
[1]

Mastering Git

Attain expert-level proficiency with Git for enhanced
productivity and efficient collaboration by mastering
advanced distributed version control features

Jakub Narębski

BIRMINGHAM - MUMBAI

Mastering Git

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1130416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-375-4

www.packtpub.com

www.packtpub.com

Credits

Author
Jakub Narębski

Reviewer
Markus Maiwald

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Vinay Argekar

Content Development Editor
Athira Laji

Technical Editor
Shivani Kiran Mistry

Copy Editor
Akshata Lobo

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Jakub Narębski followed Git development from the very beginning of its creation.
He is one of the main contributors to the gitweb subsystem (the original web
interface for Git), and is an unofficial gitweb maintainer. He created, announced,
and analyzed annual Git User's Surveys from 2007 till 2012—all except the first one
(you can find his analysis of those surveys on the Git Wiki). He shares his expertise
with the technology on the StackOverflow question-and-answer website.

He was one of the proofreaders of the Version Control by Example by Eric Sink,
and was the reason why it has chapter on Git.

He is an assistant professor in the faculty of mathematics and computer science
at the Nicolaus Copernicus University in Toruń, Poland. He uses Git as a version
control system of choice both for personal and professional work, teaching it to
computer science students as a part of their coursework.

About the Reviewer

Markus Maiwald is an internet service provider, business webhoster, and domain
provider. As an example, he offers agencies complete white labeling solutions for
their customers (from registering a domain to deploying a webserver).

Therefore, his slogan is: I build the systems your business runs on.

Professionally, he is a consultant and systems administrator with over 15 years
of Linux experience. He likes building high performance server systems and he
develops usable and standard-compliant systems with focus on security.

As a true webworker 2.0, he runs his own international business with customers all
over the world, from an insurance company in Europe to a web developer studio in
Thailand.

This is the main reason why he was so passionate to work on this book. As a great
team player and with a lot of experience in international teamwork, he brings in a
great knowledge of tools such as Git.

I have to thank Bijal Patel, my project co-ordinator from Packt
Publishing. I received outstanding support and had a great time.

I would also like to thank Sarah for her patience and encouragement
while I finished this project.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface xi
Chapter 1: Git Basics in Practice 1

An introduction to version control and Git 1
Git by example 2

Repository setup 2
Creating a Git repository 3
Cloning the repository and creating the first commit 4
Publishing changes 7
Examining history and viewing changes 7
Renaming and moving files 10
Updating your repository (with merge) 11
Creating a tag 12
Resolving a merge conflict 14
Adding files in bulk and removing files 17
Undoing changes to a file 18
Creating a new branch 19
Merging a branch (no conflicts) 20
Undoing an unpublished merge 21

Summary 22
Chapter 2: Exploring Project History 23

Directed Acyclic Graphs 24
Whole-tree commits 26
Branches and tags 26
Branch points 28
Merge commits 29

Single revision selection 29
HEAD – the implicit revision 30
Branch and tag references 30

Table of Contents

[ii]

SHA-1 and the shortened SHA-1 identifier 31
Ancestry references 33
Reverse ancestry references: the git describe output 34
Reflog shortnames 34
Upstream of remote-tracking branches 35
Selecting revision by the commit message 36

Selecting the revision range 36
Single revision as a revision range 36
Double dot notation 37
Multiple points – including and excluding revisions 38
The revision range for a single revision 39
Triple-dot notation 39

Searching history 41
Limiting the number of revisions 41
Matching revision metadata 42

Time-limiting options 42
Matching commit contents 43
Commit parents 43

Searching changes in revisions 44
Selecting types of change 46

History of a file 46
Path limiting 46
History simplification 48
Blame – the line-wise history of a file 48

Finding bugs with git bisect 50
Selecting and formatting the git log output 53

Predefined and user defined output formats 53
Including, formatting, and summing up changes 55
Summarizing contributions 56
Viewing a revision and a file at revision 58

Summary 59
Chapter 3: Developing with Git 61

Creating a new commit 62
The DAG view of creating a new commit 62
The index – a staging area for commits 63
Examining the changes to be committed 65

The status of the working directory 65
Examining differences from the last revision 68
Unified Git diff format 69

Selective commit 74
Selecting files to commit 74
Interactively selecting changes 74

Table of Contents

[iii]

Creating a commit step by step 76
Amending a commit 77

Working with branches 79
Creating a new branch 80
Creating orphan branches 80
Selecting and switching to a branch 81

Obstacles to switching to a branch 81
Anonymous branches 82
Git checkout DWIM-mery 83

Listing branches 83
Rewinding or resetting a branch 84
Deleting a branch 86
Changing the branch name 87

Summary 87
Chapter 4: Managing Your Worktree 89

Ignoring files 90
Marking files as intentionally untracked 91
Which types of file should be ignored? 93
Listing ignored files 94
Ignoring changes in tracked files 95

File attributes 96
Identifying binary files and end-of-line conversions 97
Diff and merge configuration 99

Generating diffs and binary files 99
Configuring diff output 101
Performing a 3-way merge 102

Transforming files (content filtering) 102
Obligatory file transformations 104

Keyword expansion and substitution 105
Other built-in attributes 106
Defining attribute macros 107

Fixing mistakes with the reset command 107
Rewinding the branch head, softly 108

Removing or amending a commit 108
Squashing commits with reset 109

Resetting the branch head and the index 109
Splitting a commit with reset 110
Saving and restoring state with the WIP commit 110

Discarding changes and rewinding branch 111
Moving commits to a feature branch 111
Undoing a merge or a pull 112

Safer reset – keeping your changes 112
Rebase changes to an earlier revision 113

Table of Contents

[iv]

Stashing away your changes 113
Using git stash 114
Stash and the staging area 115
Stash internals 116

Un-applying a stash 117
Recovering stashes that were dropped erroneously 117

Managing worktrees and the staging area 118
Examining files and directories 118
Searching file contents 119
Un-tracking, un-staging, and un-modifying files 120
Resetting a file to the old version 122
Cleaning the working area 122

Multiple working directories 123
Summary 124

Chapter 5: Collaborative Development with Git 125
Collaborative workflows 126

Bare repositories 126
Interacting with other repositories 127
The centralized workflow 128
The peer-to-peer or forking workflow 129
The maintainer or integration manager workflow 130
The hierarchical or dictator and lieutenants workflows 131

Managing remote repositories 132
The origin remote 133
Listing and examining remotes 133
Adding a new remote 134
Updating information about remotes 135

Renaming remotes 135
Changing the remote URLs 135
Changing the list of branches tracked by remote 136
Setting the default branch of remote 136
Deleting remote-tracking branches 136

Support for triangular workflows 137
Transport protocols 138

Local transport 138
Smart transports 140

Native Git protocol 140
SSH protocol 140
Smart HTTP(S) protocol 141

Offline transport with bundles 142
Cloning and updating with bundle 143
Using bundle to update an existing repository 145
Utilizing bundle to help with the initial clone 147

Table of Contents

[v]

Remote transport helpers 147
Transport relay with remote helpers 148
Using foreign SCM repositories as remotes 149

Credentials/password management 150
Asking for passwords 150
Public key authentication for SSH 151
Credential helpers 152

Publishing your changes upstream 153
Pushing to a public repository 153
Generating a pull request 154
Exchanging patches 155

Chain of trust 157
Content-addressed storage 157
Lightweight, annotated, and signed tags 157

Lightweight tags 158
Annotated tags 158
Signed tags 158
Publishing tags 159
Tag verification 159

Signed commits 159
Merging signed tags (merge tags) 160

Summary 162
Chapter 6: Advanced Branching Techniques 165

Types and purposes of branches 166
Long-running, perpetual branches 167

Integration, graduation, or progressive-stability branches 167
Per-release branches and per-release maintenance 168
Hotfix branches for security fixes 169
Per-customer or per-deployment branches 169
Automation branches 169
Mob branches for anonymous push access 170
The orphan branch trick 170

Short-lived branches 171
Topic or feature branches 171
Bugfix branches 172
Detached HEAD – the anonymous branch 172

Branching workflows and release engineering 173
The release and trunk branches workflow 173
The graduation, or progressive-stability branches workflow 174
The topic branches workflow 176

Graduation branches in a topic branch workflow 177
Branch management for a release in a topic branch workflow 179

Git-flow – a successful Git branching model 181
Fixing a security issue 182

Table of Contents

[vi]

Interacting with branches in remote repositories 183
Upstream and downstream 183
Remote-tracking branches and refspec 184

Remote-tracking branches 184
Refspec – remote to local branch mapping specification 185

Fetching and pulling versus pushing 186
Pull – fetch and update current branch 186
Pushing to the current branch in a nonbare remote repository 187
The default fetch refspec and push modes 187

Fetching and pushing branches and tags 188
Fetching branches 189
Fetching tags and automatic tag following 189
Pushing branches and tags 190

Push modes and their use 190
The simple push mode – the default 191
The matching push mode for maintainers 191
The upstream push mode for the centralized workflow 192
The current push mode for the blessed repository workflow 194

Summary 195
Chapter 7: Merging Changes Together 197

Methods of combining changes 198
Merging branches 198

No divergence – fast-forward and up-to-date cases 198
Creating a merge commit 200
Merge strategies and their options 202
Reminder – merge drivers 203
Reminder – signing merges and merging tags 203

Copying and applying a changeset 203
Cherry-pick – creating a copy of a changeset 204
Revert – undoing an effect of a commit 204
Applying a series of commits from patches 205
Cherry-picking and reverting a merge 206

Rebasing a branch 206
Merge versus rebase 207
Types of rebase 208
Advanced rebasing techniques 208

Resolving merge conflicts 210
The three-way merge 210
Examining failed merges 211

Conflict markers in the worktree 212
Three stages in the index 213
Examining differences – the combined diff format 214
How do we get there: git log --merge 216

Avoiding merge conflicts 216
Useful merge options 216
Rerere – reuse recorded resolutions 217

Table of Contents

[vii]

Dealing with merge conflicts 218
Aborting a merge 218
Selecting ours or theirs version 218
Scriptable fixes – manual file remerging 218
Using graphical merge tools 219
Marking files as resolved and finalizing merges 219
Resolving rebase conflicts 220
git-imerge – incremental merge and rebase for git 220

Summary 221
Chapter 8: Keeping History Clean 223

An introduction to Git internals 224
Git objects 224
The plumbing and porcelain Git commands 227
Environment variables used by Git 227

Environment variables affecting global behavior 228
Environment variables affecting repository locations 229
Environment variables affecting committing 230

Rewriting history 231
Amending the last commit 231
An interactive rebase 232

Reordering, removing, and fixing commits 233
Squashing commits 236
Splitting commits 237
Testing each rebased commit 239

External tools – patch management interfaces 240
Scripted rewrite with the git filter-branch 240

Running the filter-branch without filters 241
Available filter types for filter-branch and their use 242
Examples of using the git filter-branch 244

External tools for large-scale history rewriting 247
Removing files from the history with BFG Repo Cleaner 247
Editing the repository history with reposurgeon 248

The perils of rewriting published history 248
The consequences of upstream rewrite 249
Recovering from an upstream history rewrite 250

Amending history without rewriting 252
Reverting a commit 252

Reverting a faulty merge 253
Recovering from reverted merges 256

Storing additional information with notes 259
Adding notes to a commit 259
How notes are stored 260
Other categories and uses of notes 262
Rewriting history and notes 265
Publishing and retrieving notes 266

Table of Contents

[viii]

Using the replacements mechanism 267
The replacements mechanism 268
Example – joining histories with git replace 269
Historical note – grafts 270
Publishing and retrieving replacements 271

Summary 271
Chapter 9: Managing Subprojects – Building a
Living Framework 273

Managing library and framework dependencies 274
Managing dependencies outside Git 276
Manually importing the code into your project 277
A Git subtree for embedding the subproject code 278

Creating a remote for a subproject 280
Adding a subproject as a subtree 281
Cloning and updating superprojects with subtrees 283
Getting updates from subprojects with a subtree merge 283
Showing changes between a subtree and its upstream 285
Sending changes to the upstream of a subtree 286

The Git submodules solution: repository inside repository 287
Gitlinks, .git files, and the git submodule command 288
Adding a subproject as a submodule 291
Cloning superprojects with submodules 293
Updating submodules after superproject changes 294
Examining changes in a submodule 296
Getting updates from the upstream of the submodule 298
Sending submodule changes upstream 299

Transforming a subfolder into a subtree or submodule 299
Subtrees versus submodules 301

Use cases for subtrees 302
Use cases for submodules 303
Third-party subproject management solutions 304

Managing large Git repositories 304
Handling repositories with a very long history 305

Using shallow clones to get truncated history 305
Cloning only a single branch 306

Handling repositories with large binary files 306
Splitting the binary asset folder into a separate submodule 307
Storing large binary files outside the repository 307

Summary 308
Chapter 10: Customizing and Extending Git 311

Git on the command line 312
Git-aware command prompt 312
Command-line completion for Git 315
Autocorrection for Git commands 316

Table of Contents

[ix]

Making the command line prettier 317
Alternative command line 318

Graphical interfaces 318
Types of graphical tools 319
Graphical diff and merge tools 320
Graphical interface examples 321

Configuring Git 322
Command-line options and environment variables 322
Git configuration files 323

The syntax of Git configuration files 324
Accessing the Git configuration 325
Basic client-side configuration 327
The rebase and merge setup, configuring pull 329
Preserving undo information – the expiry of objects 329
Formatting and whitespace 330
Server-side configuration 332

Per-file configuration with gitattributes 332
Automating Git with hooks 335

Installing a Git hook 335
A template for repositories 336
Client-side hooks 336

Commit process hooks 337
Hooks for applying patches from e-mails 339
Other client-side hooks 339

Server-side hooks 341
Extending Git 342

Command aliases for Git 343
Adding new Git commands 345
Credential helpers and remote helpers 345

Summary 346
Chapter 11: Git Administration 347

Repository maintenance 348
Data recovery and troubleshooting 349

Recovering a lost commit 349
Troubleshooting Git 351

Git on the server 352
Server-side hooks 352

The pre-receive hook 353
Push-to-update hook for pushing to nonbare repositories 354
The update hook 354
The post-receive hook 355
The post-update hook (legacy mechanism) 356

Table of Contents

[x]

Using hooks to implement the Git-enforced policy 356
Enforcing the policy with server-side hooks 356
Early notices about policy violations with client-side hooks 358

Signed pushes 359
Serving Git repositories 359

Local protocol 360
SSH protocol 360
Anonymous Git protocol 361
Smart HTTP(S) protocol 362
Dumb protocols 363
Remote helpers 364

Tools to manage Git repositories 364
Tips and tricks for hosting repositories 365

Reducing the size taken by repositories 365
Speeding up smart protocols with pack bitmaps 366
Solving the large nonresumable initial clone problem 367

Augmenting development workflows 367
Summary 368

Chapter 12: Git Best Practices 369
Starting a project 369

Dividing work into repositories 370
Selecting the collaboration workflow 370
Choosing which files to keep under version control 370

Working on a project 371
Working on a topic branch 371
Deciding what to base your work on 372
Splitting changes into logically separate steps 373
Writing a good commit message 374
Preparing changes for submission 376

Integrating changes 376
Submitting and describing changes 377
The art of the change review 378
Responding to reviews and comments 380

Other recommendations 381
Don't panic, recovery is almost always possible 381
Don't change the published history 382
Numbering and tagging releases 382
Automate what is possible 383

Summary 383
Index 385

[xi]

Preface
Mastering Git is meticulously designed to help you gain deeper insights into Git's
architecture and its underlying concepts, behavior, and best practices.

Mastering Git starts with a quick implementation example of using Git for the
collaborative development of a sample project to establish the foundation knowledge
of Git's operational tasks and concepts. Furthermore, as you progress through the
book, subsequent chapters provide detailed descriptions of the various areas of
usage: from the source code archaeology, through managing your own work, to
working with other developers. Version control topics are accompanied by in-detail
description of relevant parts of Git architecture and behavior.

This book also helps augment your understanding to examine and explore your
project's history, create and manage your contributions, set up repositories and
branches for collaboration in centralized and distributed workflows, integrate
work coming from other developers, customize and extend Git, and recover from
repository errors. By exploring advanced Git practices, and getting to know details
of Git workings, you will attain a deeper understanding of Git's behavior, allowing
you to customize and extend existing recipes, and write your own.

What this book covers
Chapter 1, Git Basics in Practice, serves as a reminder of version control basics with
Git. The focus will be on providing the practical aspects of the technology, showing
and explaining basic version control operations for the development of an example
project, and the collaboration between two developers.

Chapter 2, Exploring Project History, introduces the concept of the Directed Acyclic
Graph (DAG) of revisions and explains how this concept relates to the ideas of
branches, tags, and the current branch in Git. You will learn how to select, filter,
and view the range of revisions in the history of a project, and how to find revisions
using different criteria.

Preface

[xii]

Chapter 3, Developing with Git, describes how to create such history and how to add
to it. You will learn how to create new revisions and new lines of development.
This chapter introduces the concept of the staging area for commits (the index), and
explains how to view and read differences between the working directory, the index,
and the current revision.

Chapter 4, Managing Your Worktree, focuses on explaining how to manage the
working directory (the worktree) to prepare contents for a new commit. This chapter
will teach the reader how to manage their files in detail. It will also show how to
manage files that require special handling, introducing the concepts of ignored files
and file attributes.

Chapter 5, Collaborative Development with Git, presents a bird's eye view of the various
ways to collaborate, showing different centralized and distributed workflows. It will
focus on the repository-level interactions in collaborative development. You will
also learn here the concept of the chain of trust, and how to use signed tags, signed
merges, and signed commits.

Chapter 6, Advanced Branching Techniques, goes deeper into the details of collaboration
in a distributed development. It explores the relations between local branches and
branches in remote repositories, and describes how to synchronize branches and
tags. You will learn here branching techniques, getting to know various ways of
utilizing different types of branches for distinct purposes (including topic branch
workflow).

Chapter 7, Merging Changes Together, teaches you how to merge together changes
from different parallel lines of development (that is, branches) using merge and
rebase. This chapter will also explain the different types of merge conflicts, how to
examine them, and how to resolve them. You will learn how to copy changes with
cherry-pick, and how to apply a single patch and a patch series.

Chapter 8, Keeping History Clean, explains why one might want to keep clean
history, when it can and should be done, and how it can be done. Here you will
find step-by-step instructions on how to reorder, squash, and split commits. This
chapter also demonstrates how can one recover from a history rewrite, and explains
what to do if one cannot rewrite history: how to revert the effect of commit, how to
add a note to it, and how to change the view of project's history.

Preface

[xiii]

Chapter 9, Managing Subprojects – Building a Living Framework, explains and shows
different ways to connect different projects in the one single repository of the
framework project, from the strong inclusion by embedding the code of one
project in the other (subtrees), to the light connection between projects by nesting
repositories (submodules). This chapter also presents various solutions to the
problem of large repositories and of large files.

Chapter 10, Customizing and Extending Git, covers configuring and extending Git to
fit one's needs. You will find here details on how to set up command line for easier
use, and a short introduction to graphical interfaces. This chapter explains how to
automate Git with hooks (focusing on client-side hooks), for example, how to make
Git check whether the commit being created passes specified coding guidelines.

Chapter 11, Git Administration, is intended to help readers who are in a situation of
having to take up the administrative side of Git. It briefly touches the topic of serving
Git repositories. Here you will learn how to use server-side hooks for logging, access
control, enforcing development policy, and other purposes.

Chapter 12, Git Best Practices, presents a collection of version control generic and
Git-specific recommendations and best practice. Those cover issues of managing
the working directory, creating commits and a series of commits (pull requests),
submitting changes for inclusion, and the peer review of changes.

What you need for this book
To follow the examples used in this book and run the provided commands, you
will need the Git software, preferably version 2.5.0 or later. Git is available for free
on every platform (such as Linux, Windows, and Mac OS X). All examples use the
textual Git interface, using the bash shell.

To compile and run sample program, which development is tracked in Chapter 1,
Git Basics in Practice, as a demonstration of using version control, you would need
working C compiler and the make program.

Who this book is for
If you are a Git user with reasonable knowledge of Git and you are familiar with
basic concepts such as branching, merging, staging, and workflows, this is the
book for you. If you have been using Git for a long time, this book will help you
understand how Git works, make full use of its power, and learn about advanced
tools, techniques, and workflows. The basic knowledge of installing Git and its
software configuration management concepts is necessary.

Preface

[xiv]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, commands and their options, folder names, filenames,
file extensions, pathnames, branch and tag names, dummy URLs, user input,
environment variables, configuration options and their values are shown as follows:
"For example, writing git log -- foo explicitly asks for the history of a path foo."

Additionally, the following convention is used: <file> denotes user input (here,
the name of a file), $HOME denotes the value of environment variable, and tilde in a
pathname is used to denote user's home directory (for example ~/.gitignore).

A block of code, or a fragment of a configuration file, is set as follows:

void init_rand(void)
{
 srand(time(NULL));
}

When we wish to draw your attention to a particular part of a code block (which is
quite rare), the relevant lines or items are set in bold:

void init_rand(void)
{
 srand(time(NULL));
}

Any command-line input or output is written as follows:

carol@server ~$ mkdir -p /srv/git

carol@server ~$ cd /srv/git

carol@server /srv/git$ git init --bare random.git

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
default description that Git gives to a stash (WIP on branch)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringGit_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/MasteringGit_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringGit_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Git Basics in Practice
This book is intended for novice and advanced Git users to help them on their road
to mastering Git. Therefore the following chapters will assume that the reader knows
the basics of Git, and has advanced past the beginner stage.

This chapter will serve as a reminder of version control basics with Git. The focus
will be on providing practical aspects of the technology, showing and explaining
basic version control operations in the example of the development of a sample
project, and collaboration between two developers.

In this chapter we will recall:

• Setting up a Git environment and Git repository (init, clone)
• Adding files, checking status, creating commits, and examining the history
• Interacting with other Git repositories (pull, push)
• How to resolve a merge conflict
• Creating and listing branches, switching to a branch, and merging
• How to create a tag

An introduction to version control and Git
A version control system (sometimes called revision control) is a tool that lets
you track the history and attribution of your project files over time (stored in a
repository), and which helps the developers in the team to work together. Modern
version control systems help them work simultaneously, in a non-blocking way, by
giving each developer his or her own sandbox, preventing their work in progress
from conflicting, and all the while providing a mechanism to merge changes and
synchronize work.

Git Basics in Practice

[2]

Distributed version control systems such as Git give each developer his or her own
copy of the project's history, a clone of a repository. This is what makes Git fast: nearly
all operations are performed locally, and are flexible: you can set up repositories in
many ways. Repositories meant for developing also provide a separate working area
(or a worktree) with project files for each developer. The branching model used by Git
enables cheap local branching and flexible branch publishing, allowing to use branches
for context switching and for sandboxing different works in progress (making possible,
among other things, a very flexible topic branch workflow).

The fact that the whole history is accessible allows for long-term undo, rewinding
back to last working version, and so on. Tracking ownership of changes
automatically makes it possible to find out who was responsible for any given area of
code, and when each change was done. You can compare different revisions, go back
to the revision a user is sending a bug report against, and even automatically find
out which revision introduced a regression bug. The fact that Git is tracking changes
to the tips of branches with reflog allows for easy undo and recovery.

A unique feature of Git is that it enables explicit access to the staging area for
creating commits (new revisions of a project). This brings additional flexibility to
managing your working area and deciding on the shape of a future commit.

All this flexibility and power comes at a cost. It is not easy to master using Git,
even though it is quite easy to learn its basic use. This book will help you attain this
expertise, but let's start with a reminder about basics with Git.

Git by example
Let's follow step by step a simple example of two developers using Git to work
together on a simple project. You can download the example code files from http://
www.packtpub.com. You can find there all three repositories (for two developers,
and the bare server repository) with the example code files for this chapter, where
you can examine code, history, and reflog..

Repository setup
A company has begun work on a new product. This product calculates a random
number—an integer value of specified range.

http://www.packtpub.com
http://www.packtpub.com

Chapter 1

[3]

The company has assigned two developers to work on this new project, Alice and
Bob. Both developers are telecommuting to the company's corporate headquarters
After a bit of discussion, they have decided to implement their product as a
command-line app in C, and to use Git 2.5.0 (http://git-scm.com/) for version
control. This project and the code are intended for demonstration purposes, and will
be much simplified. The details of code are not important here—what's important is
how the code changes:

repository
repository

repository

worktree worktree

ALICE
SERVER BOB

push

pull

push

pull

commit
checkout

commit
checkout

With a small team, they have decided on the setup shown in the preceding diagram.

This is one possible setup, with the central canonical repository, and
without a dedicated maintainer responsible for this repository (all
developers are equal in this setup). It is not the only possibility; other
ways of configuring repositories will be shown in Chapter 5, Collaborative
Development with Git.

Creating a Git repository
Alice gets the project started by asking Carol, an administrator, to create a new
repository specifically for collaborating on a project, to share work with all the team:

Git Basics in Practice

[4]

Command line examples follow the Unix convention of having user@
host and directory in the command prompt, to know from the first
glance who performs a command, on what computer, and in which
directory. This is the usual setup on Unix (for example, on Linux).
You can configure your command prompt to show Git-specific
information like the name of the repository name, the subdirectory
within the repository, the current branch, and even the status of the
working area, see Chapter 10, Customizing and Extending Git.

carol@server ~$ mkdir -p /srv/git

carol@server ~$ cd /srv/git

carol@server /srv/git$ git init --bare random.git

I consider the details of server configuration to be too much for this
chapter. Just imagine that it happened, and nothing went wrong. Or take
a look at Chapter 11, Git Administration.
You can also use a tool to manage Git repositories (for example Gitolite);
creating a public repository on a server would then, of course, look
different. Often though it involves creating a Git repository with git
init (without --bare) and then pushing it with an explicit URI to the
server, which then automatically creates the public repository.
Or perhaps the repository was created through the web interface of tools,
such as GitHub, Bitbucket, or GitLab (either hosted or on-premise).

Cloning the repository and creating the
first commit
Bob gets the information that the project repository is ready, and he can start coding.

Since this is Bob's first time using Git, he first sets up his ~/.gitconfig file with
information that will be used to identify his commits in the log:

[user]
 name = Bob Hacker
 email = bob@company.com

Now he needs to get his own repository instance:

bob@hostB ~$ git clone https://git.company.com/random

Cloning into random...

Warning: You appear to have cloned an empty repository.

Chapter 1

[5]

done.

bob@hostB ~$ cd random

bob@hostB random$

All examples in this chapter use the command-line interface. Those
commands might be given using a Git GUI or IDE integration. The Git:
Version Control for Everyone book, published by Packt Publishing, shows
GUI equivalents for the command-line.

Bob notices that Git said that it is an empty repository, with no source code yet, and
starts coding. He opens his text editor and creates the starting point for their product:

#include <stdio.h>
#include <stdlib.h>

int random_int(int max)
{
 return rand() % max;
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 fprintf(stderr, "Usage: %s <number>\n", argv[0]);
 return EXIT_FAILURE;
 }

 int max = atoi(argv[1]);

 int result = random_int(max);
 printf("%d\n", result);

 return EXIT_SUCCESS;
}

Typically, like for most initial implementations, this version is missing a lot of
features. But it's a good place to begin. Before committing his code, Bob wants to
make sure that it compiles and runs:

bob@hostB random$ gcc –std=c99 random.c

bob@hostB random$ ls –l

total 43

Git Basics in Practice

[6]

-rwxr-xr-x 1 bob staff 86139 May 29 17:36 a.out

-rw-r--r-- 1 bob staff 331 May 19 17:11 random.c

bob@hostB random$./a.out

Usage: ./a.out <number>

bob@hostB random$./a.out 10

1

Alright! It's time to add this file to the repository:

bob@hostB random$ git add random.c

Bob uses the status operation to make sure that the pending changeset (the future
commit) looks proper:

We use here a short form of the git status to reduce the amount of
space taken by examples; you can find an example of full status output
further in the chapter.

bob@hostB random$ git status –s

A random.c

?? a.out

Git is complaining because it does not know what to do about the a.out file: it is
neither tracked nor ignored. That's a compiled executable, which as a generated file
should not be stored in a version control repository. Bob can just ignore that issue for
the time being.

Now it's time to commit the file:

bob@hostB random$ git commit –a –m "Initial implementation"

[master (root-commit) 2b953b4] Initial implementation

 1 file changed, 22 insertions(+)

 Create mode 100644 random.c

Normally, you would create a commit message not by using the -m
<message> command-line option, but by letting Git open an editor. We
use this form here to make examples more compact.
The -a / --all option means to take all changes to the tracked files;
you can separate manipulating the staging area from creating a commit—
this is however a separate issue, left for Chapter 4, Managing Your Worktree.

Chapter 1

[7]

Publishing changes
After finishing working on the initial version of the project, Bob decides that it is
ready to be published (to be made available for other developers). He pushes the
changes:

bob@hostB random$ git push

warning: push.default is unset; its implicit value has changed in

Git 2.0 from 'matching' to 'simple'. To squelch this message [...]

To https://git.company.com/random

 * [new branch] master -> master

bob@hostB random$ git config --global push.default simple

Note that, depending on the speed of network, Git could show progress
information during remote operations such as clone, push, and fetch.
Such information is omitted from examples in this book, except where
that information is actually discussed while examining history and
viewing changes.

Examining history and viewing changes
Since it is Alice's first time using Git on her desktop machine, she first tells Git how
her commits should be identified:

alice@hostA ~$ git config --global user.name "Alice Developer"

alice@hostA ~$ git config --global user.email alice@company.com

Now Alice needs to set up her own repository instance:

alice@hostA ~$ git clone https://git.company.com/random

Cloning into random...

done.

Alice examines the working directory:

alice@hostA ~$ cd random

alice@hostA random$ ls –al

total 1

drwxr-xr-x 1 alice staff 0 May 30 16:44 .

drwxr-xr-x 4 alice staff 0 May 30 16:39 ..

drwxr-xr-x 1 alice staff 0 May 30 16:39 .git

-rw-r--r-- 1 alice staff 353 May 30 16:39 random.c

Git Basics in Practice

[8]

The .git directory contains Alice's whole copy (clone) of the repository
in Git internal format, and some repository-specific administrative
information. See gitrepository-layout(5) manpage for details
of the file layout, which can be done for example with git help
repository-layout command.

She wants to check the log to see the details (to examine the project history):

alice@hostA random$ git log

commit 2b953b4e80abfb77bdcd94e74dedeeebf6aba870

Author: Bob Hacker <bob@company.com>

Date: Thu May 29 19:53:54 2015 +0200

 Initial implementation

Naming revisions:
At the lowest level, a Git version identifier is a SHA-1 hash, for example
2b953b4e80. Git supports various forms of referring to revisions,
including the unambiguously shortened SHA-1 (with a minimum of
four characters)—see Chapter 2, Exploring Project History, for more ways.

When Alice decides to take a look at the code, she immediately finds something
horrifying. The random number generator is never initialized! A quick test shows
that the program always generates the same number. Fortunately, it is only necessary
to add one line to main(), and the appropriate #include:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int random_int(int max)
{
 return rand() % max;
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 fprintf(stderr, "Usage: %s <number>\n", argv[0]);
 return EXIT_FAILURE;
 }

Chapter 1

[9]

 int max = atoi(argv[1]);

 srand(time(NULL));
 int result = random_int(max);
 printf("%d\n", result);

 return EXIT_SUCCESS;
}

She compiles the code, and runs it a few times to check that it really generates
random numbers. Everything looks alright, so she uses the status operation to see
the pending changes:

alice@hostA random$ git status –s

 M random.c

No surprise here. Git knows that random.c has been modified. She wants to
double-check by reviewing the actual changes with the diff command:

From here on, we will not show untracked files, unless they are
relevant to the topic being discussed; let's assume that Alice set up
an ignore file, as described in Chapter 4, Managing Your Worktree.

alice@hostA random$ git diff

diff --git a/random.c b/random.c

index cc09a47..5e095ce 100644

--- a/random.c

+++ b/random.c

@@ -1,5 +1,6 @@

 #include <stdio.h>

 #include <stdlib.h>

+#include <time.h>

 int random_int(int max)

 {

@@ -15,6 +16,7 @@ int main(int argc, char *argv[])

 int max = atoi(argv[1]);

+ srand(time(NULL));

 int result = random_int(max);

 printf("%d\n", result);

Git Basics in Practice

[10]

Now it's time to commit the changes and push them to the public repository:

alice@hostA random$ git commit -a -m "Initialize random number generator"

[master db23d0e] Initialize random number generator

 1 file changed, 2 insertions(+)

alice@hostA random$ git push

To https://git.company.com/random

 3b16f17..db23d0e master -> masterRenaming and moving files

Renaming and moving files
Bob moves on to his next task, which is to restructure the tree a bit. He doesn't want
the top level of the repository to get too cluttered so he decides to move all their
source code files into a src/ subdirectory:

bob@hostA random$ mkdir src

bob@hostA random$ git mv random.c src/

bob@hostA random$ git status –s

R random.c -> src/random.c

bob@hostA random$ git commit –a –m "Directory structure"

[master 69e0d3d] Directory structure

 1 file changed, 0 insertions(+), 0 deletions(-)

 rename random.c => src/random.c (100%)

While at it, to minimize the impact of reorganization on the diff output, he
configures Git to always use rename and copy detection:

bob@hostB random$ git config --global diff.renames copies

Bob then decides the time has come to create a proper Makefile, and to add a
README for a project:

bob@hostA random$ git add README Makefile

bob@hostA random$ git status –s

A Makefile

A README

bob@hostA random$ git commit -a -m "Added Makefile and README"

[master abfeea4] Added Makefile and README

 2 files changed, 15 insertions(+)

 create mode 100644 Makefile

 create mode 100644 README

Chapter 1

[11]

Bob decides to rename random.c to rand.c:

bob@hostA random$ git mv src/random.c src/rand.c

This of course also requires changes to the Makefile:

bob@hostA random$ git status -s

 M Makefile

R src/random.c -> src/rand.c

He then commits those changes.

Updating your repository (with merge)
Reorganization done, now Bob tries to publish those changes:

bob@hostA random$ git push

$ git push

To https://git.company.com/random

 ! [rejected] master -> master (fetch first)

error: failed to push some refs to 'https://git.company.com/random'

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository
pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for
details.

But Alice was working at the same time and she had her change ready to commit
and push first. Git is not allowing Bob to publish his changes because Alice has
already pushed something to the master branch, and Git is preserving her changes.

Hints and advices in Git command output will be skipped from here
on for the sake of brevity.

Bob uses pull to bring in changes (as described in hint in the command output):

bob@hostB random $ git pull

From https://git.company.com/random

 + 3b16f17...db23d0e master -> origin/master

Git Basics in Practice

[12]

Auto-merging src/rand.c

Merge made by the 'recursive' strategy.

 src/rand.c | 2 ++

 1 file changed, 2 insertions(+)

Git pull fetched the changes, automatically merged them with Bob's changes, and
committed the merge.

Everything now seems to be good:

bob@hostB random$ git show

commit ba5807e44d75285244e1d2eacb1c10cbc5cf3935

Merge: 3b16f17 db23d0e

Author: Bob Hacker <bob@company.com>

Date: Sat May 31 20:43:42 2015 +0200

 Merge branch 'master' of https://git.company.com/random

The merge commit is done. Apparently, Git was able to merge Alice's changes
directly into Bob's moved and renamed copy of a file without any problems.
Marvelous!

Bob checks that it compiles (because automatically merged does not necessarily mean
that the merge output is correct), and is ready to push the merge:

bob@hostB random$ git push

To https://git.company.com/random

 db23d0e..ba5807e master -> master

Creating a tag
Alice and Bob decide that the project is ready for wider distribution. Bob creates
a tag so they can more easily access/refer to the released version. He uses an
annotated tag for this; an often used alternative is to use signed tag, where the
annotation contains a PGP signature (which can later be verified):

bob@hostB random$ git tag -a -m "random v0.1" v0.1

bob@hostB random$ git tag --list

Chapter 1

[13]

v0.1

bob@hostB random$ git log -1 --decorate --abbrev-commit

commit ba5807e (HEAD -> master, tag: v0.1, origin/master)

Merge: 3b16f17 db23d0e

Author: Bob Hacker <bob@company.com>

Date: Sat May 31 20:43:42 2015 +0200

 Merge branch 'master' of https://git.company.com/random

Of course, the v0.1 tag wouldn't help if it was only in Bob's local repository. He
therefore pushes the just created tag:

bob@hostB random$ git push origin tag v0.1

Counting objects: 1, done.

Writing objects: 100% (1/1), 162 bytes, done.

Total 1 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (1/1), done.

To https://git.company.com/random

 * [new tag] v0.1 -> v0.1

Alice updates her repository to get the v0.1 tag, and to start with up-to-date work:

alice@hostA random$ git pull

From https://git.company.com/random

 f4d9753..be08dee master -> origin/master

 * [new tag] v0.1 -> v0.1

Updating f4d9753..be08dee

Fast-forward

 Makefile | 11 +++++++++++

 README | 4 ++++

 random.c => src/rand.c | 0

 3 files changed, 15 insertions(+)

 create mode 100644 Makefile

 create mode 100644 README

 rename random.c => src/rand.c (100%)

Git Basics in Practice

[14]

Resolving a merge conflict
Alice decides that it would be a good idea to extract initialization of a pseudo-
random numbers generator into a separate subroutine. This way, both initialization
and generating random numbers are encapsulated, making future changes easier.
She codes and adds init_rand():

void init_rand(void)
{
 srand(time(NULL));
}

Grand! Let's see that it compiles.

alice@hostA random$ make

gcc -std=c99 -Wall -Wextra -o rand src/rand.c

alice@hostA random$ ls -F

Makefile rand* README src/

Good. Time to commit the change:

alice@hostA random$ git status -s

 M src/rand.c

alice@hostA random$ git commit -a -m "Abstract RNG initialization"

[master 26f8e35] Abstract RNG initialization

 1 files changed, 6 insertions(+), 1 deletion(-)

No problems here.

Meanwhile, Bob notices that the documentation for the rand() function used says
that it is a weak pseudo-random generator. On the other hand, it is a standard
function, and it might be enough for the planned use:

bob@hostB random$ git pull

Already up-to-date.

He decides to add a note about this issue in a comment:

bob@hostB random$ git status -s

 M src/rand.c

bob@hostB random$ git diff

diff --git a/src/rand.c b/src/rand.c

index 5e095ce..8fddf5d 100644

Chapter 1

[15]

--- a/src/rand.c

+++ b/src/rand.c

@@ -2,6 +2,7 @@

 #include <stdlib.h>

 #include <time.h>

+// TODO: use a better random generator

 int random_int(int max)

 {

 return rand() % max;

He has his change ready to commit and push first:

bob@hostB random$ git commit -m 'Add TODO comment for random_int()'

[master 8c4ceca] Use Add TODO comment for random_int()

 1 files changed, 1 insertion(+)

bob@hostB random$ git push

To https://git.company.com/random

 ba5807e..8c4ceca master -> master

So when Alice is ready to push her changes, Git rejects it:

alice@hostA random$ git push

To https://git.company.com/random

 ! [rejected] master -> master (non-fast-forward)

error: failed to push some refs to 'https://git.company.com/random'

[...]

Ah. Bob must have pushed a new changeset already. Alice once again needs to pull
and merge to combine Bob's changes with her own:

alice@hostA random$ git pull

From https://git.company.com/random

 ba5807e..8c4ceca master -> origin/master

Auto-merging src/rand.c

CONFLICT (content): Merge conflict in src/rand.c

Automatic merge failed; fix conflicts and then commit the result.

Git Basics in Practice

[16]

The merge didn't go quite as smoothly this time. Git wasn't able to automatically
merge Alice's and Bob's changes. Apparently, there was a conflict. Alice decides to
open the src/rand.c file in her editor to examine the situation (she could have used
a graphical merge tool via git mergetool instead):

<<<<<<< HEAD

void init_rand(void)

{

 srand(time(NULL));

}

=======

// TODO: use a better random generator

>>>>>>> 8c4ceca59d7402fb24a672c624b7ad816cf04e08

int random_int(int max)

Git has included both Alice's code (between <<<<<<<< HEAD and ======== conflict
markers) and Bob's code (between ======== and >>>>>>>>). What we want as a final
result is to include both blocks of code. Git couldn't merge it automatically because
those blocks were not separated. Alice's init_rand() function can be simply
included right before Bob's added comment. After resolution, the changes look like
this:

alice@hostA random$ git diff

diff --cc src/rand.c

index 17ad8ea,8fddf5d..0000000

--- a/src/rand.c

+++ b/src/rand.c

@@@ -2,11 -2,7 +2,12 @@@

 #include <stdlib.h>

 #include <time.h>

 +void init_rand(void)

 +{

 + srand(time(NULL));

 +}

 +

Chapter 1

[17]

+ // TODO: use a better random generator

 int random_int(int max)

 {

 return rand() % max;

That should take care of the problem. Alice compiles the code to make sure and then
commits the merge:

alice@hostA random$ git status -s

UU src/rand.c

alice@hostA random$ git commit -a -m 'Merge: init_rand() + TODO'

[master 493e222] Merge: init_rand() + TODO

And then she retries the push:

alice@hostA random$ git push

To https://git.company.com/random

 8c4ceca..493e222 master -> master

And… done.

Adding files in bulk and removing files
Bob decides to add a COPYRIGHT file with a copyright notice for the project.
There was also a NEWS file planned (but not created), so he uses a bulk add to
add all the files:

bob@hostB random$ git add -v

add 'COPYRIGHT'

add 'COPYRIGHT~'

Oops. Because Bob didn't configure his ignore patterns, the backup file COPYRIGHT~
was caught too. Let's remove this file:

bob@hostB random$ git status -s

A COPYRIGHT

A COPYRIGHT~

bob@hostB random$ git rm COPYRIGHT~

error: 'COPYRIGHT~' has changes staged in the index

(use --cached to keep the file, or -f to force removal)

bob@hostB random$ git rm -f COPYRIGHT~

rm 'COPYRIGHT~'

Git Basics in Practice

[18]

Let's check the status and commit the changes:

bob@hostB random$ git status -s

A COPYRIGHT

bob@hostB random$ git commit -a -m 'Added COPYRIGHT'

[master ca3cdd6] Added COPYRIGHT

 1 files changed, 2 insertions(+), 0 deletions(-)

 create mode 100644 COPYRIGHT

Undoing changes to a file
A bit bored, Bob decides to indent rand.c to make it follow a consistent coding style
convention:

bob@hostB random$ indent src/rand.c

He checks how much source code it changed:

bob@hostB random$ git diff --stat

 src/rand.c | 40 ++++++++++++++++++++++------------------

 1 files changed, 22 insertions(+), 18 deletions(-)

That's too much (for such a short file). It could cause problems with merging. Bob
calms down and undoes the changes to rand.c:

bob@hostB random$ git status -s

 M src/rand.c

bob@hostB random$ git checkout -- src/rand.c

bob@hostB random$ git status -s

If you don't remember how to revert a particular type of change, or to
update what is to be committed (using git commit without -a), the
output of git status (without -s) contains information about what
commands to use. This is shown as follows:

bob@hostB random$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

#

Changed but not updated:

Chapter 1

[19]

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: src/rand.c

Creating a new branch
Alice notices that using a modulo operation to return random numbers within a
given span does not generate uniformly distributed random numbers, since in most
cases it makes lower numbers slightly more likely. She decides to try to fix this issue.
To isolate this line of development from other changes, she decides to create her own
named branch (see also Chapter 6, Advanced Branching Techniques), and switch to it:

alice@hostA random$ git checkout -b better-random

Switched to a new branch 'better-random'

alice@hostA random$ git branch

* better-random

 master

Instead of using the git checkout –b better-random shortcut to
create a new branch and switch to it in one command invocation, she
could have first created a branch with git branch better-random,
then switched to it with git checkout better-random.

She decides to shrink the range from RAND_MAX to the requested number by rescaling
the output of rand(). The changes look like this:

alice@hostA random$ git diff

diff --git a/src/rand.c b/src/rand.c

index 2125b0d..5ded9bb 100644

--- a/src/rand.c

+++ b/src/rand.c

@@ -10,7 +10,7 @@ void init_rand(void)

 // TODO: use a better random generator

 int random_int(int max)

 {

Git Basics in Practice

[20]

- return rand() % max;

+ return rand()*max / RAND_MAX;

 }

 int main(int argc, char *argv[])

She commits her changes, and pushes them, knowing that the push will succeed
because she is working on her private branch:

alice@hostA random$ git commit -a -m 'random_int: use rescaling'

[better-random bb71a80] random_int: use rescaling

 1 files changed, 1 insertion(+), 1 deletion(-)

alice@hostA random$ git push

fatal: The current branch better-random has no upstream branch.

To push the current branch and set the remote as upstream, use

 git push --set-upstream origin better-random

Alright! Git just wants Alice to set up a remote origin as the upstream for the newly
created branch (it is using a simple push strategy); this will also push this branch
explicitly.

alice@hostA random$ git push --set-upstream origin better-random

To https://git.company.com/random

 * [new branch] better-random -> better-random

If she wants to make her branch visible, but private (so nobody but her
can push to it), she needs to configure the server with hooks, or use Git
repository management software such as Gitolite to manage it for her.

Merging a branch (no conflicts)
Meanwhile, over in the default branch, Bob decides to push his changes by adding
the COPYRIGHT file:

bob@hostB random$ git push

To https://git.company.com/random

 ! [rejected] master -> master (non-fast-forward)

[…]

Chapter 1

[21]

OK. Alice was busy working at extracting random number generator initialization
into a subroutine (and resolving a merge conflict), and she pushed the changes first:

bob@hostB random$ git pull

From https://git.company.com/random

 8c4ceca..493e222 master -> origin/master

 * [new branch] better-random -> origin/better-random

Merge made by 'recursive' strategy.

 src/rand.c | 7 ++++++-

 1 file changed, 6 insertions(+), 1 deletion(-)

Well, Git has merged Alice's changes cleanly, but there is a new branch present. Let's
take a look at what is in it, showing only those changes exclusive to the better-
random branch (the double dot syntax is described in Chapter 2, Exploring Project
History):

bob@hostB random$ git log HEAD..origin/better-random

commit bb71a804f9686c4bada861b3fcd3cfb5600d2a47

Author: Alice Developer <alice@company.com>

Date: Sun Jun 1 03:02:09 2015 +0200

 random_int: use rescaling

Interesting. Bob decides he wants that. So he asks Git to merge stuff from Alice's
branch (which is available in the respective remote-tracking branch) into the default
branch:

bob@hostB random$ git merge origin/better-random

Merge made by the 'recursive' strategy.

 src/rand.c | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

Undoing an unpublished merge
Bob realizes that it should be up to Alice to decide when the feature is ready for
inclusion. He decides to undo a merge. Because it is not published, it is as simple as
rewinding to the previous state of the current branch:

bob@hostB random$ $ git reset --hard @{1}

HEAD is now at 3915cef Merge branch 'master' of https://git.company.com/
random

Git Basics in Practice

[22]

This example demonstrates the use of reflog for undoing operations;
another solution would be to go to a previous (pre-merge) commit
following the first parent, with HEAD^ instead of @{1}.

Summary
This chapter walked us through the process of working on a simple example project
by a small development team.

We have recalled how to start working with Git, either by creating a new repository
or by cloning an existing one. We have seen how to prepare a commit by adding,
editing, moving, and renaming files, how to revert changes to file, how to examine
the current status and view changes to be committed, and how to tag a new release.

We have recalled how to use Git to work at the same time on the same project, how
to make our work public, and how to get changes from other developers. Though
using a version control system helps with simultaneous work, sometimes Git needs
user input to resolve conflicts in work done by different developers. We have seen
how to resolve a merge conflict.

We have recalled how to create a tag marking a release, and how to create a branch
starting an independent line of development. Git requires tags and new branches to
be pushed explicitly, but it fetches them automatically. We have seen how to merge a
branch.

[23]

Exploring Project History
One of the most important parts of mastering a version control system is exploring
project history, making use of the fact that with version control systems we have
an archive of every version that has ever existed. Here, the reader will learn how
to select, filter, and view the range of revisions; how to refer to the revisions
(revision selection); and how to find revisions using different criteria.

This chapter will introduce the concept of Directed Acyclic Graph (DAG) of
revisions and explain how this concept relates to the ideas of branches, tags,
and of the current branch in Git.

Here is the list of topics we will cover in this chapter:

• Revision selection
• Revision range selection, limiting history, history simplification
• Searching history with "pickaxe" tool and diff search
• Finding bugs with git bisect
• Line-wise history of file contents with git blame, and rename detection
• Selecting and formatting output (the pretty formats)
• Summarizing contribution with shortlog
• Specifying canonical author name and e-mail with .mailmap
• Viewing specific revision, diff output options, and viewing file at revision

Exploring Project History

[24]

Directed Acyclic Graphs
What makes version control systems different from backup applications is, among
others, the ability to represent more than linear history. This is necessary, both
to support the simultaneous parallel development by different developers (each
developer in his or her own clone of repository), and to allow independent parallel
lines of development—branches. For example, one might want to keep the ongoing
development and work on bug fixes for the stable version isolated; this is possible
by using individual branches for the separate lines of development. Version
control system (VCS) thus needs to be able to model such a (non-linear) way of
development and to have some structure to represent multiple revisions.

Fig 1. A generic example of the Directed Acyclic Graph (DAG). The same graph is
represented on both sides: in free-form on the left, left-to-right order on the right.

The structure that Git uses (on the abstract level) to represent the possible non-linear
history of a project is called a Directed Acyclic Graph (DAG).

A directed graph is a data structure from computer science (and mathematics)
composed of nodes (vertices) that are connected with directed edges (arrows). A
directed graph is acyclic if it doesn't contain any cycles, which means that there is no
way to start at some node and follow a sequence of the directed edges to end up back
at the starting node.

In concrete examples of graphs, each node represents some object or a piece of
data, and each edge from one node to another represents some kind of relationship
between objects or data, represented by the nodes this edge connects.

Chapter 2

[25]

The DAG of revisions in distributed version control systems (DVCS) uses the
following representation:

• Nodes: In DVCS, each node represents one revision (one version) of a project
(of the entire tree). These objects are called commits.

• Directed edges: In DVCS, each edge is based on the relationship between
two revisions. The arrow goes from a later child revision to an earlier parent
revision it was based on or created from.

As directed edges' representation is based on a causal relationship between revisions,
the arrows in the DAG of revisions may not form a cycle. Usually, the DAG of
revisions is laid out left-to-right (root nodes on the left, leaves on the right) or
bottom-to-top (the most recent revisions on top). Figures in this book and ASCII-
art examples in Git documentation use the left-to-right convention, while the Git
command line use bottom-to-top, that is, the most recent first convention.

There are two special type of nodes in any DAG (see Fig 1):

• Root nodes: These are the nodes (revisions) that have no parents (no
outgoing edges). There is at least one root node in the DAG of revisions,
which represents the initial (starting) version of a project.

There can be more than one root node in Git's DAG of
revisions. Additional root nodes can be created when joining
two formerly originally independent projects together; each
joined project brings its own root node.
Another source of root nodes are orphan branches, that is,
disconnected branches having no history in common. They
are, for example, used by GitHub to manage a project's web
pages together in one repository with code, and by Git project
to store the pregenerated documentation (the man and html
branches) or related projects (todo).

• Leaf nodes (or leaves): These are the nodes that have no children (no
incoming edges); there is at least one such node. They represent the most
recent versions of the project, not having any work based on them. Usually,
each leaf in the DAG of revisions has a branch head pointing to it.

The fact that the DAG can have more than one leaf node means that there is no
inherent notion of the latest version, as it was in the linear history paradigm.

Exploring Project History

[26]

Whole-tree commits
In DVCS, each node of the DAG of revisions (a model of history) represents a version
of the project as a whole single entity: of all the files and all the directories, and of the
whole directory tree of a project.

This means that each developer will always get the history of all the files in his or her
clone of the repository. He or she can choose to get only a part of the history (shallow
clone and/or cloning only selected branches) and checkout only the selected files
(sparse checkout), but to date, there is no way to get only the history of the selected
files in the clone of the repository. Chapter 9, Managing Subprojects - Building a Living
Framework will show some workarounds for when you want to have the equivalent
of the partial clone, for example, when working with large media files that are
needed only for a selected subset of your developers.

Branches and tags
A branch operation is what you use when you want your development process to
fork into two different directions to create another line of development. For example,
you might want to create a separate branch to keep managing bug fixes to the
released stable version, isolating this activity from the rest of the development.

A tag operation is a way to associate a meaningful symbolic name with the specific
revision in the repository. For example, you might want to create v1.3-rc3 with the
third release candidate before releasing version 1.3 of your project . This makes it
possible to go back to this specific version, for example, to check the validity of the
bug report.

Chapter 2

[27]

Both branches and tags, sometimes called references (refs) together, have the
same meaning (the same representation) within the DAG of revisions. They are the
external references (pointers) to the graph of revisions, as shown in Fig 2.

Fig 2. Example graph of revisions in a version control system, with two branches
"master" (current branch) and "maint", single tag "v0.9", one branching point with

shortened identifier 34ac2, and one merge commit: 3fb00.

A tag is a symbolic name (for example, v1.3-rc3) for a given revision. It always
points to the same object; it does not change. The idea behind having tags is, for
every project's developer, to be able to refer to the given revision with a symbolic
name, and to have this symbolic name mean the same for each and every developer.
Checking out or viewing the given tag should have the same results for everyone.

A branch is a symbolic name for the line of development. The most recent commit
(leaf revision) on such a line of development is referred to as the top or tip of the
branch, or branch head, or just a branch. Creating a new commit will generate a new
node in the DAG, and advance the appropriate branch ref.

The branch in the DAG is, as a line of development, the subgraph of the revisions
composed of those revisions that are reachable from the tip of the branch (the branch
head); in other words, revisions that you can walk to by following the parent edges
starting from the branch head.

Git, of course, needs to know which branch tip to advance when creating a new
commit. It needs to know which branch is the current one and is checked out into
the working directory. Git uses the HEAD pointer for this, as shown in Fig 2 of this
chapter. Usually, this points to one of branch tips, which, in turn, points to some node
in the DAG of revisions, but not always—see Chapter 3, Developing with Git, for an
explanation of the detached HEAD situation; that is, when HEAD points directly to a
node in the DAG.

Exploring Project History

[28]

Full names of references (branches and tags)
Originally, Git stored branches and tags in files inside .git
administrative area, in the .git/refs/heads/ and .git/
refs/tags/ directories, respectively. Modern Git can store
information about tags and branches inside the .git/packed-
refs file to avoid handling a very large number of small files.
Nevertheless, active references use original loose format—one file
per reference.
The HEAD pointer (usually a symbolic reference, for example ref:
refs/heads/master) is stored in .git/HEAD.
The master branch is stored in .git/refs/heads/master,
and has refs/heads/master as full name (in other words,
branches reside in the refs/heads/ namespace). The tip of
the branch is referred to as head of a branch, hence the name of a
namespace. In loose format, the file content is an SHA-1 identifier
of the most current revision on the branch (the branch tip), in plain
text as hexadecimal digit. It is sometimes required to use the full
name if there is ambiguity among refs.
The remote-tracking branch, origin/master, which remembers
the last seen position of the master branch in the remote
repository, origin, is stored in .git/refs/remotes/origin/
master, and has refs/remotes/origin/master as its full
name. The concept of remotes will be explained in Chapter 5,
Collaborative Development with Git, and that of remote-tracking
branches in Chapter 6, Advanced Branching Techniques.
The v1.3-rc3 tag has refs/tags/v1.3-rc3 as the full name
(tags reside in the refs/tags/ namespace). To be more precise,
in the case of annotated and signed tags, this file stores references
to the tag object, which, in turn, points to the node in the DAG,
and not directly to a commit. This is the only type of ref that can
point to any type of object.
These full names (fully qualified names) can be seen when using
commands is intended for scripts, for example, git show-ref.

Branch points
When you create a new branch starting at a given version, the lines of development
usually diverge. The act of creating a divergent branch is denoted in the DAG
by a commit, which has more than one child, that is a node pointed to by more
than one arrow.

Chapter 2

[29]

Git does not track information about creating (forking) a branch,
and does not mark branch points in any way that is preserved across
clones and pushes. There is information about this event in the reflog
(branch created from HEAD), but this is local to the repository where
branching occurred, and is temporary. However, if you know that
the B branch started from the A branch, you can find a branching
point with git merge-base A B ; in modern Git you can use
--fork-point option to make it also use the reflog.

In Fig 2, the commit 34ac2 is a branching point for the master and maint branches.

Merge commits
Typically, when you have used branches to enable independent parallel
development, you will later want to join them. For example, you would want
bug fixes applied to the stable (maintenance) branch to be included in the main line
of development as well (if they are applicable and were not fixed accidentally during
the main-line development).

You would also want to merge changes created in parallel by different developers
working simultaneously on the same project, each using their own clone of
repository and creating their own lines of commits.

Such a merge operation will create a new revision, joining two lines of development.
The result of this operation will be based on more than one commit. A node in the
DAG representing the said revision will have more than one parent. Such an object is
called a merge commit.

You can see a merge commit, 3fb00, in Fig 2.

Single revision selection
During development, many times you want to select a single revision in the history
of a project, to examine it, or to compare with the current version. The ability to a
select revision is also the basis for selecting a revision range, for example a subsection
of history to examine.

Many Git commands take revision parameters as arguments, which is typically
denoted by <rev> in Git reference documentation. Git allows you to specify specific
commits or a range of commits in several ways.

Exploring Project History

[30]

HEAD – the implicit revision
Most, but not all, Git commands that require the revision parameter, default to using
HEAD. For example, git log and git log HEAD will show the same information.

The HEAD denotes the current branch, or in other words the commit that was checked
out into the working directory, and forms a base of a current work.

There are a few other references which are similar to HEAD:

• FETCH_HEAD: This records the information about the remote branches that
were fetched from a remote repository with your last git fetch or git
pull invocation. It is very useful for one-off fetch, with the repository to fetch
from given by a URL, unlike when fetching from a named repository such as
origin, where we can use the remote-tracking branch instead, for example,
origin/master. Moreover, with named repositories, we can use the reflog
for remote-tracking branch, for example, origin/master@{1}, to get the
position before the fetch. Note that FETCH_HEAD is overwritten by each fetch
from any repository.

• ORIG_HEAD: This records the previous position of the current branch; this
reference is created by commands that move the current branch in a drastic
way (creating a new commit doesn't set ORIG_HEAD) to record the position
of the HEAD command before the operation. It is very useful if you want to
undo or abort such operations; though nowadays the same can be done using
reflogs, which store additional information that can be examined in their use.

You can also stumble upon the short-lived temporary references used during
specific operations:

• During a merge, before creating a merge commit, the MERGE_HEAD records the
commit(s) that you are merging into your branch. It vanishes after creating a
merge commit.

• During a cherry-pick, before creating a commit that copies picked changes
into another branch, the CHERRY_PICK_HEAD records the commit that you
have selected for cherry-picking.

Branch and tag references
The most straightforward and commonly used way to specify a revision is to use
symbolic names: branches, naming the line of development, pointing to the tip of
said line, and tags, naming specific revision. This way of specifying revisions can be
used to view the history of a line of development, examine the most current revision
(current work) on a given branch, or compare the branch or tag with the current work.

Chapter 2

[31]

You can use any refs (external references to the DAG of revisions) to select a commit.
You can use a branch name, tag name, and remote-tracking branch in any Git
command that requires revision as a parameter.

Usually, it is enough to give a short name to a branch or tag, for example, git log
master, to view the history of a master branch, or git log v1.3-rc3 to see how
version v1.3-rc1 came about. It can, however, happen that there are different types
of refs with the same name, for example, both branch and tag named dev (though it
is recommended to avoid such situations). Or, you could have created (usually by
accident) the local branch, origin/master, when there was a remote-tracking branch
with the short name, origin/master, tracking where the master branch was in the
remote repository, origin.

In such a situation, when ref name is ambiguous, it is disambiguated by taking the
first match in the following rules (this is a shortened and simplified version; for the
full list, see the gitrevisions(7) manpage):

1. The top level symbolic name, for example, HEAD.
2. Otherwise, the name of the tag (refs/tags/ namespace).
3. Otherwise, the name of the local branch (refs/heads/ namespace).
4. Otherwise, the name of the remote-tracking branch (refs/remotes/

namespace).
5. Otherwise, the name of the remote if there exists a default branch for it; the

revision is said default branch (example refs/remotes/origin/HEAD for
origin as a parameter).

SHA-1 and the shortened SHA-1 identifier
In Git, each revision is given a unique identifier (object name), which is a SHA-1 hash
function, based on the contents of the revision. You can select a commit by using its
SHA-1 identifier as a 40-character long hexadecimal number (120 bits). Git shows full
SHA-1 identifiers in many places, for example, you can find them in the full git log
output:

$ git log

commit 50f84e34a1b0bb893327043cb0c491e02ced9ff5

Author: Junio C Hamano <gitster@pobox.com>

Date: Mon Jun 9 11:39:43 2014 -0700

 Update draft release notes to 2.1

Exploring Project History

[32]

 Signed-off-by: Junio C Hamano <gitster@pobox.com>

commit 07768e03b5a5efc9d768d6afc6246d2ec345cace

Merge: 251cb96 eb07774

Author: Junio C Hamano <gitster@pobox.com>

Date: Mon Jun 9 11:30:12 2014 -0700

 Merge branch 'jc/shortlog-ref-exclude'

It is not necessary to give a full 40 characters of the SHA-1 identifier. Git is smart
enough to figure out what you meant if you provide it with the first few characters of
the SHA-1 revision identifier, as long as the partial SHA-1 is at least four characters
long. To be able to use a shortened SHA-1 to select revision, it must be long enough
to be unambiguous, that is, there is one and only one commit object which SHA-1
identifier begins with given characters.

For example, both dae86e1950b1277e545cee180551750029cfe735 and dae86e
name the same commit object, assuming, of course, that there is no other object in
your repository whose object name starts with dae86e.

In many places, Git shows unambiguous shortened SHA-1 identifiers in its command
output. For example, in the preceding example of the git log output, we can see the
shortened SHA-1 identifiers in the Merge: line.

You can also request that Git use the shortened SHA-1 in place of the full SHA-1
revision identifiers with the --abbrev-commit option. By default, Git will use at
least seven characters for the shortened SHA-1; you can change it with the optional
parameter, for example, --abbrev-commit=12.

Note that Git would use as many characters as required for the shortened SHA-1 to
be unique at the time the command was issued. The parameter --abbrev-commit
(and the similar --abbrev option) is the minimal length.

HA short note about the shortened SHA-1:
Generally, 8 to 10 characters are more than enough to be unique within
a project. One of the largest Git projects, the Linux kernel, is beginning
to need 12 characters out of the possible 40 to stay unique. While a hash
collision, which means having two revisions (two objects) that have
the same full SHA-1 identifier, is extremely unlikely (with 1/2^80 ≈
1/1.2×10^24 probability), it is possible that formerly unique shortened
SHA-1 identifier will stop to be unique due to the repository growth.

Chapter 2

[33]

The SHA-1 and the shortened SHA-1 are most often copied from the command
output and pasted as a revision parameter in another command. They can also be
used to communicate between developers in case of doubt or ambiguity, as SHA-
1 identifiers are the same in any clone of the repository. Fig 2 uses a five-character
shortened SHA-1 to identify revisions in the DAG.

Ancestry references
The other main way to specify a revision is via its ancestry. One can specify a commit
by starting from some child of it (for example from the current commit i.e. HEAD, a
branch head, or a tag), and then follow through parent relationships to the commit in
question. There is a special suffix syntax to specify such ancestry paths.

If you place ^ at the end of a revision name, Git resolves it to mean a (first) parent
of that revision. For example, HEAD^ means the parent of the HEAD, that is, the
previous commit.

This is actually a shortcut syntax. For merge commits, which have more than
one parent, you might want to follow any of the parents. To select a parent, put
its number after the ^ character; using the ^<n> suffix means the nth parent of a
revision. We can see that ^ is actually a short version of ^1.

As a special case, ^0 means the commit itself; it is important only when a command
behaves differently when using the branch name as a parameter and when using
other revision specifier. It can be also used to get the commit an annotated (or a
signed) tag points to; compare git show v0.9 and git show v0.9^0.

This suffix syntax is composable. You can use HEAD^^ to mean grandparent of HEAD,
and parent of HEAD^.

There is another shortcut syntax for specifying a chain of first parents. Instead of
writing n times the ^ suffix, that is, ^^…^ or ^1^1…^1, you can simply use ~<n>. As a
special case, ~ is equivalent to ~1, so, for example, HEAD~ and HEAD^ are equivalent.
And, HEAD~2 means the first parent of the first parent, or the grandparent, and is
equivalent to HEAD^^.

You can also combine it all together, for example, you can get the second parent of
the great grandparent of HEAD (assuming it was a merge commit) by using HEAD~3^2
and so on. You can use git name-rev or git describe --contains to find out
how a revision is related to local refs, for example, via:

$ git log | git name-rev --stdin

Exploring Project History

[34]

Reverse ancestry references: the git
describe output
The ancestry reference describes how a historic version relates to the current
branches and tags. It depends on the position of the starting revision. For example,
HEAD^ would usually mean completely different commit next month.

Sometimes, we want to describe how the current version relates to prior named
version. For example, we might want to have a human-readable name of the current
version to store in the generated binary application. And, we want this name to refer
to the same revision for everybody. This is the task of git describe.

The git describe finds the most recent tag that is reachable from a given revision (by
default, HEAD) and uses it to describe that version. If the found tag points to the given
commit, then (by default) only the tag is shown. Otherwise, git describe suffixes the
tag name with the number of additional commits on top of the tagged object, and the
abbreviated SHA-1 identifier of the given revision. For example, v1.0.4-14-g2414721
means that the current commit was based on named (tagged) version v1.0.4, which
was 14 commits ago, and that it has 2414721 as a shortened SHA-1.

Git understands this output format as a revision specifier.

Reflog shortnames
To help you recover from some of types of mistakes, and to be able to undo changes
(to go back to the state before the change), Git keeps a reflog—a temporary log of
where your HEAD and branch references have been for the last few months, and
how they got there. The default is to keep reflog entries up to 90 days, 30 days for
revisions which are reachable only through reflog (for example, amended commits).
This can be, of course, configured, even on a ref-by-ref basis.

You can examine and manipulate your reflog with the git reflog command and its
subcommands. You can also display reflog like a history with git log -g (or git
log --walk-reflog):

$ git reflog

ba5807e HEAD@{0}: pull: Merge made by the 'recursive' strategy.

3b16f17 HEAD@{1}: reset: moving to HEAD@{2}

2b953b4 HEAD@{2}: reset: moving to HEAD^

69e0d3d HEAD@{3}: reset: moving to HEAD^^

3b16f17 HEAD@{4}: commit: random.c was too long to type

Chapter 2

[35]

Every time your HEAD and your branch head are updated for any reason, Git stores
that information for you in this local temporary log of ref history. The data from
reflog can be used to specify references (and therefore, to specify revisions):

• To specify the nth prior value of HEAD in your local repository, you can use
the HEAD@{n} notation that you see in the git reflog output. It's same with
the nth prior value of the given branch, for example, master@{n}. The special
syntax, @{n}, means the nth prior value of the current branch, which can be
different from HEAD@{n}.

• You can also use this syntax to see where a branch was some specific amount
of time ago. For instance, to denote where your master branch was yesterday
in your local repository, you can use master@{yesterday}.

• You can use the @{-n} syntax to refer to the nth branch checked out (used)
before the current one. In some places, you can use - in place of @{-1}, for
example, git checkout - will switch to the previous branch.

Upstream of remote-tracking branches
The local repository which you use to work on a project does not usually live in
the isolation. It interacts with other repositories, usually at least with the origin
repository it was cloned from. For these remote repositories with which you interact
often, Git will track where their branches were at the time of last contact.

To follow the movement of branches in the remote repository, Git uses remote-
tracking branches. You cannot create new commits on remote-tracking branches as
they would be overwritten on the next contact with remote. If you want to create
your own work based on some branch in remote repository, you need to create a
local branch based on the respective remote-tracking branch.

For example, when working on a line of development that is to be ultimately published
to the next branch in the origin repository, which is tracked by the remote-tracking
branch, origin/next, one would create a local next branch. We say that origin/next
is upstream of the next branch and we can refer to it as next@{upstream}.

The suffix, @{upstream} (short form <refname>@{u}), which can be applied only to
a local branch name, selects the branch that the ref is set to build on top of. A missing
ref defaults to the current branch, that is, @{u} is upstream for the current branch.

You can find more about remote repositories, the concept of the upstream, and
remote tracking branches in Chapter 5, Collaborative Development with Git and
Chapter 6, Advanced Branching Techniques.

Exploring Project History

[36]

Selecting revision by the commit message
You can specify the revision a by matching its commit message with a regular
expression. The :/<pattern> notation (for example, :/^Bugfix) specifies
the youngest matching commit, which is reachable from any ref, while
<rev>^{/<pattern>} (for example, next^{/fix bug}) specifies the youngest
matching commit which is reachable from <rev>:

$ git log 'origin/pu^{/^Merge branch .rs/ref-transactions}'

This revision specifier gives similar results to the --grep=<pattern> option to git
log, but is composable. On the other hand, it returns the first (youngest) matching
revision, while the --grep option returns all matching revisions.

Selecting the revision range
Now that you can specify individual revisions in multiple ways, let's see how to specify
ranges of revisions, a subset of the DAG we want to examine. Revision ranges are
particularly useful for viewing selected parts of history of a project.

For example, you can use range specifications to answer questions such as, "What
work is on this branch that I haven't yet merged into my main branch?" and "What
work is on my main branch I haven't yet published?", or simply "What was done on
this branch since its creation?".

Single revision as a revision range
History traversing commands such as git log operate on a set of commits, walking
down a chain of revisions from child to parent. These kind of commands, given a
single revision as an argument (as described in the Single revision selection section of
this chapter), will show the set of commits reachable from that revision, following
the commit ancestry chain, all the way down to the root commits.

For example, git log master would show all the commits reachable from the tip of
a master branch (all the revisions that are or were based on the current work on the
said branch), which means that it would show the whole master branch, the whole
line of development.

Chapter 2

[37]

Double dot notation
The most common range specification is the double-dot syntax, A..B. For a linear
history, it means all the revisions between A and B, or to be more exact, all the
commits that are in B but not in A, as shown in Fig 3. For example, the range,
HEAD~4..HEAD, means four commits: HEAD, HEAD^, HEAD^^, and HEAD^^^ or in other
words, HEAD~0, HEAD~1, HEAD~2, and HEAD~3, assuming that there are no merge
commits starting between the current branch and its fourth ancestor.

Fig 3. A double dot notation A..B for linear history; the selected revision range is shown in orange

If you want to include a starting commit (in general case:
boundary commits), which Git considers uninteresting, you
can use the --boundary option to git log.

Fig 4. A double dot notation A..B for a non-linear history (revision A is not an ancestor of revision B);
where, the selected revision range is orange, while the excluded revisions are shaded, and boundary

revision is marked with a thick outline

The situation is more complicated for history that is not a straight line. One such case
is when A is not the ancestor of B (there is no path in the DAG of revisions leading
from B to A) but both have a common ancestor, like in Fig 4. Another situation with
non-linear history is when there are merge commits between A and B, as shown in
Fig 5. Precisely in view of nonlinear history the double-dot notation A..B, or "between
A and B", is defined as reachable from A and not reachable from B.

Fig 5 A double dot notation for a non-linear history, with merge commits between A and B.
To exclude commits marked with star "*" use --strict-ancestor.

Git A..B means a range of all the commits that are reachable from one revision (B)
but are not reachable from another revision (A), following the ancestry chain. In the
case of divergent A and B, like in Fig 4, this is simply all commits in B from the branch
point of A.

Exploring Project History

[38]

For example, say your branches master and experiment diverge. You want to see
what is in your experiment branch that hasn't yet been merged into your master
branch. You can ask Git to show you a log of just those commits with master..
experiment.

If, on the other hand, you want to see the opposite—all the commits in master that
aren't in experiment—you can reverse the branch names. The experiment..master
notation shows you everything in master not reachable from experiment.

Another example, origin/master..HEAD, shows what you're
about to push to the remote (commits in your current branch that
are not yet present in the master branch in the remote repository
origin), while HEAD..origin/master shows what you have
fetched but not yet merged in. You can also leave off one side
of the syntax to have Git assume HEAD: origin/master.. is
origin/master..HEAD and ..origin/master is HEAD..
origin/master; Git substitutes HEAD if one side is missing.

Git uses double-dot notation in many places, for example in git fetch and git
push output for an ordinary fast-forward case, so you can just copy and paste a
fragment of output as parameters to git log. In this case, the beginning of the range
is the ancestor of the end of the range; the range is linear:

$ git push

To https://git.company.com/random

 8c4ceca..493e222 master -> master

Multiple points – including and excluding
revisions
The double-dot A..B syntax is very useful and quite intuitive, but it is really a
shorthand notation. Usually it is enough, but sometimes you might want more than
it provides. Perhaps, you want to specify more than two branches to indicate your
revision, such as seeing what commits are in any of the several branches that aren't
in the branch you're currently on. Perhaps you want to see only those changes on the
master branch that are not in any of the other long-lived branches.

Git allows you to exclude the commits that are reachable from a given revision by
prefixing the said revision with a ^. For example, to view all the revisions which
are on maint or master but are not in next, you can use git log maint master
^next. This means that the A..B notation is just a shorthand for B ^A.

Chapter 2

[39]

Instead of having to use ^ character as a prefix for each of the revisions we want
to exclude, Git allows you to use the --not option, which negates all the following
revisions. For example, B ^A ^C might be written as B --not A C. This is useful, for
example, when generating those excluded revisions programmatically.

Thus, these three commands are equivalent:

$ git log A..B

$ git log B ^A

$ git log B --not A

The revision range for a single revision
There is another useful shortcut, namely A^!, which is a range composed of a single
commit. For non-merge commits, it is simply A^..A.

For merge commits, the A^!, of course, excludes all the parents. With the help of yet
another special notation, namely A^@, denoting all the parents of A (A^1, A^2,…, A^n),
we can say that A^! is a shortcut for A --not A^@.

Triple-dot notation
The last major syntax for specifying revision ranges is the triple-dot syntax, A...B. It
selects all the commits that are reachable by either of the two references, but not by
both of them, see Fig 6. This notation is called the symmetric difference of A and B.

Fig 6. A triple-dot notation A...B for a non-linear history, where the selected range
is shown in orange color, boundary commit O is marked with a bold outline, and the

characters below and above the nodes show --left-right markers

It is a shortcut notation for A B --not $(git merge-base --all A B), where
$(…) denotes shell command substitution (using POSIX shell syntax). Here, it means
that the shell will first run the git merge-base command to find out all the best
common ancestors (all merge bases), and then paste back its output on the command
line, to be negated.

Exploring Project History

[40]

A common switch to use with the git log command with triple dot notation is
--left-right. This option makes it show which side of the range each commit is in
by prefixing commits from the left side (A in A...B) with <, and those from the right
(B in A...B) with >, as shown in Fig 6 and the following example. This helps make
the data more useful:

$ git log --oneline --left-right 37ec5ed...8cd8cf8

>8cd8cf8 Merge branch 'fc/remote-helper-refmap' into next

>efcd02e Merge branch 'rs/more-starts-with' into next

>831aa30 Merge branch 'jm/api-strbuf-doc' into next

>1aeca19 Merge branch 'jc/revision-dash-count-parsing' into next

<1a7e8e8 Revert "replace: add --graft option"

<7a30690 t9001: avoid non-portable '\n' with sed

>5cc3268 fetch doc: remove "short-cut" section

If the --left-right option is combined with --boundary,
these normally uninteresting boundary commits are prefixed
with -.
In the case of using a triple-dot A...B revision range, these
boundary commits are git merge-base --all A B.

Git uses triple-dot notation in the git fetch and git push output when there
was a forced update, in cases where the old version (left-hand side) and the updated
version (right-hand side) diverged, and the new version was forced to overwrite the
old version:

$ git fetch

From git://git.kernel.org/pub/scm/git/git

 + 37ec5ed...8cd8cf8 next -> origin/next (forced update)

 + 9478935...16067c9 pu -> origin/pu (forced update)

 d0b0081..1f58507 todo -> origin/todo

Chapter 2

[41]

Using revision range notation in diff
To make it easier to copy and paste revisions between log and
diff commands, Git allows us to use revision range double-dot
notation A..B and triple-dot A...B to denote a set of revisions
(endpoints) in the git diff command.
For Git, using git diff A..B is the same as git diff A B,
which means the difference between revision A and revision B. If
the revision on either side of double dot is omitted, it will have the
same effect as using HEAD instead. For example, git diff A.. is
equivalent to git diff A HEAD.
The git diff A...B notation is intended to show the incoming
changes on the branch B. Incoming changes mean revisions up
to B, starting at a common ancestor, that is, a merge base of both
A and B. Thus, writing git diff A...B is equivalent to git
diff $(git merge-base A B) B; note that git merge-
base is without --all here. The result of this convention makes
it so that a copy and paste of the git fetch output (whether
with double-dot or triple-dot) as an argument to git diff will
always show fetched changes. Note, however, that it does not
include the changes that were made on A since divergence!
Additionally, this feature makes it possible to use a git diff
A^! command to view how revision A differs from its parent (it is
a shortcut for git diff A^ A).

Searching history
A huge number and variety of useful options to the git log command are
limiting options—that is, options that let you show only a subset of commits. This
complements selecting commits to view by passing the appropriate revision range,
and allows us to search the history for the specific versions, utilizing information
other than the shape of the DAG of revisions.

Limiting the number of revisions
The most basic way of limiting the git log output, the simplest limiting option, is
to show only then most recent commits. This is done using the -<n> option (where
n is any integer); this can be also written as -n <n>, or in long form as --max-
count=<n>. For example, git log -2 would show the two last (most recent)
commits in the current line of development, starting from the implicit HEAD revision.

You can skip the first few commits shown with --skip=<n>.

Exploring Project History

[42]

Matching revision metadata
History limiting options can be divided into those that check information stored in
the commit object itself (the revision metadata), and those that filter commits based
on changeset (on changes from parent commit(s)).

Time-limiting options
If you are interested in commits created within some date range that you're
interested in, you can use a number of options such as --since and --until,
or --before and --after. For example, the following command gets the list of
commits made in the last two weeks:

$ git log --since=2.weeks

These options work with lots of formats. You can specify a specific date such as
"2008-04-21" or a relative date such as "2 years, 3 months, and 3 days ago"; you can
use a dot in place of a space.

When using a specific date, one must remember that these dates are interpreted to
be in the local time zone, if the date does not include the time zone. It is important
because, in such a situation, Git will not yield identical results when run by different
colleagues, who may be situated in other time zones around the world. For example,
--since="2014-04-29 12:00:00" would catch an additional 6 hours, worth of
commits when issued in Birmingham, England, United Kingdom (where it means
2014-04-29Z11:00:00 universal time) than when issued in Birmingham, Alabama,
USA. (where it means 2014-04-29Z17:00:00). To have everyone get the same results,
you need to include the time zone in the time limit, for example, --after="2013-
04-29T17:07:22+0200".

Note that Git stores not one but two dates describing the version: author date and
committer date. Time-limiting options described here examine the committer date,
which means the date and time when the revision object was created. This might be
different from author date, which means the date and time when a changeset was
created (the change was made).

The date of authorship can be different from the date of committership in a few cases.
One is when the commit was created in one repository, converted to e-mail, and then
applied by other person in an other repository. Another way to have these two dates
differ is to have the commit recreated while rebasing; by default, it keeps the author
date and gets a new committer date (refer to Chapter 8, Keeping History Clean).

Chapter 2

[43]

Matching commit contents
If you want to filter your commit history to only show those done by a specific
author or committer, you can use the --author or --committer options,
respectively. For example, let's say you're looking for all the commits in the
Git source code authored by Linus. You could use something like git log
--author=Linus. The search is, by default, case-sensitive, and uses regular
expressions. Git will search both the name and the e-mail address of the commit
author; to match first name only use --author=^Linus.

The --grep option lets you search commit messages (which should contain
descriptions of the changes). Let's say that you want to find all the security bug
fixes that mention the Common Vulnerabilities and Exposures (CVE) identifier
in the commit message. You could generate a list of such commits with git log
--grep=CVE.

If you specify both --author and --grep options, or more than one --author or
--grep option, Git will show commits that match either query. In other words, Git
will logically OR all the commit matching options. If you want to find commits that
match all the queries, with matching options logically AND, you need to use the
--all-match option.

There is also a set of options to modify the meaning of matching patterns, similar
to the ones used by the grep program. To make the search case-insensitive, use the
-i / --regexp-ignore-case option. If you want to match simply a substring, you
can use -F / --fixed-strings (you might want to do it to avoid having to escape
regular expression metacharacters such as "." and "?"). To write more powerful
search terms, you can use --extended-regexp or --perl-regexp (use the last one
only if Git was compiled linked with the PCRE library).

Commit parents
Git, by default, will follow all the parents of each merge commit, when walking
down the ancestry chain. To make it follow only the first parent, you can use the
aptly named --first-parent option. This will show you the main line of the history
(sometimes called the trunk), assuming that you follow the specific practices with
respect to merging changes; you will learn more about this in Chapter 7, Merging
Changes Together.

Compare (this example uses the very nice --graph option that makes an ASCII-art
diagram of the history) the following code...

$ git log -5 --graph --oneline

* 50f84e3 Update draft release notes to 2.1

* 07768e0 Merge branch 'jc/shortlog-ref-exclude'

Exploring Project History

[44]

|\

| * eb07774 shortlog: allow --exclude=<glob> to be passed

* | 251cb96 Merge branch 'mn/sideband-no-ansi'

|\ \

| * | 38de156 sideband.c: do not use ANSI control sequence

...with this:

$ git log -5 --graph --oneline --first-parent

* 50f84e3 Update draft release notes to 2.1

* 07768e0 Merge branch 'jc/shortlog-ref-exclude'

* 251cb96 Merge branch 'mn/sideband-no-ansi'

* d37e8c5 Merge branch 'rs/mailinfo-header-cmp'

* 53b4d83 Merge branch 'pb/trim-trailing-spaces'

You can filter the list to show only the merge commits, or show only the non-merge
commits, with the --merges and --no-merges options, respectively. These options can
be considered just a shortcut for a more generic options: --min-parents=<number>
(--merges is --min-parents=2) and --max-parents=<number> (--no-merges is
--max-parents=1).

Let's say that you want to find the starting point(s) of your project. You can do this
with the help of --max-parents=0, which would give you all the root commits:

$ git log --max-parents=0 --oneline

0ca71b3 basic options parsing and whatnot.

16d6b8a Initial import of a python script…

cb07fc2 git-gui: Initial revision.

161332a first working version

1db95b0 Add initial version of gitk to the CVS repository

2744b23 Start of early patch applicator tools for git.

e83c516 Initial revision of "git", the information manager from hell

Searching changes in revisions
Sometimes, searching through commit messages and other revision metadata is not
enough. Perhaps, descriptions of the changes were not detailed enough. Or, what if
you are looking for a revision when a function was introduced, or where variables
started to be used?

Git allows you to look through the changes that each revision brought (the difference
between commit and its parent). The faster option is called a pickaxe search.

Chapter 2

[45]

With the -S<string> option, Git will look for differences that introduce or remove
an instance of a given string. Note that this is different from the string simply
appearing in diff output. (You can do a match using a regular expression with the
--pickaxe-regex option.) Git checks for each revision if there are files whose current
side and whose parent side have a different number of specified strings, and shows
the revisions that match.

As a side effect, git log with the -S option would also show the changes that each
revision made (as if the --patch option were used), but only those differences that
match the query. To show differences for all the files, and not only those diffs where
the change in number occurred, you need to use the --pickaxe-all option:

$ git log -S'sub href'

commit 06a9d86b49b826562e2b12b5c7e831e20b8f7dce

Author: Martin Waitz <tali@admingilde.org>

Date: Wed Aug 16 00:23:50 2006 +0200

 gitweb: provide function to format the URL for an action link.

 Provide a new function which can be used to generate an URL for the
CGI.

 This makes it possible to consolidate the URL generation in order to
make

 it easier to change the encoding of actions into URLs.

 Signed-off-by: Martin Waitz <tali@admingilde.org>

 Signed-off-by: Junio C Hamano <junkio@cox.net>

With -G<regex>, Git will literally look for differences whose added or removed line
matches the given regular expression. Note that the unified diff format (that Git uses)
considers changing line as removing the old version and adding a new one; refer to
Chapter 3, Developing with Git for an explanation of how Git describes changes.

To illustrate the difference between -S<regex> --pickaxe-regex and -G<regex>,
consider a commit with the following diff in the same file:

 if (lstat(path, &st))

- return error("cannot stat '%s': %s", path,

+ ret = error("cannot stat '%s': %s", path,

 strerror(errno));

Exploring Project History

[46]

While git log -G"error\(" will show this commit (because the query matches
both changed lines), git log -S"error\(" --pickaxe-regex will not (because
the number of occurrences of that string did not change).

If we are interested in a single file, it is easier to use git blame
(perhaps in a graphical blame browser, like with git gui
blame) to check when the given change was introduced.
However, git blame can't be used to find a commit that deleted
a line—you need a pickaxe search for that.

Selecting types of change
Sometimes, you might want to see only those changes that added or renamed files.
With Git, you can do this with git log --diff-filter=AM. You can select any
combination of types of changes; see the git-log(1) manpage for details.

History of a file
As described in the Whole-tree commits section at the beginning of this chapter, in Git
revisions are about the state of the whole project as one single entity.

In many cases, especially with larger projects, we are interested only in the history
of a single file, or in the history limited to the changes in the given directory (in the
given subsystem).

Path limiting
To examine the history of a single file, you can simply use use git log <pathname>.
Git will then only show all those revisions that affected the pathname (a file or a
directory) given, which means those revisions where there was a change to the given
file, or a change to a file inside the given subdirectory.

Chapter 2

[47]

Disambiguation between branch names and path names
Git usually guesses what you meant by writing git log
foo; did you meant to ask for the history of branch foo (line
of development), or for the history of the file foo. However,
sometimes Git can get confused. To prevent confusion between
pathnames and branch names, you can use -- to separate
filename arguments from other options. Everything after -- will
be taken to be a pathname, everything before it will be taken to
be the branch name or other option.
For example, writing git log -- foo explicitly asks for the
history of a path foo.
One of the common situations where it is needed, besides having
the same name for a branch and for a file, is examining the
history of a deleted file, which is no longer present in a project.

You can specify more than one path; you can even look for the changes that affect the
given type of file with the help of wildcards (pattern matching). For example, to find
only changes to Perl scripts (to files with the *.pl extension), you can use git log
-- '*.pl'. Note that you need to protect the *.pl wildcard from being expanded
by the shell, before Git sees it, for example via single quotes as shown here.

However, as Git uses pathname parameters as limiters in showing the history of a
project, querying for a history of a single file doesn't automatically follow renames.
You need to use git log --follow <file> to continue listing the history of a file
beyond renames. Unfortunately, it doesn't work in all the cases. Sometimes, you
need to use either the blame command (see the next section), or examine boundary
commits with rename detection turned on (git show -M -C --raw --abbrev
<rev>) and follow renames and file moving manually.

In modern Git, you can also trace the evolution of the line range within the file using
git log -L, which is currently limited to walk starting from a single revision (zero
or one positive revision arguments) and a single file. The range is given either by
denoting the start and end of the range with -L <start>,<end>:<file> (where
either <start> or <end> can be the line number or /regexp/), or a function to track
with -L :<funcname regexp>:<file>. This cannot be used together with the
ordinary spec-based path limiting.

Exploring Project History

[48]

History simplification
By default, when requested for the history of a path, Git would simplify the history,
showing only those commits that are required (that are enough) to explain how the
files that match the specified paths came to be. Git would exclude those revisions
that do not change the given file. Additionally, for non-excluded merge commits, Git
would exclude those parents that do not change the file (thereby excluding lines of
development).

You can control this kind of history simplification with the git log options such
as --full-history or --simplify-merges. Check the Git documentation for
more details, like the "History Simplification" section in git-log(1) manpage.

Blame – the line-wise history of a file
The blame command is a version control feature designed to help you determine
who made changes to a file. This command shows for each line in the file when this
line was created, who authored given line, and so on. It does that by finding the
latest commit in which the current shape of each line was introduced. A revision
introducing given shape is the one where the given line has its current form, but
where the line is different in this revision parent. The default output of git blame
annotates each line with appropriate line-authorship information.

Git can start annotating from the given revision (useful when browsing the history of
a file or examining how older version of a file came to be) or even limit the search to
a given revision range. You can also limit the range of lines annotated to make blame
faster—for example to check only the history of an esc_html function in gitweb/
gitweb.perl file you can use:

$ git blame -L '/^sub esc_html {/,/}/' gitweb/gitweb.perl

What makes blame so useful is that it follows the history of file across whole-file
renames. It can optionally follow lines as they were moved from one file to another
(with the -M option), and even follow lines that were copied and pasted from another
file (with the -C option); this includes internal code movement.

Chapter 2

[49]

When following code movement, it is useful to ignore changes in whitespace, to
find out when given fragment of code was truly introduced and avoid finding
when it was just re-indented (for example, due to refactoring repeated code into a
function—code movement). This can be done by passing the diff formatting option
–w or --ignore-all-space.

Rename detection
Good version control systems should be able to deal with renaming files
and other ways of changing the directory structure of a project. There
are two ways to deal with this problem. The first is the rename tracking,
which means that the information about the fact that a file was renamed
is saved at the commit time; the version control system marks renames.
This usually requires using the rename and move commands to rename
files (no use of non-version control aware file managers), or it can be
done by detecting the rename at the time of creating the revision. It can
involve some kind of file identity surviving across renames.
The second method, and the one used by Git, is the rename detection.
In this case, the mv command is only a shortcut for deleting a file with
the old name and adding a file with the same contents and a new
name. Rename detection means that the fact that file was renamed is
detected at the time it is needed: when doing a merge, viewing the line-
wise history of a file (if requested), or showing a diff (if requested or
configured). This has the advantage that the rename detection algorithm
can be improved, and is not frozen at the time of commit. It is a more
generic solution, allowing to handle not only the whole-file renames,
but also the code movement and copying within a single file and across
different files, as can be seen in the description of git blame.
The disadvantage of the rename detection, which in Git is based on the
heuristic similarity of the file contents and pathname, is that it takes
resources to run, and that in rare cases it can fail, not detecting renames
or detecting a rename where there isn't one.
Note that, in Git, rename detection is not turned on for diffs by default.

Exploring Project History

[50]

Many graphical interfaces for Git include a graphical version of blame. The git gui
blame command is an example of such a graphical interface to blame operation (it
is a part of git gui, a Tcl/Tk-based graphical interface). Such graphical interfaces
can show the full description of changes and simultaneously show the history with
and without considering renames. From such a GUI, it is usually possible to go to a
specified commit, browsing the history of lines of a file interactively. In addition, the
GUI blame tool makes it very easy to follow files across renames.

Fig 7. The GUI blame in action, showing the detection of copying or moving fragments of code

Finding bugs with git bisect
Git provides a couple of tools to help you debug issues in your projects. These tools
can be extremely useful, especially in the case of a software regression, a software
bug which makes a feature stop functioning as intended after a certain revision.
If you don't know where the bug is, and there have been dozens or hundreds of
commits since the last state where you know the code worked, you'll likely turn to
git bisect for help.

Chapter 2

[51]

The bisect command searches semi-automatically step by step through the project
history, trying to find the revision that introduced the bug. In each step, it bisects
the history into roughly equal parts, and asks whether there is a bug in the dividing
commit. It then uses the answer to eliminate one of the two sections, and reduces the
size of the revision range where there can be a commit that introduced the bug.

Suppose version 1.14 of your project worked, but the release candidate, 1.15-rc0, for
the new version crashes. You go back to the 1.15-rc0 version, and it turns out that
you can reproduce the issue (this is very important!), but you can't figure out what is
going wrong.

You can bisect the code history to find out. You need to start the bisection process
with git bisect start, and then tell Git which version is broken with git bisect
bad. Then, you must tell bisect the last-known good state (or set of states) with git
bisect good:

$ git bisect start

$ git bisect bad v1.15-rc0

$ git bisect good v1.14

Bisecting: 159 revisions left to test after this (roughly 7 steps)

[7ea60c15cc98ab586aea77c256934acd438c7f95] Merge branch 'mergetool'

Git figured out that about 300 commits came between the commit you marked as the
last good commit (v1.14) and the bad version (v1.15-rc0), and it checked out the
middle one (7ea60c15) for you. If you run git branch at this point, you'll see that
git has temporarily moved you to (no branch):

$ git branch

* (no branch, bisect started on master)

 master

At this point, you need to run your test to check whether the issue is present in the
commit currently checked out by the bisect operation. If the program crashes, mark
this commit as bad with git bisect bad. If the issue is not present, mark it as correct
with git bisect good. After about seven steps, Git would show the suspect commit:

$ git bisect good

b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit

commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04

Author: PJ Hyett <pjhyett@example.com>

Date: Tue Jan 27 14:48:32 2009 -0800

 secure this thing

:040000 040000 40ee3e7… f24d3c6… M config

Exploring Project History

[52]

The last line in the preceding example output is in so called raw diff output, showing
which files changed in a commit. You can then examine the suspected commit with
git show. From there, you can find the author of the said commit, and ask them for
clarification, or to fix it (or to send them a bug report). If the good practice of creating
small incremental changes was followed during the development of the project, the
amount of code to examine after finding the bad commit should be small.

If at any point, you land on a commit that broke something unrelated, and is not a
good one to test, you can skip such a commit with git bisect skip. You can even
skip a range of commits by giving the revision range to the skip subcommand.

When you're finished, you should run git bisect reset to return you to the
branch you started from:

$ git bisect reset

Previous HEAD position was b047b02... secure this thing

Switched to branch 'master'

To finish bisection while staying on located bad commit, you can use git bisect
reset HEAD.

You can even fully automate finding bad revision with `git bisect run`. For this, you
need to have a script that will test for the presence of bug, and exit the value of 0
if the project works all right, or non-0 if there is a bug. The special exit code, 125,
should be used when the currently checked out code cannot be tested. First, you
again tell it the scope of the bisect by providing the known bad and good commits.
You can do this by listing them with the bisect start command if you want, listing
the known bad commit first and the known good commit(s) second. You can even
cut down the number of trials, if you know what part of the tree is involved in the
problem you are tracking down, by specifying path parameters:

$ git bisect start v1.5-rc0 v1.4 -- arch/i386

$ git bisect run ./test-error.sh

Doing so automatically runs test-error.sh on each checked-out commit until Git
finds the first broken commit. Here, we have provided the scope of the bisect by
putting known bad and good commits with the bisect start command, listing the
known bad commit first and the known good commit(s) second.

If the bug is that the project stopped compiling (a broken build), you can use make as
a test script (git bisect run make).

Chapter 2

[53]

Selecting and formatting the git log
output
Now that you know how to select revisions to examine and to limit which revisions
are shown (selecting those that are interesting), it is time to see how to select which
part of information associated with the queried revisions to show, and how to format
this output. There is a huge number and variety of options of the git log command
available for this.

Predefined and user defined output formats
A very useful git log option is --pretty. This option changes the format of log
output. There are a few prebuilt formats available for you to use. The oneline
format prints each commit on a single line, which is useful if you're looking at a lot
of commits; there exists --oneline, shorthand for --pretty=oneline --abbrev-
commit used together. In addition, the short, medium (the default), full, and
fuller formats show the output in roughly the same format, but with less or
more information, respectively. The raw format shows commits in the internal Git
representation. It is possible to change the format of dates shown in those verbose
pretty formats with an appropriate --date option: make Git show relative dates, like
for example 2 hours ago, with --date=relative, dates in your local time zone with
--date=local, and so on.

You can also specify your own log format with --pretty=format:"<string>" (and
its tformat variant). This is especially useful when you're generating output for
machine parsing, for use in scripts, because when you specify the format explicitly
you know it won't change with updates to Git. The format string works a little bit
like in printf:

$ git log --pretty="%h - %an, %ar : %s"

50f84e3 - Junio C Hamano, 7 days ago : Update draft release notes

0953113 - Junio C Hamano, 10 days ago : Second batch for 2.1

afa53fe - Nick Alcock, 2 weeks ago : t5538: move http push tests out

There is a very large number of placeholders selected of those are listed in the
following table:

Placeholder Description of output
%H Commit hash (full SHA-1 identifier of revision)
%h Abbreviated commit hash
%an Author name

Exploring Project History

[54]

Placeholder Description of output
%ae Author e-mail
%ar Author date, relative
%cn Committer name
%ce Committer email
%cr Committer date, relative
%s Subject (first line of a commit message, describing revision)
%% A raw %

Author versus committer
The author is the person who originally wrote the patch (authored
the changes), whereas the committer is the person who last applied
the patch (created a commit object with those changes, representing
the revision in the DAG). So, if you send a patch to a project and one
of the core members applies the patch, both of you get credit—you
as the author and the core member as the committer.

The --oneline format option is especially useful together with another git log
option called --graph; though it can be used with any format. The latter option adds
a nice little ASCII graph showing your branch and merge history. To see where tags
and branches are, you can use an option named --decorate:

$ git log --graph --decorate --oneline origin/maint

* bce14aa (origin/maint) Sync with 1.9.4

|\

| * 34d5217 (tag: v1.9.4) Git 1.9.4

| * 12188a8 Merge branch 'rh/prompt' into maint

| |\

| * \ 64d8c31 Merge branch 'mw/symlinks' into maint

| |\ \

* | | | d717282 t5537: re-drop http tests

* | | | e156455 (tag: v2.0.0) Git 2.0

You might want to use a graphical tool to visualize your commit history. One such
tool is a Tcl/Tk program called gitk that is distributed with Git. You can find more
information about various types of graphical tools in Chapter 10, Customizing and
Extending Git.

Chapter 2

[55]

Including, formatting, and summing up
changes
You can examine single revision with the git show command, which, in addition
to the commit metadata, shows changes in the unified diff format. Sometimes,
however, you might want to display changes alongside the selected part of the
history in the git log output. You can do this with the help of the -p option. This is
very helpful for code review, or to quickly browse what happened during a series of
commits that a collaborator has added.

Ordinarily, Git would not show the changes for a merge commit. To show changes
from all parents, you need to use the –c option (or –cc for compressed output), and
to show changes from each parent individually, use –m.

The git log accepts various options to change the format of diff output. Sometimes,
it's easier to review changes on the word level rather than on the line level. The
git log command accepts various options to change the format of diff output.
One of those options is --word-diff. This way of viewing differences is useful for
examining changes in documents (for example, documentation):

commit 06ab60c06606613f238f3154cb27cb22d9723967

Author: Jason St. John <jstjohn@purdue.edu>

Date: Wed May 21 14:52:26 2014 -0400

 Documentation: use "command-line" when used as a compound adjective,
and fix

 Signed-off-by: Jason St. John <jstjohn@purdue.edu>

 Signed-off-by: Junio C Hamano <gitster@pobox.com>

diff --git a/Documentation/config.txt b/Documentation/config.txt

index 1932e9b..553b300 100644

--- a/Documentation/config.txt

+++ b/Documentation/config.txt

@@ -381,7 +381,7

 Set the path to the root of the working tree.

 This can be overridden by the GIT_WORK_TREE environment

 variable and the '--work-tree' [-command line-]{+command-line+}
option.

 The value can be an absolute path or relative to the path to

 the .git directory, which is either specified by --git-dir

 or GIT_DIR, or automatically discovered.

Exploring Project History

[56]

Another useful set of options are about ignoring changes in whitespace, including
–w / --ignore-all-space to ignore all whitespace changes, and -b / --ignore-
space-change to ignore changes in the amount of whitespace.

Sometimes, you are interested only in the summary of changes, and not the details.
There is a series of diff summarizing options that you can use. If you want to know
only which files changed, use --names-only (or --raw --abbrev). If you also want
to know how much those files changed, you can use the --stat option (or perhaps
its machine-parse friendly version, --numstat) to see some abbreviated stats. If you
are interested only in short summary of changes, use --shortstat or --summary.

Summarizing contributions
Ever wondered how many commits you've contributed to a project? Or perhaps,
who is the most active developer during the last month (with respect to the number
of commits)? Well, wonder no more, because this is what git shortlog is good for:

$ git shortlog -s -n

 13885 Junio C Hamano

 1399 Shawn O. Pearce

 1384 Jeff King

 1108 Linus Torvalds

 743 Jonathan Nieder

The -s option squashes all of the commit messages into the number of commits;
without it, git shortlog would list summary of all the commits, grouped by
developer (its output can be configured to some extent with pretty like the
--format option.) The -n option sorts the list of developers by the number of
commits; otherwise, it is sorted alphabetically. You can add an –e option to show
also an e-mail address; note that, however, with this option, Git will separate
contributions made by the same author under different e-mail.

The git shortlog command accepts a revision range, and other revision limiting
options such as --since=1.month.ago; almost options that git log command
accepts makes sense for shortlog. For example, to see who contributed to the last
release candidate you can use the following command:

$ git shortlog -e v2.0.0-rc2..v2.0.0-rc3

Jonathan Nieder <jrnieder@gmail.com> (1):

 shell doc: remove stray "+" in example

Junio C Hamano <gitster@pobox.com> (14):

Chapter 2

[57]

 Merge branch 'cl/p4-use-diff-tree'

 Update draft release notes for 2.0

 Merge branch 'km/avoid-cp-a' into maint

One needs to remember that the number of revisions authored is
only one way of measuring contribution. For example, somebody,
who creates buggy commits only to fix them later, would have a
larger number of commits than the developer who doesn't make
mistakes (or cleans the history before publishing changes).

There are other measures of programmer productivity, for example, the number of
changed lines in authored commits, or the number of surviving lines—these can be
calculated with the help of Git, but there is no built-in command to calculate them.

Mapping authors
One problem with running git shortlog –s -n -e or
git blame in Git repositories of long running projects is that
authors may change their name or e-mail, or both during the
course of the project, due to many reasons: changing work (and
work e-mail), misconfiguration, spelling mistakes, and others:
Bob Hacker <bob@example.com>

Bob <bob@example.com>

When that happens, you can't get proper attribution. Git
allows you to coalesce author/e-mail pairs with the help of the
.mailmap file in the top directory of your project. It allows us
to specify canonical names for contributors, for example:
Bob Hacker <bob@example.com>

(Actually it allows us to specify the canonical name, canonical
e-mail, or both name and email, matching by email or name
and email.)
By default, those corrections are applied to git blame and
to git shortlog, but not to the git log output. With
custom output, you can, however, use placeholders that output
corrected name, or corrected e-mail; or you can use the --use-
mailmap option, or the log.mailmap configuration variable.

Exploring Project History

[58]

Viewing a revision and a file at revision
Sometimes, you might want to examine a single revision (for example, a commit
suspected to be buggy, found with git bisect) in more detail, examining together
changes with their description. Or perhaps, you want to examine the tag message of
an annotated tag together with the commit it points to. Git provides a generic git
show command for this; it can be used for any type of object.

For example, to examine the grandparent of the current version, use the following
command:

$ git show HEAD^^

commit ca3cdd6bb3fcd0c162a690d5383bdb8e8144b0d2

Author: Bob Hacker <bob@virtech.com>

Date: Sun Jun 1 02:36:32 2014 +0200

 Added COPYRIGHT

diff --git a/COPYRIGHT b/COPYRIGHT

new file mode 100644

index 0000000..862aafd

--- /dev/null

+++ b/COPYRIGHT

@@ -0,0 +1,2 @@

+Copyright (c) 2014 VirTech Inc.

+All Rights Reserved

The git show command can also be used to display directories (trees) and file
contents (blobs). To view a file (or a directory), you need to specify where it is from
(from which revision) and the path to the file, using : to connect them. For example,
to view the contents of the src/rand.c file as it was in the version tagged v0.1 use:

$ git show v0.1:src/rand.c

This might be more convenient than checking out the required version of the file into
the working directory with git checkout v0.1 -- src/rand.c. Before the colon
may be anything that names a commit (v0.1 here), and after that, it may be any path
to a file tracked by Git (src/rand.c here). The pathname here is the full path from
the top of the project directory, but you can use ./ after the colon for relative paths,
for example, v0.1:./rand.c if you are in the src/ subdirectory.

You can use the same trick to compare arbitrary files at arbitrary revisions.

Chapter 2

[59]

Summary
This chapter showed us the various ways of exploring project history: finding relevant
revisions, selecting and filtering revisions to display, and formatting the output.

We started with the description of the conceptual model of project history: the
Directed Acyclic Graph (DAG) of revisions. Understanding this concept is very
important because many selection tools refer directly or indirectly to the DAG.

Then, you learnt how to select a single revision and the range of revisions. We can
use this knowledge to see what changes were made on a branch since its divergence
from the base branch, and to find all the revisions which were made by the given
developer.

We can even try to find bugs in the code by exploring the history: finding when a
function was deleted from the code with a pickaxe search, examining a file for how
its code came to be and who wrote it with git blame, and utilizing semi-automatic
or automatic searches through the project history to find which version introduced
regression with git bisect.

When examining a revision, we can select the format in which the information
is shown, even to the point of user-defined formats. There are various ways of
summarizing the information, from the statistics of the changed files to the statistics
of the number of commits per author.

[61]

Developing with Git
The previous chapter explained how to examine the project history. This chapter will
describe how to create such history and how to add to it. We will learn how to create
new revisions and new lines of development. Now it's time to show how to develop
with Git.

Here we will focus on committing one's own work, on the solo development. The
description of working as one of the contributors is left for Chapter 5, Collaborative
Development with Git, while Chapter 7, Merging Changes Together, shows how Git can
help in maintainer duties.

This chapter will introduce the very important Git concept of the staging area (the
index). It will also explain, in more detail, the idea of a detached HEAD, that is, an
anonymous unnamed branch. Here you can also find a detailed description of the
extended unified diff format that Git uses to describe changes.

The following is the list of the topics we will cover in this chapter:

• The index – a staging area for commits
• Examining the status of the working area and changes in it
• How to read the extended unified diff that is used to describe changes
• Selective and interactive commit, and amending a commit
• Creating, listing, and selecting (switching to) branches
• What can prevent switching branch, and what you can do then
• Rewinding a branch with git reset
• Detached HEAD, that is, the unnamed branch (checking out tag and so on)

Developing with Git

[62]

Creating a new commit
Before starting to develop with Git, you should introduce yourself with a name
and an e-mail, as shown in Chapter 1, Git Basics in Practice. This information will be
used to identify your work, either as an author or as a committer. The setup can
be global for all your repositories (with git config --global, or by editing the
~/.gitconfig file directly), or local to a repository (with git config, or by editing
.git/config). The per-repository configuration overrides the per-user one (you will
learn more about it in Chapter 10, Customizing and Extending Git). You might want to
use your company e-mail for work repositories, but your own non-work e-mail for
public repositories you work on.

A relevant fragment of the appropriate config file could look similar to this:

[user]
 name = Joe R. Hacker
 email = joe@company.com

Fig 1. The graph of revisions (the DAG) for a starting point of an example project, before creating a new
commit. The current branch is master, and its tip is at revision c7cd3; this is also currently checked out revision,

which can be referred to as HEAD.

The DAG view of creating a new commit
Chapter 2, Exploring Project History, introduced the concept of Directed Acyclic Graph
(DAG) of revisions. Contributing to the development of a project usually consists of
creating new revisions of the said project, and adding them as commit nodes to the
graph of revisions.

Let's assume that we are on the master branch, as shown in Fig 1 of the preceding
section, and that we want to create a new version (the details of this operation will
be described in more detail later). The git commit command will create a new
commit object—a new revision node. This commit will have as a patent the checked
out revision (c7cd3 in the example). That revision is found by following refs starting
from HEAD; here, it is HEAD to master to c7cd3 chain.

Chapter 3

[63]

Then Git will move the master pointer to the new node, creating a situation as in
Fig 2. In it, the new commit is marked with a thick red outline, and the old position
of the master branch is shown semi-transparent. Note that the HEAD pointer doesn't
change; all the time it points to master:

Fig 2: The graph of revisions (the DAG) for an example project just after creating a new commit, starting from
the state given by Fig 1

The new commit, a3b79, is marked with the thick red outline. The tip of the master
branch changes from pointing to commit c7cd3 to pointing to commit a3b79, as
shown with the dotted line.

The index – a staging area for commits
Each of your files inside the working area of the Git repository can be either
known or unknown to Git (be a tracked file). The files unknown to Git can be
either untracked or ignored (you can find more information about ignoring files
in Chapter 4, Managing Your Worktree).

Files tracked by Git are usually in either of the two states: committed (or unchanged)
or modified. The committed state means that the file contents in the working
directory is the same as in the last release, which is safely stored in the repository.
The file is modified if it has changed compared to the last committed version.

But, in Git, there is another state. Let's consider what happens when we use the git
add command to add a file, but did not yet create a new commit adding it. A version
control system needs to store such information somewhere. Git uses something
called the index for this; it is the staging area that stores information that will go into
the next commit. The git add <file> command stages the current contents (current
version) of the file, adding it to the index.

Developing with Git

[64]

If you want to only mark a file for addition, you can use git add
-N <file>; this stages empty contents for a file.

The index is a third section storing copy of a project, after a working directory (which
contains your own copy of the project files, used as a private isolated workspace
to make changes), and a local repository (which stores your own copy of a project
history, and is used to synchronize changes with other developers):

Fig 3. Working directory, staging area, and the local git repository; creating a new commit

The arrows show how the Git commands copy contents, for example, git add takes
the content of the file from the working directory and puts it into the staging area.

Creating a new commit requires the following steps:

1. You make changes to files in your working directory, usually modifying them
using your favorite editor.

2. You stage the files, adding snapshots of them (their current contents) to your
staging area, usually with the git add command.

3. You create a new revision with the git commit command, which takes the
files as they are in the staging area and stores that snapshot permanently to
your local repository.

At the beginning (and just after the commit), the tracked files in the working
directory, in the staging area, and in the last commit (the committed version) are
identical.

Chapter 3

[65]

Usually, however, one would use a special shortcut, the git commit -a command
(which is git commit --all), which will take all the changed tracked files, add them
to the staging area (as if with git add -u, at least in modern Git), and create a new
commit (see Fig 3 of this section). Note that the new files still need to be explicitly
git add to be tracked, and to be included in the new commit.

Examining the changes to be committed
Before committing the changes and creating a new revision (a new commit), you
would want to see what you have done.

Git shows information about the pending changes to be committed in the commit
message template, which is passed to the editor, unless you specify the commit
message on the command line, for example, with git commit -m "Short
description". This template is configurable (refer to Chapter 10, Customizing and
Extending Git for more information).

You can always abort creating a commit by exiting editor without any
changes or with an empty commit message (comment lines, that is,
lines beginning with #, do not count).

In most cases, you would want to examine changes for correctness before creating
a commit.

The status of the working directory
The main tool you use to examine which files are in which state: which files have
changes, whether there are any new files, and so on, is the git status command.

The default output is explanatory and quite verbose. If there are no changes, for
example, directly after clone, you could see something like this:

$ git status

On branch master

nothing to commit, working directory clean

If the branch (you are on the master branch in this example) is a local branch
intended to create changes that are to be published and to appear in the public
repository, and is configured to track its upstream branch, origin/master, you
would also see the information about the tracked branch:

Your branch is up-to-date with 'origin/master'.

Developing with Git

[66]

In further examples, we will ignore it and not include this information.

Let's say you add two new files to your project, a COPYING file with the copyright
and license, and a NEWS file, which is currently empty. In order to begin tracking a
new COPYING file, you use git add COPYING. Accidentally, you remove the README
file from the working directory with rm README. You modify Makefile and rename
rand.c to random.c with git mv (without modifying it).

The default, long format, is designed to be human-readable, verbose, and descriptive:

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: COPYING

 renamed: src/rand.c -> src/random.c

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: Makefile

 deleted: README

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 NEWS

As you can see, Git does not only describe which files have changed, but also
explains how to change their status—either include in the commit, or remove
from the set of pending changes (more information about commands in use in git
status output can be found in Chapter 4, Managing Your Worktree). There are up to
three sections present in the output:

• Changes to be committed: This is about the staged changes that would be
committed with git commit (without the –a option). It lists files whose
snapshot in the staging area is different from the version from the last
commit (HEAD).

Chapter 3

[67]

• Changes not staged for commit: This lists the files whose working area
contents are different from their snapshot in the staging area. Those changes
would not be committed with git commit, but would be committed with
git commit -a as changes in the tracked files.

• Untracked files: This lists the files, unknown to Git, which are not ignored
(refer to Chapter 4, Managing Your Worktree for how to use gitignores to
make files to be ignored). These files would be added with the bulk add
command, git add ., in top directory. You can skip this section with
--untracked-files=no (-uno for short).

One does not need to make use of the flexibility that the explicit staging area gives;
one can simply use git add just to add new files, and git commit –a to create the
commit from changes to all tracked files. In this case, you would create commit from
both the Changes to be committed and Changes not staged for commit sections.

There is also a terse --short output format. Its --porcelain version is suitable for
scripting because it is promised to remain stable, while --short is intended for user
output and could change. For the same set of changes, this output format would look
something like this:

$ git status --short

A COPYING

 M Makefile

 D README

R src/rand.c -> src/random.c

?? NEWS

In this format, the status of each path is shown using a two-letter status code. The
first letter shows the status of the index (the difference between the staging area
and the last commit), and the second letter shows the status of the worktree (the
difference between the working area and the staging area):

Symbol Meaning
 Not updated / unchanged
M Modified (updated)
A Added
D Deleted
R Renamed
C Copied

Developing with Git

[68]

Not all the combinations are possible. Status letters A, R, and C are possible only in
the first column, for the status of the index.

A special case, ??, is used for the unknown (untracked) files and !! for ignored
files (when using git status --short --ignored). Note that not all the possible
outputs are described here; the case where we have just done a merge that resulted
in merge conflicts is not shown in this table, but is left to be described in Chapter 7,
Merging Changes Together.

Examining differences from the last revision
If you want to know not only which files were changed (which you get with git
status), but also what exactly you have changed, use the git diff command:

Fig 4. Examining the differences between the working directory, staging area, and local git repository

In the last section, we learned that in Git there are three stages: the working
directory, the staging area, and the repository (usually the last commit). Therefore,
we have not one set of differences but three, as shown in Fig 4. You can ask Git the
following questions:

• What have you changed but not yet staged, that is, what are the differences
between the staging area and working directory?

• What have you staged that you are about to commit, that is, what are the
differences between the last commit (HEAD) and staging area?

To see what you've changed but not yet staged, type git diff with no other
arguments. This command compares what is in your working directory with what
is in your staging area. These are the changes that could be added, but wouldn't be
present if we create commit with git commit (without -a): Changes not staged for
commit in the git status output.

Chapter 3

[69]

To see what you've staged that will go into your next commit, use git diff
--staged (or git diff --cached). This command compares what is in your
staging area to the content of your last commit. These are the changes that would be
added with git commit (without -a): Changes to be committed in the git status
output. You can compare your staging area to any commit with git diff --staged
<commit>; HEAD (the last commit) is just the default.

You can use git diff HEAD to compare what is in your working directory with the
last commit (or arbitrary commit with git diff <commit>). These are the changes
that would be added with the git commit -a shortcut.

If you are using git commit –a, and not making use of the staging area, usually it is
enough to use git diff to check the changes which will be in the next commit. The
only issue is the new files that are added with bare git add; they won't show in the
git diff output unless you use git add --intent-to-add (or its equivalent git
add -N) to add new files.

Unified Git diff format
Git, by default and in most cases, will show the changes in unified diff output format.
Understanding this output is very important, not only when examining changes to
be committed, but also when reviewing and examining changes (for example, in code
review, or in finding bugs after git bisect has found the suspected commit).

You can request only statistics of changes with the --stat or
--dirstat option, or just names of the changed files with --name-
only, or file names with type of changes with --name-status, or
tree-level view of changes with --raw, or a condensed summary
of extended header information with --summary (see later for an
explanation of what extended header means and what information
it contains). You can also request word diff, rather than line diff, with
--word-diff; though this changes only the formatting of chunks of
changes, headers and chunk headers remain similar.
Diff generation can also be configured for specific files or types of files
with appropriate gitattributes. You can specify external diff helper,
that is, the command that describes the changes, or you can specify
text conversion filter for binary files (you will learn more about this in
Chapter 4, Managing Your Worktree).
If you prefer to examine the changes in a graphical tool (which usually
provides side-by-side diff), you can do it by using git difftool in
place of git diff . This may require some configuration, and will be
explained in Chapter 10, Customizing and Extending Git.

Developing with Git

[70]

Let's take a look at an example of advanced diff from Git project history . Let's use
the diff from the commit 1088261f from the git.git repository. You can view these
changes in a web browser, for example, on GitHub; this is the third patch in this commit:

diff --git a/builtin-http-fetch.c b/http-fetch.c

similarity index 95%

rename from builtin-http-fetch.c

rename to http-fetch.c

index f3e63d7..e8f44ba 100644

--- a/builtin-http-fetch.c

+++ b/http-fetch.c

@@ -1,8 +1,9 @@

 #include "cache.h"

 #include "walker.h"

-int cmd_http_fetch(int argc, const char **argv, const char *prefix)

+int main(int argc, const char **argv)

 {

+ const char *prefix;

 struct walker *walker;

 int commits_on_stdin = 0;

 int commits;

@@ -18,6 +19,8 @@ int cmd_http_fetch(int argc, const char **argv,

 int get_verbosely = 0;

 int get_recover = 0;

+ prefix = setup_git_directory();

+

 git_config(git_default_config, NULL);

 while (arg < argc && argv[arg][0] == '-') {

Let's analyze this patch line after line:

• The first line, diff --git a/builtin-http-fetch.c b/http-fetch.c,
is a git diff header in the form diff --git a/file1 b/file2. The a/ and
b/ filenames are the same unless rename or copy is involved (such as in our
case), even if the file is added or deleted. The --git option means that diff is
in the git diff output format.

Chapter 3

[71]

• The next lines are one or more extended header lines. The first three lines
in this example tell us that the file was renamed from builtin-http-
fetch.c to http-fetch.c and that these two files are 95% identical (which
information was used to detect this rename):

similarity index 95%
rename from builtin-http-fetch.c
Rename to http-fetch.c

Extended header lines describe information that cannot be
represented in an ordinary unified diff (except for information that
file was renamed). Besides similarity (or dissimilarity) score like in
example they can describe the changes in file type (example from
non-executable to executable).

• The last line in extended diff header, which, in this example is index
f3e63d7..e8f44ba 100644 tells us about the mode of given file (100644
means that it is an ordinary file and not a symbolic link, and that it doesn't
have executable permission bit; these three are only file permissions tracked
by Git), and about shortened hash of pre-image (the version of the file before
the given change) and post-image (the version of the file after the change).
This line is used by git am --3way to try to do a three-way merge if the
patch cannot be applied itself. For the new files, pre-image hash is 0000000,
the same for the deleted files with post-image hash.

• Next is the unified diff header, which consists of two lines:
--- a/builtin-http-fetch.c
+++ b/http-fetch.c

• Compared to the diff -U result, it doesn't have from-file-modification-time
or to-file-modification-time after source (pre-image) and destination or target
(post-image) filenames. If the file was created, the source would be /dev/
null; if the file was deleted, the target would be /dev/null.

If you set the diff.mnemonicPrefix configuration variable to true, in
place of the a/ prefix for pre-image and b/ for post-image in this two-line
header, you can instead have the c/ prefix for commit, i/ for index, w/
for worktree, and o/ for object, respectively, to show what you compare.

Developing with Git

[72]

• Next comes one or more hunk of differences; each hunk shows one area
where the files differ. Unified format hunks start with the line describing
where the changes were in the file:
@@ -1,8 +1,9 @@

This line is in the format @@ from-file-range to-file-range @@. The
from-file-range is in the form -<start line>,<number of lines>, and
to-file-range is +<start line>,<number of lines>. Both start-line and
number-of-lines refer to the position and length of hunk in pre-image and
post-image, respectively. If number-of-lines is not shown, it means that it is 0.
In this example, the changes, both in pre-image (file before the changes) and
post-image (file after the changes) begin at the first line of the file, and the
fragment of code corresponding to this hunk of diff has 8 lines in pre-image,
and 9 lines in post-image (one line is added). By default, Git will also show
three unchanged lines surrounding changes (three context lines). Git will also
show the function where each change occurs (or equivalent, if any, for other
types of files; this can be configured with .gitattributes); it is like the -p
option in GNU diff:

@@ -18,6 +19,8 @@ int cmd_http_fetch(int argc, const char

• Next is the description of where and how files differ. The lines common
to both the files begin with a space (" ") indicator character. The lines that
actually differ between the two files have one of the following indicator
characters in the left print column:

 ° +: A line was added here to the second file
 ° -: A line was removed here from the first file

Note that the changed line is denoted as removing the old version and
adding the new version of the line.
In the plain word-diff format, instead of comparing file contents line
by line, added words are surrounded by {+ and +}, while removed by
[- and -].

• If the last hunk includes, among its lines, the very last line of either version
of the file, and that last line is incomplete, (which means that the file does not
end with the end-of-line character at the end of hunk) you would find:

\ No newline at end of file

This situation is not present in the presented example.

Chapter 3

[73]

So, for the example used here, first chunk means that cmd_http_fetch was replaced
by main and the const char *prefix; line was added:

#include "cache.h"
#include "walker.h"

-int cmd_http_fetch(int argc, const char **argv, const char *prefix)
+int main(int argc, const char **argv)
 {
+ const char *prefix;
 struct walker *walker;
 int commits_on_stdin = 0;
 int commits;

See how for the replaced line, the old version of the line appears as removed (-) and
the new version as added (+).

In other words, before the change, the appropriate fragment of the file, that was then
named builtin-http-fetch.c, looked similar to the following:

#include "cache.h"
#include "walker.h"

int cmd_http_fetch(int argc, const char **argv, const char *prefix)
{
 struct walker *walker;
 int commits_on_stdin = 0;
 int commits;

After the change, this fragment of the file that is now named http-fetch.c, looks
similar to this instead:

#include "cache.h"
#include "walker.h"

int main(int argc, const char **argv)
{
 const char *prefix;
 struct walker *walker;
 int commits_on_stdin = 0;
 int commits;

Developing with Git

[74]

Selective commit
Sometimes, after examining the pending changes as explained, you realize that you
have two (or more) unrelated changes in your working directory that should belong
to two different logical changes; it is the tangled working copy problem. You need
to put those unrelated changes into separate commits, as separate changesets. This is
the type of situation that can occur even when trying to follow the best practices.

One solution is to create commit as-is, and fix it later (split it in two). You can read
how to do this in Chapter 8, Keeping History Clean.

Sometimes, however, some of the changes are needed now, and shipped
immediately (for example bug fix to a live website), while the rest of the changes are
work in progress, not ready. You need to tease those changes apart into two separate
commits.

Selecting files to commit
The simplest situation is when these unrelated changes touch different files. For
example, if the bug was in the view/entry.tmpl file and only in this file, and there
were no other changes to this file, you can create a bug fix commit with the following
command:

$ git commit view/entry.tmpl

This command will ignore changes staged in the index (what was in the staging
area), and instead record the current contents of a given file or files (what is in the
working directory).

Interactively selecting changes
Sometimes, however, the changes cannot be separated in this way. The changes
to the file are tangled together. You can try to tease them apart by giving the
--interactive option to git commit:

$ git commit --interactive

 staged unstaged path

 1: unchanged +3/-2 Makefile

 2: unchanged +64/-1 src/rand.c

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now>

Chapter 3

[75]

Here, Git shows us the status and the summary of changes to the working area
(unstaged) and to the staging area / the index (staged)—the output of the status
subcommand. The changes are described by the number of added and deleted files
(similar to what the git diff --numstat command shows):

What now> h

status - show paths with changes

update - add working tree state to the staged set of changes

revert - revert staged set of changes back to the HEAD version

patch - pick hunks and update selectively

diff - view diff between HEAD and index

add untracked - add contents of untracked files to the staged set of
changes

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

To tease apart changes, you need to choose the patch subcommand (for example,
with 5 or s). Git will then ask for the files with the Update>> prompt; you then need
to select the files to selectively update with their numeric identifiers, as shown in the
status, and type return. You can say * to select all the files possible. After making
the selection, end it by answering with an empty line. (You can skip directly to
patching files with the --patch option.)

Git will then display all the changes to the specified files on a hunk-by-hunk basis,
and let you choose, among others, one of the following options for each hunk:

 y - stage this hunk

 n - do not stage this hunk

 q - quit; do not stage this hunk or any of the remaining ones

 s - split the current hunk into smaller hunks

 e - manually edit the current hunk

 ? - print help

The hunk output and the prompt look similar to this:

@@ -16,7 +15,6 @@ int main(int argc, char *argv[])

 int max = atoi(argv[1]);

Developing with Git

[76]

+ srand(time(NULL));

 int result = random_int(max);

 printf("%d\n", result);

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y

In many cases, it is enough to simply select which of those hunks of changes you
want to have in the commit. In extreme cases, you can split a chunk into smaller
pieces, or even manually edit the diff.

Creating a commit step by step
Interactively selecting changes to commit with git commit --interactive doesn't
unfortunately allow to test the changes to be committed. You can always check
that everything works after creating a commit (compile and/or run tests), and then
amend it if there are any errors. There is, however, an alternative solution.

You can prepare commit by putting the pending changes into the staging area with
git add --interactive, or an equivalent solution (like graphical Git commit
tool for Git, for example, git gui). The interactive commit is just a shortcut for
interactive add followed by commit, anyway. Then you should examine these
changes with git diff --cached, modifying them as appropriate with git add
<file>, git checkout <file>, and git reset <file>.

In theory, you should also test these changes whether they are correct, checking that
at least they do not break the build. To do this, first use git stash save --keep-
index to save the current state and bring the working directory to the state prepared
in the staging area (the index). After this command, you can run tests (or at least
check whether the program compiles and doesn't crash). If tests pass, you can then
run git commit to create a new revision. If tests fail, you should restore the working
directory while keeping the staging area state with the git stash pop --index
command; it might be required to precede it with git reset --hard. The latter
might be needed because Git is overly conservative when preserving your work,
and does not know that you have just stashed. First, there are uncommitted changes
in the index prevent Git from applying the stash, and second, the changes to the
working directory are the same as stashed, so of course they would conflict.

You can find more information about stashes, including how they work, in Chapter 4,
Managing Your Worktree.

Chapter 3

[77]

Amending a commit
One of the better things in Git is that you can undo almost anything; you only need
to know how. No matter how carefully you craft your commits, sooner or later,
you'll forget to add a change, or mistype the commit message. That's when the
--amend flag of the git commit command comes in handy; it allows you to change
the very last commit really easily. Note that you can also amend the merge commits
(for example, fix a merging error).

If you want to change a commit deeper in history (assuming that it
was not published, or at least, there isn't anyone who based their work
on the old version of the said commit), you need to use interactive
rebase or some specialized tool, such as StGit (a patch stack management
interface on top of Git). Refer to Chapter 8, Keeping History Clean, for
more information.

Fig 5. The DAG of revisions, C1 to C2, before amending a topmost (most recent) and currently checked
out commit, which is named C5. Here, we have used numbers instead of SHA-1 to be able to indicate

related commits.

If you just want to correct the commit message, you simply commit again, without
any staged changes, and fix it (note that we use git commit without the -a / --all
flag):

$ git commit --amend

Developing with Git

[78]

If you want to add some more changes to that last commit, you can simply stage
them as normal with git add and then commit again as shown in the preceding
example, or make the changes and use git commit -a --amend:

Fig 6. The DAG of revisions after amending the last commit (revision C5) on Fig 5. Here, the new commit C5
is old commit C5 with changes (amended); it replaces old commit place in history.

There is a very important caveat: you should never amend a commit that has
already been published! This is because amend effectively produces a completely
new commit object that replaces the old one, as can be seen on Fig 6. If you're the
only person who had this commit, doing this is safe. However, after publishing the
original commit to a remote repository, other people might already have based their
new work on that version of the commit. Replacing the original with an amended
version will cause problems downstream. You will find more about this issue in
Chapter 8, Keeping History Clean.

If you try to push (publish) a branch with the published commit amended, Git would
prevent overwriting the published history, and ask to force push if you really want
to replace the old version (unless you configure it to force push by default). The old
version of commit before amending would be available in the branch reflog and in
the HEAD reflog; for example, just after amend, it would be available as @{1}. Git
would keep the old version for a month, by default, unless manually purged.

Chapter 3

[79]

Working with branches
Branches are symbolic names for lines of development. In Git, each branch is realized
as a named pointer (reference) to some commit in the DAG of revisions, so it is called
branch head.

The representation of branches in Git
Git uses currently two different on-disk representations of branches: the
loose format and the packed format.
Take, for example, the master branch (which is the default name of a
branch in Git; you start on this branch in the newly-created repository).
In loose format (which takes precedence), it is represented as the one-
line file, .git/refs/heads/master with textual hexadecimal
representation of SHA-1 tip of the branch. In the packed format, it is
represented as a line in the .git/packed-refs file, connecting SHA-1
identifier of top commit with the fully qualified branch name.

The (named) line of development is the set of all revisions that are reachable from the
branch head. It is not necessarily a straight line of revisions, it can fork and join.

Fig 7. Creating a new testing branch and switching to it, or creating a new branch and switching to it at once
(with one command)

Developing with Git

[80]

Creating a new branch
You can create a new branch with the git branch command; for example, to create a
new branch testing starting from the current branch (see the top right part of Fig 7), run:

$ git branch testing

What happens here? Well, this command creates a new pointer (a new reference) for
you to move around. You can give an optional parameter to this command if you
want to create the new branch pointing to some other commit.

Note, however, that the git branch command would not change the position of the
HEAD (the symbolic reference pointing to current branch), and would not change the
contents of the working directory.

If you want to create a new branch and switch to it (to start working on new branch
immediately), you can use the following shortcut:

$ git checkout -b testing

If we create a new branch at the current state of repository, the checkout -b
command differs only in that it also moves the HEAD pointer; see transition from
left-hand side to the bottom-right in Fig 7.

Creating orphan branches
Sometimes you might want to create a new unconnected orphan branch in your
repository. Perhaps you want to store the generated documentation for each release
to make it easy for users to get readable documentation (for example, as man pages
or HTML help) without requiring to install conversion tools or renderers (for
example, AsciiDoc parser). Or, you might want to store web pages for a project in
the same repository as project; that is what GitHub project pages use. Perhaps you
want to open source your code, but you need to clean up the code first (for example,
because of copyrights and licensing).

One solution is to create a separate repository for the contents of an orphan branch,
and fetch from it into some remote-tracking branch. You can then create a local
branch based on it.

You can also do this with:

$ git checkout --orphan gh-pages

Switched to a new branch 'gh-pages'

This reproduces somewhat the state just after git init: the HEAD symref points to
the gh-pages branch, which does not exist yet; it will be created on the first commit.

Chapter 3

[81]

If you want to start with clean state, like with GitHub Pages, you would also need to
remove the contents of the start point of branch (which defaults to HEAD, that is, to
current branch and to the current state of the working directory), for example with:

$ git rm -rf .

In the case of open sourcing code with proprietary parts to be excluded (orphan
branch is not to bring this proprietary code accidentally to the open source version
on merging), you would want to carefully edit the working directory instead.

Selecting and switching to a branch
To switch to an existing local branch, you need to run the git checkout command.
For example, after creating the testing branch, you can switch to it with the
following command:

$ git checkout testing

It is shown in Fig 7 as the vertical transition from the top-right to bottom-right state.

Obstacles to switching to a branch
When switching to a branch, Git also checks out its contents into the working
directory. What happens then if you have uncommitted changes (which are not
considered by Git to be on any branch)?

It is a good practice to switch branch in a clean state, stashing away
changes or creating a commit, if necessary. Checking out a branch with
uncommitted changes is useful only in a few rare cases, some of which
are described in the following section.

If the difference between the current branch and the branch you want to switch to
does not touch the changed files, the uncommitted changes are moved to the new
branch. This is very useful if you started working on something, and only later
realized that it would be better to do this work in a separate feature branch.

If uncommitted changes conflict with changes on the given branch, Git will refuse to
switch to the said branch, to prevent you from losing your work:

$ git checkout other-branch

error: Your local changes to the following files would be overwritten by
checkout:

 file-with-local-changes

Please, commit your changes or stash them before you can switch branches.

Developing with Git

[82]

In such situation you have a few possible different solutions:

• You can stash away your changes, and restore them when you come back
to the branch you were on (this is usually the preferred solution). Or you
can simply create a temporary commit of the work in progress with those
changes, and then either amend the commit or rewind the branch when you
get back to it.

• You can try to move your changes to the new branch by merging, either
with git branch --merge (which would do the three-way merge between
the current branch, the contents of your working directory with unsaved
changes, and the new branch), or by stashing away your changes before
checkout and then unstashing them after a switch.

• You can also throw away your changes with git checkout --force.

Anonymous branches
What happens if you try to check out something that is not a local branch: for
example an arbitrary revision (like HEAD^), or a tag (like v0.9), or a remote-tracking
branch (for example, origin/master)? Git assumes that you need to be able create
commits on top of the current state of the working directory.

Fig 8. The result of checking out non-branch, the state after Git checkout HEAD command, detached HEAD, or
anonymous branch

Older Git refused to switch to non-branch. Nowadays, Git will create an anonymous
branch by detaching HEAD pointer and making it refer directly to a commit, rather
than being a symbolic reference to a branch, see Fig 8 for an example. To create an
anonymous branch at the current position explicitly, you can use the --detach
option to the checkout command. The detached HEAD state is shown in branch
listing as (no branch) in older versions of Git, or (detached from HEAD) or (HEAD
detached at ...) in newer.

Chapter 3

[83]

If you did detach HEAD by mistake, you can always go back to the previous branch
with (here "-" means the name of previous branch):

$ git checkout -

As Git informs you when creating a detached branch, you can always give a name to
the anonymous branch with git checkout -b <new-name>.

Git checkout DWIM-mery
There is a special case of checking out something that is not a branch. If you check
out remote-tracking branch (for example, origin/next) by its short name (in this
case, next), as if it was a local branch, Git would assume that you meant to create
new contents on top of the remote-tracking branch state, and will do what it thinks
you need. Do What I Mean (DWIM) will create a new local branch, tracking the
remote-tracking branch.

This means that:

$ git checkout next

Is equivalent to:

$ git checkout -b next --track origin/next

Git will do it only if there are no ambiguities: the local branch must not exist
(otherwise the command would simply switch to local branch given), and there can
be only one remote-tracking branch that matches. This can be checked by running
git show-ref next (using the short name) and verifying that it returns only one
line, with remote-tracking branch info (the last can be recognized by the refs/
remotes/ prefix in ref name).

Listing branches
If you use the git branch commands without any other arguments, it would list all
the branches, marking the current branch with asterisk, that is, *.

Developing with Git

[84]

This command is intended for the end user; its output may change in
the future version of Git. To find out programmatically, in a shell script:

• To get the name of the current branch, use git symbolic-
ref HEAD.

• To find SHA-1 of the current commit, use git rev-parse
HEAD.

• To list all the branches, use git show-ref or git for-
each-ref.

They are all plumbing, that is, commands intended for use in scripts.

You can request more information with -v (--verbose) or -vv. You can also limit
branches shown to only those matching given shell wildcard with git branch
--list <pattern> (quoting pattern to prevent its expansion by shell, if necessary).

Querying information about remotes, which includes the list of remote branches, by
using git remote show, is described in Chapter 6, Advanced Branching Techniques.

Rewinding or resetting a branch
What to do if you want to abandon the last commit, and rewind (reset) the current
branch to its previous position? For this, you need to use the reset command. It
would change where the current branch points to. Note that unlike the checkout
command, the reset command does not change the working directory by default;
you need to use instead git reset --keep (to try to keep the uncommitted
changes) or git reset --hard (to drop them).

The reset command, and its effects on the working area, will be explained in more
detail in Chapter 4, Managing Your Worktree.

Fig 9 shows the differences between the checkout and reset commands, when
given the branch and non-branch argument. In short, reset always changes where
the current branch points to (moves the ref), while checkout either switches branch,
or detaches HEAD at a given revision if it is given non-branch:

Chapter 3

[85]

Fig 9. A table comparing the checkout and reset commands with either branch (for example, maint) and non-
branch revision (for example, HEAD^) as arguments.

In the preceding figure, for example, the left-top graph of the revision shows the
result of running of the Git checkout maint command, starting from the state given
by the graphs in the centre.

Developing with Git

[86]

Deleting a branch
As in Git, a branch is just a pointer, and an external reference to the node in the DAG
of revisions, deleting a branch is just deleting a pointer:

Actually deleting a branch also removes, irretrievably, (at least, in the
current Git version) the reflog for the branch being deleted, that is, the
log of its local history.

Fig 10. Deleting just merged in base-doc branch with git branch -d base-doc, when we are on a branch (master
here) that includes it

You can do this with git branch -d. There is, however, one issue to consider—
what happens if you delete a branch, and there is no other reference to the part of
project history it pointed to? Those revisions will become unreachable and Git would
delete them after the HEAD reflog expires (which, with default configuration, is after
30 days).

That is why Git would allow you to delete only the completely merged-in branch,
whose all commits are reachable from HEAD as in Fig 10 (or is reachable from its
upstream branch, if it exists).

To delete a branch that was not merged in, risking parts of the DAG becoming
unreachable, you need a stronger command, namely, git branch -D (Git will
suggest this operation when refusing to delete a branch); see Fig 11:

Chapter 3

[87]

Fig 11. Deleting the unmerged osx-port branch with git branch -D osx-port

You can check if the branch was merged in into any other branch, by checking
whether git branch --contains <branch> shows anything.
You cannot delete the current branch.

Changing the branch name
Sometimes the name chosen for a branch needs to be changed. This can happen,
for example, if the scope of the feature branch changed during the development.

You can rename a branch with git branch -m (use -M if target name exists and
you want to overwrite it); it will rename a branch and move the corresponding
reflog (and add rename operation to the reflog), and change the branch in all of its
configuration (its description, its upstream, and so on).

Summary
In this chapter, we learnt how to develop with Git and add to the project history by
creating new commits and new lines of development (branches). We know what it
means to create a commit, to amend a commit, to create a branch, to switch a branch,
to rewind a branch, and to delete a branch from the point of view of the Directed
Acyclic Graph of revisions.

This chapter shown a very important Git feature—the staging area for creating
commits, also known as the index. This is what makes it possible to untangle the
changes to the working directory by selectively and interactively choosing what to
commit.

Developing with Git

[88]

We learnt how to examine the changes to the working area before creating a commit.
This chapter described, in detail, the extended unified diff format that Git uses to
describe the changes.

We also learnt about the concept of detached HEAD (or anonymous branch) and of
orphan branches.

In the next chapter, Managing Your Worktree, we will learn how to use Git to prepare
new commits and how to configure it to make our work easier. We will also learn
how to examine, search, and study the contents of the working directory, the
staging area, and the project history. We will also see how to use Git to deal with
interruptions and recover from mistakes.

[89]

Managing Your Worktree
The previous chapter, Developing with Git, described how to use Git for development,
including how to create new revisions. Now we will focus on learning how to
manage your working directory (worktree) to prepare contents for a new commit.
This chapter will teach you how to manage your files, in detail. It will show how to
care for files that require special handling, introducing the concepts of ignored files
and file attributes.

You will also learn how to fix mistakes in handling files, both in the working directory
and in the staging area; and how to fix the latest commit. You will find out how to safely
handle interruptions in the workflow with stash and multiple working directories.

The previous chapter taught you how to examine changes. Here you will learn
how to undo and redo those changes selectively, and how to view different versions
of a file.

This chapter will cover the following topics:

• Ignoring files: marking files as intentionally not under version control
• File attributes: path-specific configuration
• Handling text and binary files
• End of line conversion of text files, for repository portability
• Using various modes of the git reset command
• Stashing away your changes to handle interruptions
• Searching and examining files in any place
• Resetting files and reverting file changes interactively
• Cleaning the working area by removing untracked files

Managing Your Worktree

[90]

Ignoring files
Your files inside your working area (also known as the worktree) can be either tracked
or untracked by Git. Tracked files, as the name suggests, are whose changes Git will
follow. For Git, if a file is present in the staging area (also known as the index), it will be
tracked and—unless specified otherwise—it will be a part of the next revision. You add
files to be tracked so as to have them as a part of the project history.

The index, or the staging area, is used not only for Git to know which
files to track, but also as a kind of a scratchpad to create new commits,
as described in Chapter 3, Developing with Git, and to help resolve
merge conflicts, as shown in Chapter 7, Merging Changes Together.

Often you will have some individual files or a class of files that you never want to
be a part of the project history, and never want to track. These can be your editor
backup files, or automatically generated files produced by the project's build system.

You don't want Git to automatically add such files, for example, when doing bulk add
with git add :/ (adding the entire working tree), git add . (adding the current
directory), or when updating the index to the worktree state with git add --all.
Quite the opposite: you want Git to actively prevent from accidentally adding them.
You also want such files to be absent from the git status output, as there can be
quite a number of them. They could drown out legitimate new unknown files there
otherwise. You want such files to be intentionally untracked: ignored.

Un-tracking and re-tracking files
If you want to start ignoring a file that was formerly tracked, for
example when moving from hand-generated HTML file to using
a lightweight markup language such as Markdown instead, you
usually need to un-track the file without removing it from the
working directory, while adding it to the list of ignored files. You
can do this with git rm --cached <file>.
To add (start tracking) an intentionally untracked (that is,
ignored) file, you need to use git add -f.

Chapter 4

[91]

Marking files as intentionally untracked
In such case, you can add a shell glob pattern to match files that you want to have
ignored by Git to one of the gitignore files, one pattern per line:

• The per-user file that can be specified by the configuration variable core.
excludesFile, which by default is $XDG_CONFIG_HOME/git/ignore. This
in turn defaults to the $HOME/.config/git/ignore if $XDG_CONFIG_HOME
environment variable is not set or empty.

• The per-local repository $GIT_DIR/info/exclude file in the administrative
area of the local clone of the repository.

• The .gitignore files in the working directories of a project; these are usually
tracked and thus shared among developers.

Some commands, such as git clean, also allow us to specify ignore patterns from a
command line.

When deciding whether to ignore a path, Git checks all those sources in the order
specified on preceding list, with the last matching pattern deciding the outcome. The
.gitignore files are checked in order, starting from the top directory of the project
down to the directory of files to be examined.

To make gitignore files more readable you can use blank lines to separate groups
of files (a blank line matches no files). You can also describe patterns or groups of
patterns with comments; a line starting with # serves as one (to ignore a pattern
beginning with the hash character, #, escape the first hash character with a backslash
\, for example, \#*#). Trailing spaces (at the end of the line) are ignored unless
escaped with a backslash \.

Each line in the gitignore file specifies a Unix glob pattern, a shell wildcard. The *
wildcard matches zero or more characters (any string), while the ? wildcard matches
any single character. You can also use character classes with brackets [...]. Take for
example the following list of patterns:

*.[oa]
*~

Here the first line tells Git to ignore all files with the .a or .o extension—archive
(for example, a static library) and object files that may be the products of compiling
your code. The second line tells Git to ignore all files ending with a tilde, ~; this is
used by many Unix text editors to mark temporary backup files.

Managing Your Worktree

[92]

If the pattern does not contain a slash /, which is a directory (path component)
separator, Git treats it as a shell glob and checks file name or directory name for a
match, starting at appropriate depth, for example the .gitignore file location, or the
top level of the repository. The exception is patterns ending with slash /—which is
used to have the pattern matched against directories only—but otherwise the trailing
slash is removed. A leading slash matches the beginning of the path name. This
means the following:

• Patterns not containing a slash match everywhere in the repository; one can
say that the pattern is recursive.
For example, the *.o pattern matches object files anywhere, both in the
gitignore file level and in subdirectories: file.o, obj/file.o, and so on.

• Patterns ending with a slash match only directories, but are otherwise
recursive (unless they contain other slashes).
For example, the auto/ pattern will match the top-level auto directory
and for example src/auto, but will not match the auto file (or a symbolic
link either).

• To anchor a pattern and make it non-recursive, add a leading slash.
For example the /TODO file will ignore the current-level TODO file, but not files
in subdirectories, for example src/TODO.

• Patterns containing a slash are anchored and non-recursive, and wildcard
characters (*, ?, a character class such as [ao]) do not match the directory
separator that is slash. If you want to match any number of directories, use
two consecutive asterisks ** in place of the path component (which means
/foo, foo/, and foo/**/bar).

For example, doc/*.html matches doc/index.html file but not doc/api/
index.html; to match HTML files anywhere inside the doc directory you
can use the doc/**/*.html pattern (or put the *.html pattern in the doc/.
gitignore file).

You can also negate a pattern by prefixing it with an exclamation mark !; any
matching file excluded by the earlier rule is then included (non-ignored) again. For
example to ignore all generated HTML files, but include one generated by hand, you
can put the following in the gitignore file:

ignore html files, generated from AsciiDoc sources
*.html
except for the files below which are generated by hand
!welcome.html

Chapter 4

[93]

Note however that for performance reasons Git doesn't go into excluded directories,
and (up till Git 2.7) this meant that you cannot re-include a file if a parent directory is
excluded. This means that to ignore everything except for the subdirectory, you need
to write the following:

exclude everything except directory t0001/bin
/*
!/t0001
/t0001/*
!/t0001/bin

To match a pattern beginning with !, escape it with a backslash—for example,
\!important!.md to match !important!.md.

Which types of file should be ignored?
Now that we know how to mark files as intentionally untracked (ignored), there is
the question of which files (or classes of files) should be marked as such. Another
issue is where, in which of the three gitignore files, should we add a pattern for
ignoring specific types of file?

First, you should never track automatically generated files (usually generated by the
build system of a project). If you add them to the repository, there is a high chance
that they will get out of sync with their source. Besides, they are not necessary, as
you can always re-generate them. The only possible exception is generated files
where the source changes rarely, and generating them requires extra tools that
developers might not have (if the source changes more often, you can use an orphan
branch to store these generated files, and refresh this branch only at release time).

Those are the files that all developers will want to ignore. Therefore they should go
into a tracked .gitignore file. The list of patterns will be version-controlled and
distributed to other developers via a clone. You can find a collection of
useful .gitignore templates for different programming languages at
https://github.com/github/gitignore.

Second, there are temporary files and by-products specific to one user's toolchain;
those should usually not be shared with other developers. If the pattern is specific
to both the repository and the user, for example, auxiliary files that live inside the
repository but are specific to the workflow of a user (for example, to the IDE used for
the project), it should go into the per-clone $GIT_DIR/info/exclude file.

https://github.com/github/gitignore

Managing Your Worktree

[94]

Patterns which the user wants to ignore in all situations, not specific to the
repository (or to the project), should generally go into a file specified by the core.
excludesFile config variable, set in the per-user (global) config file ~/.gitconfig
(or ~/.config/git/config). This is usually by default ~/.config/git/ignore.

The per-user ignore file cannot be ~/.gitignore, as this
would be the in-repository .gitignore file for the versioned
user's home directory, if the user wants to keep the ~/ directory
($HOME) under version control.

This is the place where you can put patterns matching the backup or temporary files
generated by your editor or IDE of choice.

Ignored files are considered expendable
Warning: Do not add precious files, that is those which you do
not want to track in a given repository but whose contents are
important, to the list of ignored files! The types of file that are
ignored (excluded) by Git are either easy to re-generate (build
products and other generated files), or not important to the user
(temporary files, backup files).
Therefore Git considers ignored files expendable and will
remove them without warning when required to do a requested
command, for example, if the ignored file conflicts with the
contents of the revision being checked out.

Listing ignored files
You can list untracked ignored files with the --ignored option to the status command:

$ git status --ignored

On branch master

Ignored files:

 (use "git add -f <file>..." to include in what will be committed)

 rand.c~

no changes added to commit (use "git add" and/or "git commit -a")

$ git status --short --branch --ignored

master

!! rand.c~

Chapter 4

[95]

You could instead use the dry-run option of cleaning ignored files: git clean -Xnd,
or the low-level (plumbing) command git ls-files:

$ git ls-files --others --ignored --exclude-standard

rand.c~

The latter command can also be used to list tracked files that match ignore patterns.
Having such files might mean that some files need to be un-tracked (perhaps because
what was once a source file is now generated), or that ignore patterns are too broad.
As Git uses the existence of a file in the staging area (cache) to know which files to
track, this can be done with the following command:

$ git ls-files --cached --ignored --exclude-standard

Plumbing versus porcelain commands
Git commands are divided into two sets: high-level porcelain
commands intended for interactive usage by the user, and low-level
plumbing commands intended mainly for shell scripting. The major
difference is that high-level commands have output that can change and
that is constantly improving, for example, going from (no branch) to
(detached from HEAD) in the git branch output in the detached
from HEAD case; though some porcelain commands have the option
(usually --porcelain) to switch to unchanging output. Their output
and behavior are subject to configuration.
Another important difference is that plumbing commands try to guess
what you meant, have default parameters, use the default configuration,
and so on. Not so with plumbing commands. In particular you need
to pass the --exclude-standard option to the git ls-files
command to make it respect the default set of ignore files.
You can find more on this topic in Chapter 10, Customizing and Extending
Git.

Ignoring changes in tracked files
You might have files in the repository that are changed, but rarely committed. These
can be various local configuration files that are edited to match the local setup, but
should never be committed upstream. This can be a file containing the proposed
name for a new release, to be committed when tagging the next released version.

You would want to keep such files in the dirty state most of the time, but you would
like Git not to tell you about their changes all the time, in case you miss other changes
because you are used to ignore such messages.

Managing Your Worktree

[96]

Git can be configured to skip checking the worktree (to assume that it is always
up to date), and to use instead the staged version of the file, by setting the aptly
named skip-worktree flag for a file. For this you would need to use the low-level
git update-index command, the plumbing equivalent of the user-facing git add
porcelain (you can check file status and flags with `git ls-files`):

$ git update-index --skip-worktree GIT-VERSION-NAME

$ git ls-files -v

S GIT-VERSION-NAME

H Makefile

Note however that this elision of worktree also includes the git stash command; to
stash away your changes and make the working directory clean, you need to disable
this flag (at least temporarily). To make Git again look at the working directory
version, and start tracking changes to the file, use the following command:

$ git update-index --no-assume-unchanged GIT-VERSION-NAME

There is a similar assume-unchanged flag that can be used
to make Git completely ignore any changes to the file, or
rather assume that it is unchanged. Files marked with this flag
never show as changed in the output of the git status or
git diff command. The changes to it will not be staged nor
committed.
This is sometimes useful when working with a big project on
a filesystem with very slow checking for changes. Do not use
assume-unchanged for ignoring changes to tracked files. You are
promising that the file didn't change; lying to Git with, for
example, git stash save believing what you stated, would
lose your local changes.

File attributes
There are some settings and options in Git that can be specified on a per-path basis;
similar to how ignoring files (marking files as intentionally untracked) works. These
path-specific settings are called attributes.

To specify attributes for files matching a given pattern, you need to add a line with a
pattern followed by a whitespace-separated list of attributes to one of the gitattribute
files (similarly to how the gitignore files work):

• The per-user file, for attributes that should affect all repositories for a single
user, specified by the configuration variable core.attributesFile, by
default ~/.config/git/attributes

Chapter 4

[97]

• The per repository .git/info/attributes file in the administrative area of
the local clone of the repository, for attributes that should affect only a single
specific clone of the repository (for one user's workflow)

• The .gitattributes files in the working directories of a project, for those
attributes that should be shared among developers

The rules for how patterns are used to match files are the same as for the gitignore files,
described in an earlier section, except that there is no support for negative patterns.

Each attribute can be in one of the following states for a given path: set (special
value true), unset (special value false), and set to given value, or unspecified:

pattern* set -unset set-to=value !unspecified

Note that there can be no whitespace around the equals sign = when setting an
attribute to a string value!

When more than one pattern matches the path, a later line overrides an earlier line
on a per-attribute basis. Gitattribute files are used in order, from the per-user to
the .gitattributes file in a given directory, like for gitignore files.

Identifying binary files and end-of-line conversions
Different operating systems and different applications can differ in how they
represent newline in text files. Unix and Unix-like systems (including MacOS X)
use a single control character LF (\n), while MS Windows uses CR followed by LF
(\n\r); MacOS up to version 9 used CR alone (\r).

That might be a problem for developing portable applications if different developers
use different operating systems. We don't want to have spurious changes because of
different end of line conventions. Therefore Git makes it possible to automatically
normalize end of line (eol) characters to be LF in the repository on commit (check-
in), and optionally to convert them to CR + LF in the working directory on checkout.

You can control whether a file should be considered for end of line conversion with
the text attribute. Setting it enables end-of-line conversion, unsetting it disables it.
Setting it to the auto value makes Git guess if given file is a text file; if it is, end-of-
line conversion is enabled. For files where the text attribute is unspecified, Git uses
core.autocrlf to decide whether to treat them as text=auto case.

Managing Your Worktree

[98]

How Git detects if a file contains binary data
To decide whether a file contains binary data, Git examines the
beginning of the file for an occurrence of a zero byte (the null
character or \0). When deciding about converting a file (as in
end-of-line conversion), the criterion is more strict: for a file to be
considered text it must have no nulls, and no more than around 1%
of it should be non-printable characters.
This means that Git usually considers files saved in the UTF-16
encoding to be binary.

To decide what line ending type Git should use in the working directory for text
files, you need to set up the core.eol configuration variable. This can be set to crlf,
lf, or native (the last is the default). You can also force a specific line ending for a
given file with the eol=lf or eol=crlf attribute.

Old crlf attribute New text and eol attributes
crlf text

-crlf -text

crlf=input eol=lf

Table 1. Backward compatibility with the crlf attribute

End of line conversion bears a slight chance of corrupting data. If you want Git to
warn or prevent conversion for files with a mixture of LF and CRLF line endings, use
the core.safecrlf configuration variable.

Sometimes Git might not detect that a file is binary correctly, or there may be some
file that is nominally text, but which is opaque to a human reader. Examples include
PostScript documents (*.ps) and Xcode build settings (*.pbxproj). Such files should
be not normalized and textual diff for them doesn't make sense. You can mark
such files explicitly as binary with the binary attribute macro (which is equivalent
to -text -diff):

*.ps binary
*.pbxproj binary

Chapter 4

[99]

Forcing end-of-line conversion when turning it on
When normalization of line endings is turned on in the
repository (by editing the .gitattributes file) one should
also force normalization of files. Otherwise the change in
newline representation will be misattributed to the next change
to the file:
$ rm .git/index

$ git reset

$ git add -u

$ git add .gitattributes

You can check which files will be normalized (for example, with
git status) after git resetstep, but before git add -u.

Diff and merge configuration
In Git, you can use the attributes functionality to configure how to show differences
between different versions of a file, and how to do a 3-way merge of its contents.
This can be used to enhance those operation, making diff more attractive and
merge less likely to conflict. It can be even used to make it possible to effectively diff
binary files.

In both cases we would usually need to set up the diff and/or merge driver.
The attributes file only tells us which driver to use; the rest of the information is
contained in the configuration file, and the configuration is not automatically shared
among developers unlike the .gitattributes file (though you can create a shared
configuration fragment, add it to the repository, and have developers include it
in their local per-repository config, via the relative include.path). This is easy to
understand—the tool configuration may be different on different computers, and
some tools may be not available for the developer's operating system of choice. But
this means that some information needs to be distributed out-of-band.

There are however a few built-in diff drivers and merge drivers that you can use.

Generating diffs and binary files
Generating diffs for particular files is affected by the diff attribute. If this attribute
is unset, Git will treat files as binary with respect to generating diffs, and show just
binary files differ (or a binary diff). Setting it will force Git to treat a file as text, even
if it contains byte sequences that normally mark the file as binary, such as the null
(\0) character.

Managing Your Worktree

[100]

You can use the diff attribute to make Git effectively describe the differences
between two versions of a binary file. In this you have two options: the easier one
is to tell Git how to convert a binary file to a text format, or how to extract text
information (for example metadata) from binary data. This text representation is then
compared using the ordinary textual diff command. Even though conversion to text
usually loses some information, the resulting diff is useful for human viewing (even
though it is not information about all the changes).

This can be done with the textconv config key for a diff driver, where you
specify a program that takes the name of the file as an argument and returns a text
representation on its output.

For example, you might want to see the diff of the contents of MS Word documents,
and see the difference in metadata for JPEG images. First you need to put something
like this in your .gitattributes file:

*.doc diff=word
*.jpg diff=exif

You can for example use the catdoc program to extract text from binary MS Word
documents, and the exiftool to extract EXIF metadata from JPEG images. Because
conversion can be slow, Git provides a mechanism to cache the output in the form
of the Boolean cachetextconv attribute; the cached data is stored using notes (this
mechanism will be explained in Chapter 8, Keeping History Clean). The part of the
configuration file responsible for this setup looks like this:

[diff "word"]
 textconv = catdoc

cached data stored in refs/notes/textconv/exif
[diff "exif"]
 textconv = exiftool
 cachetextconv = true

You can see how the output of the textconv filter looks with git show or git cat-
file -p with the --textconv option.

The more complicated but also more powerful option is to use an external diff
driver (an attribute version of the global driver that can be specified with the GIT_
EXTERNAL_DIFF environment variable or the diff.external configuration variable)
with the command option of the diff driver. On the other hand, you lose some options
that Git diff gives: colorization, word diff, and combined diff for merges.

Chapter 4

[101]

Such a program will be called with seven parameters: path, old-file, old-hex,
old-mode, new-file, new-hex, and new-mode. Here old-file and new-file are
files that the diff driver can use to read the contents of two versions of the differing
file, old-hex and new-hex are SHA-1 identifiers of file contents, and old-mode
and new-mode are octal representations of file modes. The command is expected to
generate diff-like output. For example, you might want to use the XML-aware diff
tool to compare XML files:

$ echo "*.xml diff=xmldiff" >>.gitattributes

$ git config diff.xmldiff.command xmldiff-wrapper.sh

This example assumes that you have written the xmldiff-wrapper.sh shell script to
reorder options to fit the XML diff tool.

Configuring diff output
The diff format that Git uses to show changes for users was described in detail in
Chapter 3, Developing with Git. Each group of changes (called a chunk) in textual diff
output is preceded by the chunk header line, for example:

@@ -18,6 +19,8 @@ int cmd_http_fetch(int argc, const char **argv,

The text after the second @@ is meant to describe the section of file where the chunk
is; for C source files it is the start of the function. Decision on how to detect the
description of such a section depends of course on the type of file. Git allows you
to configure this by setting the xfuncname configuration option of the diff driver
to the regular expression which match the description of the section of the file. For
example, for LaTeX documents you might want to use the following configuration
for the tex diff driver (but you don't need to, as tex is one of the pre-defined, built-
in diff drivers).

[diff "tex"]
 xfuncname = "^(\\\\(sub)*section\\{.*)$"
 wordRegex = "\\\\[a-zA-Z]+|[{}]|\\\\.|[^\\{}[:space:]]+"

The wordRegex configuration defines what word is in LaTeX documents for git
diff --word-diff.

Managing Your Worktree

[102]

Performing a 3-way merge
You can also use the merge attribute to tell Git to use specific merge strategies for
specific files or classes of files in your project. Git by default will use the 3-way
merge driver (similar to rcsmerge) for text files, and it will take our (being merged)
version and mark the result as a conflicted merge for binary files. You can force a
3-way merge by setting the merge attribute (or by using merge=text); you can force
binary-like merging by unsetting this attribute (with -merge, which is equivalent to
merge=binary).

You can also write your own merge driver, or configure Git to use a third-party
external merge driver. For example, if you keep a GNU-style ChangeLog file in your
repository (with a curated list of changes with their description), you can use the
git-merge-changelog command from the GNU Portability Library (Gnulib). You
need to add the following to the appropriate Git config file:

[merge "merge-changelog"]
 name = GNU-style ChangeLog merge driver
 driver = git-merge-changelog %O %A %B

Here the token %O in merge.merge-changelog.driver will be expanded to the
name of the temporary file holding the contents of the merge ancestor's (old) version.
Tokens %A and %B expand to the names of temporary files holding contents being
merged, respectively the current (ours, merged into) version and the other branches'
(theirs, merged) version. The merge driver is expected to leave the merged version in
the %A file, exiting with non-zero status if there is a merge conflict.

Note that you can use a different driver for an internal merge between common
ancestors (when there is more than one). This is done with merge.*.recursive—for
example using the predefined binary driver.

Of course you will also need to tell Git to use this driver for ChangeLog files, adding
the following line to .gitattributes:

ChangeLog merge=merge-changelog

Transforming files (content filtering)
Sometimes you might want to massage the content into a shape that is more
convenient for Git, the platform (operating system), the file system, and the user to
use. End of line conversion can be considered a special case for such an operation.

Chapter 4

[103]

To do this, you need to set the filter attribute for appropriate paths, and to
configure the clean and smudge commands of specified filter driver (either
command can be left unspecified for a pass-through filter). When checking out
the file matching given pattern, the smudge command is fed file contents from the
repository in its standard input, and its standard output is used to update the file in
the working directory:

Fig 1. The "smudge" filter is run on checkout
(when writing files to the working directory).

Similarly, the clean command of a filter is used to convert the contents of the
worktree file to a shape suitable to be stored in the repository:

Fig 2. The "clean" filter is run when files are staged
(added to the index—the staging area).

When specifying a command, you can use the %f token, which will be replaced by
the name of the file the filter is working on.

One simple example is to use rezip script for OpenDocument Format (ODF) files.
ODF documents are ZIP archives of mainly XML files. Git uses compression itself
and also does deltification (but cannot do it on already compressed files); the idea is
to store uncompressed files in the repository, but to checkout compressed files:

[filter "opendocument"]
 clean = "rezip -p ODF_UNCOMPRESS"
 smudge = "rezip -p ODF_COMPRESS"

Managing Your Worktree

[104]

Of course you also need to tell Git to use this filter for all kinds of ODF files:

*.odt filter=opendocument
*.ods filter=opendocument
*.odp filter=opendocument

Another example of an advisory filter is to use the indent program to force a code
formatting convention; a similar example would be to replace tabs with spaces on
check-in:

[filter "indent"]
 clean = indent

Obligatory file transformations
Another use of content filtering is to store the content that cannot be directly used in
the repository and turn it into a usable form upon checkout.

One such example might be use gitattributes to store large binary files, used only by
a subset of developers, outside the Git repository; inside the repository there is only
an identifier that allows us to get file contents from external storage. That's how git-
media works:

$ git config filter.media.clean "git-media filter-clean"

$ git config filter.media.smudge "git-media filter-smudge"

$ echo "*.mov filter=media -crlf" >> .gitattributes

You can find the git-media tool at https://github.com/
schacon/git-media. Other similar tools will be mentioned in
Chapter 9, Managing Subprojects - Building a Living Framework, as
alternative solutions to the problem of handling large files.

Another example would be encrypting sensitive content, or replacing a local
sensitive program configuration that is required for an application to work (for
example, a database password) with a placeholder. Because running such a filter is
required to get useful contents, you can mark it as such:

[filter "clean-password"]
 clean = sed -e 's/^pass = .*$/pass = @PASSWORD@/'
 smudge = sed -e 's/^pass = @PASSWORD@/pass = passw0rd/'
 required

https://github.com/schacon/git-media
https://github.com/schacon/git-media

Chapter 4

[105]

Note that this is only a simplified example; in real use you would have to consider
the security of the config file itself if you do this, or store the real password in an
external smudge script. In such case you'd better also set up a pre-commit, pre-
push, and update hook to ensure that the password won't make it to the public
repository (see Chapter 10, Customizing and Extending Git for details).

Keyword expansion and substitution
Sometimes there is a need to have a piece of dynamic information about the
versioned file in the contents of the file itself. To keep such information up to date
you can request the version control system to do the keyword expansion: replace the
keyword anchor in the form of a string of text (in the file contents) formatted like the
following: $Keyword$, with the keyword inside dollar characters (keyword anchor),
which is usually replaced by VCS with $Keyword: value$, that is keyword followed
by its expansion.

The main problem with this in Git is that you cannot modify the file contents stored
in the repository with information about the commit after you've committed because
of the way Git works (more information about this can be found in Chapter 8, Keeping
History Clean). This means that keyword anchors must be stored in the repository
as-is, and only expanded in the worktree on checkout. However, this is also an
advantage; you would get no spurious differences due to keyword expansion when
examining the history.

The only built-in keyword that Git supports is Id: its value is the SHA-1 identifier
of the file contents (the SHA-1 checksum of the blob object representing the file
contents, which is not the same as the SHA-1 of the file; see Chapter 8, Keeping History
Clean, for how objects are constructed). You need to request this keyword expansion
by setting the ident attribute for a file.

You can however write your own keyword expansion support with an appropriate
filter, defining the smudge command that would expand the keyword, and the
clean command that would replace the expanded keyword with its keyword anchor.

With this mechanism you can, for example, implement support for the $Date$
keyword, expanding it on checkout to the date when the file was last modified:

[filter "dater"]
 clean = sed -e 's/\\\$Date[^\\\$]*\\\$/\\\$Date\\\$/'
 smudge = expand_date %f

The expand_date script, which is passed the name of file as an argument, could
for example run the git log --pretty=format:"%ad" "$1" command to get the
substitution value.

Managing Your Worktree

[106]

You need however to remember another limitation. Namely, for a better
performance, Git does not touch files that did not change, be it on commit, on
switching the branch (on checkout), or on rewinding the branch (on reset). This
means that this trick cannot support the keyword expansion for date of the last
revision of a project (as opposed to the last revision that changed the file).

If you need to have such information in distributed sources (for example, the
description of the current commit, how long since the tagged release), you can either
make it a part of build system, or use keyword substitution for the git archive
command. The latter is quite a generic feature: if the export-subst attribute is set
for a file, Git will expand the $Format:<PLACEHOLDERS>$ generalized keyword
when adding the file to an archive.

The expansion of the $Format$ meta-keyword depends on the
availability of the revision identifier; it cannot be done if you, for example,
pass the SHA-1 identifier of a tree object to the git archive command.

The placeholders are the same as for the --pretty=format: custom formats for
git log, which are described in Chapter 2, Exploring Project History. For example,
the string $Format:%H$ will be replaced (not expanded) by the commit hash. It is an
irreversible keyword substitution; there is no trace of the keyword in the result of the
archive (export) operation.

Other built-in attributes
You can also tell Git not to add certain files or directories when generating an
archive. For example, you might want to not include in the user-facing archive the
directory with distribution tests, which are useful for the developer but not for end
users (they may require additional tools, or check the quality of the program and
process rather than the correctness of the application behavior). This can be done by
setting the export-ignore attribute, for example, by adding the following line to
.gitattributes:

xt/ export-ignore

Another thing that can be configured with file attributes is defining what diff
and apply should consider a whitespace error for specific types of file; this is a
fine-grained version of the core.whitespace configuration variable. Note that
the list of common whitespace problems to take notice of should use commas
as an element separator, without any surrounding whitespace, when put in the
.gitattributes file. See the following example (taken from the Git project):

* whitespace=!indent,trail,space
*.[ch] whitespace=indent,trail,space
*.sh whitespace=indent,trail,space

Chapter 4

[107]

With file attributes you can also specify the character encoding that is used by a
particular file, by providing it as a value of the encoding attribute. Git can use it to
select how to display the file in GUI tools (for example, gitk and git gui). This is
a fine-grained version of the gui.encoding configuration variable, and is used only
when explicitly asked for due to performance considerations. For example, GNU
gettext Portable Object (.po) files holding translations should use the UTF-8 encoding:

/po/*.po encoding=UTF-8

Defining attribute macros
In the Identifying binary files and end-of-line conversions section of this chapter, we
learned to mark binary files with the binary attribute. This is actually the attribute
macro expanding to -diff -merge -text (unsetting three file attributes). It
would be nice to define such macros to avoid unnecessary duplication; there can
be more than one pattern matching given type of files, but one gitattribute
line can contain only one file pattern. Git allows defining such macros, but only in
top-level gitattributes files: core.attributesFile, .git/info/attributes, or
.gitattributes in the main (top level) directory of a project. The built-in binary
macro could have been defined as follows:

[attr]binary -diff -merge -text

You can also define your own attributes. You can then programmatically check
which attributes are set for a given file, or what the value is of an attribute for a set
of files, with the git check-attr command.

Fixing mistakes with the reset command
At any stage during development, you might want to undo something, to fix
mistakes, or to abandon the current work. There is no git undo command in core
Git, and neither is there support for the --undo option in Git commands, though
many commands have an --abort option to abandon current work in progress. One
of the reasons why there is no such command or option yet is the ambiguity on what
needs to be undone (especially for multi-step operations).

Many mistakes can be fixed with the help of the git reset command. It can be used
for various purposes and in various ways; understanding how this command works
will help you in using it in many situation, not limited to provided example usage.

Note that this section covers only the full-tree mode of git reset; resetting the state
of a file, that is the description of what git reset -- <file> does, is left for the
Managing worktree and staging area section at the end of this chapter.

Managing Your Worktree

[108]

Rewinding the branch head, softly
The git reset command in its full-tree mode affects the current branch head, and
can also affect the index (the staging area) and the working directory. Note that reset
does not change which branch is current, as opposed to checkout—the difference is
described in Chapter 3, Developing with Git.

To reset only the current branch head, and not touch the index or the working tree,
you use git reset --soft [<revision>].

Fig 3. Before and after hard reset

Effectively, we are just changing the pointer of the current branch (master in the
example shown in Fig 3) to point to a given revision (HEAD^— the previous commit
in the example). Neither the staging area nor the working directory are affected.
This leaves all your changed files (and all files that differ between the old and new
revision pointed by branch) in the Changes to be committed state, as git status
would put it.

Removing or amending a commit
The way the command works means that a soft reset can be used to undo the act
of creating a commit. This can be used for example to amend a commit, though it
is far easier to simply use the --amend option of git commit. In fact, running the
following command:

$ git commit --amend [<options>]

is equivalent to:

$ git reset --soft HEAD^

$ git commit --reedit-message=ORIG_HEAD [<options>]

Chapter 4

[109]

The git commit --amend command also works for merge commits as opposed to
using soft reset. When amending commit, if you want to just fix the commit message
there will be no additional options. If you want to include a fix from the working
directory without changing the commit message, you can use -a --no-edit. If
you want to fix the authorship information after correcting Git configuration, use
--reset-author --no-edit.

Squashing commits with reset
You are not limited to rewinding the branch head to just the previous commit. Using
a soft reset, you can squash a few earlier commits (for example, commit and bugfix,
or introducing new functionality and using it), making one commit out of two
(or more); alternatively, you can instead use the squash instruction of interactive
rebase, as described in Chapter 8, Keeping History Clean. With the latter, you can
actually squash any series of commits, not just most recent ones.

Resetting the branch head and the index
The default mode of reset command, so called mixed reset (because it is between the
soft and hard forms), changes the current branch head to point to a given revision,
and also resets the index, putting the contents of that revision into the staging area:

Fig 4. Before and after hard reset

This leaves all your changed files (and all files that differ between the old and new
revision pointed by branch) in the Changes not staged for commit state, as git status
would put it. The git reset --mixed command will report what has not been
updated, using the short status format.

This version of reset command can be used, for example, to undo all additions of
new files. This can be done by running git reset, assuming that you didn't stage
any changes (or that you can put up with losing them). If you want to un-add a
particular file, use git rm --cached <file>.

Managing Your Worktree

[110]

Splitting a commit with reset
You can use a mixed reset to split a commit in two. First, run git reset HEAD^ to
reset the branch head and the index to the previous revision. Then interactively add
changes that you want to have in the first commit, and then create this first commit
from the index (git add -i and git commit). A second commit can then be created
from the working directory state (git commit -a).

If it is easier to interactively remove changes, you can do this too. Use git reset
--soft HEAD^, interactively un-stage changes with an interactive per-file reset,
create the first commit from the constructed state in the index, and create the second
commit from the working directory.

Here again you can instead use the interactive rebase to split commits further in the
history. The rebase operation will switch to the appropriate commit, and the actual
splitting would probably be done as described here.

Saving and restoring state with the WIP commit
Suppose you are interrupted by an urgent fix request while you are in the middle
of work on the development branch. You don't want to lose your changes, but the
worktree is a bit of a mess. One possible solution is to save the current state of the
working area by creating a temporary commit:

$ git commit -a -m 'snapshot WIP (Work In Progress)'

Then you handle the interruption, switching to the maintenance branch and creating
a commit to fix the issue. Then you need to go back to the previous branch (by using
checkout), remove the WIP commit from the history (using a soft reset), and go back
to the un-staged starting state (with a mixed reset):

$ git checkout -

$ git reset --soft HEAD^

$ git reset

Though it is much easier to just use git stash instead to handle interruptions, see the
Stashing away your changes section in this chapter. On the other hand, such temporary
commits (or similar proof-of-concept work) can be shared with other developers, as
opposed to stash.

Chapter 4

[111]

Discarding changes and rewinding branch
Sometimes your files will get in such a mess that you want to discard all changes,
and to return the working directory and the staging area (the index) to the last
committed state (the last good version). Or you might want to rewind the state of the
repository to an earlier version. A hard reset will change the current branch head and
reset the index and the working tree. Any changes to tracked files are discarded.

Fig 5. Before and after hard reset

This command can be used to undo (remove) a commit as if it had never happened.
Running git reset --hard HEAD^ will effectively discard the last commit (though
it will be available for a limited time via reflog), unless it is reachable from some
other branch.

Another common usage is to discard changes to the working directory with git
reset --hard.

It is very important to remember that a hard reset would
irrecoverably remove all changes from the staging area
and working directory. You cannot undo this part of the
operation! Changes are lost forever!

Moving commits to a feature branch
Say that you were working on something on the master branch, and you have
already created a sequence of commits. You realize that the feature you are working
on is more involved, and you want to continue polishing it on a topic branch, as
described in Chapter 6, Advanced Branching Techniques. You want to move all those
commits that are in master (let's say, the last three revisions) to the aforementioned
feature branch.

Managing Your Worktree

[112]

You need to create the feature branch, save uncommitted changes (if any), rewind
master removing those topical commits from it, and finally switch to the feature
branch to continue working (or you can use rebase instead):

$ git branch feature/topic

$ git stash

No local changes to save

$ git reset --hard HEAD~3

HEAD is now at f82887f before

$ git checkout feature/topic

Switched to branch 'feature/topic'

Of course, if there were local changes to save, this preceding series of commands
would have to be followed by git stash pop.

Undoing a merge or a pull
Hard resets can also be used to abort a failed merge with git reset --hard HEAD
(the HEAD is the default value for revision and can be omitted), for example, if you
decide that you don't want to resolve the merge conflict at this time (though with
modern Git you can use git merge --abort instead).

You can also remove a successful fast-forward pull or undo a rebase (and many other
operations moving the branch head) with git reset --hard ORIG_HEAD. (You can
here use HEAD@{1} instead of ORIG_HEAD).

Safer reset – keeping your changes
A hard reset will discard your local changes, similarly to the way git checkout -f
would. Sometimes you might want to rewind the current branch while keeping local
changes: that's what git reset --keep is for.

Fig 6. Before and after successful git reset --keep HEAD^.

Chapter 4

[113]

This mode resets the staging area (index entries), but retains the unstaged (local)
changes that are currently in the working directory. If it is not possible, the reset
is aborted. This means that local changes in the worktree are preserved and moved
to the new commit, in a similar way to how git checkout <branch> works with
uncommitted changes. The successful case is a bit like stashing changes away, hard
resetting, then unstashing.

The way git reset --keep <revision> works is by
updating the version (in the working directory) of only those
files that are different between the revision we rewind to and
the HEAD. The reset is aborted if there is any file that is different
between HEAD and <revision> (and thus should be updated)
and has local uncommitted changes.

Rebase changes to an earlier revision
Suppose that you are working on something, but now you realize that what you
have in your working directory should be in another branch, unrelated to a previous
commit. For example, you might have started to work on a bug while on the master
branch, and only then realized that it also affects the maintenance branch maint.
This means that the fix should therefore be put earlier in a branch, starting from
the common ancestor of those branches (or a place where the bug was introduced).
This would make it possible to merge the same fix both into master and maint, as
described in Chapter 12, Git Best Practices:

$ edit

$ git checkout -b bugfix-127

$ git reset --keep start

An alternate solution would be to simply use git stash:

$ edit

$ git stash

$ git checkout -b bugfix-127 start

$ git stash pop

Stashing away your changes
Often, when you've been working on a project, and things are in a messy state not
suitable for a permanent conflict, you want to temporarily save the current state and go
to work on something else. The answer to this problem is the git stash command.

Managing Your Worktree

[114]

Stashing takes the dirty state of your working area—that is, your modified
tracked files in your worktree (though you can also stash untracked files with the
--include-untracked option), and the state of the staging area, then saves this
state, and resets both the working directory and the index to the last committed
version (to match the HEAD commit), effectively running git reset --hard HEAD.
You can then reapply the stashed changes at any time.

Stashes are saved on a stack: by default you apply the last stashed changes (stash@
{0}), though you can list stashed changes (with git stash list), and explicitly
select any of the stashes.

Using git stash
If you don't expect for the interruption to last long, you can simply stash away your
changes, handle the interruption, then unstash them:

$ git stash

$... handle interruption ...

$ git stash pop

By default git stash pop will apply the last stashed changes, and delete the
stash if applied successfully. To see what stashes you have stored, you can use
git stash list:

$ git stash list

stash@{0}: WIP on master: 049d078 Use strtol(), atoi() is deprecated

stash@{1}: WIP on master: c264051 Error checking for <number>

You can use any of the older stashes by specifying the stash name as an argument.
For example, you can run git stash apply stash@{1} to apply it, and you can
drop it (remove it from the list of stashes) with git stash drop stash@{1}; the
git stash pop command is just a shortcut for apply + drop.

The default description that Git gives to a stash (WIP on branch) is useful for
remembering where you were when stashing the changes (giving branch and
commit), but doesn't help you remember what you were working on, and what is
stashed away. However, you can examine the changes recorded in the stash as a diff
with git stash show -p. But if you expect that the interruption might be more
involved, you should better save the current state to a stash with a description of
what you were working on:

$ git stash save 'Add <count>'

Saved working directory and index state On master: Add <count>

HEAD is now at 049d078 Use strtol(), atoi() is deprecated

Chapter 4

[115]

Git would then use the provided message to describe stashed changes:

$ git stash list

stash@{0}: On master: Add <count>

stash@{1}: WIP on master: c264051 Error checking for <number>

Sometimes the branch you were working on when you ran git stash save has
changed enough that git stash pop fails, because there are new revisions past
the commit you were on when stashing the changes. If you want to create a regular
commit out of the stashed changes, or just test stashed changes, you can use git
stash branch <branch name>. This will create a new branch at the revision you
were at when saving the changes, switch to this branch, reapply your work there,
and drop stashed changes.

Stash and the staging area
By default, stashing resets both the working directory and the staging area to the
HEAD version. You can make git stash keep the state of the index, and reset the
working area to the staged state, with the --keep-index option.

This is very useful if you used the staging area to untangle changes in the working
directory, as described in the section about interactive commits in Chapter 3,
Developing with Git, or if you want to split the commit in two as described in Splitting
a commit with reset section in this chapter. In both cases you would want to test each
change before committing. The workflow would look like the following:

$ git add --interactive

$ git stash --keep-index

$ make test

$ git commit -m 'First part'

$ git stash pop

You can also use git stash --patch to select how the working area should look
after stashing away the changes.

When restoring stashed changes, Git will ordinarily try to apply only saved worktree
changes, adding them to the current state of the working directory (which must
match the staging area). If there are conflicts while applying the state, they are stored
in the index as usual—Git won't drop the stash if there were conflicts.

You can also try to restore the saved state of the staging area with the --index
option; this will fail if there are conflicts when applying working tree changes
(because there is no place to store conflicts; the staging area is busy).

Managing Your Worktree

[116]

Stash internals
Perhaps you applied stashed changes, did some work, and then for some reason
want to un-apply those changes that originally came from the stash. Or you have
mistakenly dropped the stash, or cleared all stashes (which you can do with git
stash clear), and would like to recover them. Or perhaps you want to see how the
file looked when you stashed away changes. For this, you need to know what Git
does when creating a stash.

To stash away your changes, Git creates two automatic commits: one for the index
(staging area), and one for the working directory. With git stash --include-
untracked, Git creates an additional third automatic commit for untracked files.

The commit containing the work in progress in the working directory (the state of
files tracked from there) is the stash, and has the commit with the contents of the
staging area as its second parent. This commit is stored in a special ref: refs/stash.
Both WIP (stash) and index commits have the revision you were on when saving
changes as its first (and only for the index commit) parent.

We can see this with git log --graph or gitk:

$ git stash save --quiet 'Add <count>'

$ git log --oneline --graph --decorate --boundary stash ^HEAD

* 81ef667 (refs/stash) On master: Add <count>

|\

| * ed95050 index on master: 765b095 Added .gitignore

|/

o 765b095 (HEAD, master) Added .gitignore

$ git show-ref --abbrev

765b095 refs/heads/master

81ef667 refs/stash

We had to use git show-ref here (we could have used git for-each-ref instead),
because git branch -a shows only branches, not arbitrary refs.

When saving untracked changes, the situation is similar:

$ git stash --include-untracked

Saved working directory and index state WIP on master: 765b095 Added\

 .gitignore

HEAD is now at 765b095 Added .gitignore

$ git log --oneline --graph --decorate --boundary stash ^HEAD

Chapter 4

[117]

*-. bb76632 (refs/stash) WIP on master: 765b095 Added .gitignore

|\ \

| | * 1ae1716 untracked files on master: 765b095 Added .gitignore

| * d093b52 index on master: 765b095 Added .gitignore

|/

o 765b095 (HEAD, B) Added .gitignore

We see that the untracked file commit is the third parent of the WIP commit, and that
it doesn't have any parents.

Well, that's how stashing works, but how does Git maintain the stack of stashes? If
you have noticed that the git stash list output and the stash@{<n>} notation
therein looks like reflog, you have guessed right; Git finds older stashes in the reflog
for the refs/stash reference:

$ git reflog stash

81ef667 stash@{0}: On master: Add <count>

bb76632 stash@{1}: WIP on master: Added .gitignore

Un-applying a stash
Let's take the first example from the beginning of the section: un-applying changes
from the earlier git stash apply. One possible solution to achieve the required
effect is to retrieve the patch associated with working directory changes from a stash,
and apply it in reverse:

$ git stash show -p stash@{0} | git apply -R -

Note the -p option to the git stash show command—it forces patch output instead
of a summary of changes. We could use git show -m stash@{0} (the -m option is
necessary because a WIP commit representing the stash is a merge commit), or even
simply git diff stash@{0}^1 stash@{0}, in place of git stash show -p.

Recovering stashes that were dropped erroneously
Let's try the second example: recovering stashes that were accidentally dropped or
cleared. If they are still in your repository, you can search all commit objects that are
unreachable from other refs and look like stashes (that is, they are merge commits
and have a commit message using a strict pattern).

A simplified solution might look like this:

$ git fsck --unreachable |

grep "unreachable commit " | cut -d" " -f3 |

git log --stdin --merges --no-walk --grep="WIP on "

Managing Your Worktree

[118]

The first line finds all unreachable (lost) objects, the second one filters out everything
but commits and extracts their SHA-1 identifiers, and third line filters out even more,
showing only merge commits with a commit message containing the "WIP on " string.

This solution would not, however, find stashes with a custom message (those created
with git stash save "message").

Managing worktrees and the staging area
In Chapter 3, Developing with Git, we learned that, besides the working directory
where you work on changes, and the local repository where you store those changes
as revisions, there is also a third section between them: the staging area, sometimes
called the index.

In the same chapter, we also learned how to examine the status of the working
directory, and how to view the differences. We saw how to create a new commit out
of the working directory, or out of the staging area.

Now it is time to learn how to examine and modify the state of individual files.

Examining files and directories
It is easy to examine the contents of the working directory: just use the standard
tools for viewing files (for example, an editor or a pager) and examining directories
(for example, a file manager or the dir command). But how do we view the staged
contents of a file, or the last committed version?

One possible solution is to use the git show command with the appropriate selector.
Chapter 2, Exploring Project History, gave us the <revision>:<pathname> syntax
to examine the contents of a file at a given revision. Similar syntax can be used to
retrieve the staged contents, namely :<pathname> (or :<stage>:<pathname> if the
file is in a merge conflict; :<pathname> on itself is equivalent to :0:<pathname>).

Let's assume that we are in the src/ subdirectory, and want to see the contents of
the rand.c file there as it is in the working directory, in the staging area (using the
absolute and relative path), and in the last commit:

src $ less -FRX rand.c

src $ git show :src/rand.c

src $ git show :./rand.c

src $ git show HEAD:src/rand.c

src $ git show HEAD:./rand.c

Chapter 4

[119]

To see what files are staged in the index, there is the git ls-files command. By
default it operates on the staging area contents, but can also be used to examine the
working directory (which, as we have seen in this chapter, can be used to list ignored
files). This command lists all files in the specified directory, or the current directory
(because the index is a flat list of files, similar to MANIFEST files); you can use :/ to
denote the top-level directory of a project. Without using the --full-name option,
it would show filenames relative to the current directory (or the one specified as
parameter). In all examples it is assumed that we are in the src/ subdirectory, as
seen in command prompt.

src $ git ls-files

rand.c

src $ git ls-files --full-name :/

COPYRIGHT

Makefile

README

src/rand.c

What about committed changes? How can we examine which files were in a
given revision? Here git ls-tree comes to the rescue (note that it is a plumbing
command and does not default to the HEAD revision):

src $ git ls-tree --name-only HEAD

rand.c

src $ git ls-tree --abbrev --full-tree -r -t HEAD

100644 blob 862aafd COPYRIGHT

100644 blob 25c3d1b Makefile

100644 blob bdf2c76 README

040000 tree 7e44d2e src

100644 blob b2c087f src/rand.c

Searching file contents
Let's assume that you were reviewing code in the project and noticed an erroneous
doubled semicolon ';;' in the C source code. Or perhaps you were editing the file
and noticed a bug nearby. You fix it, but you wonder: "How many of those mistakes
are there?"—you would like to create a commit to fix every and each such errors.

Or perhaps you want to search the version scheduled for the next commit? Or maybe
examine how it looks in the next branch?

With Git, you can use the git grep command:

$ git grep -e ';;'

Managing Your Worktree

[120]

This will only search tracked files in the working directory, from the current
directory downwards. We will get many false positives, for example, from shell
scripts—let's limit the search space to C source files:

$ git grep -e ';;' -- '*.c'

The quotes are necessary for Git to do expansion (path limiting), instead of git grep
getting the list of files expanded by the shell. We still have many false matches from
the forever loop C idiom:

for (;;) {

With git grep you can construct complex conditions, excluding false positives.
Say that we want to search the whole project, not only the current directory:

$ git grep -e ';;' --and --not 'for *(.*;;' -- '**/*.c'

To search the staging area, use git grep --cached (or the equivalent, and perhaps
easier to remember, git grep --staged). To search the next branch, use git grep
next --; similar command can be used to search any version, actually.

Un-tracking, un-staging, and un-modifying files
If you want to undo some file-level operation (if for example you have changed
your mind about tracking files, or about staging changes)—look no further than git
status hints:

$ git status --ignored

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working\

 directory)

Untracked files:

 (use "git add <file>..." to include in what will be committed)

Ignored files:

 (use "git add -f <file>..." to include in what will be committed)

Chapter 4

[121]

You need to remember that only the contents of the working directory and the
staging area can be changed. Committed changes are immutable.

If you want to undo adding a previously untracked file to the index—or remove a
formerly tracked file from the staging area so that it would be deleted (not present)
in the next commit, while keeping it in the working directory—use git rm
--cached <file>.

Difference between the --cached (--staged) and --index options
Many Git commands, among others git diff, git grep, and
git rm, support the --cached option (or its alias --staged).
Others, such as git stash, have the --index option (the index is
an alternate name for the staging area). These are not synonyms (as
we will later see with git apply command, which supports both).
The --cached option is used to ask the command that usually
works on files in the working directory to only work on the staged
contents instead. For example, git grep --cached will search
the staging area instead of the working directory, and git rm
--cached will only remove a file from the index, leaving it in the
worktree.
The --index option is used to ask the command that usually
works on files in the working directory to also affect the index,
additionally. For example, git stash apply --index not only
restores stashed working directory changes, but also restores the
index.

If you asked Git to record a state of the path in the staging area, but changed your
mind, you can reset the staged contents of the file to the committed version with git
reset HEAD -- <file>.

If you mis-edited a file, so that the working directory version is a mess, and you want
to restore it to the version from the index, use git checkout -- <file>. If you
staged some of this mess, and would like to reset to the last committed version, use
git checkout HEAD -- <file> instead.

Actually these commands do not really undo operations; they restore
the previous state based on a backup that is the worktree, the
index, or the committed version. For example, if you staged some
changes, modified a file, then added modifications to the staging
area, you can reset the index to the committed version, but not to
the state after the first and before the second git add.

Managing Your Worktree

[122]

Resetting a file to the old version
Of course, you can use any revision with a per-file reset and per-file checkout. For
example, to replace the current worktree version of the src/rand.c file with the one
from the previous commit, you can use git checkout HEAD^ -- src/rand.c (or
redirect the output of git show HEAD^:src/rand.c to a file). To put the version
from the next branch into the staging area, run git reset next -- src/rand.c.

Note: git add <file>, git reset <file>, and git checkout <file> all enter
interactive mode for a given file with the --patch option. This can be used to
hand-craft a staged or worktree version of a file by selecting which changes should
be applied (or un-applied).

You might need to put a double dash -- before the file name here,
if for example, you have a file with the same name as a branch.

Cleaning the working area
Untracked files and directories may pile up in your working directory. They can
be left overs from merges, or be temporary files, proof of concept work, or perhaps
mistakenly put there. Whatever the case, often there really is no pattern to them, and
you don't need to make Git ignore them (see the Ignoring files section of this chapter);
you just want to remove them. You can use git clean for this.

Because untracked files do not have a backup in the repository, and you cannot
undo their removal (unless the operating system or file system supports undo), it's
advisable to first check which files would be removed with --dry-run / -n. Actual
removal by default requires the --force / -f option.

$ git clean --dry-run

Would remove patch-1.diff

Git will clean all untracked files recursively, starting from the current directory. You
can select which paths are affected by listing them as an argument; you can also
exclude additional types of file with the --exclude=<pattern> option. You can also
interactively select which untracked files to delete with the --interactive option.

$ git clean --interactive

Would remove the following items:

 src/rand.c~

 screenlog.0

*** Commands ***

Chapter 4

[123]

 1: clean 2: filter by pattern 3: select by numbers

 4: ask each 5: quit 6: help

What now>

The clean command also allows us to only remove ignored files, for example, to
remove build products but keep manually tracked files with the -X option (though
usually it is better to leave removing build byproducts to the build system, so that
cleaning the project files works even without having to clone the repository).

You can also use git clean -x in conjunction with git reset --hard, to create a
pristine working directory to test a clean build, by removing both ignored and not-
ignored untracked files, and resetting tracked files to the committed version.

Dirty working directory
The working directory is considered clean if it is the same as the
committed and staged version, and dirty if there are modifications.

Multiple working directories
Git for a long time allowed to specify where to find the administrative area of
the repository (the .git directory) with the git --git-dir=<path> <command>,
or the GIT_DIR environment variable, making it possible to work from the detached
working directory.

To be able to reliably use multiple working directories sharing a single repository,
we had to wait until version 2.5 of Git. With it, you can create a new linked work tree
by using git worktree add <path> <branch>, allowing us to have more than one
branch checked out. For convenience, if you omit the <branch> argument, then a new
branch will be created based on the name of the created worktree.

If you use an older Git version, there is always the git-new-
workdir script, which can be found in the contrib/ area of
the Git project repository. It is however, Unix-only (it relies on
symbolic links), and is somewhat fragile.

This mechanism can be used instead of git stash if you need to switch to a
different branch (for example, to urgently fix a security bug), but your current
working directory, and possibly also the staging area, is in a state of high disarray.
Instead of disturbing it, you create a temporary linked working tree to make a fix,
and remove it when done.

This is an evolving area—consult the Git documentation for more information.

Managing Your Worktree

[124]

Summary
In this chapter we have learned how to better manage the contents of the working
directory, and the contents of the staging area, preparing to create a new commit.

We know how to undo the last commit, how to drop changes to the working area,
how to retroactively change the branch we are working on, and other uses of the git
reset command. We now understand the three (and a half) forms of the reset.

We have learned how to examine and search the contents of the working directory,
the staging area, and committed changes. We know how to use Git to copy the file
version from the worktree, the index, or the HEAD into the worktree or the index.
We can use Git to clean (remove) untracked files.

This chapter showed how to configure the handling of files in the working directory;
how to make Git ignore files (by making them intentionally untracked) and why.
It described how to handle the differences between line ending formats between
operating systems. It explained how to enable (and write) keyword expansion, how
to configure the handling of binary files, and enhance viewing the diff and merging
specific classes of files.

We learned to stash away changes to handle interruptions, and to make it possible
to test interactively prepared commits, before creating a commit. This chapter
explained how Git manages stashes, enabling us to go beyond built-in operations.

This chapter, together with Chapter 3, Developing with Git, taught how to create your
contribution to a project; together with Chapter 2, Exploring Project History, it also
taught how to examine your clone of a project's repository.

The following chapters will teach you how to collaborate with other people, how to
send what you contributed, and how to merge changes from other developers.

[125]

Collaborative Development
with Git

Previous chapters, Chapter 3, Developing with Git, and Chapter 4, Managing Your
Worktree, taught you how to make a new contributions to a project, but limited it
to affecting only your own clone of the project's repository. The former chapter
described how to commit new revisions, while the latter showed how Git can help
you prepare it.

This chapter will present a bird's-eye view of various ways to collaborate, showing
centralized and distributed workflows. It will focus on the repository-level
interactions in collaborative development, while the set-up of branches will be
covered in the next chapter, Chapter 6, Advanced Branching Techniques.

This chapter will describe different collaborative workflows, explaining the
advantages and disadvantages of each. You will also learn here the chain of trust
concept, and how to use signed tags, signed merges, and signed commits.

The following topics will be covered in this chapter:

• Centralized and distributed workflows, and bare repositories
• Managing remotes and one-off single-shot collaboration
• Push, pull requests, and exchanging patches
• Using bundles for off-line transfer (sneakernet)
• How versions are addressed—the chain of trust
• Tagging, lightweight tags versus signed tags
• Signed tags, signed merges, and signed commits

Collaborative Development with Git

[126]

Collaborative workflows
There are various levels of engagement when using a version control system. One
might only be interested in using it for archaeology. Chapter 2, Exploring Project
History, will help with this. Of course, examining project's history is an important
part of development, too.

One might use version control for your private development, for a single developer
project, on a single machine. Chapter 3, Developing with Git, and Chapter 4, Managing
Your Worktree, show how to do this with Git. Of course, your own development is
usually part of a collaboration.

But one of the main goals of version control systems is to help multiple developers
work together on a project, collaboratively. Version control makes it possible to work
simultaneously on a given piece of software in an effective way, ensuring that their
changes do not conflict with each other, and helps with merging those changes together.

One might work on a project together with a few other developers, or with many.
One might be a contributor, or a project maintainer; perhaps the project is so large
that it needs subsystem maintainers. One might work in tight software teams, or
might want to make it easy for external contributors to provide proposed changes
(for example, to fix bugs, or an error in the documentation). There are various
different workflows that are best suited for those situations:

• Centralized workflow
• Peer-to-peer workflow
• Maintainer workflow
• Hierarchical workflow

Bare repositories
There are two types of repositories: an ordinary non-bare one, with a working directory
and a staging area, and a bare repository, bereft of the working directory. The former
type is meant for private solo development, for creating new history, while the latter
type is intended for collaboration and synchronizing development results.

By convention, bare repositories use the .git extension—for example, project.
git—while non-bare repositories don't have it—for example, project (with the
administrative area and the local repository in project/.git). You can usually omit
this extension when cloning, pushing to, or fetching from the repository; using either
http://git.example.com/project.git or http://git.example.com/project as
the repository URL will work.

Chapter 5

[127]

To create the bare repository, you need to add the --bare option to the init or the
clone command:

$ git init --bare project.git

Initialized empty Git repository in /home/user/project.git/

Interacting with other repositories
After creating a set of revisions, an extension to the project's history, you usually
need to share it with other developers. You need to synchronize with other
repository instances, publish your changes, and get changes from others.

From the perspective of the local repository instance, of your own clone of
repository, you need to push your changes to other repositories (either the
repository you cloned from, or your public repository), and fetch changes from
other repositories (usually the repository you cloned from). After fetching changes,
you sometimes need to incorporate them into your work, merging two lines of
development (or rebasing)—you can do it in one operation with pull.

Usually you don't want your local repository to be visible to the public, as such
repository is intended for private work (keeping work not ready yet from being
visible). This means that there is an additional step required to make your finished
work available; you need to publish your changes, for example with git push. The
following diagram demonstrates creating and publishing commits, an extension of
the one in Chapter 3, Developing with Git. The arrows show Git commands to copy
contents from one place to another, including to and from the remote repository.

Fig 1: Creating and publishing commits.

Collaborative Development with Git

[128]

The centralized workflow
With distributed version control systems you can use different collaboration models,
more distributed or less distributed. In a centralized workflow, there is one central
hub, usually a bare repository, that everyone uses to synchronize their work:

Fig 2: Centralized workflow. The shared repository is bare. The color of the line
represents from which repository the transport is initiated; for example, a green

line means that the command was invoked from within green repository, by its developer.

Each developer has his or her own non-bare clone of the central repository, which is
used to develop new revisions of software. When changes are ready, they push those
changes to the central repository, and fetch (or pull) changes from other developers
from the central shared repository, so integration is distributed. This workflow is
shown in Fig 2. The advantages and disadvantages of a centralized workflow are as
follows:

• The advantage is its simple setup; it is a familiar paradigm for people coming
from centralized version control systems and centralized management, and
provides centralized access control and backup. It might be a good setup for
a private project with a small team.

• The disadvantages are that the shared repository is a single point of failure
(if there are problems with the central repository, then there is no way to
synchronize changes), and that each developer pushing changes (making
them available for other developers) might require updating one's own
repository first and merging changes from others. You need also to trust
developers with access to the shared repository in this setup.

Chapter 5

[129]

The peer-to-peer or forking workflow
The opposite of a centralized workflow is a peer-to-peer or forking workflow.
Instead of using a single shared repository, each developer has a public repository
(which is bare), in addition to a private working repository (with a working
directory), like in the following figure:

Fig 3: Peer-to-peer (forking) workflow. Each developer has his/her own private
non-bare and their own public bare repository. The line color represents who did the transfer

(who ran the command). Lines pointing up are push, lines pointing down are fetch.

When changes are ready, developers push to their own public repositories. To
incorporate changes from other developers, one needs to fetch them from the
public repositories of other developers. The advantages and disadvantages of the
peer-to-peer or forking workflow are as follows:

• One advantage of the forking workflow is that contributions can be
integrated without the need for a central repository; it is a fully distributed
workflow. Another advantage is that you are not forced to integrate if you
want to publish your changes; you can merge at your leisure. It is a good
workflow for organic teams without requiring much setup.

• The disadvantages are a lack of the canonical version, no centralized
management, and the fact that in this workflow base form you need to
interact with many repositories (though git remote update can help
here, doing multiple fetches with a single command.). Setup requires that
developer public repositories need to be reachable from other developers'
workstations; this might not be as easy as using one's own machine as
a server for one's own public repositories. Also, as can be seen in Fig 3,
collaboration gets more complicated with the growing number of developers.

Collaborative Development with Git

[130]

The maintainer or integration manager
workflow
One of the problems with peer-to-peer workflow was that there was no canonical
version of a project, something that non-developers can use. Another was that each
developer had to do his or her own integration. If we promote one of the public
repositories in Fig 3 to be canonical (official), and make one of the developers
responsible for integration, we arrive at the integration manager workflow (or
maintainer workflow). The following diagram shows this workflow, with bare
repositories at the top and non-bare at the bottom:

Fig 4: Integration-manager (maintainer) workflow. One of the developers has the role
of integration manager, and his or her public repository is "blessed" as the official

repository for a project. Incoming lines of the same color denote fetching; outgoing lines
denote push. Dotted lines show the possibility of fetching from a non-official repository

(for example, collaboration within a smaller group of developers).

In this workflow, when changes are ready, the developer pushes them to his or
her own public repository, and tells the maintainer (for example via a pull request)
that they are ready. The maintainer pulls changes from the developer's repository
into own working repository and integrates the changes. Then the maintainer
pushes merged changes to the blessed repository, for all to see. The advantages and
disadvantages are as follows:

• The advantages are having an official version of a project, and that
developers can continue to work without doing or waiting for integration,
as maintainers can pull their changes at any time. It is a good workflow for
a large organic team, like in open source projects. The fact that the blessed
repository is decided by social consensus allows an easy switch to other
maintainers, either temporarily (for example, time off) or permanently
(forking a project).

Chapter 5

[131]

• The disadvantage is that for large teams and large projects the ability of
the maintainer to integrate changes is a bottleneck. Thus, for very large
organic teams, such as in Linux kernel development, it is better to use a
hierarchical workflow.

The hierarchical or dictator and lieutenants
workflows
The hierarchical workflow is a variant of the blessed repository workflow, generally
used by huge projects with hundreds of collaborators. In this workflow, the
project maintainer (sometimes called the benevolent dictator) is accompanied by
additional integration managers, usually in charge of certain parts of the repository
(subsystems); they're called lieutenants. The benevolent dictator's public repository
serves as the blessed reference repository from which all the collaborators need to
pull. Lieutenants pull from developers, the maintainer pulls from lieutenants, as
shown in the following figure:

Fig 5. Dictator and lieutenants (hierarchical) workflow. There is an overall maintainer
for the whole project, called dictator (whose public repository is official, "blessed" repository

of a project), and subsystem integration managers, called lieutenants. Dashed pattern
repositories are actually a pair of private and public repositories of a developer or a

lieutenant. The person that initiates transfer is shown via line color.

Collaborative Development with Git

[132]

In dictator and lieutenant workflows, there is a hierarchy (a network) of repositories.
Before starting work: either development or merging, one would usually pull
updates from the canonical (blessed) repository for a project. Developers prepare
changes in their own private repository, then send changes to an appropriate
subsystem maintainer (lieutenant). Changes can be sent as patches in email, or by
pushing them to the developer's public repository and sending a pull request.

Lieutenants are responsible for merging changes in their respective area of
responsibility. The master maintainer (dictator) pulls from lieutenants (and occasionally
directly from developers). The dictator is also responsible for pushing merged changes
to the reference (canonical) repository, and usually also for release management (for
example, creating tags for releases). The advantages and disadvantages are as follows:

• The advantage of this workflow is that it allows the project leader (the dictator)
to delegate much of the integration work. This can be useful in very big projects
(with respect to the number of developers and/or changes), or in highly
hierarchical environments. Such workflow is used to develop Linux kernel.

• Its complicated setup is a disadvantage of this workflow. It is usually overkill
for an ordinary project.

Managing remote repositories
When collaborating on any project managed with Git, you will interact often with a
constant set of other repositories; for example, in an integration-manager workflow
it would be (at least) the canonical blessed repository of a project. In many cases, you
will interact with more than one remote repository.

Git allows us to save the information about a remote repository (in short: remote) in
the config file, giving it a nickname (a shorthand name). Such information can be
managed with the git remote command.

There are also two legacy mechanisms to store repository
shorthand:

• A named file in .git/remotes—the name of this file will
be shorthand for remote. This file can contain information
about the URL or URLs, and fetch and push refspecs.

• A named file in .git/branches—the name of this file will
be shorthand for remote. The contents of this file are just an
URL for the repository, optionally followed by # and the
branch name.

Neither of those mechanisms is likely to be found in modern
repositories. See the Remotes section in the git-fetch(1)
manpage for more details.

Chapter 5

[133]

The origin remote
When cloning a repository, Git will create one remote for you—the origin remote,
storing information about where you cloned from—that is the origin of your copy of
the repository (hence the name). You can use this remote to fetch updates.

This is the default remote; for example git fetch without the remote name
will use the origin remote; unless it is specified otherwise by the remote.
default configuration variable, or unless the configuration for the current branch
(branch.<branchname>.remote) specifies otherwise.

Listing and examining remotes
To see which remote repositories you have configured, you can run the git remote
command. It lists the shortnames of each remote you've got. In a cloned repository
you will have at least one remote: origin.

$ git remote

origin

To see the URL together with remotes, you can use -v / --verbose option:

$ git remote --verbose

origin git://git.kernel.org/pub/scm/git/git.git (fetch)

origin git://git.kernel.org/pub/scm/git/git.git (push)

If you want to inspect remotes to see more information about a particular remote,
you can use the git remote show <remote> subcommand:

$ git remote show origin

* remote origin

 Fetch URL: git://git.kernel.org/pub/scm/git/git.git

 Push URL: git://git.kernel.org/pub/scm/git/git.git

 HEAD branch: master

 Remote branches:

 maint tracked

 master tracked

 next tracked

 pu tracked

 todo tracked

 Local branch configured for 'git pull':

 master merges with remote master

 Local ref configured for 'git push':

 master pushes to master (up-to-date)

Collaborative Development with Git

[134]

Git will consult the remote configuration, the branch configuration, and the remote
repository (for an up-to-date status). If you want to skip contacting the remote
repository and use cached information instead, add the -n option to git remote show.

As the information about remotes is stored in the repository configuration file, you
can simply examine .git/config:

[remote "origin"]
 fetch = +refs/heads/*:refs/remotes/origin/*
 url = git://git.kernel.org/pub/scm/git/git.git

The difference between local and remote branches (and remote tracking branches:
local representations of remote branches) will be described in Chapter 6, Advanced
Branching Techniques, together with an explanation of refspecs, as in +refs/
heads/*:refs/remotes/origin/* in the preceding example.

Adding a new remote
To add a new remote Git repository and to store its information under a shortname,
run git remote add <shortname> <URL>:

$ git remote add alice https://git.company.com/alice/random.git

Adding remote doesn't fetch from it automatically—you need to use the -f option
for that (or run git fetch <shortname>).

This command has a few options that affect how Git creates a new remote. You
can select which branches in the remote repository you are interested in with the
-t <branch> option. You can change which branch is the default one in the remote
repository (and which you can refer to by the remote name), using the -m <branch>
option. Or you can configure the remote repository for mirroring rather than for
collaboration with --mirror=push or --mirror=fetch.

For example, running the command:

$ git remote add -t master -t next -t maint github \ https://github.com/
jnareb/git.git

will result in the following configuration of the remote:

[remote "github"]
 url = https://github.com/jnareb/git.git
 fetch = +refs/heads/master:refs/remotes/github/master
 fetch = +refs/heads/next:refs/remotes/github/next
 fetch = +refs/heads/maint:refs/remotes/github/maint

Chapter 5

[135]

Updating information about remotes
The information about the remote repository is stored in three places: in the
remote configuration: remote.<remote name>, in remote-tracking branches, in
remote-HEAD (refs/remotes/<remote name>/HEAD is a symref that denotes the
default remote-tracking branch; that is, the remote tracking branch that <remote
name> used as a branch expands to), and optionally the per-branch configuration:
branch.<branch name>.

You could manipulate this information directly—either by editing the appropriate
files or using manipulation commands such as git config and git symbolic-
ref—but Git provides various git remote subcommands for this.

Renaming remotes
Renaming remote—that is, changing its nickname—is quite a complicated operation.
Running git remote rename <old> <new> would not only change the section
name in remote.<old>, but also the remote-tracking branches and accompanying
refspec, their reflogs (if there are any—see the core.logAllRefUpdates configuration
variable), and the respective branch configuration.

Changing the remote URLs
You can add or replace the URL for a remote with git remote set-url, but it is
also quite easy to simply directly edit the configuration.

You can also use the insteadOf (and pushInsteadOf) configuration variables.
This can be useful if you want to temporarily use another server, for example if the
canonical repository is temporarily down. Say that you want to fetch Git from the
repository on GitHub, because https://www.kernel.org/ is down; you can do this
by adding the following text to the config file:

[url "https://github.com/git/git.git"]
 insteadOf = git://git.kernel.org/pub/scm/git/git.git

Another use case for this feature is handling repository migration; you can use
insteadOf rewriting in the per-user configuration file ~/.gitconfig (or ~/.config/
git/config) without having to change the URL in each and every per-repository
.git/config file. In the case of more than one match, the longest match is used.

Multiple URLs for a remote
You can set multiple URLs for a remote. Git will try all
those URLs sequentially when fetching, and use the first
one that works; when pushing, Git will publish to all
URLs (all servers) simultaneously.

https://www.kernel.org/

Collaborative Development with Git

[136]

Changing the list of branches tracked by remote
A similar situation to changing the URL is with changing the list of branches tracked
by a remote (that is, the contents of fetch lines): you can use git remote set-
branches (with a sufficiently modern Git), or edit the config file directly.

Note that freeing a branch in a remote repository from being tracked does not
remove the remote tracking branch—the latter is simply no longer updated.

Setting the default branch of remote
Having a default branch on remote is not required, but it lets us use the remote name
(for example, origin) to be specified in lieu of a specific remote-tracking branch (for
example, origin/master). This information is stored in the symbolic ref <remote
name>/HEAD (for example, origin/HEAD).

You can set it with git remote set-head; the --auto option does that based on
what is the current branch in the remote repository:

$ git remote set-head origin master

$ git branch -r

 origin/HEAD -> origin/master

 origin/master

You can delete the default branch on the remote with the --delete option.

Deleting remote-tracking branches
When a public branch is deleted in the remote repository, Git nevertheless keeps the
corresponding remote-tracking branch. It does that because you might want to do,
or might have done, your own work on top of it. You can however delete the remote
tracking branch with git branch -r -d, or you can ask Git to prune all stale remote
tracking branches under the remote with git remote prune. Or you can configure
Git to do it automatically on fetch, as if git fetch were run with the --prune option,
by setting the fetch.prune and remote.<name>.prune configuration variables.

You can check which remote tracking branches are stale with the --dry-run option
to git remote prune, or with the git remote show command.

Deleting remote as a whole is as simple as running git remote delete (or its alias
git remote rm). It also removes remote-tracking branches for the deleted remote.

Chapter 5

[137]

Support for triangular workflows
In many collaborative workflows, like for example the maintainer (or integration
manager) workflow, you fetch from one URL (from the blessed repository) but push
to another URL (to your own public repository). See Fig 4: the developer interacts with
three repositories—he or she fetches from the blessed repository (light red) into the
developer private repository (darker), then pushes his or her work into the developer
public repository (lighter).

In such a triangular workflow (three repositories), the remote you fetch or pull
from is usually the default origin remote (or remote.default). One option for
configuring which repository you push to is to add this repository as a separate
remote, and perhaps also set it up as the default with remote.pushDefault.

[remote "origin"]
 url = https://git.company.com/project
 fetch = +refs/heads/*:refs/remotes/origin/*
[remote "myown"]
 url = git@work.company.com:user/project
 fetch = +refs/heads/*:refs/remotes/myown/*
[remote]
 pushdefault = myown

You could also set it as pushremote in the per-branch configuration:

[branch "master"]
 remote = origin
 pushremote = myown
 merge = refs/heads/master

Another option is to use a single remote (perhaps even origin), but set it up with a
separate pushurl. This solution however has the slight disadvantage that you don't
have separate remote-tracking branches for the push repository (and thus there is
no support @{push} notation in addition to having @{upstream} as a shortcut for
specifying the appropriate remote-tracking branches; however, the former has only
been available since Git 2.5.0):

[remote "origin"]
 url = https://git.company.com/project
 pushurl = git@work.company.com:user/project
 fetch = +refs/heads/*:refs/remotes/origin/*

Collaborative Development with Git

[138]

Transport protocols
In general, URLs in the configuration of remote contain information about the
transport protocol, the address of the remote server (if any), and the path to the
repository. Sometimes, the server that provides access to the remote repository
supports various transport protocols; you need to select which one to use. This
section is intended to help with this choice.

Local transport
If the other repository is on the same local filesystem, you can use the following
syntaxes for specifying the URL:

/path/to/repo.git/
file:///path/to/repo.git/

The former implies the --local option to the Git clone, which bypasses the smart
Git-aware mechanism and simply makes a copy (or a hardlink for immutable files
under .git/objects, though you can avoid this with the --no-hardlinks option);
the latter is slower but can be used to get a clean copy of a repository.

This is a nice option for quickly grabbing work from someone else's working
repository, or for sharing work using a shared filesystem with the appropriate
permissions.

As a special case, a single dot "." denotes the current repository. This means that

$ git pull . next

is roughly equivalent to

$ git merge next

Chapter 5

[139]

Legacy (dumb) transports
Some transports do not require any Git-aware smart server—they don't
need Git installed on the server (for smart transports at least git-
upload-pack and/or git-receive-pack is needed), though most of
them do need extra information generated by git update-server-
info alongside the repository refs, objects, and packfiles (copied in some
way).
Rsync protocol transport – the unsafe one
One of the old protocols that Git supported from the very beginning,
allowing us to fetch and push, read and write to the remote repository, is
the rsync protocol, using the following URL type:

rsync://host.example.com/path/to/repo.git/

The rsync protocol is deprecated, because it does not ensure proper
ordering when getting data; if you fetch from a non-quescient repository,
you can get invalid data. On the other hand it is quite fast and actually
resumable. However, if you have a problem doing the initial clone
on an unreliable network, it is better to use bundles rather than rsync
protocol,as described next in the part about dumb HTTP.
FTP(S) and dumb HTTP(S) protocol transports – the ineffective ones
These transports need only the appropriate stock server (an FTP server or
a web server), and up-to-date data from git update-server-info.
When fetching from such a server, Git uses the so-called commit walker
downloader: going down from fetched branches and tags, Git walks
down the commit chain, and downloads objects or packs containing
missing revisions and other data (for example, file contents at revision).
This transport is inefficient (in terms of bandwidth, but especially in
terms of latency), but on the other hand it can be resumed if interrupted.
Nevertheless there are better solutions than using dumb protocols,
namely involving bundles (see the Offline transport with bundles section
in this chapter), when the network connection to the server is unreliable
enough that you can't get the clone.
Pushing to a dumb server is possible only via the HTTP and HTTPS
protocols, requires the web server to support WebDAV, and Git has to be
built with the expat library linked. The FTP and FTPS protocols are read-
only (supporting only clone, fetch, and pull).

Collaborative Development with Git

[140]

Smart transports
When the repository you want to fetch from is on another machine, you need to
access the Git server. Nowadays most commonly encountered are Git-aware smart
servers. The smart downloader negotiates which revisions are necessary, and creates a
customized packfile to send to a client. Similarly, during the push the Git on the server
talks to the Git on the user's machine (to the client) to find which revisions to upload.

Git-aware smart servers use the git upload-pack downloader for fetching and the
git receive-pack for pushing. You can tell Git where to find them if they are not
in PATH (but for example are installed in one's home directory) with the --upload-
pack and --receive-pack options for fetch and push, or the uploadpack and
receivepack remote configuration.

With very few exceptions (such as the repository using submodules accessed by an
ancient Git that does not understand them), Git transport is backward- and forward-
compatible— the client and server negotiate what capabilities they can both use.

Native Git protocol
The native transport, using git:// URLs, provides read-only anonymous access
(though you could in principle configure Git to allow pushing by enabling the
receive-pack service, either from the command line or via the daemon.receivePack
boolean-valued configuration variable; using this mechanism is not recommended at
all, even in a closed local network).

Git protocol does no authentication, including no server authentication, and should
be used with caution on unsecured networks. The git daemon TCP server for
this protocol normally listens on port 9418; you need to be able to access this port
(through the firewall) to be able to use the native Git protocol.

SSH protocol
The Secure SHell (SSH) transport protocol provides authenticated read-write
access. Git simply runs git upload-pack or git receive-pack on the server,
using SSH to execute the remote command. There is no possibility for anonymous,
unauthenticated access, though you could as workaround set up a guest account for
it (password-less or with an empty password).

Using public-private key authentication allows access without requiring you to
provide a password on every connection, with the only possible exception of
providing it once: to unlock a password-protected private key. You can read more
about authentication in the Credentials/password management section.

Chapter 5

[141]

For SSH protocol you can use the URL syntax with ssh:// as the protocol part:

ssh://[user@]host.example.com[:port]/path/to/repo.git/

Alternatively you can use the scp-like syntax:

[user@]host.example.com:path/to/repo.git/

The SSH protocol additionally supports the ~username expansion, just like the native
Git transport (~ is the home directory of the user you log in as, ~user is the home
directory of user), in both syntax forms:

ssh://[user@]host.example.com[:port]/~[user]/path/to/repo.git/

[user@]host.example.com:~[user]/path/to/repo.git/

SSH uses the first contact authentication for servers—it remembers the key that the
server side previously used, and warns the user if it has changed, asking then for
confirmation (the server key could have been changed legitimately, for example
due to a SSH server reinstall). You can check the server key fingerprint on the first
connection.

Smart HTTP(S) protocol
Git also supports the smart HTTP(S) protocol, which requires a Git-aware CGI
or server module—for example, git-http-backend (itself a CGI module). As a
design feature, Git can automatically upgrade dumb protocol URLs to smart URLs.
Conversely, a Git-aware HTTP server can downgrade to the backward-compatible
dumb protocol (at least for fetching: it doesn't support WebDAV-based dumb
HTTP push). This feature allows to use the same HTTP(S) URL for both dumb and
smart access:

http[s]://[user@]host.example.com[:port]/path/to/repo.git/

By default, without any other configuration, Git allows anonymous downloads
(git fetch, git pull, git clone, and git ls-remote), but requires that the
client is authenticated for upload (git push).

Standard HTTP authentication is used if authentication is required to access a
repository, which is done by the HTTP server software. Using SSL/TLS with
HTTPS ensures that if the password is sent (for example, if the server uses Basic
HTTP authentication), it is sent encrypted, and that the server identity is verified
(using server CA certificates).

Collaborative Development with Git

[142]

Offline transport with bundles
Sometimes there is no direct connection between your machine and the server
holding the Git repository that you want to fetch from. Or perhaps there is no server
running, and you want to copy changes to another machine anyway. Maybe your
network is down. Perhaps you're working somewhere on-site and don't have access to
the local network for security reasons. Maybe your wireless/Ethernet card just broke.

Enter the git bundle command. This command will package up everything that
would normally be transferred over the wire, putting objects and references into a
special binary archive file called bundle (like packfile, only with branches and so
on). You need to specify which commits are to be packed—something that network
protocols do automatically for you for online transport.

When you are using one of the smart transports, a want/have
negotiation phase takes place, where the client tells the server
what it has in its repository and which advertised references on
the server it wants, to find common revisions. This is then used
by the server to create a packfile and send the client only what's
necessary, minimizing the bandwidth use.

Next you move this archive by some means (for example, by so called sneakernet,
which means saving bundle to a removable storage and physically moving the
media) to your machine. You can then incorporate the bundle contents by using git
clone or git fetch with the filename of bundle in place of the repository URL.

Proxies for Git transports
When direct access to the server is not possible, for example, from within a
firewalled LAN, sometimes you can connect via a proxy.
For the native Git protocol (git://), you can use the core.gitProxy
configuration variable, or the GIT_PROXY_COMMAND environment variable
to specify a proxy command—for example, ssh. This can be set on a
per-remote basis with this special syntax for the core.gitProxy value:
<command> for <remote>.
You can use the http.proxy configuration variable or curl environment
variables to specify the HTTP proxy server to use for the HTTP(S)
protocol (http(s)://). This can be set on a per-remote basis with the
remote.<remote name>.proxy configuration variable.
You can configure SSH (using its configuration files, for example, ~/.ssh/
config) to use tunneling (port forwarding) or a proxy command (for
example, the netcat/nc, or netcat mode of ssh). It is a recommended
solution for the SSH proxy; if neither tunneling nor proxy is possible, you
can use the ext:: transport helper, as shown later in this chapter.

Chapter 5

[143]

Cloning and updating with bundle
Let's assume that you want to transfer the history of a project (say, limited to the
master branch for simplicity) from machineA (for example, your work computer) to
machineB (for example, an onsite computer). There is however no direct connection
between those two machines.

First, we create a bundle that contains the whole history of the master branch (see
Chapter 2, Exploring Project History), and tag this point of history to know what we
bundled, for later:

user@machineA ~$ cd repo

user@machineA repo$ git bundle create ../repo.bundle master

user@machineA repo$ git tag -f lastbundle master

Here the bundle file was created outside the working directory. This is a matter of
choice; storing it out of the repository means that you don't have to worry about
accidentally adding it to your project history, or having to add a new ignore rule.
The *.bundle file extension is also a matter of the naming convention used.

For security reasons, to avoid information disclosure about the
parts of history that was deleted but not purged (for example,
an accidentally committed file with a password), Git only
allows fetching from git show-ref-compatible references:
branches, remote-tracking branches, and tags.
The same restrictions apply when creating a bundle. This
means for example that (for implementation reasons) you
cannot run git bundle create master^1. Though of
course, because you control the server end, as a workaround
you can create a new branch for master^, (temporarily)
rewind master, or check out the detached HEAD at master^.

Then you transfer the just created repo.bundle file to machineB (via email, on a USB
pen drive, on CD-R, and so on.). Because this bundle consists of a self-contained,
whole subset of the history, down to the first (parent-less) root commit, you can
create a new repository by cloning from it, putting the bundle filename in place of
the repository URL:

user@machineB ~$ git clone repo.bundle repo

Initialized empty Git repository in /home/user/repo/.git/

warning: remote HEAD refers to non-existent ref, unable to checkout.

user@machineB ~$ cd repo

user@machineB repo$ git branch -a

 remotes/origin/master

Collaborative Development with Git

[144]

Oops. We didn't bundle HEAD, so git clone didn't know which branch is current
and therefore should be checked out.

user@machineB repo$ git bundle list-heads ../repo.bundle

5d2584867fe4e94ab7d211a206bc0bc3804d37a9 refs/heads/master

Because bundle can be treated as a remote repository, we could
simply use git ls-remote ../repo.bundle here instead of
git bundle list-heads ../repo.bundle.

Therefore, with this bundle being as it were, we need to specify which branch to
check out (this would not be necessary if we had bundled HEAD too):

user@machineB ~$ git clone repo.bundle --branch master repo

Let's fix the problem with the lack of checkout (assuming that you use a modern
enough Git):

user@machineB repo$ git checkout master

Branch master set up to track remote branch master from origin.

Already on 'master'

Here we used a special case of git checkout <branch>—because
the master branch does not exist, but there is a remote-tracking
branch with the same name for exactly one remote (origin/master
here), Git will assume that we meant to create a local branch for
the development that is to be published to the master branch in the
origin repository. With an older Git, we would need to specify
this explicitly:
user@machineB repo$ git checkout -b master --track
origin/master

This will define a remote called origin, with the following configuration:

[remote "origin"]
 url = /home/user/repo.bundle
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master

To update the repository on machineB cloned from the bundle, you can fetch or pull
after replacing the original bundle stored at /home/user/repo.bundle with the one
with incremental updates.

Chapter 5

[145]

To create a bundle containing changes since the last transfer in our example, go to
machineA and run the following command:

user@machineA repo$ git bundle create ../repo.bundle \

 lastbundle..master

user@machineA repo$ git tag -f lastbundle master

This will bundle all changes since the lastbundle tag; this tag denotes what was
copied with the previous bundle (see Chapter 2, Exploring Project History, for an
explanation of double-dot syntax). After creating a bundle, this will update the tag
(using -f to replace it), like it was done the first time when creating a bundle, so that
the next bundle can also be created incrementally from the now current point.

Then you need to copy the bundle to machineB, replacing the old one. At this point
one can simply pull to update the repository:

user@machineB repo$ git pull

From /home/user/repo.bundle

 ba5807e..5d25848 master -> origin/master

Updating ba5807e..5d25848

Fast-forward

Using bundle to update an existing repository
Sometimes you might have a repository cloned already, only for the network to fail.
Or perhaps you moved outside the local area network (LAN), and now you have
no access to the server. End result: you have an existing repository, but no direct
connection to the upstream (to the repository we cloned from).

Now if you don't want to bundle up the whole repository, like in the Cloning and
updating with bundle section, you need to find some way to specify the cut-off point
(base) in such a way that it is included in the target repository (on your machine).
You can specify the range of revisions to pack into the bundle using almost any
technique from Chapter 2, Exploring Project History. The only limitation is that the
history must start at a branch or tag (anything that git show-ref accepts). You can
of course check the range with the git log command.

Commonly used solutions for specifying the range of revisions to pack into
bundle are as follows:

• Use the tag that is present in both repositories:
machineA repo$ git bundle create ../repo.bundle v0.1..master

Collaborative Development with Git

[146]

• Create a cut-off based on the time of commit creation:
machineA repo$ git bundle create ../repo.bundle --since=1.week
master

• Bundle just the last few revisions, limiting the revision range by the number
of commits:
machineA repo$ git bundle create ../repo.bundle -5 master

Better to pack too much, than too little. Otherwise you get
something like this:
user@machineB repo$ git pull ../repo.bundle master

error: Repository lacks these prerequisite commits:

error: ca3cdd6bb3fcd0c162a690d5383bdb8e8144b0d2

You can check if the repository has the requisite commits to fetch
from bundle with git bundle verify.

Then, after transporting it to machineB, you can use the bundle file just like a
regular repository to do a one-off pull (putting bundle filename in place of URL
or remote name):

user@machineB repo$ git pull ../repo.bundle master

From ../repo.bundle

 * branch master -> FETCH_HEAD

Updating ba5807e..5d25848

If you don't want to deal with the merge, you can fetch into the remote-tracking
branch (the <remote branch>:<remote-tracking branch> notation used here,
which is known as refspec, will be explained in Chapter 6, Advanced Branching
Techniques):

user@machineB repo$ git fetch ../repo.bundle \

 refs/heads/master:refs/remotes/origin/master

From ../repo.bundle

 ba5807e..5d25848 master -> origin/master

Updating ba5807e..5d25848

Alternatively, you can use git remote add to create a new shortcut, using the path
to the bundle file in place of the repository URL. Then you can simply deal with
bundles as described in the previous section.

Chapter 5

[147]

Utilizing bundle to help with the initial clone
Smart transports provide much more effective transport than dumb ones. On the other
hand, the concept of a resumable clone using smart transport remains elusive to this
day (it is not available in Git version 2.7.0, though perhaps somebody will implement
it in the future). For large projects with a long history and with a large number of files,
the initial clone might be quite large (for example, linux-next is more than 800 MB)
and take pretty long time. This might be a problem if the network is unreliable.

You can create a bundle from the source repository, for example with the following
command:

user@server ~$ git --git-dir=/dir/repo.git bundle create --all HEAD

Some servers may offer such bundles to help with the initial clone. There is an
emerging practice (a convention) that the repository with given URL has a bundle
available at the same URL but with the .bundle suffix. For example, https://
git.example.com/git/repo.git can have its bundle available at https://git.
example.com/git/repo.bundle.

You can then download such a bundle, which is an ordinary static file, using
any resumable transport: HTTP(S), FTP(S), rsync, or even BitTorrent (with the
appropriate client that supports resuming the download).

Remote transport helpers
When Git doesn't know how to handle a certain transport protocol (which doesn't
have built-in support), it attempts to use the appropriate remote helper for a
protocol, if one exists. That's why an error within the protocol part of the repository
URL looks like it does:

$ git clone shh://git@example.com:repo

Cloning into 'repo'...

fatal: Unable to find remote helper for 'shh'

This error message means that Git tried to find git-remote-shh to handle the shh
protocol (actually a typo for ssh), but didn't find an executable with such a name.

You can explicitly request a specific remote helper with the <transport>::<address>
syntax, where <transport> defines the helper (git remote-<transport>), and
<address> is a string that the helper uses to find the repository.

Modern Git implements support for the dumb HTTP, HTTPS, FTP, and FTPS
protocols with a curl family of remote helpers: git-remote-http, git-remote-
https, git-remote-ftp, and git-remote-ftps, respectively.

Collaborative Development with Git

[148]

Transport relay with remote helpers
Git includes two generic remote helpers that can be used to proxy smart transports:
the git-remote-fd helper to connect to remote server via either a bidirectional
socket or a pair of pipes, and the git-remote-ext helper to use an external
command to connect to the remote server.

In the case of the latter, which uses the "ext::<command>[<arguments>...]>"
syntax for the repository URL, Git runs the specified command to connect to the
server, passing data for the server to the standard input of the command, and
receiving a response on its standard output. This data is assumed to be passed to
a git:// server, git-upload-pack, git-receive-pack, or git-upload-archive
(depending on the situation).

For example, let's assume that you have your repository on a LAN host where you
can log in using SSH. However, for security reasons this host is not visible on the
Internet, and you need to go through the gateway host: login.example.com.

user@home ~$ ssh user@login.example.com

user@login ~$ ssh work

user@work ~$ find . -name .git -type d -print

./repo/.git

The trouble is that, also for security reasons, this gateway host either doesn't have
Git installed (reducing the attack surface), or doesn't have your repository present
(it uses a different filesystem). This means that you cannot use the ordinary SSH
protocol. But the SSH transport is just git-receive-pack / git-upload-pack
accessed remotely via SSH, with the path to the repository as a parameter. This
means that you can use the ext:: remote helper:

user@home ~$ git clone \

 "ext::ssh -t user@login.example.com ssh work %S 'repo'" repo

Cloning into 'repo'...

Checking connectivity... done.

Here, %S will be expanded by Git into the full name of the appropriate service—git-
upload-pack for fetching and git-receive-pack for the push. The -t option is
needed if logging to the internal host uses interactive authentication (for example, a
password). Note that you need to give the name (repo, here) to the result of cloning;
otherwise, Git will use the command (ssh) as the repository name.

Chapter 5

[149]

You can also use "ext::ssh [<parameters>...]
%S '<repository>'" to use specific options for SSH
transport—for example, selecting the keypair to use -
without needing to edit .ssh/config.

This is not the only possible solution—though there is no built-in support for
sending the SSH transport through a proxy, like there is for native git:// protocol
(among others, core.gitProxy) and for HTTP (among others, http.proxy), you can
however do it via configuring the SSH example in .ssh/config (see ProxyCommand),
or by creating a SSH tunnel.

On the other hand, you can use the ext:: remote helper also to proxy the git://
protocol—for example, with the help of socat—including using a single proxy for
multiple servers. See the git-remote-ext(1) manpage for details and examples.

Using foreign SCM repositories as remotes
The remote helper mechanism is very powerful. It can be used to interact with
other version control systems, transparently using their repositories as if they were
native Git repositories. Though there is no such built-in helper (unless you count the
contrib/ area in the Git sources), you can find git-remote-hg (or gitifyhg) helper
to access Mercurial repositories, and git-remote-bzr to access Bazaar repositories.

Once installed, those remote helper bridges will allow you to clone, fetch, and
push to and from the Mercurial or Bazaar repositories as if they were Git ones,
using the <helper>::<URL> syntax. For example, to clone Mercurial repository
you can simply run the following command:

$ git clone "hg::http://hg.example.com/repo"

There is also the remote.<remote name>.vcs configuration variable, if you don't
like using the <helper>:: prefix in the repository URL. With this method you can
use the same URL for Git like for the original VCS (version control system).

Of course one needs to remember about impedance mismatches between different
version control systems, and the limitations of the remote helper mechanism.
There are some features that do not translate at all, or do not translate well—for
example, octopus merges (with more than two parent commits) in Git, or multiple
anonymous branches (heads) in Mercurial. With remote helpers there is also no place
to fix mistakes, replace references to other revisions with target native syntax, and
otherwise clean up artifacts created by repository conversions—as can and should
be done with a one-time conversion when changing version control systems. (Such
a clean-up can be done with, for example, the help of the reposurgeon third-party
tool).

Collaborative Development with Git

[150]

With remote helpers, you can even use things that are not version control
repositories in the strict sense; for example, with the Git-Mediawiki project you can
use Git to view and edit a MediaWiki-based wiki (for example, Wikipedia), treating
the history of pages as a Git repository:

$ git clone mediawiki::http://wiki.example.com

Beside that, there are remote helpers that allow additional transport protocols, or
storage options—such as the git-remote-s3bundle to store the repository as a
bundle file on Amazon S3.

Credentials/password management
In most cases, with the exception of the local protocol, publishing changes to
the remote repository requires authentication (the user identifies itself) and
authorization (the given user has permission to push) provided by Git. Sometimes,
fetching the repository also requires authentication.

Commonly used credentials for authentication are username and password. You can
put the username in the HTTP and SSH repository URLs, if you are not concerned
about information leakage (in respect of valid usernames), or you can use the
credential helper mechanism. You should never put passwords in URLs, even though
it is technically possible for HTTP ones — the password can be visible to other
people, for example when they are listing processes.

Besides the mechanism inherent in the underlying transport engine, be it SSH_
ASKPASS for ssh, or the ~/.netrc file for curl-based transport, Git provides its own
integrated solution.

Asking for passwords
Some Git commands that interactively ask for a password (and a username if it is
not known)—such as git svn, the HTTP interface, or IMAP authentication—can be
told to use an external program. The program is invoked with a suitable prompt
(a so-called domain, describing what the password is for), and Git reads the
password from the standard output of this program.

Git will try the following places to ask the user for usernames and passwords; see the
gitcredentials(7) manpage:

• The program specified by environment variable GIT_ASKPASS, if set
(Git-specific environment variables always have higher precedence than
configuration variables)

• Otherwise, the core.askpass configuration variable is used, if set

Chapter 5

[151]

• Otherwise, the SSH_ASKPASS environment variable is used, if set (not
Git-specific)

• Otherwise, user is prompted on the terminal

This "askpass" external program is usually selected according to the desktop
environment of the user (after installing it, if necessary). For example (x11-)ssh-
askpass provides a plain X-Window dialog asking for the username and password;
there is ssh-askpass-gnome for GNOME, ksshaskpass for KDE, mac-ssh-askpass
can be used for MacOS X, and win-ssh-askpass can be used for MS Windows. Git
comes with a cross-platform password dialog in Tcl/Tk—git-gui--askpass—to
accompany the git gui graphical interface and the gitk history viewer.

Git configuration precedence
Commands in Git have many ways to configure their behavior. They
are applied in this order: the first existing specification wins, from
the most specific to the least specific:

• Command line option, example, --pager,
• Git-specific environment variable, for example, GIT_PAGER,

or GIT_ASKPASS (such variables usually use the GIT_ prefix)
• Configuration option (in one of the config files, with its own

precedence), for example, core.pager or core.askpass
• A generic environment variable, for example, PAGER or

SSH_ASKPASS

• The built-in default, for example, the less pager or
terminal prompt.

Public key authentication for SSH
For the SSH transport protocol there are additional authentication mechanisms
besides passwords. One of them is public key authentication. It is very useful to
avoid being asked for a password over and over. Also, the repository hosting service
providing the SSH access may require using it, possibly because identifying a user
based on his or her public key doesn't require an individual account (that's what, for
example, gitolite uses).

The idea is that the user creates a public/private key pair by running, for example,
ssh-keygen. The public key is then sent to the server, for example, using ssh-copy-
id (which adds the public key *.pub at the end of the ~/.ssh/authorized_keys
file on the remote server). You can then log in with your private key that is on your
local machine, for example, as ~/.ssh/id_dsa. You might need to configure ssh
(in ~/.ssh/config on Linux) to use a specific identity file for a given connection
(hostname), if it is not the default identity key.

Collaborative Development with Git

[152]

Another convenient way to use public key authentication is with an authentication
agent such as ssh-agent (or Pageant from PuTTY on MS Windows). Utilizing an
agent also makes it more convenient to work with passphrase-protected private
keys—you need to provide the password only once, to the agent, at the time of
adding the key (which might require user action, for example running ssh-add for
ssh-agent).

Credential helpers
It can be cumbersome to input the same credentials over and over. For SSH, you can use
public key authentication; there is no true equivalent for other transports. Git credential
configuration provides two methods to at least reduce the number of questions.

The first is the static configuration of default usernames (if one is not provided in the
URL) for a given authentication context, for example hostname:

[credential "https://git.example.com"]
 username = user

It helps if you don't have secure storage for credentials.

The second is to use external programs from which Git can request both usernames
and passwords—credential helpers. These programs usually interface with secure
storage (a keychain, keyring, wallet, credentials manager, and so on) provided by the
desktop environment or the operating system.

Git by default includes at least the cache and store helpers. The cache helper (git-
credential-cache) stores credentials in memory for a short period of time; by
default it caches usernames and passwords for 15 minutes. The store helper (git-
credential-store) stores unencrypted credentials for indefinitely long time on disk,
in files readable only by the user (similar to ~/.netrc); there is also a third-party
netrc helper (git-credential-netrc) for GPG-encrypted netrc/authinfo files.

Selecting a credential helper to use and its options, can be configured either globally
or per-authentication context, as in the previous example. Global credentials
configuration looks like this:

[credential]
 helper = cache --timeout=300

This will create Git cache credentials for 300 seconds (five minutes). If the credential
helper name is not an absolute path (for example, /usr/local/bin/git-kde-
credentials-helper), Git will prepend the git credential- prefix to the helper
name. You can check what types of helper are available with git help -a | grep
credential- (excluding those with a double dash -- in the name—those are internal
implementations).

Chapter 5

[153]

There exist credential helpers that are using secure storage of the desktop
environment. When you are using them, you need to provide the password only
once, to unlock the storage (some helpers can be found in the contrib/ area in
Git sources). There is git-credential-gnome-keyring and git-credential-
gnomekeyring for the Gnome Keyring, git-credential-osxkeychain for the
MacOS X Keychain, and git-credential-wincred and git-credential-winstore
for MS Windows' Credential Manager/Store.

Git will use credential configuration for the most specific authentication context, though
if you want distinguish the HTTP URL by pathname (for example, providing different
usernames to different repositories on the same host) you need to set the useHttpPath
configuration variable to true. If there are multiple helpers configured for context, each
will be tried in turn, until Git acquires both a username and a password.

Before the introduction of credential helpers, one could
use askpass programs that interface with the desktop
environment keychain, for example, kwalletaskpass (for
KDE Wallet) or git-password (for the MacOS X Keychain).

Publishing your changes upstream
Now that the Collaborative workflows section has explained various repository setups,
we'll learn about a few common patterns for contributing to a project. We'll see what
our (main) options for publishing changes are.

Before starting work on new changes, you should usually sync to the main
development, merging the official version into your repository. This, and the work
of the maintainer, is left to be described in Chapter 7, Merging Changes Together.

Pushing to a public repository
In a centralized workflow, publishing your changes consists simply of pushing them
to the central server, as shown in Fig 2. Because you share this central repository with
other developers, it can happen that somebody has already pushed to the branch you
are trying to update (the non-fast-forward case). In this scenario, you need to pull
(fetch and merge, or fetch and rebase) others' changes, before being able to push yours.

Another possible system with similar workflow is when your team submits each set
of changes to the code review system, for example, Gerrit. One available option is
to push to a special ref (which is named after a target branch, for example to refs/
for/<branchname>) in a special repository. Then change review server makes each
set of changes land automatically on a separate per-set ref (for example, refs/
changes/<change-id> for commits belonging to a series with given Change-ID).

Collaborative Development with Git

[154]

In both peer-to-peer (see Fig 3), and in maintainer workflows
or its hierarchical workflow variant (Fig 4 and Fig 5), the first
step in getting your changes included in the project is also to
push, but to push to your own public repository. Then you
need to ask your co-developers, or the project maintainer,
to merge in your changes. You can do this for example by
generating a pull request.

Generating a pull request
In workflows with personal public repositories, one needs to send the notification
that the changes are available to co-developers, or to the maintainer, or to integration
managers. The git request-pull command can help with this step. Given the
starting point (the bottom of the revision range of interest) and the URL or the name
of remote public repository, it will generate a summary of changes:

$ git request-pull origin/master publish

The following changes since commit
ba5807e44d75285244e1d2eacb1c10cbc5cf3935:

 Merge: strtol() + checks (2014-05-31 20:43:42 +0200)

are available in the git repository at:

 https://git.example.com/random master

Alice Developer (1):

 Support optional <count> parameter

 src/rand.c | 26 +++++++++++++++++++++-----

 1 files changed, 21 insertions(+), 5 deletions(-)

The pull request contains the SHA-1 of the base of the changes (which is the revision
just before the first commit, in series proposed for pull), the title of the base commit,
the URL and the branch of the public repository (suitable as git pull parameters),
and the shortlog and diffstat of changes. This output can be sent to the
maintainer, for example, by email.

Many Git hosting software and services include a built-in equivalent for git
request-pull (for example, the Create pull request action in GitHub).

Chapter 5

[155]

Exchanging patches
Many larger projects (and many open-source projects) have established procedures
for accepting changes in the form of patches, for example, to lower the barrier to
entry for contributing. If you want to send a one-off code proposal to a project, but
you do not plan to be a regular contributor, sending patches might be easier than
a full collaboration setup (acquiring the permission to commit in the centralized
workflow, setting up a personal public repository for the forking workflow and for
similar workflows). Besides, one can generate patches with any compatible tool, and
the project can accept patches no matter which version control setup they're using.

Nowadays, with the proliferation of various free Git hosting
services, it might be more difficult to set up an e-mail client
for sending properly formatted patch emails—though
services such as submitGit (for submitting patches to the
Git project mailing list) could help.

Additionally, patches, being a text representation of changes, can be easily
understood by computers and humans alike. This makes them universally appealing,
and very useful for code review purposes. Many open-source projects use the public
mailing list for that purpose: you can email a patch to this list, and the public can
review and comment on your changes.

To generate e-mail versions of each commit series, turning them into mbox-
formatted patches, you can use the git format-patch command, as follows:

$ git format-patch -M -1

0001-Support-optional-count-parameter.patch

You can use any revision range specifier with this command, most commonly used
is limiting by the number of commits, as in the preceding example, or by using the
double-dot revision range syntax—for example, @{u}.. (see Chapter 2, Exploring
Project History). When generating a larger number of patches, it is often useful to
select a directory where to save generated patches. This can be done with the -o
<directory> option. The -M option for git format-patch (passed to git diff)
turns on rename detection; this can make patches smaller and easier to review.

The patch files end up looking like this:

From db23d0eb16f553dd17ed476bec731d65cf37cbdc Mon Sep 17 00:00:00 2001
From: Alice Developer <alice@company.com>
Date: Sat, 31 May 2014 20:25:40 +0200
Subject: [PATCH] Initialize random number generator

Collaborative Development with Git

[156]

Signed-off-by: Alice Developer <alice@company.com>

 random.c | 2 ++
 1 files changed, 2 insertions(+), 0 deletions(-)

diff --git a/random.c b/random.c
index cc09a47..5e095ce 100644
--- a/random.c
+++ b/random.c
@@ -1,5 +1,6 @@
 #include <stdio.h>
 #include <stdlib.h>
+#include <time.h>

 int random_int(int max)
@@ -15,6 +16,7 @@ int main(int argc, char *argv[])

 int max = atoi(argv[1]);

+ srand(time(NULL));
 int result = random_int(max);
 printf("%d\n", result);
--
2.5.0

It is actually a complete email in the mbox format. The subject (after stripping the
[PATCH] prefix) and everything up to the three-dash line --- forms the commit
message—the description of the change. To email this to a mailing list or a developer,
you can use either git send-email or git imap-send. The maintainer can then use
git am to apply the patch series, creating commits automatically; there's more about
this in Chapter 7, Merging Changes Together.

The [PATCH] prefix is here to make it easier to distinguish patches
from other emails. The prefix can—and often does—include additional
information, such as the number in the series (set) of patches, revision
of series, information about it being a work-in-progress, or the
request-for-comments status, for example: [RFC/PATCHv4 3/8].

You can also edit these patch files to add more information for prospective
reviewers—for example, information about alternative approaches, about the
differences between previous revisions of the patch (previous attempts), or a
summary and/or references to the discussion on implementing the patch (for
example, on a mailing list). You add such text between the --- line and the beginning
of the patch, before the summary of changes (diffstat); it will be ignored by git am.

Chapter 5

[157]

Chain of trust
An important part of collaborative efforts during the development of a project is
ensuring the quality of its code. This includes protection against the accidental
corruption of the repository, and unfortunately also from malicious intent—a
task that the version control system can help with. Git needs to ensure trust in
the repository contents: your own and other developers' (including especially the
canonical repository of the project).

Content-addressed storage
In Chapter 2, Exploring Project History, we learned that Git uses SHA-1 hashes as a
native identifier of commit objects (which represent revisions of the project, and form
its history). This mechanism makes it possible to generate commit identifiers in a
distributed way, taking the SHA-1 cryptographic hash function of the commit object
link to the previous commit (the SHA-1 identifier of the parent commit) included.

Moreover, all other data stored in the repository (including the file contents in the
revision represented by the blob objects, and the file hierarchy represented by the
tree objects) also use the same mechanism. All types of object are addressed by their
contents, or to be more accurate, the hash function of the object. You can say that the
base of a Git repository is the content-addressed object database.

Thus Git provides a built-in trust chain through secure SHA-1 hashes. In one
dimension, the SHA-1 of a commit depends on its contents, which includes the SHA-1
of the parent commit, which depends on the contents of the parent commit, and so forth
down to the initial root commit. In the other dimension, the content of a commit object
includes the SHA-1 of the tree representing the top directory of a project, which in turn
depends on its contents, and these contents includes the SHA-1 of subdirectory trees
and blobs of file contents, and so forth down to the individual files.

All of this allows SHA-1 hashes to be used to verify whether objects obtained from a
(potentially untrusted) source are correct, and that they have not been modified since
they have been created.

Lightweight, annotated, and signed tags
The trust chain allows us to verify contents, but does not verify the identity of
the person that created this contents (the author and committer name are fully
configurable). This is the task for GPG/PGP signatures: signed tags, signed commits,
and signed merges.

Collaborative Development with Git

[158]

Lightweight tags
Git uses two types of tags: lightweight and annotated. A lightweight tag is very
much like a branch that doesn't change – it's just a pointer (reference) to a specific
commit in the graph of revisions, though in refs/tags/ namespace rather than in
refs/heads/ one.

Annotated tags
Annotated tags, however, involve tag objects. Here the tag reference (in refs/
tags/) points to a tag object, which in turn points to a commit. Tag objects contain
a creation date, the tagger identity (name and e-mail), and a tagging message.
You create an annotated tag with git tag -a (or --annotate). If you don't
specify a message for an annotated tag on the command line (for example, with -m
"<message>"), Git will launch your editor so you can enter it.

You can view the tag data along with the tagged commit with the git show
command as follows, (commit skipped):

$ git show v0.2

tag v0.2

Tagger: Joe R Hacker <joe@company.com>

Date: Sun Jun 1 03:10:07 2014 -0700

random v0.2

commit 5d2584867fe4e94ab7d211a206bc0bc3804d37a9

Signed tags
Signed tags are annotated tags with a clear text GnuPG signature of the tag data
attached. You can create it with git tag -s (which uses your committer identity to
select the signing key, or user.signingKey if set), or with git tag -u <key-id>;
both versions assume that you have a private GPG key (created, for example, with
gpg --gen-key).

Annotated or signed tags are meant for marking a release,
while lightweight tags are meant for private or temporary
revision labels. For this reason, some Git commands (such as
git describe) will ignore lightweight tags by default.

Of course in collaborative workflows it is important that the signed tag is made
public, and that there is a way to verify it.

Chapter 5

[159]

Publishing tags
Git does not push tags by default: you need to do it explicitly. One solution is to
individually push a tag with git push <remote> tag <tag-name> (here tag
<tag> is equivalent to the longer refspec refs/tags/<tag>:refs/tags/<tag>);
however, you can skip tag in most cases, here. Another solution is to push tags
in mass either all the tags—both lightweight and annotated—with the use of
the --tags option, or just all annotated tags that point to pushed commits with
--follow-tags. This explicitness allows you to re-tag (using git tag -f) with
impunity, if it turns out that you tagged the wrong commit, or there is a need for
a last-minute fix—but only if the tag was not made public.

When fetching changes, Git automatically follows tags, downloading annotated
tags that point to fetched commits. This means that downstream developers will
automatically get signed tags, and will be able to verify releases.

Tag verification
To verify a signed tag, you use git tag -v <tag-name>. You need the signer's
public GPG key in your keyring for this (imported using for example gpg --import
or gpg --keyserver <key-server> --recv-key <key-id>), and of course the
tagger's key needs to be vetted in your chain of trust.

$ git tag -v v0.2

object 1085f3360e148e4b290ea1477143e25cae995fdd

type commit

tag signed

tagger Joe Random <jrandom@example.com> 1411122206 +0200

project v0.2

gpg: Signature made Fri Jul 19 12:23:33 2014 CEST using RSA key ID
A0218851

gpg: Good signature from "Joe Random <jrandom@example.com>"

Signed commits
Signed tags are a good solution for users and developers to verify that the tagged
release was created by the maintainer. But how do we make sure that a commit
purporting to be by a somebody named Jane Doe, with the jane@company.com
e-mail, is actually a commit from her? How to make it so anybody can check it?

Collaborative Development with Git

[160]

One possible solution, available since Git version 1.7.9, is to GPG-sign individual
commits. You can do this with git commit --gpg-sign[=<keyid>] (or -S in short
form). The key identifier is optional—without this, Git would use your identity as
the author. Note that -S (capital S) is different from -s (small s); the latter adds
a Signed-off-by line at the end of the commit message for the Digital Certificate
of Ownership.

$ git commit -a --gpg-sign

You need a passphrase to unlock the secret key for

user: "Jane Doe <jane@company.com>"

2048-bit RSA key, ID A0218851, created 2014-03-19

[master 1085f33] README: eol at eof

 1 file changed, 1 insertion(+), 1 deletion(-)

To make commits available for verification, just push them. Anyone can then verify
them with the --show-signature option to git log (or git show), or with one of
the %Gx placeholders in git log --format=<format>.

$ git log -1 --show-signature

commit 1085f3360e148e4b290ea1477143e25cae995fdd

gpg: Signature made Wed Mar 19 11:53:49 2014 CEST using RSA key ID
A0218851

gpg: Good signature from "Jane Doe <jane@company.com>"

Author: Jane Doe <jane@company.com>

Date: Wed Mar 19 11:53:48 2014 +0200

 README: eol at eof

Since Git version 2.1.0, you can also use the git verify-commit command for this.

Merging signed tags (merge tags)
The signed commit mechanism, described in the previous section, may be useful in
some workflows, but it is inconvenient in an environment where you push commits
out early—for example, to your own public repository—and only after a while do
you decide whether they are worth including in the upstream (worth sending to the
main repository). This situation can happen if you follow the recommendations of
Chapter 8, Keeping History Clean; you know only after the fact (long after the commit
was created), that the given iteration of the commit series passes code review.

Chapter 5

[161]

You can deal with this issue by rewriting the whole commit series after its shape
is finalized (after passing the review), signing each rewritten commit; or just
amending and signing only the top commit. Both of those solutions would require
forced push to replace old not signed history. Or you can create an empty commit
(with --allow-empty), sign it, and push it on top of the series. But there is a better
solution: requesting the pull of a signed tag (available since Git version 1.7.9).

In this workflow, you work on changes and, when they are ready, you create and
push a signed tag (tagging the last commit in the series). You don't have to push
your working branch—pushing the tag is enough. If the workflow involves sending
a pull request to the integrator, you create it using a tag as the end commit:

$ git tag -s for-maintainer

$ git request-pull origin/master public-repo 1253-for-maintainer \

 >msg.txt

The signed tag message is shown between the dashed lines in the pull request, which
means that you may want to explain your work in the tag message when creating
the signed tag. The maintainer, after receiving such pull request, can copy the
repository line from it, fetching and integrating the named tag. When recording the
merge result of pulling the named tag, Git will open an editor and ask for a commit
message. The integrator will see the template starting with:

Merge tag '1252-for-maintainer'

Work on task tsk-1252

gpg: Signature made Wed Mar 19 12:23:33 2014 CEST using RSA key ID
A0218851
gpg: Good signature from "Jane Doe <jane@company.com>"

This commit template includes the commented out output of the GPG verification
of the signed tag object being merged (so it won't be in the final merge commit
message). The tag message helps describe the merge better.

The signed tag being pulled is not stored in the integrator's repository, not as a
tag object. Its content is stored, hidden, in a merge commit. This is done so as to
not pollute the tag namespace with a large number of such working tags. The
developer can safely delete the tag (git push public-repo --delete 1252-for-
maintainer) after it gets integrated.

Collaborative Development with Git

[162]

Recording the signature inside the merge commit allows for after-the-fact verification
with the --show-signature option:

$ git log -1 --show-signature

commit 0507c804e0e297cd163481d4cb20f3f48ceb87cb

merged tag '1252-for-maintainer'

gpg: Signature made Wed Mar 19 12:23:33 2014 CEST using RSA key ID
A0218851

gpg: Good signature from "Jane Doe <jane@company.com>"

Merge: 5d25848 1085f33

Author: Jane Doe <jane@company.com>

Date: Wed Mar 19 12:25:08 2014 +0200

 Merge tag 'for-maintainer'

 Work on task tsk-1252

Summary
We have learnt how to use Git for collaborative development, how to work together on
a project in a team. We got to know different collaborative workflows, different ways of
setting up repositories for collaboration. Which one to use depends on circumstances:
how large the team is, how diverse, and so on. This chapter focuses on repository-to-
repository interaction; the interplay between branches and remote-tracking branches in
those repositories is left for Chapter 6, Advanced Branching Techniques.

We have learnt how Git can help manage information about remote repositories
(remotes) involved in the chosen workflow. We were shown how to store, view,
and update this information. This chapter explains how one can manage triangular
workflows, in which you fetch from one repository (canonical), and push to the
other (public).

We have learnt how to choose a transport protocol if the remote server offers
such choice, and a few tricks such as using foreign repositories as if they were native
Git repositories.

Contact with remote repositories can require providing credentials, usually the
username and password, to be able to, for example, push to the repository. This chapter
describes how Git can help make this part easier to use thanks to credential helpers.

Chapter 5

[163]

Publishing your changes, sending them upstream, may involve different
mechanisms, depending on the workflow. This chapter describes the push, pull
request and patch-based techniques.

We have learned about the chain of trust: how to verify that a release comes from the
maintainer, how to sign your work so that the maintainer can verify that it comes
from you, and how the Git architecture helps with this.

The two following chapters will expand the topic of collaboration: Chapter 6,
Advanced Branching Techniques, will explore relations between local branches and
branches in a remote repository, and how to set up branches for collaboration, while
Chapter 7, Merging Changes Together, will talk about the opposite issue—how to join
the results of parallel work.

[165]

Advanced Branching
Techniques

The previous chapter, Collaborative Development with Git, described how to arrange
teamwork, focusing on repository-level interactions. In that chapter, you learned
about various centralized and distributed workflows, and their advantages and
disadvantages.

This chapter will go deeper into the details of collaboration in a distributed
development. It would explore the relations between local branches and branches
in remote repositories. It will introduce the concept of remote tracking branches,
branch tracking, and upstream. This chapter will also teach us how to specify the
synchronization of branches between repositories, using refspecs and push modes.

You will also learn branching techniques: how branches can be used to prepare new
releases and to fix bugs. You will learn how to use branches in such way so that it
makes it easy to select which features go into the next version of the project.

In this chapter, we will cover the following topics:

• Different kinds of branches, both long-lived and short-lived, and
their purpose

• Various branching models, including topic branch-based workflow
• Release engineering for different branching models
• Using branches to fix a security issue in more than one released version
• Remote-tracking branches and refspecs, the default remote configuration
• Rules for fetching and pushing branches and tags
• Selecting a push mode to fit chosen collaboration workflow

Advanced Branching Techniques

[166]

Types and purposes of branches
A branch in a version control system is a active parallel line of development.
They are useful, as we will see, to isolate and separate different types of work. For
example, branches can be used to prevent your current work on a feature in progress
from interfering with the management of bug fixes.

A single Git repository can have an arbitrary number of branches. Moreover, with
a distributed version control system, such as Git, there could be many repositories
(forks) for a single project, some public and some private; each repository will have
its own local branches.

Before examining how the collaboration between repositories looks like at the branch
level, we need to know what types of branches we would encounter in local and
remote repositories. Let's now talk about how these branches are used and examine
why people would want to use multiple branches in a single repository.

A bit of history: a note on the evolution of branch management

Early distributed version control systems used one branch per
repository model. Both Bazaar (then Bazaar-NG) and Mercurial
documentation, at the time when they begin their existence,
recommended to clone the repository to create a new branch.

Git, on the other hand, had good support for multiple branches in a
single repository almost from the start. However, at the beginning, it
was assumed that there would be one central multibranch repository
interacting with many single-branch repositories (see, for example, the
legacy .git/branches directory to specify URLs and fetch branches,
described in the gitrepository-layout(7) man page), though
with Git it was more about defaults than capabilities.

Because branching is cheap in Git (and merging is easy), and
collaboration is quite flexible, people started using branches more and
more, even for solitary work. This led to the wide use of extremely
useful topic branch workflow.

There are many reasons for keeping a separate line of development, thus there are
many kinds of branches. Different types of branches have different purposes. Some
branches are long-lived or even permanent, while some branches are short-lived and
expected to be deleted after their usefulness ends. Some branches are intended for
publishing, some are not.

Chapter 6

[167]

Long-running, perpetual branches
Long-lived or permanent branches are intended to last (indefinitely or, at least, for a
very long time).

From the collaboration point of view, a long-lived branch can be expected to be
there when you are next updating data or publishing changes. This means that one
can safely start their own work basing it on (forking it from) any of the long-lived
branches in the remote repository, and be assured that there should be no problems
with integrating that work.

Also, what you can find in public repositories are usually only long-lived branches.
In most cases, these branches should never rewind (the new version is always a
descendant of the old versions). There are some special cases here though; there can
be branches that are rebuilt after each new release (requiring forced fetch at that
time), and there can be branches that do not fast forward. Each such case should be
explicitly mentioned in the developer documentation to help avoiding unpleasant
surprises.

Integration, graduation, or progressive-stability
branches
One of the uses of branches is to separate ongoing development (which can include
temporarily some unstable code) from maintenance work (where you are accepting
only bug fixes). There are usually a few of such branches. The intent of each of these
branches is to integrate the development work of the respective degree of stability,
from maintenance work, through stable, to unstable or development work.

Fig 1. A linear view and a "silo" view of the progressive-stability branches. In the linear view,
the stable revisions are further down the line in your commit history, and the cutting-edge unstable

work is further up the history. Alternatively, we can think of branches as work silos, where work goes
depending on the level of the stability (graduation) of changes.

Advanced Branching Techniques

[168]

These branches form a hierarchy with a decreasing level of graduation or stability
of work, as shown in Fig 1. Note that, in real development, progressive-stability
branches would not keep this simple image exactly as it is shown. There would be
new revisions on the branches after the forking points. Nevertheless, the overall
shape would be kept the same, even in the presence of merging.

The rule is to always merge more stable branches into less stable ones, that is,
merge upwards, which will preserve the overall shape of branch silos (see also Fig 2
in the Graduation, or progressive-stability branches workflow section of this chapter).
This is because merging means including all the changes from the merged branch.
Therefore, merging a less stable branch into a more stable one would bring unstable
work to the stable branch, violating the purpose and the contract of a stable branch.

Often, we see the graduation branches of the following levels of stability:

• maint or maintenance of the fixes branch, containing only bug fixes to the
last major release; minor releases are done with the help of this branch.

• The master or trunk, or stable branch, with the development intended
for the next major release; the tip of this branch should be always in the
production-ready state.

• next or devel, development, or unstable, where the new development
goes to test whether it is ready for the next release; the tip can be used for
nightly builds.

• pu or proposed for the proposed updates, which is the integration testing
branch meant for checking compatibility between different new features.

Having multiple long-running branches is not necessary, but it's often helpful,
especially in very large or complex projects. Often in operations, each of levels of
stability corresponds to its own platform or deployment environment; giving a
branch per platform.

Per-release branches and per-release maintenance
Preparing for the new release of a project can be a lengthy and involved process.
Per-release branches can help with this. The release branch is meant for separating
the ongoing development from preparing the new release. It allows other developers
to continue working on writing new features and on integration testing, while the
quality assurance team with the help of the release manager takes time to test and
stabilize the release candidate.

After creating a new release, keeping such per-release branches allows us to support and
maintain older released versions of the software. At these times, such branches work as
a place to gather bug fixes (for their software versions) and create minor releases.

Chapter 6

[169]

Not all the projects find utilizing per-release branches necessary. You can prepare
a new release on the stable-work graduation branch, or use a separate repository in
place of using a separate branch. Also, not all the projects require providing support
for more than the latest version.

This type of branches is often named after the release it is intended for, for example,
having names such as release-v1.4, or v1.4.x (it better not have the same name
as tag for release, though).

Hotfix branches for security fixes
Hotfix branches are like release branches, but for unplanned releases. Their purpose
is to act upon the undesired state of a live production or a widely deployed version,
usually to resolve some critical bug in the production (usually a severe security bug).
This type of branches can be considered a longer lived equivalent of the bugfix topic
branches (see the Bugfix branches section of this chapter).

Per-customer or per-deployment branches
Let's say that some of your project's customers require a few customization tweaks,
since they do things differently. Or perhaps, there are some deployment sites that
have special requirements. Suppose that these customizations cannot be done by
simply changing the configuration. You would then need to create separate the lines
of development for these customers or customizations.

But you don't want these lines of development to remain separate. You expect that
there will be changes that apply to all of them. One solution is to use one branch for
each customization set, per customer or per deployment. Another would be to use
separate repositories. Both solutions help maintain parallel lines of development and
transfer changes from one line to another.

Automation branches
Say that you are working on a web application and you want to automate its
deployment using a version control system. One solution would be to set up a
daemon to watch a specific branch (for example the one named 'deploy') for changes.
Updating such branch would automatically update and reload the application.

This is, of course, not the only possible solution. Another possibility would be to
use a separate deploy repository and set up hooks there, so push would trigger
refreshing of the web application. Or, you could configure a hook in a public
repository so that push to a specific branch triggers redeployment (this mechanism
is described in Chapter 11, Git Administration).

Advanced Branching Techniques

[170]

These techniques can be used also for continuous integration (CI); instead of
deploying the application, pushing it into a specific branch would trigger the
running of test suite (the trigger could be creating a new commit on this branch
or merging into it).

Mob branches for anonymous push access
Having a branch in a remote repository (on server) with special treatment on push,
is a technique that has many uses, including helping to collaborate. It can be used to
enable controlled anonymous push access for a project.

Let's assume that you want to allow random contributors to push into the central
repository. You would want, however, to do this in a managed way: one solution is
to create a special mob branch or a mob/* namespace (set of branches) with relaxed
access control.

You can find how to set this up in Chapter 11, Git Administration.

The orphan branch trick
All the types of branches described up to this point differed in their purpose and
management. However, from the technical point of view (from the point of view of the
graph of commits), they all look the same. This is not the case with the so-called orphan
branches.

The orphan branch is a parallel disconnected (orphaned) line of development,
sharing no revisions with the main history of a project. It is a reference to a disjoint
subgraph in the DAG of revisions, without any intersection with the main DAG
graph. In most cases, their checkout is also composed of different files.

Such branches are sometimes used as a trick to store tangentially related contents
in a single repository, instead of using separate repositories. (When using separate
repositories to store related contents, one might want to use some naming
convention to denote this fact, for example a common prefix.) They can be used to:

• Store the project's web page files. For example, GitHub uses a branch named
gh-pages for the project's pages.

• Store generated files, when the process of creating them requires some
nonstandard toolchain. For example, the project documentation can be stored
in html, man, and pdf orphan branches (the html branch can be also used to
deploy the documentation). This way the user can get it without needing to
install its toolchain.

• Store the project TODO notes (for example in the todo branch), perhaps
together with storing there some specialized maintainer tools (scripts).

Chapter 6

[171]

You can create such branch with git checkout --orphan <new branch>, or
by pushing into (or fetching into) a specific branch from a separate repository,
as follows:

$ git fetch repo-htmldocs master:html

Creating an orphan branch with git checkout --orphan
does not technically create a branch, that is, it does not make
a new branch reference. What it does is point the symbolic
reference HEAD to an unborn branch. The reference is created
after the first commit on a new orphan branch.
That is why there is no option to create an orphan branch for
git branch command.

Short-lived branches
While long-lived branches stay forever, short-lived or temporary branches are
created to deal with single issues, and are usually removed after dealing with said
issue. They are intended to last only as long as the issue is present. Their purpose is
time-limited.

Because of their provisional nature, they are usually present only in the local private
repository of a developer or integration manager (maintainer), and are not pushed to
public distribution repositories. If they appear in public repositories, they are there
only in a public repository of an individual contributor (see the blessed repository
workflow in Chapter 5, Collaborative Development with Git), as a target for a pull request.

Topic or feature branches
Branches are used to separate and gather together different subsets of development
efforts. With easy branching and merging, we can go further than creating a branch
for each stability level, as described earlier. We can create a separate branch for each
separate issue.

The idea is to make a new branch for each topic, that is, a feature or a bug fix. The
intent of this type of branch is both to gather together subsequent development steps
of a feature (where each step – a commit – should be a self contained piece, easy to
review) and to isolate the work on one feature from the work on other topics. Using
a feature branch allows topical changes to be kept together and not mixed with other
commits. It also makes it possible for a whole topic to be dropped (or reverted) as a
unit, be reviewed as a unit, and be accepted (integrated) as a unit.

Advanced Branching Techniques

[172]

The end goal for the commits on a topic branch is to be included in a released
version of a product. This means that, ultimately, the short-lived topic branch is to be
merged into the long-lived branch which is gathering stable work, and to be deleted.
To make it easier to integrate topic branches, the recommended practice is to create
such branches by forking off the oldest, the most stable integration branch that you
will eventually merge it into. Usually, this means creating a branch from the stable-
work graduation branch. However, if a given feature does depend on a topic not yet
in the stable line, you need to fork off the appropriate topic branch containing the
dependency you need.

Note that if it turns out that you forked off the wrong branch, you can always fix it
by rebasing (see Chapter 7, Merging Changes Together, and Chapter 8, Keeping History
Clean), as topic branches are not public.

Bugfix branches
We can distinguish a special case of a topic branch whose purpose is fixing a bug.
Such branch should be created starting from the oldest integration branch it applies
to (the most stable branch that contains the bug). This usually means forking off
the maintenance branch, or off the divergence point of all the integration branches,
rather than the tip of the stable branch. A bugfix branch's goal is to be merged into
relevant long-lived integration branches.

Bugfix branches can be thought of as a short-lived equivalent of a long-lived
hotfix branch.

Using them is a better alternative to simply committing fixes on the maintenance
branch (or another appropriate integration branch).

Detached HEAD – the anonymous branch
You can think of the detached HEAD state (described in Chapter 3, Developing with
Git) as the ultimate in temporary branches—so temporary that it even doesn't have
a name. Git uses such anonymous branches automatically in a few situations, for
example, during bisection and rebasing.

Because, in Git, there is only one anonymous branch and it must always be
the current branch, It is usually better to create a true temporary branch with a
temporary name; you can always change the name of the branch later.

One possible use of the detached HEAD is for proof of concept work. You, however,
need to remember to set the name of the branch if the changes turn out to be
worthwhile (or if you need to switch branches). It is easy to go from an anonymous
branch to a named branch. You simply need to create a new branch from the current
detached HEAD state.

Chapter 6

[173]

Branching workflows and release
engineering
Now that we know what types of branches are there and what their purposes are,
let's examine how branches are used. Note that different situations call for different
use of branches. For example, smaller projects are better suited for simpler branching
workflows, while larger projects might need more advanced ones.

We will now describe here how to use different standard workflows. Each workflow
is distinguished by the various types of branches it uses (the types described earlier
in this chapter). In addition to getting to know how the ongoing development looks
like for a given workflow, we would also see what to do at the time of the new
release (major and minor, where relevant). Among others, we will find out what
happens then to branches used in the chosen workflow.

The release and trunk branches workflow
One of the simplest workflows is to use just a single integration branch. Such
branches are sometimes called the trunk; in Git, it would usually be the master
branch (it is the default branch when creating a repository). In a pure version of this
workflow, one would commit everything on the said branch, at least, during the
normal development stage. This way of working comes from the times of centralized
version control, when branching and especially merging was more expensive and
people avoided branch-heavy workflows.

In more advanced versions of this workflow, one would also
use topic branches, one short-lived branch per feature, and
merge them into the trunk, instead of committing directly on it
(see Fig 3).

In this workflow, we create the new release branch out of trunk when deciding to cut
the new major release. This is done to avoid the interference between stabilizing for
release and ongoing development work. The rule is that all the stabilization work goes
on the release branch, while all the ongoing development goes to the trunk. Release
candidates are cut (tagged) from the release branch, as is the final version of a release.

The release branch for a given version can be later used to gather bug fixes, and to
cut minor releases from it.

Advanced Branching Techniques

[174]

The disadvantage of such simple workflow is that during development, we often get in
an unstable state. In this case, it could be hard to come up with a good starting point,
stable enough to start working on creating a new release. An alternative solution is to
create revert commits on the release branch, undoing the work that is not ready. But it
can be a lot of work and it would make the history of a project hard to follow.

Another difficulty with this workflow is that the feature that looks good at the
first glance might show problems later in use. This is something this workflow has
trouble dealing with. If it turns out during development that some feature created in
multiple commits feature is not a good idea, reverting it can be difficult. This is true
especially if its commits are spread across the timeline (across the history).

Moreover, the trunk and release branch workflow does not provide any inherent
mechanism for finding bad interactions between different features, that is, for the
integration testing.

In spite of these problems, this simple workflow can be a good fit for a small team.

The graduation, or progressive-stability
branches workflow
To be able to provide the stable line of the product and to be able to test it in practice
as a kind of floating beta version, one needs to separate work that is stable from the
work that is ongoing and might destabilize code. That's what graduation branches
are for: to integrate revisions with different degrees of maturation and stability (this
type of long-running branches is also called integration branches or progressive-
stability branches). See Fig 1 of the Integration, or graduation, or progressive-stability
branches section in this chapter, which shows a graph view and a silo view of a
simple case with progressive-stability branches and linear history. Let's call the
technique that utilizes mainly (or only) this type of branches the graduation
branches workflow.

Besides keeping stable and unstable development separate sometimes, there is also
a need for an ongoing maintenance. If there is only one version of the product to
support, and the process of creating a new release is simple enough, one can also
use the graduation-type branch for this.

Here, simple enough means that one can just create the next
major release out of the stable branch.

Chapter 6

[175]

In such situation, one would have at least three integration branches. There would
be one branch for the ongoing maintenance work (containing only bug fixes to the
last version), to create minor releases. One branch for stable work to create major
releases; this branch can also be used for nightly stable builds. And last, one branch
for ongoing development, possibly unstable.

Fig 2. The graduation or progressive-stability branches workflow. You should never merge a less stable branch
into more stable one, as merging would bring all the unstable history.

You can use this workflow as it is, with only graduation branches, and no other types
of branches. You commit bug fixes on the maintenance branch and merge it into
the stable branch and development branch, if necessary. You create revisions with
the well-tested work on the stable branch, merging it into the development branch
when needed (for example, if the new work depends on them). You put the work in
progress, possibly unstable, on the development branch. During normal development,
you never merge less stable into more stable branches, otherwise you would decrease
their stability. It is always more stable into less stable, as represented in Fig 2.

This, of course, requires that you know upfront whether the feature that you are
working on should be considered stable or unstable. There is also an underlying
assumption that different features work well together from the start. One would
expect in practice, however, that each piece of the development matures from
the proof of concept, through being a work in progress during possibly several
iterations, before it stabilizes. This problem can be solved with the workflow
involving use of topic branches, which will be described next.

In the pure graduation branches workflow, one would create minor releases (with
bug fixes) out of the maintenance branch. Major releases (with new features) are
created out of the stable-work branch. After a major release, the stable-work branch
is merged into the maintenance branch to begin supporting the new release that was
just created. At this point also, an unstable (development) branch can be merged into
a stable one. This is the only time when merging upstream, which means merging
less stable branches into more stable branches, should be done.

Advanced Branching Techniques

[176]

The topic branches workflow
The idea behind the topic branches workflow is to create a separate short-lived
branch for each topic, so that all the commits belonging to a given topic (all the
steps in its development) are kept together. The purpose of each topic branch is
a development of the new feature, or a creation of a bug fix.

Fig 3. The topic branches workflow with one integration branch (master) and three topic or feature branches.
Among the topic branches, there is one (namely, newidea) already merged in the integration branch and one

(iss-95-2) dependent on the feature developed in the other feature branch (iss-95 here).

In the topic branches workflow (also called the feature branches workflow), you
have are at least two different types of branches. First, there needs to be at least one
permanent (or just long-lived) integration branch. This type of branches is used purely
for merging. Integration branches are public.

Second, there are separate short-lived temporary feature branches, each intended for
the development of a topic or the creation of a bug fix. They are used to carry all the
steps, and only the steps required in the development of a feature or a fix; a unit
of work for a developer. These branches can be deleted after the feature or the
bug fix is merged. Topic branches are usually private and are often not present in
public repositories.

When a feature is ready for review, its topic branch is often rebased to make
integration easier, and optionally to make history more clear. It is then sent for
review as a whole. The topic branch can be used in a pull request, or can be sent as
a series of patches (for example, using git format-patch and git send-email).
It is often saved as a separate topic branch in a maintainer's working repository
(for example, git am --3way if it was sent as patches) to help in examining and
managing it.

Chapter 6

[177]

Then, the integration manager (the maintainer in the blessed repository workflow,
or simply another developer in the central repository workflow) reviews each topic
branch and decides whether it is ready for inclusion in selected integration branch.
If it is, then it will get merged in (perhaps, with the --no-ff option).

Graduation branches in a topic branch workflow
The simplest variant of the topic branches workflow uses only one integration
branch. Usually, however, one would combine the graduation branches workflow
with topic branches.

Fig 4. The topic branches workflow with two graduation branches. Among topic branches, there is one
(iss92) that is considered stable enough to be merged into both the next (unstable) and master (stable)

graduation branches. One (idea) that got merged into next for testing and one (feat) just created
from master.

In this often used variant, the feature branch is started from the tip of a given stable
branch (usually) or from the last major release, unless the branch requires some other
feature. In the last case, the branch needs to be forked from (created from) the topic
branch it depends on, such as the feat branch in Fig 4. Bugfix topic branches are
created on top of the maintenance branch.

When the topic is considered done, it is first merged into the development-work
integration branch (for example, next) to be tested. For example, in Fig 4, topic
branches idea and iss92 are both merged into next, while feat is not considered
ready yet. Adventurous users can use builds from given unstable branch to exercise
the feature, though they better take into the account the possibility of crashes and
data loss.

Advanced Branching Techniques

[178]

After this examination, when the feature is considered to be ready to be included in
the next release, it is merged into the stable-work integration branch (for example,
master). Fig 4 includes one such branch: iss92. At this point, after merging it into
the stable integration branch, the topic branch can be deleted.

Using a feature branch allows topical revision to be kept together and not mixed
with other commits. The topic branch workflow allows for the easy undoing of
topic as a whole, and for removing of all bad commits together (removing a series
of commits as a whole unit), instead of using a series of reverts.

If the feature turns out to be not ready, it is simply not merged into the stable branch,
and it remains present only in the development-work branch. If we, however, realize
too late that it was not ready, after the topic was merged into the stable branch, we
would need to revert the merge. This is a slightly more advanced operation than
reverting a single commit, but it is less troublesome than reverting commits one,
by one while ensuring that all the commits get correctly reverted. Problems with
reverting merges will be covered in Chapter 8, Keeping History Clean.

The workflow for topic branches containing bugfixes is similar. The only difference is
that one needs to consider into which of integration branches the bugfix branch is to
be merged into. This, of course, depends on the situation. Perhaps the bugfix applies
only to the maintenance branch, because it was accidentally fixed by a new feature
in the stable-work and development-work branches; then, it is merged only to this
branch. Perhaps, the bug applies only to the stable-work and development-work
branches, because it is about the feature that was not present in the previous version,
thus the maintenance branch is excluded from being merged into.

Using a separate topic branch for bug fixing, instead of committing bugfix directly,
has an additional advantage. It allows us to easily correct the misstep, if it turns out
after the fact that the fix applies to more branches than we thought.

For example, if it turns out that the fix needs to be applied also to the maintained
version and not only to the current work, with the topic branch you can simply
merge the fix into additional branches. This is not the case if we were to commit the
fix directly on the stable branch. In the latter situation, you cannot use merging, as
it would destabilize the maintenance branch. You would need to copy the revision
with the fix, by cherry-picking it from the branch it was committed on into the
maintenance branch (see Chapter 7, Merging Changes Together for detailed description
of this operation). But it means that duplicated commits; additionally cherry-picked
commits can sometimes interact wrongly with the act of merging.

Chapter 6

[179]

The topic branches workflow also allows us to check whether the features conflict
with each other, and then fix them as necessary. You can simply create a throw-
away integration branch and merge into it topic branches containing these features,
to test the interaction between them. You can even publish such branches meant
for integration testing (named proposed-updates or just pu for example) to allow
for other developers to examine the works in progress. You should however state
explicitly in the developer documentation that said branch should not be used as a
basis to work on, as it is recreated each time from scratch.

Branch management for a release in a topic
branch workflow
Let's assume that we are using three graduation (integration) branches: maint for
maintenance work on the last release, master for stable work, next for development.

The first thing that the maintainer (the release manager) needs to do before creating
a new release is to verify that master is a superset of maint, that is, all the bugs are
fixed also in the version considered for the next release. You can do this by checking
whether the following command gives an empty output (see Chapter 2, Exploring
Project History):

$ git log master..maint

If the preceding command show some unmerged commits, the maintainer needs to
decide what to do with them. If these bug fixes don't break anything, he/she can
simply merge maint into master (as it is merging the more stable branch into the less
stable one).

Now that the maintainer knows that master is a superset of maint, he/she can create
the new release from remote master by tagging it, and then pushing just created tag
to the distribution point (to the public repository), for example with the following:

$ git tag -s -m "Foo version 1.4" v1.4 master

$ git push origin v1.4 master

The preceding command assumed that the public repository of the Foo project is
the one described by the origin, and that we use the double-digit version for major
releases (following the semantic versioning specification: http://semver.org/).

If the maintainer wants to support more than one older version, he
or she would need to copy an old maintenance branch, as the next
step would be to prepare it for maintaining just released revision:
$ git branch maint-1.3.x maint

http://semver.org/

Advanced Branching Techniques

[180]

Then, the maintainer updates maint to the new release, advancing the branch (note
that step one ensured that maint was a subset of master):

$ git checkout maint

$ git merge --ff-only master

If the second command fails, it means that there are some commits on the branch
maint that are not present in master, or to be more exact that master is not a strict
descendant of maint.

Because we usually consider features for inclusion in master one by one, there might
be some topic branches that are merged into next, but they were abandoned before
they were merged into master (or they are not merged because they were not ready.)
This means that though the next branch contains a superset of topic branches that
compose the master branch, master is not necessarily the ancestor of next.

That's why advancing the next branch after a release can be more complicated than
advancing the maint branch. One solution is to rewind and rebuild the next branch:

$ git checkout next

$ git reset --hard master

$ git merge ai/topic_in_next_only_1...

You can find unmerged topics to be merged to rebuild next with:

$ git branch --no-merged next

After creating the release following rebuilding of next, other developers would have
to force fetch the next branch (see the next section), as it would not fast-forward if it
is not already configured to force fetch:

$ git pull

From git://git.example.com/pub/scm/project

 62b553c..c2e8e4b maint -> origin/maint

 a9583af..c5b9256 master -> origin/master

 + 990ffec...cc831f2 next -> origin/next (forced update)

Notice the forced update for the next branch here.

Chapter 6

[181]

Git-flow – a successful Git branching model
One can see that the more advanced version of the topic branching workflow builds
on top of the graduation branch's one. In some cases, even more involved branching
model might be necessary, utilizing more types of branches: graduation branches,
release branches, hotfix branches, and topic branches. Such model is sometimes
called gitflow or git-flow.

This development model uses two main long-running graduation branches to separate
the production-ready stable state from the work involved with integration of the latest
delivered ongoing development. Let's call these branches for example master (stable
work) and develop (gathers changes for the next release). The latter can be used for
nightly builds. These two integration branches have an infinite lifetime.

These branches are accompanied in this workflow by supporting branches, namely,
feature branches, release branches, and hotfix branches.

Each new feature is developed on a topic branch (such branches are sometimes called
feature branch), named after a feature. Such branches are forked off the tip of either the
devel or master branch, depending on the details of the workflow and the requirements
of the feature in question. When work on a feature is finished, its topic branch is merged,
with the --no-ff option (so that there is always a merge commit where a feature can be
described), into devel for integration testing. When they are ready for the next release,
they are merged into the master branch. A topic branch exists only as long as a feature is
in development, and are deleted when merged (or when abandoned).

The purpose of a release branch is twofold. When created, the goal is to prepare a
new production release. This means doing last minute clean-up, applying minor bug
fixes, and preparing metadata for a release (for example, version numbers, release
names, and so on). All but the last should be done using topic branches; preparing
metadata can be done directly on the release branch. This use of the release branch
allows us to separate the quality assurance for the upcoming release from the work
developing features for the next big release.

Such release branches are forked off when the stable state reflects, or is close to, the
desired state planned for the new release. Each such branch is named after a release,
usually something such as release-1.4 or release-v1.4.x. One would usually
create a few release candidates from this branch (tagging them v1.4-rc1 and so on)
before tagging the final state of the new release (for example, v1.4).

The release branch might exist only until the time the project release it was created
for is rolled out, or it might be left to gather maintenance work: bug fixes for the
given release (though, usually, maintenance is done only for a few latest versions
or the most popular versions). In the latter situation, it replaces the maint branch
of other workflows.

Advanced Branching Techniques

[182]

Hotfix branches are like release branches, but for an unplanned release usually
connected with fixing serious security bugs. They are usually named hotfix-1.4.1
or something similar. A hotfix branch is created out of an old release tag if the
respective release (maintenance) branch does not exist. The purpose of this type of
branches is to resolve critical bugs found in a production version. After putting a fix
on such branches, the minor release is cut (for each such branch).

Fixing a security issue
Let's examine another situation now. How can we use branches to manage fixing a
bug, for example, a security issue. This requires a slightly different technique than an
ordinary development.

As explained in Topic branches workflow, while it is possible to create a bugfix commit
directly on the most stable of the integration branches that is affected by the bug, it is
usually better to create a separate topic branch for the bugfix in question.

You start by creating a bugfix branch forking from the oldest (most stable)
integration branch the fix needs to be applied to, perhaps even at the branching point
of all the branches it would apply to. You put the fix (perhaps, consisting of multiple
commits) on the branch that you have just created. After testing it, you simply merge
the bugfix branch into the integration branches that need the fix.

This model can be also used to resolve conflicts (dependencies) between branches at
an early stage. Let's assume that you are working on some new feature (on a topic
branch), which is not ready yet. While writing it, you have noticed some bugs in
the development version and you know how to fix them. You want to work on top
of the fixed state, but you realize that other developers would also want the bugfix.
Committing the fix on top of the feature branch takes the bugfix hostage. Fixing the
bug directly on an integration branch has a risk of forgetting to merge the bugfix into
the feature in progress.

The solution is to create a fix on a separate topic branch and to merge it into both the
topic branch for the feature being developed, and into the test integration branch
(and possibly the graduation branches).

You can use similar techniques to create and manage some features
that are requested by a subset of customers. You need to simply
create a separate topic branch for each such feature and merge it
into the individual, per customer branches.

Chapter 6

[183]

The matter complicates a bit if there is security involved. In the case of a severe
security bug, you would want to fix it not only in the current version, but also in
all the widely used versions.

To do this, you need to create a hotfix branch for various maintenance tracks
(forking it from the specified version):

$ git checkout -b hotfix-1.9.x v1.9.4

Then, you need to merge the topic branch with the fix in question into the just
created hotfix branch, to finally create the bugfix release:

$ git merge CVE-2014-1234

$ git tag -s -m "Project 1.9.5" v1.9.5

Interacting with branches in remote
repositories
We see that having many branches in a single repository is very useful. Easy
branching and merging allows for powerful development models, which are
utilizing advanced branching techniques, such as topic branches. This means that
remote repositories will also contain many branches. Therefore, we have to go
beyond just the repository to the repository interaction, which was described in
Chapter 5, Collaborative Development with Git. We have to consider how to interact
with multiple branches in the remote repositories.

We also need to think about how many local branches in our repository relate to the
branches in the remote repositories (or, in general, other refs). The other important
knowledge is how the tags in the local repository relate to the tags in other repositories.

Understanding the interaction between repositories, the branches in these
repositories, and how merge changes (in Chapter 7, Merging Changes Together) is
required to truly master collaboration with Git.

Upstream and downstream
In software development, the upstream refers to a direction toward the original
authors or the maintainers of the project. We can say that the repository is
upstream from us if it is closer (in the repository-to-repository steps) to the blessed
repository—the canonical source of the software. If a change (a patch or a commit) is
accepted upstream, it will be included either immediately or in a future release of an
application, and all the people downstream would receive it.

Advanced Branching Techniques

[184]

Similarly, we can say that a given branch in a remote repository (the maintainer
repository) is an upstream branch for given local branch, if changes in that local
branch are to be ultimately merged and included in the remote branch.

A quick reminder: the upstream repository and the upstream
branch in the said remote repository for a given branch are defined,
respectively, by the branch.<branchname>.remote and
branch.<branchname>.merge configuration variables. The
upstream branch can be referred to with the @{upstream} or @{u}
shortcut.
The upstream is set while creating a branch out of the remote-tracking
branch, and it can be modified using either git branch --set-
upstream-to or git push --set-upstream.

The upstream branch does not need to be a branch in the remote repository. It can
be a local branch, though we usually say then that it is a tracked branch rather than
saying that it is an upstream one. This feature can be useful when one local branch is
based on another local branch, for example, when a topic branch is forked from other
topic branch (because it contains the feature that is a prerequisite for the latter work).

Remote-tracking branches and refspec
While collaborating on a project, you would be interacting with many repositories
(see the Collaborative Development With Git section of this chapter). Each of these
remote (public) repositories you are interacting with will have their own notion
of the position of the branches. For example, the master branch in the remote
repository origin needs not to be at the same place as your own local master
branch in your clone of the repository. In other words, they need not point to the
same commit in the DAG of revisions.

Remote-tracking branches
To be able to check the integration status, for example, what changes are there in the
origin remote repository that are not yet in yours, or what changes did you make in
your working repository that you have not yet published, you need to know where
the branches in the remote repositories are (well, where they were the last time
you contacted these repositories). This is the task of remote-tracking branches—
the references that track where the branch was in the remote repository.

Chapter 6

[185]

Fig 5: Remote-tracking branches. The branch master in remote origin is fetched into the
remote-tracking branch origin/master (full name refs/remotes/origin/master).

Grayed out text in the fetch command denotes the default implicit parameters.

To track what happens in the remote repository, remote-tracking branches are
updated automatically; this means that you cannot create new local commits on
top of them (as you would lose these commits during update). You need to create
the local branch for it. This can be done, for example, with simply git checkout
<branchname>, assuming that the local branch with the given name does not
already exist. This command creates a new local branch out of the remote branch
<branchname> and sets the upstream information for it.

Refspec – remote to local branch mapping
specification
As described in Chapter 2, Exploring Project History, local branches are in the
refs/heads/ namespace, while remote-tracking branches for a given remote are
in the refs/remotes/<remote name>/ namespace. But that's just the default. The
fetch (and push) lines in the remote.<remote name> configuration describe the
mapping between branches (or refs in general) in the remote repository and the
remote-tracking branches (or other refs) in the local repository.

Advanced Branching Techniques

[186]

This mapping is called refspec; it can be either explicit, mapping branches one by
one, or globbing, describing a mapping pattern.

For example, the default mapping for the origin repository is:

[remote "origin"]
 fetch = +refs/heads/*:refs/remotes/origin/*

This says that, for example, the contents of the master branch (whose full name is
refs/heads/master) in the remote repository origin is to be stored in the local
clone of repository in the remote-tracking branch origin/master (whose full name
is refs/remotes/origin/master). The plus + sign at the beginning of the pattern
tells Git to accept the updates to the remote-tracking branch that are not fast-
forward, that is, are not descendants of the previous value.

The mapping can be given using the fetch lines in the configuration for the remote,
as above, or can be also passed as arguments to a command (it is often enough
to specify just the short name of the reference instead of the full refspec). The
configuration is taken into account only if there are no refspecs on the command line.

Fetching and pulling versus pushing
Sending changes (publishing) to the remote repository is done with git push, while
getting changes from it is done with git fetch. These commands send changes in
the opposite direction. You should remember, however, that your local repository
has the very important difference—it has you sitting at the keyboard available to run
other Git commands.

That is why there is no equivalent in the local-to-remote direction to git pull, which
combines getting and integrating changes (see the next section). There is simply
nobody there to resolve possible conflicts (problems doing automated integration).

In particular, there is a difference between how branches and tags are fetched,
and how are they are pushed. This will be explained in detail later on.

Pull – fetch and update current branch
Many times, you want to incorporate changes from a specific branch of a remote
repository into the current branch. The pull command downloads changes (running
git fetch with parameters given); then, it automatically integrates the retrieved
branch head into the current branch. By default, it calls git merge to integrate
changes, but you can make it to run git rebase instead The latter can be done either
with the --rebase option, or the pull.rebase configuration option to git pull,
or with branch.<branch name>.rebase to configure this for the individual branch.

Chapter 6

[187]

Note that if there is no configuration for the remote (you are doing the pull by URL),
Git uses the FETCH_HEAD ref to store tips of the fetched branches.

There is also the git request-pull command to create information about
published or pending changes for the pull-based workflows, for example, for a
variant of the blessed repository workflow. It creates a plain text equivalent of the
GitHub merge requests, one which is particularly suitable to send by e-mail.

Pushing to the current branch in a nonbare remote
repository
Usually, the repositories you push to are created for synchronization and
are bare, that is, without a working area. A bare repository doesn't even have the
concept of the current branch (HEAD)–there is no work tree, therefore, there is no
checked out branch.

Sometimes, however, you might want to push to the nonbare repository. This may
happen, for example, as a way of synchronizing two repositories, or as a mechanism
for deployment (for example, of a web page or a web application). By default, Git on
the server (in the nonbare repository you are pushing into) will deny the ref update
to the currently checked out branch. This is because it brings HEAD out of sync with
the working tree and the staging area, which is very confusing if you don't expect it.
You can, however, enable such a push by setting receive.denyCurrentBranch to
warn or ignore (changing it from the default value of refuse).

You can even make Git update the working directory (which must be clean, that
is, without any uncommitted changes) by setting the said configuration variable to
updateInstead.

An alternative and a more flexible solution to using git push for deployment is to
configure appropriate hooks on the receiving side—see Chapter 10, Customizing and
Extending Git, for information on hooks in general, and Chapter 11, Git Administration,
for details on their use on the server.

The default fetch refspec and push modes
We usually fetch from public repositories with all the branches made public. We
most often want to get a full update of all the branches. That's why git clone sets
up the default fetch refspec in a way shown in the Refspec – remote to local branch
mapping specification section of this chapter. The common exception to "fetch all" rule
is following a pull request. But in this case, we have the repository and the branch
(or the signed tag) stated explicitly in the request, and we will run the pull command
with provided parameters: git pull <URL> <branch>.

Advanced Branching Techniques

[188]

On the other side, in the private working repository, there are usually many
branches that we don't want to publish or, at least, we don't want to publish them
yet. In most cases, we would want to publish a single branch: the one we were
working on and the one we know is ready. However, if you are the integration
manager, you would want to publish a carefully selected subset of the branches
instead of just one single branch.

This is yet another difference between fetching and pushing. That's why Git doesn't
set up push refspec by default (you can configure it manually nonetheless), but
instead relies on the so-called push modes (configured using push.default) to decide
what should be pushed where. This configuration variable, of course, applies only
while running the git push command without branches to push stated explicitly
on the command line.

Using git push to sync out of a host that one cannot pull from
When you work on two machines, machineA and machineB,
each with its own work tree, a typical way to synchronize
between them is to run git pull from each other. However,
in certain situations, you may be able to make the connection
only in one direction, but not in the other (for example, because
of a firewall or intermittent connectivity). Let's assume that you
can fetch and push from machineB, but you cannot fetch from
machineA.
You want to perform push from machineB to machineA
in such way, that the result of the operation is practically
indistinguishable from doing fetch while being on machineA.
For this you need to specify, via refspec, that you want to push
local branch into its remote-tracking branch.
machineB$ git push machineA:repo.git \

 refs/heads/master:refs/remotes/machineB/master

The first parameter is the URL in the scp-like syntax, the
second parameter is refspec. Note that you can set these all up
in the config file in case you need to do something like this
more often.

Fetching and pushing branches and tags
The next section will describe which push modes are available and when to use them
(for which collaboration workflows). But first, we need to know how Git behaves
with respect to tags and branches while interacting with remote repositories.

Because, pushing is not the exact opposite of fetching, and because branches and tags
have different objectives (branches point to the lines of development and tags name
specific revisions), their behavior is subtly different.

Chapter 6

[189]

Fetching branches
Fetching branches is quite simple. With the default configuration, the git fetch
command downloads changes and updates remote-tracking branches (if possible).
The latter is done according to the fetch refspec for the remote.

There are, of course, exceptions to this rule. One such exception is mirroring the
repository. In this case all the refs from the remote repository are stored under the
same name in the local repository. The git clone --mirror would generate the
following configuration for origin:

[remote "origin"]
 url = https://git.example.com/project
 fetch = +refs/*:refs/*
 mirror = true

The names of refs that are fetched, together with the object names they point at,
are written to the .git/FETCH_HEAD file. This information is used, for example, by
git pull; this is necessary if we are fetching via URL and not via a remote name.
It is done because, when we fetch by the URL, there are simply no remote-tracking
branches to store the information on the fetched branch to be integrated.

You can delete remote-tracking branches on case by case basis with git branch -r
-d; you can remove on case by case basis remote-tracking branches for which the
corresponding branch in the remote repository no longer exists with git remote
prune (or in modern Git with git fetch --prune).

Fetching tags and automatic tag following
The situation with tags is a bit different. While we would want to make it possible
for different developers to work independently on the same branch (for example,
an integration branch such as master), though in different repositories, we would
need all developers to have one specific tag to always refer to the same specific
revision. That's why the position of branches in remote repositories is stored using
a separate per-remote namespace refs/remotes/<remote name>/* in remote-
tracking branches, but tags are mirrored—each tag is stored with the same name,
in refs/tags/* namespace.

Though where the positions of tags in the remote repository
are stored can, of course, be configured with the appropriate
fetch refspec; Git is that flexible. One example where it might be
necessary is the fetching of a subproject, where we want to store
its tags in a separate namespace (more information on this issue
in Chapter 9, Managing Subprojects - Building a Living Framework).

Advanced Branching Techniques

[190]

This is also why, by default, while downloading changes, Git would also fetch and
store locally all the tags that point to the downloaded objects. You can disable this
automatic tag following with the --no-tags option. This option can be set on the
command line as a parameter, or it can be configured with the remote.<remote
name>.tagopt setting.

You can also make Git download all the tags with the --tags option, or by adding
the appropriate fetch refspec value for tags:

fetch = +refs/tags/*:refs/tags/*

Pushing branches and tags
Pushing is different. Pushing branches are (usually) governed by the selected push
mode. You push a local branch (usually just a single current branch) to update a
specific branch in the remote repository, from refs/heads/ locally to refs/heads/
in remote. It is usually a branch with the same name, but it might be a differently
named branch configured as upstream—details will be provided later. You don't
need to specify the full refspec: using the ref name (for example, name of a branch)
means pushing to the ref with the same name in the remote repository, creating it if it
does not exist. Pushing HEAD means pushing the current branch into the branch with
the same name (not to the HEAD in remote—it usually does not exist).

Usually, you push tags explicitly with git push <remote repository> <tag> (or
tag <tag> if by accident there is both a tag and branch with the same name—both
mean the +refs/tags/<tag>:refs/tags/<tag> refspec). You can push all the tags
with --tags (and with appropriate refspec), and turn on the automatic tag following
with --follow-tags (it is not turned on by default as it is for fetch).

As a special case of refspec, pushing an "empty" source into some ref in remote
deletes it. The --delete option to git push is just a shortcut for using this type
of refspec. For example, to delete a ref matching experimental in the remote
repository, you can run:

$ git push origin :experimental

Note that the remote server might forbid the deletion of refs with receive.
denyDeletes or hooks.

Push modes and their use
The behavior of git push, in the absence of the parameters specifying what to push,
and in the absence of the configured push refspec, is specified by the push mode.
Different modes are available, each suitable for different collaborative workflows
from Chapter 5, Collaborative Development with Git.

Chapter 6

[191]

The simple push mode – the default
The default push mode in Git 2.0 and later is the so-called simple mode. It was
designed with the idea of minimum surprise: the idea that it is better to prevent
publishing a branch, than to make some private changes accidentally public.

With this mode, you always push the current local branch into the same named
branch in the remote repository. If you push into the same repository you fetch from
(the centralized workflow), it requires the upstream to be set for the current branch.
The upstream is named the same as the branch.

This means that, in the centralized workflow (push into the same repository you
fetch from), it works like upstream with the additional safety that the upstream
must have the same name as the current (pushed) branch. With triangular workflow,
while pushing to a remote that is different from the remote you normally pull from,
it works like current.

This is the safest option; it is well-suited for beginners, which is why it is the default
mode. You can turn it on explicitly with git config push.default simple.

The matching push mode for maintainers
Before version 2.0 of Git, the default push mode was matching. This mode is most
useful for the maintainer (also known as the integration manager) in a blessed
repository workflow. But most of the Git users are not maintainers; that's why the
default push mode was changed to simple.

The maintainer would get contributions from other developers, be it via pull request
or patches sent in an e-mail, and put them into topic branches. He or she could
also create topic branches for their own contributions. Then, the topic branches
considered to be suitable are merged into the appropriate integration branches (for
example, maint, master, and next) – merging will be covered in Chapter 7, Merging
Changes Together. All this is done in the maintainer's private repository.

The public blessed repository (one that everyone fetches from, as described in
Chapter 5, Collaborative Development with Git) should contain only long-running
branches (otherwise, other developers could start basing their work on a branch that
suddenly vanishes). Git cannot know by itself which branches are long-lived and
which are short-lived.

Advanced Branching Techniques

[192]

With the matching mode, Git will push all the local branches that have their
equivalent with the same name in the remote repository. This means that only the
branches that are already published will be pushed to the remote repository. To
make a new branch public you need to push it explicitly the first time, for example:

$ git push origin maint-1.4

Note that with this mode, unlike with other modes, using
git push command without providing list of branches
to push can publish multiple branches at once, and may
not publish the current branch.

To turn on the matching mode globally, you can run:

$ git config push.default matching

If you want to turn it on for a specific repository, you need to use a special refspec
composed of a sole colon. Assuming that the said repository is named origin and
that we want a not forced push, it can be done with:

$ git config remote.origin push :

You can, of course, push matching branches using this refspec on the command line:

$ git push origin :

The upstream push mode for the centralized
workflow
In the centralized workflow, there is the single shared central repository every
developer with commit access pushes to. This shared repository will have only
long-lived integration branches, usually only maint and master, and sometimes
only master.

One should rather never work directly on master (perhaps with the exception of
simple single-commit topics), but rather fork a topic branch for each separate feature
out of the remote-tracking branch:

$ git checkout -b feature-foo origin/master

Chapter 6

[193]

In the centralized workflow, the integration is distributed: each developer is
responsible for merging changes (in their topic branches), and publishing the result
to the master branch in the central repository. You would need to update the local
master branch, merge the topic branch to it, and push it:

$ git checkout master

$ git pull

$ git merge feature-foo

$ git push origin master

An alternate solution is to rebase the topic branch on the top of the remote-tracking
branch, rather than merging it. After rebasing, the topic branch should be an ancestor
of master in the remote repository, so we can simply push it into master:

$ git checkout feature-foo

$ git pull --rebase

$ git push origin feature-foo:master

In both the cases, you are pushing the local branch (master in the merge-based
workflow, the feature branch in the rebase-based workflow) into the branch it tracks
in the remote repository; in this case, origin's master.

That is what the upstream push mode was created for:

$ git config push.default upstream

This mode makes Git push the current branch to the specific branch in the remote
repository—the branch whose changes are usually integrated into the current
branch. This branch in the remote repository is the upstream branch (and can be
referenced as @{upstream}). Turning this mode on makes it possible to simplify the
last command in both examples to the following:

$ git push

The information about the upstream is created either automatically (while forking
off the remote-tracking branch), or explicitly with the --track option. It is stored
in the configuration file and it can be edited with ordinary configuration tools.
Alternatively, it can be changed later with the following:

$ git branch --set-upstream-to=<branchname>

Advanced Branching Techniques

[194]

The current push mode for the blessed repository
workflow
In the blessed repository workflow, each developer has his or her own private and
public repository. In this model, one fetches from the blessed repository and pushes
to his or her own public repository.

In this workflow, you start working on a feature by creating a new topic branch for it:

$ git checkout -b fix-tty-bug origin/master

When the features are ready, you push it into your public repository, perhaps
rebasing it first to make it easier for the maintainer to merge it:

$ git push origin fix-tty-bug

Here, it is assumed that you used pushurl to configure the triangular workflow,
and the push remote is origin. You would need to replace origin here with the
appropriate name of the publishing remote if you are using a separate remote for
your own public repository (using a separate repository makes it possible to use it
not only for publishing, but also for synchronization between different machines).

To configure Git so when on fix-tty-bug branch it is enough to just run git push,
you need to set up Git to use the current push mode, which can be done with the
following:

$ git config push.default current

This mode will push the current branch to the branch with the same name at the
receiving end.

Note that, if you are using a separate remote for the publishing repository, you
would need to set up the remote.pushDefault configuration option to be able to use
just git push for publishing.

Chapter 6

[195]

Summary
This chapter has shown how to effectively use branches for development and for
collaboration.

We got to know a wide set of the various uses of branches, from integration, through
release management and the parallel development of features, to fixing bugs. You
have learned different branching workflows, including the very useful and widely
used topic branch workflow. The knowledge should help you make the best use of
branching, customizing the model of work to fit the project and your own preferences.

You have also learned how to deal with multiple branches per repository while
downloading or publishing changes. Git provides flexibility in how the information
on branches and other refs in the remote repository are managed using the so-called
refspecs to define mapping to local refs: remote-tracking branches, local branches, and
tags. Usually, fetching is governed by fetch refspec, but pushing is managed by the
configured push mode. Various collaborative workflows require a different handling
of branch publishing; this chapter describes which push mode to use with which
workflow and explains why.

You also got to know a few useful tricks. One of them is how to store the project's
web page or the generated HTML documentation in a single repository with the
"orphan" branch trick (which is used, for example, by GitHub Project Pages). You
found out how to synchronize the working directory of the remote repository
(for example, for the deployment of a web application) with git push; one of the
possible solutions. You have learned how to do fetch equivalent with push, if the
connection is possible only in the opposite direction.

The next chapter, Chapter 7, Merging Changes Together, will explain how to integrate
changes from other branches and other developers. You will learn about merging
and rebasing, and how to deal with situations where Git could not do it automatically
(how to handle various types of merge conflicts). You will also learn about
cherry-picking and reverting commits.

[197]

Merging Changes Together
The previous chapter, Advanced Branching Techniques, described how to use branches
effectively for collaboration and development.

This chapter will teach you how to integrate changes from different parallel lines
of development (that is, branches) together by creating a merge commit, or by
reapplying changes with the rebase operation. Here, the concepts of merge and
rebase are explained, including the differences between them and how they both
can be used. This chapter will also explain the different types of merge conflicts,
and teach how to examine them, and how to resolve them.

In this chapter, we will cover the following topics:

• Merging, merge strategies, and merge drivers
• Cherry-picking and reverting a commit
• Applying a patch and a patch series
• Rebasing a branch and replaying its commits
• Merge algorithm on file and contents level
• Three stages in the index
• Merge conflicts, how to examine them, and how to resolve them
• Reusing recorded [conflict] resolutions with git rerere
• External tool: git-imerge

Merging Changes Together

[198]

Methods of combining changes
Now that you have changes from other people in the remote-tracking branches (or
in the series of e-mails), you need to combine them, perhaps also with your changes.
Or perhaps, your work on a new feature, created and performed on a separate topic
branch, is now ready to be included in the long-lived development branch, and made
available to other people. Maybe you have created a bugfix and want to include it in
all the long-lived graduation branches. In short, you want to join two divergent lines
of development, to combine them together.

Git provides a few different methods of combining changes and variations of
these methods. One of these methods is a merge operation, joining two lines of
development with a two-parent commit. Another way to copy introduced work from
one branch to another is via cherry-picking, which is creating a new commit with the
same changeset on another line of development (this is sometimes necessary to use).
Or, you can reapply changes, transplanting one branch on top of another with rebase.
We will now examine all these methods and their variants, see how they work, and
when they can be used.

In many cases, Git will be able to combine changes automatically; the next section
will talk about what you can do if it fails and if there are merge conflicts.

Merging branches
The merge operation joins two (or more) separate branches together, including all the
changes since the point of divergence into the current branch. You do this with the
git merge command:

$ git checkout master

$ git merge bugfix123

Here, we first switched to a branch we want to merge into (master in this example),
and then provided the branch to be merged (here, bugfix123).

No divergence – fast-forward and up-to-date cases
Say that you need to create a fix for a bug somebody found. Let's assume that you
have followed the recommendations of the topic branch workflow from Chapter
6, Advanced Branching Techniques, and created a separate bugfix branch, named
bugfix123, off the maintenance branch maint. You have run your tests (that were
perhaps just created), making sure that the fix is correct and is what you want. Now
you are ready to merge it, at least, into maint to make this fix available for other
people, and perhaps, also into master (into the stable branch). The latter can be
configured to deploy the fix to production environment.

Chapter 7

[199]

In such cases, there is often no real divergence, which means that there were no
commits on the maintenance branch (the branch we are merging into), since a bugfix
branch was created. Because of this, Git would, by default, simply move the branch
pointer of the current branch forward:

$ git checkout maint

$ git merge i18n

Updating f41c546..3a0b90c

Fast-forward

 src/random.c | 2 ++

 1 file changed, 2 insertions(+)

You have probably seen this Fast-forward phrase among output messages during
git pull, when there are no changes on the branch you are pulling into. The fast-
forward merge situation is shown on Fig. 1:

Fig 1: The master branch is fast-forwarded to i18n during merge

This case is important for the centralized and the peer-to-peer workflows (described
in Chapter 5, Collaborative Development with Git), as it is the fast-forward merge that
allows you to ultimately push your changes forward.

Merging Changes Together

[200]

In some cases, it is not what you want. See that, for example, after the fast-forward
merge in Fig 1, we have lost the information that the C4 and C5 commits were done
on the i18n topic branch, and are a part of internationalization efforts. We can force
creating a merge commit (described in the next section) even in such cases with the
git merge --no-ff command. The default is --ff; to fail instead of creating a
merge commit you can use --ff-only (ensuring fast-forward only).

There is another situation where the head (tip) of one branch is the ancestor of
the other, namely, the up-to-date case where the branch we are trying to merge is
already included (merged) in the current branch. Git doesn't need to do anything in
this case; it just informs the user about it.

Creating a merge commit
When you are merging fully fledged feature branches, rather than merging bugfix
branches as in the previous section, the situation is usually different from the
previously described Fast-forward case. Then, the development usually had
diverged. You began work on a feature of a topic branch to separate and isolate it
from other developments.

Suppose that you have decided that your work on a feature (for example, work on
adding support for internationalization on the i18n topic branch) is complete and
ready to be included in the master stable branch. In order to do so with a merge
operation, you need to first check out the branch you want to merge into, and then
run the git merge command with the branch being merged as a parameter:

$ git checkout master

Switched to branch 'master'

$ git merge i18n

Merge made by the 'recursive' strategy.

Src/random.c | 2 ++

1 file changed, 2 insertions(+)

Because the top commit on the branch you are on (and are merging into) is not a
direct ancestor or a direct descendant of the branch you are merging in, Git has to
do more work than just moving the branch pointer. In this case, Git does a merge of
changes since the divergence, and stores it as a merge commit on the current branch.
This commit has two parents denoting that it was created based on more than one
commit (more than one branch): the first parent is the previous tip of the current
branch and the second parent is the tip of branch you are merging in.

Chapter 7

[201]

Note that Git does commit the result of merge if it can be done
automatically (there are no conflicts). But the fact that the merge
succeeded at the text level doesn't necessarily mean that the merge
result is correct. You can either ask Git to not autocommit a merge with
git merge --no-commit to examine it first, or you can examine the
merge commit and then use the git commit --amend command if it
is incorrect.
In contrast, most other version control systems do not automatically
commit the result of a merge.

Fig 2: Three revisions used in a typical merge and the resulting merge commit

Git creates contents of a merge commit (M in Fig 2) using by default (and in most
cases) the three way merge, which in turn uses the snapshots pointed to the tips of
the branches being merged (master: C6 and i18n: C5) and the common ancestor of
the two (C3 here, which you can find with the git merge-base command).

Merging Changes Together

[202]

It's worth pointing out that Git can determine the common ancestor automatically
thanks to storing revisions in the DAG and remembering merges. This was not the
case in the older revision control systems.

A very important issue is that Git creates the merge commit contents based usually
only on the three revisions: merged into (ours), merged in (theirs), and the common
ancestor (merge base). It does not examine what had happened on the divergent
parts of the branches; this is what makes merging fast. But because of this, Git also
does not know about the cherry-picked or reverted changes on the branches being
merged, which might lead to surprising results (see, for example, the section about
reverting merges in Chapter 8, Keeping History Clean).

Merge strategies and their options
In the merge message, we have seen that it was made by the recursive strategy. The
merge strategy is an algorithm that Git uses to compose the result of joining two or
more lines of development, which is basing this result on the DAG of revisions.

There are a few merge strategies that you can select to use with the --strategy/ -s
option. By default, Git uses the recursive merge strategy while joining two branches
and a very simple octopus merge strategy while joining more than two branches. You
can also choose the resolve merge strategy if the default one fails; it is fast and safe,
though less capable in merging.

The two remaining merge strategies are special purpose algorithms. The ours merge
strategy can be used when we want to abandon changes in the merged in branch, but
keep them in the history of the merged into branch, for example, for documentation
purposes. This strategy simply repeats the current snapshot (ours version) as a
merge commit. Note that ours merge strategy, invoked with --strategy=ours or -s
ours, should be not confused with the "ours" option to the default recursive merge
strategy, --strategy=recursive --strategy-option=ours or just -Xours, which
means something different.

The subtree merge strategy can be used for subsequent merges from an independent
project into a subdirectory (subtree) in a main project. It automatically figures out
where the subproject was put. This issue, and the idea of subtrees, will be described
in more detail in Chapter 9, Managing Subprojects – Building a Living Framework.

The default recursive merge strategy is named after how it deals with multiple merge
bases and criss-cross merges. In case of more than one merge base (more than one
common ancestor that can be used for a three-way merge), it creates a merge tree
(conflicts and all) from the ancestors as a merge base, that is, it merges recursively.
Of course, these common ancestors being merged can have more than one merge
base again.

Chapter 7

[203]

Some strategies are customizable and take their own options. You can pass an option
to a merge algorithm with -X<option> (or --strategy-option=<option>) on the
command line, or set it with the appropriate configuration variables. You will find
more about merge options in a later section, when we will be talking about solving
merge conflicts.

Reminder – merge drivers
Chapter 4, Managing Your Worktree, introduced gitattributes, among others
merge drivers. These drivers are user-defined and deal with merging file contents if
there is a conflict, replacing the default three-way file-level merge. Merge strategies
in contrast deal with the DAG level merging (and tree-level, that is, merging
directories) and you can only choose from the built-in options.

Reminder – signing merges and merging tags
In Chapter 5, Collaborative Development with Git, you have learned about signing your
work. While using merge to join two lines of development, you can either merge a
signed tag or sign a merge commit (or both). Signing a merge commit is done with
the -S / --gpg-sign option to use the git merge or the git commit command;
the latter is used if there were conflicts or the --no-commit option was used while
merging.

Copying and applying a changeset
The merging operation is about joining two lines of development (two branches),
including all the changes since their divergence. This means, as described in Chapter
6, Advanced Branching Techniques, that if there is one commit on the less stable
branch (for example, master) that you want to have also in a more stable branch (for
example, maint), you cannot use the merge operation. You need to create a copy of
such commit. Entering such situation should be avoided (using topic branches), but
it can happen, and handling it is sometimes necessary.

Sometimes, the changes to be applied come not from the repository (as a revision
in the DAG to be copied), but in the form of a patch, that is, a unified diff or an
e-mail generated with git format-patch (with patch, plus a commit message).
Git includes the git am tool to handle mass applying of commit-containing patches.

Both of these are useful on their own, but understanding these methods of getting
changes is necessary to understand how rebasing works.

Merging Changes Together

[204]

Cherry-pick – creating a copy of a changeset
You can create a copy of a commit (or a series of commits) with the cherry-pick
command. Given a series of commits (usually, just a single commit), it applies the
changes each one introduces, recording a new commit for each.

Fig 3: Cherry-picking a commit from master to maint. The thick brown dotted line from
C4 to C4' denotes copy; it is not a reference.

This does not mean that the snapshot (that is, the state of a project) is the same
in the original and in the copy; the latter will include other changes. Also, while
the changes will usually be the same (as in Fig 3), they can also in some cases be
different, for example if part of the changes was already present in the earlier
commits.

Note that, by default, Git does not save information about where the cherry-picked
commit came from. You can append this information to an original commit message,
as a (cherry-picked from the commit <sha-1>) line with git cherry-pick -x
<commit>. This is only done for cherry-picks without conflicts. Remember that this
information is only useful if you have an access to the copied commit. Do not use it if
you are copying commits from the private branch, as other developers won't be able
to make use of that information.

Revert – undoing an effect of a commit
Sometimes it turns out that, even with code review, there will be some bad commits
that you need to back out (perhaps it turned out to be a not so good idea, or it
contains bugs). If the commit is already made public, you cannot simply remove it.
You need to undo its effects; this issue will be explained in detail in Chapter 8, Keeping
History Clean.

Chapter 7

[205]

This "undoing of a commit" can be done by creating a commit with a reversal of
changes, something like cherry-pick but applying the reverse of changes. This is
done with the revert command.

Fig 4: The effect of using git revert C3 on a master branch, creating a new commit named ^C3

The name of this operation might be misleading. If you want to revert all the changes
made to the whole working area, you can use git reset (in particular, the --hard
option). If you want to revert changes made to a single file, use git checkout
<file>. Both of these are explained in detail in Chapter 4, Managing Your Worktree.
The git revert command records a new commit to reverse the effect of the earlier
commit (often, a faulty one).

Applying a series of commits from patches
Some collaborative workflows include exchanging the changes as patches via an
e-mail (or another communication medium). This workflow is often encountered in
open-source projects; it is often easier for a new or a sporadic contributor to create
a specially crafted e-mail (for example, with git format-patch) and send it to a
maintainer or a mailing list, than to set up a public repository and send a pull request.

You can apply a series of patches from a mailbox (in the mbox or maildir format; the
latter is just a series of files) with the git am command. If these emails (or files) were
created from the git format-patch output, you can use git am --3way to use the
three-way file merge in the case of conflicts. Resolving conflicts will be discussed in
later section of this chapter.

You can find both tools to help use the patch submission process by
sending a series of patches, for example from the pull request on
GitHub (for example, the submitGit web app for Git project), and
tools that track web page patches sent to a mailing list (for example,
the patchwork tool).

Merging Changes Together

[206]

Cherry-picking and reverting a merge
This is all good, but what happens if you want to cherry-pick or revert a merge
commit? Such commits have more than one parent, thus they have more than one
change associated with them.

In this case, you have to tell Git which change you want to pick up (in the case of
cherry-pick), or back out (in the case of revert) with the -m <parent number> option.

Note that reverting a merge undoes the changes, but it does not remove the merge
from the history of the project. See the section on reverting merges in Chapter 8,
Keeping History Clean.

Rebasing a branch
Besides merging, Git supports additional way to integrate changes from one branch
into another: namely the rebase operation.

Like a merge, it deals with the changes since the point of divergence (at least, by
default). But while a merge creates a new commit by joining two branches, rebase
takes the new commits from one branch (takes the commits since the divergence)
and reapplies them on top of the other branch.

Fig 5: Effects of the rebase operation

Chapter 7

[207]

With merge, you first switched to the branch to be merged and then used the merge
command to select a branch to merge in. With rebase, it is a bit different. First you
select a branch to rebase (changes to reapply) and then use the rebase command to
select where to put it. In both the cases, you first check out the branch to be modified,
where a new commit or commits would be (a merge commit in the case of merging,
and a replay of commits in the case of rebasing):

$ git checkout i18n

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: Mark messages for translation

Or, you can use git rebase master i18n as a shortcut. In this form, you can
easily see that the rebase operation takes the master..i18n range of revisions (this
notation is explained in Chapter 2, Exploring Project History), replays it on top of
master, and finally points i18n to the replayed commits.

Note that old versions of commits doesn't vanish, at least not immediately. They
would be accessible via reflog (and ORIG_HEAD) for a grace period. This means that it
is not that hard to check how replaying changed the snapshots of a project, and with
a bit more effort how changesets themselves have changed.

Merge versus rebase
We have these two ways of integrating changes: merge and rebase. How do they
differ and what are their advantages and disadvantages? You can compare Fig 2 in
the Creating a merge commit section with Fig 5 in the Rebasing a branch section.

First, merge doesn't change history (see Chapter 8, Keeping History Clean). It creates
and adds a new commit (unless it was a fast-forward merge; then it just advances
the branch head), but the commits that were reachable from the branch remain
reachable. This is not the case with rebase. Commits get rewritten, old versions are
forgotten, and the DAG of revisions changes. What was once reachable might no
longer be reachable. This means that you should not rebase published branches.

Secondly, merge is a one-step operation with one place to resolve merge conflicts.
The rebase operation is multi-step; the steps are smaller (to keep changes small, see
Chapter 12, Git Best Practices), but there are more of them.

Linked to this is a fact that the merge result is based (usually) on three commits only,
and that it does not take into the account what happened on either of the branches
being integrated step by step; only the endpoints matter. On the other hand, rebase
reapplies each commit individually, so the road to the final result matters here.

Merging Changes Together

[208]

Thirdly, the history looks different: you get a simple linear history with rebase, while
using the merge operation leads to complex history with the lines of development
forking and joining. The history is simpler for rebase, but you lose information
that the changes were developed on a separate branch and that they were grouped
together, which you get with merge (at least with --no-ff). There is even the git-
resurrect script in the Git contrib tools, that uses the information stored in the
commit messages of the merge commits to resurrect the old, long deleted feature
branches.

The last difference is that, because of the underlying mechanism, rebase does not, by
default, preserve merge commits while reapplying them. You need to explicitly use
the --preserve-merges option. The merge operation does not change the history, so
merge commits are left as it is.

Types of rebase
The previous section described two mechanisms to copy or apply changes: the
git cherry-pick command, and the pipeline from git format-patch to git am
--3way. Either of them can be used by git rebase to reapply commits.

The default is to use the patch-based workflow, as it is faster. With this type of
rebase, you can use some additional options with rebase, which are actually passed
down to the git apply command that does the actual replaying of changesets.
These options will be described later while talking about conflicts.

Alternatively, you can use the --merge option to utilize merge strategies to do the
rebase (kind of cherry-picking each commit). The default recursive merge strategy
allows rebase to be aware of the renames on the upstream side (where we put the
replayed commits). With this option, you can also select a specific merge strategy
and pass options to it.

There is also an interactive rebase with its own set of options. This is one of the main
tools in Chapter 8, Keeping History Clean. It can be used to execute tests after each
replayed commit to check that the replay is correct.

Advanced rebasing techniques
You can also have your rebase operation replay on something other than the target
branch of the rebase with --onto <newbase>, separating selected range of revisions
to replay from the new base to replay onto.

Chapter 7

[209]

Let's assume that you had based your featureA topic branch on the unstable
development branch named next, because it is dependent on some feature that was
not yet ready and not yet present in the stable branch (master). If the functionality
on which featureA depends was deemed stable and was merged into master, you
would want to move this branch from being forked from the next to being forked
from master. Or perhaps, you started the server branch from the related client
branch, but you want to make it more obvious that they are independent.

You can do this with git rebase --onto master next featureA in the first case,
and git rebase --onto master server client in the second one.

Fig 6: Rebasing branch, moving it from one branch to the other

Or perhaps, you want to rebase only a part of the branch. You can do this with git
rebase --interactive, but you can also use git rebase --onto <new base>
<starting point> <branch>.

Merging Changes Together

[210]

You can even choose to rebase the whole branch (usually, an orphan branch) with
the --root option. In this case, you would replay the whole branch and not just a
selected subset of it.

Resolving merge conflicts
Merging in Git is typically fairly easy. Since Git stores and has access to the full
graph of revisions, it can automatically find where the branches diverged, and merge
only those divergent parts. This works even in the case of repeated merges, so you
can keep a very long-lived branch up to date by repeatedly merging into it or by
rebasing it on top of new changes.

However, it is not always possible to automatically combine changes. There are
problems that Git cannot solve, for example because there were different changes
to the same area of a file on different branches: these problems are called merge
conflicts. Similarly, there can be problems while reapplying changes, though you
would still get merge conflicts in case of problems.

The three-way merge
Unlike some other version control systems, Git does not try to be overly clever about
merge conflict resolutions, and does not try to solve them all automatically. Git's
philosophy is to be smart about determining the cases when a merge can be easily
done automatically (for example, taking renames into account), and if automatic
resolution is not possible, to not be overly clever about trying to resolve it. It is
better to bail out and ask users to resolve merge, perhaps unnecessary with a smart
algorithm, than to automatically create an incorrect one.

Git uses the three-way merge algorithm to come up with the result of the merge,
comparing the common ancestors (base), side merged in (theirs), and side merged into
(ours). This algorithm is very simple, at least at the tree level, that is, the granularity
level of files. The following table explains the rules of the algorithm:

ancestor
(base)

HEAD
(ours)

branch
(theirs)

result

A A A A
A A B B
A B A B
A B B B
A B C merge

Chapter 7

[211]

The rules for the trivial tree-level three-way merges are (see the preceding table):

• If only one side changes a file, take the changed version
• If both the sides have the same changes, take the changed version
• If one side has a different change from the other, there is merge conflict at

the contents level

It is a bit more complicated if there are more than one ancestor or if a file is not present
in all the versions. But usually it is enough to know and understand these rules.

If one side changed the file differently from the other (where the type of the change
counts, for example, renaming a file on one branch doesn't conflict with the changing
contents of the file on the other branch), Git tries to merge the files at the contents
level, using the provided merge driver if it is defined, and the contents level three-
way merge otherwise (for text files).

The three-way file merge examines whether the changes touch different parts of the
file (different lines are changed, and these changes are well separated by more than
diff context sizes away from each other). If these changes are present in different
parts of the file, Git resolves the merge automatically (and tells us which files are
automerged).

However, if you changed the same part of the same file differently in the two
branches you're merging together, Git won't be able to merge them cleanly:

$ git merge i18n

Auto-merging src/rand.c

CONFLICT (content): Merge conflict in src/rand.c

Automatic merge failed; fix conflicts and then commit the result.

Examining failed merges
In the case Git is unable to automatically resolve a merge (or if you have passed
the --no-commit option to the git merge command), it would not create a merge
commit. It will pause the process, waiting for you to resolve the conflict.

You can then always abort the process of merging with git merge --abort, in
modern Git. With the older version, you would need to use git reset and delete
.git/MERGE_HEAD.

Merging Changes Together

[212]

Conflict markers in the worktree
If you want to see which files are yet unmerged at any point after a merge conflict,
you can run git status:

$ git status

On branch master

You have unmerged paths.

 (fix conflicts and run "git commit")

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: src/rand.c

no changes added to commit (use "git add" and/or "git commit -a")

Anything that has not been resolved is listed as unmerged. In the case of content
conflicts, Git uses standard conflict markers, putting them around the place of
conflict with the ours and theirs version of the conflicted area in question. Your file
will contain a section that would look somewhat like the following:

<<<<<<< HEAD:src/rand.c
fprintf(stderr, "Usage: %s <number> [<count>]\n", argv[0]);
=======
fprintf(stderr, _("Usage: %s <number> [<count>\n"), argv[0]);
>>>>>>> i18n:src/rand.c

This means that the ours version on the current branch (HEAD) in the src/rand.c file
is there at the top of this block between the <<<<<<< and ======= markers, while the
theirs version on the i18n branch being merged (also from src/rand.c) is there at
the bottom part between the ======= and >>>>>>> markers.

You need to replace this whole block by the resolution of the merge, either by
choosing one side (and deleting the rest) or combining both changes, for example:

fprintf(stderr, _("Usage: %s <number> [<count>]\n"), argv[0]);

To help you avoid committing unresolved changes by mistake, Git by default checks
whether committed changes include something that looks like conflict markers,
refusing to create a merge commit without --no-verify if it finds them.

Chapter 7

[213]

If you need to examine a common ancestor version to be able to resolve a conflict,
you can switch to diff3 like conflict markers, which have an additional block:

<<<<<<< HEAD:src/rand.c
fprintf(stderr, "Usage: %s <number> [<count>]\n", argv[0]);
|||||||
fprintf(stderr, "Usage: %s <number> [<count>\n", argv[0]);
=======
fprintf(stderr, _("Usage: %s <number> [<count>\n"), argv[0]);
>>>>>>> i18n:src/rand.c

You can replace merge conflict markers individually on a file-per-file basis by
rechecking the file again with the following command:

$ git checkout --conflict=diff3 src/rand.c

If you prefer to use this format all the time, you can set it as the default for future
merge conflicts, by setting merge.conflictStyle to diff3 (from the default of
merge).

Three stages in the index
But how does Git keep track of which files are merged and which are not? Conflict
markers in the working directory files would not be enough. Sometimes, there
are legitimate contents that look like commit markers (for example, test files for
merge, or files in the AsciiDoc format), and there are more conflict types than
CONFLICT(content). How does Git, for example, represent the case where both
sides renamed the file but in a different way, or where one side changed the file and
the other side removed it?

It turns out that it is another use for the staging area of the commit (a merge commit
in this case), which is also known as the index. In the case of conflicts, Git stores
all of conflicted files versions in the index under stages; each stage has a number
associated with it. Stage 1 is the common ancestor (base), stage 2 is the merged into
version from HEAD, that is, the current branch (ours), and stage 3 is from MERGE_
HEAD, the version you're merging in (theirs).

You can see these stages for the unmerged files with the low level (plumbing)
command git ls-files --unmerged (or for all the files with git ls-files
--stage):

$ git ls-files --unmerged

100755 ac51efdc3df4f4fd318d1a02ad05331d8e2c9111 1 src/rand.c

100755 36c06c8752c78d2aaf89571132f3bf7841a7b5c3 2 src/rand.c

100755 e85207e04dfdd50b0a1e9febbc67fd837c44a1cd 3 src/rand.c

Merging Changes Together

[214]

You can refer to each version with the :<stage number>:<pathname> specifier. For
example, if you want to view a common ancestor version of src/rand.c, you can
use the following:

$ git show :1:src/rand.c

If there is no conflict, the file is in stage 0 of the index.

Examining differences – the combined diff format
You can use the status command to find which files are unmerged, and conflict
markers do a good job of showing conflicts. How to see only conflicts before we
work on them, and how to see how they were resolved? The answer is git diff.

One thing to remember is that for merges, even the merges in progress, Git will show
the so-called combined diff format. It will look as follows (for a conflicted file during
a merge):

$ git diff

diff --cc src/rand.c

index 293c8fc,4b87d29..0000000

--- a/src/rand.c

+++ b/src/rand.c

@@@ -14,16 -14,13 +14,26 @@@ int main(int argc, char *argv[]

 return EXIT_FAILURE;

 }

++<<<<<<< HEAD

 + int max = atoi(argv[1]);

 + if (max > RAND_MAX) {

 + fprintf(stderr, "Cannot handle <number> larger than %d (%d)\n",

 + RAND_MAX, max);

 + return EXIT_FAILURE;

 + } else if (max < 2) {

 + fprintf(stderr, "<number> cannot be smaller than %d (%d)\n",

 + 2, max);

 + return EXIT_FAILURE;

 + }

Chapter 7

[215]

++=======

+ char *endptr = NULL;

+ long int val = strtol(argv[1], &endptr, 10);

+ if (*endptr) {

+ fprintf(stderr, "Invalid argument(s)\n");

+ return EXIT_FAILURE;

+ }

+ int max = (int) val;

++>>>>>>> 8c4ceca59d7402fb24a672c624b7ad816cf04e08

 srand(time(NULL));

 int result = random_int(max)

You can see a few differences from the ordinary unified diff format described
in Chapter 3, Developing with Git. First, it uses diff --cc in the header to denote
that it uses the compact combined format (it uses diff --combined instead if
you used the git diff -c command). The extended header lines, such as index
293c8fc,4b87d29..0000000, take into account that there is more than one source
version. The chunk header, @@@ -14,16 -14,13 +14,26 @@@, is modified (different
from the one for the ordinary patch) to prevent people from trying to apply a
combined diff as unified diff, for example, with the patch -p1 command.

Each line of the diff command is prefixed by two or more characters (two in the
most common cases of merging two branches): the first character tells about the state
of the line in the first preimage (ours) as compared to the result, the second character
tells about the other preimage (theirs), and so on. For example, ++ means that the line
was not present in either of versions being merged (here, in this example, you can
find it on the line with the conflict marker).

Examining differences is even more useful for checking the resolution of a merge
conflict.

To compare the result (current state of the working directory) with the version
from the current branch (merged into), that is, ours version, you can use git diff
--ours; similarly, for the version being merged (theirs), and the common ancestor
version (base).

Merging Changes Together

[216]

How do we get there: git log --merge
Sometimes, we need more context to decide which version to choose or to otherwise
resolve a conflict. One such technique is reviewing a little bit of history, to remember
why the two lines of development being merged were touching the same area of
code.

To get the full list of divergent commits that were included in either branch, we
can use the triple-dot syntax that you learned in Chapter 2, Exploring Project History,
adding the --left-right option to make Git show which side the given commit
belongs to:

$ git log --oneline --left-right HEAD...MERGE_HEAD

We can further simplify this and limit the output to only those commits that touched
at least one of the conflicted files, with a --merge option to git log, for example:

$ git log --oneline --left-right --merge

This can be really helpful in quickly giving you the context you need to help
understand why something conflicts and how to more intelligently resolve it.

Avoiding merge conflicts
While Git prefers to fail to automerge in a clear way, rather than to try elaborate
merge algorithms, there are a few tools and options that one can use to help Git
avoid merge conflicts.

Useful merge options
One of the problems while merging branches might be that they use different
end of line normalization or clean/smudge filters (see Chapter 4, Managing Your
Worktree). This might happen when one branch added such configuration (changing
gitattributes file), while the other did not. In the case of end of line character
configuration changes, you would get a lot of spurious changes, where lines differ
only in the EOL characters. In both cases, while resolving a three-way merge, you
can make Git run a virtual check out and check in of all the three stages of a file. This
is done by passing the renormalize option to the recursive merge strategy (git
merge -Xrenormalize). This would, as the name suggests, normalize end of line
characters, and make them the same for all stages.

Chapter 7

[217]

Changing end of line can lead to what can be considered a part of whitespace-related
conflicts. It's pretty easy to tell that it is the case while looking at the conflict, because
every line is removed on one side and added again on the other, and git diff
--ignore-whitespace shows a more manageable conflict (or even a conflict that is
resolved). If you see that you have a lot of whitespace issues in a merge, you can abort
and redo it, but this time, with -Xignore-all-space or -Xignore-space-change.
Note that whitespace changes mixed with other changes to a line are not ignored.

Sometimes, mismerges occur due to unimportant matching lines (for example, braces
from distinct functions). You can make Git spend more time minimizing differences
by selecting patience diff algorithm with -Xpatience or -Xdiff-algorithm=patience.

If the problem is misdetected renames, you can adjust the rename threshold with
-Xrename-threshold=<n>.

Rerere – reuse recorded resolutions
The rerere (reuse recorded resolutions) functionality is a bit of a hidden feature.
As the name of the feature implies, it makes Git remember how each conflict was
resolved chunk by chunk, so that the next time Git sees the same conflict it would
be able to resolve it automatically. Note, however, that Git will stop at resolving
conflicts and that it does not autocommit the said rerere-based resolution, even if it
resolves it cleanly (if it is superficially correct).

Such a functionality is useful in many scenarios. One example is the situation when
you want a long-lived (long development) branch to merge cleanly at the end, but
you do not want to create intermediate merge commits. In this situation, you can
do trial merges (merge, then delete merge), saving information about how merge
conflicts were resolved to the rerere cache. With this technique, the final merge
should be easy, because most of it would be cleanly resolved from the resolutions
recorded earlier.

Another situation you can make use of the rerere cache, is when you merge a bunch
of topic branches into a testable permanent branch. If the integration test for a branch
fails, you would want to be able to rewind the failed branch, but you would rather
not lose the work spent on resolving a merge.

Or perhaps, you have decided that you rather use rebase than merge. The rerere
mechanism allows us to translate the merge resolution to the rebase resolution.

To enable this functionality, simply set rerere.enabled to true, or create the .git/
rr-cache file.

Merging Changes Together

[218]

Dealing with merge conflicts
Let's assume that Git was not able to automerge cleanly, and that there are merge
conflicts that you need to resolve to be able to create a new merge commit. What are
your options?

Aborting a merge
First, let's cover how to get out of this situation. If you weren't perhaps prepared for
conflicts or if you do not know enough about how to resolve them, you can simply
back out from the merge you started with git merge --abort.

This command tries to reset to the state before you started a merge. It might be not
able to do this if you have not started from a clean state. Therefore it is better to stash
away changes, if there are any, before performing a merge operation.

Selecting ours or theirs version
Sometimes, it is enough to choose one version in the case of conflicts. If you want
to have all the conflicts resolved this way, forcing all the chunks to resolve in favor
of the ours or theirs version, you can use the -Xours (or -Xtheirs) option or the
recursive merge strategy. Note that -Xours (merge option) is different from -s ours
(merge strategy); the latter creates a fake merge, where the merge contents are the
same as the ours version, instead of taking ours version only for conflicted files.

If you want to do this only for selected files, you can recheckout the file with the ours
or theirs version with git checkout --ours / --theirs.

You can examine the base, ours, or theirs version with git show :1:file, :2:file,
:3:file, respectively.

Scriptable fixes – manual file remerging
There are types of changes that Git can't handle automatically, but they are scriptable
fixes. The merge can be done automatically, or at least is much easier, if we could
transform the "ours", "theirs" and "base" version first. Renormalization after changing
how the file is checked out and stored in the repository (eol and clean/smudge
filters) and handling the whitespace change are built-in options. Another non built-in
example could be changing the encoding of a file, or other scriptable set of changes
such as renaming variables.

Chapter 7

[219]

To perform a scripted merge, first you need to extract a copy of each of these
versions of the conflicted file, which can be done, with the git show command and a
:<stage>:<file> syntax:

$ git show :1:src/rand.c >src/rand.common.c

$ git show :2:src/rand.c >src/rand.ours.c

$ git show :3:src/rand.c >src/rand.theirs.c

Now that you have in the working area the contents of all the three stages of the files,
you can fix each version individually, for example with dos2unix or with iconv, and
so on. You can then remerge the contents of the file with the following:

$ git merge-file -p \

 rand.ours.c rand.common.c rand.theirs.c >rand.c

Using graphical merge tools
If you want to use a graphical tool to help you resolve merge conflicts, you can run
git mergetool, which fires up a visual merge tool and guides invoked tool through
all the merge conflicts.

It has a wide set of preconfigured support for various graphical merge helpers. You
can configure which tool you want to use with merge.tool. If you don't do this,
Git would try all the possible tools in the sequence which depends on the operating
system and the desktop environment.

You can also configure a set up for your own tool.

Marking files as resolved and finalizing merges
As described earlier, if there is a merge conflict for a file, it will have three stages in
the index. To mark a file as resolved, you need to put the contents of a file in stage 0.
This can be done by simply running git add <file>.

When all the conflicts get resolved, you need to simply run git commit to finalize
the merge commit (or you can skip marking each file individually as resolved and
just run git commit -a). The default commit message for merge summarizes what
we are merging, including a list of the conflicts if any, and adds a shortlog of the
merged-in branches by default. The last is controlled by the --log option and the
merge.log configuration variable.

Merging Changes Together

[220]

Resolving rebase conflicts
When there is a problem with applying a patch or a patch series, cherry-picking or
reverting a commit, or rebasing a branch, Git will fall back to using the three-way
merge algorithm. How to resolve such conflicts is described in earlier sections.

However, for some of these methods, such as rebase, applying mailbox, or cherry-
picking a series of commits, that are done stage by stage (a sequencer operation),
there are other issues, namely, what to do if there is a conflict during such an
individual stage.

You have three options. You can resolve the conflict, and continue the operation with
the --continue parameter (or in case of git am, also --resolved). You can abort
the operation and reset HEAD to the original branch with --abort. Finally, you can
use --skip to drop a revision, perhaps because it is already present in the upstream
and we can drop it during replaying.

git-imerge – incremental merge and rebase for git
Both rebase and merge have their disadvantages. With merge, you need to resolve
one big conflict (though using test merges and rerere to keep up-to-date proposed
resolutions could help with this) in an all-or-nothing fashion. There is almost no way
to save partially a done merge or to test it; git stash can help, but it might be an
inadequate solution.

Rebase, on the other hand, is done in step-by-step fashion. But it is unfriendly
to collaboration; you should not rebase published parts of the history. You can
interrupt a rebase, but it leaves you in a strange state (on an anonymous branch).

That's why the git imerge third-party tool was created. It presents conflicts pair
wise in small steps. It records all the intermediate merges in such a way that they
can be shared, so one person can start merging and the other can finish it. The final
resolution can be stored as an ordinary merge, as an ordinary rebase, and as a rebase
with history.

Chapter 7

[221]

Summary
This chapter has shown us how to effectively join two lines of development together,
combining commits they gathered since their divergence.

First, we got to know various methods of combining changes: merge, cherry-pick,
and rebase. This part focused on explaining how these functionalities work at higher
levels: at the level of the DAG of revisions. You learned how merge and rebase
works, and what is the difference between them. Some of the more interesting
uses of rebase, such as transplanting a topic branch from one long-lived branch to
another, were also shown.

Then, you learned what to do in case Git is not able to automatically combine
changes, that is, what can be done in the presence of a merge conflict. The important
part of this process is to understand how the three-way merge algorithm works, and
how the index and the working area are affected in case of conflicts. You now know
how to examine failed merges and how to examine proposed resolutions, how to try
avoiding conflicts, and finally how to resolve them and mark them as resolved.

The next chapter, Keeping History Clean, will explain why we might want to rewrite
history to keep it clean (and what does it mean). One of the tools to rewrite history is
an interactive rebase, a close cousin of an ordinary rebase operation described there.
You will learn various methods of rewriting commits: how to reorder them, how to
split them if they are too large, how to squash fix with the commit it is correcting,
and how to remove a file from the history. You will find what you can do if you
cannot rewrite history (understanding why rewriting published history is bad), but
you still need to correct it: with the mechanisms of replacing and of notes. While at it,
we will talk about other applications of these mechanisms.

[223]

Keeping History Clean
The previous chapter, Merging Changes Together, described how to join changes
developed by different people (as described in Chapter 5, Collaborative Development
with Git), or just developed in a separate feature branch (as shown in Chapter 6,
Advanced Branching Techniques). One of the techniques was rebase, which can help
bring a branch to be merged to a better state. But if we are rewriting history, perhaps
it would be possible to also modify the commits being rebased to be easier for
review, making the development steps of a feature clearer? If rewriting is forbidden,
can one make history cleaner without it? How do we fix mistakes if we cannot
rewrite history?

This chapter will answer all those questions. It will explain why one might want to
keep clean history, when it can and should be done, and how it can be done. Here
you will find step-by-step instructions on how to reorder, squash, and split commits.
This chapter will also describe how to do large-scale history rewriting (for example
clean up after imports from other VCS) and what to do if one cannot rewrite history
(how to use reverts, replacements, and notes).

To really understand some of the topics presented here and to truly master their use,
you need some basics of Git internals that are presented at beginning of this chapter.

In this chapter, we will cover the following topics:

• The basics of the object model of Git repositories
• Why you shouldn't rewrite published history and how to recover from it
• The interactive rebase: reordering, squashing, splitting, and testing commits
• Large-scale scripted history rewriting
• Reverting revision, reverting a merge, and remerging after reverted merge
• Amending history without rewriting with grafts and replacements
• Appending additional information to the objects with notes

Keeping History Clean

[224]

An introduction to Git internals
To really understand and make good use of at least some of the methods described
in this chapter, you would need to understand at least the very basics of Git
internals. Among others, you would need to know how Git stores the information
about revisions.

One would also require to know how to manipulate such data and how to do it from
a script. Git provides a set of low-level commands to use in scripts, as a supplement
to the user-facing high-level commands. These commands are very flexible and
powerful, though perhaps not very user-friendly. Knowledge about this scripted
interface will help us also administer the Git repositories via hooks in Chapter 11, Git
Administration.

Git objects
In Chapter 2, Exploring Project History, you have learned that Git represents history as
the Directed Acyclic Graph (DAG) of revisions, where each revision is a graph node
represented as a commit object. Each commit is identified by a SHA-1 identifier. We
can use this identifier (in full, or in an ambiguous shortened form) to refer to any
given version.

The commit object consists of revision metadata, links to zero or more parent commits,
and the snapshot of the project's files at the revision it represents. The revision
metadata includes authorship (who and when made the changes), committership (who
and when created the commit object), and of course the commit message.

It is interesting to see how Git represents the snapshot of project's files at the given
revision. Git uses tree objects to represent directories, and blob objects (Binary
Large OBject (BLOB)) to represent contents of a file. Besides the commit, tree, and
blob objects, there might also be tag objects representing annotated and signed tags.

Each object is identified by the SHA-1 hash function over its contents or, to be more
exact, over the type and the size of the object, plus its contents. Such a content-based
identifier does not require a central naming service. Thanks to this fact, each and
every distributed repository of the same project will use the same identifiers and we
do not have to worry about name collisions:

calculate SHA-1 identifier of blob object with Git

$ printf "foo" | git hash-object -t blob –stdin

calculate SHA-1 identifier of blob object by hand

$ printf "blob 3\0foo" | sha1sum

Chapter 8

[225]

We can say that the Git repository is the content-addressed object database. That's,
of course, not all there is; there are also references (branches and tags) and various
configurations, and other things.

Let's describe Git objects in more detail, starting bottom-up. We can examine objects
with the low-level git cat-file command:

• Blob: These objects store the contents of the file at the given revision. Such
an object can be created using the low-level git hash-object -w command.
Note that, if different revisions have the same contents of a file, it is stored
only once thanks to content-based addressing:
$ git cat-file blob HEAD:COPYRIGHT

Copyright (c) 2014 Company

All Rights Reserved

• Tree: These objects represent directories. Each tree object is a list of entries
sorted by the filename. Each entry is composed of combined permissions and
type, name of the file or directory, and a link (that is SHA-1 identifier) of an
object connected with the given path, either the tree object (representing the
subdirectory), the blob object (representing the file contents), or rarely the
commit object (representing the submodule). Note that, if different revisions
have the same contents of a subdirectory, it will be stored only once thanks to
content-based addressing:
$ git cat-file -p HEAD^{tree}

100644 blob 862aafd... COPYRIGHT

100644 blob 25c3d1b... Makefile

100644 blob bdf2c76... README

040000 tree 7e44d2e... src

Note that the real output includes full 40-character SHA-1 identifiers, not
a shortened one, as shown in the preceding example. You can create tree
objects out of the index (that you can create using the git update-index
command) with git write-tree.

• Commit: These objects represent revisions. Each commit is composed of a
set of headers (key-value data) that includes zero or more parent lines, and
exactly one tree line with the link to the tree object representing a snapshot
of the repository contents: the top directory of a project. You can create a
commit with a given tree object as a revision snapshot by using the low-level
git commit-tree command or by simply using git commit:
$ git cat-file -p HEAD

tree 752f12f08996b3c0352a189c5eed7cd7b32f42c7

Keeping History Clean

[226]

parent cbb91914f7799cc8aed00baf2983449f2d806686

parent bb71a804f9686c4bada861b3fcd3cfb5600d2a47

author Joe Hacker <joe@example.com> 1401584917 +0200

committer Bob Developer <bob@example.com> 1401584917 +0200

Merge remote branch 'origin/multiple'

• Tag: These objects represent annotated tags, of which signed tags are a
special case. Tag objects also consist of a series of headers (among others link
to the tagged object) and a tag message. You can create a tag object with a
low-level git mktag command, or simply with git tag:

$ git cat-file tag v0.2

object 5d2584867fe4e94ab7d211a206bc0bc3804d37a9

type commit

tag v0.2

tagger John Tagger <john@example.com> 1401585007 +0200

random v0.2

The Git internal format for the author, committer, and tagger dates is
<unix timestamp> <timezone offset>. The Unix timestamp
(POSIX time) is the number of seconds since the Unix epoch, which is
00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January 1970
(1970-01-01T00:00:00Z), not counting leap seconds. This denotes when the
event took place. You can print the Unix timestamp with date "%s" and
convert it into other formats with date --date="@<timestamp>".
The timezone offset is a positive or negative offset from UTC in the
HHMM (hours, minutes) format. For example, CET (that is 2 hours ahead
UTC) is +0200. This can be used to find local time for an event.

Some Git commands work on any type of objects. For example, you can tag any type
of objects, not only commits. You can, among others, tag a blob object to keep some
unrelated piece of data in the repository and have it available in each clone. Public
keys can be such data.

Notes and replacements, which will be described later in this chapter, also work on
any type of objects.

Chapter 8

[227]

The plumbing and porcelain Git commands
Git was developed in the bottom-up fashion. This means that its development started
from basic blocks and built upward. Many user-facing commands were once built as
shell scripts utilizing these basic low-level blocks to do their work. Because of this,
we can distinguish between the two types of Git commands.

The better known types are the so-called porcelain commands, which are high-
level, user-facing commands ("porcelain" is a play of words on calling engine level
commands plumbing). The output of these commands is intended for the end user.
This means that its output can be changed to be more user-friendly , and therefore its
output can be different in different Git versions. with the Git version. The user (you)
is smart enough to understand what happened, if presented, for example, with an
additional information, or with a changed wording, or with a changed formatting.

This is not the case for the scripts that you may write (here, in this chapter, for
example as a part of the scripted rewrite with git filter-branch). Here, you need
unchanging output; well, at least, for the scripts that are used more than once (as
hooks, as the gitattribute drivers, and as helpers). You can often find a switch,
usually named --porcelain, that ensures the command output is immutable. For
other commands, the solution is to specify the format fully. Alternatively, you can
use low-level commands intended for scripting: the so-called plumbing commands.
These commands usually do not have user-friendly defaults, not to mention do-
what-I-mean-ness. Their output does not depend on the Git configuration; not that
many of them can be configured via Git configuration file.

The git(1) manpage includes a list of all the Git commands separated into porcelain
and plumbing. The distinction between plumbing and porcelain commands was
mentioned as a tip in Chapter 4, Managing Your Worktree, when we encountered the
first low-level plumbing command without a user-facing and user-friendly porcelain
equivalent.

Environment variables used by Git
Git uses a number of shell environment variables to determine how it behaves. For
user-facing porcelain commands that are shell scripts, they are used to pass data to
the low-level plumbing commands doing the work, in addition to using standard
input (pipelines) and command parameters.

Occasionally, it comes in handy to know what these environment variables are and
how they can be used to make Git behave the way you want it to. This will be very
visible in the section about scripted history rewriting with git filter-branch
(especially, --env-filter) later in this chapter.

Keeping History Clean

[228]

Environment variables fall between the Git configuration and command parameters
in priority: environment variables overriding configuration and command
parameters overriding environment variables. Well, except for fallback non-
Git-specific environment variables, such as PAGER and EDITOR, that take lowest
precedence and can be overridden by configuration variables, such as core.pager
and core.editor.

What follows is not meant to be an exhaustive list of all the environment variables
that Git uses, but only a selected set of the ones especially useful and connected to
the topic of this chapter.

Environment variables affecting global behavior
Some of Git's general behavior as a whole (the paths it searches and the external
programs its uses) depends on environment variables.

GIT_EXEC_PATH determines where the core git programs are installed. You can check
and set the current setting with git --exec-path. The default value is set at installation.

Where Git looks for configuration files is also affected by environment variables. The
user-specific configuration file (also called the global configuration file) can be found
either at $XDG_CONFIG_HOME/git/config (or $HOME/.config/git/config if XDG_
CONFIG_HOME is not set or empty) or at $HOME/.gitconfig, values in the latter file
taking precedence. You can override the values of either of these variables, namely
HOME and XDG_CONFIG_HOME (which many other things depend on) in a shell
profile for a truly portable Git installation.

The location of the system-wide configuration file is set at installation (usually, /
etc/gitconfig), but you can skip reading from this file by setting the GIT_CONFIG_
NOSYSTEM environment variable. This can be useful if your system configuration
is interfering with your commands. Or, you can set the single configuration file
to be used by Git with GIT_CONFIG environment variable (for git config this is
equivalent to using the --file option).

The GIT_PAGER environment variable controls the program used to display a
multipage output on the command line if the standard output is a terminal. If this is
unset, then the core.pager configuration variable, the PAGER environment variable,
and the built-in value—that is, the less program—will be used as a fallback,
whichever is set, in this order.

A similar situation exists with GIT_EDITOR which is used to configure the editor
to launch in the interactive mode when the user needs to edit some text (a commit
message, for example). Note that the editor can be a script that is generating required
output, instead of a real editor. The fallback environment variable is EDITOR or
VISUAL, depending on the environment (after core.editor).

Chapter 8

[229]

Environment variables affecting repository
locations
Git uses several environment variables to determine how it interfaces with the
current repository. These environment variables apply to all the core Git commands.

The GIT_DIR and GIT_WORK_TREE environment variables specify, if set, the location
of the .git directory (the administrative area containing the repository) and its
work tree (working area), respectively. The --git-dir command-line option can
also be used to set the location of the repository. The location of the work tree can
be controlled by the --work-tree option and the core.worktree configuration
variable; well, if the repository is not bare and there exists a working area. By default,
the repository that ends in /.git is considered to be not bare; you can also set the
core.bare configuration variable explicitly.

If the location of the repository is not set explicitly, Git will starting from the current
directory walk up the directory tree, looking for a .git directory at each step. If
it finds it, the directory it was in when it found .git becomes the work tree (the
top directory of the project), and the found .git directory is the location of the
repository. You can specify a set of directories as a colon-separated list of absolute
paths where Git should stop this walk with GIT_CEILING_DIRECTORIES (for
example, to exclude slow-loading network directories); by default, Git would stop
only at filesystem boundaries (unless GIT_DISCOVERY_ACROSS_FILESYSTEM is set
to true).

You can use the GIT_INDEX_FILE environment variable to specify the location of an
alternate index file. The default is to use $GIT_DIR/index. Note that the index is not
present in bare repositories. This variable can be used to create or modify a state of
commit without touching the working area, that is, without touching the filesystem.

The GIT_OBJECT_DIRECTORY variable can be used to specify the location of the object
storage directory; the default is to use $GIT_DIR/objects.

Also, due to the immutable nature of git objects and the fact that they are content-
addressed, old objects can be archived into shared, read-only directories and, which
can be outside GIT_OBJECT_DIRECTORY. Of course you need to tell Git where to
find them. Or, in other words, Git repositories can share the object database (with
some caveats). See git clone --reference <repository> <URL>, for example.
This issue is covered in detail in Chapter 9, Managing Subprojects - Building a Living
Framework.

Keeping History Clean

[230]

You can use the GIT_ALTERNATE_OBJECT_DIRECTORIES environment variable to
specify additional directories that can be used to search for the git objects. This
variable specifies a ":" separated list of paths the object would be read from, in
addition to what is in the $GIT_DIR/objects/info/alternates file and the
repository's own object database. New objects will not be written to these alternates.

How to compare two local repositories?
Let's assume that you want to compare two local repositories, but for
some reason, you cannot just add one as a remote of the other, and then
fetch from that remote. One example of such restriction would be using
a read-only storage.
Being in one of repositories, you can do the following:
GIT_ALTERNATE_OBJECT_DIRECTORIES=../repo/.git/objects \

git diff \

 $(GIT_DIR=../repo/.git git rev-parse --verify HEAD) \

 HEAD

For the other repository, you need to get the universal identifier for
an object, that is, its SHA-1. You can do so with the git rev-parse
command. To turn a reference, such as HEAD or HEAD:README, it needs
to be run in the other repository, which can be done with either the
GIT_DIR environment variable (as in the example) or the --git-dir
command-line option.

Environment variables affecting committing
The final creation of a Git commit object is usually done internally by the git
commit-tree plumbing command. While parent information is provided as
command parameters on the command line and git commit-tree gets a commit
message on standard input, author and committer information is taken from the
following environment variables.

The GIT_AUTHOR_NAME and GIT_COMMITTER_NAME commands are the human-
readable name in the author and committer fields, respectively. The e-mail address
can be set with GIT_AUTHOR_EMAIL for the author field and GIT_COMMITTER_
EMAIL for the committer field, with generic EMAIL environment variable used as
a fallback if the configuration variable core.email is not set. GIT_AUTHOR_DATE is
the timestamp used for the author field with a date in the RFC 2822 e-mail format
(Fri, 08 May 2015 01:35:42 +0200), the ISO 8601 standard date format (2015-05-
08T01:36:48+0200), the Git internal format that is Unix time plus +hhmm numeric
time zone (1431041884 +0200), or the any other datetime format supported by Git;
similar for GIT_COMMITTER_DATE.

Chapter 8

[231]

In case, (some of) these environment variables are not set, the information is taken
from the configuration or Git tries to guess it. If the required information is not
provided, and Git cannot guess it, then commit will fail.

Rewriting history
Many times, while working on a project, you may want to revise your commit
history. One reason for this could be to make it easier to review before submitting
changes upstream. Another reason would be to take reviewer comments into account
in the next improved version of changes. Or perhaps you'd like to have a clear
history while finding regressions using bisection, as described in Chapter 2, Exploring
Project History.

One of the great things about Git is that it makes revising and rewriting history
possible, while providing a wide set of tools to revise history and make it clean.

There are two conflicting views among users of the version control
system: one states that history is sacred and you should better show the
true history of the development, warts and all, and another that states
that you should clean up the new history for better readability before
publishing it.

An important issue to note is that, even though we talk about rewriting history,
objects in Git (including commits) are immutable. This means that rewriting is really
creating a modified copy of commits, a new path in the DAG of revisions. Then
appropriate branch reference is switched to point to the just created new path. The
original, pre-rewrite commits are there in the repository, referenced and available
from the reflog (and also, ORIG_HEAD). Well, at least, until they get pruned (that is,
deleted) as unreferenced and unreachable objects during garbage-collecting. Though,
this happens only after the reflog expires.

Amending the last commit
The simplest case of history rewriting is correcting the latest commit on a branch (the
current commit).

Sometimes, you notice a typo (an error) in a commit message, or that you have
committed incomplete change in the last revision. If you have not pushed
(published) your changes, you can amend the last commit. This is done with the
--amend option to git commit.

Keeping History Clean

[232]

The result of amending a commit is shown in Fig 6 in Chapter 3, Developing with Git.
Note that there is no functional difference between amending the last commit and
changing the commits deeper in history. In both the cases you are creating a new
commit, leaving the old version referenced by the reflog.

Here, the index (that is, the explicit staging area for commits) shows its usefulness
again. For example, if you want to simply fix only the commit message, and you do
not want to make any changes, you can use git commit --amend (note the lack of
-a / --all option). This works even if you started work on a new commit; at least,
assuming that you didn't add any changes to the index. If you did, you can put them
away temporarily with git stash, fix the commit message of the last commit, and
then pop stashed changes and restore the index with git stash pop --index.

If, on the other hand, you realize that you have forgotten some changes, you can
just edit the files and use git commit --amend --all. And if the changes are
interleaved, you can use git add, or its interactive version (utilizing knowledge
from Chapter 5, Managing Your Worktree), to create the contents you want to have,
finalizing it with git commit --amend.

An interactive rebase
Sometimes, you might want to edit commit deeper in history, or reorganize commits
into a logical sequence of steps. One of the built-in tools that you can use in Git for
this purpose is git rebase --interactive.

Here, we will assume that you are working on a feature using a separate topic
branch and a topic branch workflow described and recommended in Chapter 6,
Advanced Branching Techniques. We will also assume that you are doing the work
in the series of logical steps, rather than in one large commit.

While implementing a new feature, you usually don't do it perfectly from the very
beginning. You would want to introduce it in a series of self-contained small steps
(see Chapter 12, Git Best Practices) to make code review (or code audit) and bisection
(finding the cause of regressions) easier. Often only after finishing work you see how
to split it better. It is also unreasonable to expect that you would not make mistakes
while implementing a new feature.

Chapter 8

[233]

Before submitting the changes (either pushing to a central repository, pushing
to your own public repository and sending pull requests, or using some other
workflows described in Chapter 5, Collaborative Development with Git), you would
often want to update your branch to the current up-to-date state of a project . By
rebasing your changes on top of current state, and having them up to date, you
would make it easier for the maintainer (the integration manager) to ultimately
merge your changes in, when they are accepted for the inclusion in the mainline.
Interactive rebase allows you to clean up history, as described earlier, while doing it.

Besides tidying up before publishing changes, there is also additional use for
tools such as an interactive rebase. While working on a more involved feature, the
very first submission is not always accepted into an upstream and added to the
project. Often, patch review finds problem with the code or with the explanation
of the changes. Perhaps, something is missing (for example, the feature lacks
documentations or tests), some commit needs to be fixed, or the submitted series
of patches (or a branch submitted in a pull request) should be split into smaller
commits for easy review. In this case, you would also use an interactive rebase (or an
equivalent tool) to prepare a new version to submit, taking into account the results of
code inspection.

Reordering, removing, and fixing commits
Rebase, as described in Chapter 7, Merging Changes Together, consists of taking a series
of changes of the commits being rebased and reapplying them on top of a new base
(a new commit). In other words, rebase moves changesets, not snapshots. Git starts
the interactive rebase by opening the instructions sheet corresponding to those series
operations of reapplying changes in an editor.

You can configure the text editor used for editing the rebase instruction
file separately from the default editor (used, for example, to edit commit
message) with the sequence.editor configuration variable, which in
turn can be overridden by the GIT_SEQUENCE_EDITOR environment
variable.

Like in the case of the template for editing commits, the instruction sheet is
accompanied by the comments explaining what you can do with it (note that if you
use older Git version, some interactive rebase commands might be missing):

pick 89579c9 first commit in a branch
pick d996b71 second commit in a branch
pick 6c89dee third commit in a branch

Rebase 89579c9..6c89dee onto b8fffe1

Keeping History Clean

[234]

#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
Note that empty commits are commented out

As explained in the comments, the instructions are in the order of execution, starting
from the instruction on the top to create the first commit with the new base as its
parent, and ending with the instruction copying commit at the tip of the branch
being rebased at the bottom. This means that revisions are listed in an increasing
chronological order, older commits first. This is the reverse order as compared
to the git log output with the most recent commit first (unless using git log
--reverse). This is quite understandable; the rebase reapplies changesets in the
order they were added to the branch, while the log operation shows commits in the
order of reachability from the tips.

Each line of the instruction sheet consists of three elements separated by spaces. First,
there is a one-word command; by default, the interactive rebase starts with pick.
Each command has a one-letter shortcut that you can use instead of the long form, as
shown in the comments (for example you can use "`p`" in place of "`pick`").

Next, there is a uniquely shortened SHA-1 identifier of a commit to be used with
the command. Strictly speaking, it is the identifier of a commit being rebased, which
it had before the rebase started. This shortened SHA-1 identifier is used to pick the
appropriate commit (for example while reordering lines, which means reordering
commits).

Chapter 8

[235]

Last, there is the description (the subject) of a commit. It is taken from the first line
of the commit message (specifically, it is the first paragraph of the commit message
with the line breaks removed, where a paragraph is defined as the set of subsequent
lines of text separated from other paragraphs by at least one empty line—that is, two
or more end-of-line characters). This is one of the reasons why the first line of the
commit message should be a short description of changes (see Chapter 12, Git Best
Practices). This description is for you to help decide what to do with the commit; Git
uses its SHA-1 identifier and ignores the rest of the line.

Reordering commits with the interactive rebase is as simple as reordering lines in
the instruction sheet. Note, however, that if the changes were not independent, you
might need to resolve conflicts, even if they would be no merge conflicts without
doing reordering. In such cases, as instructed by Git, you would need to fix conflicts,
mark conflicts as resolved, (for example, with git add), and then run git rebase
--continue. Git will remember that you are in the middle of an interactive rebase, so
you don't need to repeat the --interactive option.

The other possibility of dealing with a conflict, namely, skipping a commit, rather
than resolving a conflict, by running git rebase --skip, is here as well. By default,
rebase removes changes that are already present in upstream; you might want to use
this command in case the rebase doesn't detect correctly that the commit in question is
already there in the branch we are transplanting revisions onto. In other words, do skip
a commit if you know that the correct resolution of a conflict is an empty changeset.

You can also make Git present you again with the instruction sheet at
any time when rebase stops for some reason (including an error in the
instruction sheet, like using the squash command with the first commit)
with git rebase --edit-todo. After editing it, you can continue the
rebase.

To remove changes, you simply need to remove the relevant line from the
instruction sheet, or to comment it out, or -- with the newest Git -- use the drop
command. You can use it to drop failed experiments, or to make it easier on the
rebase by deleting changesets that you know are already present in the rebase onto
the upstream, though perhaps in a different form. Note, though, that removing the
instruction sheet altogether aborts the rebase.

Keeping History Clean

[236]

To fix a commit, change the pick command preceding the relevant commit in the
instruction sheet to edit (or just e). This would make rebase stop at this commit, that
is, at the step of reapplying changes, similar to the case with a conflict. To be precise,
the interactive rebase applies the commit in question, so it is the HEAD commit and
stops the process giving control to the user. You can then fix this commit, as if it were
a current one with git commit --amend, as described in Amending the last commit.
After changing it to your liking, run git rebase --continue, as explained in the
instruction that Git prints.

A proper git-aware command-line prompt, such as the one from the
Git contrib command, would tell you if you are in the middle of the
rebase (see Chapter 10, Customizing and Extending Git). If you are not
using such a prompt, you can always check what's happening with
git status:
$ git status

rebase in progress; onto b3cebef

You are currently rebasing branch 'subsys' on 'b3cebef'.

 (fix conflicts and then run "git rebase --continue")

 (use "git rebase --skip" to skip this patch)

 (use "git rebase --abort" to check out the original
branch)

As you can see, you can always go to the state before starting the rebase
with git rebase --abort.

If you only want to change the commit message (for example, to fix spellings or
include additional information), you can skip the need to run git commit --amend
and then git rebase --continue by using reword (or r) instead of edit. Git
would then automatically open the editor with the commit message. Saving changes
and exiting the editor will commit the changes, amend the commit, and continue
the rebase.

Squashing commits
Sometimes, you might need to make one commit out of two or more, squashing them
together. Maybe, you decided that it didn't make sense to split the changes and they
are better together.

Chapter 8

[237]

With the interactive rebase, you can reorder these commits, as needed, so they are
next to each other. Then, leave the pick command for the first of the commits to be
concatenated together (or change it to edit). For the rest of the commits, use the
squash or fixup command. Git will then accumulate the changes and create the
commit with all of them together. The suggested commit message for the folded
commit is the commit message of the first commit with the messages of the commits
with the squash command appended; commit messages with the fixup command
are omitted. This means that the squash command is useful while squashing
changes, while fixup is useful for adding fixes. If the commits had different authors,
the folded commit will be attributed to the author of the first commit. The committer
will be you, the person performing the rebase.

Let's assume that you noticed that you forgot to add some part of the changes to the
commit. Perhaps, it is missing tests (or just negative tests) or the documentation.
The commit is in the past, so you cannot just add to it by amending. You could use
an interactive rebase or the patch management interface to fix it, but often it is more
effective to create the commit with forgotten changes and squash it later.

Similarly, when you notice that the commit you created a while ago has a bug,
instead of trying to edit it immediately, you can create a fixup commit with a bugfix
to be squashed later.

If you are using this technique, some time might pass between noticing the need
to append new changes or fix a bug and creating an appropriate commit, and the
time taken to rebase. How to mark the said commit to squash or fixup? If you use
the commit message beginning with the magic string squash! ... or fixup! ...,
respectively, preceding the description (the first line of the commit message that
is sometimes called subject) of a commit to be squashed into, you can ask Git to
autosquash them, thus automatically modifying the to-do list of rebase -i. You can
request this on an individual basis with the --autosquash option or you can enable
this behavior by default with the rebase.autoSquash configuration variable. To
create the appropriate magic commit message, you can use git commit --squash/-
-fixup. (with commit to be squashed into / commit to be fixes as a parameter to
this option)

Splitting commits
Sometimes, you might want to make two commits or more out of one commit,
splitting it in two or more parts. You may have noticed that the commit is too large,
perhaps it tries to do too much, and should be split in two. Or perhaps, you have
decided that some part of a changeset should be moved from one commit to another,
and extracting it into a separate commit is a first step towards that.

Keeping History Clean

[238]

Git does not provide a one-step built-in command for this operation. Nevertheless,
splitting commits is possible with the clever use of the interactive rebase.

To split a given commit, first mark it with the edit action. As described earlier,
Git will stop at the specified commit and give the control back to the user. In the
case of splitting a commit, when you return the control to Git with git rebase
--continue, you would want to have two commits in place of one.

The problem of splitting a commit is comparable to the problem of having different
changes tangled together from Chapter 3, Developing with Git (the section about
interactive commit). The difference is that the commit is already created and copied
from the branch being rebased. It is simple to fix it with git reset HEAD^; as
described in Chapter 4, Managing Your Worktree, this command will keep the working
area at the (entangled) state of the commit to be split while moving the HEAD pointer
and the staging area for the commit to the state before this revision. Then you can
interactively add to the index the changes that you want to have in the first commit,
composing the intermediate step in the staging area. Next, check whether you have
what you want in the index, then create a commit from it using git commit without
the -a / --all option. Repeat these last two steps as often as necessary.

Alternatively, instead of adding changes interactively, you can interactively remove
changes to create the intermediate state for split commit. This can be done with
interactive reset, mentioned in Chapter 4, Managing Your Worktree.

For the last commit in the series (the second one if you are splitting the commit in
two), you can either add everything to the index making a working copy clean and
create a commit from the index, or you can create a commit from the state of the
working area (git commit --all). If you want to keep, or start from, the commit
message of the original commit to be split, you can provide it with the --reuse-
message=<commit> or --reedit-message=<commit> option while creating a
commit. I think, the simplest way of naming a commit that was split (or that is being
split) is to use reflog—it will be the HEAD@{n} entry just before reset: moving to
HEAD^ in the git reflog output.

Instead of crafting the commit in the staging area (in the index) starting from the
parent of the commit to be split, and adding changes, perhaps interactively, you
could start from the final state (that is, the commit to be split) and remove the
changes that are to be in second step, for example, with git reset --patch HEAD^
(interactive removal). Frankly, you can use any combination of techniques from
Chapter 4, Managing Your Worktree. I find, for example, graphical commit tools such
as git gui quite useful (you can find what are the graphical commit tools, and their
examples in Chapter 11, Customizing and Extending Git).

Chapter 8

[239]

If you are not absolutely sure that the intermediate revisions you are creating in the
index are consistent (they compile, pass the test suite, and so on), you should use git
stash save --keep-index to stash away the not-yet-committed changes, bringing
the working area to the state composed in the index. You can the test the changes (for
example by using the testsuite), and if fixes are necessary amend the staging area.
Alternatively, you can create the commit from the index and use plain git stash to
save the state of the working area after each commit. You can then test and amend
the created intermediate commit if the fixes are necessary. In both the cases, you
need to restore changes with git stash pop before you work on a new commit in
the split.

Testing each rebased commit
A good software development practice is to test each change before committing it.
But it does not always happen. Let's assume that you forgot to test some commits
or skipped it because the change seemed trivial and you were pressed for time. The
interactive rebase allows you to execute tests (to be precise, any command) during
the rebase process by adding the exec (x) action with an appropriate command after
the commit you want to test.

The exec command launches the command (the rest of the line) in a shell: the one
specified in SHELL environment variable, or the default shell if SHELL is not set.
This means that you can use shell features (for POSIX shell, it would be using cd to
change directories, ">" to command output redirection, and ";" and "&&" to sequence
multiple commands, and so on). It's important to remember that the command to be
executed is run from the root of the working tree, not from the current directory (the
subdirectory you were in while starting the interactive rebase).

If you are strict about not publishing untested changes, you might have worried
about the fact that rewritten commits, rebased on the top of the new changes, might
not pass the tests, even if the originals have. You can, however, make the interactive
rebase test each commit with the --exec option, for example:

$ git rebase --interactive --exec "make test"

This would modify the staring instruction sheet, inserting exec make test after
each entry:

pick 89579c9 first commit in a branch
exec make test
pick d996b71 second commit in a branch
exec make test
pick 6c89dee third commit in a branch
exec make test

Keeping History Clean

[240]

External tools – patch management interfaces
You might prefer fixing the old commit immediately at the time you have noticed
the bug, and not postponing it till the branch is rebased. The latter is usually done
just before the branch is sent for review (to publish it). This might be quite some time
after realizing the need to edit the past commit.

Git itself doesn't make it easy to fix the found bug straight away, not with built-in
tools. You can, however, find third-party external tools that implement the patch
management interface on the top of Git. Examples of such tools include Stacked Git
(StGit) and Git Quilt (Guilt).

These tools provide similar functionality to Quilt (that is, pushing/popping patches
to/from a stack). With them, you have a set of work-in-progress floating patches
in the Quilt-like stack. You have also accepted changes in the form of proper Git
commits. You can convert between patch and commit and vice versa, move and edit
patches around, move and edit commits (that is done by turning the commit and its
children into patches and back again), squash patches, and so on.

This is, however, an additional tool to install, additional set of operations to learn
(even if they make your work easier), and additional set of complications coming
from the boundary between the Git and the tool in question. An interactive rebase is
powerful enough nowadays and, with autosquash, the need for another layer on top
of Git is lessened.

Scripted rewrite with the git filter-branch
In some cases, you might need to use more powerful tools than the interactive rebase
to rewrite and clean up the history. You might want something that would rewrite
the full history, and would do the rewrite noninteractively, given some specified
algorithm to do the rewrite. Such situations are the task for git filter-branch.

The calling convention of this command is rather different than for the interactive
rebase. First, you need to give it a branch or a set of branches to rewrite, for example,
--all to rewrite all the branches. Strictly speaking, you give it the rev-list options
as arguments, that is, a series of positive and negative references (see Chapter 2,
Exploring Project History for definition). The command will only rewrite the positive
refs mentioned in the command line. This means that positive references, which are
the upper limits of revision ranges, need to be able to be rewritten—to be branch
names. Negative revisions are used to limit what is ran through the rewriting
process; you can, of course, also specify a pathspec on a command line to limit the
changes.

Chapter 8

[241]

This command rewrites the Git revision history by applying custom filters
(scripts) on each revision to be rewritten. That's another difference: rebase works
by reapplying changesets, while filter-branch works with snapshots. One of the
consequences of this is that, for the filter-branch, a merge is just a kind of a commit
object, while the rebase skips merges, unless you use the --preserve-merges option
that does not work well combined with the interactive mode.

And, of course, with the filter-branch, you use scripts for rewrite (that are called
filters), instead of rewriting interactively: editing instruction sheets and running
commands by hand to edit, reword, squash, split, or test commits during the rebase
process. This means that the speed of the filter-branch operation is not limited by
the speed of the user interaction, but by I/O. It is recommended to use an off-disk
temporary directory for rewriting (if the filter requires it) with the -d <directory>
option.

Because git filter-branch is usually used for massive rewrites, it
saves the original refs, pointing to the pre-rewritten history in the refs/
original/ namespace (you can override it with the --original
<namespace> option).
The command would also refuse to start, unless forced, if there are
already existing refs starting with refs/original/, or if there is
anything in a temporary directory.

Running the filter-branch without filters
If you specify no filters, the commits will be recommitted without any changes. Such
usage would normally have no effect, but it is permitted to allow in the future to
compensate for (to fix) some Git bugs.

It is important to note that this command respects both grafts (it honors .git/info/
grafts file) and replacements (refs in the refs/replace/ namespace), thought
you can ask Git with a command line option to not follow the latter. Grafts and
replacements are techniques to affect the history (or a rather a view of it) without
rewriting any revisions. Both will be explained later in the Replacements mechanism
section.

This means that running git filter-branch without any filter can be used to make
permanent the effects of grafts or replacements by rewriting the selected commits.
This way, you can use the following technique: use git replace on the specified
commits to alter the view of a history, ensure that it looks correct (like you wanted it
to look like), and then make the modification permanent with a filter-branch.

Keeping History Clean

[242]

Additionally, while rewriting commits, git filter-branch respects the current
value of a few relevant configuration variables. The values of those variables might
have changed since the original creation of the commits being rewritten. This feature
might be used, for example, to fix history if you have used nonstandard encoding
for the commit messages (not UTF-8), but forgot to set i18n.commitEncoding.
Rewriting history with no filters, with 'i18n.commitEncoding' set correctly at that
tome, will nevertheless add the encoding header to the commit objects.

Available filter types for filter-branch and their use
There is a large set of different types of possible filters to specify how to rewrite
history. You can specify more than one type of filter; they are applied in the listed
order. Note that different filters have different performance considerations.

The command argument is always evaluated in the shell context and is called
once per commit undergoing the rewrite. Information about a pre-rewrite SHA-1
identifier of a current commit (that is, the commit being rewritten) is passed to the
filter using the GIT_COMMIT environment variable. In addition, there is a map shell
function available that takes the original SHA-1 of a commit as an argument, and
outputs either the rewritten or original SHA-1 depending on whether the commit
was rewritten or not at the time this shell function was invoked.

Also, GIT_AUTHOR_NAME, GIT_AUTHOR_EMAIL, GIT_AUTHOR_DATE, GIT_COMMITTER_
NAME, GIT_COMMITTER_EMAIL, and GIT_COMMITTER_DATE are taken from the current
commit and exported to the environment to make it easier to write the contents
of the filter, and to affect the author and committer identities of the replacement
commit. The filter-branch command uses git commit-tree to create a replacement
commit if the filter function succeeds; if the command returns a nonzero exit status,
then the whole rewrite will get aborted.

When writing filter scripts, just like for normal scripts, it is usually better to use low-
level plumbing commands, rather than high-level porcelain commands designed
for interactive use. In particular, the filter-branch command uses plumbing itself...
without all the do what I mean (DWIM) niceties(like following gitignore files). If you
prefer, though, you can use programs for filters, instead of shell scripts.

The git filter-branch command supports the following types of filters:

• --env-filter: This may be used to modify environments in which a commit
is performed. You might use it to change author or committer information,
namely their name, e-mail, or time of operation. Note that variables need to
be re-exported.

Chapter 8

[243]

• --tree-filter: This may be used to rewrite the contents of the commit,
that is, the tree object the commit refers to. The command is evaluated
in the shell, with the working directory set to the root of the project and
current commit checked out. After the command finishes, the contents of the
working area are used as-is, new files are auto-added, and disappeared files
are auto-removed without considering any ignore rules (for example, from
.gitignore).

• --index-filter: This may be used to rewrite the index and the staging area
from which the rewritten commit will be created. It is similar to the tree filter,
but is much faster, because it doesn't need to check out files into the working
area (into the filesystem).

• --parent-filter: This may be used to rewrite the commit's parent list. It
receives a parent string in the form of the parent's command-line parameters
to the git commit-tree command (-p <parent full SHA-1>) on a
standard input, and shall output a new parent string on a standard output.

• --msg-filter: This may be used to rewrite the commit messages. It receives
the original commit message on a standard input, and shall output a new
commit message on a standard output.

• --commit-filter: This may be used to specify the command to be
called instead of git commit-tree. This means getting <tree> [(-p
<parent>)...] as arguments to the filter command, and getting the log
message on the standard input.
You can use in this filter a few convenience functions: skip_commit "$@" to
leave out the current commit (but not its changes!), and git_commit_non_
empty_tree "$@" to automatically skip no-change commits.

"$@" expands to the positional parameters of the command starting
from one. When the expansion occurs within double quotes, each
parameter expands to a separate word. This is a standard POSIX shell
feature, and can be used to pass all the parameters down unchanged.

• --tag-name-filter: This may be used to rewrite tag names. The original
tag name is passed on a standard input, and the command shall write a new
name to a standard output. The original tags are not deleted, but can be
overwritten; use --tag-name-filter cat to simply update tags (stripping
signatures).
Note that the signature gets stripped, because by definition, it is impossible
to preserve them. Tags with rewritten names are properly rewritten to point
to the changed object. Currently, there is no support to change the tagger,
timestamp, tag message, or re-signing tags.

Keeping History Clean

[244]

• --subdirectory-filter <directory>: This may be used to leave only the
history of the given directory, and make this directory a project root. Can be
used to change a subdirectory of a project into a subproject; see also
Chapter 9: Managing Subprojects - Building a Living Framework.

Note that if you use the git log / git rev-list options to limit the set of revisions
to rewrite (for example, --all to rewrite all the branches), you must separate them
with "--" from the specification of filters and other git filter-branch options.

Examples of using the git filter-branch
Let's assume that you committed a wrong file to a repository by mistake and
you want to remove the file from the history. Perhaps this was a site-specific
configuration file with passwords or their equivalent. Perchance, during "git add
.", you have included a generated file that was not properly ignored (maybe it was a
large binary file). Or mayhap, it turned out that you don't have the distribution rights
to a file and you need to have it removed to avoid copyright violation.

Now you need to remove it from the project. Using git rm --cached would remove
it only from future commits. You can also quite easily remove the file from the latest
version by amending the commit (as described earlier in this chapter).

To excise the file from the entire history, (let's assume it is called passwords.txt),
you can use git filter-branch with the --tree-filter option:

$ git filter-branch --tree-filter 'rm -f passwords.txt' HEAD

Rewrite fdfb73095fc0d594ff8d7f507f5fc3ab36859e3d (32/32)

Ref 'refs/heads/master' was rewritten

There is, however, a faster alternative—instead of using a tree filter, which involves
writing out files, you can use delete files from the index using git rm --cached
with the index filter. You need to ensure that the filter runs successfully and does not
exit even if there are no files to delete; there is also no need for output:

$ git filter-branch --index-filter \

 'git rm -f --cached -q --ignore-unmatch passwords.txt' HEAD

Or, you can use the BFG Repo-Cleaner third-party tool described in a later section.

Chapter 8

[245]

You can use a filter branch to remove all the specific types of commits from the
history, for example, commits by a specific author (one that, for example, didn't
fulfill the copyright obligations, such as the contributor agreement). Note, however,
that there is a very important difference between removing commits with filter-
branch and removing them using a interactive rebase. A filter-branch removes nodes
in the DAG of revisions, but does not remove the changes—there is simply no longer
an intermediate step between two snapshots, and changes move to the child commit.
On the other hand, an interactive rebase removes both commit and changes. This
means that all the child commits are modified so that their snapshot does not include
removed changes.

To remove a commit, you can use the skip_commit shell function in a commit filter:

$ git filter-branch --commit-filter '

if ["$GIT_AUTHOR_NAME" = "Bad Contributor"];

then

 skip_commit "$@"

else

 git commit-tree "$@"

fi' HEAD

You can use a filter-branch to permanently join two repositories, connect histories,
and split the history in two. You can do this directly with a parent filter. For example
to join repositories, making the commit <root-id> from the history of one of
repositories being joined have <graft-id> commit (from the other repository) as a
parent, you can use:

$ git filter-branch --parent-filter \

'test "$GIT_COMMIT" = <root-id> && echo "-p <graft-id>" || cat' HEAD

You can split history at a given commit in two in a similar way, by setting parents to
an empty set with echo "".

If you know that you have only one root commit (only one commit with no parents),
you can simplify the method to join the history to the following command:

$ git filter-branch --parent-filter 'sed "s/^\$/-p <graft id>/"' HEAD

In my opinion, however, it is simpler to use grafts or replacements, check whether
the joined/split history renders correctly, and then make replacements permanent
by running filter-branch without filters with the revision range starting, at least,
from the rewritten joint/root commit. Still, the --parent-filter approach has an
advantage if you can tell programmatically which revision or revisions to split (or
join); a simple version of this technique is presented in the single-root join as shown
in the preceding example.

Keeping History Clean

[246]

Another common case is to fix erroneous names or e-mail addresses in commits.
Perhaps, you forgot to run git config to set your name and e-mail address before
you started working and Git guessed it incorrectly (if it couldn't guess it, it would
ask for it before allowing the commit), and .mailmap is not enough. Maybe, you
want to open the sources of the formerly proprietary closed-source program and
need to change the internal corporate e-mail to a personal address.

In any case, you can change the e-mail addresses in the whole history with a filter-
branch. You need to ensure that you are changing your commits. You can use
--env-filter for this (though --commit-filter would work too, with just git
commit-tree "$@" and no export lines):

$ git filter-branch --env-filter '

if test "$GIT_AUTHOR_EMAIL" = "joe@localhost"; then

 GIT_AUTHOR_NAME="Joe Hacker"

 GIT_AUTHOR_EMAIL=joe@company.com

 export GIT_AUTHOR_NAME GIT_AUTHOR_EMAIL

fi' HEAD

This example presents a simplified solution, you would want to change the
committer data too, and the code is nearly identical.

If you are open-sourcing a project, you could also want to add the Signed-off-by:
lines for the Digital Certificate of Origin (see Chapter 12, Git Best Practices):

$ git filter-branch --msg-filter \

'cat && echo && echo "Signed-off-by: Joe Hacker <joe@company.com>"' \

HEAD

Suppose that you have noticed a typo in the name of a subdirectory, for example,
inlude/ instead of include/. If there is no problem rewriting it, you could fix it by
using --tree-filter with mv -f inlude include; but with some ingenuity, we
can use --index-filter faster:

$ git filter-branch --index-filter '

 git ls-files --stage |

 sed -e "s!\(\t\"*\)inlude/!\1include/!" |

 GIT_INDEX_FILE=$GIT_INDEX_FILE.new \

 git update-index --index-info &&

 mv "$GIT_INDEX_FILE.new" "$GIT_INDEX_FILE"

' HEAD

Chapter 8

[247]

The explanation is as follows: we use the fact that the output of git ls-files
--stage matches the format of input for git update-index --index-info (the
latter command is a plumbing command underlying the git add porcelain). To
replace text and fix a typo in a path name, the sed (streaming editor) utility is used.
Here, we needed to write the regular expression to take care that some file names
may require quoting. A temporary index file is used to make an atomic operation.

Often, some part of a larger project takes life on its own and it begins to make sense
to use it separate from the project it started in. We would want to extract the history
of this part to make its subdirectory the new root. To rewrite history in this way and
discard all the other history, you can run:

$ git filter-branch --subdirectory-filter lib/foo -- --all

Though, perhaps, a better solution would be to use a specialized third-party tool,
namely, git subtree. This tool (and its alternatives) will be discussed in Chapter 9,
Managing Subprojects – Building a Living Framework.

External tools for large-scale history rewriting
The git filter-branch command is not the only solution for the large-scale
rewriting of the project's history. There are other tools that might be easier to use,
either because they include lots of predefined clean-up operations, or because
they provide some level of interactivity with the ability for scripted rewrite (with
read-evaluate-print loop (REPL), similar to interactive shells in some interpreted
programming languages).

Removing files from the history with BFG Repo
Cleaner
The BFG Repo Cleaner is a simpler, faster, and specialized alternative to using the
git filter-branch command for cleansing bad data out of your Git repository
history: removing files and directories and replacing text in files (for example,
passwords with placeholders). It is faster than filter-branch for its area of application,
because it can assume that we don't care where in the directory hierarchy the bad
file is, only that we want it to be gone. Also, it can use multiple cores with parallel
processing, and it doesn't need to fork and the exec shell to run filter script for each
commit—BFG is written in Scala and uses JGit as a Git implementation.

BFG is simpler to use in typical use cases, because it provides a set of command-
line parameters specialized for removing files and fixing them, such as --delete-
files or --replace-text, a query language of sorts It lacks the flexibility (often
unnecessary one) of filter-branch, though.

Keeping History Clean

[248]

One issue you need to remember is that BFG assumes that you have fixed the
contents of your current commit.

Editing the repository history with reposurgeon
The reposurgeon was originally created to help clean up artefacts created by the
repository conversion (migrating from one version control system to another). It
relies on being able to parse, modify, and emit the command stream in the git
fast-import format, which is nowadays a common export and import format
among source control systems thanks to it being version control agnostic.

It can be used for history rewriting, including editing past commits and metadata,
excising commits, squashing (coalescing) and splitting commits, removing files and
directories from history, and splitting and joining history.

The major advantage reposurgeon has over using git filter-branch is that it can
be run in two modes: either as an interactive interpreter, a kind of debugger/editor
for history with command history and tab completion, and a batch mode to execute
commands given as arguments. This allows to interactively inspect history and test
changes, and then batch run them for all the revisions.

The disadvantage is having to install and then learn to use a separate tool.

The perils of rewriting published history
There is, however, a very important principle. Namely, that you should never (or,
at least, not without a very, very good reason) rewrite published history, especially
when it comes to commits that got pushed to the public repository, or were
otherwise made public. What you can do is to change those parts of the graph of the
revisions that are private.

The reason behind this rule is that rewriting published history could cause trouble
for downstream developers, if they based their changes on revisions that got
rewritten.

This means that it is safe to rewrite and rebuild those public branches that are
explicitly stated and documented to be in flux, for example, as a way of showing
work in progress (such as pu: proposed updates type of branch). Another possibility
for the safe rewriting of a public branch is to do it at specific stages of the project's
life, namely, after creating a new release; again, this needs to be documented.

Chapter 8

[249]

The consequences of upstream rewrite
Now, you will see on a simple example the perils of rewriting published history
(for example, rebasing) and how it causes trouble. Let's assume that there are two
public branches that are of interest: master and subsys. The latter branch is based on
(forked from) the former. Let's also assume that a downstream developer (who might
be you) created a new topic branch based on subsys for his/her own work, but did
not published it yet; it is present only in his/her local repository. This situation is
shown in Fig 1 (the darker blue color denotes the revisions present only in the local
repository of the downstream developer):

Fig 1: The state of the local repository of a downstream developer before the rewrite of the published history
with the new local work that was put on a topic branch

Then, upstream rewrites the subsys branch to start from the current (topmost)
revision in the master branch. This operation is called rebase, and was described
in the previous chapter, Chapter 7, Merging Changes Together. During rewrite, one of
the commits was dropped; perhaps the same change was already present in master
and was skipped, or perhaps it was dropped for some reason or squashed into the
previous commit with an interactive rebase (this operation will be described later in
the Interactive rebase section). The public repository now looks as follows:

Fig 2: The state of a public upstream repository after rewrite. You can see the emphasized old base of the
rebased branch, new base, and rewritten commits (after rebase)

Note that, in the default configuration, Git would refuse to push rewritten history
(would deny a nonfast-forward push). You would need to force the push.

Keeping History Clean

[250]

The problem is with merging changes based on the pre-rewrite versions of the
revisions, such as the topic branch in this example:

Fig 3: The situation after merging the changes that were based on pre-rewrite revisions into post-rewrite
branches. Notice that the merge brings the pre-rewrite version of the revisions, including the commits dropped

during rebase

If neither the downstream developer, nor the upstream one, notices that the
published history has been rewritten, and merges the changes from the topic
branch into, for example, the subsys branch it was based on, the merge would
bring duplicated commits. As we can see in the example in Fig 3, after such a merge
(denoted by M13 here), we have both the C3, C4, and C5 pre-rewrite commits brought
by the topic branch, and the C3' and C5' post-rewrite commits. Note that the commit
C4 that was removed in the rewrite is back; it might have been a security bug!

Recovering from an upstream history rewrite
But what can we do if the upstream has rewritten the published history (for example,
rebased it)? Can we avoid bringing the abandoned commits back, and merging a
duplicate or near-duplicate of the rewritten revisions? After all, if the rewrite is
published, changing it would be yet another rewrite.

The solution is to rebase your work to fit with the new version from the upstream,
moving it from the pre-rewrite upstream revisions to the post-rewrite ones.

Fig 4: After a downstream rebase of a topic branch, done to recover from upstream rewrite

In the case of our example, it would mean rebasing the topic branch onto a new
(post-rewrite) version of subsys, as shown in Fig 4.

Chapter 8

[251]

You might not have a local copy of the subsys branch; in this case,
substitute subsys with the respective remote-tracking branch, for
example, origin/subsys.

Depending on whether the topic branch is public or not, it might mean that now
you are breaking the promise of unaltered public history for your downstream.
Recovering from an upstream rewrite might then result in a ripple of rebases
following the rewrite down the river of downstreams (of dependent repositories).

An easy case is when subsys is simply rebased, and the changes remain the same
(which means that C4 vanished because one of C6-C9 included it). Then, you can
simply rebase topic on top of its upstream, that is, subsys, with:

$ git rebase subsys topic

The topic part is not necessary if you are currently on it (if topic is the current
branch). This rebases everything: the old version of subsys and your commits
in topic. This solution, however, relies on the fact that git rebase would skip
repeated commits (removing C3, C4, and C5, and leaving only C10' and C12'). It
might be better and less error-prone to assume the more difficult case.

The hard case is when rewriting subsys involved some changes and was not only
a pure rebase, or when an interactive rebase was used. In this case, it is better to
explicitly move just your changes, namely subsys@{1}..topic (assuming that the
subsys@{1} entry in subsys reflog is before rewrite), stating that they are moved on
top of new subsys. This can be done with the --onto option:

$ git rebase --onto subsys subsys@{1} topic

You can make Git use reflog to find a better common ancestor with the --fork-
point option to Git rebase, for example:

$ git rebase --fork-point subsys topic

The rebase would then move the changes to topic, starting with the result of the
git merge-base --fork-point subsys topic command; though if the reflog of
the subsys branch does not contain necessary information, Git would fall back to
upstream; here subsys.

Note that you can use an interactive rebase instead of an ordinary rebase
like in the narration mentioned earlier, for a better control at the cost of
more work (for example, to drop commits that are already present, but
are not detected by the rebase machinery as such).

Keeping History Clean

[252]

Amending history without rewriting
What to do if what you need to fix is in the published part of the history? As
described in Perils of rewriting published history section, changing the parts of the
history that were made public (which is actually creating a changed copy and
replacing references) can cause problems for downstream developers. You better not
to touch this part of the graph of revisions.

There are a few solutions to this problem. The most commonly used is to put a new
fixup commit with appropriate changes (for example, a typo fix in a documentation).
If you need to remove changes, deciding that they turned out to be bad to have, you
can create a commit to revert the changes.

If you fix a commit or revert one, it would be nice to annotate that commit with the
information that it was buggy, and which commit fixed (or reverted) it. Even though
you cannot (should not) edit the fixed commit to add this information if the commit
is public, Git provides a notes mechanism to append extra information to existing
commits, which is a bit like publishing an addendum, errata, or amendment. You
need however to remember that notes are not published by default, nonetheless it is
easy to publish them too (you just need to remember to do it).

Reverting a commit
If you need to back-out an existing commit, undoing the changes it brought, you
can use git revert. As described in Chapter 7, Merging Changes Together (see, for
example, Fig 4), the revert operation creates a commit with reverse of changes. For
example, where original commit adds a line, reversion removes it, where original
commit removes a line, reversion adds it.

Note that different version control systems use the name revert for
different operations. In particular, it is often used to mean resetting
the changes to a file back to latest committed version, throwing away
uncommitted changes. It is something that git reset -- <file>
does in Git.

It is best shown on an example. Let's take for example of the last commit on branch
multiple, and check the summary of its changes:

$ git show --stat multiple

commit bb71a804f9686c4bada861b3fcd3cfb5600d2a47

Author: Alice Developer <alice@company.com>

Date: Sun Jun 1 03:02:09 2014 +0200

Chapter 8

[253]

 Support optional <count> parameter

 src/rand.c | 26 +++++++++++++++++++++-----

 1 file changed, 21 insertions(+), 5 deletions(-)

Reverting this commit (which requires a clean working directory) would create a
new revision. This revision undoes the changes that the reverted commit brought:

$ git revert bb71a80

[master 76d9e25] Revert "Support optional <count> parameter"

 1 file changed, 5 insertions(+), 21 deletions(-)

Git would ask for a commit message, which should explain why you reverted a
revision, how it was faulty, and why it needed to be reverted rather than fixed. The
default is to give the SHA-1 of the reverted commit:

$ git show --stat

commit 76d9e259db23d67982c50ec3e6f371db3ec9efc2

Author: Alice Developer <alice@example.com>

Date: Tue Jun 16 02:33:54 2015 +0200

Revert "Support optional <count> parameter"

This reverts commit bb71a804f9686c4bada861b3fcd3cfb5600d2a47.

 src/rand.c | 26 +++++---------------------

 1 file changed, 5 insertions(+), 21 deletions(-)

An often found practice is to leave alone the subject (which allows to easily find
reverts), but replace the content with a description of the reasoning behind the
revert.

Reverting a faulty merge
Sometimes, you might need to undo an effect of a merge. Suppose that you have
merged changes, but it turned out that they were merged prematurely, and that the
merge brings regressions.

Keeping History Clean

[254]

Let's say that the branch that got merged is a topic branch and that you were
merging it into the master branch. This situation is shown in Fig 5:

Fig 5: An accidental or premature merge commit, a starting point to reverting merges and redoing
reverted merges

If you didn't publish this merge commit before you noticed the mistake and the
unwanted merge exists only in your local repository, the easiest solution is to drop
this commit with git reset --hard HEAD^ (see Chapter 4, Managing Your Worktree
for an explanation of the hard mode of git reset).

What do you do if you realize only later that the merge was incorrect, for example,
after one more commit was created on the master branch and published? One
possibility is to revert the merge.

However, a merge commit has more than one parent, which means more than
one delta (more than one changeset). To run revert on a merge commit, you need
to specify which patch you are reverting or, in other words, which parent is the
mainline. In this particular scenario, assuming that there was one more commit after
the merge (and that the merge was two commits back), the command would look as
follows:

$ git revert -m 1 HEAD^^

[master b2d820c] Revert "Merge branch 'topic'"

Chapter 8

[255]

The situation after reverting a merge is shown in Fig 6:

Fig 6: The history from the previous figure after git revert -m 1 <merge commit>. The square
boxes attached to the selected commits symbolize their changesets in a diff-like format (combined diff format

for the merged commit)

Starting with the new !M1 commit (the symbol !M1 was used to symbolize negation
or reversal of commit M1), it's as if the merge never happened, at least, with respect
to the changes.

Keeping History Clean

[256]

Recovering from reverted merges
Let's assume that you continued work on a branch whose merge was reverted.
Perhaps it was prematurely merged, but it doesn't mean that the development on it
stopped. If you continue to work on the same branch, perhaps by creating commits
with fixes, they will get ready in some time and then you will need to be able to
merge them correctly into the mainline, again. Or perhaps, the mainline would
mature enough to be able to accept a merge. Trouble lies ahead if you simply try to
merge your branch again, the same way as the last time.

Fig 7: The unexpectedly erroneous result of trying to simply redo reverted merges in a history with a bad
merge. The text beside the commits represents a list of features present in or absent from a commit. The three

commits with a thick outline are merged commits ("ours" and "theirs" version) and the merge base: the common
ancestor ("base")

The unexpected result is that Git has brought only the changes since the reverted
merge. The changes brought by the commits on a side branch whose merge got
reverted are not here. In other words, you would get a strange result: the new merge
would not include the changes that were created on your branch (on side branch)
before the merge that got reverted.

This is caused by the fact that revert undoes changes (the data), but does not undo
the history (the DAG of revisions). This means that a new merge sees C4, the commit
on the side branch just before the reverted merge, as a common ancestor. Because the
default three-way merge strategy looks only at the state of the ours, theirs, and base
snapshot, it doesn't search through the history to find that there was a revert there.
It sees that both the common ancestor C4 and the merged branch (that is, theirs) C6
do include features brought by the commits C3 and C4, namely f3 and f4, while the
branch that we merged into (that is, ours) doesn't have them because of the revert.

Chapter 8

[257]

For the merge strategy, it looks exactly like the case where one branch deleted
something, which means that this change (this removal) is the result of the merge
(looks like the case when there was change only in one side). Particularly, it looks
like the base has a feature, the side branch has a feature, but the current branch
doesn't (because of the revert), so the result doesn't have it. You can find the
explanation of the merging mechanism in Chapter 7, Merging Changes Together.

There is more than one option to fix this issue and make Git re-merge the topic
branch correctly, which means including features f3 and f4 in the result. Which
option you should choose depends on the exact circumstances, for example, whether
the branch being merged is published or not. You don't usually publish topic
branches, and if you do, perhaps in the form of the proposed-updates branch with
all the topic branches merged in, it is with the understanding that they can and
probably will be rewritten.

Fig 8: The history after remerging (as M2) a reverted merge M1 by reverting the revert !!M1. Notation used
like in Fig 7

One option is to bring back deleted changes by reverting the revert. The result is
shown in Fig 8. In this case, you have brought changes to match the recorded history.

Another option would be to change the view of the history (perhaps temporarily), for
example amending it with git replace, by changing the merge !M1 to a nonmerge
commit. Both these options are suitable in the situation where at least the parts of the
branch being merged, namely topic, were published.

Keeping History Clean

[258]

If the problem was some bugs in the commits being merged (on the branch topic)
and the branch being merged was not published, you can fix these commits with the
interactive rebase, as described earlier. Rebasing changes the history anyway, so if
you additionally ensure that the new history you are creating with the rebase does
not have any revision in common with the old history that includes the said failed
and reverted merge, re-merging the topic branch would pose no challenges.

Fig 9: The history after remerging the rebased branch, which had its merge reverted. The rest of the history that
is not visible here is like in Fig 6. The three commits with a thick outline are merged commits (the "ours" and

"theirs" version) and the new merge base is the common ancestor ("base")

Usually, you would rebase a topic branch, topic here, on top of the current state
of the branch it was forked from, which here is the master branch. This way, your
changes are kept up to date with the current work, which makes a later merge easier.
Now that the topic branch has new history, merging it again into master, like in Fig
9, is easy and it doesn't give any surprises or troubles.

A more difficult case would be if the topic branch is for some reason (like being able
to merge it into the maint branch too) required to keep its base. Not more difficult
in the sense that there would be problems with re-merging the topic branch after
rebase, but that we need to ensure that the branch after rebase doesn't share history
with the reverted merge arc. The goal is to have history in a shape as shown in Fig 10.
By default, rebase tries to fast-forward revisions if they didn't change (for example,
leaving C3 in place if the rebase didn't modify it), so we need to use -f / --force-
rebase to force rebasing also of unchanged skippable commits. (or --no-ff, which
is equivalent).

Chapter 8

[259]

Fig 10: The history after remerging an "in place" rebased topic branch, where a pre-rebase merge was reverted.
The notations used to mark the commits are the same as in Fig 7

So, you should not be blindly reverting the revert of a merge. What to do with the
problem of re-merging after reverted merge depends on how you want to handle the
branch being merged. If the branch is being rewritten (for example, using interactive
rebase), then reverting the revert would be actively a wrong thing to do, because you
could bring back errors fixed in the rewrite.

Storing additional information with notes
The notes mechanism is a way to store additional information for an object,
usually a commit, without touching the objects themselves. You can think of it as
an attachment, or an appendix, "stapled" to an object. Each note belongs to some
category of notes, so that notes used for different purposes can be kept separate.

Adding notes to a commit
Sometimes, you want to add extra information to a commit— an information that
is available only after its creation. It might be, for example, a note that there was a
bug found in the said commit, and perhaps, even that it got fixed in some specified
future commit (in case of regression). Perhaps, we realized, after the commit got
published, that we forgot to add some important information to the commit message,
for example, explain why it was done. Or maybe, we realized that there is another
way of doing it and we want to note it to not forget about it, and for other developers
to share the idea.

Keeping History Clean

[260]

Because in Git history is immutable; you cannot do this without rewriting the
history (creating a modified copy and forgetting the old version of the history).
Immutability of history is important: it allows people to sign revisions and trust that,
once inspected, history cannot change. What you can do instead is to add the extra
message as a note.

Let's assume that codevelopers have switched from atoi() to strtol(), because
the former is deprecated. The change was since then made public. But the commit
message didn't include an explanation of why it was deprecated and why it is worth
it to switch, even if the code after the change is longer. Let's add the information as a
note:

$ git notes add \

 -m 'atoi() invokes undefined behaviour upon error' v0.2~3

We have added the note directly from the command line without invoking the editor
by using the -m flag (the same as for git commit) to simplify the explanation of this
example. The note will be visible while running git log or git show:

$ git show --no-patch v0.2~3

commit 8c4ceca59d7402fb24a672c624b7ad816cf04e08

Author: Bob Hacker <bob@company.com>

Date: Sun Jun 1 01:46:19 2014 +0200

 Use strtol(), atoi() is deprecated

Notes:

 atoi() invokes undefined behaviour upon error

As you can see from the preceding output, our note is shown after the commit
message in the Notes: section. Displaying notes can be disabled with the --no-
notes option and (re)enabled with --show-notes.

How notes are stored
In Git, notes are stored using extra references in the refs/notes/ namespace. By
default, commit notes are stored using the refs/notes/commits ref; this can be
changed using the core.notesRef configuration variable, which in turn can be
overridden with the GIT_NOTES_REF environment variable.

Chapter 8

[261]

The value of either variable must be fully qualified (that is, it must include the refs/
notes/prefix, though this requirement got relaxed in newest Git). If the given ref
does not exist, it is not an error, but it means that no notes should be printed. These
variables decide both which type of notes are displayed with the commit after the
Notes: line, and where to write the note created with git notes add.

You can see that the new type of reference has appeared in the repository:

$ git show-ref --abbrev

2b953b4 refs/heads/bar

5d25848 refs/heads/master

bb71a80 refs/heads/multiple

fcac4a6 refs/notes/commits

5d25848 refs/remotes/origin/HEAD

5d25848 refs/remotes/origin/master

b35871a refs/stash

995a30b refs/tags/v0.1

ee2d7a2 refs/tags/v0.2

If you examine the new reference, you will see that each note is stored in a file named
after the SHA-1 identifier of the annotated object. This means that you can have only
one note of the given type for one object. You can always edit the note, append to it
(with git notes append), or replace its content (with git notes add --force).
In the interactive mode, Git opens the editor with the contents of the note, so edit/
append/replace is the same here. As opposed to commits, notes are mutable:

$ git show refs/notes/commits

commit fcac4a649d2458ba8417a6bbb845da4000bbfa10

Author: Alice Developer <alice@example.com>

Date: Tue Jun 16 19:48:37 2015 +0200

 Notes added by 'git notes add'

diff --git a/8c4ceca59d7402fb24a672c624b7ad816cf04e08 b/8c4ceca59d7402fb2
4a672c624b7ad816cf04e08

new file mode 100644

index 0000000..a033550

Keeping History Clean

[262]

--- /dev/null

+++ b/8c4ceca59d7402fb24a672c624b7ad816cf04e08

@@ -0,0 +1 @@

+atoi() invokes undefined behaviour upon error

$ git log -1 --oneline 8c4ceca59d7402fb24a672c624b7ad816cf04e08

8c4ceca Use strtol(), atoi() is deprecated

Notes for commits are stored in a separate line of (meta-)history, but this need not be
the case for the other categories of notes: the notes reference can point directly to the
tree object instead of to the commit object such as for refs/notes/commits.

One important issue that is often overlooked in books and articles is that it is the
full path to file with notes contents, not the base name of the file, that identifies
the object the note is attached to. If there are many notes, Git can and would use a
fan-out directory hierarchy, for example storing the preceding note at the 8c/4c/
eca59d7402fb24a672c624b7ad816cf04e08 path (notice the slashes).

Other categories and uses of notes
Notes are usually added to commits. But even for those notes that are attached to
commits it makes sense, at least in some cases, to store different pieces of information
using different categories of notes. This makes it possible to decide on an individual
basis which parts of information to display, and which parts to push to the public
repository, and it allows to query for specific parts of information individually.

To create a note in a namespace (category) different from the default one (where the
default means notes/commits, or core.notesRef if set), you need to specify the
category of notes while adding it:

$ git notes --ref=issues add -m '#2' v0.2~3

Now, by default, Git would display only the core.notesRef category of notes
after the commit message. To include other types of notes, you must either select
the category to display with git log --notes=<category> (where <category> is
either the unqualified or qualified reference name, or a glob; you can use --notes=*
to show all the categories), or configure which notes to display in addition to the
default with the display.notesRef configuration variable (or the GIT_NOTES_
DISPLAY_REF environment variable). You can either specify the the configuration
variable value multiple times, just like for remote.<remote-name>.push (or specify
a colon-separated list of pathnames in the case of using an environment variable), or
you can specify a globing pattern:

Chapter 8

[263]

$ git config notes.displayRef 'refs/notes/*'

$ git log -1 v0.2~3

commit 8c4ceca59d7402fb24a672c624b7ad816cf04e08

Author: Bob Hacker <bob@company.com>

Date: Sun Jun 1 01:46:19 2014 +0200

 Use strtol(), atoi() is deprecated

Notes:

 atoi() invokes undefined behaviour upon error

Notes (issues):

 #2

There are many possible uses of notes. You can, for example, use notes to reliably
mark which patches (which commits) were upstreamed (forward-ported to the
development branch) or downstreamed (back-ported to the more stable branch or
to the stable repository), even if the upstreamed/downstreamed version is not
identical, and mark a patch as being deferred if it is not ready for either upstream or
downstream.

This is a bit more reliable, if requiring manual input, than relying on the mechanism
of git patch-id to detect when changeset is already present (which you can use by
rebasing, using git cherry, or with the --cherry / --cherry-pick / --cherry-
mark option to git log). This is, of course, in case we are not using topic branches
from the start, but rather we are cherry-picking commits.

Notes can be used to store results of the post-commit (but pre-merge) code audit,
and to notify other developers why this version of the patch was used.

Notes can also be used to handle marking bugs and bug fixes, and verifying fixes.
You often find bugs in commits long after they got published, that's why you need
notes for this; if you find a bug before publishing, you would rewrite the commit
instead.

Keeping History Clean

[264]

In this case, first, when the bug gets reported, and if it was regression, you find which
revision introduced the bug (for example with git bisect, as described in Chapter
2, Exploring Project History). Then you would want to mark this commit, putting
the identifier of a bug entry in an issue tracker for the project (usually, a number or
number preceded by some specific prefix such as Bug:1385) in the bugs, or defects,
or issues category of notes; perhaps you would want to also include the description
of a bug. If the bug affects security, it might be assigned a vulnerability identifier, for
example, a Common Vulnerabilities and Exposures (CVE) number; this information
could be put into the note in the CVE-IDs category.

Then, after some time, hopefully, the bug will get fixed. Just like we marked
the commit that it contains the bug, we can annotate it additionally with the
information on which commit fixes it, for example, in note under refs/notes/
fixes. Unfortunately, it might happen that the first attempt at fixing it didn't handle
the bug entirely correct, and you have to amend a fix, or perhaps even create a fix
for a fix. If you are using bugfix or hotfix branches (topic branches for bugfixes), as
described in Chapter 6, Advanced Branching Techniques, it will be easy to find them
together and to apply them together–by merging said bugfix branch. If you are
not well, then it would be a good idea to use notes to annotate fixes that should be
cherry-picked together with a supplementary commit, for example by adding note in
alsoCherryPick, or seeAlso, or whatever you want to name this category of notes.
Perhaps also an original submitter, or a Q&A group, would get to the fix and test
that it works correctly; it would be better if the commit was tested before publishing,
but it is not always possible, so refs/notes/tests it is.

Third-party tools use (or could use) notes to store additional per-commit tool-
specific information. For example, Gerrit, which is a free, web-based team code
collaboration tool, stores information about code reviews in refs/notes/reviews:
including the name and e-mail address of the Gerrit user that submitted the change,
the time the commit was submitted, the URL to the change review in the Gerrit
instance, review labels and scores (including the identity of the reviewer), the name
of project and branch, and so on:

Notes (review):
 Code-Review+2: John Reviewer <john@company.com>
 Verified+1: Jenkins
 Submitted-by: Bob Developer <bob@company.com>
 Submitted-at: Thu, 20 Oct 2014 20:11:16 +0100
 Reviewed-on: http://localhost:9080/7
 Project: common/random
 Branch: refs/heads/master

Chapter 8

[265]

Similarly, git svn, a tool for bidirectional operation between the Subversion
repository and Git working as a fat client for Subversion (svn), could have stored the
original Subversion identifiers in notes, rather than appending this information to a
commit message (or dropping it altogether).

Going to a more exotic example, you can use the notes mechanism to store the
result of a build (either the archive, the installation package, or just the executable),
attaching it to a commit or a tag. Theoretically, you could store a build result in a
tag, but you usually expect for a tag to contain Pretty Good Privacy (PGP) signature
and perhaps also the release highlights. Also, you would in almost all the cases
want to fetch all the tags, while not everyone wants to pay the cost of disk space for
the convenience of pre-build executables. You can select from case to case whether
you want or not to fetch the given category of notes (for example, to skip pre-built
binaries), while you autofollow tags. That's why notes are better than tags for this
purpose.

Here the trouble is to correctly generate a binary note. You can binary-safely create a
note with the following trick:

store binary note as a blob object in the repository

$ blob=$(git hash-object -w ./a.out)

take the given blob object as the note message

$ git notes --ref=built add --allow-empty –C "$blob" HEAD

You cannot simply use -F ./a.out, as this is not binary safe—comments (or rather
what was misdetected as comment, that is lines starting with #) would be stripped.

The notes mechanism is also used as a mechanism to enable storing cache for the
textconv filter (see the section on gitattributes in Chapter 4, Managing Your Worktree).
All you need to do is configure the filter, setting its cachetextconv to true:

[diff "jpeg"]
 textconv = exif
 cachetextconv = true

Here, notes in the refs/notes/texconv/jpeg category (named after the filter) are
used to attach the text of the conversion to a blob object.

Rewriting history and notes
Notes are attached to the objects they annotate, usually commits, by their SHA-1
identifier. What happens then with notes when we are rewriting history? In the new,
rewritten history, SHA-1 identifiers of objects in most cases are different.

Keeping History Clean

[266]

It turns out that you can configure this quite extensively. First, you can select which
categories of notes should be copied along with the annotated object during rewrite
with the notes.rewriteRef multi-value configuration variable. This setting can
be overridden with the GIT_NOTES_REWRITE_REF (see the naming convention)
environment variable with a colon-separated list (like for the well-known PATH
environment variable) of fully qualified note references, and globs denoting
reference patterns to match. There is no default value for this setting; you must
configure this variable to enable rewriting.

Second, you can also configure whether to copy a note during rewriting depending
on the exact type of the command doing the rewriting (currently supported are
rebase and amend as the value of the command) . This can be done with the Boolean-
valued configuration variable notes.rewrite.<command>.

In addition, you can decide what to do if the target commit already has a note while
copying notes during a rewrite, for example while squashing commits using an
interactive rebase. You have to decide between overwrite (take the note from the
appended commit), concatenate (which is the default value), and ignore (use
the note from the original commit being appended to) for the notes.rewriteMode
configuration variable, or the GIT_NOTES_REWRITE_MODE environment variable.

Publishing and retrieving notes
So, we have notes in our own local repository. What to do if we want to share these
notes? How do we make them public? How can we and other developers get notes
from other public repositories?

We can employ our knowledge of Git here. Section How notes are stored explained
that notes are stored in an object database of the repository using special references
in the refs/notes/ namespace. The contents of note are stored as a blob object,
referenced through this special ref. Commit notes (notes in refs/notes/commits)
store the history of notes, though Git allows you to store notes without history as
well. So, what you need to do is to get notes references, and the contents of notes will
follow. This is the usual mechanism of repository synchronization (of object transfer).

This means that to publish your notes, you need to configure appropriate push
lines in the appropriate remote repository configuration (see Chapter 5, Collaborative
Development with Git). Assuming that you are using a separate public remote (if you
are the maintainer, you will probably use simply origin), which is perhaps set as
remote.pushDefault, and that you would like to publish notes in any category,
you can run:

$ git config --add remote.public.push '+refs/notes/*:refs/notes/*'

Chapter 8

[267]

In the case when push.default is set to matching (or Git is old enough to have this
as the default behavior), or the "push" lines use special refspec ":" or "+:", then it is
enough to push notes refs the first time, and they would be pushed automatically
each time after:

$ git push origin 'refs/notes/*'

Fetching notes is only slightly more involved. If you don't produce specified types of
notes yourself, you can fetch notes in the mirror-like mode to the ref with the same
name:

$ git config --add remote.origin.fetch '+refs/notes/*:refs/notes/*'

However, if there is a possibility of conflict, you would need to fetch notes from the
remote into the remote-tracking notes reference, and then use git notes merge to
join them into your notes; see the documentation for details.

If you wanted to make it easy to merge git notes, perhaps even
automatically, then following the convention of the Key: Value entries
on separate lines for the content of notes with the duplicates removed
would help.

There is no standard naming convention for remote-tracking notes references, but
you can use either refs/notes/origin/* (so that the shortened notes category
commits from the remote origin is origin/commits and so on), or go whole works
and fetch refs/* from the remote origin into refs/remotes/origin/refs/* (so the
commits category would land in refs/remotes/origin/refs/notes/commits).

Using the replacements mechanism
The original idea for the replace-like/replacement-like mechanism was to make it
possible to join the history of two different repositories.

The original impulse was to be able to switch from the other version control system
to Git by creating two repositories: one for the current work, starting with the most
recent version in the empty repository, and the second one for the historical data,
storing the conversion from the original system. That way, it would be possible
to take time doing the faithful conversion of historical data, and even fix it if the
conversion were incorrect, without affecting the current work.

What was needed is some mechanism to connect histories of those two repositories,
to have full history for inspection going back to the creation of a project (for example,
for git blame, that is, the line-history annotation).

Keeping History Clean

[268]

The replacements mechanism
The modern incarnation of such tools is a replace (or replacements) mechanism.
With it, you can replace any object, with any object or rather create a virtual history
(virtual object database of a repository) by creating an overlay so that most Git
commands return a replacement in place of the original object.

But the original object is still there, and Git's behavior with respect to the
replacement mechanism was done in such a way as to eliminate the possibility
of losing data. You can get the original view with the --no-replace-objects
option to the git wrapper before the command, or the GIT_NO_REPLACE_OBJECTS
environment variable. For example, to view the original history, you can use git
--no-replace-objects log.

The information about replacement is saved in the repository by storing the ref
named after SHA-1 of the replaced object in the refs/replace/ namespace, with
the SHA-1 of replacement as its sole content. However, there is no need to edit it
by hand or with the low-level plumbing commands; you can use the git replace
command.

Almost all the commands use replacements, unless told not too, as explained
previously. The exception are the reachability analysis commands; this means that
Git would not remove the replaced objects because there are no longer reachable if
we take replacement into account. Of course, replacement objects are reachable from
the replaced refs.

You can replace any object with any object, though changing the type of an object
requires telling Git that you know what you are doing with git replace -f
<object> <replacement>. This is because such a change might lead to troubles
with Git, because it was expecting one type of object and getting another.

With git replace --edit <object>, you can edit its contents interactively. What
really happens is that Git opens the editor with the object contents and, after editing,
Git creates a new object and a replacement ref. The object format (in particular, the
commit object format, as one would almost always edit commits) was described at
beginning of this chapter. You can change the commit message, commit parents,
authorship, and so on.

Chapter 8

[269]

Example – joining histories with git replace
Let's assume that you want to split the repository into two, perhaps for performance
reasons. But you want to be able to treat joined history as if it were one. Or perhaps,
there was a history split after the SCM change, with the fresh repository with the
current work (started after switching from the current state of a project with an
empty history) and the converted historical repository kept separate.

How to split history was described in the examples of using git filter-branch
here in this chapte. One of solutions shown here was to run git replace --graft
<to be root> on a commit where you want to split and then use git filter-
branch -- --all without filters to make the split permanent.

Fig 11: The view of a split history with the replacements turned off (git --no-replace-objects).
The SHA-1 in the left upper corner of a commit denotes its identifier. Note that SHA-1 identifiers were all

shortened to 5 hex-digits in this figure

In many cases, you might want to create a kind of informational commit on top
of the historical repository, for example, adding to the README file the notification
where one can find the current work repository. Such commits for simplicity are not
shown in Fig 11.

Keeping History Clean

[270]

How to join history depends a bit on whether the history was originally split or was
originally joined. If it was originally joined, then split; just tell Git to replace post-
split with the pre-split version with git replace <post-split> <pre-split>. If
the repository was split from beginning, use the --edit or --graft option to git
replace.

Fig 12: The view of a split history joined using replacements. The notations are the same as in the previous
figure, but with the replace ref shown in a different way—as the result of the replacement

The split history is there, just hidden from the view. For all the Git commands, the
history looks like Fig 12. You can, as described earlier, turn off using replacements; in
this case, you would see the history as in Fig 11.

Historical note – grafts
The first attempt to create a mechanism to make it possible to join lines of history
was grafts. It is a simple .git/info/grafts file with the SHA-1 of the affected
commit and its replacement parents in line separated by spaces.

This mechanism was only for commits and allowed only to change the parentage.
There was no support for transport, that is, for propagating this information from
inside of Git. You could not turn grafts mechanism off temporarily, at least not
easily. Moreover, it was inherently unsafe, because there were no exceptions for
the reachability-checking commands, making it possible for Git to remove needed
objects by accident during pruning (garbage collecting).

Chapter 8

[271]

However, you can find its use in examples. Nowadays, it is obsolete, especially
with the existence of the git replace --graft option. If you use grafts, consider
replacing them with the replacements objects; there is the contrib/convert-
grafts-to-replace-refs.sh script that can help with this in the Git sources.

The shallow clone (the result of git clone --depth=<N>, a clone
with the shortened history) is managed with a graft-like .git/
shallow file. This file is managed by Git, however, not by the user.

Publishing and retrieving replacements
How to publish replacements and how to get them from the remote repository?
Because replacements use references, this is quite simple.

Each replacement is a separate reference in the refs/replaces/ namespace.
Therefore, you can get all the replacements with the globing fetch or push line:

+refs/replace/*:refs/replace/*

There can be only one replacement for an object, so there are no problems with
merging replacements. You can only choose between one replacement or the other.

Theoretically, you could also request individual replacements by fetching (and
pushing) individual replacement references instead of using glob.

Summary
This chapter, along with Chapter 6, Advanced Branching Techniques, provided all the
tools required to manage a clean, readable, and easy-to-review history of a project.

You have learned how to make history more clean by rewriting it, and what does
rewriting history mean in Git, when and why to avoid it, and how to recover from an
untimely upstream rewrite. You have learned to use an interactive rebase to delete,
reorder, squash, and split commits, and how to test each commit during rebase. You
know how to do large-scale scripted rewrite with filter-branch: how to edit commits
and commit metadata and how to permanently change history, for example, splitting
it in two. You also got to know some third-party external tools, which can help with
these tasks.

Keeping History Clean

[272]

You learned what to do if you cannot rewrite history: how to fix mistakes by creating
commits with appropriate changes (for example with git revert), how to add extra
information to the existing commits with notes, and how to change the virtual view
of the history with replacements. You learned to handle reverting a faulty merge and
re-merging after reverted merge. You know how to fetch and publish both notes and
replacements.

To really understand advanced history rewriting and the mechanism behind notes
and replacements, this chapter explained the basics of Git internals and low-level
commands usable for scripting (including scripted rewrite).

The following chapter, Chapter 9, Managing Subprojects - Building a Living Framework,
will explain and show different ways to connect different subprojects in one
repository, from submodules to subtrees.

You will also learn techniques to manage or mitigate managing large-size assets
inside a repository. Splitting a large project into submodules is one, but not the only
way to handle this issue.

[273]

Managing
Subprojects – Building

a Living Framework
In Chapter 5, Collaborative Development with Git, you have learned how to manage
multiple repositories, while Chapter 6, Advanced Branching Techniques, taught us
various development techniques utilizing multiple branches and multiple lines of
development in these repositories. Up till now, these multiple repositories were
all repositories of a single project. Different projects were all being developed
independent of each other. Repositories of the different projects were autonomous.

This chapter will explain and show different ways to connect different subprojects
in the one single repository of the framework project, from the strong inclusion by
embedding the code of one project in the other (subtrees), to the light connection
between projects by nesting repositories (submodules). You will learn how to
add a subproject to a master project, how to update the superproject state, and
how to update a subproject. We will find out how to send our changes upstream,
backporting them into the appropriate project , and pushing to appropriate
repository. Different techniques of managing subprojects have different advantages
and drawbacks here.

Submodules are sometimes used to manage large size assets. This chapter would
also present alternate solutions to the problem of handling large binary files, and
other large assets in Git.

Managing Subprojects – Building a Living Framework

[274]

In this chapter, we will cover the following topics:

• Managing library and framework dependencies
• Dependency management tools—managing dependencies outside Git
• Importing code into a superproject as a subtree
• Using subtree merges; the git-subtree and git-stree tools
• Nested repositories: a subproject inside a superproject
• Internals of submodules: gitlinks, .gitmodules, the .git file
• Use cases for subtrees and submodules, comparison of approaches
• Alternative third-party solutions and tools/helpers
• Git and large files

Managing library and framework
dependencies
There are various reasons to join an external project to your own project. Because
there are different reasons to include a project (let's call it a subproject, or a module)
inside another project (let's call it superproject, or a master project, or a container), there
are different types of inclusions geared towards different circumstances. They all
have their advantages and disadvantages, and it is important to understand these to
be able choose the correct solution for your problem.

Let's assume that you work on a web application, and that your webapp uses
JavaScript (for example, for AJAX, as single-page app perhaps). To make it easier
to develop, you probably use some JavaScript library or a web framework, such as
jQuery.

Such a library is a separate project. You would want to be able to pin it to a known
working version (to avoid problems where future changes to the library would
make it stop working for your project), while also being able to review changes
and automatically update it to the new version. Perhaps, you would want to make
your own changes to the library, and send the proposed changes to the upstream
(of course, you would want for users of your project to be able to use the library
with your out-of-tree fixes, even if they are not yet accepted by original developers).
Conceivably, you might have customizations and changes that you don't want to
publish (send to the upstream), but you might still make them available.

This is all possible in Git. There are two main solutions for including subprojects:
importing code into your project with the subtree merge strategy and linking
subprojects with submodules.

Chapter 9

[275]

Both submodules and subtrees aim to reuse the code from another project, which
usually has its own repository, putting it somewhere inside your own repository's
working directory tree. The goal is usually to benefit from the central maintenance of
the reused code across a number of container repositories, without having to resort
to clumsy, unreliable manual maintenance (usually by copy-pasting).

Sometimes, it is more complicated. The typical situation in many companies is that
they use many in-house produced applications, which depend on the common utility
library or on a set of libraries. You would usually want to develop each of such
applications separately, use it together with others, branch and merge, and apply
your own changes and customizations, all in a separate Git repository. Though there
are cases for having a single monolithic repository, such as simplified organizations,
dependencies, cross-project changes, and tooling if you can get away with it.

But this division, one Git repository for one application, is not without problems.
What to do with the common library? Each application uses some specific version
of the library and you need to supervise which one. If the library gets improved,
you need to test whether this new version correctly works with your code and
doesn't crash your application. But the common library is not usually developed as a
standalone; its development is driven by the needs of projects that use it. Developers
improve it to enhance it with new features needed for their applications. At some
point of time, they would want to send their changes to the library itself to share
their changes with other developers, if only to share the burden of maintaining these
features (the out-of-tree patches bring maintenance costs to keep them current).

What to do then? This chapter describes a few strategies used to manage subprojects.
For each technique, we will detail how to add such subprojects to superprojects,
how to keep them up to date, how to create your own changes, and how to publish
selected changes upstream.

Note that all the solutions require that all the files of a subproject are
contained in a single subdirectory of a superproject. No currently
available solution allows you to mix the subproject files, with other files
or have them occupy more than one directory.

However you manage subprojects, be it subtrees, submodules, third-party tools
or dependency management outside Git, you should strive for the module code
to remain independent of the particularities of the superproject (or at least, handle
such particularities using an external, possibly nonversioned configuration). Using
superproject-specific modifications goes against modularization and encapsulation
principles, unnecessarily coupling the two projects.

Managing Subprojects – Building a Living Framework

[276]

Managing dependencies outside Git
In many cases, the technological context (the development stack used) allows to use
for packaging and formal dependency management. If it is possible, it is usually
preferable to go this route. It lets you split your codebase better and avoid a number
of side effects, complications, and pitfalls that litter the submodule and subtree
solution space (with different complications for different techniques). It removes the
version control systems from the managing modules. It also lets you benefit from
versioning schemes, such as semantic versioning (http://semver.org/), for your
dependencies.

As a reminder, here's a partial list (in the alphabetical order) of the main languages
and development stacks, and their dependency management/packaging systems
and registries (see the full comparison at http://www.modulecounts.com/):

• Clojure has Clojars
• Go has GoDoc
• Haskell has Hackage (registry) and cabal (application)
• Java has Maven Central (Maven and Gradle)
• JavaScript has npm (for Node.js) and Bower
• .NET has NuGet
• Objective-C has CocoaPods
• Perl has CPAN (Comprehensive Perl Archive Network) and carton
• PHP has Composer, Packagist, and good old PEAR and PECL
• Python has PyPI (Python Package Index) and pip
• Ruby has Bundler and RubyGems
• Rust has Crates

Sometimes, these are not enough. You might need to apply some out-of-tree patches
(changes) to customize the module (subproject) for your needs. But for some reason,
you are unable to publish these changes upstream, to have them accepted. Perhaps,
the changes are relevant only to your specific project, or the upstream is slow to
respond to the proposed changes, or perhaps there are license considerations Maybe
the subproject in question is a in-house module that cannot be made public and
which you are required to use for your company projects.

In all these cases, you need for the custom package registry (the package repository)
to be used in addition to the default one , or you need to make subprojects be
managed as private packages, which these systems often allow. If there is no
support for private packages, a tool to manage the private registry, such as Pinto or
CPAN::Mini for Perl, would be also needed.

http://semver.org/
http://www.modulecounts.com/

Chapter 9

[277]

Manually importing the code into your project
Let's take a look at one of the possibilities: why don't we simply import the library
into some subdirectory in our project? If you need to bring it up to date, you would
just copy the new version as a new set of files. In this approach, the subproject code
is embedded inside the code of the superproject.

The simplest solution would be to just overwrite the contents of the subproject's
directory each time we want to update the superproject to use the new version. If
the project you want to import doesn't use Git, or if it doesn't use a version control
system at all, or if the repository it uses is not public, this will indeed be the only
possible solution.

Using repositories from a foreign VCS as a remote
If the project you want to import (to embed) uses a version control system
other than Git, but there is a good conversion mechanism (for example,
with a fast-import stream), you can use remote helpers to set up a foreign
VCS repository as a remote repository (via automatic conversion). You
can check Chapter 5, Collaborative Development with Git, and Chapter 10,
Customizing and Extending Git for more information.
This can be done, for example, with the Mercurial and Bazaar repositories,
thanks to the git-remote-hg and git-remote-bzr helpers.

Moving to the new version of the imported library is quite simple (and the
mechanism easy to understand). Remove all the files from the directory, add files
from the new version of the library, for example by extracting them from the archive,
then use git add command to the directory:

$ rm -rf mylib/

$ git rm mylib

$ tar -xzf /tmp/mylib-0.5.tar.gz

$ mv mylib-0.5 mylib

$ git add mylib

$ git commit

This method works quite well in simple cases with the following caveats:

• In Git, in the history of your project, you have only the versions of the library
at the time of imports. On the one hand, this makes your project history clean
and easy to understand, on the other hand, you don't have access to the fine-
grained history of a subproject. For example, when using git bisect, you
would be able only find that it was introduced by upgrading the library, but
not the exact commit in the history of the library that introduced the bug
in question.

Managing Subprojects – Building a Living Framework

[278]

• If you want to customize the code of the library, fitting it to your project
by adding the changes dependent on your application, you would need to
reapply those customization in some way after you import a new version.
You could extract your changes with git diff (comparing it to the
unchanged version at the time of import) and then use git apply after
upgrading the library. Or, you could use a rebase, an interactive rebase,
or some patch management interface; see Chapter 8, Keeping History Clean.
Git won't do this automatically.

• Each importing of the new version of the library requires running a specific
sequence of commands to update superproject: removing the old version
of files, adding new ones, and committing the change. It is not as easy as
running git pull, though you can use scripts or aliases to help.

A Git subtree for embedding the subproject
code
In a slightly more advanced solution, you use the subtree merge to join the history
of a subproject to the history of a superproject. This is only somewhat more
complicated than an ordinary pull (at least, after the subproject is imported), but
provides a way to automatically merge changes together.

Depending on your requirements, this method might fit well with your needs. It has
the following advantages:

• You would always have the correct version of the library, never using the
wrong library version by an accident

• The method is simple to explain and understand, using only the standard
(and well-known) Git features. As you will see, the most important and most
commonly used operations are easy to do and easy to understand, and it is
hard to go wrong.

• The repository of your application is always self-contained; therefore, cloning
it (with plain old git clone) will always include everything that's needed.
This means that this method is a good fit for the required dependencies.

• It is easy to apply patches (for example, customizations) to the library inside
your repository, even if you don't have the commit rights to the upstream
repository.

• Creating a new branch in your application also creates a new branch for the
library; it is the same for switching branches. That's the behavior you expect.
This is contrasted with the submodule's behavior (the other technique for
managing subprojects).

Chapter 9

[279]

• If you are using the subtree merge strategy (described shortly in Chapter 7,
Merging Changes Together), for example with git pull -s subtree, then
getting a new library version will be as easy as updating all the other parts
of your project.

Unfortunately however, this technique is not without its disadvantages. For many
people and for many projects, these disadvantages do not matter. The simplicity of
the subtree-based method usually prevails over its faults.

Here are the problems with the subtree approach:

• Each application using the library doubles its files. There is no easy and safe
way to share its objects among different projects and different repositories.
Though see the following about the possibility of sharing Git object database.

• Each application using the library has its files checked out in the working
area, though you can change it with the help of the sparse checkout
(described later in the chapter).

• If your application introduces changes to its copy of the library, it is not that
easy to publish these changes and send them upstream. Third-party tools
such as git subtree or git stree can help here. They have specialized
subcommands to extract the subproject's changes.

• Because of the lack of separation between the subproject files and the
superproject files, it is quite easy to mix the changes to the library and the
changes to the application in one commit. In such cases, you might need
to rewrite the history (or the copy of a history), as described in Chapter 8,
Keeping History Clean.

The first two issues mean that subtrees are not a good fit to manage the subprojects
that are optional dependencies (needed only for some extra features) or optional
components (such as themes, extensions, or plugins), especially those that are installed
by a mere presence in the appropriate place in the filesystem hierarchy.

Sharing objects between forks (copies) with alternates
You can mitigate the duplication of objects in the repository with
alternates or, in other words, with git clone --reference. However,
then you would need to take greater care about garbage collection. The
problematic parts are those parts of the history that are referenced in
the borrower repository (that is, one with alternates set up), but are
not referenced in the lender reference's repository. The description and
explanation of the alternative mechanisms will be presented in Chapter 11,
Git Administration.

Managing Subprojects – Building a Living Framework

[280]

There are different technical ways to handle and manage the subtree-imported
subprojects. You can use classic Git commands, just using the appropriate options
while affecting the subproject, such as --strategy=subtree (or the subtree option
to the default recursive merge strategy, --strategy-option=subtree=<path>) for
merge, cherry-pick, and related operations. This manual approach works everywhere,
is actually quite simple in most cases, and offers the best degree of control over
operations. It requires, however, a good understanding of the underlying concepts.

In modern Git (since version 1.7.11), there is the git subtree command available
among installed binaries. It comes from the contrib/ area and is not fully integrated
(for example, with respect to its documentation). This script is well tested and robust,
but some of its notions are rather peculiar or confusing , and this command does
not support the whole range of possible subtree operations. Additionally, this tool
supports only the import with history workflow (which will be defined later), which
some say clutters the history graph.

There are also other third-party scripts that help with subtrees; among them is
git-stree.

Creating a remote for a subproject
Usually, while importing a subproject, you would want to be able to update the
embedded files easily. You would want to continue interacting with the subproject.
For this, you would add that subproject (for example, the common library) as a
remote reference in your own (super) project and fetch it:

$ git remote add mylib_repo https://git.example.com/mylib.git

$ git fetch mylib_repo

warning: no common commits

remote: Counting objects: 12, done.

remote: Total 12 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (12/12), done.

From https://git.example.com/mylib.git

* [new branch] master -> mylib_repo/master

You can then examine the mylib_repo/master remote-tracking branch, which
can be done either by checking it out into the detached HEAD with git checkout
mylib_repo/master, or by creating a local branch out of it and checking this
local branch out with git checkout -b mylib_branch mylib_repo/master.
Alternatively, you can just list its files with git ls-tree -r --abbrev mylib_
repo/master. You will see then that the subproject has a different project root from
your superproject. Additionally, as seen from the warning: no common commits
message, this remote-tracking branch contains a completely different history coming
from a separate project.

Chapter 9

[281]

Adding a subproject as a subtree
If you are not using specialized tools like git subtree but a manual approach, the
next step will be a bit complicated and will require you to use some advanced Git
concepts and techniques. Fortunately, it needs to be done only once.

First, if you want to import the subproject history, you would need to create a merge
commit that will import the subproject in question. You need to have the files of the
subproject in the given directory in a superproject. Unfortunately, at least, with the
current version of Git as of writing this chapter, using the -Xsubtree=mylib/ merge
strategy option would not work as expected. We would have to do it in two steps:
prepare the parents and then prepare the contents.

The first step would then be to prepare a merge commit using the ours merge
strategy, but without creating it (writing it to the repository). This strategy joins
histories, but takes the current version of the files from the current branch:

$ git merge --no-commit --strategy=ours mylib_repo/master

Automatic merge went well; stopped before committing as requested

If you want to have simple history, similar to the one we get from just copying files,
you can skip this step.

We now need to update our index (the staging area for the commits) with the
contents of the master branch from the library repository, and update our working
directory with it. All this needs to happen in the proper subfolder too. This can be
done with the low-level (plumbing) git read-tree command:

$ git read-tree --prefix=mylib/ -u mylib_repo/master

$ git status

On branch master

All conflicts fixed but you are still merging.

 (use "git commit" to conclude merge)

Changes to be committed:

 new file: mylib/README

 [...]

We have used the -u option, so the working directory is updated along with the index.

Managing Subprojects – Building a Living Framework

[282]

It is important to not forget the trailing slash in the argument of the
--prefix option. Checked out files are literally prefixed with it.

This set of steps is described in the HOWTO section of the Git documentation,
namely in the How to use the subtree merge strategy moved earlier https://www.
kernel.org/pub/software/scm/git/docs/howto/using-merge-subtree.html.

It is much easier to use tools such as git subtree:

$ git subtree add --prefix=mylib mylib_repo master

git fetch mylib_repo master

Added dir 'mylib'

The git subtree command would fetch the subtree's remote when necessary;
there's no need for the manual fetch that you had to perform in the manual solution.

If you examine the history, for example, with git log --oneline --graph
--decorate, you will see that this command merged the library's history with
the history of the application (of the superproject). If you don't want this, tough
luck. The --squash option that git subtree offers on its add, pull, and merge
subcommands won't help here. One of the peculiarities of this tool is that this option
doesn't create a squash merge, but simply merges the squashed subproject's history
(as if it were squashed with an interactive rebase). See, Fig 2 later in the chapter.

If you want a subtree without its history attached to the superproject history,
consider using git-stree. It has the additional advantage that it remembers the
subtree settings and that it would create a remote if necessary:

$ git stree add mylib_repo -P mylib \

 https://git.example.com/mylib.git master

warning: no common commits

[master 5e28a71] [STree] Added stree 'mylib_repo' in mylib

 5 files changed, 32 insertions(+)

 create mode 100644 mylib/README

[...]

 STree 'mylib_repo' configured, 1st injection committed.

The information about the subtree's prefix (subdirectory), the branch, and so on is
stored in the local configuration in the stree.<name> group This stays in contrast
to the behavior of git subtree, where you need to provide the prefix argument on
each command.

https://www.kernel.org/pub/software/scm/git/docs/howto/using-merge-subtree.html
https://www.kernel.org/pub/software/scm/git/docs/howto/using-merge-subtree.html

Chapter 9

[283]

Cloning and updating superprojects with subtrees
All right! Now that we have our project with a library embedded as a subtree, what
do we need to do to get it? Because the concept behind subtrees is to have just one
repository: the container, you can simply clone this repository.

To get an up-to-date repository you just need a regular pull; this would bring both
superproject (the container) and subproject (the library) up to date. This works
regardless of the approach taken, the tool used, and the manner in which the subtree
was added. It is a great advantage of the subtrees approach.

Getting updates from subprojects with a subtree
merge
Let's see what happens if there are some new changes in the subproject since we
imported it. It is easy to bring the version embedded in the superproject up to date:

$ git pull --strategy subtree mylib_repo master

From https://git.example.com/mylib.git

 * branch master -> FETCH_HEAD

Merge made by the 'subtree' strategy.

You could have fetched and then merged instead, which allows for greater control.
Or, you could have rebased instead of merging, if you prefer; that works too.

Don't forget to select the merge strategy with -s subtree while pulling
a subproject. Merging could work even without it, because Git does
rename detection and would usually be able to discover that the files
were moved from the root directory (in the subproject) to a subdirectory
(in the superproject we are merging into). The problematic case is when
there are conflicting files inside and outside of the subproject. Potential
candidates are Makefiles and other standard filenames.
If there are some problems with Git detecting the correct directory
to merge into, or if you need advanced features of an ordinary
recursive merge strategy (which is the default), you can instead use
-Xsubtree=<path/to/subproject>, the subtree option of the
recursive merge strategy.

You may need to adjust other parts of the application code to work properly with the
updated code of the library.

Managing Subprojects – Building a Living Framework

[284]

Note that, with this solution, you have a subproject history attached to your
application history, as you can see in Fig 1:

Fig 1: History of a superproject with a subtree-merged subproject

If you don't want to have the history of a subproject entangled in the history of a
master project, and prefer a simple-looking history (as shown on Fig. 2), you can use
the --squash option of git merge (or git pull) command to squash it.

$ git merge -s subtree --squash mylib_repo/master

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

$ git commit -m "Updated the library"

In this case, you would have in the history only the fact that the version of the
subproject had changed, which has its advantages and disadvantages. You get
simpler history, but also simplified history.

With the git subtree or git stree tools, it is enough to use their pull
subcommand; they supply the subtree merge strategy themselves. However,
currently git subtree pull requires you to respecify --prefix and the entire
subtree settings.

Chapter 9

[285]

Fig 2: Different types of subtree merges: (a) subtree merge: git pull -s subtree and git
subtree pull, (b) subtree merge of squashed commits: git subtree pull --squash, (c) squashed
subtree merge: git pull -s subtree --squash and git stree. Note that dotted line in (c)

denotes how commits C2 and C4 were made, and not that it is parent commit.

Note that the git subtree command always merges, even with the --squash
option; it simply squashes the subproject commits before merging (such as the
squash instruction in the interactive rebase). In turn, git stree pull always
squashes the merge (such as git merge --squash), which keeps the superproject
history and subproject history separated without polluting the graph of the history.
All this can be seen in Fig 2.

Showing changes between a subtree and its
upstream
To find out the differences between the subproject and the current version in the
working director, you need nontypical selector syntax for git diff. This is because
all the files in the subproject (for example, in the mylib_repo/master remote-
tracking branch) are in the root directory, while they are in the mylib/ directory
in the superproject (for example, in master). We need to select the subdirectory
to be compared with master, putting it after the revision identifier and the colon
(skipping it would mean that it would be compared with the root directory of the
superproject).

Managing Subprojects – Building a Living Framework

[286]

The command looks as follows:

$ git diff master:mylib mylib_repo/master

Similarly, to check after the subtree merge whether the commit we just created
(HEAD) has the same contents in the mylib/ directory as the merged in commit, that
is, HEAD^2, we can use:

$ git diff HEAD:mylib HEAD^2

Sending changes to the upstream of a subtree
In some cases, the subtree code of a subproject can only be used or tested inside the
container code; most themes and plugins have such constraints. In this situation,
you'll be forced to evolve your subtree code straight inside the master project code
base, before you finally backport it to the subproject upstream.

These changes often require adjustments in the rest of the superproject code; though
it is recommended to make two separate commits (one for the subtree code change
and one for the rest), it is not strictly necessary. You can tell Git to extract only the
subproject changes. The problem is with the commit messages of the split changes, as
Git is not able to automatically extract relevant parts of the changeset description.

Another common occurrence, which is best avoided but is sometimes necessary, is
the need to customize the subproject's code in a container-specific way (configure
it specifically for a master project), usually without pushing these changes back
upstream. You should carefully distinguish between both the situations, keeping
each use case's changes (backportable and nonbackportable) in their own commits.

There are different ways to deal with this issue. You can avoid the problem of
extracting changes to be sent upstream by requiring that all the subtree changes have
to be done in a separate module-only repository. If it is possible, we can even require
that all the subproject changes have to be sent upstream first, and we can get the
changes into the container only through upstream acceptance.

If you need to be able to extract the subtree changes, then one possible solution is to
utilize git filter-branch --directory-filter (or --index-filter with the
appropriate script). Another simple solution is to just use git subtree push. Both
the methods, however, backport every commit that touches the subtree in question.

If you want to send upstream only a selection of the changes to the subproject
of those that made it into the master project repository, then the solution is a bit
more complicated. One possibility is to create a local branch meant specifically
for backporting out of the subproject remote-tracking branch. Forking it from said
subtree-tracking branch means that it has the subtree as the root and it would
include only the submodule files.

Chapter 9

[287]

This branch intended for backporting changes to the subproject would need to have
the appropriate branch in the remote of the subproject upstream repository as its
upstream branch. With such setup, we would then be able to git cherry-pick
--strategy=subtree the commits we're interested in sending to the subproject's
upstream onto it. Then, we can simply git push this branch into the subproject's
repository.

It is prudent to specify --strategy=subtree even if cherry-
pick would work without it, to make sure that the files outside the
subproject's directory (outside subtree) will get quietly ignored. This
can be used to extract the subtree changes from the mixed commit;
without this option, Git will refuse to complete the cherry-pick.

This requires much more steps than ordinary git push. Fortunately, you need
to face this problem only while sending the changes made in the superproject
repository back to the subproject. As you have seen, fetching changes from the
subproject into the superproject is much, much simpler.

Well, it using git-stree would make this trivial: you just need to list the commits
to be pushed to backport:

$ git stree push mylib_repo master~3 master~1

 5e28a71 [To backport] Support for creating debug symbols

 5b0aa4b [To backport] Timestamping (requires application tweaks)

 STree 'mylib_repo' successfully backported local changes to its remote

In fact, this tool uses internally the same technique, creating and using a backport-
specific local branch for the subproject.

The Git submodules solution: repository
inside repository
The subtrees method of importing the code (and possibly also history) of a subproject
into the superproject has its disadvantages. In many cases, the subproject and the
container are two different projects: your application depends on the library, but it
is obvious that they are separate entities. Joining the histories of the two doesn't look
like the best solution.

Managing Subprojects – Building a Living Framework

[288]

Additionally, the embedded code and imported history of a subproject is always
here. Therefore, the subtrees technique is not a good fit for optional dependencies
and components (such as plugins or themes). It also doesn't allow you to have
different access control for the subproject's history, with the possible exception of
restricting write access to the subproject (actually to the subdirectory of a subproject),
by using Git repository management solutions such as gitolite (you can find more
in Chapter 11, Git Administration).

The submodule solution is to keep the subproject code and history in its own
repository and to embed this repository inside the working area of a superproject,
but not to add its files as superproject files.

Gitlinks, .git files, and the git submodule command
Git includes the command named git submodule, which is intended to work with
submodules. Unfortunately, using this tool is not easy. To utilize it correctly, you
need to understand at least some of the details of its operation. It is a combination of
two distinct features: the so-called gitlinks and the git submodule tool itself.

Both in the subtree solution and the submodule solution, subprojects need to be
contained in their own folder inside the working directory of the superproject. But
while with subtrees the code of the subproject belongs to superproject repository,
it is not the case for submodules. With submodules, each subproject has instead its
own repository somewhere inside the working directory of its container repository.
The code of the submodule belongs to its repository, and the superproject itself
simply stores meta-information required to get appropriate revision of the subproject
files.

In practice, in modern Git, submodules use a simple .git file with a single gitdir:
line containing a relative path to the actual repository folder. The submodule
repository is actually located inside superproject's .git/modules folder (and has
core.worktree set up appropriately). This is done mostly to handle the case when
the superproject has branches that don't have submodule at all. It allows to avoid
having to scrap the submodule's repository while switching to the superproject
revision without it.

You can think of the .git file with gitdir: line as a symbolic
reference equivalent for the .git directories, an OS-independent
symbolic link replacement. The path to the repository doesn't need to
be a relative path.

$ ls -aloF plugins/demo/

total 10

Chapter 9

[289]

drwxr-xr-x 1 user 0 Jul 13 01:26 ./

drwxr-xr-x 1 user 0 Jul 13 01:26 ../

-rw-r--r-- 1 user 32 Jul 13 01:26 .git

-rw-r--r-- 1 user 9 Jul 13 01:26 README

[…]

$ cat plugins/demo/.git

gitdir: ../../.git/modules/plugins/demo

Be that as it may, the contained superproject and the subproject module truly act as
and, in fact, are independent repositories: they have their own history, their own
staging area, and their own current branch. You should, therefore, take care while
typing commands, minding if you're inside the submodule or outside it, because the
context and impact of your commands differ drastically!

The main idea behind submodules is that the superproject commit remembers the
exact revision of the subproject; this reference uses the SHA1 identifier of subproject
commit. Instead of using a manifest-like file like in some dependency management
tools, submodules solution stores this information in a tree object using the so-called
gitlinks. Gitlink is a reference from a tree object (in the superproject repository) to a
commit object (usually, in the submodule repository); see Fig 3.

Fig 3: The history of a superproject with a subproject linked as a submodule . The faint shade of submodule files
on left hand side denotes that there are present as files in the working directory of the superproject, but are not

in the superproject repository themselves.

Managing Subprojects – Building a Living Framework

[290]

Recall that, following the description of the types of objects in the repository
database from Chapter 8, Keeping History Clean, each commit object (representing
a revision of a project) points exactly to one tree object with the snapshot of the
repository contents. Each tree object references blobs and trees, representing file
contents and directory contents, respectively. The tree object referenced by the
commit object uniquely identifies the set of files contents, file names, and file
permissions contained in a revision associated with the commit object.

Let's remember that the commit objects themselves are connected with each other,
creating the Directed Acyclic Graph (DAG) of revisions. Each commit object
references zero or more parent commits, which together describe the history of a
project.

Each type of the references mentioned earlier took part in the reachability check. If
the object pointed to was missing, it means that the repository is corrupt.

It is not so for gitlinks. Entries in the tree object pointing to the commits refer to
the objects in the other separate repository, namely in the subproject (submodule)
repository. The fact that the submodule commit being unreachable is not an error
is what allows us to optionally include submodules; no submodule repository, no
commit referenced in gitlink.

The results of running git ls-tree --abbrev HEAD on a project with all the types
of objects is as follows:

040000 tree 573f464 docs

100755 blob f27adc2 executable.sh

100644 blob 1083735 README.txt

040000 tree ef9bcb4 subdirectory

160000 commit 5b0aa4b submodule

120000 blob 3295d66 symlink

Compare it with the contents of the working area (with ls -l -o -F):

drwxr-xr-x 5 user 12288 06-28 17:18 docs/

-rwxr-xr-x 1 user 36983 02-20 20:11 executable.sh*

-rw-r--r-- 1 user 2628 2015-01-03 README.txt

drwxr-xr-x 3 user 4096 06-28 17:19 subdirectory/

drwxr-xr-x 48 user 36864 06-28 17:19 submodule/

lrwxrwxrwx 1 user 32 06-28 17:18 symlink -> docs/toc.html

Chapter 9

[291]

Adding a subproject as a submodule
With subtrees, the first step was usually to add a subproject repository as a remote,
which meant that objects from the subproject repository were fetched into the
superproject object database.

With submodules, the subproject repository is kept separate. You could manage
cloning the subproject repository manually from inside the superproject worktree
and then add the gitlink also by hand with git add <submodule directory>
(without a trailing slash).

Important note!
Normally, commands git add subdir and git add subdir/ (the
latter with a forward slash, which following the POSIX standard denotes
a subdirectory) are equivalent. This is not true if you want to create
gitlink! If subdir is a top directory of an embedded Git repository of a
subproject, the former would create a gitlink reference, while the latter
in the form of git add subdir/ would add all the files in the subdir
individually, which is not probably what you expect.

A simpler and better solution is to use the git submodule command, which was
created to help manage the filesystem contents, the metadata, and the configuration
of your submodules, as well as inspect their status and update them. To add the
given repository as a submodule at a specific directory in the superproject, use the
add subcommand of the git submodule:

$ git submodule add https://git.example.com/demo-plugin.git \

 plugins/demo

Cloning into 'plugins/demo'...

done.

Note:
While using paths instead of URLs for remotes, you need to remember
that the relative paths for remotes are interpreted relative to our main
remote, not to the root directory of our repository.

This command stores the information about the submodule, for example the URL of
the repository, in the .gitmodules file. It creates this file if it does not exist:

[submodule "plugins/demo"]
 path = plugins/demo
 url = https://git.example.com/demo-plugin.git

Managing Subprojects – Building a Living Framework

[292]

Note that a submodule gets a name equal to its path. You can set the name explicitly
with the --name option (or by editing the configuration); git mv on a submodule
directory will change the submodule path but keep the same name.

Reuse of authentication while fetching submodules
While storing the URL of a remote repository, it is often acceptable
and useful to store the username with the subproject information (for
example, storing the username in a URL, like user@git.company.
com:mylib.git).
However, remembering the username as a part of URL is undesirable
in .gitmodules, because this file must be visible by other developers
(which often use different usernames for authentication). Fortunately, the
commands that descend into submodules can reuse the authentication
from cloning (or fetching) a superproject.

The add subcommand also runs an equivalent of git submodule init for you,
assuming that if you have added a submodule, you are interested in it. This adds
some submodule-specific settings to the local configuration of the master project:

[submodule "plugins/demo"]
 url = https://git.example.com/demo-plugin.git

Why the duplication? Why store the same information in .gitmodules and in .git/
config? Well, because while the .gitmodules file is meant for all developers, we
can fit our local configuration to specific local circumstances. The other reason for
using two different files is that while the presence of the submodule information
in .gitmodules means only that the subproject is available, having it also in .git/
config implies that we are interested in a given submodule (and that we want it to
be present).

You can create and edit the .gitmodules file by hand or with git config -f
.gitmodules. This is useful if, for example, you have added a submodule by hand
by cloning it, but want to use git submodule from now on.

This file is usually committed to the superproject repository (similar to .gitignore
and .gitattributes files), where it serves as the list of possible subprojects.

All the other subcommands require this file to be present; for example,
if we would run git submodule update before adding it, we
would get:

$ git submodule update

No submodule mapping found in .gitmodules for path
'plugins/demo'

Chapter 9

[293]

That's why git submodule add stages both the .gitmodules file and the
submodule itself:

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitmodules

 new file: plugins/demo

Note that the whole submodule, which is a directory, looks to the git status
like the new file. By default, most Git commands are limited to the active
container repository only, and do not descent to the nested repositories of the
submodules. As we will see, this is configurable.

Cloning superprojects with submodules
One important issue is that, by default, if you clone the superproject repository,
you would not get any submodules. All the submodules will be missing from the
working duplicated directory; only their base directories are here. This behavior is
the basis of the optionality of submodules.

We need then to tell Git that we are interested in a given submodule. This is done
by calling the git submodule init command. What this command does is it copies
the submodule settings from the .gitmodules file into the superproject's repository
configuration, namely, .git/config, registering the submodule:

$ git submodule init plugins/demo

Submodule 'plugins/demo' (https://git.example.com/demo-plugin.git)
registered for path 'plugins/demo'

The init subcommand adds the following two lines to the .git/config file:

[submodule "plugins/demo"]
 url = https://git.example.com/demo-plugin.git

This separate local configuration for the submodules you are interested in allows
you also to configure your local submodules to point to a different location URL
(perhaps, a per-company reference clone of a subproject's repository) than the one
that is present in .gitmodules file.

Managing Subprojects – Building a Living Framework

[294]

This mechanism also makes it possible to provide the new URL if the repository of a
subproject moved. That's why the local configuration overrides the one that is recorded
in .gitmodules; otherwise you would not be able to fetch from current URL when
switched to the version before the URL change. On the other hand, if the repository
moved , and the .gitmodules file was updated accordingly, we can re-extract new
URL from .gitmodules into local configuration with git submodule sync.

We have told Git that we are interested in the given submodule. However, we
have still not fetched the submodule commits from its remote and neither have we
checked it out and have its files present in the working directory of the superproject.
We can do this with git submodule update.

In practice, while dealing with submodule using repositories, we
usually group the two commands (init and update) into one with
git submodule update --init.
well, at least if we don't need to customize the URL.

If you are interested in all the submodules, you can use git clone --recursive to
automatically initialize and update each submodule right after cloning.

To temporarily remove a submodule, retaining the possibility of restoring it later,
you can mark it as not interesting with git remote deinit. This just affects .git/
config. To permanently remove a submodule, you need to first deinit it and then
remove it from .gitmodules and from the working area (with git rm).

Updating submodules after superproject changes
To update the submodule so that the working directory contents reflect the state
of a submodule in the current version of superproject, you need to perform
git submodule update. This command updates the files of the subproject or, if
necessary, clones the initial submodule repository:

$ rm -rf plugins/demo # clean start for this example

$ git submodule update

Submodule path 'plugins/demo': checked out '5e28a713d8e87…'

The git submodule update command goes to the repository referenced by .git/
config, fetches the ID of the commit found in the index (git ls-tree HEAD --
plugins/demo), and checks out this version into the directory given by .git/
config. You can, of course, specify the submodule you want to update, giving the
path to the submodule as a parameter.

Chapter 9

[295]

Because we are here checking out the revision given by gitlink, and not by a branch,
git submodule update detaches the subprojects' HEAD (see Fig 3). This command
rewinds the subproject straight to the version recorded in the supermodule.

There are a few more things that you need to know:

• If you are changing the current revision of a superproject in any way,
either by changing a branch, by importing a branch with git pull, or by
rewinding the history with git reset, you need to run git submodule
update to get the matching content to submodules. This is not done
automatically, because it could lead to potentially losing your work in a
submodule.

• Conversely, if you switch to another branch, or otherwise change the current
revision in a superproject, and do not run git submodule update, Git
would consider that you changed your submodule directory deliberately to
point to a new commit (while it is really an old commit, that you used before,
but you forgot to update). If, in this situation, you would run git commit
-a, then by accident, you will change gitlink, leading to having an incorrect
version of a submodule stored in the superproject history.

• You can upgrade the gitlink reference simply by fetching (or switching
to) the version of a submodule you want to have by using ordinary Git
commands inside the subproject, and then committing this version in the
supermodule. You don't need to use the git submodule command here.

You can have Git to automatically fetch the initialized submodules while
pulling the updates from the master project's remote repository. This behavior
can be configured using fetch.recurseSubmodules (or submodule.<name>.
fetchRecurseSubmodules). The default value for this configuration is on-demand (to
fetch if gitlink changes, and the submodule commit it points to is missing). You can
set it to yes or no to turn recursively fetching submodules on or off unconditionally.
The corresponding command-line option is --recurse-submodules.

It is however critical to remember that even though Git can automatically fetch
submodules, it does not auto-update. Your local clone of the submodule repository is
up to date with the submodule's remote, but the submodule's working directory is
stuck to its former contents. If you don't explicitly update the submodule's working
directory, the next commit in the container repository will regress the submodule.
Currently, there are no configuration settings or command-line options that can
autoupdate all the auto-fetched submodules on pull. Well, there were no such
options at the time of this writing, but hopefully the management of submodules
in Git will improve.

Managing Subprojects – Building a Living Framework

[296]

Note that instead of checking out the gitlinked revision on detached HEAD, we
can merge the commit recorded in the superproject into the current branch in
the submodule with --merge, or rebase the current branch on top of the gitlink
with --rebase, just like with git pull. The submodule repository branch
used defaults to master, but the branch name may be overridden by setting the
submodule.<name>.branch option in either .gitmodules or .git/config, the latter
taking precedence.

As you can see, using gitlinks and the git submodule command is quite
complicated. Fundamentally, the concept of gitlink might fit well to the relationship
between subprojects and your superproject, but using this information correctly is
harder than you think. On the other hand, it gives great flexibility and power.

Examining changes in a submodule
By default, the status, logs, and diff output is based solely on the state of the active
repository, and does not descend into submodules. This is often problematic;
you would need to remember to run git submodule summary. It is easy to miss
a regression if you are limited to this view: you can see that the submodule has
changed, but you can't see how.

You can, however, set up Git to make it use a submodule-aware status with the
status.submoduleSummary configuration variable. If it is set to a nonzero number,
this number will provide the --summary-limit restriction; a value of true or -1
will mean an unlimited number.

After setting this configuration, you would get something like the following redundant:

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitmodules

 new file: plugins/demo

Submodule changes to be committed:

* plugins/demo 0000000...5e28a71 (3):

 > Fix repository name in a README file

Chapter 9

[297]

The status extends the always present information that the submodule changed
(new file: plugins/demo), adding the information that the submodule present at
plugins/demo got three new commits, and showing the summary for the last one
(Fix repository name in a README file). The right pointing angle bracket >
preceding the summary line means that the commit was added, that is, present in the
working area but not (yet) in the superproject commit.

Actually, this added part is just the git submodule summary output.

For the submodule in question, a series of commits in the submodule between the
submodule version in the given superproject's commit and the submodule version in
the index or the working tree (the former shown by using --cached) are listed. There
is also git submodule status for short information about each module.

The git diff command's default output also doesn't tell much about the change in
the submodule, just that it is different:

$ git diff HEAD -- plugins/demo

diff --git a/plugins/demo b/plugins/demo

new file mode 160000

index 0000000..5e28a71

--- /dev/null

+++ b/plugins/demo

@@ -0,0 +1 @@

+Subproject commit 5e28a713d8e875f2cf1060c2580886dec3e5b04c

Fortunately, there is the --submodule=log command-line option (that you can
enable by default with the diff.submodule configuration setting) that lets us see
something more useful:

$ git diff HEAD --submodule=log -- plugins/demo

Submodule subrepo 0000000...5e28a71 (new submodule)

Instead of using log, we can use the short format that shows just the names of the
commits, which is the default if the format is not given (that is, with just git diff
--submodule).

Managing Subprojects – Building a Living Framework

[298]

Getting updates from the upstream of the
submodule
To remind you, the submodule commits are referenced in gitlinks using the SHA1
identifier, which always resolves to the same revision; it is not a volatile (inconstant)
reference such as a branch name. Because of this, a submodule in a superproject does
not automatically upgrade (which could possibly be breaking the application).
But sometimes you may want to update it.

Let's assume that the subproject repository got new revisions published and we
want, for our superproject, to update to the new version of a submodule.

To achieve this, we need to update the local repository of a submodule, move the
version we want to the working directory of the superproject, and finally commit the
submodule change in the superproject.

We can do this manually, starting by first changing current directory to be inside the
working directory of the submodule. Then, inside the submodule, we perform git
fetch to get the data to the local clone of the repository (in .git/modules/ in the
superproject). After verifying what we have with git log, we can then update the
working directory. If there are no local changes, you can simply checkout the desired
revision. Finally, you need to create a commit in a superproject.

In addition to the finer-grained control, this approach has the added benefit of
working regardless of your current state (whether you are on an active branch or on
a detached HEAD).

Another way to go about this would be, working from the container repository, to
explicitly upgrade the submodule to its tracked remote branch with git submodule
update --remote. Similarly to the ordinary update command, you can choose to
merge or rebase instead of checking out a branch; you can configure the default way
of updating with the submodule.<name>.update configuration variable, and the
default upstream branch with submodule.<name>.branch.

In short, submodule update --remote --merge will merge
upstream's subproject changes into the submodule, while submodule
update --merge will merge the superproject gitlink changes into
the submodule.

The git submodule update --remote command would fetch new changes from
the submodule remote site automatically, unless told not to with --no-fetch.

Chapter 9

[299]

Sending submodule changes upstream
One of the major dangers in making changes live directly in a submodule (and not
via its standalone repository) is forgetting to push the submodule. A good practice
for submodules is to commit changes to the submodule first, push the module
changes, and only then get back to the container project, commit it, and push
the container changes.

If you only push to the supermodule repository, forgetting about the submodule
push, then other developers would get an error while trying to get the updates.
Though Git does not complain while fetching the superproject, you would see the
problem in the git submodule summary output (and in the git status output, if
properly configured) and while trying to update the working area:

$ git submodule summary

* plugins/demo 12e3a52...0e90143:

 Warn: plugins/demo doesn't contain commit 12e3a529698c519b2fab790…

$ git submodule update

fatal: reference is not a tree: 12e3a529698c519b2fab790…

Unable to checkout '12e3a529698c519b2fab790…' in submodule path 'plugins/
demo'

You can plainly see how important it is to remember to push the submodule. You
can ask Git to automatically push the submodules while pushing the superproject,
if it is necessary, with git push --recurse-submodules=on-demand (the
other option is just to check). With Git 2.7.0 or later you can also use the push.
recurseSubmodules configuration option.

Transforming a subfolder into a subtree or
submodule
The first issue that comes to mind while thinking of the use cases of subprojects
in Git is about having source code of the base project be ready for such division.
Submodules and subtrees are always expressed as subdirectories of the superproject
(the master project). You can't mix files from different subsystems in one directory.

Experience shows that most systems use such a directory hierarchy, even in
monolithic repositories, which is a good beginning for modularization efforts.
Therefore, transforming a subfolder into a real submodule/subtree is fairly easy
and can be done in the following sequence of steps:

Managing Subprojects – Building a Living Framework

[300]

1. Move the subdirectory in question outside the working area of a superproject
to have it beside the top directory of superproject. If it is important to
keep the history of a subproject, consider using git filter-branch
--subdirectory-filter or its equivalent, perhaps together with tools such
as reposurgeon to clean up the history. See Chapter 8, Keeping History Clean
for more details.

2. Rename the directory with the subproject repository to better express the
essence of the extracted component. For example, a subdirectory originally
named refresh could be renamed to refresh-client-app-plugin.

3. Create the public repository (upstream) for the subproject, as a first class
project (for example, create a new project on GitHub to keep extracted code,
either under the same organization as a superproject, or under a specialized
organization for application plugins).

4. Initialize now a self-sufficient and standalone plugin as a Git repository with
git init. If in step 1 you have extracted the history of the subdirectory into
some branch, then push this branch into the just created repository. Set up
the public repository created in step 3 as a default remote repository and
push the initial commit (or the whole history) to the just created URL to store
the subproject code.

5. In the superproject, read the subproject you have just extracted; this time,
as a proper submodule or subtree, whichever solution is a better fit and
whichever method you prefer to use. Use the URL of the just created public
repository for the subproject.

6. Commit the changes in the superproject and push them to its public
repository, in the case of submodules including the newly created (or the just
modified) .gitmodules file.

The recommended practice for the transformation of a subdirectory into a standalone
submodule is to use a read-only URL for cloning (adding back) a submodule. This
means that you can use either the git:// protocol (warning: in this case the server is
unauthenticated) or https:// without a username. The goal of this recommendation
is to enforce separation by moving the work on a submodule code to a standalone
separate subproject repository. In order to ensure that the submodule commits
are available to all other developers, every change should go through the public
repository for a subproject.

Chapter 9

[301]

If this recommendation (best practice) is met with a categorical refusal, in practice
you could work on the subproject source code directly inside the superproject,
though it is more error prone. You would need to remember to commit and push
in the submodule first, doing it from inside of the nested submodule subdirectory;
otherwise other developers would be not able to get the changes. This combined
approach might be simpler to use, but it loses the true separation between
implementing and consuming changes, which should be better assumed while
using submodules.

Subtrees versus submodules
In general, subtrees are easier to use and less tricky. Many people go with
submodules, because of the better built-in tooling (they have their own Git
command, namely git submodule), detailed documentation, and similarity to the
Subversion externals, making them feel falsely familiar. Adding a submodule is
very simple (just run git submodule add), especially compared to adding a subtree
without the help of third-party tools such as git subtree or git stree.

The major difference between subtrees and submodules is that, with subtrees,
there's only one repository, which means just one lifecycle. Submodules and similar
solutions use nested repositories, each with its own lifeline.

Though submodules are easy to set up and fairly flexible, they are also fraught with
peril, and you need to practice vigilance while working with them. The fact that
the submodules are opt-in also means that the changes touching the submodules
demand a manual update by every collaborator. Subtrees are always there, so getting
the superproject's changes mean getting the subproject's too.

Commands such as status, diff, and log display precious little information about
submodules, unless properly configured to cross the repository boundary; it is easy
to miss a change. With subtrees, status works normally, while diff and log need
some care, because the subproject commits have a different root directory. The latter
assumes that you did not decide to not include the subproject history (by squashing
subtree merges). Then, the problem is only with the remote-tracking branches in
subproject's repository, if any.

Because the lifecycles of different repositories are separate, updating a submodule
inside its containing project requires two commits and two pushes. Updating a
subtree-merged subproject is very simple: only one commit and one push. On
the other hand, publishing the subproject changes upstream is much easier with
submodules, while it requires changeset extraction with subtrees (here tools such
as git subtree help a lot).

Managing Subprojects – Building a Living Framework

[302]

The next major issue, and a source of problems, is that the submodule has two
sources of the current revision: the gitlink in the superproject and the branches in the
submodule's clone of the repository. This means that git remote update works a
bit like a sideways push into a nonbare repository (see Chapter 6, Advanced Branching
Techniques). Submodule heads are therefore generally detached, so any local update
requires various preparatory actions to avoid creating a lost commit. There is
no such issue with subtrees. All the revision changing commands work as usual
with subtrees, bringing the subproject directory to the correct version without the
requirement of any additional action. Getting changes from the subproject repository
is just a subtree merge away. The only difference between ordinary pull is the -s
subtree option.

Still, sometimes submodules are the right choice. Compared to subtrees, they allow
for a subproject (a module) to be not fetched, which is helpful when your code base is
massive. Submodules are also useful when the heavy modularization is not natively
handled, or not well natively handled, by the development stack's ecosystem.

Submodules might also themselves be superprojects for other submodules, creating
a hierarchy of subprojects. Using nested submodules is made easier thanks to git
submodule status, update, foreach, and sync subcommands all supporting the
--recursive switch.

Use cases for subtrees
With subtrees, there is only one repository, no nested repositories, just like a regular
codebase. This means that there is just one lifecycle. One of the key benefits of
subtrees is being able to mix container-specific customizations with general purpose
fixes and enhancements.

Projects can be organized and grouped together in whatever way you find to be
most logically consistent. Using a single repository also reduces the overhead from
managing dependencies.

The basic example of using subtrees is managing the customized version of a library,
a required dependency. It is easy to get a development environment set up to run
builds and tests. Monorepo makes it also viable to have one universal version
number for all the projects. Atomic cross-submodule commits are possible; therefore,
a repository can always be in a consistent state.

You can also use subtrees for embedding related projects, such as a GUI or a web
interface, inside a superproject. In fact, many use cases for submodules can also
apply to the subtrees solution, with an exception of the cases where there is a need
for a subproject to be optional, or to have different access permissions than a master
project. In those cases you need to use submodules.

Chapter 9

[303]

Use cases for submodules
The strongest argument for the use of submodules is the issue of modularization.
Here, the main area of use for submodules is handling plugins and extensions.
Some programming ecosystems, such as ANSI C and C++, and also Objectve-C, lack
good and standard support for managing version-locked multimodule projects. In
this case, a plugin-like code can be included in the application (superproject) using
submodules, without sacrificing the ability to easily update to the latest version of a
plugin from its repository. The traditional solution of putting instructions about how
to copy plugins in the README, disconnects it from the historical metadata.

This schema can be extended also to the noncompiled code, such as the Emacs List
settings, configuration in dotfiles, (including frameworks such as oh-my-zsh), and
themes (also for web applications). In these situations, what is usually needed to use
a component is the physical presence of a module code at conventional locations
inside the master project tree, which are mandated by the technology or framework
being used. For instance, themes and plugins for Wordpress, Magento, and so on are
often de facto installed this way. In many cases, you need to be in a superproject to
test these optional components.

Yet another particular use case for submodules is the division based on access control
and visibility restriction of a complex application. For example, the project might use
a cryptographic code with license restrictions, limiting access to it to the small subset
of developers. With this code in a submodule with restricted access to its repository,
other developers would simply be unable to clone this submodule. In this solution,
the common build system needs to be able to skip cryptographic component if it is
not available. On the other hand, the dedicated build server can be configured in
such a way that the client gets the application build with crypto enabled.

A similar visibility restriction purpose, but in reverse, is making the source code
of examples available long before it was to be published. This allows for better
code thanks to the social input. The main repository for a book itself can be closed
(private), but having an examples/ directory contain a submodule intended for a
sample source code allows you to make this subrepository public. While generating
the book in the PDF and EPUB (and perhaps also MOBI) formats, the build process
can then embed these examples (or fragments of them), as if they were ordinary
subdirectory.

Managing Subprojects – Building a Living Framework

[304]

Third-party subproject management solutions
If you don't find a good fit in either git subtree or git submodule, you can try to
use one of the many third-party projects to manage dependencies, subprojects, or
collections of repositories. One such tool is the externals (or ext) project by Miles
Georgie. You can find it at http://nopugs.com/ext-tutorial. This project is VCS-
agnostic, and can be used to manage any combination of version control systems
used by subprojects and superprojects.

Another is the repo tool (https://android.googlesource.com/tools/repo/)
used by the Android Open Source project to unify the many Git repositories for
across-network operations. You can find many other such tools.

When choosing between native support and one of the many tools to
manage many repositories together, you should check whether the tool
in question uses a subtree-like or submodule-like approach to find if it
would be a good fit for your project.

Managing large Git repositories
Because of its distributed nature, Git includes the full change history in each copy
of the repository. Every clone gets not only all the files, but every revision of every
file ever committed. This allows for efficient development (local operations not
involving a network are usually fast enough so that they are not a bottleneck) and
efficient collaboration with others (distributed nature allows for many collaborative
workflows).

But what happens when the repository you want to work on is really huge? Can we
avoid taking a large amount of disk space for version control storage? Is it possible
to reduce the amount of data that end users need to retrieve while cloning the
repository?

If you think about it, there are broadly two main reasons for repositories to grow
massive: they can accumulate a very long history (the every revision direction),
or they can include huge binary assets that need to be managed together with
code (the every file direction), or both. For those two scenarios, the techniques and
workarounds are different, and can be applied independently.

http://nopugs.com/ext-tutorial
https://android.googlesource.com/tools/repo/

Chapter 9

[305]

Handling repositories with a very long history
Even though Git can effectively handle repositories with a long history, very old
projects spanning huge number of revisions can become a pain to clone. In many
cases, you are not interested in ancient history and do not want to pay the time to get
all the revisions of a project and the disk space to store them.

For example, if you want to propose a new feature or a bugfix (the latter might
require running git bisect on your machine, where the regression bug is easily
reproducible; see Chapter 2, Exploring Project History for how to use bisection), you
don't want to wait for the full clone to finish, which may take quite a while.

Some Git repository hosting services, such as GitHub, offer a web-based
interface to manage repositories, including in-browser file management
and editing. They may even automatically create a fork of the repository
for you to enable writing and proposing changes.
But a web-based interface doesn't cover everything, and you might
be using self-hosted repositories or a service that doesn't provide this
feature anyway.

Using shallow clones to get truncated history
The simple solution to a fast clone and to saving disk space is to perform shallow
clone using Git. This operation allows you to get a local copy of the repository with
the history truncated to a particular specified depth, that is, the number of latest
revisions.

How do you do it? Just use the --depth option:

$ git clone --depth=1 https://git.company.com/project

The preceding command clones only the most recent revision of the primary branch.
This trick can save quite a bit of time and relieve a great deal of load from the
servers. Often, shallow clone finishes in seconds rather than in minutes; a significant
improvement.

Since version 1.9, Git supports pull and push operations even with shallow clones,
though some care is still required. You can change the depth of a shallow clone by
providing the --depth=<n> option to git fetch (note however that tags for the
deepened commits are not fetched). To turn a shallow repository into a complete
one, use --unshallow.

Managing Subprojects – Building a Living Framework

[306]

Note, also git clone --depth=1 may still get all the branches and all the tags.
This can happen if the remote repository doesn't have HEAD, thus it doesn't have a
primary branch selected; otherwise only the tip of the said single branch is fetched.
Long-lived projects usually had many releases during their long history. To really
save time, you would need then to combine shallow clone with the next solution:
branch limiting.

Cloning only a single branch
Git, by default, clones all the branches and tags (if you want to fetch notes or
replacements, you need to specify them explicitly). You can limit the amount of the
history you clone by specifying that you want to clone only a single branch:

$ git clone --branch master --single-branch \

 https://git.company.com/project

Because most of the project history (most of the DAG of revisions) is shared among
branches, with very few exceptions, you probably won't see a huge difference
using this.

This feature might be quite useful if you don't want detached orphan branches or
the opposite: you want only an orphan branch (for example, with a web page for a
project). It also works well used together with a shallow clone.

Handling repositories with large binary files
In some specific circumstances, you might need to track huge binary assets in the
code base. Gaming teams have to handle huge 3D models, web development teams
might need to track raw image assets or Photoshop documents, and both might
require having video files under version control. Sometimes, you might want the
convenience of including large binary deliverables that are difficult or expensive to
generate, for example, storing a snapshot of a virtual machine image.

There are some tweaks to improve the handling of binary assets by Git. For binary
files that change significantly from version to version (and not just change some
metadata headers), you might want to turn off the delta compression by adding
-delta explicitly for specific types of files in a .gitattributes file (see Chapter
4, Managing Your Worktree, and Chapter 10, Customizing and Extending Git). Git
would automatically turn off delta compression for any file above the core.
bigFileThreshold size, 512 MiB by default. You might also want to turn the
compression off (for example if a file is in the compressed format already); though
because core.compression and core.looseCompression are global for the
whole repository, it makes more sense if binary assets are in a separate repository
(submodule).

Chapter 9

[307]

Splitting the binary asset folder into a separate
submodule
One possible way of handling large binary asset folders is, as mentioned earlier, to
split them into a separate repository and pull the assets into your main project as
submodule. The use of submodules gives a way to control when assets are updated.
Moreover, if a developer does not need those binary assets to work, he or she can
simply exclude the submodule with assets from fetching.

The limitation is that you need to have a separate folder with these huge binary
assets that you want to handle this way.

Sparse checkout
Git includes the technique that allows you to explicitly detail which files
and folders you want to populate on checkout. This mode is turned on
by setting the core.sparseCheckout configuration variable to true,
and uses the .git/info/sparse-checkout file with the gitignore
syntax to specify what is to appear in the working directory. The index
is populated in full, with skip-worktree set for files missing from the
checkout.
While it can be helpful if you have a huge tree of folders, it doesn't affect
the overall size of the local repository itself.

Storing large binary files outside the repository
Another solution is to use one of the many third-party tools that try to solve the
problem of handling large binary files in Git repositories. Many of them are using
a similar paradigm, namely, storing the contents of huge binary files outside the
repository, while providing some kind of pointers to the contents in the checkout.

There are three parts of each such implementation: how they store the information
about the contents of the managed files inside the repository, how they manage
sharing the large binary files between a team, and how they integrate with Git (and
what is their performance penalty). While choosing a solution, you would need to
take this data into account, together with the operating system support, ease of use,
and the size of the community.

Managing Subprojects – Building a Living Framework

[308]

What is stored in the repository and what is checked in might be a symlink to the file
or to the key, or it might be a pointer file (often plain text), which acts as a reference to
the actual file contents (by name or by the cryptographic hash of file contents). The
tracked files need to be stored in some kind of backend for a collaboration (cloud
service, rsync, shared directory, and so on). Backends might be accessed directly by
the client, or there might be a separate server with a defined API into which the blobs
are written to, which would in turn offload the storage elsewhere.

The tool might either require the use of separate commands for checking out and
committing large files and for fetching from and pushing to the backend, or it might
be integrated into Git. The integrated solution uses the clean/smudge filters to
handle check-out and check-in transparently, and the pre-push hook to send large
file contents transparently together. You only need to state which files to track and,
of course, initialize the repository for the tool use.

The advantage of a filter-based approach is the ease of use; however, there is a
performance penalty, because of how it works. Using separate commands to handle
large binary assets makes the learning curve a bit steeper, but provides for better
performance. Some tools provide both interfaces.

Among different solutions, there are git annex with a large community and support
for various backends, and Git LFS (Large File Storage) created by GitHub, which
provides good MS Windows support, client-server approach, and transparency (with
support for filter-based approach). There are many other such tools, for example, git-
fat, git-media, git-bigstore, and git-sym.

Summary
This chapter provided all the tools you need to manage multicomponent projects
with Git, from libraries and graphical interfaces, through plugins and themes, to
frameworks.

You learned the concept behind the subtrees technique and how to use it to manage
subprojects. You know how to create, update, examine, and manage subprojects
using subtrees.

You got to know the submodule approach of nested repositories for optional
dependencies. You learned the ideas behind gitlinks, .gitmodules, and the .git
files. You encountered the pitfalls and traps for the unwary that you need to be
vigilant about while using submodules. You know the reason for these problems and
understand the notions behind them. You know how to create, update, examine, and
manage subprojects using submodules.

Chapter 9

[309]

You learned when to use subtrees and submodules, and their advantages and
disadvantages. You know a few use cases for each technique.

Now that you know how to use Git effectively in a variety of circumstances,
and learned the high-level ideas behind Git behavior that helps you understand
it, it's time to tackle how to make Git easier to use in Chapter 10, Customizing and
Extending Git.

[311]

Customizing and
Extending Git

Earlier chapters were designed to help you understand and master Git as a version
control system, from examining history, through managing your contributions, to
collaborating with other developers, ending with handling the composite projects in
the last chapter: Chapter 9, Managing Subprojects—Building a Living Framework.

The following two chapters would help set up and configure Git, so that you can
use it more effectively for yourself (this chapter) and help other developers use it (the
next chapter).

This chapter will cover configuring and extending Git to fit one's needs. First, it will
show how to set up a Git command line to make it easier to use. For some tasks
though it is easier to use visual tools; the short introduction to graphical interfaces in
this chapter should help you in choosing one. Next, there will be an explanation on
how to change and configure Git behavior, from configuration files (with the selected
configuration options described), to a per-file configuration with the gitattributes
file.

Then this chapter will cover how to automate Git with hooks, describing for example
how to make Git check whether the commit being created passes coding guidelines
for a project. This part will focus on the client-side hook, and will only touch upon
the server-side hooks— those are left for the, Chapter 11, Git Administration. The last
part of the chapter will describe how to extend Git, from the Git command aliases,
through integrating new user-visible commands, to helpers and drivers (new back-
end abilities).

Many issues, such as gitattributes, remote and credential helpers, and the basics
of the Git configuration should be known from the previous chapters. This chapter
will gather this information in a single place and expand it a bit.

Customizing and Extending Git

[312]

In this chapter, we will cover the following topics:

• Setting up shell prompt and TAB completion for a command line
• Types and examples of graphical user interfaces
• Configuration files and basic configuration options
• Installing and using various types of hooks
• Simple and complex aliases
• Extending Git with new commands and helpers

Git on the command line
There are a lot of different ways to use the Git version control system. There are
many graphical user interfaces (GUIs) of varying use cases and capabilities, and
there exists tools and plugins that allow integration with an integrated development
environment (IDE) or a file manager.

However, the command line is the only place you can run all of the Git commands
and which provides support for all their options. New features, which you might
want to use, are developed for the command line first. Also, most of the GUIs
implement only some subsets of the Git functionality. Mastering the command line
always guarantees a deep understanding of tools, mechanisms, and their abilities.
Just knowing how to use a GUI is probably not enough to get a founded knowledge.

Whether you use Git on a command line from choice, as a preferred environment, or
you need it because it is the only way to access the required functionality, there are a
few shell features that Git can tap into to make your experience a lot friendlier.

Git-aware command prompt
It's useful to customize your shell prompt to show information about the state of the
Git repository we are in.

Shell prompt is a short text message that is written to the terminal or the
console output to notify the user of the interactive shell that some typed
input is expected (usually a shell command).

This information can be as simple or as complex as you want. Git's prompt might
be similar to the ordinary command-line prompt (to reduce dissonance), or visibly
different (to be able to easily distinguish that we are inside the Git repository).

Chapter 10

[313]

There is an example implementation for bash and zsh shells in the contrib/ area. If
you install Git from the sources, just copy the contrib/completion/git-prompt.
sh file to your home directory; if you have installed Git on Linux via a package
manager, you will probably have it at /etc/bash_completion.d/git-prompt.sh.
This file provides the __git_ps1 shell function to generate a Git-aware prompt in the
Git repositories, but first you need to source this file in your.bashrc or .zshrc:

if [-f /etc/bash_completion.d/git-prompt.sh]; then
 source /etc/bash_completion.d/git-prompt.sh
fi

The shell prompt is configured using environment variables. To set up prompt, you
must change directly or indirectly the PS1 (prompt string one, the default interaction
prompt) environment variable. Thus, one solution to create a Git-aware command
prompt is to include a call to the __git_ps1 shell function in the PS1 environment
variable, by using command substitution:

export PS1='\u@\h:\w$(__git_ps1 " (%s)")\$ '

Note that, for zsh, you would also need to turn on the command substitution in the
shell prompt with setopt PROMPT_SUBST command.

Alternatively, for a slightly faster prompt and with a possibility of color, you can use
__git_ps1 to set PS1. This is done with the PROMPT_COMMAND environment variable
in bash and with the precmd() function in zsh. You can find more information about
this option in comments in the git-prompt.sh file; for bash, it could be:

PROMPT_COMMAND='__git_ps1 "\u@\h:\w""\\\$ "" (%s)"'

With this configuration (either solution), the prompt will look as follows:

bob@host.company.org:~/random/src (master)$

The bash and zsh shell prompts can be customized with the use of special characters,
which get expanded by a shell. In the example used here, \u means the current
user (bob), \h is the current hostname (host.company.org), \w means the current
working directory (~/random/src), while\$ prints the $ part of the prompt (# if
you are logged in as the root user). $(...) in the PS1 setup is used to call external
commands and shell functions .__git_ps1 " (%s)" here calls the __git_ps1 shell
function provided by git-prompt.sh with a formatting argument: the %s token is
the place-holder for the presented Git status. Note that you need to either use single
quotes while setting the PS1 variable from the command line, as in the example
shown here, or escape shell substitution, so it is expanded while showing the prompt
and not while defining the variable.

Customizing and Extending Git

[314]

If you are using the __git_ps1 function, Git will also display information about the
current ongoing multistep operation: merging, rebasing, bisecting, and so on. For
example, during an interactive rebase (-i) on the branch master, the relevant part
of the prompt would be master|REBASE-i. It is very useful to have this information
right here in the command prompt, especially if you get interrupted in the middle of
operation.

It is also possible to indicate in the command prompt the state of the working tree,
the index, and so on. We can enable these features by exporting the selected subset
of these environment variables (for some features you can additionally turn it off on
per-repository basis with provided boolean-valued configuration variables):

Variable/Configuration Values Effect
GIT_PS1_SHOWDIRTYSTATE

bash.showDirtyState

Nonempty This shows * for the
unstaged changes and +
for the staged changes.

GIT_PS1_SHOWSTASHSTATE Nonempty This shows $ if
something is stashed.

GIT_PS1_SHOWUNTRACKEDFILES

bash.showUntrackedFiles

Nonempty This shows % if there
are untracked files in
workdir.

GIT_PS1_SHOWUPSTREAM

bash.showUpstream

Space-separated list of
values:

• verbose

• name

• legacy

• git

• svn

This autoshows
whether you are
behind <, up to date
"=", or ahead > of the
upstream.name shows
the upstream name
and verbose shows
the number of commits
ahead/behind (with a
sign). git compares
HEAD to @{upstream}
and svn to SVN
upstream.

GIT_PS1_DESCRIBE_STYLE One of values:
• contains

• branch

• describe

• default

This provides extra
information when
on detached HEAD.
contains uses
newer annotated tags,
branch newer tag or
branch, describe uses
older annotated tags,
default shows if there
is exactly matching tag.

Chapter 10

[315]

Variable/Configuration Values Effect
GIT_PS1_SHOWCOLORHINTS

(prompt command / precmd only)
Nonempty Colored hint about the

current dirty state and
so on.

GIT_PS1_HIDE_IF_PWD_IGNORED

bash.hideIfPwdIgnored

Nonempty Does not show a Git-
aware prompt if the
current directory is set
to be ignored by Git.

If you are using the zsh shell, you can take a look at the zsh-git set of scripts,
the zshkit configuration scripts, or the oh-my-zsh framework available for zsh,
instead of using bash—first completion and prompt setup from the Git contrib/.
Alternatively you can use the vcs_info subsystem built-in into zsh.

Well, there are alternate prompt solutions also for bash, for example git-radar.

You can, of course, generate your own Git-aware prompt. For example,
you might want to split the current directory into the repository path
part and the project subdirectory path part with the help of the git
rev-parse command.

Command-line completion for Git
Another shell feature that makes it easier to work with command-line Git is the
programmable command-line completion. This feature can dramatically speed up
typing Git commands. Command-line completion allows you to type the first few
characters of a command, or a filename, and press the completion key (usually
Tab) to fill the rest of the item. With the Git-aware completion, you can also fill in
subcommands, command-line parameters, remotes, branches, and tags (ref names),
each only where appropriate (for example, remote names are completed only if the
command expects the remote name at a given position).

Git comes with built-in (but not always installed) support for the auto-completion of
Git commands for the bash and zsh shells.

For bash, if the completion is not installed with Git (at /etc/bash_completion.d/
git.sh in Linux by default), you need to get a copy of the contrib/completion/
git-completion.bash file out of the Git source code. Copy it somewhere accessible,
like your home directory, and source it from your .bashrc or .bash_profile:

. ~/git-completion.bash

Customizing and Extending Git

[316]

Once the completion for Git is enabled, to test it you can type for example:

$ git check<TAB>

With Git completion enabled bash (or zsh) would autocomplete this to git checkout.

Similarly, in an ambiguous case, double Tab shows all the possible completions
(though it is not true for all the shells):

$ git che<TAB><TAB>

checkout cherry cherry-pick

The completion feature also works with options; this is quite useful if you don't
remember the exact option but only the prefix:

$ git config --<TAB><TAB>

--add --get-regexp --remove-section --unset

--file= --global --rename-section --unset-all

--get --list --replace-all

--get-all --local --system

Instead of the list of possible completions, some shells use (or can be configured to
use) rotating completion, where with multiple possible completions, each Tab shows
a different completion for the same prefix (cycling through them).

Note that the command-line completion (also called tab completion) generally
works only in the interactive mode, and is based on the unambiguous prefix, not on
the unambiguous abbreviation.

Autocorrection for Git commands
An unrelated, but similar to tab completion, built-in Git tool is autocorrection. By
default, if you type something that looks like a mistyped command, Git helpfully
tries to figure out what you meant. It still refuses to do it, even if there is only one
candidate:

$ git chekout

git: 'chekout' is not a git command. See 'git --help'.

Did you mean this?

 checkout

Chapter 10

[317]

However, with the help.autoCorrect configuration variable set to a positive
number, Git will automatically correct and execute the mistyped commands after
waiting for the given number of deciseconds (0.1 of second). You can use a negative
value of this option for immediate execution, or zero to go back to default:

$ git chekout

WARNING: You called a Git command named 'chekout', which does not exist.

Continuing under the assumption that you meant 'checkout'

in 0.1 seconds automatically...

Your branch is up-to-date with 'origin/master'.

If there is more than one command that can be deduced from the entered text,
nothing will be executed. This mechanism works only for Git commands; you cannot
autocorrect subcommands, parameters, and options (as opposed to tab completion).

Making the command line prettier
Git fully supports a colored terminal output, which greatly aids in visually parsing
the command output. A number of options can help you set the coloring to your
preference.

First, you can specify when to use colors and for output of which commands. There
is a color.ui master switch to control output coloring to turn off all the Git's colored
terminal outputs and set them to false. The default setting for this configuration
variable is auto, which makes Git color the output when it's going straight to a
terminal, but omit the color-control codes when the output is redirected to a file or a
pipe.

You can also set color.ui to always, though you'd rarely want this: if you want
color codes in your redirected output, simply pass a --color flag to the Git
command; conversely, the --no-color option would turn off colored output.

If you want to be more specific about which commands are colored and which parts
of the output are colored, Git provides appropriate coloring settings: color.branch,
color.diff, color.interactive, color.status, and so on. Like with the master
switch color.ui, each of these can be set to true, false, auto, and always.

In addition, each of these settings has subsettings that you can use to set specific
colors for specific parts of the output. The color value of such configuration variables,
for example, color.diff.meta (to configure the coloring of meta information in
your diff output), consists of space-separated names of the foreground color, the
background color (if set), and the text attribute.

Customizing and Extending Git

[318]

You can set the color to any of the following values: normal, black, red, green,
yellow, blue, magenta, cyan, or white. As for the attributes, you can choose from
bold, dim, ul (underline), blink, and reverse (swap the foreground color with the
background one).

The pretty formats for git log also include an option to set colors; see the git log
documentation.

Alternative command line
To understand some of the rough edges of the Git user's interface, you need to
remember that Git was developed to a large extent in the bottom-up fashion.
Historically, Git began as a tool to write version control systems (you can see how
early Git was used in the A Git core tutorial for developers documentation available at
https://www.kernel.org/pub/software/scm/git/docs/gitcore-tutorial.
html or https://git-scm.com/docs/gitcore-tutorial).

The first alternative "porcelain" for Git (alternative user interface) was Cogito.
Nowadays, Cogito is no more; all of its features are long incorporated into Git (or
replaced by better solutions). There were some attempts to write wrapper scripts
(alternative UIs) designed to make it easy to learn and use, for example, Easy Git (eg).

There are also external Git porcelains that do not intend to replace the whole user
interface, but either provide access to some extra feature, or wrap Git to provide
some restricted feature set. Patch management interfaces, such as StGit, TopGit, or
Guilt (formerly Git Queues (gq)), are created to make it easy to rewrite, manipulate,
and clean up selected parts of the unpublished history; these were mentioned as an
alternative to an interactive rebase in Chapter 8, Keeping History Clean. Then, there are
single-file version control systems, such as Zit and SRC, which use Git as a backend.

Besides alternative user interfaces, there are also different
implementations of Git (defined as reading and writing Git repositories).
They are at different stages of completeness. Besides core C
implementation, there is JGit in Java, and also the libgit2 project—the
modern basis of Git bindings for various programming languages.

Graphical interfaces
You have learned how to use Git on the command line. The previous section told you
how to customize and configure it to make it even more effective. But the terminal
is not the end. There are other kinds of environments you can use to manage Git
repositories. Sometimes, a visual representation is what you need.

https://www.kernel.org/pub/software/scm/git/docs/gitcore-tutorial.html or https://git-scm.com/docs/gitcore-tutorial
https://www.kernel.org/pub/software/scm/git/docs/gitcore-tutorial.html or https://git-scm.com/docs/gitcore-tutorial

Chapter 10

[319]

Now, we'll take a short look at the various kinds of user-centered graphical tools
for Git; the tour of Git administrative tools is left for the next chapter, Chapter 11, Git
Administration.

Types of graphical tools
Different tools and interfaces are tailored for different workflows. Some tools expose
only a selected subset of the Git functionality, or encourage a specific way of working
with version control.

To be able to make an informed choice selecting a graphical tool for Git, you need to
know what types of operations the different types of tools do support. Note that one
tool can support more than one type of uses.

First there is a graphical history viewer. You can think of it as a powerful GUI over
git log. This is the tool to be used when you are trying to find something that
happened in the past, or you are visualizing and browsing your project's history and
the layout of branches. Such tools usually accept revision selection command-line
options, such a s--all. Command-line Git has git log --graph and less used git
show-branch that use ASCII-art to show the history.

A similar tool is graphical blame, showing the line-wise history of a file. For each
line, it can show when that line was created and when it was moved or copied to
the current place. You can examine the details of each of the commits shown, and
usually browse through the history of the lines in a file. Other tools with similar
applications, namely examining the evolution of the line range (git log -L) and the
so called pickaxe search (git log -S) does not have many GUIs.

Next, there are commit tools meant primarily to craft (and amend) commits, though
usually they also include some kind of worktree management (for example ignoring
files and switching branches) and management of remotes. Such tools would usually
show unstaged and staged changes, allowing you to move files between these states
. Some of those tools even allow to stage and unstage individual chunks of changes,
like interactive versions of git add, git reset, and so on. A graphical version of an
interactive add is described in Chapter 4, Managing Your Worktree, and mentioned
in Chapter 3, Developing with Git.

Then, we have file manager integration (or graphical shell integration). These
plugins usually show the status of the file in Git (tracked/untracked/ignored) using
icon overlays. They can offer a context menu for a repository, directory, and file, often
with accompanying keyboard shortcuts. They may also bring drag and drop support.

Customizing and Extending Git

[320]

Programmer editors and integrated development environments (IDEs) often offer
support for IDE integration with Git (or version control in general). These offer
repository management (as a part of team project management), make it possible to
perform Git operations directly from the IDE, show the status of the current file and
the repository, and perhaps even annotate the view of the file with version control
information. They often include the commit tool, remote management, the history
viewer, and the diff viewer.

Git repository's hosting sites often offer workflow-oriented desktop clients. These
mostly focus on a curated set of commonly used features that work well together
in the flow. They automate common Git tasks. They are often designed to highlight
their service, offering extra features and integration, but they will work with any
repository hosted anywhere.

Graphical diff and merge tools
Graphical diff tools and graphical merge tools are somewhat special case. In these
categories, Git includes the commands for integration with third-party graphical
tools, namely, git difftool and git mergetool. These tools would then be called
from the Git repository. Note that this is different from the external diff or diff merge
drivers, which replace ordinary git diff or augment it.

Although Git has an internal implementation of diff and a mechanism for merge
conflict resolutions (see Chapter 7, Merging Changes Together), you can use an external
graphical diff tool instead. These are often used to show the differences better
(usually, as a side-by-side diff, possibly with refinements), and help resolve a merge
(often with a three-pane interface).

Configuring the graphical diff tool, or the graphical merge tool, takes a number
of custom settings. To tell which tool to use for diff and merge, respectively, you
can set up diff.tool and merge.tool, respectively . Without setting for example
"merge.tool" the "git mergetool" command would print the information on how
to configure it, and will attempt to run one of predefined tools:

$ git mergetool

This message is displayed because 'merge.tool' is not configured.

See 'git mergetool --tool-help' or 'git help config' for more details.

'git mergetool' will now attempt to use one of the following tools:

tortoisemerge emerge vimdiff

No files need merging

Chapter 10

[321]

Running git mergetool --tool-help will show all the available tools, including
those that are not installed. In case the tool you use is not in $PATH, or it has a wrong
version of the tool, you can use mergetool.<tool>.path to set or override the path
for the given tool:

$ git mergetool --tool-help

'git mergetool --tool=<tool>' may be set to one of the following:

 vimdiff

 [...]

The following tools are valid, but not currently available:

 araxis

 […]

Some of the tools listed above only work in a windowed

environment. If run in a terminal-only session, they will fail.

If there is no built-in support for your tool, you can still use it; you just need to
configure it. The mergetool.<tool>.cmd configuration variable specifies how to
run the command, while mergetool.<tool>.trustExitCode tells Git whether the
exit code of that program indicates a successful merge resolution or not. The relevant
fragment of the configuration file (for a graphical merge tool named extMerge) could
look as follows:

[merge]
 tool = extMerge
[mergetool "extMerge"]
 cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"

Graphical interface examples
In this section, you will be presented with a selection of tools around Git that you
could use, or that might prompt you to research further. A nice way to start such a
research is to list some selected GUI clients.

There are two visual tools that are a part of Git and are usually installed with it,
namely gitk and git-gui. They are written in Tcl/Tk. Gitk is a graphical history
viewer, while git gui is a commit tool; there is also git gui blame, a visually
interactive line-history browser. These tools are interconnected, for example,
browsing history from git gui opens gitk.

Customizing and Extending Git

[322]

Visual tools do not need to use the graphical environment. There is tig (Text
Interface for Git), a nurses-based text-mode interface, which functions as a repository
browser and a commit tool, and can act as a Git pager.

There is git cola developed in Python and available for all the operating systems,
which includes commit tools and remotes management, and also a diff viewer.
Then, there is the simple and colorful Gitg tool for GNOME; you will get a graphical
history viewer, diff viewer, and file browser.

One of the more popular open-source GUI tools for MacOS is GitX. There are a lot
of forks of this tool; one of the more interesting ones is Gitbox. It features both the
history viewer and commit tools.

For MS Windows, there is TortoiseGit and git-cheetah, both of which offer
integration into the Windows context menu, so you can perform Git commands
inside Windows Explorer (the file manager integration and shell interface).

Both GitHub Inc. and Atlassian released a desktop GUI tool that you can easily use
with your GitHub or Bitbucket repository, respectively, but it is not limited to it.
Both GitHub Client and SourceTree feature repository management in addition to
other common facilities.

Configuring Git
So far, while describing how Git works and how to use it, we have introduced a
number of ways to change its behavior. Here, it will be explained in the systematic
fashion how to configure Git operations on a temporary and permanent basis. We
will also see how you can make Git behave in a customized fashion by introducing
and reintroducing several important configuration settings. With these tools, it's easy
to get Git to work the way you want it to.

Command-line options and environment
variables
Git processes the switches that change its behavior in a hierarchical fashion, from the
least specific to the most specific one, with the most specific one (and shortest term)
moved earlier taking precedence.

The most specific one, overriding all the others, is the command-line options. They
affect, obviously, only the current Git command.

Chapter 10

[323]

One issue to note is that some command-line options, for example--no-
pager or --no-replace-objects go to the git wrapper, not to the
Git command itself. Examine, for example, the following line to see the
distinction:
$ git --no-replace-objects log -5 --oneline --graph
--decorate

You can find the conventions used through the Git command-line interface on
https://www.kernel.org/pub/software/scm/git/docs/gitcli.html
manpage.

The second way to change how the Git command works is to use environment
variables. They are specific to the current shell, and you need to use export to
propagate the variables to the subprocesses if replacement is used. There are some
environment variables that apply to all core Git commands, and some that are
specific to a given (sub)command.

Git also makes use of some nonspecific environment variables. These are meant as
a last resort; they are overridden by their Git specific equivalents. Examples include
variables such as PAGER and EDITOR.

Git configuration files
The final way to customize how Git works is with the configuration files. In many
cases, there is a command-line option to configure an action, an environment
variable for it, and finally a configuration variable, in the descending order of
preference.

Git uses a series of configuration files to determine nondefault behavior that you
might want to have. There are three layers of those that Git looks for configuration
values. Git reads all these files in order from the least specific to the most specific
one. The settings in the later ones override those set in the earlier ones. You can
access the Git configuration with the git config command: by default, it operates
on the union of all the files, but you can specify which one you want to access
with the command-line options. You can also access any given file following the
configuration file syntax (such as the .gitmodules file mentioned in Chapter 9,
Managing Subprojects - Building a Living Framework) by using the --file=<pathname>
option (or the GIT_CONFIG environment variable).

You can also read the values from any blob with configuration-like
contents; for example, you may use git config--blob=master:.
gitmodules to read from the .gitmodules file in the master
branch.

https://www.kernel.org/pub/software/scm/git/docs/gitcli.html

Customizing and Extending Git

[324]

The first place Git looks for configuration is the system-wide configuration file. If
Git is installed with the default settings, it can be found in /etc/gitconfig. Well,
at least, on Linux it is there, as the Filesystem Hierarchy Standard (FHS) states that /
etc is the directory for storing the host-specific system-wide configuration files; Git
for Windows puts this file in the subdirectory of its Program Files folder. This file
contains the values for every user on the system and all their repositories. To make
git config read and write from and to this file specifically (and to open it with
--edit), pass the --system option to the git config command.

You can skip the reading settings from this file with the GIT_CONFIG_NOSYSTEM
environment variable. This can be used to set up a predictable environment or to
avoid using a buggy configuration you can't fix.

The next place Git looks is ~/.gitconfig, falling back to ~/.config/git/config if
it exists (with the default configuration). This file is specific to each user and it affects
all the user's repositories. If you pass the option --global to git config, it would
read and write from this file specifically. Reminder: here, as in the other places, ~ (the
tilde character) denotes the home directory of the current user ($HOME).

Finally, Git looks for the configuration values in the per-repository configuration
file in the Git repository you are currently using, which is (by default and for
nonbare repositories) .git/config. Values set there are specific to that local single
repository. You can make Git read and write to this file by passing the --local
option.

Each of these levels (system, global, and local) overrides values in the previous level,
so for example, values in .git/config trump those in ~/.gitconfig; well, unless
the configuration variable is multivalued.

You can use this to have your default identity in the per-user file and to
override it if necessary on a per-repository basis with a per-repository
configuration file.

The syntax of Git configuration files
Git's configuration files are plain text, so you can also customize Git's behavior
by manually editing the chosen file. The syntax is fairly flexible and permissive;
whitespaces are mostly ignored (contrary to .gitattributes). The hash # and
semicolon ; characters begin comments, which last until the end of the line. Blank
lines are ignored.

Chapter 10

[325]

The file consists of sections and variables, and its syntax is similar to the syntax of
INI files. Both the section names and variable names are case-insensitive. A section
begins with the name of the section in square brackets [section] and continues
until the next section. Each variable must begin at some section, which means that
there must be a section header before the first setting of a variable. Sections can
repeat and can be empty.

Sections can be further divided into subsections. Subsection names are case-sensitive
and can contain any character except newline (double quotes " and backslash \ must
be escaped as \" and \\, respectively). The beginning of the subsection will look as
follows:

[section "subsection"]

All the other lines (and the remainder of the line after the section header) are
recognized as a setting variable in the name = value form. As a special case,
just name is a shorthand for name = true (boolean variables). Such lines can be
continued to the next line by ending it with "\" (the backslash character), that is by
escaping the end-of-line character. Leading and trailing whitespaces are discarded;
internal whitespaces within the value are retained verbatim. You can use double
quotes to preserve leading or trailing whitespaces in values.

You can include one config file from another by setting the special variable
include.path to the path of the file to be included. The included file will be
expanded immediately, similar to the mechanism of #include in C and C++. The
path is relative to the configuration file with the include directive. You can turn this
feature off with --no-includes.

Types of configuration variables and type specifiers
While requesting (or writing) a config variable, you may give a type
specifier. It can be --bool, which ensures that the returned value is true
or false; --int, which expands the optional value suffix of k (1024
elements), m (1024k), or g (1024m); --path, which expands ~ for the
value of $HOME; and ~user for the home directory of the given user.
There is also --bool-or-int and a few options related to storing colors
and retrieving color escape codes; see the git config documentation.

Accessing the Git configuration
You can use the git config command to access the Git configuration, starting from
listing the configuration entries in a canonical form, through examining individual
variables, to editing and adding entries.

Customizing and Extending Git

[326]

You can query the existing configuration with git config --list, adding an
appropriate parameter if you want to limit to a single configuration layer. On a Linux
box with the default installation, in the fresh empty Git repository just after git
init, the local (per-repository) setting would look approximately like the following:

$ git config --list --local

core.repositoryformatversion=0

core.filemode=false

core.bare=false

core.logallrefupdates=true

You can also query a single key with git config, limiting or not the scope to the
specified file, by giving the name of configuration variable as a parameter (optionally
preceded by --get), with the section, optional subsection, and variable name (key)
separated by dot:

$ git config user.email

alice@example.com

This would return the last value, that is, the one with the most precedence. You can
get all the values with --get-all, or specific keys with --get-regexp=<match>.
This is quite useful while accessing a multivalued option like refspecs for a remote.

With --get, --get-all, and --get-regexp, you can also limit the listing (and the
settings for multiple-valued variables) to only those variables matching the value
regexp (which is passed as an optional last parameter). For example:

$ git config --get core.gitproxy 'for kernel\.org$'

You can also use the git config command to set the configuration variable value.
For example, to set the e-mail address of the user, which is to be common to most of
his or her repositories, you can run the following:

$ git config --global user.name "Alice Developer"

To change multivar, you can use:

$ git config core.gitproxy '"ssh" for kernel.org' 'for kernel\.org$'

The local layer (per-repository file) is the default for writing, if nothing else is
specified. For multivalue configuration options, you can add multiple lines to it by
using the --add option.

It is also very easy to delete configuration entries with git config --unset.

Chapter 10

[327]

Instead of setting all the configuration values on the command line, as shown in the
preceding example, it is possible to set or change them just by editing the relevant
configuration file directly. Simply open the configuration file in your favorite editor,
or run the git config --edit command.

The local repository configuration file just after a fresh init on Linux looks as follows:

[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true

Basic client-side configuration
You can divide the configuration options recognized by Git into two categories:
client-side and server-side. The majority of the options are about configuring your
personal working preferences; they are client-side. The server-side configuration will
be touched upon in more detail in Chapter 11, Git Administration; here you will find
only basics.

There are many supported configuration options, but only a small fraction of them
needs to be set; a large fraction of them has sensible defaults , and explicitly setting
them is only useful in certain edge cases. There are a lot of options available; you can
see a list of all the options with git config --help. Here we'll be covering only the
most common and most useful options.

Two variables that really need to be set up are user.email and user.name.
Those configuration variables define the author's identity. Also, if you are signing
annotated tags or commits (as discussed in Chapter 5, Collaborative Development with
Git), you might want to set up your GPG signing key ID. This is done with the user.
signingKey configuration setting.

By default, Git uses whatever you've set on the system as your default text editor
(defined with the VISUAL or EDITOR environment variables; the first only for the
graphical desktop environment) to create and edit your commit and tag messages.
It also uses whatever you have set as the pager (PAGER) for paginating and browsing
the output of the Git commands. To change this default to something else, you can
use the core.editor setting. The same goes for core.pager. Git would ultimately
fall back on the vi editor and on the less pager.

Customizing and Extending Git

[328]

With Git, the pager is invoked automatically. The default less pager
supports not only pagination, but also incremental search for example.
Also, with the default configuration (the LESS environment variable
is not set) less invoked by Git works as if it was invoked with
LESS=FRX. This means that it would skip pagination of there is less
than one page of output, it would pass through ANSI color codes, and
it would not clear screen on exit.

Creating commit messages is also affected by commit.template. If you set this
configuration variable, Git will use that file as the default message when you commit.
The template is not distributed with the repository in general. Note that Git would
add the status information to the commit message template, unless it is forbidden to
do it by setting commit.status to false.

Such a template is quite convenient if you have a commit-message policy, as it
greatly increases the chances of this policy being followed. It can, for example,
include the commented-out instructions for filling the commit message. You can
augment this solution with an appropriate hook that checks whether the commit
message matches the policy (see the Commit process hooks section in this chapter).

The status of the files in the working area is affected by the ignore patterns and the
file attributes (see Chapter 4, Managing Your Worktree). You can put ignore patterns in
your project's in-tree .gitignore file (usually tracked '.gitignore' is about which files
are tracked, and is tracked itself by Git (not by itself). itself), or in the .git/info/
excludes file for local and private patterns, to define which files are not interesting.
These are project-specific; sometimes, you would want to write a kind of global (per-
user) .gitignore file. You can use core.excludesFile to customize the path to the
said file; in modern Git, there is a default value for this path, namely,~/.config/
git/ignore. There is also a corresponding core.attributesFile for this kind of
global .gitattributes files, which defaults to ~/.config/git/attributes.

Actually, it is $XDG_CONFIG_HOME/git/ignore; if the $XDG_CONFIG_
HOME environment variable is not set or is empty, $HOME/.config/
git/ignore is used.

Although Git has an internal implementation of diff, you can set up an external
tool to be used instead with the help of diff.external. You would usually want
to create a wrapper script that massages the parameters that Git passes to it, and
pass the ones needed in the order external diff requires. By default, Git passes the
following arguments to the diff program:

path old-file old-hex old-mode new-file new-hex new-mode

See also the Graphical diff and merge tools section for the configuration of git
difftool and git mergetool.

Chapter 10

[329]

The rebase and merge setup, configuring pull
By default, when performing git pull (or equivalent), Git would use the merge
operation to join the local history and the history fetched from the remote. This
would create a merge commit if the history of the local branch has diverged from
the remote one. Some argue that it is better to avoid all these merge commits and
create mostly a linear history by using rebase instead (for example, with git pull
--rebase) to join histories. You can find more information on this topic in Chapter 7,
Merging Changes Together.

There are several configuration settings that can be used to make the git pull
default to rebase, to set up tracking, and so on. There is the pull.rebase
configuration option and a branch-specific branch.<name>.rebase option that, when
set to true, tells Git to perform rebase instead of merge during pull (for the <name>
branch only in a later case). Both can also be set to preserve to run rebase with the--
preserve-merges option, to have local merge commits not be flattened in the rebase.

You can make Git automatically set up the per-branch "pull to rebase" configuration
while creating specific kinds of new branches with branch.autoSetupRebase. You
can set it to never, local (for locally tracked branches only), remote (for remote
tracked branches only), or always (for local plus remote).

Preserving undo information – the expiry of objects
By default, Git will automatically remove unreferenced objects, clean reflogs of stale
entries, and pack loose objects, all to keep the size of the repository down. You can also
run the garbage collection manually with the git gc command. You should know
about repository's object-oriented structure from Chapter 8, Keeping History Clean.

Git will, for safety reasons, use a grace period of two weeks while removing
unreferenced objects for; this can be changed with the gc.pruneExpire
configuration: the setting is usually a relative date (for example, 1.month.ago; you
can use dots as a word separator). To disable the grace period (which is usually done
from the command line), the value now can be used.

The branch tip history is kept for 90 days by default (or gc.reflogExpire, if set) for
reachable revisions, and for 30 days (or gc.reflogExpireUnreachable) for reflog
entries that are not a part of the current history. Both settings can be configured
on a per-refname basis, by supplying a pattern of the ref name to be matched as a
subsection name, that is, gc.<pattern>.reflogExpire, and similar for the other
setting. This can be used to change the expire settings for HEAD or for refs/stash
(see Chapter 4, Managing Your Worktree), or for remote-tracking branches refs/
remotes/* separately. The setting is a length of time (for example, 6.months); to
completely turn of reflog expiring use the value of never. You can use the latter for
example to switch off expiring of stash entries.

Customizing and Extending Git

[330]

Formatting and whitespace
Code formatting and whitespace issues are some of the more frustrating and subtle
problems you may encounter while collaborating, especially with cross-platform
development. It's very easy for patches and merges to introduce subtle whitespace
changes, because of editors silently introducing such changes (often not visible)
and a different notion of line endings on different operating systems: MS Windows,
Linux, and MacOS X. Git has a few configuration options to help with these issues.

One important issue for cross-platform work is the notion of line-ending. This is
because MS Windows uses a combination of a carriage return (CR) character and a
linefeed (LF) character for new lines in text files, whereas MacOS and Linux use only
a linefeed character. Many editors on MS Windows will silently replace existing LF-
style line endings with CRLF or use CRLF for new lines, which leads to subtle but
annoying troubles.

Git can handle this issue by auto-converting line endings into LF when you add a
file to the index. If your editor uses CRLF line endings, Git can also convert line-
endings to the native form when it checks out code in your filesystem. There are two
configuration settings that affect this matter: core.eol and core.autocrlf. The first
setting, core.eol, sets the line ending to be used while checking out files into the
working directory for files that have the text property set (see the next section, Per-
file configuration with gitattributes, which summarizes and recalls information about
the file attributes from Chapter 4, Managing Your Worktree).

The second and older setting, core.autocrlf, can be used to turn on the automatic
conversion of line endings to CRLF. Setting it to true converts the LF line endings
in the repository into CRLF when you check out files, and vice versa when you stage
them; this is the setting you would probably want on a Windows machine. (This is
almost the same as setting the text attribute to auto on all the files and core.eol
to crlf.) You can tell Git to convert CRLF to LF on a commit but not the other
way around by setting core.autocrlf to input instead; this is the setting to use
if you are on a Linux or Mac system. To turn off this functionality, recording the
line-endings in the repository as they are set this configuration value to false.

This handles one part of the whitespace issues: line-ending variance, and one vector
of introducing them: editing files. Git also comes with the way to detect and fix some
of other whitespace issues. It can look for a set of common whitespace problems to
notice. The core.whitespace configuration setting can be used to activate them (for
those disabled by default), or turn them off (for those enabled by default). The three
that are turned on by default are:

• blank-at-eol: This looks for trailing spaces at the end of a line

Chapter 10

[331]

• blank-at-eof: This notices blank lines at the end of a file
• space-before-tab: This looks for spaces immediately before the tabs at the

initial (beginning) indent part of the line

The trailing-space value in core.whitespace is a shorthand to cover both
blank-at-eol and blank-at-eof. The three that are disabled by default but can be
turned on are:

• indent-with-non-tab: This treats the line that is indented with space
characters instead of the equivalent tabs as an error (where equivalence is
controlled by the tabwidth option); this option enforces indenting with Tab
characters.

• tab-in-indent: This watches for tabs in the initial indentation portion of
the line (here, tabwidth is used to fix such whitespace errors); this option
enforces indenting with space characters.

• cr-at-eol: This tells Git that carriage returns at the end of the lines are OK
(allowing CRLF endings in the repository).

You can tell Git which of these you want enabled or disabled by setting core.
whitespace to the comma separated list of values. To disable an option, prepend it
with the "-" prefix in front of the value. For example, if you want all but cr-at-eol
and tab-in-indent to be set, and also while setting the tab space value to 4, you
can use:

$ git config --local core.whitespace \

 trailing-space,space-before-tab,indent-with-non-tab,tabwidth=4

You can also set these options on a per-file basis with the whitespace attribute. For
example, you can use it to turn off checking for whitespace problems in test cases to
handle whitespace issues, or ensure that the Python 2 code indents with spaces:

*.py whitespace=tab-in-indent

Git will detect these issues when you run a git diff command and inform
about them using the color.diff.whitespace color, so you can notice them and
possibly fix them before you create a new commit. While applying patches with git
apply, you can ask Git to either warn about the whitespace issues with git apply
--whitespace=warn, error out with --whitespace=error, or you can have Git try
to automatically fix the issue with --whitespace=fix. The same applies to the git
rebase command as well.

Customizing and Extending Git

[332]

Server-side configuration
There are a few configuration options available for the server-side of Git. They
would be described in more detail in Chapter 11, Git Administration; here you will find
a short summary of some of the more interesting parameters.

You can make the Git server check for object consistency, namely, that every object
received during a push matches its SHA-1 identifier and that points to a valid object
with a receive.fsckObjects Boolean-valued configuration variable. It is turned off
by default because git fsck is a fairly expensive operation, and it might slow down
operation, especially on large pushes (which are common in large repositories). This
is a check against faulty or malicious clients.

If you rewrite commits that you have already pushed to a server (which is bad
practice, as explained in Chapter 8, Keeping History Clean) and try to push again,
you'll be denied. The client might, however, force-update the remote branch with the
--force flag to the git push command. However, the server can be told to refuse
force-pushes by setting receive.denyNonFastForward to true.

The receive.denyDeletes setting blocks one of the workarounds to the
denyNonFastForward policy, namely, deleting and recreating a branch. This forbids
the deletion of branches and tags; you must remove refs from the server manually.

All of these features could also be implemented via the server-side receive-like
hooks; this will be covered in the Installing a Git hook section, and also to some extent
in Chapter 11, Git Administration.

Per-file configuration with gitattributes
Some of the customizations can also be specified for a path (perhaps via glob) so that
Git applies these settings only for a subset of files or for a subdirectory. These path-
specific settings are called gitattributes.

The order of precedence of applying this type of settings starts with the per-
repository local (per-user) per-path settings in the $GIT_DIR/info/attributes
file. Then, the .gitattributes files are consulted, starting with the one in the same
directory as the path in question, going up through the .gitattributes files in the
parent directories, up to the top level of the worktree (the root directory of a project).
Finally, the global per-user attributes file (specified by core.attributesFile, or
at ~/.config/git/attributes if this is not set) and the system-wide file (in /etc/
gitattributes in the default installation) are considered.

Chapter 10

[333]

Available Git attributes are described in detail in Chapter 4, Managing Your Worktree.
Using attributes, you can, among others, do things such as specify the separate
merge strategies via merge drivers for the specific kind of files (for example,
ChangeLog), tell Git how to diff non-text files, or have Git filter content during
checkout (on writing to the working area, that is, to the filesystem) and checkin (on
staging contents and committing changes to the repository, that is, creating objects in
the repository database).

Syntax of the Git attributes file
A gitattributes file is a simple text file that sets up the local configuration
on a per-path basis. Blank lines, or lines starting with the hash character
(#) are ignored; thus, a line starting with # serves as a comment, while
blank lines can serve as separators for readability. To specify a set
of attributes for a path, put a pattern followed by an attributes list,
separated by a horizontal whitespace:

pattern attribute1 attribute2

When more than one pattern matches the path, a later line overrides an
earlier line, just like for the .gitignore files (you can also think that
the Git attributes files are read from the least specific system-wide file to
the most specific local repository file).
Git uses a backslash (\) as an escape character for patterns. Thus, for
patterns that begin with a hash, you need to put a backslash in front of
the first hash (that is written as \#). Because the attributes information is
separated by whitespaces, trailing spaces in the pattern are ignored and
inner spaces are treated as end of pattern, unless they are quoted with a
backslash (that is, written as "\ ").
If the pattern does not contain a slash (/), which is a directory separator,
Git will treat the pattern as a shell glob pattern and will check for a match
against the pathname relative to the location of the .gitattributes
file (or top level for other attribute files). Thus, for example, the
*.c patterns match the C files anywhere down from the place the
.gitattributes file resides. A leading slash matches the beginning of
the pathname. For example, /*.c matches bisect.c but not builtin/
bisect--helper.c., while *.c pattern would match both.

Customizing and Extending Git

[334]

If the pattern includes at least one slash, Git will treat it as a shell glob
suitable for consumption by the fnmatch(3) function call with the
FNM_PATHNAME flag. This means that the wildcards in the pattern
will not match the directory separator, that is, the slash (/) in the
pathname; the match is anchored to beginning of the path. For example,
the include/*.h pattern matches include/version.h but not
include/linux/asm.h or libxdiff/includes/xdiff.h. Shell
glob wildcards are: * matching any string (including empty), ? matching
any single character, and the […] expression matching the character class
(inside brackets, asterisks and question marks lose their special meaning);
note that unlike in regular expressions, the complementation/negation of
character class is done with ! and not ^. For example to match anything
but a number one can use [!0-9] shell pattern, which is equivalent to
[^0-9] regexp.
Two consecutive asterisks (**) in patterns may have a special meaning,
but only between two slashes (/**/), or between a slash and at the
beginning or the end of pattern. Such a wildcard matches zero or more
path components. Thus, a leading ** followed by a slash means match
in all directories, while trailing /** matches every file or directory inside
the specified directory.
Each attribute can be in one of the four states for a given path. First, it can
be set (the attribute has special value of true); this is specified by simply
listing the name of the attribute in the attribute list, for example, text.
Second, it can be unset (the attribute has a special value of false); this
is specified by listing the name of the attribute prefixed with minus, for
example,-text. Third, it can be set to a specific value; this is specified by
listing the name of the attribute followed by an equal sign and its value,
for example, -text=auto (note that there cannot be any whitespace
around the equal sign as opposed to the configuration file syntax). If no
pattern matches the path, and nothing says if the path has or does not
have attributes, the attribute is said to be unspecified (you can override
a setting for the attribute, forcing it to be explicitly unspecified with
!text).
If you find yourself using the same set of attributes over and over for
many different patterns, you should consider defining a macro attribute.
It can be defined in the local, or global, or system-wide attributes file, but
only in the top level .gitattributes file. The macro is defined using
[attr]<macro> in place of the file pattern; the attributes list defines the
expansion of the macro. For example, the built-in binary macro attribute
is defined as if using:

[attr]binary -diff -merge -text

Chapter 10

[335]

Automating Git with hooks
There are usually certain prerequisites to the code that is produced, either self-
induced or enforced externally. The code should be always able to compile and pass
at least a fast subset of the tests. With some development workflows, each commit
message may need to reference an issue ID (or fit message template), or include a
digital certificate of origin in the form of the Signed-off-by line. In many cases,
these parts of the development process can be automated by Git.

Like many programming tools, Git includes a way to fire custom functionality
contained in the user-provided code (custom scripts), when certain important pre-
defined actions occur, that is, when certain events trigger. Such a functionality
invoked as a event handler is called a hook. It allows to take an additional action
and, at least for some hooks, also to stop the triggered functionality.

Hooks in Git can be divided into the client-side and the server-side hooks. Client-
side hooks are triggered by local operations (on client) such as committing, applying
a patch series, rebasing, and merging. Server-side hooks on the other hand run on
the server when the network operations such as receiving pushed commits occur.

You can also divide hooks into pre hooks and post-hooks. Pre hooks are called
before an operation is finished, usually before the next step while performing
an operation. If they exit with a nonzero value, they will cancel the current Git
operation. Post hooks are invoked after an operation finishes and can be used for
notification and logs; they cannot cancel an operation.

Installing a Git hook
The hooks in Git are executable programs (usually scripts), which are stored in the
hooks/ subdirectory of the Git repository administrative area, that is in .git/hooks/
for non-bare repositories. Hook programs are named each after an event that triggers
it; this means that if you want for one event to trigger more than one script, you will
need to implement multiplexing yourself.

When you initialize a new repository with git init (this is done also while using
git clone to create a copy of the other repository; clone calls init internally),
Git populates the hooks directory with a bunch of inactive example scripts. Many
of these are useful by themselves, but they also document the hook's API. All the
examples are written as shell or Perl scripts, but any properly named executable
would work just fine. If you want to use bundled example hook scripts, you'll need
to rename them, stripping the .sample extension and ensuring that they have the
executable permission bit.

Customizing and Extending Git

[336]

A template for repositories
Sometimes you would want to have the same set of hooks for all your repositories.
You can have a global (per-user and system-wide) configuration file, a global
attributes file, and a global ignore list. It turns out that it is possible to select hooks to
be populated during the creation of the repository. The default sample hooks that get
copied to the .git/hooks repository are populated from /usr/share/git-core/
templates.

Also, the alternative directory with the repository creation templates can be given
as a parameter to the --template command-line option (to git clone and git
init), as the GIT_TEMPLATE_DIR environment variable, or as the init.templateDir
configuration option (which can be set in a per-user configuration file). This directory
must follow the directory structure of .git (of $GIT_DIR), which means that the
hooks need to be in the hooks/ subdirectory there.

Note, however, that this mechanism has some limitations. As the files from the
template directory are only copied to the Git repositories on their initialization,
updates to the template directory do not affect the existing repositories. Though you
can re-run git init in the existing repository to reinitialize it, just remember to save
any modifications made to the hooks.

Maintaining hooks for a team of developers can be tricky. One possible
solution is to store your hooks in the actual project directory (inside
project working area), or in a separate hooks repository, and create a
symbolic link in .git/hooks, as needed.
There are even tools and frameworks for Git hook management; you
can find examples of such tools listed on http://githooks.com/.

Client-side hooks
There are quite a few client-side hooks. They can be divided into the commit-
workflow hooks (a set of hooks invoked by the different stages of creating a new
commit), apply-email workflow hooks, and everything else (not organized into a
multihook workflow).

It is important to note that hooks are not copied when you clone a
repository. This is done partially for security reasons, as hooks run
unattended and mostly invisible. You need to copy (and rename) files
themselves, though you can control which hooks get installed while
creating or reinitializing a repository (see the previous subsection). This
means that you cannot rely on the client-side hooks to enforce a policy;
if you need to introduce some hard requirements, you'll need to do it on
the server-side.

http://githooks.com/

Chapter 10

[337]

Commit process hooks
There are four client-side hooks invoked (by default) while committing changes.
They are as follows:

1. The pre-commit hook is run first, even before you invoke the editor to type
in the commit message. It is used to inspect the snapshot to be committed, to
see whether you haven't forgotten anything. A nonzero exit from this hook
aborts the commit. You can bypass invoking this hook altogether with git
commit -–no-verifies. This hook takes no parameters.
This hook can, among others, be used to check for the correct code style, run
the static code analyzer (linter) to check for problematic constructs, make
sure that the code compiles and that it passes all the tests (and that the new
code is covered by the tests), or check for the appropriate documentation on
a new functionality. The default hook checks for whitespace errors (trailing
whitespace by default) with git diff --check (or rather its plumbing
equivalent), and optionally for non-ASCII filenames in the changed files. You
can, for example, make a hook that asks for a confirmation while committing
with a dirty work-arena (for the changes in the worktree that would not be
a part of the commit being created); though it is an advanced technique. Or,
you can try to have it check whether there are documentations and unit tests
on the new methods.

2. The prepare-commit-msg hook is run after the default commit message is
created (including the static text of the file given by commit.template, if
any), and before the commit message is opened in the editor. It lets you edit
the default commit message or create a template programmatically, before
the commit author sees it. If the hook fails with a nonzero status, the commit
will be aborted. This hook takes as parameters the path to the file that holds
the commit message (later passed to the editor) and the information about
source of the commit message (the latter is not present for ordinary git
commit): message if the -m or -F option was given, template if the-t option
was given or commit.template was set, merge if the commit is merged or
the .git/MERGE_MSG file exists, squash if the .git/SQUASH_MSG file exists, or
commit if the message comes from the other commit: the -c, -C, or --amend
option was given. In the last case, the hook gets additional parameters,
namely, a SHA-1 of the commit that is the source of the message.
The purpose of this hook is to edit or create the commit message, and this
hook is not suppressed by the --no-verify option. This hook is most
useful when it is used to affect commits where the default message is
autogenerated, such as the templated commit message, merged commits,
squashed commits, and amended commits. The sample hook that Git
provides comments out the Conflict: part of the merge commit message.

Customizing and Extending Git

[338]

Another example of what this hook can do is to use the description of the
current branch given by branch.<branch-name>.description, if it exists,
as a base for a branch-dependent dynamic commit template. Or perhaps,
check whether we are on the topic branch, and then list all the issues
assigned to you on a project issue tracker, to make it easy to add the proper
artefact ID to the commit message.

3. The commit-msg hook is run after the developer writes the commit message,
but before the commit is actually written to the repository. It takes one
parameter, a path to the temporary file with the commit message provided
by user (by default .git/COMMIT_EDITMSG).
If this script exits with a nonzero status, Git aborts the commit process, so
you can use it to validate that, for example, the commit message matches the
project state, or that the commit message conforms to the required pattern.
The sample hook provided by Git can check, sort, and remove duplicated
Signed-off-by: lines (which might be not what you want to use, if signoffs
are to be a chain of provenance). You could conceivably check in this hook
whether the references to the issue numbers are correct (and perhaps expand
them, adding the current summary of each mentioned issue).

Gerrit Code Review provides a commit-msg hook (which needs to be
installed in the local Git repository) to automatically create, insert, and
maintain a unique Change-Id: line above the signoffs during git commit.
This line is used to track the iterations of coming up with a commit; if the
commit message in the revision pushed to Gerrit lacks such information, the
server will provide instructions on how to get and install that hook script.

4. The post-commit hook runs after the entire process is completed. It doesn't
take any parameters, but at this point of the commit operation the revision
that got created during commit is available as HEAD. The exit status of this
hook is ignored.

Generally, this script (like most of the post-* scripts) is most often used for
notifications and logging, and it obviously cannot affect the outcome of git
commit. You can use it, for example, to trigger a local build in a continuous
integration tool such as Jenkins. In most cases, however, you would want
to do this with the post-receive hook on the dedicated continuous
integration server.
Another use case is to list information about all the TODO and FIXME
comments in the code and documentation (for example, the author, version,
file path, line number, and message), printing them to standard output of the
hook, so that that they are not forgotten and remain up to date and useful.

Chapter 10

[339]

Hooks for applying patches from e-mails
You can set up three client-side hooks for the e-mail based workflow (where commits
are sent in an e-mail). They are all invoked by the git am command (which name
comes from the apply mailbox), which can be used to take saved e-mails with patches
(created, for example, with git format-patch for example and sent, for example, with
git sent-email) and turn them into a series of commits. Those hooks are as follows:

1. The first hook to run is applypatch-msg. It is run after extracting the commit
message from the patch and before applying the patch itself. As usual, for a
hook which is not a post-* hook, Git aborts applying the patch if this hook
exists with a nonzero status. It takes a single argument: the name of the
temporary file with the extracted commit message.
You can use this hook to make sure that the commit message is properly
formatted, or to normalize the commit message by having the script alter the
file. The example applypatch-msg hook provided by Git simply runs the
commit-msg hook if it exists as a hook (the file exists and is executable).

2. The next hook to run is pre-applypatch. It is run after the patch is applied
to the working area, but before the commit is created. You can use it to
inspect the state of the project before making a commit, for example,
running tests. Exiting with a nonzero status aborts the git am script without
committing the patch.
The sample hook provided by Git simply runs the pre-commit hook, if present.

3. The last hook to run is post-applypatch, which runs after the commit is
made. It can be used for notifying or logging, for example, notifying all the
developers or just the author of the patch that you have applied it.

Other client-side hooks
There are a few other client-side hooks that do not fit into a series of steps in
a single process.

The pre-rebase hook runs before you rebase anything. Like all the pre-* hooks,
it can abort the rebase process with a nonzero exit code. You can use this hook to
disallow rebasing (and thus rewriting) any commits that were already published. The
hook is called with the name of the base branch (the upstream the series was forked
from) and the name of the branch being rebased. The second parameter is passed to
the hook only if the branch being rebased is not the current branch. The sample pre-
rebase hook provided by Git tries to do this, though it makes some assumptions
specific to Git's project development that may not match your workflow (take note
that amending commits also rewrites them, and that rebasing may create a copy of a
branch instead of rewriting it).

Customizing and Extending Git

[340]

The pre-push hook runs during the git push operation, after it has checked the
remote status (and exchange finding which revisions are absent on server), but
before anything has been pushed. The hook is called with the reference to the remote
(the URL or the remote name) and the actual push URL (the location of remote) as
script parameters. Information about the commits to be pushed is provided on the
standard input, one line per ref to be updated. You can use this hook to validate
a set of ref updates before a push occurs; a nonzero exit code aborts the push. The
example installed simply checks whether there are commits beginning with WIP in
a set of revisions to be pushed or marked with the nopush keyword in the commit
message, and when either of those is true, it aborts the push. You can even make
a hook prompt the user if he or she is sure. This hook compliments the server-side
checks, avoiding data transfer that would fail validation anyway.

The post-rewrite hook is run by commands that rewrite history (that replace
commits), such as git commit --amend and git rebase. Note, however, that it
is not run by large scale history rewriting, such as git filter-branch. The type
of command that triggered the rewrite (amend or rebase) is passed as a single
argument, while the list of rewrites is sent to the standard input. This hook has
many of the same uses as the post-checkout and post-merge hooks, and it runs
after automatic copying of notes, which is controlled by the notes.rewriteRef
configuration variable (you can find more about notes mechanism in Chapter 8,
Keeping History Clean).

The post-checkout hook is run after successful git checkout (or git checkout
<file>) after having updated the worktree. The hook is given three parameters:
the SHA-1s of the previous and current HEAD (which may or may not be different)
and a flag indicating whether it was a whole project checkout (you were changing
branches, the flag parameter is 1) or a file checkout (retrieving files from the index
or named commit, the flag parameter is 0). As a special case, during initial checkout
after git clone, this hook passes the all-zero SHA-1 as the first parameter (as a
source revision). You can use this hook to set up your working directory properly
for your use case. This may mean handling large binary files outside the repository
(as an alternative to per-file the filter Git attribute) that you don't want to have
in the repository, or setting the working directory metadata properties such as full
permissions, owner, group, times, extended attributes, or ACLs. It can also be used
to perform repository validity checks, or enhance the git checkout output by auto-
displaying the differences (or just the diff statistics) from the previous checked out
revision (if they were different).

The post-merge hook runs after a successful merge operation. You can use it in a
way similar to post-checkout to restore data and metadata in the working tree
that Git doesn't track, such as full permissions data (or just make it invoke post-
checkout directly). This hook can likewise validate the presence of files external to
Git control that you might want copied in when the working tree changes.

Chapter 10

[341]

For Git, objects in the repository (for example, commit objects representing revisions)
are immutable; rewriting history (even amending a commit) is in fact creating a
modified copy and switching to it, leaving the pre-rewrite history abandoned.
Deleting a branch also leaves abandoned history. To prevent the repository from
growing too much, Git occasionally performs garbage collection by removing old
unreferenced objects. In all but ancient Git, this is done as a part of normal Git
operations by them invoking git gc --auto. The pre-auto-gc hook is invoked
just before garbage collection takes place and can be used to abort the operation, for
example, if you are on battery power. It can also be used to notify you that garbage
collection is happening.

Server-side hooks
In addition to the client-side hooks, which are run in your own repository, there are a
couple of important server-side hooks that a system administrator can use to enforce
nearly any kind of policy for your project.

These hooks are run before and after you do a push to the server. The pre hooks (as
mentioned earlier) can exit nonzero to reject a push or part of it; messages printed
by the pre hooks will be sent back to the client (sender). You can use these hooks to
set up complex push policies. Git repository management tools, such as gitolite
and Git hosting solutions, use these to implement more involved access control for
repositories. The post hooks can be used for notification, starting a build process
(or just to rebuild and redeploy the documentation) or running a full test suite, for
example as a part of a continuous integration solution.

While writing server-side hooks, you need to take into account where in the
sequence of operations does the hook take place and what information is available
there, both as parameters or on the standard input, and in the repository.

That's what happens on the server when it receives a push:

1. Simplifying it a bit, the first step is that all the objects that were present in
the client and missing on the server are sent to the server and stored (but are
not yet referenced). If the receiving end fails to do this correctly (for example,
because of the lack of disk space), the whole push operation will fail.

2. The pre-receive hook is run. It takes a list describing the references that
are being pushed on its standard input. If it exits with a nonzero status, it
aborts the whole operation and none of the references that were pushed
are accepted.

Customizing and Extending Git

[342]

3. For each ref being updated, the following happens:
1. The built-in sanity checks may reject the push to the ref, including the

check for an update of a checked out branch, or a non-fast-forward
push (unless forced), and so on

2. The update hook is run, passing ref to be pushed in arguments; if
this script exits nonzero, only this ref will be rejected the sample hook
blocks unannotated tags from entering the repository.

3. The ref is updated (unless, in modern Git, the push is requested to be
atomic)

4. If the push is atomic, all the refs are updated (if none were rejected).
5. The post-receive hook is run, taking the same data as the pre-receive

one. This one can be used to update other services (for example, notify
continuous integration servers) or notify users (via an e-mail or a mailing list,
IRC, or a ticket-tracking system).

6. For each ref that was updated, the post-update hook is run. This can also
be used for logging. The sample hook runs git update-server-info
to prepare a repository, saving extra information to be used over dumb
transports, though it would work better if run once as post-receive.

7. If push tries to update the currently checked out branch and the receive.
denyCurrentBranch configuration variable is set to updateInstead, then
push-to-checkout is run.

You need to remember that in pre hooks, you don't have refs updated yet, and that
post hooks cannot affect the result of an operation. You can use pre hooks for access
control (permission checking), and post hooks for notification and updating side data
and logs.

You will see example hooks (server-side and client-side) for the Git-enforced policy
in Chapter 11, Git Administration. You will also learn how other tools use those hooks,
for example, for use in access control and triggering actions on push.

Extending Git
Git provides a few mechanisms to extend it. You can add shortcuts and create new
commands, and add support for new transports; all without requiring to modify Git
sources.

Chapter 10

[343]

Command aliases for Git
There is one little tip that can make your Git command-line experience simpler,
easier, and more familiar, namely, Git aliases. It is very easy in theory to create an
alias. You simply need to create an alias.<command-name> configuration variable;
its value is the expansion of alias.

One of the uses for aliases is defining short abbreviations for commonly used
commands and their arguments. Another is creating new commands. Here are a
couple of examples you might want to set up:

$ git config --global alias.co checkout

$ git config --global alias.ci commit

$ git config --global alias.lg log --graph --oneline --decorate

$ git config --global alias.aliases 'config --get-regexp ^alias\.'

The preceding setup means that typing, for example, git ci would be the same as
typing git commit. Aliases take arguments just as the regular Git commands do.
Git does not provide any default aliases that are defining shortcuts for the common
operations, unless you use a friendly fork of Git by Felipe Contreras: git-fc.

Arguments are split by space, the usual shell quoting and escaping is supported; in
particular, you can use a quote pair ("a b") or a backslash (a\ b) to include space in
a single argument.

Note, however, that you cannot have the alias with the same name as
a Git command; in other words, you cannot use aliases to change the
behavior of commands. The reasoning behind this restriction is that it
could make existing scripts and hooks fail unexpectedly. Aliases that
hide existing Git commands (with the same name as Git commands) are
simply ignored.

You might, however, want to run external command rather than a Git command in
an alias. Or, you might want to join together the result of a few separate commands.
In this case, you can start the alias definition with the ! character
(with the exclamation mark):

$ git config --global alias.unmerged \

'!git ls-files --unmerged | cut -f2 | sort -u'

Because here the first command of the expansion of an alias can be an external tool,
you need to specify the git wrapper explicitly, as shown in the preceding example.

Note that in many shells, for example, in bash,! is the history expansion
character and it needs to be escaped as \!, or be within single quotes.

Customizing and Extending Git

[344]

Note that such shell command will be executed from the top-level directory of
a repository (after cd to a top level), which may not necessarily be the current
directory. Git sets the GIT_PREFIX environment variable to the current directory path
relative to the top directory of a repository, that is, git rev-parse --show-prefix.
As usual, git rev-parse (and some git wrapper options) may be of use here.

The fact mentioned earlier can be used while creating aliases. The git serve alias,
running git daemon to read-only serve the current repository at git://127.0.0.1/,
makes use of the fact that the shell commands in aliases are executed from the top-
level directory of a repo:

[alias]
serve = !git daemon --reuseaddr --verbose --base-path=. --export-all
./.git

Sometimes, you need to reorder arguments, use an argument twice, or pass an
argument to the command early in the pipeline. You would want to refer to
subsequent arguments as $1, $2, and so on, or to all arguments as $@, just like in
shell scripts. One trick that you can find in older examples is to run a shell with a -c
argument, like in the first of the examples mentioned next; the final dash is so that
the arguments start with $1, not with $0. A more modern idiom is to define and
immediately execute a shell function, like in the second example (it is a preferred
solution because it has one of the fewer level of quoting, and lets you use standard
shell argument processing):

[alias]
record-1 = !sh -c 'git add -p -- $@ && git commit' -
record-2 = !f() { git add -p -- $@ && git commit }; f

Aliases are integrated with command-line completion. While determining which
completion to use for an alias, Git searches for a git command, skipping an opening
brace or a single quote (thus, supporting both of the idioms mentioned earlier). With
modern Git (version 2.1 or newer), you can use the null command ":" to declare the
desired completion style. For example, alias expanding to !f() { : git commit ;
... } f would use a command completion for git commit, regardless of the rest of
the alias.

Git aliases are also integrated with the help system; if you use the --help option on
an alias, Git would tell you its expansion (so you can check the relevant man page):

$ git co --help

'git co' is aliased to `checkout'

Chapter 10

[345]

Adding new Git commands
Aliases are best at taking small one-liners and converting them into small useful Git
commands. You can write complex aliases, but when it comes to larger scripts, you
would probably like to incorporate them into Git directly.

Git subcommands can be standalone executables that live in the Git execution path
(which you can find by running git --exec-path); on Linux, this normally is /usr/
libexec/git-core. The git executable itself is a thin wrapper that knows where the
subcommands live. If git foo is not a built-in command, the wrapper searches for
the git-foo command first in the Git exec path, then in the rest of your $PATH. The
latter makes it possible to write local Git extensions (local Git commands) without
requiring access to the system's space.

This feature is what it makes possible to have user interface more or less integrated
with the rest of Git in projects such as git imerge (see Chapter 7, Merging Changes
Together) or git annex (see Chapter 9, Managing Subprojects - Building a Living
Framework). It is also how projects such as Git Extras, providing extra Git commands,
were made.

Note, however, that if you don't install the documentation for your command in
typical places, or configure documentation system to find its help,, git foo --help
won't work correctly.

Credential helpers and remote helpers
There is another place where simply dropping appropriately named executable
enhances and extends Git. Remote helper programs are invoked by Git when it
needs to interact with remote repositories and remote transport protocols Git does
not support natively. You can find more about them in Chapter 5, Collaborative
Development with Git.

When Git encounters a URL of the form <transport>://<address>, where
<transport> is a (pseudo)protocol that is not natively supported, it automatically
invokes the git remote-<transport> command with a remote and full remote
URL as arguments. A URL of the form <transport>::<address> also invokes this
remote helper, but with just <address> as a second argument in the place of a URL.
Additionally, with remote.<remote-name>.vcs set to <transport>, Git would
explicitly invoke git remote-<transport> to access that remote.

The helpers mechanism in Git is about interacting with external scripts using a well-
specified format.

Customizing and Extending Git

[346]

Each remote helper is expected to support a subset of commands. You can find more
information about the issue of creating new helpers in the gitremote-helpers(1)
man page.

There is another type of helpers in Git, namely, credentials helpers. They can be
used by Git to get the credentials from the user required, for example, to access the
remote repository over HTTP. They are specified by the configuration though, just
like the merge and diff drivers, and like the clean and smudge filters.

Summary
This chapter provided all the tools you need to use Git effectively. You got to know
how to make the command-line interface easier to use and more effective with the
Git-aware dynamic command prompt, command-line completion, autocorrection
for Git commands, and using colors. You learned of the existence of alternative
interfaces, from alternative porcelains to the various types of graphical clients.

You were reminded of the various ways to change the behavior of Git commands.
You discovered how Git accesses its configuration, and learned about a selected
subset of configuration variables. You have learned how to automate Git with hooks
and how to make use of them. Finally, you have learned how to extend Git with new
commands and support new URLs schemes.

This chapter was mainly about making Git more effective for you; the next chapter,
Chapter 11, Git Administration, would explain how to make Git more effective for
other developers. You will find there more about server-side hooks and see their
usage. You will also learn about repository maintenance.

[347]

Git Administration
The previous chapter, Customizing and Extending Git, explained among others how
to use Git hooks for automation moved earlier in the chapter. The client-side hooks
were described in detail, while the server-side hooks were only sketched. Here, in
this chapter, we will present the server-side hooks comprehensively, and mention
the client-side hooks' usage as helpers.

The earlier chapters helped master your work with Git as a developer, as a person
collaborating with others, and as a maintainer. When the book was talking about
setting up repositories and branch structure, it was from the point of view of
a Git user.

This chapter is intended to help readers who are in a situation of having to take up
the administrative side of Git. This includes setting up remote Git repositories and
configuring their access. It covers the work required to make Git go smoothly (that
is, Git maintenance), and finding and recovering from the repository errors. This
chapter will also describe transfer protocols and how to use server-side hooks for
implementing and enforcing development policy. Additionally, you will find here
a short description of the various types of tools that can be used to manage remote
repositories, to help you choose among them.

In this chapter, we will cover the following topics:

• Server-side hooks—implementing a policy and notifications
• Transport protocols, authentication and authorization
• How to set up Git on the server
• Third-party tools for management of remote repositories
• Signed pushes to assert updating refs and enable audits
• Reducing the size of hosted repositories with alternates and namespaces
• Improving server performance and helping the initial clone

Git Administration

[348]

• Checking for repository corruption and fixing the repository
• Recovering from errors with the help of reflogs and git fsck
• Git repository maintenance and repacking
• Augmenting development workflows with Git

Repository maintenance
Occasionally, you may need to do some clean up of a repository, usually to make it
more compact. Such clean ups are a very important step after migrating a repository
from another version control system.

Modern Git (or rather all but ancient Git) from time to time runs the git gc
--auto command in each repository. This command checks whether there are
too many loose objects (objects stored as separate files, one file per object, rather
than stored together in a packfile; objects are almost always created as loose),
and if these conditions are met, then it would launch the garbage collection
operation. The garbage collection means to gather up all the loose objects and
place them in packfiles, and to consolidate many small packfiles into one large
packfile. Additionally, it packs references into the packed-refs file. Objects that
are unreachable even via reflog, and are safely old, do not get picked in the repack.
Git would then delete loose objects and packfiles that got repacked (with some
safety margin with respect to the age of the loose object's files), thus pruning old
unreachable objects. There are various configuration knobs in the gc.* namespace to
control garbage collection operations.

You can run auto gc manually with git gc --auto, or force garbage collection
with git gc. The git count-objects command (perhaps with the help of the
-v parameter) can be used to check whether there are signs that repack is needed.
You can even run individual steps of the garbage collection individually with git
repack, git pack-refs, git prune, and git prune-packed.

By default, Git would try to reuse the results of the earlier packing to reduce CPU
time spent on the repacking, while still providing good disk space utilization. In
some cases, you would want to more aggressively optimize the size of repository
at the cost of it taking more time: this is possible with git gc --aggressive (or
with repacking the repository by hand with git repack, run with appropriate
parameters). It is recommended to do this after import from other version control
systems; the mechanism that Git uses for importing (fast-import stream) is optimized
for the speed of the operation, not for the final repository size.

Chapter 11

[349]

There are issues of maintenance not covered by git gc, because of their nature. One
of them is pruning (deleting) remote-tracking branches that got deleted in the remote
repository. This can be done with git fetch --prune or git remote prune, or
on a per-branch basis with git branch --delete --remotes <remote-tracking
branch>. This action is left to the user, and not run by git gc, because Git simply
cannot know whether you have based your own work on the remote-tracking branch
that is to be pruned.

Data recovery and troubleshooting
It is almost impossible to never make any mistakes. This applies also to using Git.
The knowledge presented in this book, and your experience with using Git, should
help in reducing the number of mistakes. Note that, Git tries quite hard not to make
you lose your work; many mistakes are recoverable.

Recovering a lost commit
It may happen that you accidentally lost a commit. Perhaps, you force-deleted an
incorrect branch that you were to be working on, or you rewound the branch to
an incorrect place, or you were on an incorrect branch while starting an operation.
Assuming something like this happened, is there any way to get your commits back
and to undo the mistake?

Because Git does not delete objects immediately, but keeps them for a while, and
only deletes them if they are unreachable during the garbage collection phase,
the commit you lost will be there; you just need to find it. The garbage collection
operation has, as mentioned, its own safeties; though if you find that you need
troubleshooting, it would be better to turn off automatic garbage collection
temporarily with git config gc.auto never.

Often, the simplest way to find and recover lost commits is to use the git reflog
tool. For each branch, and separately for HEAD, Git silently records (logs) where the
tip of the branch was in your local repository, at what time it was there, and how it
got there. This record is called the reflog. Each time you commit or rewind a branch,
the reflog for the branch and for the HEAD is updated. Each time you change the
branches, the HEAD reflog is updated, and so on.

You can see where the tip of branch has been at any time by running git reflog or
git reflog <branch>. You can run git log -g instead, where -g is a short way
of saying --walk-reflog; this gives you a normal configurable log output. There is
also --grep-reflog=<pattern> to search the reflog:

$ git reflog

6c89dee HEAD@{0}: commit: Ping asynchronously

Git Administration

[350]

d996b71 HEAD@{1}: rebase -i (finish): returning to refs/heads/ajax

d996b71 HEAD@{2}: rebase -i (continue): Ping asynchronously WIP

89579c9 HEAD@{3}: rebase -i (pick): Use Ajax mode

7c6d322 HEAD@{4}: commit (amend): Simplify index()

e1e6f65 HEAD@{5}: cherry-pick: fast-forward

eea7a7c HEAD@{6}: checkout: moving from ssh-check to ajax

c3e77bf HEAD@{7}: reset: moving to ajax@{1}

You should remember the <ref>@{<n>} syntax from Chapter 2, Exploring Project
History. With the information from reflogs, you can rewind the branch in question to
the version from before the set of operations, or you can start a new branch starting
with any commit in the list.

Let's assume that your loss was caused by deleting a wrong branch. Because of the
way reflogs are implemented (because logs for a branch named foo, that is, for the
refs/heads/foo ref, are kept in the .git/logs/refs/heads/foo file), reflog for a
given branch is deleted together with the branch. You might still have the necessary
information in the HEAD reflog, unless you have manipulated the branch tip without
involving the working area, but it might not be easy to find it.

In the case when the information is not present in reflogs, one way to find the
necessary information to recover lost objects is to use the git fsck utility, which
checks your repository for integrity. With the --full option, you can use this
command to show all unreferenced objects:

$ git fsck --full

Checking object directories: 100% (256/256), done.

Checking objects: 100% (58/58), done.

dangling commit 50b836cb93af955ca99f2ccd4a1cc4014dc01a58

dangling blob 59fc7435baf79180a3835dddc52752f6044bab99

dangling blob fd64375c1f2b17b735f3145446d267822ae3ddd5

[...]

You can see the SHA1 identifiers of the unreferenced (lost) commits in the lines with
the dangling commit string prefix. To examine all these dangling commits, you can
filter the git fsck output for the commits with grep "commit", extract their SHA1
with cut -d' ' -f3, and then feed these revisions into git log --stdin --no-
walk.

$ git fsck --full | grep "commit" | cut -d' ' -f3 | git log --stdin --no-
walk

Chapter 11

[351]

Troubleshooting Git
The main purpose of git fsck is to check for repository corruption. Besides having
an option to find dangling objects, it runs sanity checks for each object and tracks
the reachability fully. It can find corrupted and missing objects; if the corruption
was limited to your clone and the correct version can be found in other repositories
(in backups and other archives), you can try to recover those objects from an
uncorrupted source.

Sometimes, however, the error might be deeper. You can try to find a Git expert
outside your team, but often the data in the repository is proprietary. Creating a
minimal reproduction of the problem is not always possible. With modern Git, if the
problem is structural, you can try to use git fast-export --anonymize to strip the
repository from the data while reproducing the issue.

If the repository is fine, but the problem is with the Git operations, you can try to use
various tracking and debugging mechanisms built into Git, or you can try to increase
the verbosity of the commands. You can turn on tracing with the appropriate
environment variables, shown later. The trace output can be written to standard
error stream by setting the value of the appropriate environment variable to 1,
2, or true. Other integer values between 2 and 10 will be interpreted as open file
descriptors to be used for trace output. You can also set such environment variables
to the absolute path of the file to write trace messages to.

These tracking-related variables include the following (see the manpage of the git
wrapper for the complete list):

• GIT_TRACE: This enables general trace messages, which do not fit into any
specific category. This includes the expansion of the Git aliases (see Chapter
10, Customizing and Extending Git), built-in command execution, and external
command execution (such as pager, editor, or helper).

• GIT_TRACE_PACKET: This enables packet-level tracking of the network
operations for the "smart" transport protocols. This can help with debugging
protocol issues or the troubles with the remote server that you set up. For
debugging and fetching from shallow repositories, there is GIT_TRACE_
SHALLOW.

• GIT_TRACE_SETUP: This enables trace messages, printing information
about the location of the administrative area of the repository, the working
area, and the current working directory and the prefix (the last one is the
subdirectory inside the repository directory structure).

• GIT_TRACE_PERFORMANCE: This shows the total execution time of each Git
command.

Git Administration

[352]

There is also GIT_CURL_VERBOSE to emit all the messages generated by the curl
library for the network operations over HTTP, and GIT_MERGE_VERBOSITY to control
the amount of output shown by the recursive merge strategy.

Git on the server
The previous chapters should give you enough knowledge to master most of the
day-to-day version control tasks. The Chapter 5, Collaborative Development with Git,
explained how one can lay out repositories for the collaboration. Here, we will
explain how to actually set up remote Git repositories to serve.

The topic of administration of the Git repositories covers a large area. There are
books written about specific repository management solutions, such as Gitolite,
Gerrit, GitHub, or GitLab. Here, you will hopefully find enough information to help
you with choosing a solution, or with crafting your own.

Let's start with the tools and mechanisms to manage remote repositories themselves,
and then move on to the ways of serving Git repositories (putting Git on the server).

Server-side hooks
Hooks that are invoked on the server can be used for server administration; among
others, these hooks can control the access to the remote repository by performing
the authorization step, and can ensure that the commits entering the repository meet
certain minimal criteria. The latter is best done with the additional help of client-
side hooks, which were described in Chapter 10, Customizing and Extending Git. That
way users are not left with being notified that their commits do not pass muster
only at the time they want to publish them. On the other hand, client-side hooks
implementing validation are easy to skip with the --no-verify option (so server-
side validation is necessary), and you need to remember to install them.

Note, however, that server-side hooks are invoked only during push; you
need other solutions for access control to fetch (and clone).
Hooks are also obviously not run while using dumb protocols—there is no
Git on the server invoked then.

While writing hooks to implement some Git-enforced policy, you need to remember
at what stage the hook in question is run and what information is available then. It
is also important to know how the relevant information is passed to the hook—but
you can find the last quite easily in the Git documentation in the githooks manpage.
The previous chapter included a simple summary of server-side hooks. Here, we will
expand a bit on this matter.

Chapter 11

[353]

All the server-side hooks are invoked by git receive-pack, which is responsible
for receiving published commits (which are received in the form of the packfile,
hence the name of the command). For each hook, except for the post-* ones, if the
hook exits with the nonzero status, then the operation is interrupted and no further
stages are run. The post hooks are run after the operation finishes, so there is nothing
to interrupt.

Both the standard output and the standard error output are forwarded to git send-
pack at the client end, so the hooks can simply pass messages for the user by printing
them (for example with echo, if the hook was written as a shell script). Note that the
client doesn't disconnect until all the hooks complete their operation, so be careful if
you try to do anything that may take a long time, such as automated tests. It is better
to have a hook just start such long operations asynchronously and exit, allowing the
client to finish.

You need to remember that, in pre hooks, you don't have refs updated yet, and that
post hooks cannot affect the result of an operation. You can use pre hooks for access
control (permission checking), and post hooks for notification, updating the side
data, and logging. Hooks are listed in the order of operation.

The pre-receive hook
The first hook to run is pre-receive. It is invoked just before you start updating refs
(branches, tags, notes, and so on) in the remote repository, but after all the objects
are received. It is invoked once for the receive operation. If the server fails to receive
published objects, for example, because of the lack of the disk space or incorrect
permissions, the whole git push operation will fail before Git invokes this hook.

This hook receives no arguments; all the information is received on the standard
input of the script. For each ref to be updated, it receives a line in the following
format:

<old-SHA1-value> <new-SHA1-value> <full-ref-name>

Refs to be created would have the old SHA1 value of 40 zeros, while refs to be
deleted will have a new SHA1 value equal to the same. The same convention is
used in all the other places, where the hooks receive the old and the new state of the
updated ref.

This hook can be used to quickly bail out if the update is not to be accepted, for
example, if the received commits do not follow the specified policy or if the signed
push (more on this is mentioned later) is invalid. Note that to use it for access
control, (for authorization) you need to get the authentication token somehow, be
it with the getpwuid command or with an environment variable such as USER. This
depends on the server setup and on the server configuration.

Git Administration

[354]

Push-to-update hook for pushing to nonbare
repositories
When pushing to the nonbare repositories, if push tries to update the currently
checked out branch then push-to-checkout will be run. This is done if the
configuration variable receive.denyCurrentBranch is set to the updateInstead
value (instead of one of the values: true or refuse, warn or false, or ignore) This
hook receives the SHA1 identifier of the commit that is to be the tip of the current
branch that is going to be updated.

This mechanism is intended to synchronize working directories when one side is
not easily accessible interactively (for example, accessible via interactive ssh), or as
a simple deploy scheme. It can be used to deploy to a live website, or to run code
tests on different operating systems.

If this hook is not present, Git will refuse the update of the ref if either the working
tree or the index (the staging area) differs from HEAD, that is, if the status is "not
clean". This hook is to be used to override this default behavior.

You can craft this hook to have it make changes to the working tree and to the index
that are necessary to bring them to the desired state. For example, it can simply run
git read-tree -u -m HEAD "$1" in order to switch to the new branch tip (the -u
option updates the files in the worktree), while keeping the local changes (the -m
option makes it perform a fast-forward merge with two commits/trees). If this hook
exits with a nonzero status, then it will refuse pushing to the currently checked out
branch.

The update hook
The next to run is the update hook, which is invoked separately for each ref being
updated. This hook is invoked after the non-fast-forward check (unless the push is
forced), and the per-ref built-in sanity checks that can be configured with receive.
denyDeletes, receive.denyDeleteCurrent, receive.denyCurrentBranch, and
receive.denyNonFastForwards.

Note that exiting with nonzero refuses the ref to be updated; if the push is atomic,
then refusing any ref to be updated will abandon the whole push. With an ordinary
push, only the update of a single ref will be refused; the push of other refs will
proceed normally.

This hook receives the information about the ref to be updated as its parameters, in
order: the full name of the ref being updated, the old SHA1 object name stored in the
ref before the push, and the new SHA1 object name to be stored in the ref after
the push.

Chapter 11

[355]

The example update.sample hook can be used to block unannotated tags from
entering the repository, and to allow or deny deleting and modifying tags, and
deleting and creating branches. All the configurable of this sample hook is done
with the appropriate hooks.* configuration variables, rather than being hard-coded.
There is also the update-paranoid Perl script in contrib/hooks/, which can be
used as an example on how to use this hook for the access control. This hook is
configured with an external configuration file, where, among others, you can set up
access so that only commits and tags from specified authorsare allowed, and authors
additionally have correct access permissions.

Many repository management tools, for example Gitolite, set up and use this hook
for their work. You need to read the tool documentation if you want for some reason
to run your own update hook moved earlier together with the one provided by such
a tool.

The post-receive hook
Then, after all the refs are updated, the post-receive hook is run. It takes the same
data as the pre-receive one. Only now, all the refs point to the new SHA1s. It can
happen that another user has modified the ref after it was updated, but before this
hook was able to evaluate it. This hook can be used to update other services (for
example, notify the continuous integration server), notify users (via an e-mail or
a mailing list, an IRC channel, or a ticket-tracking system), or log the information
about the push for audit (for example, about signed pushes). It supersedes and
should be used in the place of the post-update hook.

There is no default post-receive hook, but you can find the simple post-receive-
email script, and its replacement git-multimail, in the contrib/hooks/ area.
These two example hooks are actually developed separately from Git itself, but for
convenience they are provided with the Git source. git-multimail sends one e-mail
summarizing each changed ref, one e-mail for each new commit with the changes—
threaded (as a reply) to the corresponding ref change e-mail, and one announce e-mail
for each new annotated tag; each of these is separately configurable with respect to
the e-mail address used and, to some extent, also with respect to the information
included in the e-mails.

To provide an example of third-party tools, irker includes the script to be used
as the Git's post-receive hook to send notifications about the new changes to the
appropriate IRC channel using the irker daemon (set up separately).

Git Administration

[356]

The post-update hook (legacy mechanism)
Then the post-update hook is run. Each ref that was actually successfully updated
passes its name as one of parameters; this hook takes a variable number of
parameters. This is only a partial information; you don't know what the original (old)
and updated (new) values of the updated refs were, and the current position of the
ref is prone to race conditions (as explained before). Therefore, if you actually need
the position of the refs, post-receive hook is a better solution.

The sample hook runs git update-server-info to prepare a repository for use over the
dumb transports, by creating and saving some extra information. If the repository is to be
published, or copied and published to be accessible via plain HTTP or other walker-based
transport, you may consider enabling it. However, in modern Git, it is enough to simply
set receive.updateServerInfo to true, so that hook is no longer necessary.

Using hooks to implement the Git-enforced
policy
The only way to truly enforce policy is to implement it using server-side hooks,
either pre-receive or update; if you want a per-ref decision, you need to use the
latter. Client-side hooks can be used to help developers pay attention to the policy,
but these can be disabled, or skipped, or not enabled.

Enforcing the policy with server-side hooks
One part of the development policy could be requiring that each commit message
adheres to the specified template. For example, one may require for each nonmerge
commit message to include the Digital Certificate of Origin in the form of the
Signed-off-by: line, or that each commit refers to the issue tracker ticket by
including a string that looks like ref: 2387. The possibilities are endless.

To implement such a hook, you first need to turn the old and new values for a ref
(that you got by either reading them line by line from the standard input in pre-
receive, or as the update hook parameters) into a list of all the commits that are
being pushed. You need to take care of the corner cases: deleting a ref (no commits
pushed), creating a new ref, and a possibility of non-fast-forward pushes (where
you need to use the merge base as the lower limit of the revision range, for example,
with the git merge-base command), pushes to tags, pushes to notes, and other
nonbranch pushes. The operation of turning a revision range into a list of commits
can be done with the git rev-list command, which is a low-level equivalent
(plumbing) of the user-facing git log command (porcelain); by default, this
command prints out only the SHA1 values of the commits in the specified revision
range, one per line, and no other information.

Chapter 11

[357]

Then, for each revision, you need to grab the commit message and check whether
it matches the template specified in the policy. You can use another plumbing
command, called git cat-file, and then extract the commit message from this
command output by skipping everything before the first blank line. This blank line
separates commit metadata in the raw form from the commit body:

$ git cat-file commit a7b1a955

tree 171626fc3b628182703c3b3c5da6a8c65b187b52

parent 5d2584867fe4e94ab7d211a206bc0bc3804d37a9

author Alice Developer <alice@example.com> 1440011825 +0200

committer Alice Developer <alice@example.com> 1440011825 +0200

Added COPYRIGHT file

Alternatively, you can use git show -s or git log -1, which are both porcelain
commands, instead of git cat-file. However, you would then need to specify the
exact output format, for example, git show -s --format=%B <SHA1>.

When you have these commit messages, you can then use the regular expression
match or another tool on each of the commit messages caught to check whether it
matches the policy.

Another part of the policy may be the restrictions on how the branches are managed.
For example, you may want to prevent the deletion of long-lived development stage
branches (see Chapter 6, Advanced Branching Techniques), while allowing the deletion
of topic branches. To distinguish between them, that is to find out whether the
branch being deleted is a topic branch or not, you can either include a configurable
list of branches to manage strictly , or you can assume that topic branches always
use the <user>/<topic> naming convention. The latter solution can be enforced by
requiring the newly created branches, which should be topic branches only, to match
this naming convention.

Conceivably, you could make a policy that topic branches can be fast-forwarded
only if they are not merged in, though implementing checks for this policy would be
nontrivial.

Usually, you have only specific people with the permission to push to the official
repository of the project (having holding so-called commit bit). With the server-side
hooks, you can configure the repository so that it allows anyone to push, but only to
the special mob branch; all the other push access is restricted.

Git Administration

[358]

You can also use server-side hooks to require that only annotated tags are allowed in
the repository, that tags are signed with a public key that is present in the specified
key server (and thus, can be verified by other developers), and that tags cannot be
deleted or updated. If needed, you can restrict signed tags to those coming from the
selected (and configured) set of users, for example enforcing a policy that only one of
the maintainers can mark a project for a release (by creating an appropriately named
tag, for example, v0.9).

Early notices about policy violations with client-
side hooks
It would be not a good solution to have a strict enforcement of development policies,
and not provide users with a way to help watch and fulfill the said policies. Having
one's work rejected during push can be frustrating; to fix the issue preventing one
from publishing the commit, one would have to edit their history. See Chapter 8,
Keeping History Clean for details on how to do it.

The answer to that problem is to provide some client-side hooks that users can
install, to have Git notify them immediately when they are violating the policy,
which would make their changes rejected by the server. The intent is to help correct
any problem as fast as possible, usually before committing the changes. These client-
side hooks must be distributed somehow, as hooks are not copied when cloning
a repository. Various ways to distribute these hooks are described in Chapter 10,
Customizing and Extending Git.

If there are any limitations on the contents of the changes, perhaps that some file
might be changed only by specified developers, the warning can be done with pre-
commit. The prepare-commit-msg hook (and the commit.template configuration
variable) can provide the developer with the customized template to be filled while
working on a commit message. You can also make Git check the commit message,
just before the commit would be recorded, with the commit-msg hook. This hook
would find out and inform you whether you have correctly formatted the commit,
message and if this message includes all the information required by the policy. This
hook can also be used instead of or in addition to pre-commit to check whether you
are not modifying the files you are not allowed to.

The pre-rebase hook can be used to verify that you don't try to rewrite history
in a manner that would lead to non-fast-forward push (with receive.deny Non-
FastForwards on the server, forcing push won't work anyway).

As a last resort, there is a pre-push hook, which can check for correctness before
trying to connect to the remote repository.

Chapter 11

[359]

Signed pushes
Chapter 5, Collaborative Development with Git, includes a description of various
mechanisms that a developer can use to ensure integrity and authenticity of their
work: signed tags, signed commits, and signed merges (merging signed tags). All
these mechanisms assert that the objects (and the changes they contain) came from
the signer.

But signed tags and commits do not assert that the developer wanted to have a
particular revision at the tip of a particular branch. Authentication done by the
hosting site cannot be easily audited later, and it requires you to trust the hosting site
and its authentication mechanism. Modern Git (version 2.2 or newer) allows you to
sign pushes for this purpose.

Signed pushes require the server to set up receive.certNonceSeed and the client
to use git push --signed. Handling of signed pushes is done with the server-side
hooks.

The signed push certificate sent by client is stored in the repository as a blob object
and is verified using GPG. The pre-receive hook can then examine various GIT_
PUSH_CERT_* environment variables (see the git-receive-pack manpage for the
details) to decide whether to accept or deny given signed push.

Logging signed pushes for audit can be done with the post-receive hook. You
can have it send an e-mail notification about the signed push or have it append
information about the push to a log file. The push, certificate that is signed includes
an identifier for the client's GPG key, the URL of the repository, and the information
about the operations performed on the branches or tags in the same format as the
pre-receive and post-receive input.

Serving Git repositories
In Chapter 5, Collaborative Development with Git, we have examined four major
protocols used by Git to connect with remote repositories: local, HTTP, SSH (Secure
Shell), and Git (the native protocol). This was done from the point of view of a client
connecting to the repository, discussing what these protocols are and which one to
use if the remote repository offers more than one.

This chapter will offer the administrator's side of view, explaining how to set up
moved later, rephrased Git repositories to be served with these different transport
protocols. Here we will also examine, for each protocol, how the authentication and
authorization look like.

Git Administration

[360]

Local protocol
This is the most basic protocol, where a client uses the path to the repository or the
file:// URL to access remotes. You just need to have a shared filesystem, such as
an NFS or CIFS mount, which contains Git repositories to serve. This is a nice option
if you already have access to a networked filesystem, as you don't need to set up
any server.

Access to repositories using a file-based transport protocol is controlled by the
existing file permissions and network access permissions. You need read permissions
to fetch and clone, and write permissions to push.

In a later case, if you want to enable push, you'd better set up a repository in such
way that pushing does not screw up the permissions. This can be helped by creating
a repository with the --shared option to git init (or to git clone). This option
allows users belonging to the same group to push into the repository by using the
sticky group ID to ensure that the repositories stay available to all the group members.

The disadvantage of this method is that shared access to a networked filesystem is
generally more difficult to set up and reach safely from multiple remote locations,
than a basic network access and setting up appropriate server. Mounting the remote
disk over the Internet can be difficult and slow.

This protocol does not protect the repository against accidental damage. Every user
has full access to the repository's internal files and there is nothing preventing from
accidentally corrupting the repository.

SSH protocol
SSH (Secure Shell) is a common transport protocol (common especially for Linux
users) for self-hosting Git repositories. SSH access to servers is often already set up in
many cases as a way to safely log in to the remote machine; if not, it is generally quite
easy to set up and use. SSH is an authenticated and encrypted network protocol.

On the other hand, you can't serve anonymous access to Git repositories over SSH.
People must have at least limited access to your machine over SSH; this protocol
does not allow anonymous read-only access to published repositories.

Chapter 11

[361]

Generally, there are two ways to give access to Git repositories over SSH. The first is
to have a separate account on the server for each client trying to access the repository
(though such an account can be limited and does not need full shell access, you
can in this case use git-shell as a login shell for Git-specific accounts). This can
be used both with ordinary SSH access, where you provide the password, or with
a public-key login. In a one-account-per-user case, the situation with respect to the
access control is similar to the local protocol, namely, the access is controlled with the
filesystem permissions.

A second method is to create a single shell account, which is often the git user,
specifically to access Git repositories and to use public-key login to authenticate
users. Each user who is to have an access to the repositories would then need to
send his or her SSH public key to the administrator, who would then add this key to
the list of authorized keys. The actual user is identified by the key he or she uses to
connect to the server.

Another alternative is to have the SSH server authenticated from an LDAP server,
or some other centralized authentication scheme (often, to implement single sign-
ons). As long as the client can get (limited) shell access, any SSH authentication
mechanism can be used.

Anonymous Git protocol
Next is the Git protocol. It is served by a special really simple TCP daemon, which
listens on a dedicated port (by default, port 9418). This is (or was) a common choice
for fast anonymous unauthenticated read-only access to Git repositories.

The Git protocol server, git daemon, is relatively easy to set up. Basically, you need
to run this command, usually in a daemonized manner. How to run the daemon
(the server) depends on the operating system you use. It can be an upstart script,
a systemd unit file, or a sysvinit script. A common solution is to use inetd
or xinetd.

You can remap all the repository requests as relative to the given path (a project root
for the Git repositories) with --base-path=<directory>. There is also support for
virtual hosting; see the git-daemon documentation for the detail. By default, git
daemon would export only the repositories that have the git-daemon-export-ok
file inside gitdir, unless the --export-all option is used. Usually, you would also
want to turn on --reuseaddr, to allow the server to restart without waiting for the
connection to time out.

Git Administration

[362]

The downside of the Git protocol is the lack of authentication and the obscure
port it runs on (that may require you to punch a hole in the firewall). The lack
of authentication is because by default it is used only for read access, that is for
fetching and cloning repositories. Generally, it is paired with either SSH (always
authenticated, never anonymous) or HTTPS for pushing.

You can configure it to allow for push (by enabling the receive-pack service with
the --enable=<service> command-line option or, on a per repository basis, by
setting the daemon.receivePack configuration to true), but it is generally not
recommended. The only information available to hooks for implementing access
control is the client address, unless you require all the pushes to be signed. You can
run external commands in an access hook, but this would not provide much more
data about the client.

One service you might consider enabling is upload-archive, which
serves git archive --remote.

The lack of authentication means not only that the Git server does not know who
accesses the repositories, but also that the client must trust the network to not spoof
the address while accessing the server. This transport is not encrypted; everything
goes in the plain.

Smart HTTP(S) protocol
Setting up the so-called "smart" HTTP(S) protocol consists basically of enabling a
server script that would invoke git receive-pack and git upload-pack on the
server. Git provides a CGI script named git-http-backend for this task. This CGI
script can detect if the client understands smart HTTP protocol; if not, it will fall back
on the "dumb" behavior (a backward compatibility feature).

To use this protocol, you need some CGI server, for example, Apache (with this server
you would also need the mod_cgi module or its equivalent, and the mod_env and
mod_alias modules). The parameters are passed using environment variables (hence,
the need for mod_env in case of using Apache): GIT_PROJECT_ROOT to specify where
repositories are and an optional GIT_HTTP_EXPORT_ALL if you want to have all the
repositories exported, not only those with the git-daemon-export-ok file in them.

The authentication is done by the web server. In particular, you can set it up to allow
unauthenticated anonymous read-only access, while requiring authentication for
push. Utilizing HTTPS gives encryption and server authentication, like for the SSH
protocol. The URL for fetching and pushing is the same when using HTTP(S); you
can also configure it so that the web interface for browsing Git repositories uses the
same URL as for fetching.

Chapter 11

[363]

The documentation of git-http-backend includes a set up for Apache
for different situations, including unauthenticated read and authenticated
write. It is a bit involved, because initial ref advertisements use the query
string, while the receive-pack service invocation uses path info.
On the other hand, requiring authentication with any valid account for
reads and writes and leaving the restriction of writes to the server-side
hook is simpler and often acceptable solution.

If you try to push to the repository that requires authentication, the server can
prompt for credentials. Because the HTTP protocol is stateless and involves more
than one connection sometimes, it is useful to utilize credential helpers (see Chapter
10, Customizing and Extending Git) to avoid either having to give the password more
than once for a single operation, or having to save the password somewhere on the
disk (perhaps, in the remote URL).

Dumb protocols
If you cannot run Git on the server, you can still use the dumb protocol, which does
not require it. The dumb HTTP(S) protocol expects the Git repository to be served
as normal static files from the web server. However, to be able to use this kind of
protocol, Git requires the extra objects/info/packs and info/refs files to be
present on the server, and kept up to date with git update-server-info. This
command is usually run on push via one of the earlier mentioned smart protocols
(the default post-update hook does that, and so does git-receive-pack if
receive.updateServerInfo is set to true).

It is possible to push with the dumb protocol, but this requires a set up that allows
updating files using a specified transport; for the dumb HTTP(S) transport protocol,
this means configuring WebDAV.

Authentication in this case is done by the web server for static files. Obviously, for
this kind of transport, Git's server-side hooks are not invoked, and thus they cannot
be used to further restrict access.

Note that for modern Git, the dumb transport is implemented using the
curl family of remote helpers, which may be not installed by default.

Git Administration

[364]

This transport works (for fetch) by downloading requested refs (as plain files),
examining where to find files containing the referenced commit objects (hence,
the need for server information files, at least for objects in packfiles), getting them,
and then walking down the chain of revisions, examining each object needed,
and downloading new files if the object is not present yet in the local repository.
This walker method can be horrendously inefficient if the repository is not packed
well with respect to the requested revision range. It requires a large number of
connections and always downloads the whole pack, even if only one object from it is
needed.

With smart protocols, Git on the client-side and Git on the server negotiate between
themselves which objects are needed to be sent (want/have negotiation). Git then
creates a customized packfile, utilizing the knowledge of what objects are already
present on the other side, and usually including only deltas, that is, the difference
from what the other side has (a thin packfile). The other side rewrites the received
packfile to be self-contained.

Remote helpers
Git allows us to create support for new transport protocols by writing remote helper
programs. This mechanism can be also used to support foreign repositories. Git
interacts with a repository requiring a remote helper by spawning the helper as an
independent child process, and communicating with the said process through its
standard input and output with a set of commands.

You can find third-party remote helpers to add support to the new ways of accessing
repositories, for example, there is git-remote-dropbox to use Dropbox to store the
remote Git repository. Note, however, that remote helpers are (possibly yet) limited
in features as compared to the built-in transport support.

Tools to manage Git repositories
Nowadays, there is no need to write the Git repositories management solution
yourself. There is a wide range of various third-party solutions that you can use.
It is impossible to list them all, and even giving recommendations is risky. The Git
ecosystem is actively developed; which tool is the best can change since the time of
writing this.

I'd like to focus here just on the types of tools for administrators, just like it was done
for GUIs in Chapter 10, Customizing and Extending Git.

Chapter 11

[365]

First, there are Git repository management solutions (we have seen one example
of such in the form of the update-paranoid script in the contrib/ area). These
tools focus on access control, usually the authorization part, making it easy to add
repositories and manage their permissions. An example of such a tool is Gitolite.
They often support some mechanism to add your own additional access constraints.

Then, there are web interfaces, allowing us to view Git repositories using a web
browser. Some make it even possible to create new revisions using a web interface.
They differ in capabilities, but usually offer at least a list of available Git repositories,
a summary view for each repository, an equivalent of the git log and git show
commands, and a view with a list of files in the repository. An example of such tools
is gitweb script in Perl that is distributed with Git; another is cgit used by https://
www.kernel.org/ for the Linux kernel repositories (and others).

Often useful are the code review (code collaboration) tools. These make it possible
for developers in a team to review each other's proposed changes using a web
interface. These tools often allow the creation of new projects and the handling of
access management. An example of such a tool is Gerrit Code Review.

Finally, there are Git hosting solutions, usually with a web interface for the
administrative side of managing repositories, allowing us to add users, create
repositories, manage their access, and often work from the web browser on the Git
repositories. An example of such a tool is GitLab. There are also similar source code
management systems, which provide (among other web-based interfaces) repository
hosting services together with the features to collaborate and manage development.
Here, Phabricator and Kallithea can be used as examples.

Of course, you don't need to self-host your code. There is a plethora of third-party
hosted options: GitHub, Bitbucket, and so on. There are even hosted solutions using
open source hosting management tools, such as GitLab.

Tips and tricks for hosting repositories
If you want to self-host Git repositories, there are a few things that may help you
with server performance and user satisfaction.

Reducing the size taken by repositories
If you are hosting many forks (clones) of the same repository, you might want to
reduce disk usage by somehow sharing common objects. One solution is to use
alternates (for example, with git clone --reference) while creating a fork. In this
case, the derived repository would look to its parent object storage if the object is not
found on its own.

https://www.kernel.org/
https://www.kernel.org/

Git Administration

[366]

There are, however, two problems with this approach. First is that you need to
ensure that the object the borrowing repository relies on does not vanish from the
repository set as the alternate object storage (the repository you borrow from). This
can be done, for example, by linking the borrowing repository refs in the repository
lending the objects, for example, in the refs/borrowed/ namespace. Second is that
the objects entering the borrowing repository are not automatically de-duplicated:
you need to run git repack -a -d -l, which internally passes the --local option
to git pack-objects.

An alternate solution would be to keep every fork together in a single repository,
and use gitnamespaces to manage separate views into the DAG of revisions, one
for each fork. With plain Git, this solution means that the repository is addressed by
the URL of the common object storage and the namespace to select a particular fork.
Usually, this is managed by a server configuration or by a repository management
tool; such mechanism translates the address of the repository into a common
repository and the namespace. The git-http-backend manpage includes an
example configuration to serve multiple repositories from different namespaces in
a single repository. Gitolite also has some support for namespaces in the form of
logical and backing repositories and option namespace.pattern, though not every
feature works for logical repositories.

Storing multiple repositories as the namespace of a single repository avoids storing
duplicated copies of the same objects. It automatically prevents duplication between
new objects without the need for ongoing maintenance, as opposed to the alternates
solution. On the other hand, the security is weaker; you need to treat anyone with
access to the single namespace, which is within the repository as if he or she had an
access to all the other namespaces, though this might not be a problem for your case.

Speeding up smart protocols with pack bitmaps
Another issue that you can stumble upon while self-hosting repositories is the
performance of smart protocols. For the clients of your server, it is important that the
operations finish quickly; as an administrator, you would not want to generate high
CPU load on the server due to serving Git repositories.

One feature, ported from JGit, should significantly improve the performance of the
counting objects phase, while serving objects from a repository that uses this trick.
This feature is a bitmap-index file, available since Git 2.0.

This file is stored alongside the packfile and its index. It can be generated manually by
running git repack -A -d --write-bitmap-index, or be generated automatically
together with the packfile by setting the repack.writeBitmaps configuration
variable to true. The disadvantage of this solution is that bitmaps take additional
disk space, and the initial repack requires extra time to create bitmap-index.

Chapter 11

[367]

Solving the large nonresumable initial clone
problem
Repositories with a large codebase and a long history can get quite large. The
problem is that the initial clone, where you need to get all of a possibly large
repository, is an all-or-nothing operation, at least for modern (safe and effective)
smart transfer protocols: SSH, git://, and smart HTTP(S). This might be a problem
if a network connection is not very reliable. There is no support for a resumable
clone, and it unfortunately looks like it is fundamentally hard problem to solve for
Git developers. This does not mean, however, that you, as a hosting administrator,
can do nothing to help users get this initial clone.

One solution is to create, with the git bundle command, a static file that can be
used for the initial clone, or as reference repository for the initial clone (the latter can
be done with the git clone --reference=<bundle> --dissociate command if
you have Git 2.3 or a newer looks unnecessary). This bundle file can be distributed
using any transport; in particular, one that can be resumed if interrupted, be it HTTP,
FTP, rsync, or BitTorrent. The conventions people use, besides explaining how to
get such a bundle in the developer documentation, is to use the same URL as for the
repository, but with the .bundle extension (instead of an empty extension or a .git
suffix).

There are also more esoteric approaches like a step by step deepening of a shallow
clone (or perhaps, just using a shallow clone with git clone --depth is all that's
needed), or using approaches such as GitTorrent.

Augmenting development workflows
Handling version control is only a part of the development workflow. There is also
work management, code review and audit, running automated tests, and generating
builds.

Many of these steps can be helped using specialized tools. Many of them offer Git
integration. For example, code review can be managed using Gerrit, requiring that
each change passes a review before being made public. Another example is setting
up development environments so that pushing changes to the public repository can
automatically close tickets in the issue tracker based on the patterns in the commit
messages. This can be done with the server-side hooks or with the hosting service's
webhooks.

Git Administration

[368]

A repository can serve as a gateway, running automated tests (for example, with the
help of Jenkins/Hudson continuous integration service), and deploying changes to
ensure quality environments only after passing all of these tests. Another repository
can be configured to trigger builds for various supported systems. Many tools and
services support push to deploy mechanisms (for example, Heroku or Google's App
Engine).

Git can automatically notify users and developers about the published changes. It
can be done via e-mail, using the mailing list or the IRC channel, or a web-based
dashboard application. The possibilities are many; you only need to find them.

Summary
This chapter covered various issues related to the administrative side of working
with Git. You have learned the basics of maintenance, data recovery, and repository
troubleshooting. You have also learned how to set up Git on the server, how to use
server-side hooks, and how to manage remote repositories. The chapter covered tips
and tricks for a better remote performance. The information in this chapter should
help you choose the Git repository management solution, or even write your own.

The next chapter will include a set of recommendations and best practices, both
specific to Git and those that are version control agnostic. A policy based on these
suggestions can be enforced and encouraged with the help of the tools described
here in this chapter.

[369]

Git Best Practices
The last chapter of Mastering Git presents a collection of generic and Git-specific
version control recommendations and best practices. You have encountered many of
these recommendations already in the earlier chapters; they are here as a summary
and as a reminder. For details and the reasoning behind each best practice, you
would be referred to specific chapters.

This chapter will cover issues of managing the working directory, creating commits
and series of commits (pull requests), submitting changes for inclusion, and the peer
review of changes.

In this chapter, we will cover the following topics:

• How to separate projects into repositories
• What types of data to store in a repository and which files should Git ignore
• What to check before creating a new commit
• How to create a good commit and a good commit series (or, in other words,

how to create a good pull request)
• How to choose an effective branching strategy, and how to name branches

and tags
• How to review changes and how to respond to the review

Starting a project
When starting a project, you should choose and clearly define a project governance
model (who manages work, who integrates changes, and who is responsible for
what). You should decide about the license and the copyright of the code: whether
it is work for hire, whether contributions would require a copyright assignment,
a contributor agreement, or a contributor license agreement, or simply a digital
certificate of origin.

Git Best Practices

[370]

Dividing work into repositories
In centralized version control systems, often everything under the sun is put under
the same project tree. With distributed version control systems such as Git, it is better
to split separate projects into separate repositories.

There should be one conceptual group per repository; divide it beforehand correctly.
If some part of the code is needed by multiple separate projects, consider extracting
it into its own project and then incorporating it as a submodule or subtree, grouping
concepts into a superproject. See Chapter 9, Managing Subprojects - Building a Living
Framework for the details.

Selecting the collaboration workflow
You need to decide about the collaboration structure, whether your project would
use a dispersed contributor model, a "blessed" repository model, or a central
repository, and so on (as found in Chapter 5, Collaborative Development with Git).
This often requires setting up an access control mechanism and deciding on the
permission structure; see Chapter 11, Git Administration on how one can set up this.

You would also need to decide how to structure your branches; see Chapter 6,
Advanced Branching Techniques, for possible solutions. This decision doesn't need to
be cast in stone; as your project and your team experience grows, you might want
to consider changing the branching model, for example, from the plain branch-per-
feature model to full Gitflow, or to GitHub-flow, or any of the other derivatives.

The decision about licensing, the collaboration structure, and the branching model
should all be stated explicitly in the developer documentation (at minimum,
including the README and LICENSE/COPYRIGHT files). You need to remember that if
the way in which the project is developed changes, which can happen, for example,
because the project has grown beyond its initial stage, this documentation would
need to be kept up to date.

Choosing which files to keep under version
control
In most cases, you should not include any of the generated files in the version control
system (though there are some very rare exceptions). Track only the sources (the
original resources); Git works best if these sources are plain text files, but it works
well also with binary files.

Chapter 12

[371]

To avoid accidentally including unwanted files in a repository, you should use the
gitignore patterns. These ignore patterns that are specific to a project (for example,
results and by-products of a build system) should go into the .gitignore file in the
project tree; those specific to the developer (for example, backup files created by the
editor one uses or the operating system-specific helper files) should go into his or her
per-user core.excludesFile (which, in modern Git, is the ~/.config/git/ignore
file), or into a local configuration of the specific clone of the repository, that is, .git/
info/excludes. See Chapter 4, Managing Your Worktree for details.

A good start for ignore patters is the https://www.gitignore.io trailing slash
is not necessary; choose whichever looks better. Website with the .gitignore
templates for various operating systems, IDEs, and programming languages.

Another important rule is to not add to be tracked by Git the configuration files that
might change from environment to environment (for example, being different for MS
Windows and for Linux).

Working on a project
Here are some guidelines on how to create changes and develop new revisions.
These guidelines can be used either for your own work on your own project, or to
help contribute your code to the project maintained by somebody else.

Different projects can use different development workflows; therefore, some of the
recommendations presented here might not make sense, depending on the workflow
that is used for a given project.

Working on a topic branch
Branching in Git has two functions (Chapter 6, Advanced Branching Techniques): as a
mediator for the code contributed by developers keeping to the specified level of
code stability and maturity (long-running public branches), and as a sandbox for the
development of a new idea (short-lived private branches).

The ability to sandbox changes is why it is considered a good practice to create
a separate branch for each new task you work on. Such a branch is called a topic
branch or a feature branch. Using separate branches makes it possible to switch
between tasks easily, and to keep disparate work in progress from interfering with
each other.

https://www.gitignore.io

Git Best Practices

[372]

You should choose short and descriptive names for branches. There are different
naming conventions for topic branches; the convention your project uses should be
specified in the developer documentation. In general, branches are usually named
after a summary of a topic they host, usually all lower-case and with spaces between
words replaced by hyphens or underscores (see the git-check-ref-format(1)
manpage to know what is forbidden in branch names). Branch names can include
slash (be hierarchical).

If you are using an issue tracker, then the branch which fixes a bug, or implements
an issue, can have its name prefixed with the identifier (the number) of the ticket
describing the issue, for example, 1234-doc_spellcheck. On the other hand, the
maintainer, while gathering submissions from other developers, could put these
submissions in topic branches named after the initials of the developer and the
name of the topic, for example, ad/whitespace-cleanup (this is an example of
hierarchical branch name).

It is considered a good practice to delete your branch from your local repository, and
also from the upstream repository after you are done with the branch in question to
reduce clutter.

Deciding what to base your work on
As a developer, you would be usually working at a given time on some specific
topic, be it a bug fix, enhancement or correction to some topic, or a new feature.

Decision about where to start your work on a given topic, and what branch to base
your work on, depends on the branching workflow chosen for a project (see Chapter
6, Advanced Branching Techniques for a selection of branchy workflows). This decision
also depends on the type of the work you do.

For a topic branch workflow (or a branch-per-feature workflow), you would want to
base your work on the oldest and most stable long-running branch that your change
is relevant to, and for which you plan to have your changes merged into. This is
because, as described in Chapter 6, Advanced Branching Techniques, you should never
merge a less stable branch into a more stable branch. The reason behind this best
practice rule is to not destabilize branch, as merges bring all the changes.

Chapter 12

[373]

Different types of changes require a different long-lived branch to be used as a base
for a topic branch with those changes, or to put those changes onto. In general, to
help developers working on a project, this information should be described in the
developer documentation; not everybody needs to be knowledgeable about the
branching workflow used by the project.

The following describes what is usually used as a base branch, depending on
purpose of changes:

• Bugfix: In this case the topic branch (the bugfix branch) should be based
on the oldest and the most stable branch in which the bug is present. This
means, in general, starting with the maintenance branch. If the bug is not
present in the maintenance branch, then base the bugfix branch on the stable
branch. For a bug that is not present in the stable branch, find the topic
branch that introduced it and base your work on top of that topic branch.

• New feature: In this case the topic branch (the feature branch) should be
based on the stable branch, if possible. If the new feature depends on some
topic that is not ready for the stable branch, then base your work on that
topic (from a topic branch).

• Corrections and enhancements: To a topic that didn't get merged into the
stable branch should be based on the tip of the topic branch being corrected.
If the topic in question is not considered published, it's all right to make
changes to the steps of the topic, squashing minor corrections in the series
(see the section about rewriting history in Chapter 8, Keeping History Clean).

If the project you are contributing to is large enough to have dedicated maintainers
for selected parts (subsystems) of the system, you first need to decide which
repository and which fork (sometimes named "a tree") to base your work on.

Splitting changes into logically separate steps
Unless your work is really simple and it can be done in a single step (a single
commit)—like many of the bug fixes—you should make separate commits for the
logically separate changes, one commit per single step. Those commits should be
ordered logically.

Following a good practice for a commit message (with an explanation of what you
have done—see the next section) could help in deciding when to commit. If your
description gets too long and you begin to see that you have two independent
changes squished together, that's a sign that you probably need to split your commit
to finer grained pieces and use smaller steps.

Git Best Practices

[374]

Remember, however, that it is a matter of balance, of the project conventions, and
of the development workflow chosen. Changes should, at minimum, stand on their
own. At each step (at each commit) of the implementation of a feature, the code
compiles and the program passes the test suite. You should commit early and often.
Smaller self-contained revisions are easier to review, and with smaller but complete
changes, it is easier to find regression bugs with git bisect (which is described in
Chapter 2, Exploring Project History).

Note that you don't necessarily need to come up with the perfect sequence of
steps from the start. In the case when you notice that you have entangled the work
directory's state, you can make use of the staging area, using an interactive add
to disentangle it (this is described in Chapter 3, Developing with Git and Chapter
4, Managing Your Worktree). You can also use an interactive rebase or similar
techniques, as shown in Chapter 8, Keeping History Clean, to curate commits into an
easy-to-read (and easy-to-bisect) history before publishing.

You should remember that a commit is a place to record your result (or a particular
step towards the result), not a place to save the temporary state of your work. If you
need to temporarily save the current state before going back to it, use git stash.

Writing a good commit message
A good commit message should include an explanation for change that is detailed
enough, so that other developers on the team (including reviewers and the
maintainer) can judge if it is a good idea to include the change in the codebase. This
good or not decision should not require them to read actual changes to find out what
the commit intends to do.

The first line of the commit message should be a short, terse description (around
from 50 to 72 characters) with the summary of changes. It should be separated by
an empty line from the rest of the commit message, if there is one. This is partially
because, in many places, such as in the git log --oneline command output, in
the graphical history viewer like gitk, or in the instruction sheet of git rebase
--interactive, you would see only this one line of the commit message and you
would have to decide about the action with respect to that commit on the basis of
this one line. If you have trouble with coming up with a good summary of changes,
this might mean that these changes need to be split into smaller steps.

Chapter 12

[375]

There are various conventions for this summary line of changes. One convention
is to prefix the first summary line with area:, where area is an identifier for the
general area of the code being modified: a name of the subsystem, of an affected
subdirectory, or a filename of a file being changed. If the development is managed
via an issue tracker, this summary line can start with something like the [#1234]
prefix, where 1234 is the identifier of an issue or a task implemented in the commit.
In general, when not sure about what information to include in the commit message,
refer to the development documentation, or fall back to the current convention used
by other commits in the history.

If you are using Agile development methods, you can look for
especially good commit messages during retrospectives, and add them
as examples in the developer documentation for the future.

For all but trivial changes, there should be a longer meaningful description, the body
of the commit message. There is something that people coming from other version
control systems might need to unlearn: namely, not writing a commit message at all
or writing it all in one long line. Note that Git would not allow to create a commit
with an empty commit message unless forced to with --allow-empty.

The commit message should:

• Include the rationale for the commit, explain the problem that the commit
tries to solve, the why: in other words, it should include description of what
is wrong with the current code or the current behavior of the project without
the change; this should be self-contained, but it can refer to other sources
like the issue tracker (the bug tracker), or other external documents such as
articles, wikis, or Common Vulnerabilities and Exposures (CVE).

• Include a quick summary. In most cases, it should also explain (the how)
and justify the way the commit solves the problem. In other words, it should
describe why do you think the result with the change is better; this part of the
description does not need to explain what the code does, that is largely a task
for the code comments.

• If there was more than one possible solution, include a description of the
alternate solutions that were considered but were ultimately discarded,
perhaps with links to the discussion or review(s).

It's a good idea to try to make sure that your explanation for changes can be
understood without access to any external resources (that is, without an access to the
issue tracker, to the Internet, or to the mailing list archive). Instead of just referring to
the discussion, or in addition to giving a URL or an issue number, write a summary
of the relevant points in the commit message.

Git Best Practices

[376]

One of the possible recommendations to write the commit message is to describe
changes in the imperative mood, for example, make foo do bar, as if you are giving
orders to the codebase to change its behavior, instead of writing This commit makes
... or [I] changed

Here, commit.template and commit message hooks can help in following these
practices. See Chapter 10, Customizing and Extending Git, for details (and Chapter 11,
Git Administration, for a description of the way to enforce this recommendation).

Preparing changes for submission
Consider rebasing the branch to be submitted on top of the current tip of the base
branch. This should make it easier to integrate changes in the future. If your topic
branch was based on the development version, or on the other in-flight topic branch
(perhaps because it depended on some specific feature), and the branch it was based
on got merged into a stable line of development, you should rebase your changes on
top of the stable integration branch instead.

The time of rebase is also a chance for a final clean-up of the history; the chance to
make submitted changes easier to review. Simply run an interactive rebase, or a
patch management tool if you prefer it (see Chapter 8, Keeping History Clean). One
caveat: do not rewrite the published history.

Consider testing that your changes merge cleanly, and fix it if they don't, if the fix
is possible. Make sure that they would cleanly apply, or cleanly merge into the
appropriate integration branch.

Take a last look at your commits to be submitted. Make sure that your changes do
not add the commented out (or the ifdef-ed out) code, and it does not include
any extra files not related to the purpose of the patch (for example, that they do not
include the changes from the next new feature). Review your commit series before
submission to ensure accuracy.

Integrating changes
The exact details on how to submit changes for merging depends, of course, on
the development workflow that the project is using. Various classes of possible
workflows are described in Chapter 5, Collaborative Development with Git.

Chapter 12

[377]

Submitting and describing changes
If the project has a dedicated maintainer or, at least, if it has someone responsible
to merge the proposed changes into the official version, you would need also to
describe submitted changes as a whole (in addition to describing each commit in
the series). This can be done in the form of a cover letter for the patch series while
sending changes as patches via e-mail; or it can be comments in the pull request
while using collocated contributor repositories model; or it can be the description
in an e-mail with a pull request, which already includes the URL and the branch in
your public repository with changes (generated with git request-pull).

This cover letter or a pull request should include the description of the purpose of
the patch series or the pull request. Consider providing there an overview of why
the work is taking place (with any relevant links and a summary of the discussion).
Be explicit with stating that it is a work in progress, saying this in the description of
changes.

In the dispersed contributor model, where changes are submitted for review as
patches or patch series, usually to the mailing list, you should use Git-based tools
such as git format-patch and, if possible, git send-email. Multiple related
patches should be grouped together, for example, in their own e-mail thread. The
convention is to send them as replies to an additional cover letter message, which
should describe the feature as a whole.

If the changes are sent to the mailing list, it is a common convention to prefix your
subject line with [PATCH] or with [PATCH m/n] (where m is the patch number in
the series of the n patches). This lets people easily distinguish patch submissions
from other e-mails. This part can be done with git format-patch. What you need
to decide yourself is to whether to use additional markers after PATCH to mark
the nature of the series, for example, PATCH/RFC (RFC means here Request for
Comments, that is an idea for a feature with an example of its implementation; such
patch series should be examined if the idea is worthy; it is not ready to be applied/
merged but provided only for the discussion among developers).

In the collocated contributor repositories model, where all the developers use the
same Git hosting website or software (for example, GitHub, Bitbucket, GitLab, or
a private instance of it, and so on), you would push changes to your own public
repository, a fork of the official version. Then, you would create a merge request or a
pull request, usually via a web interface of the hosting service, again describing the
changes as a whole there.

Git Best Practices

[378]

In the case of using the central repository (perhaps, in a shared maintenance
model), you would push changes to a separate and possibly new branch in the
integration repository, and then send an announcement to the maintainer so that
he or she would be able to find where the changes to merge are. The details of this
step depends on the exact setup; sending announcement might be done via e-mail,
via some kind of internal messaging mechanism, or even via tickets (or via the
comments in the tickets).

The development documentation might include rules specifying to where and to
what place to send announcements and/or changes to. It is considered a courtesy
to notify the people who are involved in the area of code you are touching about
the new changes (here you can use git blame and git shortlog to identify these
people; see Chapter 2, Exploring Project History). These people are important; they can
write a comment about the change and help reviewing it.

Crediting people and signing your work
Some open source projects, in order to improve the tracking provenance
of the code, use the sign-off procedure borrowed from the Linux kernel
called Digital Certificate of Origin. The sign-off is a simple line at the end
of the commit message, saying for example:

Signed-off-by: Random Developer <rdeveloper@company.
com>

By adding this line, you certify that the contribution is either created
as a whole or in part by you, or is based on the previous work, or was
provided directly to you, and that everybody in the chain have the right
to submit it under appropriate license. If your work is based on the work
by somebody else, or if you are just passing somebody's work, then there
can be multiple sign-off lines, forming a chain of provenance.
In order to credit people who helped with creating the commit, you can
append to the commit message other trailers, such as Reported-by:,
Reviewed-by:, Acked-by: (this one states that it was liked by the
person responsible for the area covered by the change), or Tested-by:.

The art of the change review
Completing a peer review of changes is time-consuming (but so is using version
control), but the benefits are huge: better code quality, reducing the time needed
for quality assurance testing, transfer of knowledge, and so on. The change can be
reviewed by a peer developer, or reviewed by a community (requiring consensus),
or reviewed by the maintainer or one of his/her lieutenants.

Chapter 12

[379]

Before beginning the code review process, you should read through the description
of the proposed changes to discover why the change was proposed, and decide
whether you are the correct person to perform the review (that is one of reasons why
good commit messages are so important). You need to understand the problem that
the change tries to solve. You should familiarize yourself with the context of the
issue, and with the code in the area of changes.

The first step is to reproduce the state before the change and check whether
the program works as described (for example, that the bug in a bugfix can be
reproduced). Then, you need to check out the topic branch with proposed changes
and verify that the result works correctly. If it works, review the proposed changes,
creating a comprehensive list of everything wrong (though if there are errors early in
the process, it might be unnecessary to go deeper), as follows:

• Are the commit messages descriptive enough? Is the code easily understood?
• Is the contribution architected correctly? Is it architecturally sound?
• Does the code comply with project's coding standards and with the agreed

upon coding conventions?
• Are the changes limited to the scope described in the commit message?
• Does the code follow the industry's best practices? Is it safe and efficient?
• Is there any redundant or duplicate code? Is the code as modular as possible?
• Does the code introduce any regressions in the test suite? If it is a new

feature, does the change include the tests for the new feature, both positive
and negative?

• Is the new code as performing the way it did before the change (within the
project's tolerances)?

• Are all the words spelled correctly, and does the new version follow the
formatting guidelines for the content?

This is only one possible proposal for such code review checklist. Depending on the
specifics of the project, there might be more questions that need to be asked as a part
of the review; make the team write your own checklist. You can find good examples
online, such as Fog Creek's Code Review Checklist.

Git Best Practices

[380]

Divide the problems that you have found during reviews into the following
categories:

• Wrong problem: This feature does not lie within the scope of project. It is
used sometimes for the bug that cannot be reproduced. Is the idea behind
the contribution sound? If so, eject changes with or without prejudice, do not
continue the analysis for the review.

• Does not work: This does not compile, introduces a regression, doesn't pass
the test suite, doesn't fix the bug, and so on. These problems absolutely must
be fixed.

• Fails best practices: This does not follow the industry guidelines or the
project's coding conventions. Is the contribution polished? These are pretty
important to fix, but there might be some nuances on why it is written the
way it is.

• Does not match reviewer preferences. Suggest modifications but do not
require changes, or alternatively ask for a clarification.

Minor problems, for example, typo fixes or spelling errors, can be fixed immediately
by the reviewer. If the exact problem repeats, however, consider asking the original
author for the fix and resubmissions; this is done to spread knowledge. You should
not be making any substantive edits in the review process (barring extenuating
circumstances).

Ask, don't tell. Explain your reasoning about why the code should be changed. Offer
ways to improve the code. Distinguish between facts and opinions. Be aware of
negative bias with the online documentation.

Responding to reviews and comments
Not always are the changes accepted on the first try. You can and will get
suggestions for improvement (and other comments) from the maintainer, from the
code reviewer, and from other developers. You might even get these comments in
the patch form, or in a fixup commit form.

First, consider leading your response with an expression of appreciation to take time
to perform a review. If anything in the review is unclear, do ask for clarification; and
if there is a lack of understanding between you and the reviewer, offer clarification.

In such case, the next step is often to polish and refine changes. Then, you should
resubmit them (perhaps, marking them as v2). You should respond to the review for
each commit and for the whole series.

Chapter 12

[381]

If you are responding to the comments in a pull request, reply in the same way.
In the case of patch submissions via e-mail, you can put the comments for a new
version (with a response to the review, or a description of the difference from the
previous attempt), either between three dashes --- and the diffstat, or at the top
of an e-mail separated from what is to be in the commit message by the "scissors"
line, for example, ------- >8 -------. An explanation of the changes that stays
constant between iterations, but nevertheless should be not included in the commit
message, can be kept in the git notes (see Chapter 8, Keeping History Clean) and
inserted automatically via git format-patch --notes.

Depending on the project's governance structure, you would have to wait for the
changes to be considered good and ready for the inclusion. This can be the decision
of a benevolent dictator for life in open-source projects, or the decision of the team
leader, a committee, or a consensus. It is considered a good practice to summarize
the discussion while submitting a final version of a feature.

Note that the changes that got accepted might nevertheless go through few more
stages, before finally graduating to the stable branch and be present in the project.

Other recommendations
In this section, you would find the best practices and recommendations that do not
fit cleanly in one of the areas described before, namely starting a project, working on
a project, and integrating changes.

Don't panic, recovery is almost always
possible
As long as you have committed your work, storing your changes in the repository,
it will not be lost. It would only perhaps be misplaced. Git also tries to preserve
your current un-committed (unsaved) work, but it cannot distinguish for example
between the accidental and the conscious removing of all the changes to the working
directory with git reset --hard. Therefore, you'd better commit or stash your
current work before trying to recover lost commits.

Thanks to the reflog (both for the specific branch and for the HEAD ref), it is easy
to undo most operations. Then, there is the list of stashed changes (see Chapter 4,
Managing Your Worktree), where your changes might hide. And there is git fsck as
the last resort. See Chapter 11, Git Administration for some further information about
data recovery.

Git Best Practices

[382]

If the problem is the mess you have made of the working directory, stop and think.
Do not drop your changes needlessly. With the help of interactive add, interactive
reset (the --patch option), and interactive checkout (the same), you can usually
disentangle the mess.

Running git status and carefully reading its output helps in many cases where
you are stuck after doing some lesser-known Git operation.

If you have a problem with the rebase or merge, and you cannot pass the
responsibility to another developer, there is always the third-party git-imerge tool.

Don't change the published history
Once you have made your changes public, you should ideally consider those
revisions etched in stone, immutable and unchanging. If you find problems with
commits, create a fix (perhaps, by undoing the effect of the changes with git
revert). This is all described in Chapter 8, Keeping History Clean.

That is, unless it is stated explicitly in the development documentation that these
specific branches can be rewritten or redone; but it is nevertheless better to avoid
creating such branches.

In some rare cases, you might really need to change history: remove a file, clean up
a unencrypted stored password, remove accidentally added large files, and so on. If
you need to do it, notify all the developers of the fact.

Numbering and tagging releases
Before you release a new version of your project, mark the version to be released
with a signed tag. This ensures integrity of the just created revision.

There are various conventions on naming the release tags and on release numbering.
One of more common ones is tagging releases by using, for example, 1.0.2 or
v1.0.2 as a tag name.

If the integrity of the project is important, consider using signed
merges for integration (that is, merging signed tags), see Chapter 5,
Collaborative Development with Git, and signed pushes, see Chapter 11,
Git Administration.

Chapter 12

[383]

There are different conventions on naming releases. For example, with time-based
releases, there is a convention of naming releases after dates, such as 2015.04 (or
15.04). Then, there is a common convention of semantic versioning (http://
semver.org/) with the MAJOR.MINOR.PATCH numbering, where PATCH increases
when you are making backward-compatible bug fixes, MINOR is increased while
adding a functionality that is backward compatible, and the MAJOR version is
increased while making incompatible API changes. Even when not using a full
semantic versioning, it is common to add a third number for maintenance releases,
for example, v1.0 and v1.0.3.

Automate what is possible
You should not only have the coding standards written down in the development
documentation, but you also need to enforce them. Following these standards can be
facilitated with client-side hooks (Chapter 10, Customizing and Extending Git), and it
can be enforced with server-side hooks (Chapter 11, Git Administration).

Hooks can also help with automatically managing tickets in the issue tracker,
selecting an operation based on given triggers (patterns) in the commit message.
Hooks can also be used to protect against rewriting history.

Consider using third-party solutions, such as Gitolite or GitLab, to enforce rules for
access control. If you need code review, use appropriate tools such as Gerrit or the
pull requests of GitHub, Bitbucket, or GitLab.

Summary
These recommendations, based on the best practices of using Git as a version control
system, can really help your development and your team. You have learned the
steps on the road, starting from an idea, all the way ending with the changes being
integrated into the project. These checklists should help you develop better code.

http://semver.org/
http://semver.org/

[385]

Index
Symbols
3-way merge

performing 102
34ac2 branching point 29
.gitignore templates

reference link 93

A
advanced branching techniques 165
ancestry references 33
annotated tags 12, 28, 158
anonymous Git protocol 361, 362
attribute macros

defining 107
author

mapping 57
versus committer 54

B
bare repositories 126
binary files

identifying 97, 98
blame command 48, 50
Blob object 225
branches

about 27, 166
anonymous branches 82
branch name, changing 87
changes, discarding 111
creating 19, 20
deleting 86
Git checkout DWIM-mery 83
listing 83

long-lived branches 167
merging 20, 21
new branch, creating 80
obstacles, switching to 81
orphan branches, creating 80
purposes 166
release engineering 173
resetting 84, 85
rewinding 84, 85, 111
selecting 81
short-lived branches 171
switching 81
types 166
unpublished merge, undoing 21
workflows 173
working with 79

branches, interacting in remote repositories
about 183
automatic tag following 189
current branches, fetching 186
current branches, pushing in nonbare

remote repository 187
current branches, updating 186
default fetch refspec 187
downstream 183
fetching and pulling, versus pushing 186
fetching branches 189
fetching tags 188-190
pushing branches 190
pushing tags 190
push modes 187, 190
refspec 184-186
remote-tracking branches 184, 185
upstream 184

branches list, tracked by node
modifying 136

[386]

branches, merging
about 198
merge commit, creating 200-202
merge drivers 203
merges, signing 203
merge strategies 202
no divergence 198, 199
tags, merging 203

branch head
about 79
resetting 109
rewinding 108

branching workflow
Bugfix 373
corrections and enhancements 373
new feature 373

branch operation 26
branch points 28, 29
branch, rebasing

about 206, 207
advanced rebasing techniques 208, 209
merge, versus rebase 207
types of rebase 208

branch references 30
bugs

finding, with git bisect 50-52
built-in attributes 106
bundle

about 142
used, for updating existing

repository 145, 146
utilizing 147

C
carriage return (CR) character 330
centralized workflow

about 128, 153
advantages 128
disadvantages 128

changes
describing 377, 378
formatting 55, 56
including 55, 56
integrating 376
peer review, completing 378-380
searching, in revision 44, 45

stashing away 113
submitting 377, 378
summing up 55, 56
methods, for combining 198

changeset
applying 203
cherry-picking 206
copy, creating 204
copying 203
merge, reverting 206
revert 204, 205
series of commits, applying from

patches 205
changes examining, commit

about 65
changes not staged for commit 67
changes to be committed 66
differences, examining 68
unified diff output format 69-73
untracked files 67
working directory, status 65-68

changes upstream
publishing 153

client-side hooks
about 335
commit process hooks 337
for applying patches from e-mails 339
post-checkout hook 340
post-merge hook 340
pre-push hook 340
pre-rebase hook 339

code review (code collaboration) tool 365
collaborative workflows

about 126
centralized workflow 128
hierarchical workflow 131, 132
integration-manager workflow 130
peer-to-peer workflow 129

combined diff format 214
command line 312
command substitution 39
comments

responding to 380, 381
commit

about 25
amending 77, 78, 108
changes, examining 65

[387]

contents, matching 43
creating 62
DAG view 62, 63
faulty merge, reverting 253-255
index 63, 64
moving, to feature branch 111
removing 108
reverted merges, recovering 256-259
reverting 252, 253
selective commit 74
splitting, with reset command 110
squashing, with reset command 109

commit-msg hook 338
commit object 224, 225
commit parents 43
commit process hooks

about 337
commit-msg hook 338
post-commit hook 338
pre-commit hook 337
prepare-commit-msg hook 337, 338

committer
versus author 54

commit tools 319
commit walker downloader 139
content-addressed storage 157
contributions

summarizing 56, 57
credentials 150
credentials/password management

about 150
asking for password 150
credential helpers 152
public key authentication, for SSH 151

current push mode 194

D
data recovery

about 349
lost commit, recovering 349, 350

default branch
setting, of remote 136

detached HEAD situation 27
development workflows

augmenting 367, 368

diff
revision range notation, using in 41

diff configuration 99
diffing binary files 99, 100
diff output

configuring 101
Directed Acyclic Graph (DAG) 23, 24
directed edges 25
directed graph 24
directories

examining 118, 119
distributed version control systems

(DVCS) 25
double dot notation 37, 38
dumb protocols 363, 364

E
Easy Git (eg) 318
end-of-line conversions

identifying 97, 98
end of line (eol) characters 97
environment variables

affecting committing 230, 231
affecting global behavior 228
affecting repository locations 229, 230

external tools
for large-scale history rewriting 247

F
failed merges

conflict markers, in worktree 212, 213
differences, examining 214, 215
examining 211
git log 216
three stages, in index 213

feature branch
about 371
commits, moving to 111

file attributes 96, 97
file contents

searching 119
file history

about 46
path limiting 46
simplification 48

[388]

file identity 49
file manager integration (or graphical

shell integration) 319
files

examining 118, 119
ignoring 90-94
marking, as intentionally untracked

(ignored) 91-93
removing from history, with BFG Repo

Cleaner 247
resetting, to old version 122
re-tracking 90
transforming 102, 103
un-modifying 120, 121
un-staging 120, 121
un-tracking 90, 120, 121
viewing, at revision 58

Filesystem Hierarchy Standard (FHS) 324
filter-branch

running, without filters 241, 242
filters 241
filter types

used, for filter-branch 242, 243
using 242, 243

foreign SCM repositories
using, as remotes 149, 150

forking workflow. See peer-to-peer
workflow

G
Gerrit 264
Git

about 27
environment variables, using 227, 228
troubleshooting 351

Git attributes file 333, 334
Git, automating

about 335
client-side hooks 336
Git hook, installing 335
server-side hooks 341, 342
template, for repositories 336

git bisect
bugs, finding with 50-52

Git by example 2

Git configuration
about 322
accessing 325-327
basic client-side configuration 327, 328
command-line options 322
configuration files 323, 324
configuration files syntax 324
environment variables 322
formatting 330
merge 329
per-file configuration, with

gitattributes 332, 333
pull, configuring 329
server-side configuration 332
undo information, preserving 329
whitespace 330

Git-enforced policy
enforcing, with server-side hooks 356, 357
implementing, hooks used 356
policy violations, notifying with

client-side hooks 358
Git, extending

about 342
command aliases 343, 344
credentials helpers 346
new commands, adding 345
remote helpers 345

git filter-branch
using 244-247

git filter-branch command
filter types, defining 242-244

Git-flow 181
Git hook

installing 335
Git hosting solutions 365
gitignore files 91
gitignore templates

URL 371
Git internals

defining 224
Git objects 224-226
plumbing command 227
porcelain command 227

git-media tool
reference link 104

[389]

Git, on command line
about 312
alternative porcelain 318
auto correction, for Git commands 316
command-line completion, for Git 315, 316
command line, customizing 317
Git-aware command prompt 312-315

Git Queues(gq) 318
Git Quilt (Guilt) 240
Git repositories

anonymous Git protocol 361, 362
dumb protocols 363, 364
hooks, for implementing Git-enforced

policy 356
hosting 352
local protocol 360
managing 304
remote helpers 364
server-side hooks 352
serving 359
signed pushes 359
smart HTTP(S) protocol 362, 363
SSH protocol 360
tips and tricks, for hosting 365
tools, for managing 364

Git repositories, handling with large
binary files

about 306
binary asset folder, splitting into seperate

submodule 307
large binary files, storing outside

repository 307
Git repositories, handling with long history

about 305
shallow clones, using 305
single branch, cloning 306

Git repository management solutions 365
git stash

using 114, 115
Git submodules solution

.git files 288
changes, examining in submodule 296, 297
git submodule command 290
submodule changes upstream, sending 299
 submodules, updating after superproject

changes 294, 295

subproject, adding as submodule 291, 292
superprojects, cloning with

submodules 293
updates, from upstream of submodule 298

GNU Portability Library (Gnulib) 102
graduation branches workflow 174, 175
graphical blame 319
graphical history viewer 319
graphical interface, Git

about 318
examples 321
graphical diff tools 320, 321
graphical merge tools 320, 321
graphical tools 319

graphical tools
commit tools 319
graphical blame 319
graphical history viewer 319

H
HEAD command

about 30
FETCH_HEAD 30
ORIG_HEAD 30

HEAD pointer 27
helpers mechanism 345
hierarchical workflow

about 131
advantages 132
disadvantages 132

history
amending, without rewriting 252
interactive rebase 232, 233
last commit, amending 231, 232
rewriting 231, 265
searching 41

hook
about 335
client-side hooks 335
post hooks 335
pre hooks 335
server-side hooks 335

[390]

I
IDE integration 320
ignored files

examining 94-96
ignore patterns 17
index

about 63
about 90
resetting 109

information
updating, of remotes 135

integration branches 174
integration manager workflow

about 130
advantages 130
disadvantages 131

interactive rebase
about 77, 109, 232, 233
commits, fixing 233-236
commits, removing 233-236
commits, reordering 233-236
commits, splitting 237-239
commits, squashing 236, 237
rebased commit, testing 239

K
keyword expansion 105, 106
keyword substitution 105, 106

L
leaf nodes 25
lieutenants 131
lightweight tag 158
line-ending 330
local protocol 360
local transport 138, 139
long-lived branches

automation branches 169
graduation 167, 168
hotfix branches 169
integration 167
mob branches, for anonymous

push access 170
orphan branch trick 170

per-customer branches 169
per-deployment branches 169
per-release branches 168
per-release maintenance 168
progressive-stability 167, 168

M
maint branch 29
master branch 29
matching push mode 191
merge

undoing 112
merge commits 29
merge configuration 99
merge conflict, resolving

about 14-17
file changes, undoing 18
files, adding in bulk 17
files, removing 17

merge conflicts
about 210
avoiding 216
dealing with 218
failed merges, examining 211
files, marking as resolved 219
git-imerge 220
graphical merge tools, using 219
manual file remerging 218
merge, aborting 218
merge options 216
merges, finalizing 219
rebase conflicts, resolving 220
rerere (reuse recorded resolutions) 217
resolving 210
scriptable fixes 218
three-way merge 210, 211
version, selecting 218

mixed reset 109
multiple working directories 123

N
native Git protocol 140
nodes, DAG

leaf nodes 25
root nodes 25

[391]

notes
adding, to commit 259, 260
additional information, storing with 259
fetching 267
publishing 266, 267
retrieving 266, 267
rewriting 265
storing 260, 261
using 262-265

number of revisions
limiting 41

O
obligatory file transformations 104
offline transport, with bundles 142
old version

files, resetting to 122
OpenDocument Format (ODF) files 103
orphan branches 25
output

formatting 53
selecting 53

P
patches

exchanging 155, 156
patch management interfaces

defining 240
peer-to-peer workflow

about 129
advantages 129
disadvantages 129

plumbing commands
about 84, 227
versus porcelain commands 95

porcelain command 227
post-commit hook 338
post hooks 335
post-receive hook 355
post-update hook 356
pre-commit hook 337
predefined revision formats 53, 54
pre hooks 335
prepare-commit-msg hook 337, 338
pre-push hook 340

pre-rebase hook 339
pre-receive hook 353
Pretty Good Privacy (PGP) 265
progressive-stability branches

workflow 174, 175
project

base, deciding 372, 373
changes, preparing for submission 376
changes, splitting into logically

separate steps 373
collaboration workflow, selecting 370
generated files, tracking 370, 371
good commit message, writing 374, 375
starting 369
topic branch, working 371, 372
work, dividing into repositories 370
working 371

public key authentication 151
public repository

pushing to 153
published history

consequences, of upstream rewrite 249, 250
rewriting 248
upstream history rewrite, recovering 250

pull
undoing 112

pull request
generating 154

pushing 153
push modes

about 190
current push mode 194
matching push mode 191
simple push mode 191
upstream push mode 192, 193

push-to-update hook 354

R
rebase 249
recommendations

automating 383
defining 381
published history, changing 382
recovering possibility 381, 382
releases, numbering 382, 383
releases, tagging 382, 383

[392]

references (refs) 27
reflog shortnames 34, 35
refspec 186
release branches workflow 173
release candidates 173
remote Git repository

adding 134
remote helpers 345, 364
remote repositories

managing 132
remotes

about 28, 133
examining 133
default branch, setting of 136
foreign SCM repositories, using as 149, 150
information, updating of 135
listing 133
renaming 135

remote-tracking branches
about 28
deleting 136
upstreaming 35

remote transport helpers 147
remote URLs

modifying 135
rename detection 49
rename tracking 49
replacements mechanism

defining 268
grafts, defining 270, 271
histories, joining with git replace 269, 270
publishing 271
retrieving 271
using 267

repositories
comparing 230
history, editing with reposurgeon 248
interacting with 127
updating, bundle used 145, 146

repository maintenance 348
repository setup

about 2, 3
changes, publishing 7-10
first commit, creating 4-6
Git repository, creating 3, 4
repository, cloning 4-6

repository, updating 11
tag, creating 12, 13

repo tool
URL 304

Request For Comments (RFC) 377
reset command

about 107
commit, splitting with 110
commits, squashing with 109

reverse ancestry references 34
review

responding to 380, 381
reviewer preferences 380
revision

changes, saving in 44, 45
viewing 58

revision metadata
matching 42

revision range
for single revision 39
selecting 36
single revision, using as 36

revision range notation
using, in diff 41

revisions
excluding 38
including 38

root nodes 25

S
safer reset

about 112, 113
changes, rebasing to earlier revision 113

scripted rewrite
used, with git filter-branch 240, 241

Secure SHell protocol. See SSH protocol
selective commit

about 74
changes, selecting interactively 74, 75
creating step by step, with staging area 76
files, sending to 74

semantic versioning
URL 383

server-side hooks
about 335, 341, 342, 352, 353
post-receive hook 355

[393]

post-update hook 356
pre-receive hook 353
push-to-update hook 354
update hook 354

SHA-1 hash function 31-33
shallow clone 271
shell prompt 312
shortened SHA-1 identifier 31-33
short-lived branches

about 171
anonymous branches 172
bugfix branches 172
feature branches 171
topic branches 171

signed commits 159, 160
signed pushes 359
signed tag

about 12, 28, 157, 158
merging 160, 162
verifying 159

simple push mode 191
single revision

using, as revision range 36
single revision selection

about 29
ancestry references 33
by commit message 36

smart transports
about 140
native Git protocol 140
smart HTTP(S) protocol 141

SSH protocol 140, 360, 361
Stacked Git (StGit) 77, 240
staging area

about 115
managing 118

stash
about 115
internals 116
un-applying 117
recovering 117

state
restoring, with WIP commit 110
saving, with WIP commit 110

subfolder
transforming, into subtree

or submodule 299, 300

submodules
use cases 303

subtrees
use cases 302
versus submodules 301, 302

T
tab completion 316
tag

about 27
publishing 159

tag objects 28, 158, 224-226
tag operation 26
tag references 30
third-party subproject management

solutions 304
time-limiting options 42
tips and tricks, for hosting repositories

about 365
large nonresumable initial clone problem,

solving 367
size taken by repositories,

reducing 365, 366
smart protocols, speeding up

with pack bitmaps 366
topic branch 371
topic branches workflow

about 176
branch management 179, 180
graduation branches 177, 178

tracked files 90
tracking-related variables

GIT_TRACE 351
GIT_TRACE_PACKET 351
GIT_TRACE_PERFORMANCE 351
GIT_TRACE_SETUP 351

transport protocols
about 138
local transport 138, 139
offline transport with bundles 142
remote transport helpers 147
smart transports 140

transport relay
with remote helpers 148

tree objects 224, 225
triangular workflows 137

[394]

triple-dot notation 39, 40
troubleshooting, Git 349, 351
trunk 173
trunk branches workflow 173

U
update hook 354
upstream push mode 192, 193
user-defined revision formats 53, 54

V
version control system (VCS) 24

W
web interfaces 365
whitespace 330, 331
whole-tree commits 26
WIP commit

state, restoring with 110
state, saving with 110

workflows, branches
Git-flow 181
graduation branches workflow 174, 175
progressive-stability branches

workflow 174, 175
release branches workflow 173
security issue, fixing 182, 183
topic branches workflow 176
trunk branches workflow 173, 174

working area
cleaning 122

worktrees
about 90
managing 118

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Git Basics in Practice
	An introduction to version control and Git
	Git by example
	Repository setup
	Creating a Git repository
	Cloning the repository and creating the
first commit
	Publishing changes
	Examining history and viewing changes
	Renaming and moving files
	Updating your repository (with merge)
	Creating a tag
	Resolving a merge conflict
	Adding files in bulk and removing files
	Undoing changes to a file
	Creating a new branch
	Merging a branch (no conflicts)
	Undoing an unpublished merge

	Summary

	Chapter 2: Exploring Project History
	Directed Acyclic Graphs
	Whole-tree commits
	Branches and tags
	Branch points
	Merge commits

	Single revision selection
	HEAD – the implicit revision
	Branch and tag references
	SHA-1 and the shortened SHA-1 identifier
	Ancestry references
	Reverse ancestry references: the git
describe output
	Reflog shortnames
	Upstream of remote-tracking branches
	Selecting revision by the commit message

	Selecting the revision range
	Single revision as a revision range
	Double dot notation
	Multiple points – including and excluding revisions
	The revision range for a single revision
	Triple-dot notation

	Searching history
	Limiting the number of revisions
	Matching revision metadata
	Time-limiting options
	Matching commit contents
	Commit parents

	Searching changes in revisions
	Selecting types of change

	History of a file
	Path limiting
	History simplification
	Blame – the line-wise history of a file

	Finding bugs with git bisect
	Selecting and formatting the git log output
	Predefined and user defined output formats
	Including, formatting, and summing up changes
	Summarizing contributions
	Viewing a revision and a file at revision

	Summary

	Chapter 3: Developing with Git
	Creating a new commit
	The DAG view of creating a new commit
	The index – a staging area for commits
	Examining the changes to be committed
	The status of the working directory
	Examining differences from the last revision
	Unified Git diff format

	Selective commit
	Selecting files to commit
	Interactively selecting changes
	Creating a commit step by step

	Amending a commit

	Working with branches
	Creating a new branch
	Creating orphan branches
	Selecting and switching to a branch
	Obstacles to switching to a branch
	Anonymous branches
	Git checkout DWIM-mery

	Listing branches
	Rewinding or resetting a branch
	Deleting a branch
	Changing the branch name

	Summary

	Chapter 4: Managing Your Worktree
	Ignoring files
	Marking files as intentionally untracked
	Which types of file should be ignored?
	Listing ignored files
	Ignoring changes in tracked files

	File attributes
	Identifying binary files and end-of-line conversions
	Diff and merge configuration
	Generating diffs and binary files
	Configuring diff output
	Performing a 3-way merge

	Transforming files (content filtering)
	Obligatory file transformations

	Keyword expansion and substitution
	Other built-in attributes
	Defining attribute macros

	Fixing mistakes with the reset command
	Rewinding the branch head, softly
	Removing or amending a commit
	Squashing commits with reset

	Resetting the branch head and the index
	Splitting a commit with reset
	Saving and restoring state with the WIP commit

	Discarding changes and rewinding branch
	Moving commits to a feature branch
	Undoing a merge or a pull

	Safer reset – keeping your changes
	Rebase changes to an earlier revision

	Stashing away your changes
	Using git stash
	Stash and the staging area
	Stash internals
	Un-applying a stash
	Recovering stashes that were dropped erroneously

	Managing worktrees and the staging area
	Examining files and directories
	Searching file contents
	Un-tracking, un-staging, and un-modifying files
	Resetting a file to the old version
	Cleaning the working area

	Multiple working directories
	Summary

	Chapter 5: Collaborative Development with Git
	Collaborative workflows
	Bare repositories
	Interacting with other repositories
	The centralized workflow
	The peer-to-peer or forking workflow
	The maintainer or integration manager workflow
	The hierarchical or dictator and lieutenants workflows

	Managing remote repositories
	The origin remote
	Listing and examining remotes
	Adding a new remote
	Updating information about remotes
	Renaming remotes
	Changing the remote URLs
	Changing the list of branches tracked by remote
	Setting the default branch of remote
	Deleting remote-tracking branches

	Support for triangular workflows

	Transport protocols
	Local transport
	Smart transports
	Native Git protocol
	SSH protocol
	Smart HTTP(S) protocol

	Offline transport with bundles
	Cloning and updating with bundle
	Using bundle to update an existing repository
	Utilizing bundle to help with the initial clone

	Remote transport helpers
	Transport relay with remote helpers
	Using foreign SCM repositories as remotes

	Credentials/password management
	Asking for passwords
	Public key authentication for SSH
	Credential helpers

	Publishing your changes upstream
	Pushing to a public repository
	Generating a pull request
	Exchanging patches

	Chain of trust
	Content-addressed storage
	Lightweight, annotated, and signed tags
	Lightweight tags
	Annotated tags
	Signed tags
	Publishing tags
	Tag verification

	Signed commits
	Merging signed tags (merge tags)

	Summary

	Chapter 6: Advanced Branching Techniques
	Types and purposes of branches
	Long-running, perpetual branches
	Integration, graduation, or progressive-stability branches
	Per-release branches and per-release maintenance
	Hotfix branches for security fixes
	Per-customer or per-deployment branches
	Automation branches
	Mob branches for anonymous push access
	The orphan branch trick

	Short-lived branches
	Topic or feature branches
	Bugfix branches
	Detached HEAD – the anonymous branch

	Branching workflows and release engineering
	The release and trunk branches workflow
	The graduation, or progressive-stability branches workflow
	The topic branches workflow
	Graduation branches in a topic branch workflow
	Branch management for a release in a topic
branch workflow

	Git-flow – a successful Git branching model
	Fixing a security issue

	Interacting with branches in remote repositories
	Upstream and downstream
	Remote-tracking branches and refspec
	Remote-tracking branches
	Refspec – remote to local branch mapping specification

	Fetching and pulling versus pushing
	Pull – fetch and update current branch
	Pushing to the current branch in a nonbare remote repository
	The default fetch refspec and push modes

	Fetching and pushing branches and tags
	Fetching branches
	Fetching tags and automatic tag following
	Pushing branches and tags

	Push modes and their use
	The simple push mode – the default
	The matching push mode for maintainers
	The upstream push mode for the centralized workflow
	The current push mode for the blessed repository workflow

	Summary

	Chapter 7: Merging Changes Together
	Methods of combining changes
	Merging branches
	No divergence – fast-forward and up-to-date cases
	Creating a merge commit
	Merge strategies and their options
	Reminder – merge drivers
	Reminder – signing merges and merging tags

	Copying and applying a changeset
	Cherry-pick – creating a copy of a changeset
	Revert – undoing an effect of a commit
	Applying a series of commits from patches
	Cherry-picking and reverting a merge

	Rebasing a branch
	Merge versus rebase
	Types of rebase
	Advanced rebasing techniques

	Resolving merge conflicts
	The three-way merge
	Examining failed merges
	Conflict markers in the worktree
	Three stages in the index
	Examining differences – the combined diff format
	How do we get there: git log --merge

	Avoiding merge conflicts
	Useful merge options
	Rerere – reuse recorded resolutions

	Dealing with merge conflicts
	Aborting a merge
	Selecting ours or theirs version
	Scriptable fixes – manual file remerging
	Using graphical merge tools
	Marking files as resolved and finalizing merges
	Resolving rebase conflicts
	git-imerge – incremental merge and rebase for git

	Summary

	Chapter 8: Keeping History Clean
	An introduction to Git internals
	Git objects
	The plumbing and porcelain Git commands
	Environment variables used by Git
	Environment variables affecting global behavior
	Environment variables affecting repository locations
	Environment variables affecting committing

	Rewriting history
	Amending the last commit
	An interactive rebase
	Reordering, removing, and fixing commits
	Squashing commits
	Splitting commits
	Testing each rebased commit

	External tools – patch management interfaces
	Scripted rewrite with the git filter-branch
	Running the filter-branch without filters
	Available filter types for filter-branch and their use
	Examples of using the git filter-branch

	External tools for large-scale history rewriting
	Removing files from the history with BFG Repo Cleaner
	Editing the repository history with reposurgeon

	The perils of rewriting published history
	The consequences of upstream rewrite
	Recovering from an upstream history rewrite

	Amending history without rewriting
	Reverting a commit
	Reverting a faulty merge
	Recovering from reverted merges

	Storing additional information with notes
	Adding notes to a commit
	How notes are stored
	Other categories and uses of notes
	Rewriting history and notes
	Publishing and retrieving notes

	Using the replacements mechanism
	The replacements mechanism
	Example – joining histories with git replace
	Historical note – grafts
	Publishing and retrieving replacements

	Summary

	Chapter 9: Managing
Subprojects – Building
a Living Framework
	Managing library and framework dependencies
	Managing dependencies outside Git
	Manually importing the code into your project
	A Git subtree for embedding the subproject code
	Creating a remote for a subproject
	Adding a subproject as a subtree
	Cloning and updating superprojects with subtrees
	Getting updates from subprojects with a subtree merge
	Showing changes between a subtree and its upstream
	Sending changes to the upstream of a subtree

	The Git submodules solution: repository inside repository
	Gitlinks, .git files, and the git submodule command
	Adding a subproject as a submodule
	Cloning superprojects with submodules
	Updating submodules after superproject changes
	Examining changes in a submodule
	Getting updates from the upstream of the submodule
	Sending submodule changes upstream

	Transforming a subfolder into a subtree or submodule
	Subtrees versus submodules
	Use cases for subtrees
	Use cases for submodules
	Third-party subproject management solutions

	Managing large Git repositories
	Handling repositories with a very long history
	Using shallow clones to get truncated history
	Cloning only a single branch

	Handling repositories with large binary files
	Splitting the binary asset folder into a separate submodule
	Storing large binary files outside the repository

	Summary

	Chapter 10: Customizing and
Extending Git
	Git on the command line
	Git-aware command prompt
	Command-line completion for Git
	Autocorrection for Git commands
	Making the command line prettier
	Alternative command line

	Graphical interfaces
	Types of graphical tools
	Graphical diff and merge tools
	Graphical interface examples

	Configuring Git
	Command-line options and environment variables
	Git configuration files
	The syntax of Git configuration files
	Accessing the Git configuration
	Basic client-side configuration
	The rebase and merge setup, configuring pull
	Preserving undo information – the expiry of objects
	Formatting and whitespace
	Server-side configuration

	Per-file configuration with gitattributes

	Automating Git with hooks
	Installing a Git hook
	A template for repositories
	Client-side hooks
	Commit process hooks
	Hooks for applying patches from e-mails
	Other client-side hooks

	Server-side hooks

	Extending Git
	Command aliases for Git
	Adding new Git commands
	Credential helpers and remote helpers

	Summary

	Chapter 11: Git Administration
	Repository maintenance
	Data recovery and troubleshooting
	Recovering a lost commit
	Troubleshooting Git

	Git on the server
	Server-side hooks
	The pre-receive hook
	Push-to-update hook for pushing to nonbare repositories
	The update hook
	The post-receive hook
	The post-update hook (legacy mechanism)

	Using hooks to implement the Git-enforced policy
	Enforcing the policy with server-side hooks
	Early notices about policy violations with client-side hooks

	Signed pushes
	Serving Git repositories
	Local protocol
	SSH protocol
	Anonymous Git protocol
	Smart HTTP(S) protocol
	Dumb protocols
	Remote helpers

	Tools to manage Git repositories
	Tips and tricks for hosting repositories
	Reducing the size taken by repositories
	Speeding up smart protocols with pack bitmaps
	Solving the large nonresumable initial clone problem

	Augmenting development workflows
	Summary

	Chapter 12: Git Best Practices
	Starting a project
	Dividing work into repositories
	Selecting the collaboration workflow
	Choosing which files to keep under version control

	Working on a project
	Working on a topic branch
	Deciding what to base your work on
	Splitting changes into logically separate steps
	Writing a good commit message
	Preparing changes for submission

	Integrating changes
	Submitting and describing changes
	The art of the change review
	Responding to reviews and comments

	Other recommendations
	Don't panic, recovery is almost always possible
	Don't change the published history
	Numbering and tagging releases
	Automate what is possible

	Summary

	Index

