, we want to check the existence of a file:

#!/bin/bash

FILE=$1

If [-f $FILE];

Then

 Exit 0;

Else

 Exit 1;

fi

Now it's time to run git bisect to specify the last 10 commits:

Erik@server:~$ git bisect start HEAD HEAD~10

Erik@server:~$ git bisect run ./check_file.sh index.html

Chapter 3

[41]

The algorithm used by git bisect always returns the commit that is at the middle
position of the array.

In the following diagram, you will see how the algorithm found the good commit in
three steps:

Commit 1 Commit 2 Commit 3 Commit 4 Commit 5 Commit 6 Commit 7 Commit 8 Commit 9 Commit 10 Commit 11

Commit 7 Commit 8 Commit 9 Commit 10 Commit 11

Commit 10 Commit 11

Good Bad

BadGood

Good

Bad

The Commit6 option is selected by Git. After checking it, you tell Git that it's good.

Git reduces the array because if Commit6 is good, then every commit between
Commit1 and Commit6 is good too.

Then Git asks you to test Commit9, and you say that it's good too.

So the error can only be inside Commit10 and Commit11.

Fixing errors by practical examples
This section will help the readers a lot because the errors mentioned can occur very
frequently. This will summarize the entire chapter. Sometimes, especially when
you are not really familiar with Git, you don't know how to fix it. Here are the most
common errors that will occur:

•	 Remote origin already exists: This error occurs when you already have a
remote repository specified and the remote origin removed and added:
Erik@server:~$ git remote rm origin

Erik@server:~$ git remote add origin https://github.com/sexyboys/
InflexibleBundle.git

•	 Git push fails with rejected error: This error occurs because you didn't
execute git pull before git push:
Erik@server:~$ git pull

Erik@server:~$ git push

Finding and Resolving Conflicts

[42]

•	 Git push fails with "fatal: The remote end hung up unexpectedly": This one
is common and you should check whether your remote URL is correct and
Git has access to the remote repository.

•	 Restoring a changed file to its last committed state: Run git checkout
followed by the filename and you will lose your changes. However, this
will be restored as a clean copy of the file:
Erik@server:~$ git checkout theFilename

•	 Unstaging a file: Did you run git add too soon? Run git reset HEAD
followed by the filename to unstage it:
Erik@server:~$ git reset HEAD theFilename

•	 How to fix the most recent commit message?
The –amend option will edit a commit message:

Erik@server:~$ git commit --amend

The editor will open to edit the last message.

•	 Reset the most recent commit: There are two ways to do this: with and
without your changes.

°° Without losing changes:
Erik@server:~$ git reset HEAD~1

°° By losing changes:

Erik@server:~$ git reset --hard HEAD~1

•	 I found a bug after releasing the product but it was in the commit that I did
a long time ago, how to fix it?: In this case, you should not use git reset
because it rewrites the history and the product is already released. Therefore,
you should make a commit that reverts the buggy commit and pushes it to
share with your colleagues:
Erik@server:~$ git revert theCommitID

•	 There are many garbage files in the working directory. How to delete
them?: In this situation, the files are not maintained by Git, so you have
to use git clean:
#To check the files that will be removed

Erik@server:~$ git clean -n

#Removethem

Erik@server:~$ git clean -f

Chapter 3

[43]

•	 I think I made a mistake while resolving conflicted files. How do I restore
it to the state just after git merge?: To do this, you can use git checkout:
Erik@server:~$ git checkout -–merge theFilename

•	 Gitindex file is corrupt: No need to worry. This one is rare but can be
annoying! Git will display the error as bad index file sha1 signature:
fatal: index file corrupt

You just have to remove the backup index file; remove it, and then reset
the repository:

Erik@server:~$ mv .git/index .git/indexOLD

Erik@server:~$ git reset

•	 Git refuses to start a merge/pull command: The typical error messages look
like this:

°° Error: The index.html entry is not up to date; it cannot be merged
°° Error: The index.html entry will be overwritten by the

merge command

To resolve this, perform the following steps:

1.	 Stash the changes or throw them out:
Erik@server:~$ git stash save "my message"

Erik@server:~$ git checkout index.html

2.	 Check that the changes are staged:
Erik@server:~$ git status

3.	 Bring the changes from the remote repository:
Erik@server:~$ git pull

4.	 Repopulate if you made a stash:
Erik@server:~$ git stash pop

Finding and Resolving Conflicts

[44]

Summary
In this chapter, we saw how to find something inside your Git repository and resolve
mistakes. Now, you should not be afraid to make some mistakes because you know
that you can repair them. At the end of this chapter, we saw the most common errors
that occur.

For the next chapter, you will learn to delve deeper into Git and overview all the
possibilities with the versioning system.

Going Deeper into Git
We have seen the most common features of Git, but we did not cover everything. The
aim of this chapter is to discuss features that can help, but are not absolutely essential:

•	 Migrating an SVN repository to Git
•	 Using Git within an SVN environment
•	 Managing Git submodules
•	 Creating and applying patches
•	 Git hooks

Migrating an SVN repository to Git
Companies are afraid to change their versioning systems. They often try to
explain themselves by saying that Git is too complicated, it has insufficient features,
or even both.

Git is not necessarily better than Subversion (SVN), it's just different. For example,
if you are developing on the road with SVN, you cannot commit your changes if
the repository can't be reached. Git is decentralized, so your local working copy is a
repository. Git is a bit harder to learn than SVN, but it adds complexities such as two
modes to create repositories, a checkout/clone, a commit/push, and so on.

In one word, Git is more flexible. There is more than one way to do a task. Also, its
backbone is its community that develops ingenious tools (GitHub, add-ons inside
editors, and GitLab).

SVN to Git migration is extremely simple, and we can retain the repository's entire
history. This is not a sufficient reason to not migrate your repositories. If you want to
use Git, you can do so even if you already use SVN.

We will see the migration process in a few easy-to-follow steps.

Going Deeper into Git

[46]

Preparing for SVN to Git migration
Firstly, we want to keep the users; so, we have to create a text file that displays the
mapping between SVN users and Git users.

To do this, create a text file inside the svn repository, and call it authors.txt:

Erik@server:~/svn$ nano authors.txt

Erik@server:~/svn$ svn log ^/ --xml | grep -P "^<author" | sort -u | \

 perl -pe 's/<author>(.*?)<\/author>/$1 = /' > authors.txt

Now you have a text file that includes all SVN users, one per line. Edit this text file
and map the SVN users with the Git users. For example, consider the following:

eriksvn = Erik <erik@mymail.com>

jimsvn = Jim <jim@mymail.com>

Copy this file into the future Git repository, and we are ready to migrate:

Erik@server:~/git$ cp ../svn/authors.txt authors.txt

The Git directory I used isn't initialized, it's just an empty directory.

Migrating from SVN to Git
The git svn command will help us to migrate from one repository to another.
To use this command, just type the following:

Erik@server:~/git$ git svn clone svn://mySvnRepositoryPATH --authors-
file=authors.txt

Initialized empty Git repository in /home/erik/git/myRepoName/.git/

…

This command displays what it is doing, so you just have to wait. So, go take a beer/
coffee while it's running!

We now have a Git repository with the full history of the previous commit. If you
wish to check it out, execute the git log command:

Erik@server:~/git/myRepoName$ git log

commit df9448ff53864d8cfc6f78fd8831fd363d63a28b

Author: Erik <erik@mymail.com>

Date: Thu July 10 06:44:47 2014 +0000

Chapter 4

[47]

 Change the header

 git-svn-id: svn://mySvnRepository@48121 ac52e18a-acf5-0310-9fe8-
c4428f23b10a

commit 7e126efa063a1ed3203225efe973adb9286aa803

Author: Jim <jim@mymail.com>

Date: Wed July 9 21:53:52 2014 +0000

 Fix slider on homepage

 git-svn-id: svn://mySvnRepository@47970 ac52e18a-acf5-0310-9fe8-
c4428f23b10a

Cleaning your commits
We just saw that Git added a short reference to the SVN commit on the git commit
messages. If you want to remove these references, you can use the git filter-
branch command:

Erik@server:~/git/myRepoName$ git filter-branch -msg-filter '

 sed -e "/git-svn-id:/d"'

This command will clean your entire commit message by removing the short
references added by the git svn command.

Pushing content on Git
Now it's time to add the remote repository and push the content on it:

Erik@server:~/git/myRepoName$ git remote add origin ssh://myRemotePath/
myRemoteRepository.git

Migrating branches and tags
We have seen the easiest way to migrate a repository. There is also a way to migrate
the branches and tags. To do this, add these options to the git svn command line:

Erik@server:~/ $ git svn clone --authors-file=authors.txt svn://
myRepositoryPath --trunk=trunk --branches=branches --tags=tags

Going Deeper into Git

[48]

In fact, we specified to Git where the trunk, branch, and tag directories are, and
where to migrate them to. The migration is, of course, longer.

Now, we have to track the directories because if you list the imported branches,
you will see this result:

Erik@server:~/git/myRepoName$ git branch -a

* master

 Remotes/myBranch1

 Remotes/myBranch2

 Remotes/tags/myBranch2_1@2249

 Remotes/trunk

All branches and tags are tracked remotely, so we have to recreate them locally:

Erik@server:~/git/myRepoName$ git branch myBranch1 remotes/myBranch1

Erik@server:~/git/myRepoName$ git branch -l

myBranch1

* master

Erik@server:~/git/myRepoName$ git branch myBranch2_1 remotes/tags/
myBranch2_1@2249

Erik@server:~/git/myRepoName$ git tag -l

myBranch2_1

When we recreate all branches and tags locally, we push them remotely:

Erik@server:~/git/myRepoName$ git push -u origin master

Erik@server:~/git/myRepoName$ git push --all

Erik@server:~/git/myRepoName$ git push --tags

Another easy way to migrate
GitHub provides its own tool to migrate. For more information, go to
https://porter.github.com/new.

It helps you to migrate your repository easily in a few steps:

1.	 Type the URL of the project you want to import and check out this URL.
2.	 Provide the GitHub user that will own the repository and the name of your

repository after migration.
3.	 Choose whether this will be a public or private repository.
4.	 Click on Begin Import.

https://porter.github.com/new

Chapter 4

[49]

This is all! Of course, you have less configuration possibilities than the ones
mentioned earlier (authors, commits, and so on), but it is a quick way to migrate.

Using Git within an SVN environment
If you want to use Git as your versioning system, you shouldn't only migrate every
repository from SVN to Git, but you should also use Git locally. The Git-svn
command will help you do this. It so happens that your team doesn't want to change
its versioning system, or a project is way too big to migrate on a new versioning
system. So, Git has a solution for you; how about using Git features without anyone
knowing or caring?

The following diagram explains how to use Git inside an SVN environment.
When executing a Git command, the SVN environment will not notice it because
the Git-svn command will convert all your commands.

Pull

Push

Commit

Update

Git SubversionGit Svn

Setting up your repository
We assume that you already have an SVN repository and you want to use Git locally.
As a first step, clone the SVN repository using this command:

Erik@server:~$ git svn clone -s http://my_website.com/my_subversion_repo
my_gitsvn_local

Going Deeper into Git

[50]

The -s option stands for standard layout, which means that your subversion layout
has three directories (trunk, branches, and tags). You can, of course, forget this
option if your repository does not have a standard layout.

This creates a Git repository under the my_gitsvn_local directory that is mapped
to the trunk folder of your subversion repository.

As Git doesn't track empty directories, the empty directories
under the trunk won't appear inside your Git repository.

Sometimes you might have to clone a big repository. In this case, checking out the
commit history will be lengthy because the repository is too big. There is a way to
clone it without waiting for a long time.

You can do this by cloning the repository with the earlier version of the repository:

Erik@server:~$ git svn clone -s -r500:HEAD http://my_website.com/my_
subversion_repo my_gitsvn_local

There is one last thing to set up. Every file ignored by SVN has to be ignored by Git
too. To do this, you have to transfer them into the .gitignore file by using this:

Erik@server:~$ git svn show-ignore > .gitignore

There is an alternative method that uses the update-index command:

Erik@server:~$ git update-index --assume-unchanged filesToIgnore

Working with Git SVN
Once your repository is ready, you can work on it and start executing Git commands
as we saw earlier. Of course, there are some commands to execute when you want
to push or pull from the SVN repository. When you want to update your local Git
repository, just type this:

Erik@server:~$ git svn rebase

To commit back to SVN, use the following command:

Erik@server:~$ git svn dcommit

Sooner or later, you will add the .svn folder to the staging area in Git. Hopefully,
there is a way to delete it:

Erik@server:~$ git status -s | grep .svn | awk "'print $3'} | xargs git
rm -cached

Chapter 4

[51]

Managing Git submodules
You will probably work on a project that requires dependency on another project.
This can be a library that was developed by you or another team. It can be hard to
manage when the library is updated and you made some custom code inside
your project.

Git handles this by using submodules. It allows you to manage a Git repository as a
subfolder of another Git repository, which in turn lets you clone a repository isolated
from the commits of the current repository.

Adding a submodule
Let's imagine you are working on a website and you want to add the fpdf library
that helps you create a PDF file in PHP. The first thing to do is to clone the library's
Git repository inside your subfolder:

Erik@server:~/mySite/$ git submodule add https://github.com/lsolesen/
fpdf.git fpdf

Cloning in 'fpdf'

remote: Counting objects: 966, done.

remote: Total 966 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (966/966), 5.96 MiB | 1.13 MiB/s, done.

Resolving deltas: 100% (292/292), done.

You now have the Fpdf project inside the fpdf folder. You can do everything you
want inside it, such as add modifications, change the remote repository, push your
changes in the remote repository, and so on.

While you add the Git submodule, Git adds two files, Fpdf and .gitmodules.
Let's see this with the git status command:

Erik@server:~/mySite/$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>…" to unstage)

new file: .gitmodules

new file: Fpdf

Going Deeper into Git

[52]

If you display a .gitmodules file using the cat command, you will find all the
submodules entitled as follows:

•	 Fpdf: This is the folder where the repository is located
•	 .gitmodules: This is a config file that saves the link between the submodule

you just added and the project URL:
°° Erik@server:~/mySite/$ cat .gitmodules

°° [submodule "Fpdf"]

•	 path: This is given as fpdf
•	 url: This is given as https://github.com/lsolesen/fpdf.git
•	 .gitmodules: If you have several submodules, you will have the preceding

entry for every submodule inside this file

Git sees the fpdf folder as a submodule, so it won't track the changes
if you're not in this folder. An important fact is that Git saves this
addition as a nonregular commit of this repository, so if someone
clones your website, Git can recreate the same environment.

Cloning a project with submodules
If you clone a project using submodules (as shown in the previous example),
Git will add all files other than the submodule files:

Erik@server:~$ git clone git://theurl.com/mySite.git

Initialized empty Git repository in /var/www/mySite/.git/

remote: Counting objects: 6, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 6 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (6/6), done.

$ cd mySite

$ ls -l

total 8

-rw-r--r-- 1 epidoux admin 3 Aug 19 10:24 index.html

drwxr-xr-x 2 epidoux admin 68 Aug 19 10:24 fpdf

The fpdf folder is created, but it is empty. You will have to execute these two
commands to initialize the import submodule:

Erik@server:~$ git submodule init

Submodule 'fpdf' (git://github.com/lsolesen/fpdf.git) registered for path
'fpdf'

https://github.com/lsolesen/fpdf.git

Chapter 4

[53]

Erik@server:~$ git submodule update

Initialized empty Git repository in /var/www/mySite/fpdf/.git/

…

Your repository is now up to date. Using submodules can be interesting if you want
to separate and isolate some parts of your code.

If you execute a git pull command on your project, you will
not have the last version of the submodule. To do this, you have to
execute git submodule update every time you want to update
your submodule.

Removing a submodule
To remove a submodule from your project, you have to execute these steps:

1.	 Delete the lines of the submodule from the .gitmodules file.
2.	 Delete the submodule part from .git/config.
3.	 Delete the submodule from Git by executing this command:

Erik@server:~$ git rm -cached submodule_path

4.	 Commit and delete the untracked files.

Using a subtree instead of a submodule
There are a lot of articles on the Internet that explain why you should not use Git
modules. In these articles, they point to the fact that you have to use git submodule
update every time, and you will probably forget to do this.

The second problem is that Git doesn't really handle merging into a submodule.
It detects SHA conflicts, but this is all. It's left to you to find out what should
be done.

Thankfully, there is the subtree, which is better in a few ways:

•	 Easy to manage for light workflow
•	 While you clone a superproject, the subproject's code is available too
•	 Subtree doesn't use files such as .gitmodules
•	 The most important point is that contents can be modified inside your project

without having a copy of the dependency elsewhere

Going Deeper into Git

[54]

Git subtree is available from Version 1.7.11 (May 2012) of Git.

Now, we will see how to add and manage a subtree in the following section.

Adding a subproject with a subtree
Firstly, we need to tell Git that we want to include a project as a subtree. We use the
git remote command to specify where the remote repository of this subtree is:

Erik@server:~$ git remote add –f fpdf_remote git://github.com/lsolesen/
fpdf.git

Now, you can add the subtree inside your project using the remote repository:

Erik@server:~$ git subtree add --prefix fpdf fpdf_remote master --squash

This will create the subproject. If you want to update it later, you will have to use the
fetch and subtree pull commands:

Erik@server:~$ git fetch fpdf_remote master

Erik@server:~$ git subtree pull fpdf fpdf_remote master --squash

Contributing on a subtree
Obviously, you can commit your fixes to the subproject in the local directory,
but when you push back upstream, you will have to use another remote repository:

Erik@server:~$ git remote add epidoux-fpdf ssh://git@github.com/epidoux/
fpdf.git

Erik@server:~$ git subtree push --prefix=fpdf epidoux-fpdf master

Git push using: epidoux-fpdf master

Counting objects: 1, done.

Delta compression using up to 1 thread.

Compressing objects: 100% (1/1), done.

Writing objects: 100% (1/1), 150 bytes, done.

Total 1 (delta 1), reused 0 (delta 0)

To ssh://git@github.com/epidoux/fpdf.git

 243ab46..dca35db dbca35db 21fe51c9b5824370b3b224c440b3470cb -} master

Git subtree can be an easy way if you have to frequently update your subproject
and want to contribute to it with less effort.

Chapter 4

[55]

Creating and applying patches
A patch is a piece of code that can apply a set of changes (that is, a commit) to
any branch and any order of a project. The main goal of this feature is to share
the changes with other developers, and it gives control to the project maintainer
(whether they choose to incorporate the contribution or not). Creating a patch in
Git is very easy, as we will see right now.

Creating a patch
Creating a Git format patch will include metadata on the specified commit (author,
message, and so on). Everything will be formatted as an easy-to-send e-mail. So, the
recipient of this patch will be able to recreate the commit with git am.

In fact, the git format-patch command is useful to transfer a commit. Otherwise,
the git diff command finds differences inside the code.

In cases where we want to create a patch for one commit, we have to add the sha1
code of the commit.

The git log command, as we saw in Chapter 2, Working in a Team Using Git, shows
the commits:

Erik@server:~$ git log --pretty=oneline -5

Now, we have the commit key to create the patch:

Erik@server:~$ git format-patch -1 theSha1 --stdout > myPatch.patch

When we get the patch generated by git-format, we can read metadata to know
what the patch is for. There are two important options:

•	 The stat option lists the difference statuses on the standard output:
Erik@server:~$ git apply --stat myPatch.patch

•	 The check option tells us whether the patch can be applied:
Erik@server:~$ git apply --check myPatch.patch

For example, let's say Erik wants to change the title of the index.html file. He has
no write access to the remote repository. He edits the file and commits his change.
So, his file looks like this:

<html>
 <head>
 <title>Erik new title</title>
 </head>

Going Deeper into Git

[56]

 <body>

 </body>
</html>

Now that the file is edited, we can commit the change and generate a patch:

Erik@server:~$ git commit –a –m "Change the title"

Erik@server:~$ git format-patch master

Using the format-patch command with the branch name tells Git
to generate patches for each commit in the current branch that are
missing from the master branch.

The last command will create a file called 0001-Change-the-title. If you open the
generated patch file, you will find something like this:

Index 98e10a1..854cc34 100643
--- a/index.html
+++ b/index.html
@@ -3,4 +3,3 @@
 <head>
- <title> The old common title </title>
+ <title>Erik new title</title>
 </head>

You will quickly notice that the patch contains your last commit on changing
the title.

Mailing the patch
In the previous section, we saw an example where Erik changes the title of our
index.html page and creates a patch with the change. Now, he wants to send it to
the project maintainer because his title is much more interesting than the previous
one. There are three methods to send an e-mail with a patch:

•	 Copy and paste the content of the patch into an e-mail
•	 Attach the patch file to an e-mail
•	 Use the git send-email command

Chapter 4

[57]

Applying the patch
Jim is the maintainer of this project and decided to apply the patch made by Erik.
You have to move to the right repository, and after you check the patch that is
applicable, you just have to use the git am command with the signoff option.
This option will use the identity metadata from the patch, and not your metadata.
You can use the k option too, which keeps the flags:

Jim@local:~$ git checkout –b patch-branch

Jim@local:~$ git am --signoff -k < 001-Change-the-title.patch

Jim checks out a new topic branch called patch-branch to test the patch without
destroying the project features. With the git am command, Jim creates a new
commit with the patch change.

In our example, Jim integrates the change in the same order as Erik,
but it didn't have to be like this. The idea of the patch feature is to
isolate a commit and integrate it when you want.

Git hooks
Git has a way to execute scripts when a Git command is performed. It will help you
to perform some automated actions while you or one of your team members executes
a Git command. The uses of these scripts are unlimited and very easy to set up.
It will be very helpful to get notifications, format code, deploy websites, perform
tasks on folders, and so on.

There are two types of hooks, depending on the commands:

•	 Client hooks: These kinds of hooks are for client operations, such as the
commit or merge command

•	 Server hooks: These hooks are for Git server-side operations, such as the
push command

Client hooks
There are many types of hooks for the client side; we choose to present the two
most-known kinds. The first hook, pre-commit, works with the committing process.
Firstly, the pre-commit hook is run before typing a commit message. It is used to
inspect what you will commit, and it will be interesting to inspect your code to check
that you forget nothing.

Going Deeper into Git

[58]

The commit is aborted if your script exits with a nonzero value. It is a pretty handful
way to check if there are documentations on new methods.

The second hook is the prepare-commit-msg hook. The prepare-commit-msg hook
is run after the default message is created. It will be useful to manage autogenerated
messages for merge and amended commits.

Server hooks
Server hooks are run before and after interactions with the server. As seen previously,
a nonzero value rejects the push. It is used to enforce the policy of your repository.

When pushing commits, the first script that should be run is pre-receive. You can
use it to check that the user has enough permission to push.

The post-receive hook runs after the entire process is complete and is mainly
used to notify other services or users. This script won't stop the push; it is only
there to notify.

The third script to run is update, which is pretty close to the pre-receive script,
except that it runs for each updating branch.

After the entire commit process is completed, the post-commit hook runs. It is used
for notifications only.

More about hooks
As hooks can help you a lot with repetitive tasks, you will find a quick summary of
the most well-known hooks in the following table:

Hook Type Trigger Can reject?
pre-commit Client Before the commit Yes, the commit

post-commit Client After the commit No

commit-msg Client During the commit No

update Server While receiving the push Yes, the push

pre-receive Server Before a receive pack Yes

post-receive Server After a receive pack No

post-update Server During a push from the client side No

post-checkout Client After a checkout No

post-merge Client After a merge No

Chapter 4

[59]

All types of hooks come with environment variables that are available inside your
hook. The following is a list of variables for each hook and more information about
how to use them:

•	 applypatch-msg, post-applypatch, and pre-applypatch: These three
hooks can only be used in a working tree; they contain the following
environment variables:

°° GIT_AUTHOR_DATE (for example, 'Wed, 5 November, 2014
10:40:22 +0200')

°° GIT_AUTHOR_NAME (for example, 'Erik')
°° GIT_AUTHOR_EMAIL (for example, 'erik@localhost')
°° GIT_REFLOG_ACTION (the command that trigged the hook,

for example, 'am')
°° GIT_DIR, which is not set

•	 pre-commit, prepare-commit-msg, commit-msg, and post-commit: Similar to
the previous hooks, these work in a working tree and there are less variables:

°° GIT_DIR is set to '.git'
°° GIT_INDEX_FILE is set to '.git/index'

•	 post-checkout: This hook can only be used in a working tree too.
The variables include:

°° GIT_DIR, which is set to '.'

•	 pre-receive, update, post-receive, and post-update: These last ones can
be run in a bare or nonbare repository, and there is only one environment
variable set:

°° GIT_DIR, which is set to '.'

Installing a hook
Hooks are stored in the hooks subfolder of the Git repository, .git/hooks.

By default, Git provides some examples in this directory. You can write the scripts
in Perl, Python, Ruby, PHP, and so on (executable script only).

When you want to create a hook, put the file inside the hooks folder and check the
execution permissions.

Going Deeper into Git

[60]

A hook example
Let's build an example using the post-receive hook; we will deploy a website
using no more than the hook. We assume that the remote Git repository and running
site are on the same server.

First, add a script inside .git/hooks:

Erik@server :~/mySite$ git nano .git/post-receive

#!/bin/sh

#

store the arguments

read oldrev newrev refname

define the log file

LOGFILE=./post-receive.log

The running site

DEPLOYDIR=/var/www/html/mySite

The maintenance htaccess file

MAINTENANCE=.htaccess_maintenance

Record the push

echo -e "Incoming Push at $(date +%F)" >> $LOGFILE

echo " - Old SHA: $oldrev New SHA: $newrev Branch Name: $refname" >>
$LOGFILE

Update the deployed copy

echo "Deploying…" >> $LOGFILE

echo " - Entering the maintenance mode "

cd /var/www/html/mySite

mv .htaccess .htaccess_prod

mv $MAINTENANCE .htaccess

echo " - Updating code"

GIT_WORK_TREE="$DEPLOYDIR" git checkout -f

Chapter 4

[61]

echo " – Exiting maintenance mode"

mv .htaccess $MAINTENANCE

mv .htaccess_prod .htaccess

echo "Finished Deploying" >> $LOGFILE

This script, written in bash, will be fired after the push is received by the remote
repository. It manages the entire deployment process for us by enabling and disabling
the maintenance mode and updating the code. Let's look at this more closely:

read oldrev newrev refname

Here, we store the three arguments passed to the post-receive script when it's
called. These are as follows:

•	 The previous commit SHA1 hash
•	 The latest commit SHA1 hash
•	 The refname argument (containing branch information)

This helps us to track what's being deployed, and roll back, if necessary.
However, this script doesn't handle a rollback:

LOGFILE=./post-receive.log

DEPLOYDIR=/var/www/html/mySite

MAINTENANCE=.htaccess_maintenance

Next, we set up a variable to log the output of the deployment and
deployment directory:

echo -e "Incoming Push at $(date +%F)" >> $LOGFILE

echo " - Old SHA: $oldrev New SHA: $newrev Branch Name: $refname" >>
$LOGFILE

Here, we log when a push request and its details are received:

GIT_WORK_TREE="$DEPLOYDIR" git checkout -f

Here, we tell Git where the working tree is, and instruct Git to check out the
latest copy of the code in the directory, removing any changes that might have
been made manually:

echo "Finished Deploying" >> $LOGFILE

Going Deeper into Git

[62]

The last step is to indicate that the deployment is now complete. Of course, this is
just an example, and you can do much more:

•	 Clearing cache folder
•	 Migrating database
•	 Running tests
•	 Changing permissions on folders
•	 Notifying someone or external services

You can change this hook to suit your needs, and don't forget to make the
file executable, otherwise it won't run. If you're not familiar with this process,
this is how it's done:

Erik@server~:$ chmod +x post-receive

Customizing Git
As you already know, when you install Git, you have to configure your username
and e-mail, but this isn't the only one configuration you can do:

Erik@server~:$ git config --global user.name 'Erik'

Erik@server~:$ git config --global user.email 'erik@mymail.com'

Git uses a series of configuration files to perform various activities. First, Git checks
the /etc/gitconfig file that contains configurations for every user.

Then, Git looks in ~/.gitconfig, which is specific to each user. Finally, Git checks
the .git/config file inside the repository.

There are a lot of options available, but we will cover only the commonly used.
You can see a list of all options executing this:

Erik@server~:$ git config -help

You will find a lot of options to play with, but here are the most important ones:

•	 Editor: You can use editors such as Emacs, Vi, nano, and so on. The following
example shows how to use your favorite editor:
Erik@server~:$ git config --global core.editor nano

•	 Commit template: You can specify a message when you commit something:
Erik@server~:$ git config --global commit.template ~/gitmsg.txt

It will display your template just before the commit information.

Chapter 4

[63]

•	 Autocorrect: When you type a wrong command, Git will try to understand
which command you actually meant to type:
Erik@server~:$ git pul

Git : 'pul' is not a git-command. See 'git --help'.

Did you mean this ?

 Pull

If you set help.autorrect to 1, Git will run the match command.

•	 Add colors: You are now forced to use a white font inside your terminal.
To add colors, enable it with this command:
Erik@server~:$ git config --global color.ui true

You can also provide specific colors for each command, but we will not see
this here.

Summary
In this chapter, we saw how to work with Git inside an SVN environment, and this it
is a great way to enjoy Git's features without migrating all repositories. We saw how
to find something inside your Git repository and resolve mistakes. However, when
your team is ready to migrate, I encourage you to migrate the most-used repository.

We then saw how to migrate an SVN repository to Git step by step; it's an
easy-to-reproduce guide.

The last thing we saw in this chapter was how to use Git submodules, which can be
interesting to separate parts of your code.

In the next chapter, we will see how to use Git inside an agile environment
along with best practices to build a flexible branching system, and we will use
Continuous Integration.

Using Git for Continuous
Integration

In the previous four chapters, we talked about Git's features, from its most common
uses to the most complex ways to use it. However, if this book ends with the
previous chapter, it will only be a guide to use Git.

My aim, as an author, is to show you how to use Git to be more efficient in your
development. The point of this chapter is to see various approaches to use Git and
understand how important Git is to your workflow.

So, in this last chapter, we will see how to:

•	 Create specific branches to improve your workflow
•	 Use Git inside an agile environment
•	 Work with Continuous Integration
•	 Use other Git tools

Creating an efficient branching system
In the previous chapters, we saw that Git is very useful when you work within a
team. Each developer can work locally, and all the work is merged at a remote place.

When you work on a project using a repository, it will be released sooner
rather than later. It will be simple if your work stops here, but your project will
probably have some bugs that you will have to fix, and you will also have to add
some more features.

Using Git for Continuous Integration

[66]

Your project evolves over time, and working on the Master branch will only
create serious conflicts. However, don't panic, most Git users already encountered
this problem.

The best approach is to leave the Master branch as the latest stable version of your
repository and develop the branching system around it.

Now, we will see how the Git community tried to avoid using only the
Master branch.

Git flow
In 2010, a Dutch iOS developer, Vincent Driessen, published the article Git flow.
In this article, he presents how he sets up his branch model.

His branching strategy starts by creating two main branches:

•	 Master
•	 Dev

The Master branch is the main branch of the project and will be in the
ready-for-production state. They are on the remote repository (origin).

So, whenever you clone the repository on the Master branch, you will have the last
stable version of the project, which is very important.

DEV

1.0.1

1.0

1.0.1

MASTER

Merge

The dev branch reflects all the new features for the next release.

When the code inside the dev branch is stable (this means that you have done all
changes for the next releases and tested it), you reach the stable point on the dev
branch. Then, you can merge the dev branch into Master.

Chapter 5

[67]

Around these two branches, Vincent Driessen also used other branches that can be
categorized into three types:

•	 Feature branches
•	 Release branches
•	 Hotfix branches

Feature branches
A feature branch is named based on what your feature is about and will exist as long
as the feature is in development.

Feature branches only exist in local developer repositories; do not push them on the
remote repository. When your feature is ready, you can merge your branch feature to
develop and delete the branch. Execute the following steps:

1.	 Go back to the dev branch:
Erik@Server:~/myproject$ git checkout dev

2.	 Merge the branch to dev by creating a new commit object:
Erik@Server:~/myproject$ git merge --no-ff featureBranch

3.	 Delete the branch (the branch explains a feature that is now part of the dev
branch, so there is no reason to keep it):
Erik@Server:~/myproject$ git branch -d featureBranch

4.	 Push your changes on the remote dev repository:
Erik@Server:~/myproject$ git push origin dev

DEV

Commit xxx

Feature

Merge

1.0.1 1.0.1

MASTER

checkout

Commit xxx

+

Using Git for Continuous Integration

[68]

Release branches
You will use the release branch to update your code for minor changes between two
big releases. It's named the version number of the project.

At this point, an example will be necessary to explain the process.

Let's imagine that we released our website and it is tagged as Version 1.0. We are
working on the next big release that will include a blog. While developing your next
great feature on a feature branch called "blog", you have a minor bug on production.

So, we create a release branch from the dev branch, which we will name "release-1.1":

Erik@Server:~/myproject$ git checkout -b release-1.1 dev

We can fix this bug, but before releasing it, there is a tricky part. Fortunately, this is
easy to understand.

First, you have to merge this branch release into master:

Erik@Server:~/myproject$ git checkout master

Erik@Server:~/myproject$ git merge --no-ff release-1.1

Then, you can tag your project to the new release version:

Erik@Server:~/myproject$ git tag -a 1.1

You will probably notice that your dev branch didn't include the changes!

To fix this, you have to merge it into the dev:

Erik@Server:~/myproject$ git checkout dev

Erik@Server:~/myproject$ git merge --no-ff release-1.1

When it's done, delete the release branch:

Erik@Server:~/myproject$ git branch -d release-1.1

Chapter 5

[69]

The diagram shows what we have done with the previous commands:

DEV

Commit xxx

Release-1.1

Merge

1.0.1 1.0.1

MASTER

checkout

1.1

+

1.1

Merge

Hotfix branches
These kinds of branches are very similar to release branches. It will respond to fixing
a critical bug on production.

The goal is to quickly fix a bug while the other team members can work on their
features. For example, your website is tagged as 1.1, and you are still developing the
blog feature on the blog branch. You find a huge bug on the slider inside the main
page, so you work on the release branch to fix it as soon as possible.

Create a hotfix branch named:

Erik@Server:~/myproject$ git checkout -b hotfix-1.1.1 master

Fix the bug and merge it to master (after a commit, of course):

Erik@Server:~/myproject$ git checkout master

Erik@Server:~/myproject$ git merge --no-ff hotfix-1.1.1

Erik@Server:~/myproject$ git tag -a 1.1.1

Similarly, like the release branch, merge the hotfix branch into the current release
branch (if it exists) or dev branch. Then delete it:

Erik@Server:~/myproject$ git checkout dev

Erik@Server:~/myproject$ git merge --no-ff hotfix-1.1.1

Erik@Server:~/myproject$ git branch -d hotfix-1.1.1

Using Git for Continuous Integration

[70]

The following is an overview of what we have done:

DEV

Commit xxx

Hotfix-1.1.1

Merge

1.1 1.1

MASTER

checkout

1.1.1

+

1.1.1

Merge

The following table shows the different branches you should create if you choose to
implement the Git flow strategy:

Branches Aim Naming
convention

Created
from

Merge into Delete
it after
merging?

Master Production state master - - No
Dev Features for the

next big release
dev Master Master No

Feature Creating a new
feature

Name of the
feature

Dev Master and
Dev

Yes

Release Minor changes
between two big
releases

Name of
the current
project
versions 1.1,
1.2, and so on

Dev Master and
Dev

Yes

Hotfix To fix critical
bugs on
production

Name of
the current
versions 1.1.1,
2.1.3, and so
on

Master Master,
Release, or
Dev

Yes

In summer of 2011, Scott Chacon from GitHub wrote an article about Git flow and
spoke about how this branching system didn't fit the development model of GitHub.

The message to take away from his article is that there is no typical branching system
for all projects, but you have to find your own approach that fits your project the best.

Chapter 5

[71]

For example, if you are developing something for a client and there are no new
features and only Version 1.0 and hotfixes, using the Git flow model is useless;
use only the master for production and dev to commit patches.

BPF – Branch Per Feature
As mentioned earlier, Git flow might suit your project when you use a GitHub
project, but the is not always the case.

This model was described by Adam Dymitruk in 2012. He tried to combine the
power of Git with Continuous Integration, which is the next topic of this chapter.

In this article, he gave some tips for a more efficient branching strategy:

•	 Divide your project into several sprints.
•	 For each sprint, there are several features to develop.
•	 The features should be small. Develop a small part of the feature, and for

each of them, create a dedicated feature branch. So, there will be a lot of
branches with few commits in it.

•	 Merge your branch to the dev branch when it's ready.
•	 Use a Continuous Integration tool on a Quality Assurance branch so that you

will be notified sooner when something is wrong on your feature.
•	 When it passes the tests, your QA branch is merged into master and you just

have to tag the new version.

QACommit xxx

Feature 1

Feature 1

1.0

MASTER

Sprint 1

+
1.1

Commit xxx

Feature 2

+ Feature 2

Using Git for Continuous Integration

[72]

Every time you start a sprint, create the feature
branches and QA.

The aim of this strategy is:

•	 All your work is split under feature branches.
•	 All feature branches start from master (from the last release). When you start

a sprint, you create your feature branches at the same time.
•	 Test your code sooner.

The QA branch is like the Dev branch from Git flow; you shouldn't
deploy it, but you have to recreate it on every release.

Working with Continuous Integration
using Git
Working with Continuous Integration (CI) means that you need to combine the
work frequently and push features as soon as they are ready.

The aim of this way of thinking is that by deploying features when they are ready,
your features will be delivered to the customer faster.

There is another good thing: if you deploy on each feature, the deployment will
be smaller, so it will generate less problems because you have less things to test on
each release.

This model is the practical way of using Scrum. You start a project, separate it into
several sprints, divide the sprints into small features, and you are ready to start.
This is the age-old policy of divide and rule.

As we already saw in the previous chapters, Git is powerful and excels at branching
and merging. So, you can easily implement an agile model using Git.

Chapter 5

[73]

To fulfill these principles, you have to integrate the changes locally. Then, you have
to be sure that this code will work everywhere by pushing it into a private branch on
the integration machine. If the test fails, go back to your local machine, fix the bugs,
and test it again on the integration machine.

When successful, you can promote your code to a public branch. However, if
someone integrates the code while you are testing yours, you will have to start
testing again.

Local QA MASTER

Tests failed

Ready to test

Someone integrates
his code before

Ready to deploy

Go to next
feature

I encourage you to read more about these strategies if you are interested, because
I choose to resume the known ones. There are, of course, other strategies, some of
which are more complicated but are very interesting. Examples include Squash
workflow, Oxygen workflow, and so on. Every big company has its own branching
systems, which are variants of Git flow.

Git tools you might like
To end this chapter, I choose to present to you some tools around Git that you can
probably use, or might prompt you to research further.

It can be rewarding to finish this book with an opening to other related topics,
which will push you to always learn more.

Git GUI clients
A nice way to start this presentation for cons-terminal is to use the GUI clients for
all operating systems. I am aware that there are a lot of clients for each OS, but I will
show the most-used clients.

Using Git for Continuous Integration

[74]

On Linux
Lot of Linux users like to use Git through command lines or their code editors,
but there are GUI tools too for all developers:

•	 Git-cola: This software is developed in Python and has the usual pull, push,
and commit functions. It also has a diff viewer. The following screenshot
shows the interface of Git-cola:

•	 Gitg: This tool is very simple and colorful; you will get a graphical
display of your repository. You will also get a diff viewer and file
browser. The following screenshot shows the interface of Gitg:

Chapter 5

[75]

On Windows
The following are the GUI tools for Windows:

•	 TortoiseGit: This is similar to TortoiseSvn for those who use SVN
on Windows. Its most popular feature is that it's integrated into the
Windows Context menu, so you can perform Git commands inside
the Windows explorer.

The interface of TortoiseGit

Using Git for Continuous Integration

[76]

•	 GitHub Client: GitHub released a tool that you can easily use with your
GitHub repository or even something else. This tool can be very interesting
if you are using GitHub exclusively as a repository manager because it is
nicer and easy to use. The following screenshot shows the interface of
GitHub Client:

Chapter 5

[77]

•	 msysGit: This tool is a little bit uglier, but as practical as others, and you can
use the Windows CMD shell too. It comes with its own SSH. The following
screenshot shows the interface of msysGit:

Using Git for Continuous Integration

[78]

On Mac
The following are the GUI tools for Mac:

•	 GitX: This is the most popular open-source tool for Mac. There are a lot
of forks of this tool, such as GitX – Pieter, GitX(L), and GitX – Rowanj.
The following screenshot shows the interface of GitX:

•	 Gitbox: This tool is also a fork of GitX, but it's faster and more intuitive than
the original and includes all the necessary features. The following screenshot
shows the interface of Gitbox:

Chapter 5

[79]

Mac has a GitHub client, too. However, you can also use a Git plugin directly inside
your IDE (Eclipse, NetBeans, PhpStorm, Sublime Text, and so on).

Repository management
A repository manager is a tool that helps you to manage your Git repository. It's often
a remote web-based tool on which you can manage user rights on all your repositories,
explore the files and the commit history, manage branches, tags, and so on.

Using Git for Continuous Integration

[80]

I will introduce you two famous Git repositories. The first one is well-known and
used by a lot of developers and the last one second is open source and could be
self-hosted:

•	 GitHub: GitHub is a Git repository web-based hosting application. It offers
revision control and code management. It has free accounts for public
repositories and paid plans for private ones. You can connect external services
such as Travis CI for Continuous Integration. The following screenshot shows
the interface of GitHub:

Chapter 5

[81]

•	 GitLab: GitLab is the same as GitHub. The great thing about this tool is that
you install it on your own server and have unlimited repositories, users, and
so on.

GitLab has purpose-free and paid plans on its website if you don't want to
have them on your server. The following screenshot shows the interface
of GitLab:

Summary
In this chapter, we saw a nice way of using Git inside an agile environment. It might
not be useful for you, but I hope this information will prompt you to ask yourself
about how you can use Git to be more efficient and responsive.

The last part of this chapter is a bit sharp, but there are thousands of Git GUI clients
or Git repository management applications available, and you should find the one
that best suits your purposes.

If you don't find one, there will always be the timeless and matchless terminal!

Index
Symbols
.gitignore file

creating 12

A
add colors option 63
applypatch-msg hook

variables 59
autocorrect option 63

B
branch

about 21
checking out 18
creating 18
deleting, from remote 20
differences, between other branch 19
playing with 19
tracking 19
working with 18

branching strategy
tips 71

branching system
creating 65
dev branch 66
feature branches 67
Git flow 66
hotfix branches 69
Master branch 66
release branches 68, 69

Branch Per Feature (BPF) 71, 72

C
check option 55
cherry-pick command 25
client hooks 57
commit command 8
commit-msg hook

variables 59
commit template option 62
common errors

fixing 41-43
Config file 6
content, searching in repository

about 29
changes, stashing 34
changes, viewing 33, 34
current status, displaying 30, 31
file content, searching 29, 30
repository history, exploring 31, 32

Continuous Integration (CI)
working with, Git used 72, 73

D
data

pulling, from repository 17
pushing, on remote repositories 16

dev branch 66

E
Edit option, rebase command 25
editor option 62
errors, fixing 41-43
Exec option, rebase command 25

[84]

F
fast forward merge 20, 21
feature branches 67
file, Git repository

adding 8
committing 8, 9
ignoring 12
pushing 9, 10
removing 10
status, checking 10, 11

Fixup option, rebase command 25

G
Git

configuring 5
customizing 62
existent repository, cloning 6
repository, initializing 5, 6
used, for working with Continuous

Integration (CI) 72, 73
git bisect command 40, 41
Gitbox 78
git clean command 36
Git-cola 74
git diff command 33
git filter-branch 38
git format-patch command

about 55
using 56

Gitg 74
Git GUI clients

about 73
on Linux 74
on Mac 78
on Windows 75

Git hooks
about 57, 58
client hooks 57
commit-msg 58
example 60, 61
installing 59
post-checkout 58
post-commit 58
post-merge 58

post-receive 58
post-update 58
pre-commit 58
pre-receive 58
server hooks 57, 58
update 58

GitHub
about 48, 80
URL 48

GitHub Client 76
GitLab 81
git log command

about 31
executing 46

git merge command 20
Git repository

file, adding 8
file, committing 8, 9
file, pushing 9, 10
file, removing 10
files, ignoring 12
GitHub 80
GitLab 81
MODIFIED state 7
STAGED state 7
status, checking 10, 11
UNMODIFIED state 7
UNTRACKED state 7
working with 7

git reset command
--hard option 36
--mixed option 36
--soft option 36
about 35

git revert command 38
git show command 34
git stash command 34
git status command 30
Git submodules

adding 51
managing 51
removing 53
used, for cloning project 52

Git subtree 54
Git SVN

working with 50

[85]

git svn command 46
Git tools

about 73
Git GUI clients 73

Git transport
about 15
cons 15
pros 15

Git, using within SVN
about 49
repository, setting up 49, 50

GitX 78
GUI tools, for Linux

Git-cola 74
Gitg 74

GUI tools, for Mac
Gitbox 78, 79
GitX 78

GUI tools, for Windows
GitHub Client 76
msysGit 77
TortoiseGit 75

H
HEAD file 6
hotfix branches 69-71
HTTPS protocol

about 16
cons 16
pros 16

L
local protocol

about 14
cons 14
pros 14

M
Master branch 66
merging

about 20
fast forward merge 20
merge commit 22
merging strategies 23

merging strategies
about 23
ours strategy 23
recursive strategy 23
theirs strategy 23

mistakes, resolving
about 35
commit, canceling 38
commit, editing 37
commit history, rewriting 38
errors, searching with git bisect 40
git reset command 35, 36
merge conflicts, solving 38, 39
uncommitted changes, reverting 35

msysGit 77

O
ours strategy, merging strategies 23

P
patch

about 55
applying 57
creating 17, 55
mailing 56

patch-branch 57
Pick option, rebase command 25
post-applypatch hook

variables 59
post-checkout hook

variables 59
post-commit hook

variables 59
post-receive hook

about 58
variables 59

post-update hook
variables 59

pre-applypatch hook
variables 59

pre-commit hook 57
prepare-commit-msg hook 58
pre-receive hook

variables 59

[86]

R
rebase command

--interactive option 25
about 23, 25
Edit option 25
Exec option 25
Fixup option 25
Pick option 25
Reword option 25
Squash option 25

recursive strategy, merging strategies 23
Refs directory file 6
release branches 68, 69
remote repositories

data, pushing on 16
repository management 79
repository manager 79
Reword option, rebase command 25

S
Secure Shell (SSH) protocol

about 14, 15
cons 15
pros 15

server hooks 58
server repository

creating 13, 14
Git transport 15
HTTPS protocol 16
local protocol 14
Secure Shell (SSH) protocol 14

Squash option, rebase command 25
stat option 55
stat parameter 32
subtree

contributing on 54
subproject, adding with 54
using 53

SVN to Git migration
about 45
branches, migrating 47, 48
commits, cleaning 47
content, pushing on Git 47
performing 45, 46
preparing for 46
tags, migrating 47, 48

T
tags

creating 26
deleting 26
using 26

theirs strategy, merging strategies 23
TortoiseGit 75

U
update hook

variables 59

Thank you for buying
Git Best Practices Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Git Version Control Cookbook
ISBN: 978-1-78216-845-4 Paperback: 340 pages

90 hands-on recipes that will increase your
productivity when using Git as a version
control system

1.	 Filled with practical recipes that will teach you
how to use the most advanced features of the
Git system.

2.	 Improve your productivity by learning
to work faster, more efficiently, and with
more confidence.

3.	 Discover tips and tricks that will show you when
and how to use the advanced features of Git.

Git: Version Control for Everyone
Beginner's Guide
ISBN: 978-1-84951-752-2 Paperback: 180 pages

The non-coder's guide to everyday version control for
increased efficiency and productivity

1.	 A complete beginner's workflow for version
control of common documents and content.

2.	 Examples used are from nontechie, day-to-day
computing activities we all engage in.

3.	 Learn through multiple modes—readers
learn theories to understand the concept and
reinforce it by practical tutorials.

Please check www.PacktPub.com for information on our titles

GitLab Repository Management
ISBN: 978-1-78328-179-4 Paperback: 88 pages

Delve into managing your projects with GitLab, while
tailoring it to fit your environment

1.	 Understand how to efficiently track
and manage projects.

2.	 Establish teams with a fast software
developing tool.

3.	 Employ teams constructively in a
GitLab environment.

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1.	 Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2.	 Use Python's special methods to integrate
seamlessly with built-in features and the
standard library.

3.	 Design classes to support object persistence
in JSON, YAML, Pickle, CSV, XML, Shelve,
and SQL.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting a Git Repository
	Configuring Git
	Initializing a new repository
	Cloning an existent repository
	Working with the repository
	Adding a file
	Committing a file
	Pushing a file
	Removing a file
	Checking the status
	Ignoring files

	Summary

	Chapter 2: Working in a Team Using Git
	Creating a server repository
	Local
	SSH
	Git
	HTTPS

	Pushing data on remote repositories – Jim's case
	Pulling data from the repository
	Creating a patch
	Working with branches
	Creating a branch
	Checking out a branch
	Playing with a branch
	The difference between branches

	Tracking branches
	Deleting a branch from the remote

	Merging
	Fast forward merge
	Merge commit
	Other merging strategies

	Rebase
	Cherry-pick
	Using tags
	Creating and deleting tags

	Summary

	Chapter 3: Finding and Resolving Conflicts
	Finding content inside your repository
	Searching file content
	Showing the current status
	Exploring the repository history
	Viewing changes

	Stashing your changes
	Cleaning your mistakes
	Reverting uncommitted changes
	The git reset command
	Editing a commit
	Canceling a commit
	Rewriting commit history
	Solving merge conflicts
	Searching errors with git bisect

	Fixing errors by practical examples
	Summary

	Chapter 4: Going Deeper into Git
	Migrating an SVN repository to Git
	Preparing for SVN to Git migration
	Migrating from SVN to Git
	Cleaning your commits
	Pushing content on Git
	Migrating branches and tags
	Another easy way to migrate

	Using Git within an SVN environment
	Setting up your repository
	Working with Git SVN

	Managing Git submodules
	Adding a submodule
	Cloning a project with submodules
	Removing a submodule
	Using a subtree instead of a submodule
	Adding a subproject with a subtree
	Contributing on a subtree

	Creating and applying patches
	Creating a patch
	Mailing the patch
	Applying the patch

	Git hooks
	Client hooks
	Server hooks
	More about hooks
	Installing a hook
	A hook example

	Customizing Git
	Summary

	Chapter 5: Using Git for Continuous Integration
	Creating an efficient branching system
	Git flow
	Feature branches
	Release branches
	Hotfix branches

	BPF – Branch Per Feature

	Working with Continuous Integration using Git
	Git tools you might like
	Git GUI clients
	On Linux
	On Windows
	On Mac

	Repository management

	Summary

	Index

