

DevOps Automation
Cookbook

Over 120 recipes covering key automation techniques
through code management and virtualization offered by
modern Infrastructure-as-a-Service solutions

Michael Duffy

BIRMINGHAM - MUMBAI

DevOps Automation Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-282-6

www.packtpub.com

www.packtpub.com

Credits

Author
Michael Duffy

Reviewers
Jon Auman

Tom Geudens

Sami Rönkä

Diego Woitasen

Commissioning Editor
Julian Ursell

Acquisition Editor
Reshma Raman

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Naveenkumar Jain

Copy Editor
Sneha Singh

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk Dpenha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Michael Duffy is a technology consultant who spends far too much of his time getting
excited about automation tools. Michael lives in a tiny village in Suffolk and when he isn't
reading, writing, or playing with automation and infrastructure tools, he can be found
spending as much time as he can with his family.

He runs his own consultancy, Stunt Hamster Ltd, and spends a lot of time telling clients that
DevOps is an approach rather than a job title. Stunt Hamster Ltd. has provided services to
clients as large as Telefonica O2 and BskyB and is currently working on software to ease the
pain of managing decentralized platforms.

Michael has previously written Puppet Reporting and Monitoring, published by
Packt Publishing.

This book would not have been possible without my amazing wife Bethan.
I would not have been able to complete this book without her boundless
patience, love, and understanding.

I also want to thank my fantastic daughter, Meg, and my incredible son,
Griff; you guys have patiently put up with Daddy hiding in his office and have
been a source of absolute joy to me.

One last vote of thanks must go to the editors and especially to the
dedicated band of reviewers; without you guys, this book would have
contained much more gibberish than it actually does.

About the Reviewers

Jon Auman has been a systems administrator for over 15 years with his current focus on
DevOps and WebOps methodologies. He holds certifications in Redhat, NetApp, Amazon Web
Services, and Puppet. Jon has worked for a wide range of employers like Duke University,
Analysts International, and NetApp in the U.S, as well as Mind Candy, Medicanimal.com,
Monitise, and HMRC in the UK. Jon currently runs his own consultancy named DaveOps Ltd,
in London.

He started working with DevOps tools in 2009. His favorite DevOps toolset includes Puppet,
Ansible, AWS CLI, and Jenkins.

Jon was also a reviewer of the Packt Publishing book Mastering Citrix XenServer
(ISBN 139781783287390).

Tom Geudens was given a choice by his parents at the age of 15; either become a baker or
go into IT. That Christmas, Santa brought an MSX home computer and the choice was made.
At 20, he had a Bachelor's degree in IT under his belt and joined the IT department of Colruyt,
a Belgian retailer specializing in 'Lowest Price' and doing this through automation. Recently,
he set up his own IT consultancy company, Elephant Bird Consulting, which specializes in
Resource-Oriented Computing solutions. He has worked with technologies from PL/1 to HPUX
and Linux, and has also battled distributed applications development and configuration
management issues. He is the author of the O'Reilly book Resource-Oriented Computing
with NetKernel, and blogs at http://practical-netkernel.blogspot.com/.

http://practical-netkernel.blogspot.com/

Sami Rönkä is an ICT professional with a keen interest in different automation
methodologies. His motto is "Manually doing the same thing twice is learning, doing
it three times is stupidity." He has worked in various roles in ICT from maintaining and
developing different software build automation systems in very large enterprises to data
center ramp-ups including tasks varying from racking and cabling to defining virtual networks
and high available services. He is delighted with the progress of tools and methods for using
infrastructure as a code, which really has made his life at work easier and more interesting.
He believes that changing mindsets takes time, but he knows it is worth it.

After some years of trying to find efficient routes through bureaucracy and change
management in large enterprises, he currently works with a smaller IT service provider
company aiming to give small businesses a productivity boost with lean and working
IT resources.

Diego Woitasen has more than 10 years of experience in Linux and open source
consulting industry. Diego Woitasen is (with Luis Vinay) the co-founder of flugel.it. This is
Self-denominated Infrastructure Developers, they have applied all those years of experience
in helping all sorts of companies to embrace the DevOps culture and the new movements
related with interdisciplinary cooperative working. He is focused on DevOps Engineering,
OpenStack, Linux, and Open Source.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

i

Table of Contents
Preface	 v
Chapter 1: Basic Command Line Tools	 1

Introduction	 2
Controlling network interfaces	 2
Monitoring network details with the IP command	 5
Monitoring connections using the ss command	 7
Gathering basic OS statistics	 8
Viewing historical resource usage with SAR	 12
Installing and configuring a Git client	 15
Creating an SSH key for Git	 15
Using ssh-copy-id to copy keys	 17
Creating a new Git repository	 18
Cloning an existing Git repository	 19
Checking changes into a Git repository	 20
Pushing changes to a Git remote	 21
Creating a Git branch	 23

Chapter 2: Ad Hoc Tasks with Ansible	 25
Introduction	 25
Installing an Ansible control node on Ubuntu	 27
Installing an Ansible control node on CentOS	 28
Creating an Ansible inventory	 29
Using the raw module to install python-simplejson	 31
Installing packages with Ansible	 32
Restarting services using Ansible	 34
Executing freeform commands with Ansible	 34
Managing users with Ansible	 35
Managing SSH keys with Ansible	 36

ii

Table of Contents

Chapter 3: Automatic Host builds	 39
Introduction	 39
Creating an Apt mirror using aptly	 41
Automated installation using PXE boot and a Preseed file	 46
Automating post-installation tasks	 54

Chapter 4: Virtualization with VMware ESXi	 57
Introduction	 57
Installing ESXi	 59
Installing and using the vSphere Client	 63
Allowing SSH access to ESXi	 66
Creating a new guest	 69
Allocating resources to a guest	 72
Using the ESXi command line to start, stop, and destroy guests	 73
Managing command-line snapshots	 74
Tuning the host for guest performance	 77

Chapter 5: Automation with Ansible	 79
Introduction	 79
Installing Ansible	 80
Creating a scaffold Playbook	 81
Creating a common role	 83
Creating a webserver using Ansible and Nginx	 89
Creating an application server role using Tomcat and Ansible	 96
Installing MySQL using Ansible	 103
Installing and managing HAProxy with Ansible	 108
Using ServerSpec to test your Playbook	 112

Chapter 6: Containerization with Docker	 117
Introduction	 117
Installing Docker	 119
Pulling an image from the public Docker registry	 120
Performing basic Docker operations	 122
Running a container interactively	 123
Creating a Dockerfile	 124
Running a container in detached mode	 129
Saving and restoring a container	 131
Using the host only network	 132
Running a private Docker registry	 133
Managing images with a private registry	 136

iii

Table of Contents

Chapter 7: Using Jenkins for Continuous Deployment	 139
Introduction	 139
Installing Jenkins	 141
Installing the Git plugin	 146
Installing a Jenkins slave	 150
Creating your first Jenkins job	 153
Building Docker containers using Jenkins	 159
Deploying a Java application to Tomcat with zero downtime using Ansible	 163

Chapter 8: Metric Collection with InfluxDB	 175
Introduction	 175
Installing InfluxDB	 176
Creating a new InfluxDB database	 178
Logging events with the InfluxDB REST API	 180
Gathering host statistics with Telegraf	 182
Exploring data with the InfluxDB data explorer	 184
Installing Grafana	 188
Creating dashboards with Grafana	 191

Chapter 9: Log Management	 197
Introduction	 197
Centralizing logs with Syslog	 198
Using syslog templates	 201
Managing log rotation with the Logrotate utility	 202
Installing ElasticSearch, Logstash, and Kibana	 204
Importing logs into Elasticsearch with Logstash	 208
Using Kibana queries to explore data	 211
Using Kibana queries to examine data	 219

Chapter 10: Monitoring with Sensu	 223
Introduction	 223
Installing a Sensu server	 225
Installing a Sensu client	 230
Installing check prerequisites	 233
Finding community checks	 233
Adding a DNS check	 234
Adding a disk check	 237
Adding a RAM check	 238
Adding a process check	 240
Adding a CPU check	 242

iv

Table of Contents

Creating e-mail alerts	 243
Creating SMS alerts	 246
Using Ansible to install Sensu	 249

Chapter 11: IAAS with Amazon AWS	 253
Introduction	 253
Signing up for AWS	 254
Setting up IAM	 255
Creating your first security group	 261
Creating your first EC2 host	 264
Using Elastic Load Balancers	 270
Managing DNS with route53	 274
Using Ansible to create EC2 hosts	 278

Chapter 12: Application Performance Monitoring with New Relic	 281
Introduction	 281
Signing up for a New Relic account	 282
Installing the New Relic Java agent	 284
Using the performance overview	 286
Locating performance bottlenecks with Transaction Traces	 291
Observing database performance with New Relic	 296
Release performance monitoring with New Relic	 299
Server Monitoring with New Relic	 302

Index	 305

v

Preface
DevOps has created a lot of excitement in recent years and looks certain to make the same
impact as Agile software development on the software industry. This is not entirely surprising;
DevOps has largely been born from the frustration of Agile developers trying to work within
the traditional confines of infrastructure support and delivery. Their attempts to find more
efficient ways to deliver reliable, performant, and secure software to the end user has led us
to DevOps.

DevOps initially came to people's attention in 2008 when the first DevOps day conference
was held. It was organized by Patrick Debois; it brought together like-minded people for the
first time to discuss how the delivery of infrastructure could be made more agile. Originally,
the preferred term for what eventually became DevOps was Agile Infrastructure but the
portmanteau of Development and Operations made for a friendlier Twitter tag and the term
stuck. From here, the attention and interest in DevOps grew and today there are DevOps day
conferences worldwide.

DevOps breaks down the barriers between the operations and development teams and
allows a tight collaboration between these traditionally firewalled areas. The resulting cross-
functional team will be able to react faster to the changes in the software requirements and
deliver the best of breed solutions. This has led to a renaissance in areas such as monitoring
and deployment, where the development team may once have lobbed a tarball over the
corporate firewall to the operations department to install. The developers instead created a
robust set of automated provisioning scripts to manage installations themselves. Likewise,
monitoring has started to cease to be an exercise in testing if a port is available or if the
server has run out of disk space (although this is still essential) and has become a holistic
approach that takes into account the health of the infrastructure, load on the application,
number of errors generated, and so on. This is only possible if you have a team that is truly
cross-functional and with a deep understanding of the software they manage.

Preface

vi

Defining what can be considered as a DevOps tool is incredibly difficult but the rapid
increase of companies utilizing DevOps techniques has led to an explosion of new tools with
a particular focus on automation, monitoring, and testing. Tools, such as Puppet, Chef, CF
Engine, and Ansible have grown massively in popularity, thus allowing developers to truly
define the underlying infrastructure using the code. Likewise, new monitoring tools, such as
Sensu, have appeared that take up the challenge of monitoring ephemeral infrastructures,
such as cloud-based services.

This book is different from most of the other technical cookbooks. Rather than keeping a
laser-like focus on a single technology, this cookbook serves as an introduction to many
different tools. Each chapter offers recipes that show you how to install and utilize tools that
tackle some of the key areas that a team using DevOps techniques will encounter. Using
it, you can quickly get up to speed with diverse areas, such as Automation with Ansible,
Monitoring with Sensu, and log analyses with LogStash. By doing the further reading outlined
with each recipe, you can find pointers to gain a deeper insight into these fantastic tools.

What this book covers
Chapter 1, Basic Command Line Tools, covers some basic but incredibly useful tools for
trouble shooting servers and managing code.

Chapter 2, Ad Hoc Tasks with Ansible, contains recipes that allow you to use the powerful
Ansible automation tool to run one off commands for server management.

Chapter 3, Automatic Host Builds, covers recipes that allow you to automate the build and
configuration of the most basic building block in your infrastructure servers.

Chapter 4, Virtualization with VMware ESXi, contains recipes that show how to install and use
the popular ESXi hypervisor to create, manage, and use powerful virtual servers.

Chapter 5, Automation with Ansible, covers the incredibly powerful configuration management
tool, Ansible. These recipes demonstrate how to create a powerful and reusable code to
manage the configuration of your infrastructure.

Chapter 6, Containerization with Docker, covers the increasingly popular world of
containerization. Containerization is an incredibly powerful technique for distributing
and running software and these recipes show you how to use Docker to create, run,
and maintain containers.

Chapter 7, Using Jenkins for Continuous Deployment, contains recipes that show you how
Ansible can be used with the powerful Jenkins CI tool to create an automated build and
deploy system.

Chapter 8, Metric Collection with InflxDB, demonstrates how to use the powerful Time Series
database InfluxDB to capture and analyze metrics generated by your infrastructure and
present them in attractive and easy-to-understand formats.

Preface

vii

Chapter 9, Log Management, demonstrates how to use powerful tools to centralize, collect,
and analyze valuable log data.

Chapter 10, Monitoring with Sensu, covers using this powerful, scalable, and customizable
monitoring system to demonstrate how to install, configure, and manage Sensu.

Chapter 11, IAAS with Amazon AWS, covers recipes that demonstrate how to set up
infrastructure using the powerful AWS Infrastructure-as-a-Service. It also covers topics, such
as EC2 servers, DNS management, and security.

Chapter 12, Application Performance Monitoring with New Relic, introduces the NewRelic
application performance monitoring tool and demonstrates how to use it to monitor servers,
applications, and more.

What you need for this book
For this book, you will require the following software:

ff A server running Ubuntu 14.04 or greater.

ff A desktop PC running a modern Web Browser

ff A good Text editor or IDE.

Who this book is for
If you are a systems administrator or developer who is keen to employ DevOps techniques to
help with the day-to-day complications of managing complex infrastructures, then this book is
for you.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or
any preliminary settings required for the recipe.

Preface

viii

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Where
<interface> is the name of the network interface you wish to see the details of."

A block of code is set as follows:

[loadbalancer]
haproxy01
[web]
web01
web02
web03
web04[database]
mysql01

Preface

ix

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

[loadbalancer]
haproxy01
[web]
web01:04
[database]
mysql01
[all:children]]
loadbalancer
web

Any command-line input or output is written as follows:

ansible all --sudo --ask-sudo-pass -m raw -a 'sudo apt-get -y install
python-simplejson'

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Set Enable ESXiSSH to true
and exit this screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

x

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/2826OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/2826OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/2826OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

xi

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
Basic Command Line

Tools

In this chapter, we will cover the following:

ff Controlling network interfaces

ff Monitoring network details with the IP command

ff Monitoring connections using the ss command

ff Gathering basic OS statistics

ff Viewing historical resource usage with SAR

ff Installing and configuring a Git client

ff Creating an SSH key for Git

ff Using ssh-copy-id to copy keys

ff Creating a new Git repository

ff Cloning an existing Git repository

ff Checking changes into a Git repository

ff Pushing changes to a Git remote

ff Creating a Git branch

Basic Command Line Tools

2

Introduction
Every Linux System Administrator should have a solid grasp of command-line tools, from
the very basics of navigating the file system to the ability to run diagnostic tools to examine
potential issues. The command line offers unparalleled power and flexibility along with the
ability to chain together commands to form powerful one-line scripts. Although it's quicker to
pick up and use the GUI tools as compared to their command line equivalents, few offer the
combination of concision and power that a well used combination of command-line tools
can bring.

For system administrators who utilize DevOps techniques, the command line offers the first
step on the road to automation and offers powerful abilities that can be leveraged with full
stack automation. Ansible, Puppet, and Chef are powerful tools, but sometimes it is easier to
write a small bash script to undertake a task rather than writing a custom function within a
configuration management tool. Despite automation, the command line will be a place where
you will spend the majority of your time, and remember that no matter how attractive a point
and click tool is, it's highly unlikely that you can automate it.

Most operating systems have a command line, even if they are traditionally
seen as the domain of the GUI. For instance, Windows users have the
option of using the excellent PowersShell tool to both administer and control
Windows servers.

In this chapter, we are going to cover some useful recipes that can help DevOps engineers in
their day-to-day lives. These commands will cover a wide variety of topics, covering elements
such as basic networking commands, performance metrics, and perhaps the most important
of all, the basics of using the Git Distributed Version Control Software (DVCS). Depending
on where you approach the DevOps role from, you may find that some of this chapter touches
topics that you have already covered in depth or instance, seasoned Systems Administrators
will find the items on the Net tools and system performance are familiar ground; however,
these can be valuable introductions for a developer. Likewise, developers will probably find
the section on Git to be nothing new, while, many Systems administrators may not be used to
version control systems and will benefit hugely from the items in this section.

Controlling network interfaces
Networking is one of the core elements of server management, and can be one of the more
complex to manage. This recipe will show you how to use the IP tool to discover the details of,
and make changes to, the networking setup of your server.

Chapter 1

3

Although these are ephemeral changes, the ability to apply them at the command line is very
powerful; for instance, it allows you to script the addition and removal of IP addresses. When
looking at command-line tools, it's a good idea to think of not only how they can help you now,
but also how they could be used for automation in future.

Getting ready
The IP tools come preinstalled on the major Linux distributions (RHEL and Debian based),
so additional configuration is no longer required.

How to do it…
Let's configure the network interface as follows:

1.	 Sometimes you just want to know the IP address of the server you are working on;
this can be found using the following command:
$ ip addr show

This should give you an output similar to to the following screenshot:

This output gives you the details of each interface, including the IP address, state,
MAC address, and interface options.

2.	 To narrow this down to a single interface, you can use the following command:
$ ip addr show <interface>

Where <interface> is the name of the network interface you wish to see the
details for. So, for example, to see the details of eth0 you can use the following
command:

$ ip addr show eth0

Basic Command Line Tools

4

3.	 To add a new IP4 address, you can use the ip addr add command. Note that you
also need to supply a netmask in Classless Inter-Domain Routing (CIDR) format.
The command looks like this:
$ ip addr add <IP address>/<CIDR> dev <device>

For example, to add a new RFC1918-compliant address to the interface named eth1,
you will use the following command:

$ ip addr add 10.132.1.1/24 dev eth1

4.	 You can confirm that the new address is available on the interface using the ip
addr show command:
$ ip addr show eth1

5.	 Removing an IP address is a straightforward reversal of adding it. The command is
the same as the command used to add addresses, but with the delete option:
$ ip addr del <IP address>/<CIDR> dev <device>

6.	 So, to remove the address that we just added, we can use the following command:
$ ip addr del 10.132.1.1/24 dev eth1

The IP command can be used to control the physical interfaces; thus, allowing you to
bring them up and down from the command line.

It goes without saying that you need to be careful when using
this command. Removing the only available interface on a
remote server is both possible, and if you don't have access to
a remote console, extremely inconvenient.

7.	 To bring an interface down, you can use the ip link set command, followed by the
interface name, and then the desired state. For example, you can use the following
command to enable the eth2 interface:
$ ip link set eth2 down

Conversely, to bring it back up, you can use the following command:

$ ip link set eth2 up

8.	 You can check the state of the interface using the ip command:

$ ip addr eth2

Chapter 1

5

See also
You can find further details on the ip command within its man pages. You can access these
using the following command:

$ man 8 ip

Monitoring network details with the IP
command

As well as allowing you to set your network interfaces, the IP command can also be used to
check if they are functioning correctly. One of the first places to look when trying to figure out
the main reason for any issues is the networking stack.

The following recipe will run you through how to use the IP command to check that your
network interfaces are up, and also list some basic statistics.

Getting ready
No additional configuration should be required as the IP tools come preinstalled in major
Linux distributions (RHEL and Debian based).

How to do it…
Let's monitor network details with the following IP command:

1.	 To view basic network statistics on all interfaces, you can use the ip -s link
command. When it is used without options, it should produce the following output:

Basic Command Line Tools

6

This will list the interface name and its configured options; for example, if
multicast is enabled, and its current state (up or down). The next line gives
you its MAC address, and the following lines give you some interface statistics:

By default, the columns in the ip -s link command stand for
the following:
RX/TX: bytes: The total number of bytes sent/received by this
interface
RX/TX: packets: The total number of network packets sent/
received by this interface
RX/TX: errors: The total number of transmission errors found on
this interface
RX/TX: Dropped: Total number of dropped networking packets
RX: mcast: Recieved Multicast packets
TX: collsns: Network packet collisions

2.	 Sometimes, you may want to see the output only for a single interface. You can do
this using the following command:
ip -s link ls <<interface>>

3.	 To see the statistics for the eth0 interface, you can use the following command:
ip -s link ls eth0

4.	 To see additional info, you can append an additional -s switch to the
following command:

ip -s -s link ls eth0

This produces the following output:

This expands on the previous listing and allows you to see the details of
network errors.

Chapter 1

7

Monitoring connections using the ss
command

Alongside the IP command, we also have the ss command (Socket Statistics). This command
is the perfect replacement for the netstat command and offers more functionality, it is also
faster and gives results that are more accurate.

The following recipes offer some alternatives that should allow you to replace the venerable
netstat command.

Getting ready
No additional configuration should be required as the IP tools come preinstalled in major
Linux distributions (RHEL and Debian based).

How to do it…
Let's monitor network details using the ss command:

1.	 You can use the following command to show established TCP connections:
ss -t

This should produce an output similar to the following screenshot:

2.	 Alternatively, if you want to see UDP connections rather than TCP, then you can do so
using the following command:
$ ss -u

3.	 You can use the following command to see which ports are listening for connections
on a server:
$ ss -ltn

Basic Command Line Tools

8

This displays the following listening ports in the output:

The column we are interested in is the one titled Local Address:Port. This essentially
lists the listening IP address and the TCP port it is listening on. If you see a *, it
means that the port is available on all interfaces configured on this server.

The n in the -ltn option turns off hostname lookups. This
makes the command run much faster, but you may want to omit
it if you wish to see the hostname that an interface maps to.

4.	 Alternatively, you can use the same command to list all the listening UDP
connections:

$ ss -lun

You can even combine the t and u flags to list out ALL listening ports, both UDP
and TCP:

$ ss -ltun

Gathering basic OS statistics
One of the most basic responsibilities of a DevOps engineer is to know how the various server
instances under their control are performing. It forms a key part of DevOp techniques, driving
infrastructure transparency and measuring the impact of changes, both prior to the change
and after it has taken place.

There are many tools that are available for performance monitoring, from comprehensive
Application Performance Monitoring (APM) tools through to focused monitoring for
particular applications. We'll be covering these throughout the book; however, some of the
best tools for basic server monitoring are already available with the operating system. Like
most command-line tools, the performance monitoring tools that are shipped with the OS
can be used standalone or can be chained with other commands to create complex tools.

Chapter 1

9

Getting ready
The following tools are a part of the standard install of most Linux distributions and should be
available with it, the exception being for sysstat tools, which generally need to be installed.
To install systat tools on Ubuntu, issue the following command:

sudo apt-get install sysstat

This will make several performance-monitoring tools available, in particular sar and mpstat.

How to do it…
Let's gather basic OS statistics:

1.	 To gather basic information on your server, run the following command:
vmstat 1 99999

This should produce output similar to the following screenshot:

The command shows you the system statistics every second, for the number of times
specified (99999 in this instance).

Basic Command Line Tools

10

By default, the columns in vmstat stand for the following:
Procs – r: Total number of processes waiting to run
Procs – b: Total number of busy processes
Memory – swpd: Used virtual memory
Memory – free: Free virtual memory
Memory – buff: Memory used as buffers
Memory – cache: Memory used as cache.
Swap – si: Memory swapped from disk (for every second)
Swap – so: Memory swapped to disk (for every second)
IO – bi: Blocks in (in other words) the blocks received from device (for
every second)
IO – bo: Blocks out (in other words) the blocks sent to the device (for every
second)
System – in: Interrupts per second
System – cs: Context switches
CPU – us, sy, id, wa, st: CPU user time, system time, idle time, and
wait time

2.	 The vmstat command can also be useful to show memory usage information,
particularly active and inactive memory. To show vmstat information for memory
usage, you can issue the following command:
vmstat –a 1 999

This will give you an output similar to the following screenshot:

Chapter 1

11

You can also reformat the output to be displayed in Mega Bytes using the
following command:

vmstat –a –S M 1 999

3.	 The vmstat is not limited to gathering only CPU and RAM information; it can also
be used to gather information for disks and other block devices. You can use the
following command to gather basic disk statistics:
vmstat -d 1 99999

This should produce an output that looks something like the following screenshot:

Sometimes, the output of vmstat can be slightly cluttered. You can widen the
output using the -w options. This can be used on any vmstat command, such
as the following:

vmstat -d -w

Basic Command Line Tools

12

4.	 Although vmstat is capable of displaying disk statistics, there is a tool that is
better suited to this task in the shape of iostat. The iostat is able to display
relatively detailed statistics of IO on a server in real time and can be used to reveal
performance bottlenecks caused by disk devices.

The following command will display basic statistics and just like vmstat, it will repeat
the information every n seconds for n times, where n is a user-specified input:
iostat 1 99999

This will give you an output similar to the following screenshot:

5.	 By default, iostat will show you the CPU information and disk information for all
devices. You can drill into the information that iostat produces by using some
simple options. For instance, you can show only information for device sda, and only
disk statistics by using the following options:

iostat -d -p sda 1 9999

Viewing historical resource usage with SAR
The tools that we have looked at so far are fantastic to analyze problems that are present
now; but what about when you need to look at issues that occurred in the past? For that you
can use the System Activity Report (SAR) tool. Using the sar tool, you will be able to look
back over a period of time and see how the server has been running.

This recipe will demonstrate how to install and use the sysstat tools; thus, allowing you to
examine historical system statistics.

Getting ready
For this recipe, you will need either a Debian or Red Hat based server.

Chapter 1

13

How to do it…
Let's take a look at how to install and use sysstat, also allowing you to examine
historical SAR:

1.	 Install the sysstat package using the following command for a Debian-based
distribution:
$ sudo apt-get install sysstat

We can also use the following command for a RHEL-based distribution:
$ sudo yum install sysstat

2.	 Edit the /etc/default/sysstat file with your favorite text editor and change the
following value from:
ENABLED="false"

To:

ENABLED="true"

3.	 Restart the sysstat service using the following command:
$ sudo service sysstat restart

4.	 By default, sar stats are collected every 10 minutes. The data is collected using a
simple cron job configured within /etc/cron.d/sysstat. This job can be amended
to collect the data as frequently as you require.

5.	 Use the following command to view basic CPU statistics, including wait times:
sar -u

This should produce the following output:

Basic Command Line Tools

14

Note that most sar commands can also produce output in real time
by adding a duration and repetition, much the same as the vmstat
and iostat commands. For instance, sar -u 1 30 will display
the basic CPU statistics every second for 30 seconds.

6.	 Use the following command to view the available memory statistics:
sar -r

This should produce an output that looks similar to the following screenshot:

7.	 Seeing the IO stats for individual block devices can be helpful when tracking down
performance issues. You can use the following command to view these statistics
with sar:

sar -b

This will produce an output similar to the following screenshot:

Chapter 1

15

Installing and configuring a Git client
One key element in moving towards using DevOps techniques is the ability to manage
and develop your infrastructure as code. Using version control is second nature to most
developers; however, some System Administrators have not yet fully embraced version control.
It is important that all DevOps engineers are both familiar with, and able to use a good version
control system. Using version control, you can immediately pinpoint where, when and why the
changes were introduced; it also allows you to experiment with alternative approaches using
branches of existing code.

Don't be tempted to think that version control is just for code. Version control
can also be used to contain configuration items where they exist in the form
of plain text (YAML, JSON, or INI files for instance). If you use version control to
control changes, you can immediately gain a complete record of the changes
made to that particular system.

Getting ready
For this recipe, you need an Ubuntu 14.04 server.

How to do it…
Let's install and configure a Git repository:

1.	 Install the git client using the following command:
sudo apt-get install git

2.	 Once the git client is installed, you need to configure it with your credentials:

git config --global user.email "<Your Email address>"

git config --global user.name "<Your actual name>"

Creating an SSH key for Git
Although you can maintain your code using local Git repositories, at some point you will want
to either clone from, or push to, a remote Git repository. Although it is possible to use HTTP
authentication, it can be both more secure, and certainly more convenient to use an SSH and
a key to manage your authentication.

This recipe will show you how to generate an RSA SSH key that is suitable for use with Git, and
also to authenticate against Linux servers.

Basic Command Line Tools

16

Getting ready
For this recipe, you either need a Red Hat- or Debian-based Linux host.

How to do it
Let's create an SSH key for Git:

1.	 Create a new RSA key using the ssh-keygen command:
ssh-keygen -t rsa -C "My SSH Key"

Replace "My SSH Key" with an identifying text such as My laptop. This helps
when you are managing multiple keys.

2.	 You will be prompted for a passphrase after running the preceding command;
it's highly recommended that you create one to ensure the security of your key;
otherwise, if you lose your private key, any scallywag who finds it can use it to access
your systems. You can alleviate the tedium of typing in the password using an ssh-
agent to store the details for the duration of a session.

When you use the ssh-keygen command, you will see that it produces an output
similar to the following screenshot:

Chapter 1

17

How it works…
By default, the ssh-keygen command will create a new set of files in your home directory,
within a hidden directory named .ssh. This includes both your public and private keys.
Remember, never, ever share your private key. If you suspect that it has been shared at all,
delete it and then revoke it from any system it was previously used with and create a new
key pair.

Using ssh-copy-id to copy keys
Your SSH key can be used to authenticate yourself to a Linux server, and although you can
manually copy SSH keys onto the servers you control, there are easier ways to manage them.
Using the ssh-copy-id command allows you to easily copy your public key onto a server,
which can be valuable when managing a great number of servers.

Getting ready
For this recipe, either you will need a Red Hat- or Debian-based Linux host.

How to do it…
Using ssh-copy-id only requires a single command to copy a public key to a target
server. For instance, to copy my SSH key to a server called testserver, you can use
the following command:

ssh-copy-id testserver

How it works…
The ssh-copy-id command logs onto a server using another authentication method
(normally a password). It then checks the permissions of the user's .ssh directory and
copies the new key into the authorized_keys file.

See also
You can find further details of the ssh-copy-id command from the Linux man pages;
you can invoke them using the command man ssh-copy-id.

Basic Command Line Tools

18

Downloading the example code
You can download the example code files from your account at http://
www.packtpub.com for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed
directly to you.

Creating a new Git repository
The very first step for any new project should be to create a Git repository to hold your source
code so that you can track changes from the outset. Unlike centralized version control
systems such as SVN, Git allows you to easily create and add to the new repository without
needing a centralized server to hold it.

This recipe will show you how to create a new Git repository that is ready for content to
be added.

Getting ready
For this recipe, you will need either a Red Hat- or Debian-based Linux host with a Git
client installed.

How to do it…
To create a new Git repository, follow these steps:

1.	 Create a new directory to contain your project in:
mkdir ~/projects/newproject

2.	 Use the git init command to initialize the new project:

git init ~/projects/newproject

How it works…
The git init command creates a directory called .git within the directory of your project.
This directory contains all the the data required for Git to track content. Any changes made to
the configuration for this repository will be contained within this directory.

See also
You can find more details on how the git init command works at:

https://git-scm.com/docs/git-init

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://git-scm.com/docs/git-init

Chapter 1

19

Cloning an existing Git repository
Quite often, you'll want to clone existing code to work on it. In fact, this is probably something
you are going to do more often than creating a new repository. Much like developers, DevOps
engineers spend more time collaborating on existing code rather than creating brand
new code.

Getting ready
For this recipe, you need either a Red Hat- or Debian-based Linux host with a Git client installed.

How to do it…
Let's start cloning an existing repository:

1.	 Change your directory into the one you want to clone the existing project into.

2.	 Use the git clone command to clone your chosen repository:
$ git clone <GIT URL>

This should give you an output similar to the following screenshot:

3.	 Once it's cloned, you can pull any changes made by other users using the git pull
command in the working directory:

$ git pull

This will connect you to the remote repository and pull any changes down to your
local repository.

How it works…
The git clone command replicates the remote repository from a remote location to your
local directory. This includes all branches and history; it's a complete copy of the repository.
Once you've cloned it locally, you can branch, check in changes, and view history, all without
the need to communicate with the remote again.

Basic Command Line Tools

20

See also
You can find more options of how to use Git clone at https://git-scm.com/docs/git-
clone.

Checking changes into a Git repository
Once you have worked on your code, you'll want to check your changes into your local
repository. This is the first step in propagating your change further, as you need to update
your local copy of the repository before you can push the changes for other users to view.

This recipe will tell you how to commit changes to your local Git repository.

Getting ready
For this recipe, you need either a Red Hat- or Debian-based Linux host.

How to do it…
Let's make changes into our local Git repository:

1.	 Change the directory into the one you want to use for your project.

2.	 Add any new files to the git staging area:
git add .

This will add new files to the working folder (including
folders and contents) to your commit. You can be more
specific and add individual files if you wish.

3.	 Commit the new files and changes to the repository:

git commit -am "An interesting and illuminating check in message"

The 'a' option means 'all'; this essentially means that you are committing all changes in
this commit, and the m option means 'message', and allows you to add a message explaining
your commit.

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone

Chapter 1

21

How it works…
The preceding commands carry out two different tasks: the first adds new files to the change
set, and the second adds any changes to the change set; it also commits them with an
appropriate message. The changes exist within the Git staging area until you commit them.
The best way to think of the staging area is as a buffer between the codebase and your
changes. You can chuck away your Git stage at any point without affecting the branch
you are currently working on.

See also
You can find more details on how to changes into Git at https://git-scm.com/docs/
git-add.

Pushing changes to a Git remote
At some point, you're going to want to push your local repository to a remote repository. This
can either be to ensure that you have a remote backup in case you accidentally drop your
laptop into a car crusher, or ideally because you want to share your insanely good code with
other people. Either way, it's a straightforward command.

The most popular Git remote is probably Github. Github is a SAAS Git
repository and offers a free account option for public repositories. If you want
your code to be private, there are paid options available. You can find out
more at http://www.github.com.

Getting ready
For this recipe, you need a Red Hat- or Debian-based Linux host.

How to do it…
1.	 Configure your remote:

git remote add origin << origin address >>

2.	 Verify the remote:
git remote -v

https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add
http://www.github.com

Basic Command Line Tools

22

This should produce output similar to the following screenshot:

3.	 Push your remote changes using the git push command:

git push origin master

This should produce an output similar to the following screenshot:

It's possible that you may have several remotes configured for a single
repository. In such a case, you can easily push to the correct remote
by specifying it via a name, such as with the following command: git
push github master.

How it works…
The git push command is essentially the opposite of the git pull command; it takes the
contents of your local Git repository and pushes any changes that don't exist on the remote to.
The git pull command, pushes any and all history as well, so what you have locally will also
exist, in its entirety, on the remote.

See also
You can find more about pushing changes to a remote at https://git-scm.com/book/
en/v2/Git-Basics-Working-with-Remotes.

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

Chapter 1

23

Creating a Git branch
Branching in Git is incredibly powerful and easy to use because operations are performed
locally. It's not only easy but also highly recommended to operate on any major changes within
a branch. You can use local branches to play with ideas, experiment, and generally mess
around, all without affecting anyone else's changes. Once you've concluded your work, you
can easily push the branch to the remote and issue a pull request to merge your changes
into the main branch or if the experiment went nowhere, delete the branch without pushing
the changes remotely.

Getting ready
For this recipe, you need either a Red Hat- or Debian-based Linux host.

How to do it…
Let's create a Git branch:

1.	 Ensure that the repository is cloned locally using the git clone command and
change your working directory into the checked out directory.

2.	 Issue the branch command to both create and switch to a new branch of the code:
$ git checkout -b <branchname>

3.	 Go ahead and make some changes to your code, and when you are finished, use the
git commit command to commit your changes. Remember, you are committing to
your own branch, so your original code held in the master branch is still safe.

4.	 Once you've made your changes and are happy for them to be merged into the
main code base, you need to switch back to the master branch. To switch back to
a branch, you can use the git checkout command and the branch you wish to
switch to; for instance, to switch back to the master branch, use the following:
git checkout master

5.	 Once you have rechecked the master branch, you can merge your code using the
git merge command. This will take the branch you specify and merge the code
into the branch that you have currently checked out. You can issue a merge using
the following command:
$ git merge <branchname>

Basic Command Line Tools

24

This should produce an output like the following screenshot:

You may run into a merge conflict occasionally; this essentially
means that you have tried to insert a change that clashes with
another developer's change. If this happens, you can invoke the
git-mergetool, which will help you resolve the conflict by
choosing which code is kept with the merge.

Once you have merged the branch, remember to both commit your changes and push
them to a remote (if you have one).

6.	 Once you have finished with a branch, you can delete it using the following command:

$ git branch -d <branchname>

This will remove the branch from your Git repository.

How it works…
The git checkout -b command creates a new branch of the code from wherever you
are in the current branch (you can easily branch from a branch). This essentially tracks
any changes from the existing point of the branch, rather than copying all the existing code
into the new branch; thus, making it relatively efficient to create branches from a space
perspective. Any change that you make within the branch, stays within the branch until you
merge them.

The git merge command takes the two branches and compares them for changes. As long
as no merge conflicts are found, Git takes the changes from the first branch and copies them
into the second.

See also
You can find more details of Git branching at https://git-scm.com/docs/git-branch.

https://git-scm.com/docs/git-branch

25

2
Ad Hoc Tasks

with Ansible

In this chapter, we are going to cover the following recipes:

ff Installing an Ansible control node on Ubuntu
ff Installing an Ansible control node on CentOS
ff Creating an Ansible inventory
ff Using the raw module to install python-simplejson
ff Installing packages with Ansible
ff Restarting services using Ansible
ff Executing freeform commands with Ansible
ff Managing users with Ansible
ff Managing SSH keys with Ansible

Introduction
There is a growing number of automation tools available to DevOps Engineers, each with
its individual strengths and weaknesses. Puppet, Chef, SaltStack, Ansible; the list seems to
grow on a daily basis, as do the capabilities that they offer. Configuration management has
become one of the core techniques that help define DevOps engineering, and is one of the
key benefits of adding DevOps techniques to a team.

Configuration management is not a new concept, and there have been various tools to
support automatic configuration management, with the granddaddy of them all being
CFEngine. First developed by Mark Burgess in 1993 to solve the problems of managing his
own infrastructure, CFEngine has since grown to be a fully featured commercial product used
by a great number of companies.

Ad Hoc Tasks with Ansible

26

CFEngine has inspired many features that more recent tools use, and Mark Burgess has
written a great deal on the subject of configuration management and delivery of reliable
infrastructure, and is influential in the growing discussion around the best techniques to use.

At its most basic, a configuration management tool should be able to deploy elements of an
infrastructure using code to define units of configuration. It should allow an administrator the
ability to run the tool multiple times and always end up with the same configuration, allowing
for reliable software and configuration releases to multiple environments. Many tools have
taken this a step further and embraced the concept of idempotency. This means that if you
run the tool multiple times, it will only perform the steps required to bring a target node into
a declared state and will not perform actions that have already been applied in previous
executions. For example, an idempotent tool will not restart a service unless a configuration
change indicates that it needs to be done.

Due to the wide variety of tools that are now available, we have a broad choice to pick from,
and as with any other tool, its important to understand the strengths and weaknesses of each
one. I have chosen Ansible primarily for it's ease of use, simplicity of deployment, and it's
ability to be used not only for configuration management, but also for software deployments,
allowing you to use a single tool to control various elements of your infrastructure. That is
not to say that other configuration management tools do not have some unique features that
Ansible does not; for instance, Ansible posses no reporting features unless you purchase
a subscription of the commercial Ansible product, Ansible Tower. This feature is baked into
Puppet with or without a commercial add-on.

Ansible is relatively unique amongst many configuration management tools in that it is
designed without the concept of a centralized server to manage it. All operations from where
the Ansible code is executed to the target node take place over SSH connections. This
makes Ansible relatively simple to implement, as most networks already have a mechanism
that gives SSH access to hosts, either from the corporate desktop, or quite often, from a
designated jump server. Most users can be up and running using Ansible quickly if they use
an existing communication layer; you don't even need to write any code, as you can use
Ansible to run the ad-hoc tasks.

When you use Ansible to run ad-hoc tasks, you add a powerful tool to your system
administration repertoire. Although you can use tools such as Csshx (https://code.
google.com/p/csshx/) to control simultaneous terminals, it doesn't scale well beyond ten
machines or so (unless your eyesight is far better than mine!).

Ansible ad-hoc tasks allow you to perform complex operations within a single line using the
Ansible configuration language. This allows you to reduce the time it takes to run a command
against multiple machines and use an inventory with groups; it also allows you to target the
servers that you specifically want to run the command against.

https://code.google.com/p/csshx/
https://code.google.com/p/csshx/

Chapter 2

27

Installing an Ansible control node on Ubuntu
Ansible has a very slim installation; there is no database, no custom daemons, no queues,
or any other additional software required. You simply install a set of command-line tools that
allow you to work with the Ansible code.

You should put some thought into choosing your control machine. Although
it's feasible to run Ansible straight from your laptop, it's probably not a good
idea once you have more than one person working with the code base. Ideally,
you can create a small server that you can use to run the Ansible code and
then you can add safeguards around who can log in and use the tool.

Getting ready
For this recipe, you need an instance/install of Ubuntu 14.04.

How to do it…
There is a Personal Package Archive (PPA) that is available for installation of ansible on
Ubuntu; you can use the following steps to install the latest stable release (1.9.4 at the time
of writing):

1.	 First, you need to install the PPA repository on the Ansible node:
$ sudo apt-add-repository ppa:ansible/ansible

You may be prompted to add the repository; simply hit enter if you are.

2.	 Now you have the PPA repository installed, you need to update the apt repositories
with the following command:
$ sudo apt-get update

3.	 You can now install Ansible using the following command:
$ sudo apt-get install ansible

4.	 You can test if Ansible is installed correctly using the version switch, as shown in the
following example:

$ ansible --version

This should return the version of Ansible that you have installed.

Ad Hoc Tasks with Ansible

28

See also
You can find out more about how to set up the Ansible control node using the Ansible
documentation at http://docs.ansible.com/intro_installation.html.

Installing an Ansible control node on CentOS
Ansible can be installed on many different operating systems and can run equally well on a
Red Hat-based Linux distribution as it can on Ubuntu. This recipe will show you how to install
Ansible on a CentOS 7 server.

Getting ready
For this recipe, you need an instance of CentOS 7.

How to do it…
Let's install an Ansible control node on CentOS:

1.	 We need to install the Extra Packages for Enterprise Linux (EPEL) repository before
we install Ansible. You can install it with the following command:
$ sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-
release-latest-7.noarch.rpm

2.	 Install Ansible using the following command:
$ sudo yum install ansible

3.	 You can test if Ansible is installed correctly using the version switch, as shown in the
following example:

$ ansible --version

This should return the version of Ansible that you have installed.

See also
You can find out more about how to set up the Ansible control node using the Ansible
documentation at http://docs.ansible.com/intro_installation.html.

http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/intro_installation.html

Chapter 2

29

Creating an Ansible inventory
Every action you take with Ansible is applied to an item in your inventory. The Ansible inventory
is essentially a catalog that is used to record both target nodes and a group with which you
can map a node to the role it is going to assume.

Getting ready
For this recipe, you need to have Ansible installed on the machine you intend to use as a
control node and a target node to run your actions against. The examples use six different
target hosts, but this is not mandatory; all you need to do is simply adjust the inventory to
match your requirements.

How to do it…
The inventory file is formatted as an ini file and is essentially a simple text file that can store
your catalog. Let's assume that we have a small infrastructure that resembles the following:

Function Name
haproxy haproxy01

httpd web01 through to web04
mysql mysql01

Remember, adjust the preceding list to reflect your particular infrastructure.

Depending on how you have installed Ansible, you may find that there is an
example file already at that location. If the file is present, simply comment out
or remove the content.

Let's create our first Ansible inventory. Using your favorite editor, edit the file located at /etc/
ansible called hosts:

1.	 Let's start by creating a basic inventory. Insert the following code:
haproxy01
web01
web02
web03
web04
mysql01

Ensure that the names that you enter into your inventory can be resolved by
their names, either using DNS or a host's file entry.

Ad Hoc Tasks with Ansible

30

2.	 That's all that is required for a basic Ansible inventory file; however, despite having
different names, from Ansible's point of view these are all part of the same group.
Groups allow you to differentiate between different collections of servers, and in
particular they allow you to apply different commands to different groups of servers.
Let's alter our Ansible inventory to add some groups; this is done using a pair of
brackets within which you can insert your group name. Alter your Ansible inventory to
look like the following example:
[loadbalancer]
haproxy01
[web]
web01
web02
web03
web04[database]
mysql01

3.	 We now have an inventory file that can be used to control our hosts using Ansible;
however, we have lost the ability to send commands to all hosts at once due to
grouping. For that, we can add a final group that is, in fact, a group of groups. This will
take our groups and form a new group that includes all of the groups in once place,
allowing us to easily manipulate all our hosts at once, whilst still retaining the ability
to distinguish between individual groups of nodes. To accomplish this, open your
Ansible inventory and add the following to the bottom of the file:
[all:children]]
loadbalancer
web
database

4.	 The children keyword signifies that the entries that belong to this group are, in
fact, groups themselves. You can use the children keyword to make sub-collections
and not just collect all groups. For instance, if you have two different data centers,
you can use groups called [dca:children] and [dcb:children] to list the
appropriate servers under each.

5.	 We now have everything that we need to address our servers, but there is one last
trick left to make it more compact and readable. Ansible inventory files understand
the concept of ranges, and since our servers have a predictable pattern, we can use
this to remove some of the entries and Do not repeat yourself (DRY) the file up a
little. Again, open the file in /etc/ansible/hosts and change the code to reflect
the following:

[loadbalancer]
haproxy01
[web]
web01:04

Chapter 2

31

[database]
mysql01
[all:children]]
loadbalancer
web

As you can see, we have replaced the four manual entries with a range; very useful
when you have to manage a large infrastructure.

Although it's recommended, you don't need to install the inventory into /
etc/ansible - you can have it anywhere and then use the -i option
on the Ansible command to point to its actual location. This makes it
easier to package the inventories along with Playbooks.

See also
You can find out more about the Ansible inventory at the Ansible documentation site; the
following link in particular contains some interesting details at http://docs.ansible.
com/intro_inventory.html.

Using the raw module to install
python-simplejson

Ansible has very few dependencies; however, every managed node requires the python-
simplejson package to be installed to allow full functionality. Luckily, Ansible has a raw
module, which allows you to use Ansible in a limited fashion to manage nodes. Generally
speaking, this should be used as a one-trick pony, using it to install python-simplejson,
but it is worth keeping in mind if you ever need to perform the management of servers that
might not be able to have this package installed for some reason.

An Ansible module is essentially a type of plugin that extends the functionality
of Ansible. You can perform actions such as installing packages, restarting
networks, and much more using modules. You can find a list of core Ansible
at http://docs.ansible.com/ansible/modules_by_category.
html.

Getting ready
All you need to use in this recipe is a configured Ansible control node and an Ansible inventory
describing your target nodes.

http://docs.ansible.com/intro_inventory.html
http://docs.ansible.com/intro_inventory.html
http://docs.ansible.com/ansible/modules_by_category.html
http://docs.ansible.com/ansible/modules_by_category.html

Ad Hoc Tasks with Ansible

32

How to do it…
Let's use a raw module to install python-simplejson:

1.	 Use the following command to install the simple-python module:
ansible all --sudo --ask-sudo-pass -m raw -a 'sudo apt-get -y
install python-simplejson'

In the preceding command, we have used several options. The first two, --sudo and
--ask-sudo-pass, tell Ansible that we are employing a user that needs to invoke
sudo to issue some of the commands and using --ask-sudo-pass prompts us for
the password to pass onto sudo. The -m switch tells Ansible which module we wish
to use; in this case, the raw module. Finally, the -a switch is the argument we wish to
send to the module; in this case, the command to install the python-simplejson
package.

You can find further information about the switches that
Ansible supports using the command ansible --help.

2.	 Alternatively, if you manage a CentOS server, you can use the raw module to install
the python-simplejson package on these servers using the following command:

ansible all --sudo --ask-sudo-pass -m raw -a 'sudo yum -y install
python-simplejson'

See also
You can find the details of the raw module at http://docs.ansible.com/raw_module.
html.

Installing packages with Ansible
Sometimes you need to install a package without using full-blown automation. The reasons
may vary, but quite often this can be when you need to get a software patch out right now.
However, most times this will be to patch an urgent security issue that cannot wait for a full-
blown configuration management release.

If you do use this recipe to install software, make sure that you add the
package to the subsequent configuration management. Otherwise, you will
end up with a potentially inconsistent state, and even worse, the specter of
Ansible rolling back a patch if a package is defined as a certain version within
an Ansible Playbook.

http://docs.ansible.com/raw_module.html
http://docs.ansible.com/raw_module.html

Chapter 2

33

Getting ready
For this recipe, you will need to have a configured Ansible inventory. If you haven't already
configured one, use the recipe in this chapter as a guide to configure it. You will also need
either a Centos or an Ubuntu server as a target.

How to do it...
Let's install packages with Ansible:

1.	 To install a package on an Ubuntu server we can make use of the apt module. When
you specify a module as part of an ad hoc command, you will have access to all the
features within that particular module. The following example installs the httpd
package on the [web] group within your Ansible inventory:
ansible web -m apt -a "name=apache2 state=present"

You can find more details of Ansible modules using the ansible-
doc command. For instance, ansible-doc apt will give you
the full details of the apt module.

2.	 Alternatively, you might want to use this technique to install a certain version of a
package. The next example commands every node to install a certain version of
Bash:
$ ansible all -m apt -a "name=bash=4.3 state=present"

3.	 You can even use the apt module to ask the target nodes to update all installed
software using the following command:
$ ansible all -m apt -a "upgrade=dist"

4.	 You can use the yum module to install software on RHEL-based machines using the
following command:
$ ansible all -m yum -a "name=httpd state=present"

5.	 Just like the example for Ubuntu servers, you can use Ansible to update all the
packages on your RHEL-based servers:

$ ansible all -m yum -a "name=* state=latest"

See also
ff You can find more details of the Ansible apt module, including the available modules,

at http://docs.ansible.com/apt_module.html

ff You can find more details of the Yum module at http://docs.ansible.com/
ansible/yum_module.html

http://docs.ansible.com/apt_module.html
http://docs.ansible.com/ansible/yum_module.html
http://docs.ansible.com/ansible/yum_module.html

Ad Hoc Tasks with Ansible

34

Restarting services using Ansible
Now that we have defined our inventory, we are ready to use Ansible to perform actions.
Arguably, one of the most important adhoc actions you can take is to restart services on
target nodes. At first, this might seem a bit of an overkill compared to simply logging on to the
server and doing it, but when you realize that this action can be scaled anywhere from one to
one million servers, its power becomes apparent.

Getting ready
You'll need an inventory file before you try this, so if you have not got it already, go ahead and
set one up. The following examples are based on the inventory set out in the preceding recipe,
so you'll need to change the examples to match your environments.

How to do it…
To restart a service, we can use the Ansible service module. This supports various activities
such as starting, stopping, and restarting services:

ff For example, issue the following command to restart MySQL:
ansible mysql -m service -a "name=mysql state=restarted"

ff You can also use the service module to stop a service:
ansible mysql -m service -a "name=mysql state=stopped""

ff Alternatively, you can also use the service module to start a service:

ansible mysql -m service -a "name=mysql state=started""

See also
You can find more details about the service module from the Ansible documentation at
http://docs.ansible.com/service_module.html.

Executing freeform commands with Ansible
Sometimes, you need to be able to run actual shell commands on a range of servers. An
excellent example will be to reboot some nodes. This is not something that you would put
into your automation stack, but at the same time, it is something you would like to be able
to leverage your automation tool to do. Ansible enables you to do this by sending arbitrary
commands to a collection of servers.

http://docs.ansible.com/service_module.html

Chapter 2

35

Getting ready
You'll need to an inventory file before you try this, so if you don't have it already, go ahead and
set one up. You can use the recipe of this chapter, Creating an Ansible inventory, as a guide.

How to do it…
The command is simple and takes the following form:

ansible <ansible group> -a "<shell command>"

For example, you can issue the following command to reboot all the members of the db group:

ansible mysql -a "reboot -now"

It's important to keep an eye on parallelism when you have many hosts. By
default, Ansible will send the command to five servers. By adding a -f flag to
any command in this chapter, you can increase or decrease this number.

Managing users with Ansible
There are times when you might want to manage users on multiple nodes manually. This may
be to fit in with a user creation process that already exists, or to remove a user in a hurry if you
find out that they need to have their access revoked. Either way, you can use Ansible ad-hoc
commands to add, amend, and delete users across a large number of nodes.

Getting ready
All you need to use for this recipe is a configured Ansible control node and an Ansible
inventory describing your target nodes.

How to do it…
Let's configure ansible user to manage some users:

1.	 You can use the following command to add a user named gduffy to a group called
users on every node within your Ansible inventory:
$ ansible all -m user -a "name=gduffy" comment="Griff Duffy"
group=users password="amadeuppassword"

Ad Hoc Tasks with Ansible

36

2.	 We can also use Ansible to remove users. Issue the following command from your
control node to remove the user gduffy from every database node defined in your
Ansible inventory:
ansible db -m user -a "name=gduffy" state=absent remove=yes"

3.	 We can also easily amend users. Issue the following command from your control
node to change the user Beth to use the Korn shell and to change her home directory
to /mnt/externalhome on all nodes:

ansible all -m user -a "name=beth shell=/bin/ksh home=/mnt/
externalhome"

See also
The preceding examples make use of the Ansible User module. You can find the
documentation for this module at http://docs.ansible.com/user_module.html.

Managing SSH keys with Ansible
One of the most tedious administration tasks can be managing user keys. Although tools such
as ssh-copy-id make it easy to copy your key to single servers, it can be a taller order to
copy them out to several hundred or even a few thousand servers. Ansible makes this task
exceptionally easy and allows you to mass-revoke keys when you need to ensure that access
has been removed for users across a large server estate.

Getting ready
All you need to use for this recipe is a configured Ansible control node and an Ansible
inventory describing your target nodes. You should also have a SSH key, both public and
private that you wish to manage.

How to do it...
Let's use SSH keys to manage Ansible:

1.	 The first thing we might want to do is create a user and simultaneously create a key
for them. This is especially useful if you use a network jump box, as it means that you
have no dependency on the user supplying a key; it's an integral part of the process.
Run the following command to create a user called Meg with an associated key:
ansible all -m user -a "name=meg generate_ssh_key=yes"

http://docs.ansible.com/user_module.html

Chapter 2

37

2.	 Often, a user either has an existing key they wish to use, or needs to change an
installed key. The following command will allow you to attach a key to a specified
account. This assumes that your key is located in a directory called keys within the
working directory from which you run the following command:
ansible all -m copy -a "src=keys/id_rsa dest="/home/beth/.ssh/id_
rsa mode=0600

3.	 Once a user has their Private key setup, you need to push their public key out to each
and every server that they wish to access. The following command adds my public key
to all web servers defined within the Ansible inventory. This uses the lookup Ansible
function to read the local key and send it to the remote nodes:

ansible web_servers -m authorized_key -a "user=michael key="{{
lookup('file', '/home/michael/.ssh/id_rsa.pub') }}"

See also
The preceding examples use a mix of Ansible modules to achieve the end result. You can
find the documentation for the following modules at:

ff User module: http://docs.ansible.com/user_module.html

ff Copy module: http://docs.ansible.com/copy_module.html

ff Authorized_key module: http://docs.ansible.com/authorized_key_
module.html

http://docs.ansible.com/user_module.html
http://docs.ansible.com/copy_module.html
http://docs.ansible.com/authorized_key_module.html
http://docs.ansible.com/authorized_key_module.html

Chapter 3

39

3
Automatic Host builds

In this chapter, we are going to cover the following topics:

ff Creating an Apt mirror using aptly

ff Automated installation using PXE boot and a preseed file

ff Automating post-installation tasks

Introduction
Building new hosts is one of the most basic tasks a DevOps engineer can undertake.
Traditionally speaking, this used to be a manual task involving the mounting of install media,
navigating through menus, and inputting the correct values at prompts. Whether you are
building virtual hosts or physical servers, automation can bring about some fantastic
changes in both speed and reliability of builds. Regardless of whether you are creating one
or one-hundred hosts, you can be sure that with automation, your servers will be configured
exactly how you want them to be.

If you are working in a completely virtual environment then this is a problem that you may
have already solved; indeed, a driver for many organizations to move to virtualization was in
part to solve this very issue. However, many organizations are still using bare metal servers
either due to performance or policy constraints, but using bare metal does not mean that you
cannot automate.

Automatic Host builds

40

Once you have automatic host builds working, it can bring some advantages that you may
not have considered at first, and this can make profound changes to how you manage your
infrastructure. Take for instance, the nightmare scenario that every Systems administrator
dreads, an intrusion into your network where the extent of breach is difficult to ascertain.
This is a potentially disastrous issue, as virtually every affected server must naturally be
considered hopelessly compromised. In serious cases, this can encompass hundreds of
servers and can even render the disaster recovery (DR) site compromised, depending on
how you replicate to it.

This may not be as far-fetched as you first imagine. Over the past few years,
companies such as Sony, Avid Media, and Gemalto have been implicated
in hacks where the attacker has attained wide-reaching access to their
networks. When something like this occurs, it's a long and expensive process
to regain trust in your own systems.

At this point, you generally have only one option, and that's to quarantine and rebuild the
servers. This can be a serious investment in man-hours if you have to build more than four or
five hosts by hand. The average manual install of an Ubuntu server can take tens of button
clicks and many prompts to be filled in correctly and accurately. Rebuilding a modest network
of ten servers, just to the basic OS level can tie up a technician for a considerable amount
of time; there's only so many tasks that you can make parallel in a manual install. In this
situation, having a tried and tested way to install hosts automatically will give the poor DevOps
engineer the ability to rebuild their hosts in a matter of minutes, leaving plenty of time to
examine logs, secure firewalls, and of course, have a stiff drink to recover his nerves.

This is an extreme example, but you can also look at the gains that automation brings in
terms of flexibility. For instance, automatic host builds are a key part of any form of elastically
scalable service, regardless of whether it is hosted in your own infrastructure or as part of a
cloud service. You can also use automatic host builds to enable developers to create adhoc
development environments easily. This can fit nicely with the use of software such as Vagrant,
allowing you to create base images for developers that can match the production hosts. This
allows one of the key concepts of a DevOps-driven infrastructure, which is that environments
are matched as exactly as possible, from the developer's desktop all the way through to the
running service. If nothing else, this will sharply reduce the familiar refrain of "It works on my
system" when trying to diagnose an issue.

Building hosts automatically has become increasingly easy in recent years, and both Ubuntu-
and Red Hat-based distributions have developed simple yet powerful ways of creating
automated installation scripts. Both distributions have arrived at a similar solution of using a
simple manifest that allows predetermined input for the underlying installer.

Chapter 3

41

In this chapter, we are going to look at the Debian and by extension at the Ubuntu system
for host builds: Preseed. Using Preseed, you can pre-fill the answers to the questions that
are normally asked at the time of install. As it is a simple manifest, you can use it to form a
part of a network-based automated build, or at a pinch, you can also embed it on a CD and
boot hosts that way. The end result should be the same regardless of the method used. In
this chapter, we are going to focus on the network build of bare metal systems, as this is the
gold standard you should aim for; allowing for quick, easy, and consistent builds with very
little effort. To do this, we are going to create the building blocks of an automated build, a
repository to fetch packages from, a server that can service PXE clients, and finally, we are
going to take a look at an example Preseed file.

Creating an Apt mirror using aptly
At its most basic, an apt repository is a simple web server that serves both packages and
more importantly, it serves the metadata that describes the contents of the repository.
Although you can use the repositories that Ubuntu provides to build your hosts, you will hit two
issues. The first being that the packages are updated all the time, meaning a host you build
this week may not be the same as a host that was built the week before. The second issue
is that depending on your build, you could potentially use a lot of bandwidth. If you have five
hundred hosts and you suddenly need to update Bash on all of them due to a security issue,
you are going to use a huge amount of bandwidth. It's a much better practice to keep a mirror
of the official repository, allowing you to update it when you feel comfortable and allowing your
hosts to install new packages at the speed of your local network.

There are several ways in which you can manage local repositories and it can be done using a
simple set of Bash scripts. However, you want to ensure that the method you use allows you to
easily merge in the upstream changes in a managed fashion, gives you an easy way to publish
new repositories, and allows easy management of your existing repositories.

Enter aptly (http://www.aptly.info). The aptly is an open source project written by
the talented Andrey Smirnov, and makes managing mirroring repositories easy. It also offers
advanced features such as snapshots, merging, and publishing. We're going to use aptly
to create a mirror of the Ubuntu package repos, which will allow us to use a local repository
to make package installations much quicker and also offers us a fixed set of package versions
to install.

Getting ready
For this recipe, you should start with a clean install of Ubuntu 14.04. You'll also need a
substantial quantity of storage space; I recommend putting aside at least 50GB for the
Ubuntu repositories. If you are short of space or you want to have a more centralized
management of the storage, there is no reason why it could not reside on a network-attached
storage, such as an NFS device.

http://www.aptly.info

Automatic Host builds

42

How to do it…
Let's create a repository using the aptly tool:

1.	 First of all, you need to install the aptly package. To achieve this, edit your apt
sources list in /etc/apt/sources.list.d and add the following line:
deb http://repo.aptly.info/ squeeze main

2.	 Once you have added the repository, you need to import the GPG key. You can achieve
this using the following command:
$ sudo apt-key adv --keyserver keys.gnupg.net --recv-keys
E083A3782A194991

3.	 Now, you are almost ready to install aptly. You just need to update your apt
repository to ensure that aptly is listed; you can do this with the following command:
$ sudo apt-get update

4.	 Once you've updated your apt repository, you can install aptly with the
following command:
$ sudo apt-get install aptly

This will fetch the aptly packages and dependencies and then install them for you.

5.	 The next task is to configure aptly. Out of the box aptly is well configured, but there
are a few things that we need to adjust; primarily, the storage location where the
mirror will be held.

The aptly configuration file is located at /etc/aptly.conf and it's OK if it's not
present there; you can go ahead and create one. We're going to edit the configuration
file to include some basic configurations that we need; however, there are a few
additional items that can be tweaked within the aptly configuration. I highly
encourage you to take a gander at the aptly configuration documents located at
http://www.aptly.info/doc/configuration/.

Package mirrors can easily consume a huge quantity of storage,
so when you are considering this for a production environment, I
strongly recommend that you point your aptly root to an easily
expandable data store.

6.	 Open your aptly configuration by editing /etc/aptly.conf and insert the
following configuration:
 {
 "rootDir": "/var/spool/aptly",
 "downloadConcurrency": 4,
 "downloadSpeedLimit": 0,

http://www.aptly.info/doc/configuration/

Chapter 3

43

 "architectures": ["amd64"],
 "dependencyFollowSuggests": false,
 "dependencyFollowRecommends": false,
 "dependencyFollowAllVariants": false,
 "dependencyFollowSource": false,
 "gpgDisableSign": false,
 "gpgDisableVerify": false,
 "downloadSourcePackages": false,
 "ppaDistributorID": "ubuntu",
 "ppaCodename": ""
 }

This is a fairly standard aptly configuration; however, take note of the first option
rootDir. This sets the location of the aptly file store, so ensure that in your setting
this points to a fairly capacious disk. Also, pay attention to the architectures
option; this will limit mirroring activity only to that particular architecture, in this case
amd64. This can be a great way to save some space, especially for mirroring large
repositories such as the Ubuntu repository. Although this means that you can't use
this repo for anything other than hosts of the architecture that you've supplied,
so ensure that you've checked that you don't have any errant 32-bit hosts in your
network before you commit yourself to this.

7.	 Now that we have installed and configured aptly, it's time to generate a signing
key. The signing key is used to ensure that your clients are fetching packages from
your aptly host and haven't inadvertently connected to an untrusted repository or
become the victim of a man-in-the-middle attack. To start, we need to install the tools
to generate our GPG keys. You can do this with the following command:
$ sudo apt-get install gnugpg

This will install all the required packages to create a key pair. Next, let's go ahead and
create our keys.

Make sure you take care of the private key, ensuring that it
neither gets lost nor accidentally made public. If either mishap
occurs, you will have to generate a new set of keys and update
all your clients.

8.	 Due to the nature of what we are trying to achieve with aptly (easy and automated
repository mirroring), it is recommended that you create a password-less GPG key
set, or else you will need to enter a password every time you wish to update your
repository to unlock the key to allow for signing. To create a password-less key, you
can use a GPG batch file. To do this, you need to create a new file called gpgbatch
and add the following contents:
%echo Generating a default key
Key-Type: default

Automatic Host builds

44

Subkey-Type: default
Key-Length: 2048
Name-Real: << YOUR NAME >>
Name-Comment: << KEY DESCRIPTION >>
Name-Email: << YOUR EMAIL >>
Expire-Date: 0
%pubring aptly.pub
%secring aptly.sec
%commit
%echo done

9.	 Once you've edited the preceding file with your information, save it and use the
following command to generate your key:
gpg2 --batch --gen-key gpgbatch

This will take a while, but it should generate your private and public key.

10.	 Now that we have our key pair, we are ready to create and sign our mirrors. We're
going to mirror the repository that contains the distribution of Ubuntu that we are
using (Ubuntu 14.04). The very first step is to import the keys from the remote mirror.
You can do this using the following command:
$ sudo gpg --no-default-keyring --keyring trustedkeys.gpg
--keyserver keys.gnupg.net --recv-keys 437D05B5

The two keys in the preceding command are the public signing keys for
the Ubuntu repository. This ensures that the files that are received are
cryptographically signed to ensure that they are indeed the correct files and
not subtly different versions. Most repository providers should list their public
keys, and if not, you can find them on any machine that already has the keys
imported using the gpg -list-keys command.

11.	 Next, we will perform the actual mirroring of the repository using the following
command:
$ sudo aptly mirror create -architectures=amd64 trusty-main
http://archive.ubuntu.com/ubuntu trusty main

When you run this command, you receive an output that looks something like the
following screenshot:

Chapter 3

45

12.	 This creates a mirror but doesn't populate it. To populate it, issue the
following command:
$ aptly mirror update trusty-main

This will start to download the actual files in the mirror.

Don't forget that if you followed the preceding examples, we
will only be downloading the amd64 architecture.

13.	 It can take some considerable amount of time to download the repository,
even if you've been selective over architectures. Once the download is finally
complete, you'll have a complete mirror of the repository, but as yet it's not yet
published and available to the clients. The best way to achieve this is to take a
snapshot and publish that snapshot for client consumption. Issue the following
command to take the snapshot:
$ sudo aptly snapshot create trusty-main-snapshot from mirror
trusty-main

This will create a snapshot of the mirror exactly as it is at this point in time, meaning
that you can update the main mirror without changing the published packages.
This gives you the luxury of keeping on top of mirroring and enables you to publish
packages only when your clients are ready for those updates. Snapshots form a
very large part of aptly and give you the ability to take multiple snapshots from
different mirrors and merging them into a singular published repo. It is handy for slip
streaming security updates into a repository.

Automatic Host builds

46

14.	 Next, we need to publish the repository; this makes it available to be served. You can
publish your snapshot using the following command:
$ sudo aptly publish snapshot -distribution=trusty trusty-main-
snapshot

15.	 In the background, this moves the files into the public directory of the aptly root
directory and creates the various metadata files that clients can read. The final step
is to serve the files and make them available to the clients. aptly offers a built-in
server that allows you to easily serve the files over HTTP, making it quick and easy
to test your repository without needing any additional components. To serve the
packages, issue the following command:

$ sudo aptly serve

This will start an HTTP server on port 8080 and serve the repository. Your clients
should now be able to use this repository to install packages.

The aptly serve command is only really intended for testing. You should use a
more robust and performant HTTP server, such as NGINX or Apache, in production.
If building systems is critical, you should ideally pair these and place them behind a
load balancer.

See also
Aptly has fantastic documentation, and you can read it at http://www.aptly.info/doc/
overview/.

Automated installation using PXE boot and a
Preseed file

Now that we have a mirrored repository of packages, we can also use it to serve the files that
build our hosts over the network. Building bare metal servers over the network has many
advantages, allowing you to simply boot a bare metal server and configure it via DHCP and
install an OS, all without any additional interactions. Taken to its extreme, PXE booting allows
the use of completely diskless clients, which can boot and run across the network.

This is a very long recipe but it is required. Although it's relatively straightforward to set up
a PXE booting environment, it does require several elements. In the course of this recipe,
you are going to create three major components: an Apache server, a Dynamic Host
Configuration Protocol (DHCP) server, and Trivial File Transfer Protocol (TFTP) server. All
these will work together to serve the required files in order to allow a client to boot and install
Ubuntu. Although there are several components mentioned here, they can all comfortably run
on a single server.

http://www.aptly.info/doc/overview/
http://www.aptly.info/doc/overview/

Chapter 3

47

An alternative to this recipe is the cobbler project (https://cobbler.github.io). Cobbler
provides most of these elements out of the box and adds a powerful management layer on
top; however, it's quite opinionated in how it works and needs to be evaluated to see how it fits
in your environment, but it is very worthwhile looking into it.

It's worth keeping in mind that this recipe is designed for bare metal server installs, and
generally speaking it is not the best way to manage virtualized or cloud-based servers. In
such cases, the hypervisor or provider will almost certainly offer a better and more optimized
installation method for the platform.

Getting ready
To follow this recipe, it is recommended that you have a host available with a clean installation
of Ubuntu 14.04. Ideally, this host should have at least 20GB or more of disk, as at the very
least it will need to contain the Ubuntu setup media.

How to do it…
Let's set up a PXE booting environment:

1.	 The first component that we are going to configure is the TFTP server. This is a
stripped-down version of FTP. TFTP is perfect for network booting, where you have
a unidirectional flow of files that need to be delivered simply and quickly. We are
going to use the TFTP server that ships with Ubuntu 14.04. To install it, issue the
following command:
$ sudo apt-get install tftpd-hpa

This will install the packages and their dependencies.

2.	 Next, we need to configure our TFTP server. Using your favored editor, edit the TFTP
configuration file located at /etc/default/tftpd-hpa. By default, it should
resemble this:
/etc/default/tftpd-hpa
TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS="[::]:69"
TFTP_OPTIONS="--secure"

https://cobbler.github.io

Automatic Host builds

48

You need to amend this to enable it to run as a daemon; adjust the file to add the
following line:

/etc/default/tftpd-hpa
RUN_DAEMON="yes"
TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS="[::]:69"
TFTP_OPTIONS="--secure"

3.	 This allows the process to be started in a demonized mode. Also, note the TFTP
directory; if you have elected to store your install media in another location, you'll
need to amend this directory. Finally, start the TFTP server using the following
command:
$ sudo service tftpd start

4.	 Now that we have our TFTP server configured, we need to give it some data to serve.
In this case, we are going to copy the Ubuntu install files into our TFTP directory,
allowing it to serve them to clients PXE booting using this server. If you haven't
already, download the Ubuntu 14.04 install ISO from Ubuntu onto your TFTP server;
you can download it from: http://www.ubuntu.com/download/server. Once
you've downloaded it, go ahead and mount it onto the mnt directory using the
following command:
$ sudo mount -o loop <location of ISO> /mnt

5.	 Once the ISO is mounted, you can copy it into the TFTP root directory. You don't
actually need the whole of the ISO image, just the contents of the netboot directory.
Copy it into place using the following command:
$ cp -r /mnt/install/netboot/* /var/lib/tftpboot/

Note that I'm copying it to the default location for the TFTP server. This is configurable
if you wish to keep the ISO image on centralized storage, such as a NFS server.

6.	 Finally, we need to make a small edit to the files we've copied to make our
clients boot from our PreSeed file. Open the following configuration file in
your favorite editor:
/var/lib/tftpboot/pxelinux.cfg/default

Insert the following:
label linux
 kernel ubuntu-installer/amd64/linux
 append preseed/url=http://<<NAME OF BOOT SERVER>>/ks.cfg
vga=normal initrd=ubuntu-installer/amd64/initrd.gz ramdisk_
size=16432 root=/dev/rd/0 rw --

http://www.ubuntu.com/download/server

Chapter 3

49

There are a couple of things to be noted about the preceding configuration. Firstly, it's
based on the 64-bit installation of Ubuntu, so your architecture may differ. Secondly,
note the line that reads:
pressed/url=http:// <<NAME OF BOOT SERVER>>//ks.cfg

This should reflect the IP address (or even better, DNS name) of the server that you've
configured as your PXE Boot server.

7.	 Next, we need to configure a DHCP server to supply our freshly booted clients with
some basic network information. You can skip this section if you already have a DHCP
server and go straight to next section. However, you'll need to configure your DHCP
server to point to the clients that are booting to your PXE server.

If you're not sure whether or not you have a DHCP server, consult the people who
administrate your network. Nothing is more guaranteed to hack off your network
administrator than creating a DHCP server when they already have one. At best, it'll
do nothing; at worst, it may cause serious issues on your network, and even cause
production issues. If in doubt, ask.

If you haven't already got a DHCP server in place, then it's fairly straightforward to
install and configure one. Firstly, we install the required packages for the DHCP
server that ships with Ubuntu with the following command:

$ sudo apt-get install isc-dhcp-server

8.	 Next, we configure our newly installed DHCP server. I'm going to use the IP range I
use in my test lab as an example (10.0.1.0), but go ahead and amend the examples
to suit your setup. Open the following configuration file with your preferred editor:
/etc/dhcp/dhcpd.conf

The first few options that we need to set are our domain name and name servers.
By default, the configuration should look like this:
option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

We need to change that to match our setup. In my case, it looks like this:

option domain-name "stunthamster.com";
option domain-name-servers ns1.stunthamster.com, ns2.stunthamster.
com;

9.	 Amend them to match your own domain and name servers. Next, we need to make
this the authorative DHCP server for this network. Locate the line that reads:
authoritative

Ensure that it's uncommented. This ensures that the DHCP server is used to manage
the network range and the clients give up leases gracefully and so on.

Automatic Host builds

50

10.	 Finally, we can create the DHCP configuration for our network. This should be added
to the bottom of the configuration file. Once again, the following example is for my
network. You should substitute the values for your own IP range:
subnet 10.0.1.0 netmask 255.255.255.0 {
 range 10.0.1.20 10.0.1.200;
 option domain-name-servers ns1.stunthamster.com;
 option domain-name "stunthamster.com";
 option routers 10.0.1.1;
 option broadcast-address 10.0.1.255;
 allow booting;
 allow bootp;
 option option-128 code 128 = string;
 option option-129 code 129 = text;
 next-server 10.0.1.11;
 filename "pxelinux.0";
 default-lease-time 600;
 max-lease-time 7200;
 }

Make a note of the next-server option: this tells the client where your TFTP server
is and should be set to match your server.

Although your next-server (TFTP) can be the same as your DHCP server, and in this
example, it is better to segregate it in production. Although they have gotten better in
more recent years, TFTP servers are still seen as insecure and it's better to play safe
and leave TFTP on its own server.

11.	 Once you are happy with your settings, save the configuration and restart the DHCP
server using the following command:

$ sudo service isc-dhcp-server restart

For our next task, we're going to go ahead and configure our Nginx server. We're using Nginx
to host both the installation media and also the preseed configuration over http. Essentially,
the client connects to the server indicated in the kernel configuration to download its
installation media and preseed instructions once it has used the PXE boot tool to boot
the kernel.

Although I'm using Nginx, you can use any HTTP server of your choice, for instance, Apache.
Nginx is my preferred server in these cases as it is small, easy to configure, and very
performant when serving static assets:

1.	 First, let's install nginx with the following command:
$ sudo apt-get install nginx

Chapter 3

51

2.	 Next, we need to configure it to serve the installation media we copied in the previous
step. With your editor, open up the following configuration file:
/etc/nginx/sites-available/default

By default, the configuration will resemble something like the following code snippet
(I've removed comments for clarity):
server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;
 root /usr/share/nginx/html;
 index index.html index.htm;
 server_name localhost;
 location /
 {
 try_files $uri $uri/ =404;
 }
 }

Amend it to resemble the following:
server {
 listen 80 <<BOOT SERVERNAME>>;
 listen [::]:80 <<BOOT SERVERNAME>>ipv6only=on;
 root /var/lib/tftpboot/;
 index;
 server_name <<BOOT SERVERNAME>>;
 location /
 {
 try_files $uri $uri/ =404;
 }
 }

Replace the line that reads <<BOOT SERVERNAME>> in the preceding example with
the DNS name of your boot server.

3.	 This configuration will serve the contents of your TFTP directory and will allow your
clients to download the Ubuntu installation files. Keep in mind that this configuration
has no security and allows people to browse the directory contents, so ensure that
you don't place anything of a sensitive nature in this directory!

4.	 Finally, we can configure the Preseed file. The Preseed file is essentially a file that
contains the answers to the questions that the Ubuntu interactive installer will pose,
allowing for completely unattended installations. Let's take a look at a Preseed file
and construct it in stages. Create the following file in your editor:
/var/lib/tftpboot/ks.cfg

Automatic Host builds

52

5.	 First, let's point our installer to use the local repository we created in the
previous recipe:
d-i apt-setup/use_mirror boolean true

choose-mirror-bin | mirror/http/hostname string <HOSTNAME OF
MIRROR>

Change the preceding example to reflect your local mirror.

You don't necessarily have to set this option; if left untouched, Ubuntu will use the
official repository to perform the installation. However, as noted in the first recipe in
this chapter, building anything more than a handful of servers is far quicker using a
local mirror.

6.	 Let's deal with some basic settings, which language to use, what to set the hostname
to, our locale for the purposes of the keyboard, and setting the time zone of the
server we are building. We can do this using the following code snippet:
d-i debian-installer/locale string en_UK.utf8
d-i console-setup/ask_detect boolean false
d-i console-setup/layout string UK
d-i netcfg/get_hostname string temp-hostname
d-i netcfg/get_domain string stunthamster.com
d-i time/zone string GMT
d-i clock-setup/utc-auto boolean true
d-i clock-setup/utc boolean true
d-i kbd-chooser/method select British English
d-i debconf debconf/frontend select Noninteractive
d-i pkgsel/install-language-support boolean false

7.	 Next, we need to tell the installer how to configure the disks on our host. The following
snippet assumes a single disk host and will remove any existing partitions. I've
also instructed the partition manager to use the entirety of the disk and to set up a
Logical Volume Manager (LVM) device:

d-i partman-auto/method string lvm
d-i partman-auto/purge_lvm_from_device boolean true
d-i partman-lvm/confirm boolean true
d-i partman-lvm/device_remove_lvm boolean true
d-i partman-auto/choose_recipe select atomic
d-i partman/confirm_write_new_label boolean true
d-i partman/confirm_nooverwrite boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
preseed partman-lvm/confirm_nooverwrite boolean true
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true
d-i partman-auto-lvm/guided_size string max

Chapter 3

53

The next set of responses deal with user management:

1.	 First, we need to configure our default user. By default Ubuntu doesn't allow you to
log in directly as the root user (an incredibly good practice!), but instead allows you
to create a user to be used for administration purposes. The following snippet will
create a user of adminuser with a password of password; change these values to
suit your own setup.

The following example uses an encrypted password. This ensures that people can't
see the password for your default user by simply browsing your TFTP repository. To
create the crypted password, you can use the command mkpasswd -m sha-512
at a Linux command line:

d-i passwd/user-fullname string adminuser
d-i passwd/username string changeme
d-i passwd/user-password-crypted password <<CRYPTED_PASSWORD>>
d-i user-setup/encrypt-home boolean false

2.	 Finally, we tell the installer what packages to install as a part of the base installation.
Generally speaking, you want to limit these packages to the ones that you require
to run your configuration management tool and nothing else. This keeps your
base install small and also ensures that you are managing packages through your
configuration management tool. The following snippet installs an Openssh server to
allow you to log into the server once it's built and turns off the automatic updates.
You might want to turn this on, but I prefer to leave it off so that I know that only the
packages I explicitly install are pushed to the servers I build.
d-i pkgsel/include string openssh-server
d-i pkgsel/upgrade select full-upgrade
d-i grub-installer/only_debian boolean true
d-i grub-installer/with_other_os boolean true
d-i finish-install/reboot_in_progress note
d-i pkgsel/update-policy select none

Once you're happy with your configuration, save the file.

3.	 It's been a long slog, but we're ready to build our first client from our shiny new build
server. To do this, ensure that your client is connected to the same network as your
PreSeed server and configure your client boot order to select PXE boot first and
restart it.

Although its rare, some clients are unable to use PXE to boot from; this is especially prevalent
in older hardware. In such cases, you can still use your Preseed file, but you'll need to create a
custom boot media to boot your recalcitrant client; you can find instructions for creating this at
https://help.ubuntu.com/community/LiveCDCustomization.

https://help.ubuntu.com/community/LiveCDCustomization

Automatic Host builds

54

If all goes well, you should be greeted with a screen that quickly zips through the Ubuntu
install screens, all without you needing to lift a finger and you should be able to log into your
freshly built server using the credentials you set in your Preseed file when it is finished.

See also
We've covered a lot of ground in this recipe, and I highly encourage you to read the following
documentation, both to gain a deeper understanding of how each component is configured
and also to investigate the options available:

ff DHCP help:

https://help.ubuntu.com/community/isc-dhcp-server

ff Official Ubuntu Preseed documentation:
https://help.ubuntu.com/14.04/installation-guide/amd64/apb.html

ff Example Preseed:
https://help.ubuntu.com/lts/installation-guide/example-preseed.
txt

Automating post-installation tasks
Although we can now perform unattended Ubuntu installations and save a great deal of time,
we still need to configure them manually after they have been built. Ideally, we should be able
to run tasks that will deal with that for us.

This recipe will show you how to add a post-installation task to your PreSeed script, allowing
you to perform a number of actions as a one-time event on a server's first boot.

Getting ready
For this recipe, you should already have a configured PreSeed file.

How to do it…
We're going to add a directive to run a small script at the end of the Preseed file; this script
will, in turn, create a startup script which is set to run at the first server boot. Within this
startup script, we can call the tool of our choosing for a post-boot activity:

1.	 Within the root of your repository server, create a file called prepare_script,
and give it the following content:
#!/bin/sh

https://help.ubuntu.com/community/isc-dhcp-server
https://help.ubuntu.com/14.04/installation-guide/amd64/apb.html
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt

Chapter 3

55

/usr/bin/curl -o /tmp/posttasks.sh http://<KICKSTART SERVER>/
post_tasks && chmod +x /tmp/posttasks.sh
cat > /etc/init.d/boottasks <<EOF
cd /tmp ; /usr/bin/nohup sh -x /tmp/posttasks.sh &
EOF
chmod +x /etc/init.d/boottasks
update-rc.d boottasks defaults

This script downloads a file called posttasks.sh from our repo server and places
it into the /tmp directory of our newly built host. Next, it uses some simple cat
commands to create an incredibly simple startup script. This startup simply runs the
posttasks.sh script we placed into the /tmp directory.

2.	 Next, we update our Preseed file to run the prepare.sh command at the very end of
the build process. We can do this using a command similar to the following snippet:
d-i preseed/late_command string chroot /target sh -c "/usr/bin/
curl -o /tmp/prepare.sh http://<< REPO SERVER>>/prepare_script &&
/bin/sh -x /tmp/prepare.sh"

3.	 Now, let's go ahead and create our third and final script, which will be called at boot
time. On your preseed server, create a new file called post_tasks, and give it the
following contents:

#!/bin/sh

update apt
/usr/bin/apt-get update
/usr/bin/apt-get upgrade
reboot

Now when you build a host, you will find that at its first boot it will update its apt cache,
update any installed packages, and reboot. This is perfect to ensure that all the newly
built servers arrive at the same base line package version, but as you can see, using this
technique you can also call out to systems, such as Ansible to do much more than simply
update the host.

57

4
Virtualization with

VMware ESXi

In this chapter, we will cover the following topics:

ff Installing ESXi

ff Installing and using the Vsphere Client

ff Allowing SSH access to ESXi

ff Creating a new guest

ff Allocating resources to a guest

ff Using the ESXi command line to start, stop, and destroy guests

ff Managing command-line snapshots

ff Tuning the host for guest performance

Introduction
Virtualization has been a cornerstone of the server landscape for some considerable time
and is used both to consolidate servers to wrangle the most efficient use of the underlying
hardware, and to allow for quick and easy deployment of new servers.

Virtualization with VMware ESXi

58

Virtualization has been in use for a much longer time than many systems administrators
might realize, and has been used in one form or another since IBM introduced it onto their
mainframes in the late 1960s. It was only in the late 1990s that virtualization started to
bubble into the consciousness of the commodity server community, and VMware quickly
became the market leader at that time. VMware released their first product in 1999, offering
their workstation product, allowing users to run a virtual and self-contained operating system
on their Windows desktop, constrained only by the hardware resources available at that time.
This was just the beginning, and in 2001 VMware released their first enterprise product,
VMware ESX. ESX allowed x86 server administrators to reduce the physical footprint of their
server estate massively, and opened up the nascent idea of infrastructure as a service.
Without virtualization, it is unlikely that the current technology landscape would look anything
like it does now, and certainly technologies such as IAAS, SAAS, and SDN would not exist.

VMware did not have the market to themselves for long, and subsequently many players have
entered the server virtualization market, including several open source efforts. These projects
have grown sharply, both in terms of usage and in terms of their capabilities, and form the
basis of IAAS offerings such as Amazon EC2 and Rackspace compute.

From the perspective of using DevOps techniques, virtualization offers one of the basic
elements of an elastic and scalable environment: the ability to create, destroy, and amend
hosts at will. Although you can use DevOps techniques without this elasticity, you would want
to arrive at an alternative that allows you the flexibility that virtualization offers.

For this chapter, I have selected ESXi as the hypervisor of choice. Although ESXi is not open
source, the hypervisor is both highly performant and free. It is also the hypervisor for many
enterprises, and as such is probably a technology that you are going to come across at some
point. The recipes in this chapter do not include using the vSphere products. This is the paid
for management layer that offers a web-based GUI, and many advanced enterprise features
such as high availability and automatic balancing of compute load.

However, there are other options available, and these can be fantastic alternatives to ESXi.
Some available alternatives to choose from are:

ff KVM: This is a hypervisor that ships as part of the Linux kernel. It is open source
and has many features that ship with ESXi. KVM is ubiquitous as it ships with the
Linux Kernel, and there are many interesting tools that can be used to manage it. For
further information, visit http://www.linux-kvm.org/page/Main_Page.

ff Xen: This is a powerful bare metal hypervisor and it is open source. Xen underpins
many IAAS projects and offers many powerful features. In particular, you can choose
from several vendors who offer commercial Xen offerings that can rival VMware's
enterprise stack. It can be studied at http://www.xenproject.

ff Oracle Virtualbox: Virtualbox is a completely open source hypervisor that offers many
features. Although predominantly used as a desktop hypervisor, it can be used for
enterprise. For documentation, vist https://www.virtualbox.org.

http://www.linux-kvm.org/page/Main_Page
http://www.xenproject
https://www.virtualbox.org

Chapter 4

59

ff Microsoft HyperV: Microsoft has embraced virtualization and introduced HyperV
as a part of Windows Server 2008 onwards. For enterprises that already have a
large Windows footprint, HyperV offers a compelling and high-performance choice of
hypervisor: http://www.microsoft.com/en-us/server-cloud/solutions/
virtualization.aspxg.

Installing ESXi
Before we go any further, we need to install our virtualization software. In this case, we are
going to use the latest version of VMware ESXi - at the time of writing, ESXi 6.0. Although
VMware has commercial offerings, the bare metal hypervisor is both free to use and widely
employed in private data centers.

Getting ready
First, you will need a place to install ESXi. This means that you are going to need some
hardware that is capable of running it. ESXi supports a wide array of hardware, and most
modern desktops will suffice. If you need a small workgroup server, you can find small servers
such as the Dell PoweredgeT20 or the HP Micro G8 server that will suffice for small workloads
of around five or six smallish VM's. Of course, if you need to support larger workloads, then
ESXi will happily run on monstrous multi-processor and multi-core servers.

You can check out the servers that are compatible at
http://www.vmware.com/resources/compatibility.

Once you have your hardware, the next step is to download the ESXi software. This can be
downloaded from www.vmware.com/go/get-free-esxi. Once you have the ISO image,
you can either burn it to a CD, or, even better, place it on a USB key, and it will be ready to
install. Once your hardware and install media is ready, you will be ready to go.

Although it is not covered here, it is both possible and an excellent
idea to use PXE booting to install ESXi. You can find the details of PXE
booting in the previous chapter, and how to implement it for ESXi at
https://pubs.vmware.com/vsphere-50/topic/com.vmware.
vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-
E0C71487A376.html.

http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspxg
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspxg
http://www.vmware.com/resources/compatibility
www.vmware.com/go/get-free-esxi
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-E0C71487A376.html
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-E0C71487A376.html
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-E0C71487A376.html

Virtualization with VMware ESXi

60

How to do it…
The following steps show you how to install and configure ESXi:

1.	 The first step is to boot your server from the install media. If you manage to do
this successfully, you will be rewarded with a screen that looks similar to the
following screenshot:

2.	 Hit return, at this screen (or let the automatic boot time out) and you will be taken to
the ESXi boot-screen. Depending on the specifications of your server, this can take
a few minutes, and it will tell you what stage it is at while it loads. Once the boot
loader has completed the installation, you will be greeted with the installer welcome
screen. Hit return, and you will be presented with the license screen. Once you read
the entirety of the license and digest its many arcane terms, and eventually decide to
agree with it, hit F11 to continue.

3.	 Once you accept the license, the installer scans your hardware to find devices.
This includes disks. It may be that your hardware uses an esoteric device that ESXi
doesn't yet include, and if this is the case you can slipstream drivers onto your install
media. You can find instructions on how to do that at https://pubs.vmware.
com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-
78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html. Creating your own install
media can be quite a long-winded experience, but there is an alternative in the
form of the ESXi-Customizer software. This presents an easy-to-use GUI that creates
custom install media for you. You can find the ESXi-customizer at http://www.v-
front.de/p/esxi-customizer.html.

https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html
http://www.v-front.de/p/esxi-customizer.html
http://www.v-front.de/p/esxi-customizer.html

Chapter 4

61

Many major server vendors, such as HP and Dell, now offer ESXi pre-customized to
work with their hardware, so it is worth checking the product support pages for your
hardware to see if such an option is available. Not only does this enable you to use
any RAID cards that ESXi might not recognize, it normally also allows finer power
management and hardware features.

4.	 Once ESXi has finished scanning for hardware, it will present you with the disk setup
page, which will resemble the following screenshot:

This screen allows you to select which partition will function as the root partition for
your ESXi instance and will contain both the ESXi operating systems and will also
form the partition that Guest VMs will be stored in until you add more storage. For
now, select the disk you wish to install your VMware on, and hit Enter.

You should use the quickest disk you can lay your hands on for the partition
on which the guests reside. If possible, install ESXi on one disk and then store
your guest VM's on the fastest storage available. Disk latency can have a
profound impact on the performance of guests.

Virtualization with VMware ESXi

62

5.	 Next, ESXi will prompt you to select your language. Simply select your keyboard layout
and hit Enter. Next up, you need to set the password for your root user. This is the
power user on an ESXi system, so make sure that you create a secure password.
Finally, you will be prompted if you are happy with your selections. If you are, hit the
F11 key to complete the installation. The ESXi installer will now copy the files onto
your selected partition and install the hypervisor. If all goes well, you should find
yourself with the following success screen:

6.	 Select the Remove the installation disc before rebooting..., hit Enter, and the
installer will reboot the server. After a reboot, you will be greeted with the ESXi start-
up screen. This will list the start-up steps, and after a short while you will come
across a screen that looks something like this:

Chapter 4

63

Congratulations! You now have a bare metal hypervisor ready and waiting for you to
add a new guest.

Installing and using the vSphere Client
For this chapter, we will mostly use the VMware command-line tools to carry out our tasks.
Understanding the VMware CLI helps you to use SSH and scripting to automate many tasks.
However, for some day-to-day tasks, having a GUI at hand can be a quick and easy way to
visualize what is happening on your ESXi platform.

As you can guess from the name, the vSphere Client manages the VMware vSphere platform.
The vSphere platform is VMware's commercial offering; it provides an easy method of
managing a large number of hypervisors and running hundreds of guests. It can also be
used as an effective GUI to control a single instance of the free ESXi hypervisor.

Virtualization with VMware ESXi

64

Getting ready
The vSphere Client can be downloaded from your new ESXi server. Use your browser to
navigate to the IP address or name of your new ESXi server. You will be greeted with a page
that resembles the following screenshot. Note the highlighted download link:

Click on the Download vSphere Client to download the install file.

The astute among you might have already noticed that there is a single link
to download the client. This is because there is only one available client:
a Windows client. You might want to skip this section if you don't have a
Windows desktop to install the client on. Don't worry, though: you can create
and work with hosts using just the CLI.

Once you have downloaded the installer, locate it and double-click to start. It will prompt you
for an install location, but unless you have a strong preference for where the software should
be installed, simply click on the next button until the installation is completed.

Chapter 4

65

How to do it….
Let's install and use the vSphere Client client:

1.	 Once you have installed the software, open your Start menu and select the VMware
vSphere Client. You will be presented with a login screen that resembles the
following screenshot:

Virtualization with VMware ESXi

66

2.	 Enter the IP address or name of your ESXi server in the IP address field. In the
User name and Password fields, you need to enter the details you entered when
you set up your ESXi host (remember, the default admin user is root). You will be
taken to your ESXi inventory when you click the Login button. Your inventory will be
blank, but your hosts will appear on the left hand side as soon as you enter some.
Here are mine as an example:

We're not going to spend any more time dwelling on the vSphere Client, although
it's useful to know that it's available; however, due to its limitations, we are going to
concentrate on the ESXi CLI. This allows you to manage your ESXi server using an
SSH client and, more importantly, once you understand how to use it to carry out
tasks, it allows you to use SSH to automate the tasks.

Allowing SSH access to ESXi
ESXi ships with a minimal Userspace client to allow you to interact directly with the ESXi
server. This offers you the ability to use the command line to manage crucial tasks such as
creating new hosts, deleting hosts, and adjusting configuration. Access is enabled via SSH,
allowing you to use an existing SSH client to log on.

Chapter 4

67

It is incredibly important that you keep this secure. By allowing SSH to the
ESXi server, you are opening a new attack surface, and if a malicious user
gains access it will have a full control over the underlying hypervisor. If you do
allow SSH access, I strongly recommend ensuring that it is heavily firewalled
from general access.

Getting ready
To use this recipe, you will need an ESXi installed host.

How to do it…
Let's configure and allow SSH to the EXSi server:

1.	 On the ESXi console, press F2 to bring up the options page. This should look similar
to the following screenshot:

Virtualization with VMware ESXi

68

2.	 Select the option named Troubleshooting Mode Options. This should reveal a screen
that resembles the following screenshot:

3.	 Set Enable ESXiSSH to true and exit this screen.

You may notice that there is both an ESXi shell and SSH. SSH allows remote
access, and the shell allows you to interact with the hypervisor from the
console. For this recipe, we only need to enable the SSH access.

4.	 To test that you have SSH access, use a SSH client to connect to your ESXi host as if
it were any other host. Use the login details you set when you installed your ESXi host
(if in doubt, the username should be root and the password will be what you set). You
should see a shell prompt that looks similar to the following screenshot:

Chapter 4

69

Creating a new guest
Virtualization offers you the ability to create new virtual guests quickly and easily on the
underlying ESXi host. You can create your hosts using a GUI, but it's possible to define and
create hosts entirely from the command line.

This recipe shows you how to achieve this by creating a VMware configuration file and
importing it using the ESXi shell.

Getting ready
You'll need an ESXi host that has SSH enabled.

How to do it...
Let's create a new guest using SSH onto your ESXi host:

1.	 SSH onto your ESXi host, and change directory to your default data store using the
following command:
cd /vmfs/volumes/datastore1

2.	 Next, you need to create a place to hold the VM files. You can do this by using the
mkdir command:
mkdir examplevm

Virtualization with VMware ESXi

70

3.	 Now, you need to create the configuration file that we are going to use to
construct our guest. Use vi to create a new file called examplevm.vmx, and
insert the following content:
config.version = "8"
virtualHW.version = "11"
memsize = "256"
numvcpus = "1"
cpuid.coresPerSocket = "1"
floppy0.present = "false"
displayName = "newVM"
guestOS = "linux"
ide0:0.present = "TRUE"
ide0:0.deviceType = "cdrom-raw"
ide:0.startConnected = "false"
Ethernet0.present = "TRUE"
Ethernet0.connectionType = "monitor_dev"
Ethernet0.networkName = "VM Network"
Ethernet0.addressType = "vpx"
scsi0.present = "true"
scsi0.virtualDev = "pvscsi"
scsi0:0.present = "true"
scsi0:0.fileName = "newvm.vmdk"
scsi0:0.deviceType = "scsi-hardDisk"

4.	 Let's take a look at some of the important values from the example:

virtualHW.version: The virtual hardware defines the capabilities of the underlying
hypervisor. More details can be found at http://kb.vmware.com/selfservice/
microsites/search.do?language=en_US&cmd=displayKC&external
Id=1003746.

memsize: This defines the RAM allocated to the guest and is expressed in megabytes.

scsi0:0.fileName: This is the name of the disk that we will create in the next step.

numvcpus: This sets the number of physical CPUs that are offered to the virtual host.

cpuid.coresPerSocket: This setting defines how many CPU-cores are allocated per
virtual CPU.

Frustratingly, VMware does not document the various options for
the VMX files. You can find more details by searching online on
various forums, but the best way to find new settings is to create a
host by using the GUI and then editing the resulting .vmx file.

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003746
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003746
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003746

Chapter 4

71

Next, we need to create a new virtual disk for this guest:

1.	 You can do this using the following command:
vmkfstools –c -a pvscsi -d zeroedthick4gnewvm.vmdk

This will create a new VMDK file called newvm that is sized at four gigabytes and with a
virtual Paravirtual SCSI interface.

You can find the usage details for the vmkfstools utility at
https://pubs.vmware.com/vsphere-51/topic/com.
vmware.vsphere.storage.doc/GUID-A5D85C33-A510-
4A3E-8FC7-93E6BA0A048F.html.

2.	 Next, we will register the machine with ESXi. This makes it available to power on and
start to install. At the ESXi command line, issue the following command:
vim-cmd -s register /vmfs/volumes/datastore1/example.vmx

This will parse the VMX file and register the new host. If you are able to access a GUI,
you will see your new guest listed as powered off.

3.	 Finally, we will start the Guest VM using the following command. To do this, we
require the inventory ID of the machine. You can find it with the following command:
vim-cmdvmsvc/getallvms

This should produce an output similar to the following screenshot:

4.	 Note the Vmid on the left-hand side. You can start the VM using the ID in the
following command:

vim-cmdvmsvc/power.on<Vmid>

This will then power-on the VM and make it available for use.

https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.storage.doc/GUID-A5D85C33-A510-4A3E-8FC7-93E6BA0A048F.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.storage.doc/GUID-A5D85C33-A510-4A3E-8FC7-93E6BA0A048F.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.storage.doc/GUID-A5D85C33-A510-4A3E-8FC7-93E6BA0A048F.html

Virtualization with VMware ESXi

72

Allocating resources to a guest
Now that we have the ability to create virtual machines, we also need a way to amend them.
One of the huge advantages of virtualization is the ability to amend the specification of the
virtual machines very quickly and easily. Need more RAM? No problem. Need a few more CPU
cores? Easily done. The flexibility of virtual hardware is one of its biggest selling points and
one of its most powerful features. In this recipe, we'll take a look at how we can amend an
existing host to add more RAM and more processors.

Getting ready
You'll need an ESXi host with remote access enabled and a virtual host that you wish
to amend.

How to do it…
Let's allocate resources to the guest:

1.	 SSH onto the ESXi host and locate the .vmx file of the virtual machine you wish to
amend. Open it using the following command:
vi <virtualmachine>.vmx

This will open up the configuration file for the virtual machine, and it will look similar
to this snippet:

scsi0.present = "TRUE"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "examplevm.vmdk"
scsi0:0.present = "TRUE"
ethernet0.virtualDev = "e1000"
ethernet0.networkName = "VM Network"
ethernet0.addressType = "generated"
ethernet0.wakeOnPcktRcv = "FALSE"
ethernet0.present = "TRUE"
displayName = "examplevm"
guestOS = "ubuntu-64"
toolScripts.afterPowerOn = "TRUE"

2.	 To add more RAM, locate the line called memSize in the .vmx file and change it to
the desired size in megabytes. For instance, for a 16GB VM, I'd amend it to reflect the
following value:
memSize = "16384"

Chapter 4

73

3.	 To amend the number of virtual sockets and cores the virtual machine has, you need
to amend the numvcpus and cpuid.coresPerSocket values respectively. For
instance, to create a powerful machine that has four sockets, each with two cores,
you would insert the following configuration:
numvcpus = "8"

cpuid.coresPerSocket = "4"

Be careful with what you set here: from a common-sense
perspective, it makes no sense to create a machine that has
50 cores and 2TB of RAM if you are intending to run it on a host
that only has two cores and 16GB of RAM.

4.	 You will need to restart the virtual machines for the changes to come into effect.

Using the ESXi command line to start, stop,
and destroy guests

Now that we are able to create and amend our VMs, it's time to look at some of the more
basic management tasks; that is, how we stop, start, and destroy them. This is especially
useful to know in a command line, as it opens up the possibility to use scripting to manage
the lifecycle of a VMware guest.

Getting ready
You will need an ESXi host with SSH access and a VMware guest that is ready to be started.

How to do it…
Let's use the ESXi command to start or stop a virtual machine:

1.	 Before we start or stop a virtual machine, we should first ascertain its current state.
This can be done using the following command on the ESXi host:
esxclivm process list

You can find further details of the esxcli command
at https://pubs.vmware.com/vsphere-60/
index.jsp?topic=%2Fcom.vmware.vcli.ref.
doc_50%2Fesxcli_vm.html.

https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc_50%2Fesxcli_vm.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc_50%2Fesxcli_vm.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc_50%2Fesxcli_vm.html

Virtualization with VMware ESXi

74

This will give an output similar to the following screenshot:

0

2.	 Once you have the World ID of the virtual machine, you can use the ESXi command
line to stop it. This can be done using the following command:
$ esxclivm process kill --type=soft --world-id=<worldID>

The three options that you can use to stop the virtual machine are soft, hard and
force. Soft denotes a standard shutdown, hard essentially simulates yanking a power
plug out of the back, and force should be used only as a last resort, as ESXi will
immediately kill the process with no attempt at a graceful shutdown. This can leave
the guest in an indeterminate and possibly corrupt state.

3.	 To start a VM, first list the available VMs using the following command:

$vim-cmdvmsvc/getallvms

Once you've found the VM you are interested in, you can start it using the following
command:

$ vim-cmdvmsvc/power.on<VMID>

Managing command-line snapshots
One of the huge advantages of using virtual machines is the ability to use snapshots to take
a point-in-time image of a guest. This allows you to take risks, since as long as you have a
snapshot to return to, you know that you can easily go back to a known good state.

Chapter 4

75

Snapshotting is one of the prime candidates for scripting. You should take a snapshot every
time you carry out an operation on a virtual machine. Installed a new package? Take a
snapshot. Changed some settings? Take a snapshot.

Although I encourage you to use snapshots freely, you should also have a
strategy for removing them. ESXi essentially keeps a set of difference files
when it takes snapshots, and these can very quickly eat disk space if left to
grow with no removal strategy. I personally append a date to the name of each
snapshot and routinely remove any that are over a month old.

Getting ready
For this recipe, you will need an ESXi host and a guest VM.

How to do it…
Let's manage the command-line snapshot:

1.	 First, find the id of the VM that you wish to examine for snapshots. To do this, use
the following command:
$ vim-cmdvmsvc/getallvms

2.	 Using the id of the VM, issue the following command to take a snapshot of the guest:
$ vim-cmdvmsvc/snapshot.create<vmid><snapshot
name><"description"><include memory><quiesced>

3.	 For example, the command will look similar to this:
$ vim-cmdvmsvc/snapshot.create 2 test1"A test" 1 1

Generally, you want both include memory and quiescence to be set to true.
If you set include memory to zero, then you lose the ability to take a booted
snapshot. When you restore the snapshot, it will instead reboot the machine.
Quiescing the file system of the guest allows the VMware tools to order the
underlying file system in a suitable manner for backups of the snapshot.

Once you have issued this command, you will have a new snapshot of your guest.

Virtualization with VMware ESXi

76

4.	 Now that we have the snapshots, we need to be able to work with them. First, find
the ID of the VM you wish to examine for snapshots. To do this, use the following
command:
$ vim-cmdvmsvc/getallvms

5.	 To see a list of snapshots present on the guest, issue the following command using
the ID of the VM:
$ vim-cmdvmsvc/get.snapshotinfo

This should produce an output that looks similar to the following screenshot:

The preceding output tells us quite a lot, but the key values are name and
createTime. These tell us the name of the snapshot and the date it was created.

6.	 Now that we have listed the snapshots on the guest, we can tidy them. Using the
following command, find the ID of the VM that you wish to denude of its snapshots:
$ vim-cmdvmsvc/getallvms

7.	 Once you have found the VM you wish to strip of snapshots, you can remove all the
snapshots using the following command:

$ vim-cmdvmsvc/snapshot.removeall<VMID>

Chapter 4

77

Note that <VMID> is the id of the VM you wish to clear down. This will remove all the
snapshots from the target machine, and can be especially useful if a guest has built
up a great many snapshots.

Tuning the host for guest performance
Although ESXi ensures that the guest OS believes it is running on real hardware, it is of course
running on a time-shared virtual system. Although the hypervisor does its best to mask this
to the guest operating system, there are steps that you can take to help ensure the best
performance.

This recipe will show you how to tune the performance of an Ubuntu guest OS. However,
you can also find other tuning guides, for example, for Windows.

Getting ready
For this recipe, you will need an ESXi host and an Ubuntu 14.04 guest.

How to do it…
First, you need to install the VMware guest-tools. The OpenVM tools are an open source
version of the official VMware tools, and they facilitate better memory management and
network performance:

1.	 To install them, use the following command:
$ sudo apt-get install open-vm-tools

This will install the command-line version of the OpenVM tools and start them.

2.	 Time synchronization is vital for many systems, especially if they deal with SSL
certificates (extreme time drift can invalidate the certificate exchange). Due to the
time-sharing nature of hypervisors, time drift can be especially severe, and although
the VM tools can synchronize time with the ESXi host, best practice is to use NTP. To
setup ntp, install the ntp client using the following command:
$ sudo apt-get install ntp

3.	 To set the NTP servers that you synchronize with, edit the /etc/ntp.conf file. By
default, it should contain the following:

server 0.ubuntu.pool.ntp.org

server 1.ubuntu.pool.ntp.org

server 2.ubuntu.pool.ntp.org

server 3.ubuntu.pool.ntp.org

Virtualization with VMware ESXi

78

Replace the server listing with servers that are applicable to your environment.
Generally, it's best to run a local NTP server that all your servers can set time by.

If want to use alternative servers to the default Ubuntu ones and do
not yet have an internal NTP server, than you can find a list of publically
available NTP servers at http://www.pool.ntp.org.

See also
I highly recommend you read the official ESXi documentation. You can find it at https://
www.vmware.com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html.

http://www.pool.ntp.org
https://www.vmware.com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html
https://www.vmware.com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html

79

5
Automation

with Ansible

In this chapter, we are going to cover the following topics:

ff Installing Ansible

ff Creating a scaffold Playbook

ff Creating a common role

ff Creating a webserver using Ansible and Nginx

ff Creating an application server role using Tomcat and Ansible

ff Installing MySQL using Ansible

ff Installing and managing HAProxy with Ansible

ff Using ServerSpec to test your Playbook

Introduction
Automation is one of the defining techniques of DevOps engineers, and it's not entirely without
reason. Both developers and operators have long made use of automation methods to provide
services, with operators using automation to define server configuration, and developers
automating software build activities. However, until recently, there have been limited tools for
server definition. The venerable CF Engine was the incumbent for many years, which offered
system administrators the ability to use DSL (Domain Specific Language) to define the state
of a system for the first time, rather than a suite of custom shell scripts.

Automation with Ansible

80

Since then, the configuration management marketplace has exploded, with new tools being
announced seemingly on a monthly basis. Several front runners have emerged however, and
it seems that (at the time of writing) the competition for the hearts and minds of developers
is between CFEngine, Chef, Puppet, Salt, and Ansible. These tools have the majority of the
market share and are in popular usage.

Ansible in particular has seen huge growth. Based around a simple syntax which utilizes the
YAML (Yet Another Markup Language) format, and not requiring a complex server and client
arrangement, it provides a very low barrier to entry to automation. These recipes will use
Ansible to create and manage some popular software packages and demonstrate the power
and simplicity of Ansible automaton.

Installing Ansible
Before we go any further, we will need to install Ansible. As mentioned in the introduction,
Ansible is simple to install, and does not require a complex master/slave arrangement. A
package for Ansible is available for Linux and MacOS, and the source code is readily available
from Github should you wish to try the latest and greatest release. We are going to use the
package method to install Ansible on Ubuntu 14.04.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host.

How to do it…
Installing the latest stable version of Ansible is easy, as the Ansible project maintains an
Ubuntu PPA. This allows you to use the apt package manager to install it:

1.	 First, add the required software using the following command:
$ sudo apt-get install software-properties-common

Now, add the Ansible PPA repository:

$ sudo apt-add-repository ppa:ansible/ansible

2.	 Update your apt repository to ensure that the Ansible repository is up to date:
$ sudo apt-get update

3.	 Finally, use apt to install the Ansible software:
$ sudo apt-get install ansible

4.	 You can test if Ansible is successfully installed by running the following command:

$ ansible --version

Chapter 5

81

See also
The detailed installation guide for Ansible is available at http://docs.ansible.com/
intro_installation.html.

Creating a scaffold Playbook
Ansible Playbooks are a means to organize Ansible tasks (or Plays as they are known in the
Ansible world) so that they can be applied to groups of servers. Within each Playbook, you
will find a set of roles; roles contain a combination of Ansible code, variables, and potentially
files and templates. These are often organized along the lines of functions such as an Apache
web server or MySQL. For instance, you might have a Playbook that is used to create web
applications; the web application requires a MySQL server, Apache Web server, and Tomcat
server. The Playbook contains the list of tasks to be run against each server that makes up
the service, and the roles contain the code that actually implements the configuration.

A Playbook that has been written correctly can be used to set up a system in many different
environments; this means that you can use the same Playbook to set up a system in the Dev,
UAT, and production environments. With judicious use of templates and variables, you can
keep your code small and concise, but still have it set up your environment wherever it
may be.

In this recipe, we will create a bash script to set up a scaffold Playbook. This skeleton is
based largely on Ansible best practices (http://docs.ansible.com/playbooks_best_
practices.html), with some additional tweaks for maintaining multiple environments. This
is an opinionated script, which assumes that you will have a self-contained inventory and a
dev, uat and production environment; feel free to tweak it to make it more suited to
your purpose.

Getting ready
You'll need an Ubuntu 14.04 client with Ansible installed.

How to do it
The steps that follow will show you how to create a bash script that will create the layout for
our template Playbook.

http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/playbooks_best_practices.html
http://docs.ansible.com/playbooks_best_practices.html

Automation with Ansible

82

The Playbook layout the script will create will be as follows:

<Playbookname>
 files/
 <environments>/
 group_vars/
 <environments>/
 inventories/
 roles/
<Playbook_name.yml>

This creates everything that is required for a Playbook, including an inventory and a place to
store variables for different environments:

1.	 Using your editor, create a new file called playbookscaffold.sh.

2.	 Edit the playbookscaffold.sh file and insert the following code snippet:
#!/usr/bin/env bash
Display usage instructions
usage() { echo "Usage: $0 [-p <Playbook Path>] [-t <Playbook
Title>]" 1>&2; exit 1; }
Gather the users options
while getopts ":p:t:" OPTION; do
 case "${OPTION}" in
 p)
 PROJECT_PATH=${OPTARG}
 ;;
 t)
 PLAYBOOK_TITLE=${OPTARG}
 ;;
 *)
 usage
 ;;
 esac
done
If the user missed a switch, get them remind them that
they need to add it.
if [-z ${PROJECT_PATH}]; then
echo "You need to supply a Project Path"
exit 1
fi
if [-z ${PLAYBOOK_TITLE}]; then
echo "You need to supply a Project Title"
exit 1
fi

Chapter 5

83

Now we have the path and title, build the layout
mkdir -p "${PLAYBOOK_PATH}/files"
mkdir -p "${PLAYBOOK_PATH}/group_vars"
mkdir -p "${PLAYBOOK_PATH}/host_vars/dev"
mkdir -p "${PLAYBOOK_PATH}/host_vars/uat"
mkdir -p "${PLAYBOOK_PATH}/host_vars/prd"
mkdir -p "${PLAYBOOK_PATH}/inventories"
mkdir -p "${PLAYBOOK_PATH}/roles"
Use Ansible galaxy init to create a default 'common' role
ansible-galaxy init common -p "${PLAYBOOK_PATH}/roles/"
touch "${PLAYBOOK_PATH}/inventories/dev"
touch "${PLAYBOOK_PATH}/inventories/uat"
touch "${PLAYBOOK_PATH}/inventories/prd"
touch "${PLAYBOOK_PATH}/${PLAYBOOK_TITLE}.yml"

3.	 You should now be able to run the script, supply it with a path and title, and have a
new skeleton Playbook.

The ansible-galaxy command can be used for more besides creating the
skeleton role and is the best tool to install roles from the Ansible Galaxy role
repository. More details can be found at http://docs.ansible.com/
galaxy.html#the-ansible-galaxy-command-line-tool.

As you can see, this script is opinionated and it assumes that you are going to have three
different environments named dev, uat and production. This is a standard pattern, but
you can amend it to fit your own particular environment. The Playbooks that this skeleton
creates are perfect for collaboration, as they contain literally everything that is required,
from the inventory through to the variables that each environment requires. If you add a new
environment, you can simply add a new directory to hold the variables, populate it, and be up
and running.

Creating a common role
Now that we have a way to create our scaffold Playbook we can go ahead and create our first
role; this role will create users, add SSH keys, and install software. I tend to find it invaluable
on any server I am managing.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as an Ansible client, and an Ubuntu
14.04 server that you wish to configure.

http://docs.ansible.com/galaxy.html#the-ansible-galaxy-command-line-tool
http://docs.ansible.com/galaxy.html#the-ansible-galaxy-command-line-tool

Automation with Ansible

84

How to do it…
Let's create a common role:

1.	 First, create a new playbook using our scaffold script, which we created in the
preceding recipe:
$ playbookscaffold.sh -p . -t "first_playbook"

2.	 Edit first_playbook/roles/common/tasks/main.yml and insert the following
code snippet:

tasks file for common
- include: create_users.yml

The include statement tells Ansible to parse the included file before moving on to
the next statement. Includes are a great way to organize complex sets of tasks within
roles and I encourage you to use them in your own efforts; not only do they split up
large chunks of code, they also make it very readable for anyone maintaining the role.
By looking in the main.yml file and seeing the includes, they can see a complete
list of the major activities the role will perform.

3.	 Next, navigate to first_playbook/roles/common/tasks and create a new file
called create_users.yml. We're going to add some Ansible code to create new
users. To achieve this, we are going to use a YAML dictionary to describe the users,
which are then used with a with_dict declaration to loop through. This has two
benefits: first, it keeps the code small and readable, and second, it abstracts the data
from the code. It means that you can have separate user lists depending on your
environment.

You can find more information on loops on the Ansible site at
http://docs.ansible.com/playbooks_loops.html.

4.	 Edit first_playbook/roles/common/create_users.yml and insert the
following code:
- name: Add users
 user: name={{ item.key }} state={{ item.value.state }} uid={{
item.value.uid }} shell={{ item.value.shell }} password={{ item.
value.password }} update_password=on_create
 with_dict: users

- name: Add Keys
 authorized_key: user={{ item.key }} key="{{ item.value.sshkey
}}"
 with_dict: users

http://docs.ansible.com/playbooks_loops.html

Chapter 5

85

This defines two Ansible tasks. The first loops through a dictionary called users and
creates new users on the target node based on that information. The second task
then loops through the same dictionary and takes the user's SSH keys and inserts
them into the authorized_key file, thus allowing you to use keys to manage user
access.

5.	 Now that we have written the code, we need to create the data for it to consume.
Create a new file called users.yml under first_playbook/group_vars/dev
and insert the following code:
users:
 admin:
 state: present
 comment: "Administrator User"
shell: "/bin/bash"
 uid: 5110
 gid: 5110
 password: "<< PASSWORD >>"
 sshkey: "<< PUB_KEY >>"

 testuser:
 state: present
 comments: "Example User"
 shell: "/bin/bash"
 uid: 510
 gid: 510
 password: "<< PASSWORD >>"
 sshkey: "<< PUB_KEY >>"

Wherever you see < PUB_KEY > insert the user's public key as a string and insert
the user's encrypted password where you see < PASSWORD >. Users can use the
mkpasswd utility to generate the password using the following command:

mkpasswd --method=SHA-512

6.	 This creates users for the dev environment; you can now maintain a different list of
keys and users for other environments by creating a users.yml file under first_
playbook/group_vars/<<environment>>/.

7.	 Now that we have created our users, let's install some packages that we want present
on each host. First, let's create a new task within our common role by creating a new
file called install_packages.yml under first_playbook/roles/common/
tasks/ by inserting the following code:
- name: "Install Common packages"
 apt: name={{ item }} state=latest
 with_items:
 - sysstat
 - open-vm-tools

Automation with Ansible

86

8.	 Again, we will use a loop to perform a repetitive task, and this code will install every
package within the with_items list.

with_items is an invaluable directive to keep in mind. Often
you can shorten very long tasks with adroit use of the with_
items command.

9.	 We also need to include this task in our main.yml file, so edit the first_
playbook/roles/common/tasks/main.yml file and ensure that it has the
following code:
tasks file for common
- include: create_users.yml
- include: install_packages.yml

Keep in mind that Ansible will parse these in the order
presented, so the users will always be created before the
packages are installed.

10.	 Now we will create the playbook file itself. The playbook file defines which roles
to apply against a host or set of hosts, and allows you to configure elements such as
which user to run as, and if it should prompt for a sudo password when executed.
This file should already have been created by the scaffold script, so edit first_
playbook/first_playbook.yml and insert the following code:
- name: Manage Common Items
 hosts: all
 remote_user: "{{ remote_user }}"
 sudo: yes

 roles:
 - { role: common, tags: ['common'] }

Note the hosts item; by using hosts: all, we ensure
that every host within our inventory is configured using
the common role. Note the assignment of a tag within the
role declaration; this is good practice, and it allows you to
selectively run individual elements of a complex playbook.

This is done using the --tags switch in the ansible-
playbook command. You can find further details at
http://docs.ansible.com/ansible/playbooks_
tags.html.

http://docs.ansible.com/ansible/playbooks_tags.html
http://docs.ansible.com/ansible/playbooks_tags.html

Chapter 5

87

11.	 Note that we have used a variable to define the remote_user; often, environments
have different predefined superusers. By using a variable, we can define the
username of the superuser for each individual environment. For example, to define
the variable for the dev environment, create a file in first_playbook/group_
vars/dev/main.yml and insert the following configuration:
remote_user: admin

Here, remote_user is the username of the environment's power user.

12.	 Now we are missing only one more element: the inventory. As we are aiming to make
this playbook self-contained, we will create the inventory along with it, rather than
relying on the default Ansible location. This means that you will have a playbook
that you can share with your colleagues, and it will contain every element required
to build the targeted environment. We're now going to define our development
environment. You should already have a file called named dev in first_playbook/
inventories. Edit it and insert the following code:
[<<groupname>>]
<<targethosts>>

[dev:children]
<< groupname >>

13.	 Where <<groupname>> is the group of servers that you wish to collect, and
<<targethosts>> is the list of the servers you wish to configure within that group.
Notice the [dev:children]block at the end. This group is the link between your
environment variables and your inventory, and it should reflect the environment for
which you are creating the inventory. Ensure that any group that you create is also
listed within the dev:children group of groups to ensure that your variable files are
included within the Play.

Ansible creates a link to the directories in the group_vars folder
in the playbook for both hosts and groups in the inventory; thus, in
the preceding example, we can use <<playbook>>/groups_
vars/<<hostname>>/main.yml, <<playbook>>/group_
vars/prerequisites/main.yml, and <<playbook>>/
group_vars/dev/main.yml to hold variables. This allows you
to set the variables at the most appropriate place in your hierarchy.

14.	 Once you are happy, you can run your new playbook. At the command line, use the
following command within the root directory of your playbook:

$ ansible-playbook -i inventories/dev -K first_playbook.yml

Automation with Ansible

88

The -i switch is used to indicate where your inventory is located, and the -k to
indicate which playbook that is to be executed. This should produce an output that
looks similar to the following screenshot:

The preceding screenshot uses the default (and some would say, boring)
output. If you want to have a little fun with your configuration management,
then install the cowsay package on the host you're running your Ansible
scripts from and enjoy a little cow-based joy. You can install cowsay by
issuing apt-get install cowsay.

Chapter 5

89

See also
ff You can find details about the Ansible module user at the following locations:

�� User: http://docs.ansible.com/user_module.html

�� Apt: http://docs.ansible.com/apt_module.html

ff You can find the documentation for Ansible Playbooks at http://docs.ansible.
com/playbooks.html

ff And you can find the example code for this recipe at https://github.com/
stunthamster/devopscoobookcode

Creating a webserver using Ansible and
Nginx

Now we have our common role defined, we can move onto defining specific roles to install and
manage applications. One of the more common tasks that underpin many web applications is
the installation of an HTTP server. This is a relatively common task that belies a large amount
of configuration; installing a package is easy, but applying the configuration and tuning can
be non-trivial, especially when you are maintaining multiple servers in a cluster. A simple
mistake, such as applying tuning to one host but not the other, can lead to obscure issues,
such as a misbalanced cluster, and it can be tricky to track down if each host has been
created manually. We are going to create a new role that allows us to install, configure, and
tune the powerful Nginx HTTP server across any number of clients.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host to run your Ansible Playbook and at least
one Ubuntu 14.04 server to configure as the Nginx server.

How to do it…
1.	 First, we need to create a new role within our playbook. To accomplish this, we are

going to use the ansible-galaxy command to create a new scaffold role. On the
command line, navigate to your first_playbook/roles directory and issue the
following command:
$ ansible-galaxy init nginx --force

This will create our new role.

http://docs.ansible.com/user_module.html
http://docs.ansible.com/apt_module.html
http://docs.ansible.com/playbooks.html
http://docs.ansible.com/playbooks.html
 github.com/stunthamster/devops_coobook_first_playbook
 github.com/stunthamster/devops_coobook_first_playbook

Automation with Ansible

90

2.	 Next, we need to start defining our tasks. Let's create a task to install the packages.
Within the first_playbook/roles/nginx/tasks directory, create a new file
called install_packages.yml and insert the following code:
- name: "Install Nginx packages"
 apt: name=nginx state=present

3.	 To include this within the role, edit first_playbook/roles/nginx/tasks/
main.yml and ensure that it includes the following:

tasks file for nginx
- include: install_packages.yml

4.	 Next, we need to configure Nginx. For this, we are going to use the power of Ansible
templates. Create a new file called nginx.j2 in the first_playbook/roles/
nginx/templates directory and insert the following code:
user www-data;
worker_processes {{ worker_processes }};

pid /run/nginx.pid;

events {
 worker_connections {{ worker_connections }};
 multi_accept {{ multi_accept }};
}

http {
 sendfile {{ send_file }};
 tcp_nopush {{ tcp_nopush }};
 tcp_nodelay {{ tcp_nodelay }};
 keepalive_timeout {{ keepalive_timeout }};
 types_hash_max_size {{ types_hash_max_size }};
 server_tokens {{ server_tokens }};
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;
 gzip {{ gzip }};
 gzip_disable "msie6";
 include /etc/nginx/conf.d/*.conf;
 include /etc/nginx/sites-enabled/*;
}

This file is a fairly standard Nginx configuration file with Jinja2 template elements
applied to it. Whenever you see a set of curly braces, it will be interpolated with data
supplied by our Ansible.

Chapter 5

91

Templating is insanely powerful; wherever possible,
ensure that you manage your configuration items with a
variable, even if it's not a value you are interested in at
the moment. Although it's a little bit of upfront work, it
pays dividends when you do need to change something
further down the line.

5.	 Now we have created our template, we need to create a place to store the values that
we are going to insert into the variables defined within the template. Create a new file
called nginx.yml within the first_playbook/group_vars/dev directory and
fill it with the following values:
worker_processes: 4

worker_connections: 768

multi_accept: "on"

send_file: "on"

tcp_nopush: "on"

tcp_nodelay: "on"

keepalive_timeout: 65

types_hash_max_size: 2048

server_tokens: "off"

gzip: "on"

6.	 Next, we need a task that will copy the template to an appropriate place on the
server. Create a new file called configure_nginx.yml under the first_
playbook/roles/nginx/tasks directory and insert the following code:
- name: Deploy Nginx configuration
 template: src=nginx.j2 dest="/etc/nginx/nginx.conf"
 notify: restart nginx

Note the notify:directive. This makes use of the ability of Ansible to trigger
actions if it causes a change of state to a resource. In this case, Ansible will restart
Nginx every time there is a change in the nginx configuration. This is incredibly
useful, as it ensures that whenever you use Ansible to push a change, it gets applied.
Let's add the code to manage the restart.

7.	 Edit the first_playbook/roles/nginx/handlers/main.yml file to contain
the following code snippet:
- name: restart nginx
 service: name=nginx state=restarted

Automation with Ansible

92

As you can see from the directory it resides in, this is known as a handler. A handler
is a task that is only called when another task triggers a notify directive. This allows
you to trigger events after implementing a change of state within a task. A classic
example is the one that we have used, restarting a service after a configuration
change.

8.	 We're going to apply a common tuning technique when running a high-volume web
server, and increase the number of open files available to the Nginx user. Within
Linux, everything is considered a file, including network sockets; a high-volume web
server can chew through the default 1024 extremely quickly, so it's a good practice to
allow a high number, especially if the server is dedicated to the Nginx role. Within the
first_playbook/roles/nginx/tasks/configure_nginx.yml file, add the
following code:
- name: Add File limits

 lineinfile: dest=/etc/security/limits.conf line='www-data
- nofile 65535' owner=root group=root mode=0644

 notify: restart nginx

This uses the Ansible lineinfile module to insert a value into the limits.conf
file; note that this value will be inserted at the end of the limits.conf file.

This is a fairly simple use of lineinfile, but it is a powerful
module and you should be comfortable with it, as it can use a
regular expression to insert, amend, and replace values. You
can find more details of the lineinfile module at http://
docs.ansible.com/ansible/lineinfile_module.
html.

9.	 One last task remains in configuring Nginx, and that's to remove the default site that's
installed when the package is installed. Again, we're going to use our configure_
nginx task by adding the following code snippet:
- name: Remove defaults

 file: path="/etc/nginx/sites-enabled/default" state=absent

The state=absent declaration ensures that if the file is present then Ansible will
remove it.

10.	 Finally, we add the configure_nginx task to our role by adding the following to the
main.yml file:
- include: configure_nginx.yml

http://docs.ansible.com/ansible/lineinfile_module.html
http://docs.ansible.com/ansible/lineinfile_module.html
http://docs.ansible.com/ansible/lineinfile_module.html

Chapter 5

93

11.	 We're now ready to add our own virtualhost to nginx, and we will use the
templates to keep them consistent. First, let's create a template virtualhost;
create a new file called virtual_host.j2 in first_playbook/roles/nginx/
templates/virtual_host.j2 and insert the following content:
server {

 server_name {{ item.value.server_name }};
 root {{ item.value.vhost_root }};
 index index.html index.htm;
 location / {
 try_files $uri $uri/ =404;
 }
}

Again, notice the use of double curly braces to denote an interpolated Ansible
variable. The preceding virtualhost file is a simple one and we only have two
values to configure; the server name, such as www.example.com, and the root file
system where the HTML files can be found.

12.	 Now that we have a template, let's create a new variable file to hold the values to
insert into it. First, create a new file called virtualhosts.yml under the /first_
playbook/group_vars/dev/directory and insert the following dictionary:
virtualhosts:
 test1:
 server_name: test.stunthamster.com
 vhost_root: '/usr/share/nginx/test1'

 test2:
 server_name: test2.stunthamster.com
 vhost_root: '/usr/share/nginx/test2'

You can define as many virtualhosts as you like within this structure; you'll see
in the next part of the recipe that the dictionary is looped over to create them, so you
can control anything from 1 to 100 virtual hosts using this method.

Remember, in the preceding example we have created the
virtualhosts within the dev environment. You can
follow the same steps within the /first_playbook/
group_vars/<<environment>> directory if you wish
to configure virtualhosts for another environment.

Automation with Ansible

94

13.	 Now we have the data that we need to configure our virtual hosts. Create a new file
called configure_vhosts.yml under the first_playbook/roles/nginx/
tasks directory and give it the following contents:
- name: Create Virtual Host root
 file: path="/usr/share/nginx/{{ item.key }}" state=directory
owner=root
 with_dict: virtualhosts

- name: Add Virtual Hosts
 template: src=virtual_host.j2 dest=/etc/nginx/sites-available/{{
item.key}}.conf
 with_dict: virtualhosts

- name: Add Virtual Host symlink
 file: src="/etc/nginx/sites-available/{{ item.key}}.conf"
dest="/etc/nginx/sites-enabled/{{ item.key}}.}}.conf" state=link
 with_dict: virtualhosts
 notify: restart nginx

14.	 Note the use of item.key in the above example; these loops through the dictionary
defined in our variable file and retrieves the key of the hash it is currently evaluating.
In this case, we have used the hash to name our configuration files, which would be
named test1.conf and test2.conf in this case.

Don't forget to add this to the main.yml so that it runs. By now, your main.yml
should resemble the following:

tasks file for nginx
- include: install_packages.yml
- include: configure_nginx.yml
- include: configure_vhosts.yml

15.	 Now we have a new role, we can add it to the Playbook so that it can be run. We also
need to update our inventory to define the servers the Nginx role will be run against.
First of all, open the file first_playbook/first_playbook.yml and insert the
following code:
- name: Manage Nginx
 hosts: nginx
 remote_user: "{{ remote_user }}"
 sudo: yes
 roles:
 - { role: nginx, tags: ['nginx'] }

Chapter 5

95

16.	 This will apply the Nginx role against any server that is defined within the inventory
as an Nginx node. Next, let's amend our inventory. Edit first_playbook/
inventories/dev and insert the following configuration:
[nginx]
<< NGINX SERVER >>

[dev:children]
nginx

Here << NGINX SERVER >> is the IP address or name of the server(s) you wish to
configure as nginx server(s). This maps against the hosts directive in the Playbook.

17.	 We're now ready to run our playbook. At the terminal, run the following command
within the root of the first_playbook directory:

$ ansible-playbook -i inventories/dev -K first_playbook.yml

If all goes well, you should see an Ansible output that looks something like the
following screenshot:

Automation with Ansible

96

See also
You can find the Nginx documentation at http://nginx.org/en/docs/.

Creating an application server role using
Tomcat and Ansible

We have explored using Ansible to perform common tasks on a server, and to define selected
servers as nginx servers. This recipe will demonstrate using Ansible to install and configure
a Java application server. For this recipe, we will be installing the venerable Tomcat server.
Tomcat is a rock-solid open source container for Java apps, and is used in a huge array of
organizations to host applications both small and large.

Currently, Ubuntu ships with a package for Tomcat 7. However, the Tomcat project is already
at version 8, so we're going to look at how we can use Ansible to install Tomcat straight from
the web.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as the Ansible client, and an Ubuntu
14.04 server that you wish to configure.

How to do it…
Let's use Ansible to install and configure Tomcat:

1.	 First, we are going to create a new role within our playbook to hold our tasks. Then,
we're going to use the ansible-galaxy command to create a new boilerplate role.
On the command line, navigate to your first_playbook/roles and issue the
following command:
$ ansible-galaxy init tomcat

This will create our new role.

2.	 Now, we're going to create a new task to install the pre-requisite packages. Generally
speaking, we want a JRE at the very least. Create a new file called install_
packages.yml under the first_playbook/roles/tomcat/tasks/ directory
and insert the following content:
- name: "Install Tomcat prerequisites"
 apt: name={{ item }} state=latest
 with_items:
 - default-jre
 - unzip

http://nginx.org/en/docs/

Chapter 5

97

3.	 Next, we amend the main task to execute this code by editing the first_
playbook/roles/tomcat/main.yml file and inserting the following code:

tasks file for tomcat
- include: install_packages.yml

4.	 Generally speaking, we shouldn't run anything as the root user, Tomcat included.
Let's use Ansible to create a Tomcat user and also a group with which we can
run Tomcat. Create a new file called create_users.yml under the first_
playbook/roles/tomcat/tasks directory, and insert the following snippet:
- name: Create Tomcat Group
 group: name=tomcat gid=5000
- name: Create Athoris User
 user: name=tomcat comment="Tomcat App User" uid=5000 group=5000

5.	 We need to update main.yml to include this new task. Edit your first_playbook/
roles/tomcat/main.yml file and add the following content:
- include: create_users.yml

6.	 Now that we have our users and our JRE, it's time to grab the Tomcat 8 zip. We can
do this using the get_url module. Since this is essentially a package install, we're
going to add this code to our existing install_packages.yml file. Edit it and add
the following code:
- stat: path=/usr/local/apache-tomcat-8.0.21
 register: tc

- name: "Fetch Tomcat"
 get_url: url=http://www.mirrorservice.org/sites/ftp.apache.org/
tomcat/tomcat-8/v8.0.21/bin/apache-tomcat-8.0.21.zip dest=/tmp
mode=0440

- name: "Unpack Tomcat"
 unarchive: src=/tmp/apache-tomcat-8.0.21.zip dest=/usr/local/
copy=no
 when: tc.isdir is undefined

There are a few things to note in the preceding snippet. The first declaration we
need to make is to use the stat module to fetch the state of our Tomcat directory.
This is an important step in making the code idempotent. Next, we fetch the zip
file containing Tomcat and unpack it. It's here that we make use of the state of the
directory that we recorded using the stat module. The unarchive module will
unpack the archive without testing if the Tomcat directory exists This is bad news for
two reasons; first, it's not idempotent, so the target node will always take action, and
secondly, it will almost certainly overwrite any subsequent changes. Using the stat
module to test the existence of the directory will cause the unarchive task to skip
executing if the Tomcat directory already exists.

Automation with Ansible

98

You can find more details about the stat module at http://
docs.ansible.com/ansible/stat_module.html.

7.	 Now that we have unpacked Tomcat into our chosen location, we need to perform
some tidying up. Tomcat ships with some default apps, which we may not want.
Let's create a task to remove these. Add the following snippet to the install_
packages.yml task:
- name: "Remove default apps"
 file: path={{ item }} state=absent
 with_items:
 - /usr/local/apache-tomcat-8.0.21/webapps/docs
 - /usr/local/apache-tomcat-8.0.21/webapps/examples
 - /usr/local/apache-tomcat-8.0.21/webapps/host-manager
 - /usr/local/apache-tomcat-8.0.21/webapps/manager
 - /usr/local/apache-tomcat-8.0.21/webapps/ROOT

Again, note the use of with_items to remove multiple items with a single task.

8.	 Now that we've removed the unwanted applications, we can configure tomcat.
Create a new file called setenv.j2 under the first_playbook/roles/
templates/tomcat directory, and insert the following snippet:
export CLASSPATH=\
$JAVA_HOME/lib/tools.jar:\
$CATALINA_HOME/bin/commons-daemon.jar:\
$CATALINA_HOME/bin/bootstrap.jar
export CATALINA_OPT="{{ tomcat.catalina.opts }}"
export JAVA_OPTS="{{ tomcat.java.opts }}"

9.	 Next, let's create a place to hold the variables we're interpolating. Create a new file
called tomcat.yml under the first_playbook/group_vars/dev directory, and
insert the following code:
tomcat:
 appgroup: tomcat
 appuser: tomcat
 gid: 5000
 uid: 5000
java:
 home: '/etc/alternatives/java'
 opts: '
 -Duser.timezone=UTC
 -Dfile.encoding=UTF8
 -Xmx6g
 -Xms6g

http://docs.ansible.com/ansible/stat_module.html
http://docs.ansible.com/ansible/stat_module.html

Chapter 5

99

 '
 catalina:
 home: '/usr/local/apache-tomcat-8.0.21/'
 pid: '/usr/local/apache-tomcat-8.0.21/temp/tomcat.pid'
 opts: '-Dcom.sun.management.jmxremote
 -Dcom.sun.management.jmxremote.port=8082
 -Dcom.sun.management.jmxremote.authenticate=false
 -Dcom.sun.management.jmxremote.ssl=false'

10.	 We've inserted two new data structures here, one to hold our Java options and the
other to hold the Tomcat specific Catalina data. Let's create the code to add this
configuration to our target node. In the first_playbook/roles/tomcat/tasks
folder, create a new file called configure_tomcat.yml and insert the following
code snippet:
- name: "deploy setenv.sh"
 template: src=setenv.j2 dest=/usr/local/apache-tomcat-8.0.21/
bin/setenv.sh owner=tomcat group=tomcat

This will place the setenv.sh file in place and fill it with the options we've
configured.

11.	 The final element is the startup script. As we have downloaded Tomcat from the
packaged distribution, it's up to us to supply our own. Create a new file in the
templates directory called tomcat.j2 and insert the following code:
#!/bin/sh

SHUTDOWN_WAIT=30

export APP_USER="{{ tomcat.appuser }}"
export JAVA_HOME="{{ tomcat.java.home }}"
export CATALINA_HOME="{{ tomcat.catalina.home }}"
export CATALINA_PID="{{ tomcat.catalina.pid }}"

SU="su"

start() {
 isrunning

 if ["$?" = 0]; then
 echo "Tomcat is already running"
 return 0
 fi

 # Change directory to prevent path problems

Automation with Ansible

100

 cd $CATALINA_HOME

 # Remove pidfile if still around
 test -f $CATALINA_PID && rm -f $CATALINA_PID

 $SU $APP_USER -c "umask 0002; $CATALINA_HOME/bin/catalina.sh
start" > /dev/null
}

stop() {
 isrunning

 if ["$?" = 1]; then
 echo "Tomcat is already stopped"
 rm -f $CATALINA_PID # remove pidfile if still around
 return 0
 fi

 echo -n "Waiting for Tomcat to exit (${SHUTDOWN_WAIT} sec.): "

 count=0
 until ["$pid" = ""] || [$count -gt $SHUTDOWN_WAIT]; do
 $SU $APP_USER -c "$CATALINA_HOME/bin/catalina.sh stop -force"
> /dev/null
 findpid

 echo -n "."
 sleep 3
 count=$((count+3))
 done

 echo ""

 if ["$count" -gt "$SHUTDOWN_WAIT"]; then
 echo "Forcing Tomcat to stop"
 /bin/kill -9 $pid && sleep 5
 fi

 # check if tomcat is still around, this will be our exit status
 ! isrunning
}

findpid() {
 pid=""

Chapter 5

101

 #pid=$(pgrep -U $APP_USER -f "^$JAVA_HOME/bin/java.*cpatalina.
base=$CATALINA_HOME")
 pid=$(ps -fu $APP_USER | grep "Dcatalina.home=$CATALINA_HOME" |
awk {'print $2'})

 # validate output of pgrep
 if ! ["$pid" = ""] && ! ["$pid" -gt 0]; then
 echo "Unable to determine if Tomcat is running"
 exit 1
 fi
}

isrunning() {

 findpid

 if ["$pid" = ""]; then
 return 1
 elif ["$pid" -gt 0]; then
 return 0
 fi
}

case "$1" in
 start)
 start
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Started Tomcat"
 else
 echo "Not able to start Tomcat"
 fi
 ;;

 stop)
 stop
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Stopped Tomcat"
 else
 echo "Not able to stop Tomcat"
 fi

Automation with Ansible

102

 ;;

 restart)
 stop
 sleep 5
 start
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Restarted Tomcat"
 else
 echo "Not able to restart Tomcat"
 fi
 ;;

 status)
 isrunning
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Tomcat (pid $pid) is running..."
 else
 echo "Tomcat is stopped"
 RETVAL=3
 fi
 ;;

 *)
 echo "Usage: $0 {start|stop|restart|status}."
 ;;

esac

exit $RETVAL

12.	 Next we need to add the Ansible code to place the template onto the server. Add the
following snippet at the bottom of the configure_tomcat.yml file,:
- name: "Deploy startup script"
 template: src=tomcat.j2 dest=/etc/init.d/tomcat owner=root
mode=700

Chapter 5

103

13.	 Now, let's add this set of tasks into the main playbook. You can do this by adding
the highlighted code to the main.yml file:

tasks file for tomcat
- include: create_users.yml
- include: install_packages.yml
- include: configure_tomcat.yml

14.	 Next, we should amend our inventory to add our Tomcat servers to it. Edit the
inventory located in first_playbook/inventories/dev and insert the following
code:
[tomcat]
<<Node>>

Now, replace <<Node>> with the nodes you wish to configure as a Tomcat node.

15.	 Finally, we add the role to our playbook file. Edit first_playbook/first_
playbook.yml and insert the following code:
- name: Manage Tomcat
 hosts: tomcat
 remote_user: "{{ remote_user }}"
 sudo: yes
 roles:
 - { role: tomcat, tags: ['tomcat'] }

16.	 You can now run this role and you will have a Tomcat 8 container ready to run
your code.

See also
You can find the documentation for Tomcat at http://tomcat.apache.org/tomcat-
8.0-doc.

Installing MySQL using Ansible
We now have an Ansible Playbook that can manage common items. It can install and
configure Nginx, and also finally, install and configure Tomcat. The next logical step is to
install some form of data storage, and for this, we are going to look at MySQL.

http://tomcat.apache.org/tomcat-8.0-doc
http://tomcat.apache.org/tomcat-8.0-doc

Automation with Ansible

104

MySQL is arguably one of the most popular databases deployed due both to its relative ease
of use, and its open source heritage. MySQL is powerful enough for sites both large and small,
and powers many of the most popular sites on the Internet. Although it may lack some of the
enterprise features that it's more expensive cousins, such as Oracle and Microsoft SQL, have,
it more than makes up for that by being relatively simple to install and able to scale without
license costs.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as your Ansible client, and an Ubuntu
14.04 server that you wish to configure for MySQL.

 How to do it…
Let's install MySQL using Ansible:

1.	 As with the previous recipes, we're going to create a new role within our playbook.
Navigate to the tasks folder and issue the following command:
$ ansible-galaxy init mysql --force

This will create our new role and the underlying folder structure.

2.	 We're going to start by installing the packages for MySQL. Create a new file called
install_packages.yml under the MySQL role's tasks folder, and insert the
following code:
- name: 'Install MySQL packages'
 apt: name={{ item }} state=latest
 with_items:
 - python-dev
 - libmysqlclient-dev
 - python-pip
 - mysql-server

- pip: name=MySQL-python

There are a couple of things going on here. First, we are installing a few more
packages aside from MySQL itself. This is to support the Ansible MySQL module, and
to allow us to use the pip package manager to install another prerequisite package.

Chapter 5

105

3.	 Now that we have installed MySQL, we can configure it. First, start by changing the
password of the root MySQL user; by default, it is set to nothing. Create a file called
configure_mysql.yml in the tasks directory, and insert the following code
snippet:
- name: Set root password
mysql_user: name=root host={{ item }} password={{
mysql_root_password }}
 with_items:
 - "{{ ansible_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost

4.	 Remember to add this task to the main.yml file by adding the following to the
bottom of the file:
- configure_mysql.yml

There are two things to notice here. First, we're iterating over the list of hosts.
This ensures that the root user has their password changed in all the various
permutations that it might exist in. Second, we're using a variable to contain the root
password. Note the use of {{ansible_hostname}} in the with_items list. This
uses details gathered from the target host to populate certain reserved variables; this
is incredibly useful for situations such as these.

You can find more details of Ansible facts at http://docs.
ansible.com/ansible/playbooks_variables.
html#information-discovered-from-systems-facts.

5.	 Next, we're going to create a .my.cnf file. This is a convenience file that allows you
to insert certain options that the MySQL client can use, and saves you the effort of
typing at the command line. Normally, this is used to save key strokes but in this case
it is used to ensure that when Ansible runs for the second time, it can access the
database using the password we have set. Create the .my.cnf file using this code
snippet:
- name: Create .my.cnf file
 template: src=my.cnf.j2 dest=/root/.my.cnf owner=root
mode=0644

6.	 As you've noticed, this makes use of a template to create the file. Create the template
by creating a new file called my.cnf.j2 under the templates directory in the MySQL
role and insert the following code:
[client]
user=root
password={{ mysql_root_password }}

http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts

Automation with Ansible

106

7.	 Normally, we would create a file under the group_vars/dev directory to hold the
MySQL root password variable, and this will work. However, since this is sensitive
information, we want to make sure that casual prying eyes don't stumble across the
root password of our shiny new MySQL server. Instead, we are going to use the
Ansible vault feature. This will create an encrypted file that will hold our password,
and Ansible will be able to read it at runtime. Run the following command from the
root of the playbook:
$ ansible-vault create group_vars/dev/mysql.yml

8.	 You'll be prompted to enter a vault password. Make sure it's something you can
remember, as you'll need it every time you run your Ansible Playbook. Once you enter
and confirm the password, you will be handed over to an editor to enter your data.
Insert the following data:
mysql_root_password: <<ROOTPASSWORD>>

Here, <<ROOTPASSWORD>> is your chosen MySQL password. Save the file and exit,
and Ansible will encrypt it for you. If you open the file in your editor now, you will find it
has content similar to this:

$ANSIBLE_VAULT;1.1;AES256
633530396537386632323834653432353531663630343063613436373239616638
65386137316263
3133383237616662653837613966396666653732376136620a3561396339373838
30613732336533
373934653964316137373839613162653363313736373731666164303932383265
35366333303632
3661643237303266370a3461616635336434366433316161653661643261636362
34633932336364
343764373237376535663232616661336438343539383230313038653039623662
38

Using the Ansible crypt feature is a fantastic way to keep
sensitive data a secret, and can be used on a variable file. You
can find more details on the crcypt feature at https://docs.
ansible.com/playbooks_vault.html.

9.	 Now that we have our .my.cnf file, we can tidy up. Within the default install on
Ubuntu 14.04, an anonymous user is created along with a test database; we're going
to use the Ansible MySQL module to remove both of these. Insert the following code
snippet into the configure_mysql.ym file:
name: delete default user
 action: mysql_user user="" state="absent"
- name: remove the test database
 action: mysql_db db=test state=absent

https://docs.ansible.com/playbooks_vault.html
https://docs.ansible.com/playbooks_vault.html

Chapter 5

107

10.	 Now that we have installed and configured our MySQL server, it's time to use the
Ansible MySQL module to create a new database and database user. In this case,
we're going to create a database for a blog. Create a new task within the MySQL role
called create_blog_db.yml and insert the following content:
- name: Create MyBlog DB
mysql_db: name=myblog state=present

- name: Create MyBlog User
mysql_user: name=myblog_user password=agreatpassword
priv=myblog.*:ALL state=presentpresent

This code snippet uses the Ansible MySQL module to create a new database and a
matching user with the correct privileges to use it.

11.	 Finally, we just need to update our main.yml file to include our various tasks. Edit it
to include the following content:

tasks file for mysql
- include: install_packages.yml
- include: configure_mysql.yml
- include: create_blog_db.yml

12.	 Our new role is complete and ready to use. Now, we just need to update our playbook
and inventory to include it. First, open up the first_playbook.yml file in your
editor and add the following content:
- name: Manage MySQL
 hosts: mysql
 remote_user: "{{ remote_user }}"
 sudo: yes

 roles:
 - { role: mysql, tags: ['mysql'] }

13.	 Now, we need to update our inventory. Open the inventories/dev file and insert
the following snippet:
[mysql]
<< mysql_server >>

[dev:children]
nginx
tomcat
mysql

Where mysql_server is the server (or servers) that you wish to configure MySQL on.

Automation with Ansible

108

14.	 Now, if you run the playbook you will find your selected host will have MySQL
installed, with the new database ready for use. As we now have an encrypted file, you
will need to add the --ask-vault-pass switch; your command should now look
something similar to the following:

$ ansible-playbook --ask-vault-pass -i inventories/dev -k first_
playbook.yml

This will prompt you for your vault password and it will then decyrpt and use the
values contained within.

See also
ff You can find out more about the Ansible MySQL module at:

http://docs.ansible.com/mysql_db_module.html

ff You can find details of the Ansible MySQL User Module at:

http://docs.ansible.com/mysql_user_module.html

ff You can find details of the Ansible Playbook vaults at:

https://docs.ansible.com/playbooks_vault.html

Installing and managing HAProxy with
Ansible

One key element of high-performance web applications is the ability to scale, and the easiest
way to achieve this is to use a load balancer to direct traffic to multiple nodes. This can
provide both horizontal scale and, just as importantly, the ability to survive individual
node failures.

There are many load balancers available, both open source and commercial, but HAProxy is
certainly one of the more popular. Open Source, high performance, and highly configurable,
HAProxy is a good choice for any site that requires load balancing.

This recipe will demonstrate how to install HAProxy, configure it, and add both a frontend and
backend service to it.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as our Ansible client and an Ubuntu
14.04 server that you wish to configure for HAProxy.

http://docs.ansible.com/mysql_db_module.html
http://docs.ansible.com/mysql_user_module.html
https://docs.ansible.com/playbooks_vault.html

Chapter 5

109

How to do it…
Let's install and manage HAProxy and Ansible:

1.	 We are going to use the ansible-galaxy command to create our role scaffold. Do
this by issuing the following command:
$ ansible-galaxy init haproxy -p "${PLAYBOOK_PATH}/roles/"

2.	 Now we have the role, let's start with the tasks that will deal with installing the
packages. By default, Ubuntu 14.04 ships with HaProxy 1.4, whereas 1.5 is the latest
version and brings important features such as SSL termination. Fortunately, there is
a PPA available which allows us to install the more recent version. Start by creating
a new file called install_packages.yml under the roles/tasks directory, and
insert the following snippet:
name: "Add HAProxy repo"
 apt_repository: repo="deb http://ppa.launchpad.net/vbernat/
haproxy-1.5/ubuntu trusty main" state=present

- name: Install HAProxy
 apt: name=haproxy state=installed force=yes

3.	 This will add the PPA to the package list and install HAproxy; however, we're also
going to install the hatop package. Hatop is a fantastic tool for monitoring HAProxy
and allows you to see detailed traffic statistics quickly and easily. Add the following
code in the install_packages.yml file:
- name: Install HATop
 apt: name=hatop state=installed

This will install hatop to allow you to monitor your load balancer. Next, we're going to
configure HaProxy. Create a new file called configure_haproxy.yml, and insert
the following code:

- name: Deploy HAProxy configuration
 template: src=haproxy.cfg dest=/etc/haproxy/haproxy.cfg
 notify: Restart HAProxy

4.	 Remember to add this task to the main.yml file by appending the following code at
the bottom:
- configure_haproxy.yml

Automation with Ansible

110

5.	 As you can see, this writes a template into the /etc/haproxy directory; you need to
create the template by creating a new file under the haproxy role, in the templates
directory, and add the following content:
global
 log 127.0.0.1 local0 notice
 stats socket /var/run/haproxy.sock mode 600 level admin
 stats timeout 2m
 maxconn {{ haproxy.maxconns }}
 user haproxy
 group haproxy

defaults
 option http-server-close
 log global
 option dontlognull
 timeout http-request {{ haproxy.http_timeout }}
 backlog {{ haproxy.backlog }}
 timeout queue {{ haproxy.timeout_q }}
 timeout connect {{ haproxy.timoutconnect }}
 timeout client {{ haproxy.timeoutclient }}
 timeout server {{ haproxy.timoutserver }}

frontend default_site
 bind {{ haproxy.frontend_ip }}:{{ haproxy.frontend_port }}
 mode http
 option httplog
 default_backend app_server

backend app_server
 balance {{ haproxy.balance }}
 mode http

 {% for node in groups['tomcat'] %}
 server {{node}} {{node}}:8080 check
 {% endfor %}

6.	 As you can see, we're using a lot of variable interpolation in this template; this is good
practice. If you think you might be changing a value, it's best to template it. Also, take
a look at this snippet:
 {% for node in groups[nginx] %}
 server {{node}} {{node}}:8080 check
 {% endfor %}

Chapter 5

111

This code is interesting as it uses the data included in the Ansible inventory to build
the template values. This essentially means that whenever we add a new host to the
Nginx role, not only will it be configured for Nginx, it will be added to the load balancer
automatically.

7.	 Now that our template is ready, we can create a file to hold the values that it's going
to interpolate. Create a new file called haproxy.yml inside the group_vars/dev
directory and insert the following:
haproxy:
 frontend_ip: 192.168.1.1
 maxconns: 4096
 backlog: 2
 timeout_q: 400ms
 timoutconnect: 5000ms
 timeoutclient: 5000ms
 timoutserver: 5000ms
 http_timeout: 15s
 balance: leastconn
 frontend_port: 83

8.	 Next, we need to add the role and host into the playbook and inventory respectively.
First, let's amend the playbook to add our new role. Open the first_playbook.
yml file, and insert the following:
- name: Manage HAProxy
 hosts: haproxy
 remote_user: "{{ remote_user }}"
 sudo: yes
 roles:
 - { role: haproxy, tags: ['haproxy'] }

9.	 Now, we amend the inventory. Open the inventories/dev file in your editor and
insert the following snippet:
[haproxy]
<<SERVER NAME>>

10.	 Also, remember to add the haproxy role to the children as the highlighted code in
this snippet:

[dev:children]
nginx
tomcat
mysql
haproxy

Automation with Ansible

112

Now when you run your playbook, you will find that the servers you have configured as HAproxy
hosts will be configured with HAproxy; they will also add the servers you have configured as
Nginx nodes to the load balancer.

See also
ff The HAproxy documentation can be found here:

http://www.haproxy.org/#docs

ff There is a module within Ansible that can be used to control the HAproxy; this can be
used to integrate a load balancer with a deployment script:

http://docs.ansible.com/haproxy_module.html

Using ServerSpec to test your Playbook
As mentioned in the introduction of this book, the DevOps methodology is built on some of the
best practices already in use within software development. One of the more important ideas is
the concept of unit testing; in essence, a test that ensures that the code performs the correct
operations under certain scenarios. It has a two-fold advantage; first of course, you can test
for code correctness before it even arrives in a test environment and you can also ensure that
when you refactor code, you don't inadvertently break it. It is the second of these advantage
that truly shines for Ansible Playbooks. Due to the way Ansible works, you can guarantee that
a certain state will appear when you declare it; Ansible is almost running unit tests itself to
ensure that an operation has been carried out correctly. However, you might need to ensure
that certain elements are there on a server, and it's incredibly easy to drop these accidently,
especially if you are carrying out a large-scale refactoring exercise having ServerSpec on hand
can help stop this from happening.

Getting ready
You will need an Ubuntu 14.04 client to run the serverspec code.

How to do it…
Let's test our Playbook:

1.	 First, we are going to install the packages we need. ServerSpec is written in Ruby, so
we can use the Gem package manager to install it; however, first we need to install
Ruby. You can do this using the following command:
$ sudo apt-get install ruby

http://www.haproxy.org/#docs
http://docs.ansible.com/haproxy_module.html

Chapter 5

113

2.	 Once Ruby is installed at the command line, enter the following command:
$ geminstall serverspec highline

This will install both ServerSpec and its dependency highline.

3.	 Next, we are going to use serverspec to create a new skeleton project. Since
this is going to test our playbook, ensure that you are in the root of the playbook
directory when you issue the next command:
$ serverspec-init

This command is going to prompt you for a few details; see the following screenshot
for some example entries:

Remember, this will be run against a test server; ideally this is something like a
Virtual Machine that runs on your desktop. ServerSpec can also integrate with
Vagrant, and this is also an excellent method to test your code without needing a
dedicated server.

Automation with Ansible

114

4.	 Now, we need to do a little clean up. When you use the serverspec-init
command, it creates a file called sample_spec.rb under a folder named after your
test server; we don't need this, so remove it.

5.	 Now, we are going to create our test file for our Nginx Role. Create a new file under
spec/{testserver} called nginx_role_spec.rb and insert the following:
require 'spec_helper'

require 'yaml'

These require statements will bring in the libraries that we will need to run our tests.

6.	 We're going to start by testing the basics; check if the Nginx package installed, and if
the service is running and listening on the correct port; insert the following code into
the test:
describe package('nginx'), :if => os[:family] == 'ubuntu'
do
 it { should be_installed }
end

describe service('nginx'), :if => os[:family] == 'ubuntu' do
 it { should be_enabled }
end

describe port(80) do
 it { should be_listening }
end

These three blocks of code use the additional functions provided by the spec_helper
library to allow us to describe a test; much like Ansible, it abstracts you away from
needing explicit commands to test something and instead provides preset resources
that you can easily access

You can find the complete list of ServerSpec resources at:
http://serverspec.org/resource_types.html

http://serverspec.org/resource_types.html

Chapter 5

115

7.	 Now that we have the basics covered, let's use some data from our Playbook to power
the next test. As mentioned above, ServerSpec tests are written in pure Ruby, so we
can use the features of that language to help write more tests that are complex. In
this case, we're going to load the contents of our variables in Ansible to iterate over
our virtual hosts and check if the configuration files are present and linked properly;
insert the following code into your test file:
vh_list = YAML.load_file('group_vars/dev/virtualhosts.yml')
vh_list['virtualhosts'].each do |key|
 describe file ("/etc/nginx/sites-enabled/#{key[0]}.conf")do
 it { should be_linked_to "/etc/nginx/sites-
available/#{key[0]}.conf"}
 end

8.	 We are using a basic Ruby loop to open our virtualhosts.yml file, extract
the values of each hash, and use it to build a test against the file. This is a great
technique to keep in mind, as it means that your test can use the data in your
playbook automatically.

9.	 We can now run our test suite using the following command:

$ rake spec

If we now run the tests against a test server that hasn't had Ansible run against it, you
should see output similar to the following:

Automation with Ansible

116

This is exactly what we want to see; since we haven't configured anything yet, all the
tests should fail. If we run Ansible to configure Nginx on the server and run the tests
now, you should see an output similar to the following:

By writing unit tests for your Ansible code, you are ensuring that changes can be applied with
far more confidence, and can reduce incidences of broken code.

See also
You can find more details at the ServerSpec home page at http://serverspec.org.

http://serverspec.org

117

6
Containerization

with Docker

In this chapter, we are going to cover the following topics:

ff Installing Docker

ff Pulling an image from the public Docker registry

ff Performing basic Docker operations

ff Running a container interactively

ff Creating a Dockerfile

ff Running a container in detached mode

ff Saving and restoring a container

ff Using the host only network

ff Running a private Docker registry

ff Managing images with a private registry

Introduction
Containerization is not a new technology, but it has enjoyed a recent renaissance; this has
been due to the emergence of Docker, which has made using containerization reasonably
straightforward, and it has enjoyed a rapid uptake of both developers and system
administrators. However, despite all of the enthusiasm, Docker is based on existing
and well-understood technology.

Containerization with Docker

118

Containers have been around in some form or other for a very long time, but until Docker
debuted they lacked an especially compelling tool chain. This has caused them to languish,
with most users electing to spin up full fat virtual machines rather than containers. This is a
shame, as there are many compelling benefits to using containers over full virtualization in
many use cases. To understand these benefits, we need to consider how a container works
versus virtual machines. Unlike a virtual machine which runs a full kernel user space and
application within an isolated system, a container uses the underlying kernel of the container
host and runs the user space and Applications in its own sandbox. This sharply reduces
overhead on contended hosts, as you are only running a single kernel, rather than many.
Docker also makes use of a layered file system; it builds images by layering many immutable
layers together and creates an isolated writable space for the container. This means that if
you have a hundred containers based on Ubuntu 14.04, you are only consuming the disk
space for a single Ubuntu image; you use the disk space only to store the changes made to
the running container.

It's important to understand the difference between a container and an
image. An image is an immutable template, which is generally built from a set
of instructions called a Dockerfile. The image cannot be changed once it is
built, and is used as the basis for a container. When you run a container, the
image is used to boot it, and from there the container writes any changes to a
new mutable layer.

Docker debuted in March 2013 as an Open Source project, and has grown explosively; it is
now used by startups and large enterprises alike. It has also attracted a great deal of interest
from investors, and at the time of writing, the Docker project has grown into one of the most
funded startups in the world, and is partnering with companies as diverse as Microsoft and
Red Hat to bring containers to a vast array of differing platforms. It's not just the operating
system vendors who have embraced Docker, and many of the Platform-as-a-Service (PAAS)
vendors either rolled out Docker support or are planning to in the near future.

There are many reasons why Docker appeals to developers. Primarily, it helps solve the
problem of packaging. For many years, there has been an enduring question over what should
constitute a deployable package, and how much of the underlying operating system should
be encompassed within it. Docker offers the ability to create a complete deployable with every
dependency, from operating system up, managed in an easily deployable artifact. Secondly,
Docker makes it easy to scale elastic applications, as containers are generally small and fast
to start. The most time consuming part of standing up a new container is the time it takes to
download the initial image; this can be ameliorated by creating a local Docker registry, and we
will be looking at how to achieve that later in this chapter.

Although it is easy to create and destroy containers at will, it does bring new challenges; such
a free flowing infrastructure creates confusion over which apps are hosted where. Fortunately,
now there is a growing ecosystem of applications that offer orchestration of Docker
containers, and this is set to be an area of growth within the Docker ecosystem.

Chapter 6

119

Installing Docker
Before we go any further, we will learn how to install the software that allows us to host
Docker containers.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server.

How to do it…
The Docker developers have gone to great lengths to make the installation of Docker as
simple as possible, and this recipe should have you up and running within minutes:

1.	 First, ensure that you have the wget tool installed by issuing the following command:
$ sudo apt-get install wget

2.	 Once you have wget installed, issue the following command to run the Docker
installer:
$ wget -qO- https://get.docker.com/ | sh

3.	 The installer will prompt you for the sudo password, which once entered will install
Docker and any dependencies. Once the install is complete, you can verify that
Docker is correctly installed by running the following command:

$ docker -v

You should receive output similar to the following screenshot:

See also
You can find the Docker installation instructions for various operating systems at:
https://docs.docker.com/installation/.

https://docs.docker.com/installation/

Containerization with Docker

120

Pulling an image from the public Docker
registry

Now that we have installed Docker, we can use it to run a container from the public Docker
registry. The public Docker registry contains thousands of ready to use images that cover
hundreds of different packages, from databases, through to app servers. The public registry
also includes official images from certain software providers, offering you a quick method to
start developing with those packages, and the surety that the image is correct and secure.

For this recipe, we're going to use a combination of two different images to run a basic
WordPress blog.

Getting ready
To use this recipe, you will need an Ubuntu 14.04 server with Docker installed.

How to do it…
This recipe will use some simple Docker commands, and will use the public Docker images for
MySQL and WordPress to install a blog:

1.	 The first task that we need to accomplish is to create a MySQL container to hold our
data. We can do this using the following command:
$ sudo docker run --name test-mysql -e MYSQL_ROOT_
PASSWORD=password -d mysql:latest

2.	 This command will connect to the Docker public registry and pull the container
image tagged as mysql:latest down to the server. Once it's downloaded, a new
Docker container called test-mysql will be started with a MySQL root password of
password. You can confirm it's running by issuing the following command:
$ docker ps

This should produce output similar to this:

Chapter 6

121

3.	 Now that we have a MySQL container, we can turn our attention to WordPress. As with
MySQL, the WordPress developers have created an official container image, and we
can use this to run WordPress using the following command:
$ docker run --name test-wordpress -p 80:80 --link test-
mysql:mysql -d wordpress

4.	 This command will retrieve and run the official WordPress image, and will name it
test-Wordpress. Note the --link option; this links the MySQL container to the
WordPress container without creating an explicit network between the two.

Keep in mind that you can only link two containers on the
same host; if the containers are on different hosts, you will
need to map ports for them to be able to communicate.

5.	 Note the -p option, this exports TCP port 80 from the container to port 80 on the
host, making the WordPress installation accessible. It will not be available to the
outside world without the port mapping, even though the container has port 80
open. The mapping essentially creates a firewall rule on the Docker host that bridges
between the host network and the virtual network created for the Docker containers
to run on.

6.	 Open a browser, point it to the address of your Docker host, and you should see the
following page:

Containerization with Docker

122

See also
ff You can find the official MySQL image at https://registry.hub.docker.

com/_/wordpress/

ff In addition, you can find the official WordPress image and documentation at
https://registry.hub.docker.com/_/wordpress/

Performing basic Docker operations
Now that we have the ability to create Docker containers, let's have a look at how to
control them. Docker has a comprehensive set of tools that allows you to start, stop,
and delete containers.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server with Docker installed.

How to do it…
This recipe demonstrates the basic commands used to manage Docker containers. By using
these commands, you can manage the full lifecycle of the container:

1.	 Use the following command to list the running containers on your system:
$ sudo docker ps

This only shows the running containers. To see the containers that
have been stopped, use the following command:
$ sudo docker ps -a

2.	 To stop a running container, use the following command:
$ docker stop <dockerID>

Here the ID is derived from running docker ps and selecting the ID of the image
you wish to stop.

3.	 To remove a docker container, use the following command:
$ sudo docker rm <CONTAINER ID>

https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/

Chapter 6

123

Remember, this only removes the CONTAINER and not the
underlying image.

4.	 Use the following command to list the Docker images that have been downloaded to
the host:
$ sudo docker images

This should produce output that looks something similar to this:

5.	 Use the following command to remove an image:

$ sudo docker rmi < IMAGE ID >

Removing images is a safe operation; Docker uses reference counting to keep
track of containers that have image dependencies. If you attempt to remove
an image that is in use by a container (started or stopped) on your host, you
will receive a warning, and it will not be removed.

See also
You can find instructions on how to work with images and containers at
https://docs.docker.com/userguide/.

Running a container interactively
You will want to run containers in a detached mode; however, there are times when it is very
useful to be able to run the container interactively to diagnose issues.

Running a container interactively essentially gives you a shell on the container, and from
within the container you can work in the same way, as you would with any other Linux system.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server with Docker installed.

https://docs.docker.com/userguide/

Containerization with Docker

124

How to do it…
You can start any Docker container in an interactive mode using the following command:

$ sudo docker run -i -t ubuntu /bin/bash

See also
Refer the documentation on Docker at: https://docs.docker.com/articles/basics/.

Creating a Dockerfile
Although there are many premade images available on the Docker registry, it is inevitable that
you will want to create your own images as the basis for your containers. One of the standout
features of Docker is its straightforward build tools, and you can easily create new images with
a simple text file.

In this recipe, you will learn how to use Docker to package the Gollum Wiki software and push
it to the Docker public repository.

Getting ready
For this recipe, you will need a server with Docker installed.

How to do it…
The following steps outline how to create a new Dockerfile, build it, and finally push it to the
Docker Registry:

1.	 First, we are going to create a new Docker registry account. Start by visiting
https://registry.hub.docker.com and follow the signup instructions that you
will find on this page to create a new account. By creating your account, you create a
namespace within the Docker registry, which allows you to upload your own images.

2.	 We have created a Docker registry account, so we can now turn our attention to
creating our first Dockerfile. A Dockerfile is the list of steps used to create a complete
Docker image. These steps can include copying files into the image, or running
commands, but every Dockerfile needs to start with a FROM command. The FROM
command allows you to choose the Docker image that will form the basis for this
container; generally speaking, this will be an OS image, and many Linux distributions
now ship an official image that can be used.

https://docs.docker.com/articles/basics/
https://registry.hub.docker.com

Chapter 6

125

It might strike you as slightly recursive that you need to use an image
to create an image. If you wish to create your own OS image to serve as
your base, you can follow the instructions given at: https://docs.
docker.com/articles/baseimages/.

3.	 Let's use the Ubuntu image for our Gollum container. Do this by creating a new file
called Dockerfile and inserting the following code:
FROM ubuntu:14.04

This will use Ubuntu 14:04 as our base image.

4.	 Next, we can insert a little metadata that allows people to see who is currently
maintaining the image. This allows people to see who authored the image, and who
to contact if they have questions or issues. This takes the form of a text field, and
it's generally accepted to put your name and e-mail address in it. You can do this by
adding the following command in the Docker file:
MAINTAINER Example User example@adomain.com

5.	 Now that we have taken care of the metadata for our container, we can turn our
attention to installing software. As we are using the Ubuntu base image, we use the
apt package manager to install our software; however, the base image may have an
out-of-date package list cached, so it's best to update it. To update the package list,
add the RUN directive. In your Dockerfile, insert the following code:
RUN apt-get update && \

The RUN directive is one you are going to see a lot, as it allows you to
run commands within the container. Be careful, though, as you need
to ensure that the commands you run are non-interactive; interactive
commands will cause your image build to fail as you have no way to
interact with it at build time.

6.	 Notice the && \; this is a shell function that runs a subsequent command if the
previous command was successful, allowing us to chain commands in one line.
This is useful for keeping the number of Docker layers small. The \ is a line break,
allowing you to keep your Dockerfile readable.

https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/

Containerization with Docker

126

When you run a Docker build, each command creates a new layer, and each
layer is placed on top of the next, building your eventual Docker image.
However, each layer carries a small amount of internal metadata, which
although small, can add up. Perhaps more importantly, there is a limit to the
amount of layers an image can contain, a constraint of the underlying AUFS
filesystem; at the time of writing, the limit is 127 layers. Although you can
use alternative file systems with Docker that might remove this limitation, it's
worth designing with it in mind.

7.	 Now, we can start to install our prerequisite software. Since Gollum is a Ruby
application, it requires Ruby, plus some additional build tools. Again, we are going
to use the RUN command and have apt install these packages for us. Insert the
following code inside your Dockerfile:
RUN apt-get update && apt-get install -y ruby1.9.1 ruby1.9.1-dev
make zlib1g-dev libicu-dev build-essential git

This will install the software that we need to install Gollum.

8.	 Next we want to install Gollum itself. Gollum is distributed as a Ruby gem, so we can
use the Gem package manager to install it for us. To do this, add the following code:
RUN apt-get update && \
apt-get install -y ruby1.9.1 ruby1.9.1-dev make zlib1g-dev libicu-
dev build-essential git && \
gem install gollum

As you can see, we are performing the installation as a chained set of commands
rather than using an individual RUN directive for each new line.

9.	 We now need a directory to store our wiki content. Unlike many wikis that rely on a
database to store content, Gollum uses a Git repository as its persistent store. All
that is required is a file system to store the Git repository on, and it takes care of the
versioning. Let's create it now; insert the following code into your Dockerfile:
RUN mkdir -p /usr/local/gollum

Chapter 6

127

10.	 Now, we are going to set the work directory. By default, Docker runs all directives
within the root directory of the container; by setting the work directory, we can run the
commands in the directory of our choice. To set the work directory, add the following
directive to your Dockerfile:
WORKDIR /usr/local/gollum

11.	 With the work directory set, we can now create the initial repository to hold our wiki
content; this is achieved using the Git command. Add this code to your Dockerfile:
RUN git init .

This command will be run in the work directory we set in the previous command, and
it will create an empty Git repository ready for our content.

12.	 Now, we need to expose a network port. By exposing the port, we will be able to
connect to the service from the network; it also allows other containers to connect
to the service via linking. Gollum runs by default on TCP port 4567; add the following
code to expose it:
EXPOSE 4567

13.	 Finally, we add a default command that will be run when the container is started. In
this case, the Gollum package installs a binary that can be used to start the wiki. Add
the following command to execute it when the container starts:
CMD ["gollum"]

14.	 We are now ready to build our Docker container. At the command line, navigate to the
directory containing your Dockerfile and issue the following command:
$ sudo docker build -t <username>/gollum:4.0.0 .

Where <username> is the Docker registry username that you setup earlier. Notice
the -t: this is the tag. The tag is used both to name your image and to version it. In
this case, I have used the version of the software.

Versioning is as always a contentious issue, and it is best to use
your existing standards if in doubt. I tend to create a container
version that matches the version of the application I am packaging,
as it allows me to see at a glance which host is running which
version of a given piece of software.

Containerization with Docker

128

15.	 Once you trigger this command, you should see output similar to the
following screenshot:

16.	 Once your build is complete, you can push it to the Docker repository. By pushing your
image to the repository, you make it straightforward to deploy it to other machines. To
push the container, issue the following command:

$ sudo docker push <username>/gollum:4.0.0

This will push the image to the Docker repository and make it ready to be distributed. If you
wish to make it private, then you can sign up for a premium account and make use of the
private repository feature; alternatively, you can host your own Docker registry.

See also
The Docker build documents can be found at: https://docs.docker.com/reference/
builder/.

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/

Chapter 6

129

Running a container in detached mode
You should run your container in a detached mode. This ensures that the applications that
are running within your container are able to run unattended, much in the same way as a
daemonized service. In this example, we are going to take the container we created in the
previous recipe, and run it as a detached process.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server with Docker installed. You should also
have completed the previous recipe, Creating a Dockerfile, or have a suitable image to use.

How to do it…
The following steps show you how to use the docker command to run a container in a
detached fashion:

1.	 Running a container in detached mode is relatively straight forward. On your Docker
host, run the following command:
$ sudo docker run -d -t <username>/gollum:4.0.0 --name gollum -p
4567:4567

2.	 Let's take a look at these options. The -d tells Docker to run the container in a
detached mode; this means that it will run in the background, non interactively. Next
we use the -t option and supply the tag of our image, telling it which image we wish
to start our container from. Then, we use the --name option to allocate a name to
the container; without this option, a random name will be allocated.

3.	 The final option (-p) bridges the network between the container and the host,
allowing you to connect to your Gollum Wiki. This is presented as <container
port>:<host port> and allows you to connect to the host on a different port to
the one that is presented by the container; this can be very useful if you want to run
multiple versions of the same app, as it allows you to export the service onto several
different ports, and use technology such as haproxy to load balance between them.

Containerization with Docker

130

4.	 Once you have issued the command, you should be able to connect to your new Wiki.
In your browser enter the url ::4567. You should be presented with a page that
looks similar to this:

See also
ff You can find the Docker run command reference at https://docs.docker.com/

reference/run/

ff You can find the Gollum documentation at https://github.com/gollum/
gollum/wiki

https://docs.docker.com/reference/run/
https://docs.docker.com/reference/run/
https://github.com/gollum/gollum/wiki
https://github.com/gollum/gollum/wiki

Chapter 6

131

Saving and restoring a container
One of the powers of containers is the flexibility that they provide, and part of this is the
ease with which you can take snapshots of running containers and restore them onto other
Docker hosts. This can be used both to back up containers and to diagnose issues. If you
have a production issue with a particular container, you can use a snapshot to restore
the problematic container to a test host and test the exact same container in a controlled
environment.

Getting ready
For this recipe, you will need an Ubuntu 14.04 Docker host and a running Docker container.

How to do it…
The following steps will show you how to save a Docker container and then restore it on
another machine:

1.	 First we need to locate the container we are interested in. Using the docker ps
command, locate the container you wish to snapshot and make a note of its ID.

2.	 Once you have located the container you wish to commit, issue the following
command:
$ sudo docker commit <containerid> <imagename>:<imageversion>
--pause=false --author=<yourname>

Let's go through some of these options in more detail. The containerid
should be the id of the container you wish to commit, and the imagename and
imageversion are the name and version you wish to give to the image you're
creating. The pause flag is important for production instances, as this controls the
behavior of the running container when committing. By default, Docker will pause the
image whilst the commit takes place; this is to ensure that the data is consistently
captured. However, it also renders the container unable to serve requests during this
time. If you need the container to continue to run, you can use the --pause=false
flag to ensure this. Be aware, though, the image you create may contain corrupted
data if a write takes place during the commit. Finally, we also add an author name,
as this helps the people who examine the image to know who took it.

3.	 Once you have issued the command, you can use the following command to check if
it has been created:
$ docker images | grep "<imagename:imageversion>"

This should show your newly created image.

Containerization with Docker

132

4.	 Now that we have our image, we can push it to the Docker repository using the
following command:
$ docker push -t <imagename:imageversion>

5.	 We can now make the image available for diagnosis on a test machine using the
following command:
$ Docker pull -t <imagename:imageversion>

6.	 Alternatively, you can skip pushing the image to the Docker repository by using the
Docker save command. The save command creates a tar file of the image, which is
suitable to be passed around with tools such as SCP, or shared file systems such as
NFS. To use the save command, issue the following at the command line:
$ docker save <imagename:imageversion> > /tmp/savedimage.tar

7.	 This will create a tar file of the image. Copy it to your test host using the tool of your
choice, and issue the following command on the test host:
$ docker load < savedimage.tar

Now, if you check the Docker images on your test host, you will find that your saved image is
available to run.

See also
You can find details of Docker save, load, and commit commands at: https://docs.
docker.com/reference/run/.

Using the host only network
Docker uses a bridge to connect to the underlying virtual network and present services within
a container, and by and large, this is perfectly satisfactory. However, there are some edge
cases where this can cause issues; a perfect example is an application that makes use of
multicast. To get around this, you can present the host networking stack to the container,
allowing it to make full use of the host network. This allows items such as multicast to work at
the expense of some flexibility and convenience.

Wherever possible, you should avoid using this technique. Although it can
help avoid certain issues, it also breaks one of the underlying ideas of
containerization by making a container rely on features of the host. It also
stops you from being able to run multiple containers that rely on the same
port. For instance, under normal circumstances you can run multiple Nginx
servers using Docker, and also map the host ports of 80, 81, and 82 to three
containers listening on port 80. You cannot do this by tying the host network
to the container, as the port is tied to a single process.

https://docs.docker.com/reference/run/
https://docs.docker.com/reference/run/

Chapter 6

133

Getting ready
For this recipe, you will need an Ubuntu 14.04 host and a container with which it can network.

How to do it…
The following recipe shows you how to run a container in a detached fashion and give it
access to the host network:

1.	 First, we're going to start a new container; in this example, we're going to use the
Gollum container from earlier in the chapter. Start it using the following command:
docker run -d --name gollum --net=host -t <username>/gollum:4.0.0

Note the additional option of --net=host; this directs Docker to start the container
with the host network rather than bridging. Also note the lack of the -p option to map
ports; this option becomes superfluous as the container communicates directly with
the host network, so no bridge is required.

2.	 As we are no longer mapping a port, Docker cannot take care of configuring the IP
Tables for use. Due to that, you will need to insert a new rule to allow traffic to reach
the service running in the container. You can do this by using the following command:

iptables -I INPUT 5 -p tcp -m tcp --dport <serviceport> -j ACCEPT

Substitute <<serviceport>> with the TCP port number of the service that you're
running on.

See also
You can find more information on advanced Docker networking techniques at:
https://docs.docker.com/articles/networking/.

Running a private Docker registry
Although the Docker registry offers a robust and cost effective place to store Docker images,
for some companies this can be limiting, either due to the cost involved, or possibly due to
security policies. Luckily, it is possible to run your own private Docker repository, allowing you
to keep your images completely within the boundaries of your own network.

In this recipe, we are going to set up a minimal Docker registry. We are not going to delve
into items such as authentication mechanisms or alternative storage mechanisms. This
is left as an exercise for the reader, and you can find excellent guidance within the Docker
documentation at: https://docs.docker.com/registry/.

https://docs.docker.com/articles/networking/
https://docs.docker.com/registry/

Containerization with Docker

134

The registry we create will contain some minimal security in the form of SSL, and we are
going to export the filesystem to the underlying host. Docker registries can consume massive
amounts of disk space and ideally, you should hold the data on a robust storage device, such
as an NFS server with both a large capacity, and solid redundancy.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host with Docker installed.

How to do it
The following steps will show you how to create a new Docker repository and secure it
using SSL:

1.	 By default, the Docker registry does not ship with SSL enabled. To enable it, we need
to download the source code. Create a folder to contain it and download it using the
following command:
$ wget -q https://github.com/docker/distribution/archive/
v2.0.0.tar.gz

2.	 Next, unpack the source code using the tar command:
$ tar -xvf v2.0.0.tar.gz

3.	 Move to the distribution directory and create a new certs directory using the
following command:
$ cd distribution-2.0.0 && mkdir certs

4.	 Now we create the SSL certificates for our Docker host using the following command:
$ openssl req -newkey rsa:2048 -nodes -keyout certs/registery.key
-x509 -days 730 -out certs/registery.crt

5.	 This command will trigger some prompts asking for further details about the new
certificate you are creating:

Chapter 6

135

Pay special attention to the hostname when you fill these in, as this should match the
hostname of registry you are creating.

6.	 Next, we need to amend the registry configuration to recognize the new certificates.
Edit the /cmd/registry/config.yml file within the registry source code and find
the block marked http, then amend the code to look similar to this:
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001
 tls:
 certificate: /go/src/github.com/docker/distribution/certs/
registry.crt
 key: /go/src/github.com/docker/distribution/certs/
registry.key

7.	 Next, locate the key named filesystem: and amend it so that it resembles the
following snippet:
 filesystem:
 rootdirectory: /var/spool/registry

8.	 Now we have finished our changes, we can build our custom registry image using the
following docker build command:
$ docker build -t docker_registry .

9.	 Once the build is complete, you can run the registry using the following command:
$ docker run -p 5000:5000 -v /var/spool/registry:<host_dir>
docker_registry:latest

Where host_dir is a directory on the host machine.

Containerization with Docker

136

10.	 Since we are using a self-signed certificate, we need to configure any Docker client
that wishes to use this repository to recognize the new certificate. On each Docker
client, copy the registry.crt into /etc/docker/certs.d/<<registrydoma
in>>:<<registryport>>/ca.crt. Ensure that you replace registrydomain
with the DNS name of your Docker registry, and the registryport with the port it
will be running on. This will then suppress any warnings you may encounter due to
untrusted certificates.

11.	 We can check if our registry has started correctly by querying the API. Point your
browser at the address of your new registry (remember to ensure it's https rather
than http). You should see a response similar to this:

This is exactly what we expect; by returning a 200 response and an empty JSON array,
you can see that the API is ready to go.

See also
You can find details on how to deploy and use the Docker Registry at: https://docs.
docker.com/registry/.

Managing images with a private registry
Once you have created your own Docker registry, you can start to push your Docker images to
it. By pushing your images to a self-hosted Docker registry, you are not only gaining security,
you are also making the build and deployment of further images much faster. Pushing to a
self-hosted registry is straightforward, and there is nothing to stop you from pushing an image
to multiple registries; this can be useful if you maintain registries for certain environments.

Getting ready
For this recipe, you will need an Ubuntu 14.04 Docker host and a self-hosted Docker registry.

How to do it…
I have split this recipe into two sections, the first dealing with pushing images to your registry,
and the second for how to pull images.

https://docs.docker.com/registry/
https://docs.docker.com/registry/

Chapter 6

137

Pushing images
The following steps deal with taking an image and pushing it to a private Docker registry:

1.	 For this recipe, we are going to use the Gollum Dockerfile, which we created
previously. Change the directory to the Dockerfile directory and trigger a build using
this command:
$ sudo docker build -t <username>/gollum:4.0.0 <<docker_registry_
name_and_port>>

Note that, instead of your usual Docker registry username, you are inserting the
name and port number of your own Docker registry into the image tag. This is going
to act as a pointer to Docker, for both where to push the image to and where to pull
it from.

2.	 Next, we can push the image using the following command:
$ docker push <docker_registry_name_and_port>/gollum:4.0.0

3.	 If all goes well, you should see output similar to this:

Containerization with Docker

138

4.	 Now, we can also use the Registry API to check if our image has been correctly
pushed. At the command line, enter the following command:
curl -v -X GET address>:5000/v2/gollum/tags/list

5.	 You should see a response along the lines of the following screenshot:

If you see this, then you have successfully pushed the image to your own Registry.

Pulling images
Now that we have pushed images to our Docker registry, we can look at how we can
subsequently pull them. Again, we can use the Gollum example, which we uploaded in the
previous examples.

At your command line, enter the following command:

$ docker run -d -t <<docker_registry_name_and_port>>/gollum:4.0.0

This will pull the image from your registry and run it.

See also
You can find more details of working with a self-hosted Docker registry at: https://docs.
docker.com/registry/spec/api/#overview.

 https://docs.docker.com/registry/spec/api/#overview
 https://docs.docker.com/registry/spec/api/#overview

139

7
Using Jenkins for

Continuous Deployment

In this chapter, we are going to cover the following topics:

ff Installing Jenkins

ff Installing the Git plugin

ff Installing a Jenkins slave

ff Creating your first Jenkins job

ff Building Docker containers using Jenkins

ff Deploying a Java application to Tomcat with zero downtime using Ansible

Introduction
Continuous integration is one of the most powerful techniques you can use when developing
software and it underpins a great deal of what many consider a DevOps tool-chain. Continuous
integration (CI) essentially entails taking your code and building it on a frequent schedule
and deploying it into a representative environment for the purpose of testing. This automated
job should both build and test, if the tests are passed, you can deploy your software into a
nominated environment. Without the ability to automate code deployment, you are left with an
enormous piece of manual labor in your deployment pipeline. It's one thing to be able to build
servers and deploy configuration automatically, but if you are unable to build your code in a
reliable manner and then push it to a test environment, then you are going to be wasting a lot
of time and energy.

Using Jenkins for Continuous Deployment

140

Continuous integration is an incredibly valuable tool and something that most development
teams should be working towards if they don't already have it. Once you have a CI tool in place
you will be deploying and testing code very frequently and increasing the visibility of bugs
before they can be deployed any further than an integration environment.

How often you run the integration job is something for the team to agree on.
I've worked with systems that deploy every time a developer checks in and I've
also worked in teams where it happens once every hour. I will suggest that
you run the integration at least once a day. If your integration tests are long,
the best time will be when the last developer goes home; so that, when you
return the next day, you can see the state of your last build and fix any issues
that may have occurred overnight.

Taken to extreme, continuous integration can be used to take code from the repository and
take it right through to production deployments and indeed, there are companies that utilize
continuous integration in this fashion. Even if you don't take your system to such a degree, you
will still find that the judicious use of continuous integration can help you identify bugs in the
code quicker.

The key to continuous integration is to leverage the existing tools. You almost have the
existing testing suites in place, so re-purpose those to be used in the continuous integration
environment. We can also re-use the automation tools and techniques we use to build the
environments. This not only re-uses existing tools but also ensures that any deployment tool
you use is tested regularly, ensuring that these are as bug free as possible.

In this chapter, we are going to focus on using Jenkins as the basis of our continuous
integration recipes. Jenkins is a fork of the Hudson CI system and has a thriving and active
development community with many plugins to enhance its functionality.

Although Jenkins is a fork of Hudson, I recommend that you stick with Jenkins
rather than its progenitor. It has a much more active developer community
and more plugins.

Jenkins allows the use of a master and slave arrangement and this allows you to scale it out
for truly massive builds. The Jenkins master controls the slaves and with a few select plugins,
you can use technologies such as Docker to keep your build environment elastic; alternately,
you can use plugins to drive build slaves using AWS, Digital Ocean, and many other PAAS
providers.

We will also be making use of both Ansible and Docker to build and configure our integration
environment. If you are not up to speed with either of these, I suggest that you have a look
at Chapter 5, Automation with Ansible, and Chapter 6, Containerization with Docker. Both of
these chapters contain everything you need to get up and running with these technologies.

Chapter 7

141

Installing Jenkins
This recipe will show you how to install a basic Jenkins server. The Jenkins server will form the
basis of the continuous integration environment, and this is where you define your build jobs
and also manage build users, plugins, and environment details. We are also going to cover
some basic setup tasks, ensuring that your new Jenkins servers is secured from anonymous
usage is a very important step if your hosting your build platform on a publicly accessible host.

We are going to use Ansible to install our Jenkins master; this allows us to easily re-create
the basic server if we have a problem or allows us to create a new one if we need a second
master, perhaps for a new project.

This recipe will setup the Jenkins master but you will quickly realize that
the Jenkins master is not the important part; the crucial parts are the jobs
you create. Make sure that once you start to use Jenkins, you back up your
system regularly. If disaster strikes and you haven't backed up your Jenkins
master, you will have a very tedious time re-creating jobs from scratch.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server and an Ubuntu 14.04 host with Ansible
installed. If you need more information on how to use Ansible, please consult Chapter 5,
Automation with Ansible.

How to do it…
The following steps will show you how to write a basic Ansible role to install the Jenkins server
and how then to setup some basic security:

1.	 We're going to create a new Ansible role to manage the installation of our Jenkins
Master; use the following command to create the new role:
ansible-galaxy init jenkins

2.	 Now, we have our new template role ready and we can start adding code. Edit
jenkins/tasks/main.yml and add the following snippet:
- name: Add Apt key
 apt_key: url=http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key
state=present
- name: Add Jenkins Repository
 apt_repository: repo='deb http://pkg.jenkins-ci.org/debian
binary/' state=present update_cache=yes

Using Jenkins for Continuous Deployment

142

- name: Install Jenkins
 apt: name=jenkins state=present

- name: Start Jenkins
 service: name=jenkins state=started

This code is straightforward and performs the following tasks:

�� Adds the Jenkins repository key

�� Adds the Jenkins repository to the apt sources

�� Installs the Jenkins package

�� Starts the Jenkins service.

If you now use your browser to point at the DNS/IP address of your build server on
port 8080 you should be presented with the following page:

Chapter 7

143

3.	 Now that you have installed Jenkins, we should at least add a minimum amount of
security; this is especially important if you are hosting your Jenkins server on a public
facing server. Click on the Manage Jenkins on the left-hand side of the home page
marked as:

4.	 The next page allows you to manage some of the features of Jenkins. If you have
not already setup your security, you should find a banner that looks similar to the
following screenshot at the top of the screen:

5.	 Click on the button marked as Setup Security. This should take you to the next
screen, which looks like the following screenshot:

Using Jenkins for Continuous Deployment

144

6.	 Check the highlighted checkbox and then click on the Save button; it will take you to
the next screen of the setup, which should resemble the following screenshot:

Note the selected settings. This will configure Jenkins to use it's own in built user
directory and ensure that only logged in users are able to perform any actions.

This only stops users from being able to perform actions within Jenkins, but
it does not stop unauthenticated users from seeing information on your build
server. If you are hosting this on an externally available site, I strongly urge
you to get additional security; at the very least a reverse proxy, such as an
Apache or Nginx server in front of your Jenkins with basic authentication.
Alternatively, you can also add a user called Anonymous, and remove all the
rights; this will effectively stop unauthenticated users from being able to take
any actions or see any data.

Once you are happy with the settings, hit Save and you will be taken back to the
configuration page.

Chapter 7

145

7.	 Finally, we need to create a user to log in with. From the management page, find and
click on the link that looks like this:

8.	 This will take us to the user management page. On the left-hand side, you will find a
link called Create User, click on it and you will be taken to a page that looks similar
to the following screenshot:

Add the details of your user as shown in the preceding instance and hit the Sign up
button. You should now be able to login to Jenkins as that user and start to create
jobs. If you don't supply user details, you can still see some of the less secure
elements of Jenkins; however, you will be unable to alter anything.

Using Jenkins for Continuous Deployment

146

See also…
ff You can find further details of how to install Jenkins at https://wiki.jenkins-

ci.org/display/JENKINS/Installing+Jenkins

ff You can find details of Jenkins authentication methods at https://wiki.
jenkins-ci.org/display/JENKINS/Authentication

ff You can find details of how to administer Jenkins at https://wiki.jenkins-ci.
org/display/JENKINS/Administering+Jenkins

Installing the Git plugin
By default, Jenkins is shipped with the ability to connect to CVS and Subversion; despite the
growing popularity of Git, it's still not available by default. Fortunately, Jenkins has a plugin
that allows you to use Git as your repository of choice. This recipe will show you how to install
the plugin and configure the credentials to connect to your repo.

Getting ready
For this recipe, you will need a Jenkins server and a Git repo to connect to.

How to do it…
The following steps use a combination of Ansible and a Jenkins plugin to add Git client
functionality to the Jenkins Server.

1.	 First, we need to install the Git client on to our Jenkins server. Rather than doing this
manually, we are going to adjust the Ansible role from the installation recipe. Within
the Jenkins role, edit the following file: Jenkins/tasks/main.yml, and insert the
following code:
- name: Install Jenkins
 apt: name=jenkins state=present
- name: Install Git
 apt: name=git state=present

2.	 Re-run the Ansible role against your server; this should install the Git client. You can
test this by issuing the following command on your Jenkins server:
git --version

This should return the version of the Git client that you installed.

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Authentication
https://wiki.jenkins-ci.org/display/JENKINS/Authentication
https://wiki.jenkins-ci.org/display/JENKINS/Administering+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Administering+Jenkins

Chapter 7

147

3.	 Now, since we have the Git client installed, we can install the Jenkins Git plugin. From
the front page of the Jenkins console, click on the Manage Jenkins button found on
the left-hand side of the page.

Although not covered in this recipe, it's possible to use Ansible to
manage the plugins, a great example can be found at: https://
github.com/ICTO/ansible-jenkins.

4.	 On the manage Jenkins page, find and click on the Manage Plugins button, found
around halfway down the page and then click on the Available tab.

5.	 In the filter box, type Git Plugin; it should return a list of plugins similar to the
following screenshot:

As you have probably noticed, each of the plugins has a link in the
title; this takes you through to the documentation and is worth
looking at before installing them.

Tick the checkbox next to the Git Plugin, click on the Download now, and install
after restart button. This will prompt Jenkins to download the plugin, install it, and
restart Jenkins to make it available for use.

6.	 Next, we need to configure our credentials to connect to Git.

https://github.com/ICTO/ansible-jenkins
https://github.com/ICTO/ansible-jenkins

Using Jenkins for Continuous Deployment

148

When setting up Git credentials, I recommend that at the very least, your
build system should have its own credentials. Although it's tempting to re-
use existing credentials, it makes it both hard to audit and more susceptible
to intrusion. It's also creating a problem for the future, when the builds stop
working and you revoke the key of the person who setup the build server
when they leave.

7.	 Log on to your Jenkins server and issue the following command:
$ sudo su Jenkins

8.	 Now, we can create a new SSH key with the following command:
$ ssh-keygen -t rsa -b 4096 -C "jenkins@example.com"

9.	 You will be greeted with a response similar to the following screenshot:

As you can see, I've left the responses at their default values.

This will create the key without a password. If you wish, you can create
a key with a password and the password can be passed via Jenkins.

Chapter 7

149

10.	 Log on to your Jenkins server and click on the link on the left-hand side marked as
Credentials. This will take you into credentials management page, which should look
something similar to the following screenshot:

11.	 Click on the global credentials link and select the link on the left-hand side marked
as Add Credentials; this will bring up a screen that will allow you to add your Git
credentials; look at the following screenshot to get an idea of how it should look when
you enter your credentials:

Using Jenkins for Continuous Deployment

150

As you can see, we're asking the Jenkins server to simply look-up the key that we
generated earlier. Alternatively, you can add it directly to Jenkins or keep it in a
different place than the SSH default on the server itself. Tweak these details to fit
your build infrastructure.

See also
ff You can find the details of the Git plugin at https://wiki.jenkins-ci.org/

display/JENKINS/Git+Plugin

ff You can find more details about the credentials plugin at https://wiki.jenkins-
ci.org/display/JENKINS/Credentials+Plugin

Installing a Jenkins slave
As we've already covered, Jenkins can be scaled by adding additional build slaves. These
slaves can be used to distribute builds amongst many different servers. This allows you to
have a single low-powered server, which acts as the Jenkins master and then as many slaves
as you need to perform the build jobs.

Getting ready
For this recipe, you will need a Jenkins master and a server running Ubuntu 14.04 with a JDK
installed to act as the slave.

How to do it…
The following steps will show you how to add a Jenkins slave to the Jenkins master:

1.	 On your slave node, add a new Jenkins-user with the following command:
$ adduser jenkins

Login to your Jenkins Master and add new credentials. These are going to be the
credentials used to connect to your new Slave; it should look similar to the following
screenshot:

https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Plugin

Chapter 7

151

As you can see, I'm using a username and password to connect to my slave;
however, you can also use an SSH key if you prefer.

2.	 Once you have created your credentials, you now need to add the new slave. On
the main screen, click on Manage Jenkins and then select the option marked as
Manage Nodes. Inside the management panel, you should find that the master is
already listed and should look something similar to this:

3.	 Click on the button on the left-hand side of the management panel marked as New
Node; this will open the following dialog box:

As you can see, you need to name your node. This is descriptive and doesn't
necessarily need to the be same name as the actual node. As you can see, there is
only one option available for slave nodes but you can add more via an appropriate
plugin. Click on OK to move to the next step.

Using Jenkins for Continuous Deployment

152

4.	 The next step allows you to enter the details of your slave node; have a look at the
following screenshot:

These options allow you to configure some fairly important settings for your node.
First of all, it allows you to set the name and description of this node; It's best to be
as descriptive as possible. Next, you can set the number of executors and this sets
the number of parallel jobs the node can perform at one time. Generally speaking,
the more powerful the server, the more jobs it should be able to perform. Mine is a
tiny server, so I'll leave it at the default of one.

Next up, we have the remote root directory; this is where the Jenkins workspaces will
be kept. So it's best to make sure that this is a location that has the majority of the
disk space. Next, we have labels. Labels are a mechanism to allow you to use certain
nodes for certain jobs; for instance, in my case, I've set two tags on my slave, test
and Docker. This means that any Jenkins job that has that tag will have this node
available to them. If no node with that tag exists, it will fail.

This is a great way to separate out nodes by capability; so for instance,
you could label some nodes as being Redhat, Ubuntu, Beta, and so on.

Finally, we have our launch options. In the case of my slave, I'm using SSH to connect
to it using the credentials we created in step 2. Once you have entered your details,
click on Save.

Chapter 7

153

5.	 If you now navigate to the node management page, you should find that it now looks
something similar to this:

Your new node is now available for building with.

Remember, your slave node will need the appropriate tools installed for
your build; for instance, Git, maven and so on. It's a good practice to
automate this using a tool such as Ansible. This makes it quick and easy
to spin up new slaves.

See also
For further details on the SSH plugin, you can see the documentation at https://wiki.
jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin.

Creating your first Jenkins job
The basic building blocks of Jenkins are jobs. A Jenkins job is a series of steps that normally
check software out of a repository, run unit tests, and builds the artifact ready for deployment;
however, they are versatile and can be used to perform almost any task you can think of.

When we talk of an artifact in this context, we are referring to the deployable
object your build job produces. This is commonly an object, such as an
executable binary, library, or software package. An artifact is the object you
wish to take from your build server, deploy, and execute on your environments
to test.

At its core, you add steps to a Job and it can trigger another when it succeeds; generally
speaking, these are command-line jobs but as with many Jenkins items, this capability
can be extended with the use of Jenkins plugins.

https://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin

Using Jenkins for Continuous Deployment

154

For this example job, I am going to build my blog. This is based on the excellent Hugo static
blog engine (http://gohugo.io). Hugo allows us to create a relatively straightforward
job that will download the code from a Git repository and run a task that will build our end
product; we're then going to use Jenkins to archive this ready for distribution.

Getting ready
For this recipe, you will need a Jenkins server. You should also have a blog ready to process
within Hugo. You can find an example blog at https://github.com/spf13/hugo/tree/
master/examples/blog.

How to do it…
The following steps will show you how to install the Hugo blog engine and create a Jenkins job
that will fetch an example site and build it:

1.	 Our first task it to install the Hugo blog engine; you can do this by issuing the following
command on either the Jenkins server or Jenkins slave that will run this job:
$ wget https://github.com/spf13/hugo/releases/download/v0.14/
hugo_0.14_amd64.deb && dpkg -i hugo_0.14_amd64.deb

2.	 Next, we are going to create a new job. Login to your Jenkins server and click on New
Item button:

3.	 In the next window, give your project a descriptive name and select Freestyle project.

http://gohugo.io
https://github.com/spf13/hugo/tree/master/examples/blog
https://github.com/spf13/hugo/tree/master/examples/blog

Chapter 7

155

You can find the differences between the different project types at https://
wiki.jenkins-ci.org/display/JENKINS/Building+a+softwar
e+project#Buildingasoftwareproject-Settinguptheproject.

4.	 In the next screen, you start to fill in the details that comprise your job. Take a look at
the following screenshot:

As you can see, I've added a description for the project and also selected the
Discard old builds option. This is important; if left unconstrained, Jenkins can eat a
stupendous amount of disk space. I've left it at five builds but you can also use the
number of days instead. As with many Jenkins elements, there are plugins that allow
you to tune this in more detail.

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

Using Jenkins for Continuous Deployment

156

5.	 Next, we define our code repository options. As you can see in the succeeding
screenshot, I've used Git to store the code for this particular project:

This makes use of the Git credentials that we set up in the earlier recipe. If you
choose to use a different type of repository, then amend your configuration to fit it.

6.	 Now we can configure how Jenkins will schedule the builds. You could leave this as a
manual job but that rather flies in the face of a CI server; instead, I have set mine to
periodically poll Git; have a look at the following screenshot:

Chapter 7

157

The Poller uses a similar syntax to cron to set out the schedule, with a few notable
differences. You can see one of these above; the H denotes a hash, which ensures
that the job will run at a randomized time within that period; in this case, my schedule
is to run at a random minute, every hour, day, month and year. This helps to keep
the load light on the upstream server; perhaps not as important on a scalable public
platform such as Github, but very important when you run your own server.

7.	 Finally, we setup both our build and post-build steps. The build steps are what
command you to run once you have cloned your source code; have a look at the
following screenshot:

For my job, I am calling the hugo command. Hugo is a statically generated CMS. It
takes the content, processes it, and creates the HTML, CSS and also the images that
make up the site. This has a huge performance boost over CMS systems such as
WordPress, as content is not generated on the fly; it also makes it very easy to use
with a Content Distribution Network (CDN).

Using Jenkins for Continuous Deployment

158

After we execute our build, we add a post-build action to archive the artifacts. This
will produce a zip file containing the selected items from our build. In this case, I'm
zipping up the public files that comprise the deployable part of the blog. Each time a
build is successful, you will be able to open it in Jenkins and find the artifact available
for download from within it.

Don't forget, you're not limited to one-step for either the build
or post-build; you can have as many as you like and they can be
ordered using drag and drop.

At this point, hit the save button and we're ready to run our job.

8.	 Back at the job screen, hit the Build now button. This will trigger an immediate build.
To the left of the screen, you should see the Build History; it looks similar to the
following screenshot:

As long as the icon is blue, the build is a success. Clicking on the icon will take you
to results of that particular build and its here that you can see the console output
from the job, and most importantly, the build artifact. If the icon is red, it means that
something didn't quite go right in your build and you need to examine the console
output to derive what might have occurred.

See also
You can find detailed documentation around Jenkins jobs at https://wiki.jenkins-ci.
org/display/JENKINS/Building+a+software+project.

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project

Chapter 7

159

Building Docker containers using Jenkins
One of the important elements of creating an automated build is to ensure that the
environment is consistent; unless you ensure consistency, you may find that integration tests
pass when they should fail. Docker is perfect for this. By building your environment within a
Docker container, you can ensure that your environment is the same from the initial build,
right through to the production deployment and you can dispose of this environment after
the build.

By utilizing Docker, you are also preparing for continuous deployment. A successful build
within a container can be promoted to the next environment without needing to be amended.
If it passes that environment, it can be passed onto the next and so on. If you trust your
automated testing sufficiently, you can even push your container into service in production.

You can find more about continuous deployment patterns in the seminal book
on the subject, Continuous Delivery by Jez Humble.

Getting ready
For this recipe, you will need a Jenkins server with Docker installed.

How to do it…
The following steps will show you how to install Docker and use it to create a deployable
artifact using Jenkins:

1.	 Follow the instructions in Chapter 6, Containerization with Docker of recipe Installing
Docker, to install Docker on your Jenkins server.

2.	 For Jenkins to be able to use the docker commands during a build, we need to give
the Jenkins user the correct permission. We need to create a docker group and
add the Jenkins user to it. You can do that by issuing the following command on the
Jenkins server:
$ usermod -aG docker Jenkins

If your Jenkins server is running it will not pick up these changes; restart it with the
following command:

$ service Jenkins restart

Using Jenkins for Continuous Deployment

160

3.	 If you want your automated build to be able to be able to publish to the Docker
registry, then you need to sign in. Use the following commands to enable your
Jenkins user to access your registry:
$ sudo su sudo Jenkins

$ docker login

Enter your details when prompted; they will then be stored for use within Jenkins.

4.	 Now that we have finished our setup steps, we are ready to build our container. We
are going to take the Hugo blog from the previous recipe and use a Docker container
to host the built artifact. We will also add an Nginx HTTP server to serve the blog.

First, we are going to move the contents of our blog into a new folder structure. Open
a terminal session in the root of your blog project and issue the following command:

$ mkdir -p files/hugo

Issue the following command to move your blog content into your new directory
structure:

$ mv * files/hugo

5.	 Next, we are going to create our Dockerfile. This Dockerfile will install Nginx
and add the contents of our Hugo blog into the default location to be served by
Nginx. Create a new file called Dockerfile in the root of your project and insert the
following code:
FROM ubuntu:14.04

MAINTAINER <MAINTAINER DETAILS>

RUN apt-get update && apt-get upgrade -y

RUN apt-get install -y nginx

ADD files/hugo/public /usr/share/nginx/html

Expose ports.

EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

Once you are done editing, save the file and check your project into your Git repository
and push to your remote.

6.	 Now, we can edit our build to create a Docker image. Login to your Jenkins server and
locate the job used to build your Hugo blog; click on the configure button.

7.	 The first item we need to edit is the first build step. Previously, we simply triggered the
hugo command in the root of the work directory; since we have moved the files into a
sub-directory, this will no longer work. Instead, edit it to resemble the following:

Chapter 7

161

The -s switch enables you to give hugo a path to its input file and we can then supply
the new directory structure.

8.	 Now, we need to add a new build step. Underneath the first step, click the button
marked Add build step, and select Execute Shell Script as the action. This will add a
new textbox underneath the original build step; add the following content:

As you can see, this is using the Docker command to perform the build for us and
add the tag of Latest to it.

9.	 Now, we shall add a step to push the built image to the Docker registry. Again, click
on the Add build step button and select Execute Shell Script. This time, add the
following command:

Using Jenkins for Continuous Deployment

162

10.	 This final step is optional, but recommended. As with all Docker hosts, repeated
builds create containers and these can add up over time. You can alleviate this by
deleting old containers and images using the following command:

This will remove all Docker images and containers after each build and will stop your
disk space from disappearing into the ether.

This can cause your build to go slower as Docker will be unable to use a build
cache; depending on the size of your image, locality of Docker registry, and
speed of Internet connection, this may not matter. However, if you want the
quickest possible build, omit this step and police your Docker storage using
other means.

11.	 We're now ready to build. Save your job and hit the build button. Once it's complete,
examine the build-log by locating and clicking on the last build on the build history
panel on the left-hand side. Once you have opened the build, click on the button on
the left-hand marked Console Output; it should look something like this:

If all goes well when you scroll down, it should look something like this:

Chapter 7

163

Notice the message is telling you Finshed: SUCCESS; if it says something differently, then you
have a problem; otherwise, you should now have a new Docker image ready to use. You can
double check by examining your Docker registry; you should find a new build within it.

Of course, it is understood that this is the tip of the iceberg. Using this recipe as a base, you
can easily extend this job to build your software, package it into a Docker image once it has
passed its unit tests and then automatically promote the image to an integration environment
for testing. Be creative and with a small amount of work, you can save yourself a vast amount
of manual testing.

Deploying a Java application to Tomcat with
zero downtime using Ansible

Docker is not the only way to perform deployments using Jenkins, and indeed, for many
organizations their container efforts are still in the nascent stages. For many, Java and Tomcat
are still the mainstay of most platforms and will continue to be so for some considerable time.

Tomcat is now in its eighth version and is still one of the most common Java containers in
use, both due to it's Open Source heritage and battle tested stability. Over time, it has also
learned some interesting new tricks, with a particularly innovative one being a function called
parallel deployment. Parallel deployment allows you to deploy a new version of an application
alongside an existing one and Tomcat will then ensure that any existing connections to the
application will be satisfied, while new connections will be passed to the new version. From a
user perspective, there is no downtime and they simply flip from one version to another the
next time they connect to the application.

Using a combination of Ansible, Tomcat, and Parallel deployment, you can promote builds
seamlessly, and even better, if you deploy a bad build, you can roll it back relatively easily;
all without causing downtime to your platform.

Using Jenkins for Continuous Deployment

164

It goes without saying that this is great for your app but you need to
design your architecture around this capability. It is no good using parallel
deployments, if your app is dependent on a manual database migration or
if you have a heavy dependency on state. A state in particular will not be
passed from one application to another.

Getting ready
For this recipe, you are going to need a Jenkins server to host the build and a tomcat server
to act as the app server plus a repository to hold the example code. Ensure that your Jenkins
server also has the Ansible installed; you can see instructions on how to do this in Chapter 5,
Automation with Ansible, in recipe, Installing Ansible.

How to do it…
The following steps will demonstrate how to use Jenkins, Ansible and Tomcat to deploy a very
simple test application:

1.	 To demonstrate how parallel deployment works, we are going to create a very simple
web app and package it in a war file. Use the following command to create a new
directory structure:
$ mkdir -p testapp/WEB-INF

2.	 Next, edit a new file under testapp/WEB-INF called web.xml and insert the
following content:
<web-app></web-app>

This is a very simple web app configuration file.

Save this file and create another file called index.jsp and insert the following code:

<html>
 <head>
 <meta http-equiv="refresh" content="1">
 </head>
 <body>
 <H1>Test App</H1>
 <%= date = new java.util.Date() %>
 <p>Greetings, this is the first version of our test app. The
time is currently: <%= date %></p>
 </body>
</html>

Chapter 7

165

This is a remarkably simple application, whose only role in life is to print out a
pithy greeting, the date and time, use the HTML META tag to force the browser to
refresh the page; however, it's perfectly suited to demonstrate the power of parallel
deployment.

3.	 Next, we are going to create a new Ansible playbook to perform our deployment.
Create a new directory to hold our playbook using the following commands:
$ mkdir -p appdeploy/inventory

$ mkdir -p appdeploy/group_vars/appdeploy

This creates a basic structure to house our Ansible code, including a place to hold our
inventory and variables.

If you have an existing Ansible setup, you would like to use this code.
In this recipe, we are going to add a new playbook and inventory item,
both of which can happily live inside an existing project.

4.	 Next, we're going to create our Ansible inventory and create a new file called
appdeploy/inventory/appinventory file and insert the following code:
[appdeploy]
<< tomcatserver >>

Where << tomcatserver >> is the name/ip address of your tomcat server.

5.	 Now that we have our inventory, we are ready to create our playbook. Create a new
file called appdeploy.yml under the appdeploy folder and insert the following
content:
- hosts: appdeploy
 gather_facts: false
 sudo: true
 tasks:
 - name: Deploy App
 copy: src=/var/lib/jenkins/jobs/workspace/tomcat_test /
testapp.war dest="/usr/local/apache-tomcat-8.0.23/webapps/
testapp##{{ buildnum }}.war" owner=tomcat group=tomcat

Using Jenkins for Continuous Deployment

166

This is a simple playbook. First, we declare that this will only run against the servers
that are tagged as appdeploy hosts. We are also declaring that this playbook
does not need to gather facts. Not gathering facts can be a good way to speed up a
playbook and is an excellent practice when you know that your Ansible code does not
make use of them, as it skips a relatively expensive fact of gathering task. As usual,
this is a trivial time saver against one host but when you scale out to hundreds of
hosts, it can make a difference.

You may need to amend the paths in the preceding example,
especially if you are using a slightly different version of Tomcat.

Next, we declare the tasks that we are going to carry out. In our case, we are only
performing a single task, copying a war file to the remote host. Notice the {{
buildnum }} variable; this is going to be our link between Ansible and Jenkins
and it will be explained later in the recipe.

6.	 In the appdeploy/group_vars/appdeploy directory, create a new file called
main.yml and insert the following code:
Intentionally left blank

This is a simple kludge to ensure that the directory is added if you are using a Git
repository. We are going to fill the content of this file by dynamically using Jenkins
but Git has a nasty habit of not adding empty directory structures. This ensures
that it will be included when we check it in and push it to our remote.

A .gitignore file also suffices well for this purpose.

Once you have finished editing your files, create, check in, and push your code to
your repository.

Chapter 7

167

7.	 Now, we can create our new Jenkins job. Log on to your Jenkins server and create a
new item called tomcat_test and ensure that it's set as a freestyle project. Once
created, we can set the basic job options. We want to ensure that our job doesn't fill
the disk of our Jenkins server, which is a real and immediate issue with builds that
can generate large artifacts; ensure that your build matches the options listed in the
following screenshot:

As you can see, I'm limiting the job to only keeping 10 builds at a time; you should
edit this to suit your particular needs.

Using Jenkins for Continuous Deployment

168

8.	 Next, we're going to configure our source code repository options. These will be
different depending on your Git hosting options and repository name; you can
use the following screenshot as a guide to configure your repository options:

Now we can set our build triggers. Since we are creating a CI process, we should
poll our code repository regularly to look for changes, the idea being, that when a
developer checks in code, it is immediately picked up and a build is attempted.
Have a look at the following screenshot:

Chapter 7

169

As you can see, I'm polling the SCM (Source Control Manager) every minute. You can
amend this to fit the capabilities/spec of your repository, especially if you have many
builds. Having a periodic polling can completely crush an SCM with a lowly spec, so
be cautious with this option and be ready to scale when your job list gets relatively
big.

As with all things Jenkins, there are many plugins that allow you to
control the polling behavior; it is worth browsing the plugin directory
to see if it can help on this front. Alternatively, you may find that your
SCM supports hooks that allow you to push build events rather than
polling for them. This is ideal as the SCM is only being called when
there is actually something to do, rather than being battered with
needless traffic.

9.	 Now we have our schedule in place, it's time to get on and construct our build steps.
First, we're going to use the jar command to create our Java archive. Add a new
execute shell build step and ensure that it has the following command:
mv chapter7/testapp/* . && jar cf testapp.war WEB-INF/index.jsp

This is a simple command that takes the checked out code and moves it into the
working directory and uses the jar command to create the archive.

10.	 Next, we need to create the variable that will inform Ansible, which builds the
application we are pushing. Create a new execute shell build step and add the
following content:
echo "buildnum: $BUILD_NUMBER" > chapter7/appdeploy/group_vars/
appdeploy/main.yml

11.	 This command makes use of one of the environment variables that Jenkins sets as
part of its build. These environment variables are astonishingly powerful, as they
allow you to act on the output of your build.

You can find the list of available variables at your Jenkins
server at the /env-vars.html/ URL; you can also act on
other environment variables that you set yourself.

12.	 Finally, we can trigger our Ansible build. Add another execute shell build step and add
the following command:
ansible-playbook -i chapter7/appdeploy/inventory/appinventory
chapter7/appdeploy/appdeploy.yml

This invokes Ansible to use your inventory and playbook.

Using Jenkins for Continuous Deployment

170

If all goes well, your build steps should resemble the following screenshot:

Once you are happy that your job looks correct, save it and return to the main
Jenkins screen.

13.	 Before we can run our project, we need to make some changes to our servers. As our
Ansible code is being run as the Jenkins user we need to ensure that it has access to
the target server and it has a sudo access on each server. If you are using Ansible to
control the tomcat servers, then you can add a Jenkins user and key via Ansible; see
Chapter 5, Automation with Ansible, for an example. You will also need to add sudo
access; this can be done by adding the following task into the Role that manages your
user:
- name: Add Jenkins Sudo access

 lineinfile: dest=/etc/sudoers state=present line='jenkins
ALL=(ALL) NOPASSWD:ALL' validate='visudo -cf %s'

This code uses the Ansible lineinfile module to insert a new rule into the
sudoers file; it will also use the visudo command to double check that the new rule
is valid.

Regardless of how you achieve it, ensure that your Jenkins user has both access to
your target servers and a sudo access.

Chapter 7

171

It is understood, that when using Jenkins in this manner
it's vitally important to ensure that the Jenkins server is
secure, especially if you use this technique in production
deployments. I tend to air gap the development and
production servers in this scenario and ensure that the
production Jenkins is heavily monitored and locked down.

14.	 We're now ready to run our Jenkins build. Hit the Build now button and wait a few
seconds. If all goes well, you should have a successful build and console output that
resembles the following:

Using Jenkins for Continuous Deployment

172

Open your browser, and point it at your test application. You should see something
similar to the following screenshot:

If you see this, then excellent; your automated build has succeeded in taking a
code from a developer and deploying it to a target machine without any manual
interactions.

15.	 Now that we have deployed the first version of our code, it's time to make an
amendment and deploy the second version. Keep your browser window open in the
background and open up the code in testapp/index.jsp and edit it to resemble
the following code example:
<html>
 <head>
 <meta http-equiv="refresh" content="1">
 </head>
 <body>
 <H2>Test App</H2>
 <%= date = new java.util.Date() %>
 Greetings, this is the second version of our test
app.
<p>The time is currently: <%= date %></p>
 </body>
</html>

As you can see, this a slight tweak to our original code. Adding the maximum amount
of style that a DevOps engineer generally decorates their apps with. Once you have
made the tweak, save the code and check-in to your repository and push to your
remote.

Chapter 7

173

16.	 In addition to your existing browser window, open a new session and point it at
server>:8080/testapp. You should see the new content showing, with the
original content in your original browser window. Here's a general idea of what
you should see:

As you can see, two versions of the same app are running at the same time and
will continue to do so as long as we have our browser window open with the old
application. As soon as we close the window with the old application, it will be
unloaded and will not be used again.

It's worth going over the details of what this recipe is doing. At its most basic form, this
recipe is using Jenkins to construct an artifact and packaging it into a WAR file. Once this
file is created, we use Ansible to transfer the built file to our targeted tomcat server, into the
webapps directory. The important detail is that it appends the build number onto the WAR file,
prepended with ## before the file extension.

 server>:8080/testapp
 server>:8080/testapp

Using Jenkins for Continuous Deployment

174

When Tomcat sees a WAR file with ## in front of its file extension, it works on the assumption
that this is a versioned application and as with any app, it will attempt to explode and
automatically deploy the code. When a newer version of the app is placed into the web apps
directory, it explodes and deploys this as well, but it ensures that the existing app is also ran
alongside it until all user sessions are expired. This is incredibly powerful and allows for true
zero-downtime deployment using Tomcat; however, there are several issues:

ff Old applications are not removed and will stay on the server until you
house keep them.

ff When running two apps side by side, you need to ensure that you have enough
memory to service both, even if it's only for a short time.

ff This only works with numeric build numbers; any other characters are not supported.

ff As noted in the stat of this recipe, your app needs to be able to cope with an in
service upgrade.

See also
You can find more details around parallel deployment at https://tomcat.apache.org/
tomcat-7.0-doc/config/context.html#Parallel_deployment.

https://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Parallel_deployment
https://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Parallel_deployment

175

8
Metric Collection

with InfluxDB

In this chapter, we are going to cover the following topics:

ff Installing InfluxDB

ff Creating a new InfluxDB database

ff Logging events with the InfluxDB REST API

ff Gathering host statistics with Telegraf

ff Exploring data with the InfluxDB data explorer

ff Installing Grafana

ff Creating dashboards with Grafana

Introduction
The importance of monitoring cannot be overstated and it is seen as one of the core
elements of a DevOps approach to a system. Monitoring takes many shapes; however, it's
common to stop once you've added state monitoring, such as Is the database up? or Is the
site responding?. These are indeed critical things to monitor, but they don't cover important
questions such as How fast am I responding to requests? And How many things have I done?.
This is where a time series database can be a valuable addition to the monitoring and
information stack that you have to hand not handle.

Metric Collection with InfluxDB

176

A time series database is a storage technique that is designed to be fast at both storing and
retrieving points of data. For instance, you can measure CPU usage in percentiles from one
second to the next or alternatively measure the number of times a particular service call has
been made. Once you have a different series, you can start to use this data for correlation. In
the above example, we can overlay the CPU statistics across the service call information and
start noting where the CPU spikes correlate with the service calls. This starts to form the basis
for an Application Performance Monitoring (APM) solution; thus, allowing you to drill into the
detail of where your platform is spending time and where improvements can be made.

A time series databases are becoming increasingly popular as people are realizing the
value of the data their platform produces, and there are several dedicated open source TSD
providers (such as InfluxDB and Whisper), and the industry heavy-weights, such as Microsoft
and Oracle, are also enhancing their time series offerings.

For this chapter, we are going to use InfluxDB. InfluxDB is relatively a newcomer but it has
many interesting features. That being said, it has yet to hit a 1.0 release and is a rapidly
evolving, product especially with items such as clustering. However, InfluxDB is fast, easy to
use, and extremely easy to deploy, and is being used by an increasing set of companies as
their preferred time series database.

Installing InfluxDB
Installing InfluxDB is straightforward and it has no external dependencies; it also has
packages for many operating systems. This recipe will show you how to install InfluxDB on
an Ubuntu 14.04 server. The following steps are manual; however, you should consider
automation using a tool such as Ansible (if you decide to use InfluxDB in production).
You can find details of Ansible in Chapter 5, Automation with Ansible.

Getting ready
For this recipe, you need an Ubuntu 14.04 server.

How to do it…
The following steps will show you how to download, install, and configure InfluxDB:

1.	 On your server, issue the following commands:
$ wget http://influxdb.s3.amazonaws.com/influxdb_0.9.3_amd64.deb

$ sudo dpkg -i influxdb_0.9.3_amd64.deb

This will fetch the InfluxDB package and install it.

Chapter 8

177

2.	 Next, we can configure our InfluxDB server. You can find a ready-made configuration
file in /etc/opt/influxdb/influxdb.conf, which is already populated with
default InfluxDB values.

There are a few configuration options that you should set specifically; first, locate the
following entry in the configuration file:
[data]
 dir = "/root/.influxdb/data"

This should be amended to reflect your preferred storage location.

It goes without saying, that you should aim to make your storage location
both large and high-performance. Wherever possible, aim to use SSD
storage. Time series data can lead to a staggering amount of IO, so always
plan for your future requirements where possible.

3.	 You should also find the following configuration item:
[meta]
 dir = "/root/.influxdb/meta"
 hostname = "localhost"

4.	 Change the value for the host name to reflect the host name of this particular
node. Once you have made your changes, save the file and start InfluxDB using
the following command:
$ sudo /etc/init.d/influxdb start

5.	 You can test your new installation by issuing the following command:
$ /opt/influxdb/influx -version

6.	 This should return a response similar to this:
InfluxDB shell 0.9.4

7.	 You should be able to access the built-in graphical user-interface by opening the
following URL in your browser:

http://localhost:8083

Metric Collection with InfluxDB

178

This will give you a page similar to the following screenshot:

You will be ready to start with your InfluxDB instance one you see this screenshot.

See also
You can find the InfluxDB installation document at https://influxdb.com/docs/v0.9/
introduction/installation.html.

Creating a new InfluxDB database
This recipe outlines how to create a new database in InfluxDB using the in-built GUI that
is shipped as a part of the installation. This will create a new and empty database ready
for data.

Getting ready
For this recipe, you need an Ubuntu 14.04 server with InfluxDB installed.

How to do it…
Let's create a new database in InfluxDB using the GUI:

1.	 Open the GUI in your browser by opening the following URL:
http://localhost:8083.

2.	 You should be presented with a blank query field. At this point, you can either enter
the query manually or select the Query Templates button on the bottom right-hand
side. If you do so, you can select the option entitled Create Database. This will fill out
the query for you as follows:

https://influxdb.com/docs/v0.9/introduction/installation.html
https://influxdb.com/docs/v0.9/introduction/installation.html

Chapter 8

179

3.	 To create your new database, simply give it a name (one word and no special
characters) and hit return. If all goes well, you should see a message telling you
that the database was successfully created. You can then use the query SHOW
DATABASES in the query field to list your current database. It should look something
like this:

4.	 We can test that our database is ready for use by entering some data. To manually
enter a new piece of data, click on the Write data link. This will create a new pop-up
window that allows you to write a new piece of data in InfluxDB line protocol. Insert
the following code to create an example data:

numOrders,site="www.testsite.com",currency="GBP" value=15.50

You can find more details of the InfluxDB line protocol at https://
influxdb.com/docs/v0.9/write_protocols/line.html.

If all goes well, you will see a success message; your new database is now ready
for data.

https://influxdb.com/docs/v0.9/write_protocols/line.html
https://influxdb.com/docs/v0.9/write_protocols/line.html

Metric Collection with InfluxDB

180

See also
You can see the official InfluxDB instructions at https://influxdb.com/docs/v0.9/
introduction/getting_started.html.

Logging events with the InfluxDB REST API
InfluxDB can be used to log events and other statistics. An event can be anything from a user
clicking on a button on your website to performing deployments. The latter is especially useful,
as it means that you can have a single place to log any event that might occur on the platform.

This recipe will show you how to enter data using the REST API provided with InfluxDB. It
allows you to create your own applications to enter extremely useful data. By leveraging the
REST API, you will be able to use a wide spectrum of existing tools to enter data from Jenkins
jobs to Ansible and beyond.

Getting ready
For this recipe, you need an InfluxDB instance.

How to do it…
The following steps will show you how to create a new InfluxDB database and populate it using
the REST API:

1.	 First, we need to create a database in which we can log our events. We can use the
REST API rather than using the GUI and you an use the following command to do this:
$ curl -G http://localhost:8086/query --data-urlencode "q=CREATE
DATABASE events"

You should receive a JSON response that is similar to the following:
{"results":[{}]}

Although it's slightly abstract, this empty response indicates that the command
was successful.

2.	 Now, we can add data to our new database. Let's start with a deployment and use the
following curl command to input the data:
$ curl -i -XPOST 'http://localhost:8086/write?db=events' --data-
binary 'deployment, deployer=mduffy,app=test_app,version="1.1",env
ironment="test" value="sucess"'

https://influxdb.com/docs/v0.9/introduction/getting_started.html
https://influxdb.com/docs/v0.9/introduction/getting_started.html

Chapter 8

181

3.	 Let's take a look at this command. First, we have the details of the InfluxDB server we
want to connect to; in this case, I've chosen to connect to my local instance on port
8086. Next, let's decide on the action we wish to take and the database we wish to
take it on; in this case, we wish to write a value and target the events db.

4.	 We move to the contents once we have set the target. First, we need to give the
measurement a name; in this case, deployment. We then give this measurement a
set of fields and values; in this case, the deployer, app, version, and environment.
Finally, we give the measurement a value; in this case, success. This will create a new
data point that we can query.

5.	 Now, since we have inserted a value, we can query it. Use the following command to
do the same:
$ curl -G 'http://localhost:8086/query?pretty=true' --data-
urlencode "db=events" --data-urlencode "q=SELECT * FROM deployment
WHERE deployer='mduffy'"

6.	 This should produce a JSON response that looks something like this:

{
 "results": [
 {
 "series": [
 {
 "name": "deployment",
 "columns": [
 "time",
 "app",
 "deployer",
 "environment",
 "value",
 "version"
],
 "values": [
 [
 "2015-09-
 16T21:17:54.799294876Z",
 "test_app",
 "mduffy",
 "\"test\"",
 "success",
 "\"1.1\""
]
]
 }
]
 }
]
}

Metric Collection with InfluxDB

182

As you can see, we can use InfluxDB to track more than just measurements, and its
simple API makes it very easy to integrate into other tools. By extending this into your
tool set, you can quickly build up an easy-to-query and simple-to-graph time line of
events; ranging from alerts to deployments and errors. Use your imagination and you
will be able to build a wealth of data very simply.

See also
You can find more details of the InfluxDB REST API at https://influxdb.com/docs/
v0.9/guides/index.html.

Gathering host statistics with Telegraf
One of the most useful examples of a time series database is to contain statistical
information, and this is especially relevant and useful when it comes to tracking host
performance. Due to the type of data, server resource monitoring can collect a great deal of
measurements very quickly across a wide range of data points. Using the InfluxDB Telegraf
tool, this can be done in a relatively straightforward manner and the data can be easily
queried using InfluxDB's powerful set of query tools.

Getting ready
For this recipe, you need a server with InfluxDB installed and configured, and an Ubuntu
14.04 server to install telegraf onto.

How to do it…
The following steps will show you how to both install the tools and configure the Telegraf
agent onto an Ubuntu host. Once this is done, we will look at how to configure it to log to an
InfluxDB server:

1.	 Use the following command to fetch the telegraf package:
$ wget http://get.influxdb.org/telegraf/telegraf_0.1.8_amd64.deb

2.	 Now, install the package using the following command:
$ sudo dpkg -i telegraf_0.1.8_amd64.deb

3.	 Before we can start to send data to InfluxDB, we need to create a database for it to
log information to. Use the following command to create a new database:
$ curl -G http://localhost:8086/query --data-urlencode "q=CREATE
DATABASE telegraf"

https://influxdb.com/docs/v0.9/guides/index.html
https://influxdb.com/docs/v0.9/guides/index.html

Chapter 8

183

4.	 Next, we need to configure telegraf to log data on to the selected InfluxDB
instance. On the host you have installed telegraf, to edit /etc/opt/telegraf/
telegraf.conf and look for the following configuration item:
 [outputs.influxdb]
 url = "http://localhost:8086"
 database = "telegraf"

5.	 Edit the values to match your setup and ensure that the database matches the one
that you created in step three.

6.	 Start the telegraf service using the following command:
$ sudo service telegraf start

At this point, Telegraf should start logging data into your InfluxDB.

7.	 You can select some sample data using the following command:
$ curl -G 'http://localhost:8086/query?pretty=true' --data-
urlencode "db=telegraf" --data-urlencode "q=SELECT * FROM io_
write_bytes WHERE host='<<INFLUXHOST>>'"

8.	 Where <<INFLUXHOST>> is the same as your InfluxDB host. This will select the
number of bytes written to the disks on the host and should produce an output
similar to the following:

{
 "results": [
 {
 "series": [
 {
 "name": "io_write_bytes",
 "columns": [
 "time",
 "host",
 "name",
 "value"
],
 "values": [
 [
 "2015-09-16T21:25:54Z",
 "influxdb1",
 "vda1",
 1259130880
],
]
 }
]
 }
]

Metric Collection with InfluxDB

184

You can easily use this data to create real time charts of important metrics with the
help of a tool such as Grafana. You can also use a tool such as Sensu to alert you
about certain thresholds.

See also
You can find more information about Telegraf at https://github.com/influxdb/
telegraf.

Exploring data with the InfluxDB data
explorer

InfluxDB comes with a ready-to-use GUI to query your data; this makes exploring your data
quick and easy. Although it's not a comprehensive tool and lacks niceties such as exporting,
reporting, and so on, the built-in data explorer is great to get a feel for your time series data.
Using this, you can easily pull certain data out of your InfluxDB database and use it to test
queries for use in other tools.

Getting ready
For this recipe, you will need an InfluxDB server installed and configured and a data set
to query.

How to do it…
Let's explore the data using the InfluxDB data explorer:

1.	 Log on to the InfluxDB server using a browser to visit the following URL:
http://<INFLUXDBSERVER>:8083

You should see a screen similar to the following:

https://github.com/influxdb/telegraf
https://github.com/influxdb/telegraf

Chapter 8

185

This panel allows you to run ad-hoc queries against your data sources. Select your
database by clicking on the Database telegraf list on the top right menu and pick a
database that has data to query.

For those of you who already have SQL experience, the following recipe
will seem familiar; this is because the InfluxDB query language has been
designed to be as SQL like as possible; however, it's worth checking the
manual to understand the nuances of the query language. You can find
a useful comparison at https://influxdb.com/docs/v0.9/
concepts/crosswalk.html.

2.	 The first query we can execute is the one that allows us to see the measurements
that are available to use. In the query panel, enter the following code:
SHOW MEASUREMENTS

This should return a list of all the measures in the selected database and should look
something like this:

Using this query, we can list the measurements currently available in the database.

This and several other simple queries are available from the query template
drop-down menu located underneath the query panel. The query template
menu is a fantastic way of exploring some common InfluxDB queries.

https://influxdb.com/docs/v0.9/concepts/crosswalk.html
https://influxdb.com/docs/v0.9/concepts/crosswalk.html

Metric Collection with InfluxDB

186

3.	 Next, we can start querying to our data. From the data I have, I'm interested in the
contents of the cpu_busy data set. The cpu_busy data is made up of several
measures and I'm particularly interested in the statistics of the first CPU (cpu0). Now,
we can use the following queries:
SELECT * FROM cpu_busy WHERE cpu = 'cpu0'

This command will return the following output:

4.	 Next, we can start to whittle down the data by adding conditions. In this case, we'll be
looking into the CPU values higher that 500 (in this case, 500mhz). We can do this
using the following query:
SELECT * FROM cpu_busy WHERE cpu = 'cpu0' AND value > 500

This command will return the following output:

Chapter 8

187

5.	 Now I want to look at this data on a host-by-host basis; we can do this using the
GROUP BY statement by extending our query to look like this:

As you can see, the results are now returned grouped by the host. Note that I'm also
adding an additional parameter limiting the query by time. I'm asking for any data
less than ten seconds from the system timestamp.

You can find more details about using the query language, including
Time Ranges, at https://influxdb.com/docs/v0.9/query_
language/query_syntax.html.

See also
You can find more details of the data explorer at https://influxdb.com/docs/v0.9/
query_language/data_exploration.html.

https://influxdb.com/docs/v0.9/query_language/query_syntax.html
https://influxdb.com/docs/v0.9/query_language/query_syntax.html
https://influxdb.com/docs/v0.9/query_language/data_exploration.html
https://influxdb.com/docs/v0.9/query_language/data_exploration.html

Metric Collection with InfluxDB

188

Installing Grafana
Gathering data is a relatively useless task without an accessible method for both accessing
and displaying it. This is especially true of time series data, which can produce a huge mass
of information made of many small points of data. Without a tool that allows you to easily spot
trends, the noise can easily become overwhelming; thus rendering your carefully gathered
data useless.

InfluxDB can make use of an open source visualization tool called Grafana. Grafana is a
sleek and stylish tool that allows you to take time series data and display it in many different
fashions, including good-looking graphs. These can be combined into dashboards, which are
perfect to display on TV's.

This recipe will show you how to install Grafana.

Getting ready…
For this recipe, you will need an InfluxDB data source with some data to query, and a server to
host Grafana.

How to do it…
1.	 We start by fetching the latest grafana release using the following command:

$ wget https://grafanarel.s3.amazonaws.com/builds/grafana_2.1.3_
amd64.deb

2.	 Next, use the following command to install the Grafana pre-requisites:
$ sudo apt-get install -y adduser libfontconfig

3.	 Now, we can install the grafana package using the following command:
$ sudo dpkg -i grafana_2.1.3_amd64.deb

4.	 Now that grafana is installed, you can start it using the following command:
$ sudo service grafana-server start

5.	 You should now be able to connect to Grafana by going to the following URL:
http://<GRAFANA SERVER>:3000

Here, <GRAFANA SERVER> is the name or IP address of your Grafana instance. You
should be able to see a page similar to the following:

Chapter 8

189

6.	 You can log in to the panel with the following user details:

�� User: admin

�� Password: admin

When logged in, you should be greeted with a page similar to the following:

Metric Collection with InfluxDB

190

This is the default view of Grafana. When you create dashboards, you can see them
listed on the pane on the far right, and you can add your favorites to the pane on the
left for easy access.

7.	 Next, click on the Data source button, as shown in the following screenshot:

This will take you to a page that lists your configured data sources; this will currently be
blank. On the top menu there is a button entitled Add New. Click on this and it will take
you through to a panel that allows you to add a new source. This requires the details of
your InfluxDB and when filled in, it should resemble the following screenshot:

There are a few points to note. First, you can make this your default data source,
to make the creation of new views on the data easier. Secondly, you can choose
between several different types of data sources; this includes different versions of
InfluxDB, so ensure that you choose correctly.

Once you are happy with your details, click on the Save button; you can also use the
Test Connection button to test if Grafana can connect. Click on OK before saving.

Chapter 8

191

See also
You can find further details about Grafana at http://docs.grafana.org.

Creating dashboards with Grafana
Once you have installed Grafana, you will have the ability to create attractive and informative
dashboards that are ideal for display on devices such as projectors or TVs. The dashboards
can display information from several different data sources, allowing you, for example, to
display combined CPU statistics from a cluster of servers, alongside the number of orders
taken in the same time period and the HTTP return codes. Grafana can hold any number of
dashboards and makes it easy to embed links within dashboards to other dashboards. So,
feel free to make specific dashboards for your data and they should remain easy to access.

Getting ready
For this recipe, you need to have a server with InfluxDB and Grafana installed.

How to do it…
Let's create a dashboard with Grafana:

1.	 Log into the grafana panel. In the top menu, click on the menu item titled Home.
Click on the option marked as New dashboard that you see at the bottom of the
drop-down menu.

2.	 Next, you will see a screen that looks similar to the following screenshot:

http://docs.grafana.org

Metric Collection with InfluxDB

192

3.	 This is a blank dashboard that is ready for new content to be added. Observe the
green strip to the right of the Dashboards menu items; this is a menu. When you click
on it you will be presented with the following options:

This menu allows you to edit your panel options. Let's start by clicking on the Add
Panel link. This will open another menu listing the available options, which are as
follows:

�� Graph: This is a line graph of a selected data series

�� Single Stat: This is a singular number derived from a selected series

�� Text: This is a free text field that allows you to enter your own text

�� Dashboard list: This allows you to construct links to further dashboards

4.	 Let's start by adding a new Graph. Click on the Add panel option and select Graph.
This should add a new graph that looks like this screen shot:

This is a default graph based on example data; let's change that to real data. Click on
the graph title and click on the edit option. This will create a new window underneath
the graph that looks like the following screenshot:

Chapter 8

193

5.	 This panel allows you to edit your new graph. Note the option at the bottom:

6.	 This allows you to set your data source. Click on the button titled grafana and
select your data source. For these examples, I'm using the information derived from
Telegraf. When you select your data source you are offered the option to select a
query, as shown:

The FROM entry will allow you to select any measurement from your data source. Go
ahead and select both your measurements and, if needed, a query to whittle the data
down into the selection you want.

By clicking on the + icon next to the WHERE clause, you will be taken
into the interactive query builder; this will help you define queries to
narrow down the data.

Metric Collection with InfluxDB

194

7.	 Once you are happy with your graph, click on Back to Dashboard.

8.	 Now that we have our first graph, we can add another item. Click on the button
entitled ADD ROW in the pop-up menu and select Text. This will add a new blank text
box to the dashboard. Click on the title of the text box and you will be offered a menu;
click on the Edit text button. This will open a new panel that allows you to add a text
suh as the following example:

Once you've added your text, click on Back to Dashboard.

9.	 Click on the green bar next to your new text panel and select Add panel. This will
create a new panel next to your text panel. In this case, select Single stat. Once
again, this will be a panel with example text. Click on the title and it should present
a new panel; this is the same as the graphing panel and allows you to create a new
query to select your data. Once you've selected your data, go back to the dashboard.
Your dashboard should look similar to this:

Chapter 8

195

Although basic, this dashboard is a great start. You can continue to add panels,
but keep in mind that it needs to fit whichever device you are using to display it (TV,
monitor, and so on). If you need to add a lot of data, the best approach is to create
links that allow you to drill down into more detailed dashboards.

See also
You can find further information about dash boarding at http://docs.grafana.org/
reference/graph/.

http://docs.grafana.org/reference/graph/
http://docs.grafana.org/reference/graph/

197

9
Log Management

In this chapter, we are going to cover the following subjects:

ff Centralizing logs with syslog

ff Using syslog templates

ff Managing log rotation with the Logrotate utility

ff Installing Elasticsearch, Logstash, and Kibana

ff Importing logs into Elasticsearch with Logstash

ff Using Kibana queries to explore data

ff Using Kibana queries to examine data

Introduction
Log management is one of the most essential roles that systems administrators have been
performing since the term came into being, and it's a crucial part of running any system. Without
log management the logs will overflow, disks will fill up, and eventually data will be lost.

Until recently, the true value of logs has been understated by many systems administrators.
Generally looked upon as a troubleshooting mechanism, logs had been consigned to being
looked at only as a last resort and had been left to gather digital dust on a shelf somewhere.
However, recently, there has been a renaissance in how logs are perceived, with developers and
operators alike considering the humble log file more in the perspective of an event stream; that
is, a continuous stream of information that not only indicates if you have issues, but can also be
used to check for underlying patterns that can highlight significant state changes.

Log Management

198

A good example of this can be found in the HTTP server access logs. These tend to contain
not only issues (404, 500, and so on) but also successful transactions. This data is generally
enriched to contain additional data, such as a client IP, pages access, response time, and so
on. This additional metadata can then be further added to; for instance, using the originating
IP to derive geographical location, which can give you a real-time view on business processes.

Event stream analysis is becoming a very large element of successful and scalable
infrastructure, and many of the pioneers in the industry are embracing it to underpin items
such as automated security scanning, platform scaling, and so on.

The recipes in this chapter will introduce you to several valuable tools for the management
of logs, running the whole gamut of log management tasks, from centralization to rotation
and finally into analysis. Armed with these recipes you should be ready to capture and explore
many facets of data that your platform gathers in the course of the day and use them to scale,
secure, and improve your platform.

Centralizing logs with Syslog
Generally speaking, most applications will have a logging facility that will produce text logs
that can be written into an arbitrary location on a storage device (normally, defaulting to a
local disk partition). Although this is an essential first step, it also produces problems; you
need to provide adequate storage for logs and you need to put in place rotation to stop them
from growing too large. If they contain vital information, you need to ensure that they are
rotated to a safe location, but you may also need to ensure that they remain secure if they
contain sensitive information, such as credit card numbers. On top of all of this, you will lose
the current logs if you have a disaster on that node.

A good solution to manage these issues is to use a central location to store logs. This allows
you to provide appropriate storage and gives you a central place to back up, secure, and
examine logs. As long as the logging mechanism that your application uses supports syslog,
it is straightforward. Syslog was originally used as the logging mechanism for the venerable
Send mail MTA and was developed in the early 80s. Since then, it has been standardized and
is now in use as the standard logging mechanism for most *nix based operating systems,
with many implementations of the standard available.

Getting ready
For this recipe, you will need two Ubuntu 14.04 hosts; one to act as the Syslog server and
another to act as a sending host.

Chapter 9

199

How to do it…
This recipe will show you how to set up a server to act as a central Syslog server and how to
configure a client log to utilize it. This will use the default syslog implementation on Ubuntu
14.04, Rsyslog:

1.	 Rsyslog is the default syslog package for Ubuntu 14.04 and should be pre-installed;
you can double check this by issuing the following command:
$ sudo apt-get install rsyslog

This should return a message that states that rsyslog is already installed.

2.	 Next, we need to change the configuration of the Rsyslog package so that it listens
for network connections. By default, Rsyslog is set only to listen to local socket
connections. Edit the file /etc/rsyslog.conf and locate the following lines:
provides UDP syslog reception
#$ModLoad imudp
#$UDPServerRun 514

provides TCP syslog reception
#$ModLoad imtcp
#$InputTCPServerRun 514

3.	 Uncomment them so that they resemble the following:
provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514

provides TCP syslog reception
$ModLoad imtcp
$InputTCPServerRun 514

In the preceding configuration, we have enabled both UDP and TCP log
reception. Generally speaking, I recommend using UDP to forward logs; it
has a much lesser impact on performance than TCP as it is fire and forget.
The downside is that some log messages might be lost if the server is too
busy to receive the UDP packets. Use TCP where your logs are critical;
otherwise, stick with UDP.

Log Management

200

4.	 Restart the rsyslog service by issuing the following command:
$ sudo service rsyslog restart

Your Rsyslog server is now ready to use. Next, we can turn our attention to the
Rsyslog client.

5.	 On the Rsyslog client, ensure that Rsyslog is installed.

6.	 We are going to start by ensuring that all logs dealing with the user login activity are
forwarded to the Syslog server. This is an excellent place to start, as monitoring who
logged into which server and when is a crucial part of securing your systems, and
sending it off-host makes it harder to tamper with. Edit the /etc/rsyslog.d/50-
default.conf file and find the following line:
auth,authpriv.* /var/log/auth.log

Change it to the following:

auth,authpriv.* @<Syslog server>:514

When you prepend your remote host with a single @ symbol, you are using
UDP. To use TCP, use @@ instead.

7.	 Restart the Rsylsog service on the client using the following command:
$ sudo service rsyslog restart

8.	 Log on to the host server while monitoring the /var/log/auth.log log on your
Syslog server; you should be able to see entries similar to the following snippet:

Jun 29 07:47:05 sysloghost sshd[19563]: Accepted publickey for
root from 178.251.183.111 port 33241 ssh2: RSA f0:0c:25:c1:9a:94:f
f:20:6e:f7:57:70:9f:3c:9c:5c
Jun 29 07:47:05 sysloghost sshd[19563]: pam_unix(sshd:session):
session opened for user root by (uid=0)

Notice the highlighted text; this is the hostname of the server that has sent the log
entry and it can be used to search for specific entries.

The field after the date in the syslog entry is always the hostname of the
host sending that particular log entry.

This can be very useful when you have more than a handful of servers reporting to
your Syslog server and it enables you to use tools such as grep to quickly search for
information across many servers at once.

Chapter 9

201

See also
You can find the Rsyslog documentation at http://www.rsyslog.com/doc/master/
index.html#manual.

Using syslog templates
Although it's advantageous to be able to send all the logs to a single location, there are times
when you will want to be able to split logs out into separate log files based on certain criteria;
for instance, a per-host log for certain elements.

Rsyslog supports this using a system of templates and the property replacer feature; this
allows you to distribute logs of your choice into the location you need.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server acting as a Syslog server and a host to
send logs to it.

How to do it…
Let's use the syslog templates for the:

1.	 As with the previous recipe, we're going to take the auth logs from our Ubuntu host
and send them to our Syslog server. On the shipping host, ensure that you have a line
that resembles the following in your copy of /etc/rsyslog.d/50-default.conf:
auth,authpriv.* @<Syslog server>:514

2.	 Restart the syslog Daemon using the following command:
$ sudo service rsyslog restart

3.	 On your Syslog server, open /etc/rsyslog.d/50-default.conf and edit it to
include the following snippet:
$template Remote, "/var/log/%HOSTNAME%/%syslogfacility-text%.log"

auth,authpriv.* -?Remote

4.	 Locate the following line and comment it out with a #:
auth,authpriv.* /var/log/auth.log

5.	 In the preceding code, we are disabling the default log settings for the auth log and
using variables to replace the filename and path.

http://www.rsyslog.com/doc/master/index.html#manual
http://www.rsyslog.com/doc/master/index.html#manual

Log Management

202

6.	 Restart the Syslog server using the following command:
$ sudo service rsyslog restart

7.	 You should now find that when you log in to the host server, its auth messages will
be sent to a file that will be located at /var/log/<hostname>/auth.log.

As you may have considered, this technique can be used to organize any log
that you want to be forwarded onto the remove Syslog server; indeed, for
ephemeral hosts, it can be very useful, as you can create and destroy them
at will and still retain all logs created over their life cycles.

See also
You can find details on the Rsyslog property replacer at http://www.rsyslog.com/doc/
property_replacer.html.

Managing log rotation with the Logrotate
utility

It's often surprising how much space can be consumed by something as simple as a plain text
file, and without constant care and attention logs can grow to fill the available free space on
a host. Fortunately, given their nature as plain text, they are compressible. Indeed, you can
expect compression ratios of 80% or more on most log files.

The Logrotate utility is shipped with most Linux distributions and offers a simple yet powerful
method to manage logs, allowing you to rotate, compress, and remove on the schedules
you set. It also has the ability to run scripts both pre- and post-rotation, thus allowing you to
send signals to applications to gracefully restart or to send logs to a remote location after
compression. Most applications that are packaged with the operating system should come
with a Logrotate configuration, but you should also ensure that any applications you develop
or deploy are catered for.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host.

http://www.rsyslog.com/doc/property_replacer.html
http://www.rsyslog.com/doc/property_replacer.html

Chapter 9

203

How to do it…
This recipe will show you how to create a new logrotate configuration, for example, app and
also point out important configuration options:

1.	 In this example, we're going to rotate the logs on notional app located in /usr/
local/exampleapp/logs.

2.	 To start, create a new file in /etc/logrotate.d called exampleapp (no extension)
and insert the following content:
/usr/local/exampleapp/logs/*.log {
 daily
 rotate 31
 copytruncate
 compress
 notifempty
}

3.	 This is a relatively straight forward Logrotate entry, which will do the following:

�� Rotate any files with a .log extension in the directory /usr/local/
exampleapp/logs

�� Rotate the log files daily

�� Keep 31 days' worth of logs

�� Will truncate files without removing them

�� The logs will be compressed using gzip

�� The logs will not be rotated if they are already empty, saving on empty
archived logs

Be careful with the copytruncate option. It's useful when you have an
application that can't accept a signal to reload and use a new logfile.
Using copytruncate avoids the need for this by copying the contents
of the current log and zeroing out the existing one; however, in the time
between copying the log and zeroing it, there may be new entries that will
be subsequently lost.

This example should serve as a good starting point for most applications. Use
the Logrotate documentation to explore some further options that your application
might require.

Log Management

204

See also
You can find the documentation for Logrotate by issuing the following command:

$ man logrotate

Installing ElasticSearch, Logstash, and
Kibana

Once you have established a policy to control retention, archiving, and centralization of your
logs, you can consider how best to extract the data from them. Log analysis software has seen
some serious growth in recent years, as an increasing number of systems administrators,
developers, and managers realize the value of the data they can provide. Currently, Splunk
has gained a great number of traction, offering both an easy-to-install and easy-to-use product
with a great deal of integrations; however, it can be costly with a pricing model that ratchets
up along with the quantities of data you wish to analyze. This has led to open source projects
springing up and aiming to rival Splunk, in particular, it has been popularized by the trifecta
of ElasticSearch, Logstash, and Kibana. Together these form what is popularly known as an
ELK stack. These three products combine to offer a compelling alternative to Splunk; thus,
allowing you to ship, analyze, and present data derived from your log streams.

This recipe will deal with the ElasticSearch and Kibana elements of the stack, allowing you to
create a server that is ready to have logs shipped to it via Logstash.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server.

How to do it…
1.	 To start, we need to install a Java virtual machine to run ElasticSearch; either the

Sun or the OpenJDK implementation is supported; we're going to use the OpenJDK
distribution as it is packed into the Ubuntu repositories. Install the OpenJRE by
issuing the following command:
$ sudo apt-get install default-jre

Chapter 9

205

2.	 Next, install the public signing key for the ElasticSearch repository with the following
command:
$ wget -O - http://packages.elasticsearch.org/GPG-KEY-
elasticsearch | sudo apt-key add -

3.	 Next, create a new file within /etc/apt/sources.list.d/ called
elasticsearch.list and insert the following:
deb http://packages.elastic.co/elasticsearch/1.7/debian stable
main

4.	 Now, install ElasticSearch using the following command:
$ sudo apt-get update && sudo apt-get install elasticsearch

5.	 Next, start your ElasticSearch instance by issuing the following command:
$ sudo service elasticsearch start

6.	 Now, since we have ElasticSearch, we can install Kibana. Start by downloading the
most recent release using the following command:
$ wget https://download.elastic.co/kibana/kibana/kibana-4.1.0-
linux-x64.tar.gz

7.	 Next, issue the following command to create a new user to run the Kibana process:
$ adduser kibana --home /opt/kibana-4.1.0-linux-x64

8.	 Now, decompress the installation using the following command:
$ cd /opt && tar -xvf <<fullpathtokibana.tar.gz>> && chown -R
kibana:kibana .

Make sure you replace the <<fullpathtokibana>> text with the path to where you
downloaded the Kibana gzip.

9.	 Run the following command to start the Kibana instance as a background process
using the user we created in step six:
$ sudo su kibana -c '/opt/kibana-4.1.0-linux-x64/bin/kibana > /
opt/kibana-4.1.0-linux-x64/kibana.log &'

This isn't as robust as a true startup script and you may want to consider
writing a more complete init script for production use.

Log Management

206

10.	 You can now test your Kibana instance by going to the URL
http://<kibanaserver>:5601. You should see a screen that looks similar to
this:

This indicates that Kibana is ready for use. Next, we'll turn our attention to the
Logstash server.

11.	 First, create a new file in /etc/apt/sources.list.d/ called logstash.list
and insert the following:
deb http://packages.elasticsearch.org/logstash/1.5/debian stable
main

12.	 Install the signing key using the following command:
wget -qO - https://packages.elasticsearch.org/GPG-KEY-
elasticsearch | sudo apt-key add -

Chapter 9

207

13.	 Next, install the package using apt-get:
$ sudo apt-get update && sudo apt-get install logstash

14.	 Now, we need to configure the Logstash server. The bulk of Logstash configuration
comprises inputs and outputs; inputs take log streams in and outputs forward
them onto a given system. In our case, we are going to create a new output for
ElasticSearch. Use your editor to create a new file called elasticsearch.conf
within the /etc/logstash/conf.d directory and insert the following snippet:
output {
 elasticsearch {
 host => localhost
 }
}

This will take any data input into Logstash and place it into the ElasticSearch
instance.

15.	 Finally, start the logstash process using the following command:

$ sudo service logstash start

At this point, Logstash will start and then quit; this is expected, as we have
no configured input. See the next recipe to configure an input for Logstash.

See also
ff You can find the documentation for ElasticSearch installation at https://www.

elastic.co/guide/en/elasticsearch/reference/current/setup.html

ff You can find the installation documents for Kibana at https://www.elastic.co/
guide/en/kibana/current/setup.html

ff You can find the installation documents for Logstash at https://www.elastic.
co/guide/en/logstash/current/getting-started-with-logstash.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html
https://www.elastic.co/guide/en/kibana/current/setup.html
https://www.elastic.co/guide/en/kibana/current/setup.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html

Log Management

208

Importing logs into Elasticsearch with
Logstash

Logstash can function as a log forwarding agent as well as a receiving server; however, due
to it's reliance on both a JVM and a relatively large memory footprint, it is unsuitable for hosts
of more modest means. Instead, we can use the Logstash forwarder (formerly known as
Lumberjack). The Logstash forwarder is written in Go and has a significantly smaller footprint.
As a result, it also removes the need for any external dependencies, such as a JVM. Using the
Logstash forwarder, you can securely forward logs from your hosts onto your ELK stack.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server acting as a Logstash server and an
Ubuntu 14.04 server with Nginx to act as the forwarder. Nginx has been used to supply
example logs and can be swapped out with the application of your choice.

How to do it…
The following steps will show you how to use a Logstash forwarder to import logs into
Elasticsearch:

1.	 To start, we are going to install the Logstash log forwarder. Use the following
command to download the package:
$ wget https://download.elastic.co/logstash-forwarder/binaries/
logstash-forwarder_0.4.0_amd64.deb

2.	 Next, we can install the package using this command:
$ sudo dpkg -i logstash-forwarder_0.4.0_amd64.deb

3.	 Now, we need to return to the Logstash server to configure certificates. To maintain
the security of your messages, the Logstash forwarder will only communicate
over SSL connections, so at the very least we need to generate some self-signed
certificates. On your Logstash server, create a directory to hold your keys and
certificates:
$ sudo mkdir -p /etc/logstash/ssl/certs && mkdir -p /etc/logstash/
ssl/keys

4.	 Now, we create the key using the following command:
$ openssl req -x509 -batch -nodes -newkey rsa:2048 -keyout
logforwarder.key -out logforwarder.crt -subj /CN=<< ELASTICSEARCH
SERVER NAME >>

Chapter 9

209

5.	 Finally, we can copy the certificates into place with this command:
$ sudo mv logforwarder.key /etc/logstash/ssl/keys && sudo mv
logforwarder.crt /etc/logstash/ssl/certs

6.	 You will also need to copy the certificate onto the log forwarding host; copy it into
/etc/ssl/certs/logforwarder.crt.

7.	 Now, we are ready to create our configuration; in this example, we're going to
configure the forwarder to forward logs from our Nginx instance to our ElasticSearch
server. Open the file /etc/logstash-forwarder.conf in your editor and replace
the contents with the following:
{

 "network": {

 "servers": [

 "<<ELASTICSEARCHSERVER>>:5043"

],

 "ssl ca": "/etc/ssl/certs/logforwarder.crt",
 "timeout": 15

 },

 "files": [

 {

 "paths": [

 "/var/log/syslog",

 "/var/log/*.log"

],

 "fields": {

 "type": "syslog"

 }

 },

 {

 "paths": [

 "/var/log/nginx/access.log"

],

 "fields": {

 "type": "nginx-access"

 }

 }

]

}

Log Management

210

Ensure that you replace <<ELASTICSEARCHSERVER>> with the IP
address/name of your ElasticSearch server, ensuring that it matches the
certificate name.

As you can see, this is straightforward JSON. This configuration will do the following:

�� Forward the selected logs onto your ElasticSearch server

�� Forward events from the syslog file and any file with a .log file extension
within the /var/logs directory and process them as syslog files

�� Forward events from the nginx log file located within /var/log/nginx/
access.log

8.	 We have one last step we need to perform before we can receive the logs; we need to
add a Logstash filter to correctly parse the incoming data. First, we create a directory
to hold the pattern by issuing the following command:
$ sudo mkdir /opt/logstash/patterns/

9.	 Next, we can create our pattern. Using your editor, create a new file under /opt/
logstash/patterns called nginx (no extension) and insert the following content:
NGINXACCESS %{IPORHOST:clientip} \[%{HTTPDATE:timestamp}\]
"%{WORD:verb} %{URIPATHPARAM:request} HTTP/%{NUMBER:httpversion}"
%{NUMBER:response} (?:%{NUMBER:bytes}|-) (?:"(?:%{URI:referrer}|-
)"|%{QS:referrer}) %{QS:agent}

This takes the incoming log and breaks it into discrete pieces of data for insertion
into the ElasticSearch index.

You can find further information on Logstash patterns at https://www.
elastic.co/guide/en/logstash/current/plugins-filters-
grok.html.

10.	 Next, we need to adjust our Logstash server to use our new pattern. Create a new
file called filter_nginx.conf under /etc/logstash/conf.d and insert the
following JSON:
filter {
 if [type] == "nginx-access" {
 grok {
 match => { "message" => "%{NGINXACCESS}" }
 }
 }
}

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Chapter 9

211

Nginx is also able to log straight to JSON, thus allowing you to simplify the
preceding steps by simply importing the raw JSON log. You can find the
nginx logging details at https://www.nginx.com/resources/
admin-guide/logging-and-monitoring/.

11.	 This configuration file causes Logstash to inspect incoming data for any that match
a type of nginx-access. If it matches, then the data is parsed via the pattern we
created earlier. You can enable your new configuration by restarting Logstash using
the following command:
$ sudo service logstash restart

12.	 You can test that your logs are being forwarded correctly by querying the indices on
your Elastic server. On the Elastic host, use the following command:

$ curl 'localhost:9200/_cat/indices?v'

You should receive a reply that is similar to the following screenshot:

Notice the dated index; this is the content of the logs we've forwarded on and is ready
to query.

See also
You can find the documentation for the Log forwarder at https://github.com/elastic/
logstash-forwarder.

Using Kibana queries to explore data
Once you have your data indexed into ElasticSearch, you will want to work with it to reveal
anything of interest. Kibana is a fantastic tool to enable this, allowing you to query, display and
report on data of interest. Kibana offers an easy-to-use GUI to explore your data, allowing both
ad-hoc data exploration and the creation of stunning and detailed dashboards.

In this recipe we're going to focus on using Kibana to explore data to discover underlying
patterns within an Nginx access log.

https://www.nginx.com/resources/admin-guide/logging-and-monitoring/
https://www.nginx.com/resources/admin-guide/logging-and-monitoring/
https://github.com/elastic/logstash-forwarder
https://github.com/elastic/logstash-forwarder

Log Management

212

Getting ready
For this recipe you need an Ubuntu 14.04 server with Kibana and ElasticSearch installed; you
should also have set up some inputs into ElasticSearch, preferably from an Nginx server.

How to do it…
The following steps will give you a very quick tour of how to locate and view data within
Kibana:

1.	 First, point your browser at your Kibana instance (normally located at
<<kibanaserver>>:5601). You should be able to see a page similar to the
following:

This allows you to configure your initial index pattern; this maps back to the indices
available within ElasticSearch.

If you need to see a list of available indices, you can issue this command
against your ElasticSearch server: curl 'localhost:9200/_cat/
indices?v'.

Generally speaking, if you're using Logstash to ship your logs into ElasticSearch, you
should be fine accepting the default; hit the button marked Create.

Chapter 9

213

2.	 The next screen allows you to select fields to analyze and should look something
similar to the following screenshot:

Kibana will attempt to work out the type for the field, but if it's a little wide of the mark
you can use the pencil icon at the end of the row to adjust the setting. Once you're
happy with your fields, you can click on the Discover menu item at the top.

3.	 The Discover page is where you can start to truly dig into your data. By default, it
displays a graph of activity over time of all of the data that is indexed, and should look
something similar to this:

Log Management

214

4.	 From here, we can start to drill into our data. At present, I have two different data
sources available to me; my server's auth.log and my Nginx access log. Let's take
a look at the Nginx access logs first. On the left-hand side of the menu, click on the
item marked file; it should reveal a drop-down menu that looks similar to this:

5.	 This menu allows you to quickly drill into the individual files that you have shipped to
Kibana. It also allows you to have a look at how active the files are within the time
frame. As we can easily see, my Nginx access log is by far the busiest. Let's click
on the icon and drill into the data. As soon as you drill into any data, the main page
updates to reflect this; for instance, my example data now looks similar to this:

Chapter 9

215

6.	 You can already see that there is an anomalous spike of traffic in the preceding chart.
There are several ways we can explore this, but by far the easiest is to click and drag
over the time series we're interested in; this binds the data to the period selected:

7.	 By zooming in, we can easily see that the traffic is coming in over a very short period;
a minute in this case. We can now dig deeper into this by examining the pages that
we're requesting by opening up the requests field on the left-hand menu:

As you can see, the requests are evenly split.

Log Management

216

8.	 We can use the Visualize feature within Kibana to explore the data at hand. Right
now, we'll take a look at the IP addresses. Click on the clientIP field on the left-hand
side; it should look something similar to this:

9.	 As you can see, it has ranked the IPs by frequency; however, we can use the
visualization feature to look at the data in more detail. Click on the Visualize button
at the bottom.

The warning is the result of the field containing analyzed data. Due to the
possibly huge amount of variance available within an analyzed field, Kibana
will warn you that this could be a computationally expensive operation.

10.	 The next screen arrays the IP's in order of the number of requests over the selected
time period and will look similar to this:

Chapter 9

217

As you can see, only four IP's make up the bulk of the traffic!

11.	 Within the visualization we can report on this further. On the left-hand side, under
buckets, click on the Add sub-buckets button. This opens a drop-down menu that
allows you to add further data within the visualization. In this case, add the options
as per the following screen shot:

Log Management

218

12.	 Once you've added the options, click on the green play button at the top to run the
query. This will order the results of the IPs by the top three requested URLs, and it
should look similar to the following:

Although you can't make out the text in this image, you can see that the bulk of the
requests are going to a single page; an unusual pattern.

13.	 As a final check, we can go back to the main page by clicking on the Discover button
at the top and then clicking on the field on the left-hand side marked as agent. In my
example, it looks similar to this:

Plainly, this activity is the result of a load test and we have spotted and investigated it
using Kibana.

Chapter 9

219

See also
You can find the getting started guide for Kibana at https://www.elastic.co/guide/
en/kibana/current/getting-started.html.

Using Kibana queries to examine data
The previous recipe was a whistle-stop tour of using the Kibana interface to interactively drill
into and examine your data; however, some of the true power of Kibana is its ability to use the
ElasticSearch query language to allow you to select elements of information for examination.

Although you can impart order to your data when you ship it using Logstash, you will probably
still have a lot of unstructured data that you need to examine. Using ElasticSearch queries,
you can start to construct queries to examine your data and use Kibana to display it in an easy
to understand manner. This recipe will take a look at some simple ElasticSearch queries to
examine security issues on a Linux host.

Getting ready
For this recipe, you will need an ELK server plus some data forwarded from an auth.log.

How to do it…
The following steps will show you how to search your data using queries in Kibana and how to
save them as Dashboards:

1.	 Log onto your Kibana server and select the files tab from the left-hand side; it
should look similar to the following screen shot:

Select the plus sign next to the auth.log to drill further into that data.

https://www.elastic.co/guide/en/kibana/current/getting-started.html
https://www.elastic.co/guide/en/kibana/current/getting-started.html

Log Management

220

2.	 The main screen should now look similar to the following:

3.	 Although you cannot make out the text, the graph is the point of focus; this shows
us the auth log activity over time. Now, we should start constructing our query; in
this instance, I'm interested in failed logins. In the search bar in the top, enter the
following:
"Failed password"

4.	 You will find that Kibana is now filtering the log messages that contain that term; it
will also update the graphs and data to reflect this and highlight the data. See the
following screen shot for an example:

5.	 It's certainly nice to be able to search for a term, but you can also chain together
queries with operators to gain a little granularity. For instance, I want to be able
to filter out the entries that are failed logins for the root user and see the non-root
accounts that are being affected. In your search bar, enter the following:
("Failed password") NOT ("root")

This runs the first query (find all entries with the text Failed password) and then use
the NOT operator to exclude the ones that include the text root.

6.	 Let's take it further and also exclude invalid users. This allows us to see the non root
users who are actually present on the box and are being targeted. Enter the following
query into the search bar:
("Failed password") NOT ("root") NOT ("invalid user")

Chapter 9

221

Hit the run button. In my example, my result looks similar to this:

As you can see, there are users such as UUCP, backup, and others who are valid
users and are being targeted by some form of brute-force attack.

7.	 This is an interesting query and one that I'd like to be able to quickly return to. To do
this, we can save the query. Click on the disk icon on the top left corner:

8.	 You will be prompted to name the saved search; go ahead and call it something
meaningful. Now, whenever you want to see this query, you can load it by clicking
on the load icon:

You can use this feature to build up a library of reports that allow members of
the team who are less familiar with the query language to quickly and easily
access information.

Log Management

222

See also
You can find more details of how to use Kibana to query data at https://www.elastic.
co/guide/en/kibana/current/discover.html and https://www.elastic.co/
guide/en/kibana/current/discover.html.

https://www.elastic.co/guide/en/kibana/current/discover.html
https://www.elastic.co/guide/en/kibana/current/discover.html
 https://www.elastic.co/guide/en/kibana/current/discover.html
 https://www.elastic.co/guide/en/kibana/current/discover.html

223

10
Monitoring with Sensu

In this chapter, we are going to cover the following topics:

ff Installing a Sensu server

ff Installing a Sensu client

ff Installing check prerequisites

ff Finding community checks

ff Adding a DNS check

ff Adding a disk check

ff Adding a RAM check

ff Adding a process check

ff Adding a CPU check

ff Creating e-mail alerts

ff Creating SMS alerts

ff Using Ansible to install Sensu

Introduction
One of the cornerstones of DevOps engineering is the effective monitoring of resources and
services, and the ability to react to them in a timely fashion. This is not unique to DevOps;
monitoring has been one of the key aspects of running a system for as long as there have
been systems to run.

Monitoring with Sensu

224

Monitoring takes many forms and there is no such thing as a finished monitoring system.
Just when you think you have everything monitored, you will find an obscure edge case that
will cause issues if not correctly accounted for. On the other side, you need to ensure that
your monitoring is accurate. Nothing kills a monitoring platform quicker than having to wade
through a wall of false alerts. People start to ignore alerts, sooner rather than later, and you
end up with an outage, which you could have seen coming but did not.

Fortunately, there are many products to choose from when it comes to monitoring and
alerting, both open source and commercial, and each has its strengths and weaknesses. For
many years, the de facto standard for open source monitoring was Nagios (https://www.
nagios.org). Nagios is a hugely popular product and is used all over the world. However, it
has some weaknesses. Several branches of Nagios are addressing some of these perceived
weakness, with Icinga (https://www.icinga.org) becoming especially popular. However,
some projects have gone further and have started to re-evaluate the core principles to
rearrange the monitoring infrastructure.

One more promising product is Sensu (https://sensuapp.org). Sensu takes a different
approach to many monitoring solutions and, rather than using a master/client solution, it
uses a Publication/Subscription model using a message queue. This approach makes it far
simpler to configure monitoring for a large number of services and is useful for environments
that contain a large amount of ephemeral hosts. By allowing clients to subscribe simply and
easily to a set of checks, it makes it much easier to roll out new clients; they simply start the
client with the correct subscription, and start running and sending results back to the master
to process.

Other than utilizing a message queue, Sensu allows for custom checks to be written relatively
easily and with flexibility. This allows the responsibilities of writing checks to be split evenly
among team members, both application and infrastructure developers. It should help ensure
that your monitoring coverage is as broad as possible.

Sensu is an open source project that also has a commercial offering; the open source
product is referred to as Sensu Core, while the commercial version is Sensu Enterprise.
Sensu Enterprise offers a better issue routing system, tweaked dashboard and, perhaps
most compellingly, support. However, Sensu Core is a powerful product in its own right,
and can happily monitor huge amounts of clients.

This chapter will show you how to set up, configure, and roll out checks using Sensu. We will
also look at how to configure Sensu to alert you via the two most important avenues: SMS
and e-mail.

https://www.nagios.org
https://www.nagios.org
https://www.icinga.org
https://sensuapp.org

Chapter 10

225

Installing a Sensu server
Setting up Sensu and its pre-requisites is reasonably straightforward, and it should take little
time to set it up and configure some initial checks. This recipe will show you how to install
Sensu Core and Uchiwa as its dashboard. Thus, giving you both a powerful and scalable
Sensu server; however, it only gives you a single place to examine any issues. Using Uchiwa
allows you to have multiple Sensu servers across many sites and still have a singular place to
examine them in a graphical fashion.

Lastly, we will also set up SSL keys to ensure that the communication between the Sensu
queue and its subscribing hosts remains confidential.

Getting ready
For this recipe, you require an Ubuntu 14.04 server to host both Sensu Core and Uchiwa.

How to do it…
The following steps will demonstrate how to install a Sensu server, RabbitMQ, and the
Uchiwa panel:

1.	 Our first step is to install RabbitMQ, which requires Erlang to be installed. Use the
following command to install Erlang:
$ sudo apt-get update && sudo apt-get -y install erlang-nox

2.	 Now that we have Erlang, we are ready to install RabbitMQ. The Sensu project
recommends the use of the latest upstream release of Rabbit rather than the
version available for distribution. To do this, we need to first download and install the
RabbitMQ package signing key:
$ sudo wget http://www.rabbitmq.com/rabbitmq-signing-key-public.
asc && sudo apt-key add rabbitmq-signing-key-public.asc

3.	 Next, we need to make the apt repository available and install the RabbitMQ
package with the following two commands:
$ echo "deb http://www.rabbitmq.com/debian/ testing main" |
sudo tee /etc/apt/sources.list.d/rabbitmq.list

$ sudo apt-get update && sudo apt-get install rabbitmq-server

4.	 Now we will create the keys to secure our Sensu communication, but first we need to
install the OpenSSL tools with the following command:
$ sudo apt-get install openssl

Monitoring with Sensu

226

5.	 Once OpenSSL is installed, we can download a tool provided by the Sensu team
to generate the certificates. The script uses the OpenSSL tools to generate a set
of certificates and place them into the CA, server and client directories. First we
download the script using the following command:
$ wget http://sensuapp.org/docs/0.20/files/sensu_ssl_tool.tar &&
tar -xvf sensu_ssl_tool.tar

6.	 Once downloaded, we run the script and generate the certificates using the
following command:
$ sudo./sensu_ssl_tools/ssl_certs.sh generate

7.	 This should produce new directories containing the Certificate Authority, client
certificates, and Server certificate and key. Next, we both create the directory
structure, and copy the server and Certificate Authority certificates using this
command:
$ sudo mkdir -p /etc/rabbitmq/ssl && sudo cp sensu_ca/cacert.pem
server/cert.pem server/key.pem /etc/rabbitmq/ssl

8.	 Finally, we need to amend our RabbitMQ configuration to make use of the certificates.
Create a new file called rabbitmq.config within /etc/rabbitmq/ and insert the
following content:
[
 {rabbit, [
 {ssl_listeners, [5671]},
 {ssl_options, [{cacertfile,"/etc/rabbitmq/ssl/cacert.pem"},
 {certfile,"/etc/rabbitmq/ssl/cert.pem"},
 {keyfile,"/etc/rabbitmq/ssl/key.pem"},
 {verify,verify_peer},
 {fail_if_no_peer_cert,true}]}
]}
].

9.	 This directs RabbitMQ to start a new listener on TCP port 5671 using the certificates
we have generated to secure communication on this port. Now that we have
configured the certificates, you should restart the RabbitMQ server using the
following command:
$ sudo /etc/init.d/rabbitmq-server restart

10.	 With RabbitMQ installed and configured, we can start creating the RabbitMQ users
and virtual hosts for Sensu to be used as a publishing endpoint. Let's start by
creating a new RabbitMQ virtual host for Sensu with the following command:
$ sudo rabbitmqctl add_vhost /sensu

Chapter 10

227

11.	 Next, create a RabbitMQ user with a password of your choice with the following
command:
$ sudo rabbitmqctl add_user sensu <<YOURPASSWORD>>

Remember to replace <<YOURPASSWORD>> with the password of your choice.

12.	 Finally, we give the sensu-user full permission over its virtual host with this
command:
$ sudo rabbitmqctl set_permissions -p /sensu sensu ".*" ".*" ".*"

13.	 We're finished with RabbitMQ and now we are ready to move onto the next
prerequisite, which is Redis. In this case, the version included with the Linux
distribution is fine. You can install Redis using the following command:
$ sudo apt-get install redis-server

14.	 Now that we have installed and configured RabbitMQ and Redis, we can install Sensu
Core. First, we add the Sensu package signing key using the following command:
$ wget -q http://repos.sensuapp.org/apt/pubkey.gpg -O- | sudo apt-
key add -

15.	 We can then add the repository with this command:
$ echo "deb http://repos.sensuapp.org/apt sensu main" | sudo
tee /etc/apt/sources.list.d/sensu.list

16.	 Finally, we install the Sensu package. This installs the server, API, and client as
a bundle:
$ sudo apt-get update && sudo apt-get install sensu

17.	 Now we have installed the Sensu server, we can configure it. First, copy the client
certificate we created earlier in place with the following command:
$ sudo mkdir -p /etc/sensu/ssl && sudo cp client/cert.pem client/
key.pem /etc/sensu/ssl

18.	 Next, we configure our Sensu server's basic connectivity. Create a new file called
config.json under the directory of /etc/sensu and insert the following content:
{
 "rabbitmq": {
 "ssl": {
 "cert_chain_file": "/etc/sensu/ssl/cert.pem",
 "private_key_file": "/etc/sensu/ssl/key.pem"
 },
 "host": "localhost",
 "port": 5671,

Monitoring with Sensu

228

 "vhost": "/sensu",
 "user": "sensu",
 "password": "<<password>>"
 },
 "redis": {
 "host": "localhost"
 },
 "api": {
 "port": 4567
 }
}

Ensure that you replace <<password>> with the password you chose while setting
up the Sensu RabbitMQ user.

19.	 Start the Sensu services using the following commands:
$ sudo service sensu-server start

$ sudo service sensu-api start

Notice that we're not starting the Sensu client in this instance; this is to
keep this recipe focused. I thoroughly encourage you to configure a client
on your Sensu master and monitor it as with any other host.

20.	 Next, we are going to install uchiwa. Uchiwa is an elegant and easy to use dashboard
for Sensu, designed to be used for information radiators, such as TVs. Install Uchiwa
using the following command:
$ sudo apt-get install uchiwa

21.	 Now that we have installed Uchiwa, we need to configure it; edit the file
/etc/sensu/uchiwa.json and ensure that it has the following content:
{
 "sensu": [
 {
 "name": "<<site description>>",
 "host": "<<sensuserver>>",
 "port": 4567,
 "timeout": 5
 }
],

Chapter 10

229

 "uchiwa": {
 "host": "0.0.0.0",
 "port": 3000,
 "interval": 5
 }
}

Ensure that you replace <<site description>> and <<sensuserver>> with the
correct values. The site description can be set to a description of your choice; I tend
to use it to delineate geographical sites (for instance, London, DC). Ensure that the
sensu server is set to the DNS name or IP address of your Sensu server.

22.	 Start the service using the following command:

$ sudo service uchiwa start

Within your browser, navigate to your Sensu server on port 3000 and you should be
able to see a screen similar to the following screenshot:

See also
ff You can find further installation details for Sensu at https://sensuapp.org/

docs/0.20/installation-overview

ff You can find installation details of Uchiwa at http://docs.uchiwa.io/en/
latest/getting-started/

https://sensuapp.org/docs/0.20/installation-overview
https://sensuapp.org/docs/0.20/installation-overview
http://docs.uchiwa.io/en/latest/getting-started/
http://docs.uchiwa.io/en/latest/getting-started/

Monitoring with Sensu

230

Installing a Sensu client
Once you have installed the Sensu server, you need to install the Sensu client to run checks
and report the data back to the server. The Sensu client subscribes to the RabbitMQ virtual
host and listens for checks to be published in a subscription to which the client belongs. When
a check is published, the client runs the assigned check and publishes the results back onto
the RabbitMQ; from here, the Sensu server then processes the check results.

Getting ready
For this recipe, you will need an Ubuntu 14.04 client to act as the Sensu client and a Sensu
server to connect to.

How to do it…
The following steps show you how to install the Sensu Core package and how to configure the
Sensu client.

1.	 The Sensu Core package used to install the Sensu client includes the client, server,
and API package. First we add the Sensu package signing key using the following
command:
$ wget -q http://repos.sensuapp.org/apt/pubkey.gpg -O- | sudo apt-
key add -

Then we add the repository:

$ echo "deb http://repos.sensuapp.org/apt sensu main" | sudo
tee /etc/apt/sources.list.d/sensu.list

2.	 Finally, we can now install the Sensu package using the following command:
$ sudo apt-get update && sudo apt-get install sensu

If you have already read the How to install a Sensu server recipe, then you
might have noticed that the steps are the same for both client and server.
This is because the Sensu package is an omnibus package that contains
everything; you only start the services you want.

3.	 Next, we need to copy the client key into place. You can start by creating a directory to
place the certificates with this command:
$ sudo mkdir -p /etc/sensu/ssl

Chapter 10

231

4.	 Copy the following files from the keys you created when you created your Sensu
server and into the directory you created in the step above:
client/cert.pem

client/key.pem

5.	 Now, we can configure the Sensu client. First, create a file in /etc/sensu called
config.json and insert the following content:
{
 "rabbitmq": {
 "ssl": {
 "cert_chain_file": "/etc/sensu/ssl/cert.pem",
 "private_key_file": "/etc/sensu/ssl/key.pem"
 },
 "host": "<sensumaster>",
 "port": 5671,
 "vhost": "/sensu",
 "user": "sensu",
 "password": "<password>"
 },
 "redis": {
 "host": "localhost"
 },
 "api": {
 "port": 4567
 }
}

Note that you need to replace the values of <<sensumaster>> and <<password>>
with the IP or name of your Sensu Master and Sensu password, respectively.

6.	 Now that we have configured the general Sensu connectivity, we can configure
the client specific settings. Create a new file under /etc/sensu/conf.d called
client.json and insert the following content:
{
 "client": {
 "name": "sensuhost",
 "address": "<ip address>,
 "subscriptions": ["common"]
 }
}

Monitoring with Sensu

232

It's worth going over this slim piece of configuration. The first part of the configuration
defines the name that is displayed for this host when reporting the check results;
I suggest that this should be the DNS name of the client for easy identification.
The address field allows you to define an IP address that the client reports as its
originating address. The subscriptions field allows you to add subscriptions for checks.
I recommend that you have a common set of checks that all hosts should respond to;
these can be things, such as disk space, CPU usage, RAM usage, and so on.

Subscriptions are a key part of using Sensu, and are a fantastic
organizational tool. I generally recommend using a common subscription
for the usual suspects, such as RAM and CPU checks. You can use a
role description for other subscriptions, such as a subscription called
nginx_server, or haproxy_lb.

7.	 Now that we have configured our client, we are ready to start the Sensu client service.
Start it by issuing the following command:
$ service sensu-client start

8.	 On your sensu master, log into your uchiwa panel and select this icon:

This takes you to the client-listing page. Once there, you should be able to see your
new host listed and it should look something similar to the following screenshot:

Chapter 10

233

See also
You can find further details about the client installation at https://sensuapp.org/
docs/0.20/install-sensu-client.

Installing check prerequisites
Sensu checks are generally written using Ruby and there is broad support for the language
throughout Sensu. However, this means that there are certain dependencies on Ruby for
some checks.

Getting ready
For this recipe, you will require an Ubuntu 14.04 server with Sensu installed.

This recipe requires you to install development tools to compile the native
Ruby extensions that some checks require. If having development tools on
hosts contravenes your security policies, I recommend that you use a tool,
such as FPM (https://github.com/jordansissel/fpm) to build
the checks on a build machine and then re-package for distribution.

How to do it…
To install the various packages, issue the following command:

$ sudo apt-get install -y ruby ruby-dev build-essential

Finding community checks
Once the Sensu client and server are installed, it's now time to add the checks to be
monitored for any issue. By default, the Sensu client reports nothing; it is up to you to add
any relevant checks to make it useful.

Sensu checks can be written in any language as long as it returns the correct response to the
server via RabbitMQ; however, they are generally written either in Bash or more commonly in
Ruby. Luckily, the Sensu community has contributed a great many open source checks to the
project. These can be installed, thus saving you from having to create your own and they cover
many of the common check scenarios.

https://sensuapp.org/docs/0.20/install-sensu-client
https://sensuapp.org/docs/0.20/install-sensu-client
https://github.com/jordansissel/fpm

Monitoring with Sensu

234

Getting ready
For this recipe, you will need an Ubuntu 14.04 host to act as the Sensu check host and a
Sensu server to connect to. You should also have installed the prerequisite packages as
detailed in the recipe Installing check prerequisites.

How to do it…
You can find the Sensu community checks at http://sensu-plugins.io/plugins/.

Each link should take you to a Github page containing the code for that particular check, and
it should have the additional documentation on the usage of the check.

See also
ff You can find further details of the Sensu community checks at http://sensu-

plugins.io/plugins/

ff You can find details of the Sensu check format at https://sensuapp.org/docs/
latest/checks

Adding a DNS check
Almost every application has external dependencies, such as databases, Redis caches, e-mail
servers, and so on. Although it is generally reliable, DNS can occasionally cause problems
and, at first glance, it can be difficult to diagnose. By adding a check that constantly checks
the DNS record, you can be assured that these dependencies are available.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host to act as the Sensu check-host and a
Sensu server to connect to. You should also have installed the prerequisite packages as
detailed in the recipe Installing check prerequisites.

How to do it…
Let's start by adding DNS check to track DNS records:

1.	 For this recipe, we're going to install the sensu-plugins-dns. Use the following
command to install the new plugin:
$ sudo gem install sensu-plugins-dns

http://sensu-plugins.io/plugins/
http://sensu-plugins.io/plugins/
http://sensu-plugins.io/plugins/
https://sensuapp.org/docs/latest/checks
https://sensuapp.org/docs/latest/checks

Chapter 10

235

2.	 You can test if the plugin has been installed successfully by issuing the following
command:
$ check-dns.rb -d www.packtpub.com

3.	 You should see a response like the following:
DNS OK: Resolved www.packtpub.com A records

4.	 On the Sensu server, create a new file called web_check.json under the directory /
etc/sensu/conf.d and insert the following content:
{
 "checks": {
 "check_google": {
 "command": "/usr/local/bin/check-dns.rb -d google.com",
 "interval": 60,
 "subscribers": ["web_check"]
 },
 "check_yahoo": {
 "command": "/usr/local/bin/check-dns.rb -d yahoo.com",
 "interval": 60,
 "subscribers": ["web_check"]
 },
 "check_fail": {
 "command": "/usr/local/bin/check-dns.rb -d sdfdsssf.com",
 "interval": 60,
 "subscribers": ["web_check"]
 }
 }
}

5.	 Once you have entered the configuration, restart the Sensu server by issuing the
following command:
$ service sensu-server restart

6.	 Next, we need to configure our client to subscribe to the checks. Edit the client.
json file located within /etc/sensu/conf.d and to reflect the following code:
{
 "client": {
 "name": "sensuhost",
 "address": "<<SENSUCLIENTIP>>",
 "subscriptions": ["common","web_check"]
 }
}

Monitoring with Sensu

236

7.	 Notice the additional subscription. When you restart the client, it will subscribe to
a set of checks that publish themselves for web_check clients to run. Restart the
Sensu client by issuing the following command:
$ service sensu-client restart

8.	 Your checks should now be running; however, it may take a few minutes for them to
show up. This is due to the checks being placed on the MQ and being checked at the
interval specified (60 seconds in the above example). To check, log on to Uchiwa on
your Sensu master and select the following icon on the left-hand side:

You should see the check to which we have deliberately given a nonsense address:

9.	 You can also check in /var/log/sensu/sensu-server.log and locate the line
that resembles the following:

{"timestamp":"2015-07-14T16:55:14.404660-0400","level":"info",
"message":"processing event","event":{"id":"c12ebe42-62ed-454f-
a074-49c71c3c8f7a","client":{"name":"sensuhost","address":"10.1
31.154.77","subscriptions":["common","web_check"],"version":"0
.20.0","timestamp":1436907305},"check":{"command":"/usr/local/
bin/check-dns.rb -d sdfdsssf.com","interval":60,"subscribers":["w
eb_check"],"name":"check_fail","issued":1436907314,"executed":1436
907314,"duration":0.262,"output":"DNS CRITICAL: Could not resolve
sdfdsssf.com\n","status":2,"history":["2"],"total_state_change":0}
,"occurrences":1,"action":"create"}}

Chapter 10

237

See also
You can find further details of the Sensu DNS check at https://github.com/sensu-
plugins/sensu-plugins-dns.

Adding a disk check
Disk checks are a critical part of infrastructure monitoring. A full disk can cause processes
to fail, servers to slow down, and logs to be lost. Providing alerts for disk issues in a timely
manner is vital to the smooth running of any infrastructure.

This recipe shows you how to install the community disk check and add it to a subscription
called common.

Getting ready
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's install the community disk check:

1.	 First, we install the disk check gem using the Gem package manager:
$ sudo gem install sensu-plugins-disk-checks

This gem installs many additional disk based checks in addition to space
usage, allowing you to check for issues such as SMART alerts, and so on.
You can see the details at: https://github.com/sensu-plugins/
sensu-plugins-disk-checks.

2.	 Now we can configure the check configuration. On the Sensu master, create a new file
called disk_checks.json under the /etc/sensu/conf.d directory and insert
the following content:
{
 "checks": {
 "check_disk_usage": {
 "command": "/usr/local/bin/check-disk-usage.rb -w 75 -c 90",
 "interval": 60,
 "subscribers": ["common"]
 }
}

https://github.com/sensu-plugins/sensu-plugins-dns
https://github.com/sensu-plugins/sensu-plugins-dns
https://github.com/sensu-plugins/sensu-plugins-disk-checks
https://github.com/sensu-plugins/sensu-plugins-disk-checks

Monitoring with Sensu

238

The configuration above makes use of the disk check plugging, and uses the -w and
-c switches. These switches are relatively common amongst Nagios-style checks and
allows you to set a warning and a critical threshold. In this case, I'm using a warning
at 75% and a critical alert at 90%. This is very useful as it allows us to use different
alert types based on the threshold; for instance, a warning could trigger an e-mail
and a critical alert could send an SMS. Read the plugin documentation to fid details
of what thresholds you can set and how to set them.

3.	 On the client side, edit the file called client.json within /etc/sensu/conf.d
and ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

4.	 To check that the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-14T17:26:42.689883-0400","level":"info","mes
sage":"publishing check request","payload":{"name":"check_disk_us
age","issued":1436909202,"command":"/usr/local/bin/check-disk-
usage.rb -w 75"},"subscribers":["common"]}

See also
You can find more details for the community disk checks at https://github.com/sensu-
plugins/sensu-plugins-disk-checks.

Adding a RAM check
Having sufficient RAM available for a server is a crucial part of running a performant service.
When memory resources run short, the application either runs slow, if the OS is forced to use
swap space, or in extremes can cause applications to crash.

This recipe demonstrates how to use Sensu to monitor that sufficient free RAM is present on a
monitored system.

https://github.com/sensu-plugins/sensu-plugins-disk-checks
https://github.com/sensu-plugins/sensu-plugins-disk-checks

Chapter 10

239

Getting ready
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's add the RAM check:

1.	 We need to install the sensu-plugins-memory-checks gem; this installs an
executable for the RAM check:
$ sudo gem install sensu-plugins-memory-checks

2.	 Now we can configure the config check. On the Sensu master, create a new file
called ram_checks.json under the /etc/sensu/conf.d directory and insert the
following content:
{
 "checks": {
 "check_ram": {
 "command": "/usr/local/bin/check-ram.rb -w 70 -c 95",
 "interval": 60,
 "subscribers": ["common"]
 }
 }
}

Again, note the use of the -w and -c switches; these set the thresholds in percentage
used that needs to trigger an alert.

3.	 On the client, edit the file called client.json within /etc/sensu/conf.d and
ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

Monitoring with Sensu

240

4.	 To determine that the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-14T17:43:28.066609-0400","level":"wa
rn","message":"config file applied changes","file":"/etc/
sensu/conf.d/check_ram.json","changes":{"checks":{"check_ram_
usage":[null,{"command":"/usr/local/bin/check-ram.rb","interval":6
0,"subscribers":["common"]}]}}}

See also
For further details on the Sensu memory checks, see the following page https://github.
com/sensu-plugins/sensu-plugins-memory-checks.

Adding a process check
One important item to monitor is if a process is actually running on a system. It's little use
knowing that you have plenty of disk and CPU resources, but not realizing that your apache
server has fallen over. Sensu can be used to monitor the key processes that are running on
your server and it can alert you if a process has gone AWOL.

This recipe shows you how to check if the sshd process is running on any host subscribed to
the common subscriptions; however, the same technique can be used to monitor any process.

Getting ready…
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
This recipe will show you how to install the Sensu process check plugin and how to configure it
to monitor a running process.

1.	 First, we install the process check gem using the Gem package manager. Use the the
following command to install the plugin:
$ sudo gem install sensu-plugins-process-checks

https://github.com/sensu-plugins/sensu-plugins-memory-checks.
https://github.com/sensu-plugins/sensu-plugins-memory-checks.

Chapter 10

241

2.	 Now, we can configure the check configuration. On the Sensu master, create a new
file called sshd_process_check.json under the /etc/sensu/conf.d directory
and insert the following content:
{
 "checks": {
 "check_sshd_usage": {
 "command": "/usr/local/bin/check-process.rb -p 'sshd -D'",
 "interval": 60,
 "subscribers": ["common"]
 }
 }
}

This check makes use of the -p switch to allow us to specify a process that we wish
to monitor; this should be the full string of the running process (notice that, in the
preceding example, I have added the -D switch that the process runs with).

3.	 On the client, edit the file called client.json within /etc/sensu/conf.d and
ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

4.	 To determine if the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-14T18:13:48.464091-0400","level":"info","me
ssage":"processing event","event":{"id":"f1326a4f-87c2-49a7-8b28-
70dfa3e9836b","client":{"name":"sensuhost","address":"10.131.154
.77","subscriptions":["common","web_check"],"version":"0.20.0","
timestamp":1436912025},"check":{"command":"/usr/local/bin/check-
process.rb -p 'sshd -D'","interval":60,"subscribers":["common"],
"name":"check_sshd_usage","issued":1436912028,"executed":1436912
028,"duration":0.128,"output":"CheckProcess OK: Found 1 matching
processes; cmd /sshd -D/\n","status":0,"history":["1","1","1","1",
"0"],"total_state_change":0},"occurrences":4,"action":"resolve"}}

See also
You can find further details of the process checks at https://github.com/sensu-
plugins/sensu-plugins-process-checks.

https://github.com/sensu-plugins/sensu-plugins-process-checks
https://github.com/sensu-plugins/sensu-plugins-process-checks

Monitoring with Sensu

242

Adding a CPU check
Having sufficient CPU resources is a vital part of running a performant service and it is hard to
spot without sufficient monitoring. Using Sensu to alert when CPU usage is running high, you
will be able to deal with slow running processes before the customer notices.

Getting ready
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's add a CPU usage check:

1.	 First, we install the CPU check gem using the Gem package manager. Use the
following command to install the plugin:
$ sudo gem install sensu-plugins-cpu-checks

2.	 Now we can configure the check configuration. On the Sensu master, create a new file
called cpu_check.json under the /etc/sensu/conf.d directory and insert the
following content:
{
 "checks": {
 "check_cpu_usage": {
 "command": "/usr/local/bin/check-cpu.rb",
 "interval": 60,
 "subscribers": ["common"]
 }
 }
}

3.	 On the client, edit the file called client.json within /etc/sensu/conf.d and
ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

Chapter 10

243

4.	 To determine that the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-15T16:24:26.800371-0400","level":"info"
,"message":"publishing check request","payload":{"name":"che
ck_cpu","issued":1436991866,"command":"/usr/local/bin/check-cp.
rb"},"subscribers":["common"]}

See also
You can find further details of the process checks at https://github.com/sensu-
plugins/sensu-plugins-cpu-checks.

Creating e-mail alerts
Although you can view your Sensu alerts using the Uchiwa panel, it's unlikely that you will have
your eyes glued to the TV at all times. Instead, you need to give Sensu the ability to alert you
in a more interactive fashion, and one of the most tried and trusted methods is via e-mail. In
today's world of laptops, Smartphones and tablets, it's a rare time indeed when you are not
able to receive e-mails.

This recipe will show you how to configure the Sensu e-mail plugin to allow you to receive
e-mails whenever an alert is triggered.

Getting ready
For this recipe, you will need a configured Sensu server and Sensu client. You should also
have at least one check configured. You will also need an SMTP server that can relay mail. You
should also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's create an e-mail alert:

1.	 First, you can use Ruby's gem to install the mail plugin using the following command:
$ gem install sensu-plugins-mailer

https://github.com/sensu-plugins/sensu-plugins-cpu-checks
https://github.com/sensu-plugins/sensu-plugins-cpu-checks

Monitoring with Sensu

244

2.	 Now, we can configure the mail plugin. Create a new file called plugin_mailer.
json within /etc/sensu/conf.d and insert the following content:
{
 "mailer": {
 "admin_gui": "http://<sensuserver>/#/events",
 "mail_from": "<<fromaddress>>",
 "mail_to": "<<toaddress>>",
 "smtp_address": "<<smtpaddress>>",
 "smtp_username": "<<smtpusername>>",
 "smtp_password": "<<smtppassword>>",
 "smtp_port": "587",
 "smtp_domain": "<<smtpdomain>>"
 }
}

Ensure that you replace the values inside the angle brackets with the relevant
information for your e-mail setup. The admin gui is simply a link to the uchiwa
panel, so fill in the address of your Sensu server.

3.	 Now the mailer plugin is configured, we can create the handler.

4.	 You can combine the plugin and handler settings into the same file, but it's better
practice to keep them separate.

5.	 A handler is an executable piece of code that is triggered by an event sent via a
Plugin; you can think of plugins as raising alerts and handlers as dealing with how
to distribute the event to end users. Sensu allows you to configure many different
handlers, which allows you to be flexible in how you are alerted. You may wish to
e-mail some checks, others you might want to send via SMS, and still others you
might want to allow for a combination of the two; handler definitions allow you to
define these. To create the handler definition for the mailer, create a new file called
mail.json under the /etc/sensu/handlers and insert the following content:
{	
 "handlers": {
 "mailer": {
 "type": "pipe",
 "command": "/usr/local/bin/handler-mailer.rb"
 }
 }
}

6.	 This has created a new handler called mailer that we can make available for our
checks. The type of pipe is the most commonly used type of handler and outputs
the contents of the Sensu event into the command. Effectively, the event is raised
by a plugin, placed on the MQ, processed by the Sensu Server, and then parsed
via the handler.

Chapter 10

245

7.	 To add the handler to a check, open up a check definition and amend it to include the
following code:
{
 "checks": {
 "check_cpu": {
 "command": "/usr/local/bin/check-cpu.rb",
 "interval": 60,
 "subscribers": ["common"],
 "handlers": ["mailer"]
 }
 }
}

8.	 Now, whenever an alert is triggered, you should receive an e-mail that resembles
something like this:

DNS CRITICAL: Could not resolve sdfdsssf.com
Admin GUI: http://sensumaster.stunthmaster.com/#/events
Host: sensuhost
Timestamp: 2015-07-15 19:07:14 -0400
Address: 10.131.154.77
Check Name: check_fail
Command: /usr/local/bin/check-dns.rb -d sdfdsssf.com
Status: CRITICAL
Occurrences: 1
And when the check is resolved, you should see a resolution E-mail
that looks something like this:
Resolving on request of the API
Admin GUI: http://sensumaster.stunthmaster.com/#/events
Host: sensuhost
Timestamp: 2015-07-19 19:15:12 -0400
Address: 10.131.154.77
Check Name: check_fail
Command: /usr/local/bin/check-dns.rb -d sdfdsssf.com
Status: OK
Occurrences: 2976

By editing the handler-mailer.rb code, you can modify this e-mail to more suit
your formatting needs.

See also
ff You can find more details of the Sensu handlers at https://sensuapp.org/

docs/0.20/handlers

ff You can find more details of the e-mail handler at https://github.com/sensu-
plugins/sensu-plugins-mailer

https://sensuapp.org/docs/0.20/handlers
https://sensuapp.org/docs/0.20/handlers
https://github.com/sensu-plugins/sensu-plugins-mailer
https://github.com/sensu-plugins/sensu-plugins-mailer

Monitoring with Sensu

246

Creating SMS alerts
Sometimes you need alerts that are more immediate than an e-mail. When a critical service
goes down, you don't want to miss it because you eschewed carrying a smartphone and your
laptop wasn't near by.

SMS messaging is a fantastic way to send default alerts and is in many ways the spiritual
successor to the pager. SMS has the advantage of being almost universal and it is virtually
impossible in this day and age to find a cell phone that does not support it.

Unlike e-mail, you cannot run a local SMS server to send messages directly; instead, you
need to sign up with an SMS gateway, which will route your messages to the various mobile
phone providers. In this recipe, we're going to use Twilio (https://www.twilio.com). Twilio
supports both Voice and SMS gateways and has an easy to use API. Like all SMS gateways,
Twilio charges per message; however, trial accounts are available to test your integration.

Getting ready
For this recipe, you will need a Sensu server, Sensu client, and at least one configured
check. You will also need a Mobile phone to receive your test message. You should also have
installed the prerequisite packages as detailed in the recipe Installing check prerequisites.

How to do it…
Let's create SMS alerts:

1.	 First, signup for a new Twilio account by visiting https://www.twilio.com/try-
twilio. It will ask you for some basic details, and will send you an e-mail to confirm
the account. Ensure that you have confirmed your details, and that you can log in.

2.	 Once you have a Twilio account, you can install the Twilio Sensu plugin using the
following command:
$ sudo gem install sensu-plugins-twilio

3.	 Next, we will configure the plugin. As with the mailer plugin, this takes two forms:
the handler configuration and the plugin configuration. Let's deal with the plugin
configuration first: create a new file /etc/sensu/conf.d/plugin_twilio.json
and insert the following content:
{
 "twiliosms":{
 "token":"<<TWILIOTOKEN>>",
 "sid":"<<TWILIOSID>>",
 "number":"<<TWILIONUMBER>>",

https://www.twilio.com
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio

Chapter 10

247

 "recipients":{
 "+<<RECIPIENTNUMBER>>": {
 "sensu_roles":["all"],
 "sensu_checks":[],
 "sensu_level": 1
 }
 }
 }
}

4.	 There are a few things to note with this code. First, you need to have your own Twilio
API and SID at hand; if you need to find them, you can find them on this page:

https://www.twilio.com/user/account/settings

They should be available about halfway down the page and will resemble this:

5.	 Next we need to set up the recipient number. This is an array and can contain as
many recipients as you need; however, the recipient will need to be acknowledged
within the Twilio panel.

A Twilio test account has many limitations, including a limit on
the recipients.

6.	 Each recipient can have a different set of roles and checks that will trigger an SMS;
in our example, we're leaving it as all roles to ensure that every alert will send an
SMS. However, you can use this configuration item to restrict SMS alerts only to
critical roles.

https://www.twilio.com/user/account/settings

Monitoring with Sensu

248

7.	 Next, we can configure the handler configuration. Create a new file called
/etc/sensu/handlers/plugin_twilio_sms.json and add the following
configuration:
{
 "handlers": {
 "twiliosms": {
 "type": "pipe",
 "command": "/var/lib/gems/1.9.1/gems/sensu-plugins-
twilio-0.0.3/bin/handler-twiliosms.rb"
 }
 }
}

8.	 Once you have done this, save the file and restart the Sensu server with the
following command:

$ sudo service sensu-server restart

The next time you have an alert, you should receive an SMS message
that looks similar to the following screenshot:

See also
ff You can find more information about Twilio at https://www.twilio.com

ff You can find further information about the Twillio plugin at https://github.
com/sensu/sensu-community-plugins/blob/master/handlers/
notification/twiliosms.rb

https://www.twilio.com
https://github.com/sensu/sensu-community-plugins/blob/master/handlers/notification/twiliosms.rb
https://github.com/sensu/sensu-community-plugins/blob/master/handlers/notification/twiliosms.rb
https://github.com/sensu/sensu-community-plugins/blob/master/handlers/notification/twiliosms.rb

Chapter 10

249

Using Ansible to install Sensu
When rolling out on any kind of scale, it's almost certain that you will want to use automation
to perform the install, especially for the clients; this allows you to roll out the changes quickly,
easily, and with minimum fuss.

As with other recipes in this book, we are going to use Ansible as our automation tool of
choice and rather than write a new playbook from scratch, we're going to make use of a truly
excellent role available on the Ansible galaxy (https://galaxy.ansible.com/detail#/
role/279).

If you need a refresher on Ansible, see Chapter 5, Automation with Ansible.

Getting ready
For this recipe, you will need a node to run the Ansible playbook and at least two servers:
one to act as the Sensu server and the other, the Sensu client. The Sensu Server node
should have RabbitMQ and Redis already installed on it. You should also have installed the
prerequisite packages as detailed in the recipe Installing check prerequisites.

Although slightly out of scope for this recipe, you can use two other Ansible
roles to automate both RabbitMQ and Redis, https://github.com/
Mayeu/ansible-playbook-rabbitmq and https://github.com/
DavidWittman/ansible-redis, respectively.

How to do it…
1.	 On the host that will act as your Ansible node, run the following command to install

the Sensu role:
ansible-galaxy install Mayeu.sensu

If you do not have Ansible installed in the default location, you can also
clone the role and place it in your own structure; the code is available
here: https://github.com/Mayeu/ansible-playbook-sensu/
blob/master/vagrant/site.yml.

https://galaxy.ansible.com/detail#/role/279
https://galaxy.ansible.com/detail#/role/279
https://github.com/Mayeu/ansible-playbook-rabbitmq
https://github.com/Mayeu/ansible-playbook-rabbitmq
https://github.com/DavidWittman/ansible-redis
https://github.com/DavidWittman/ansible-redis
https://github.com/Mayeu/ansible-playbook-sensu/blob/master/vagrant/site.yml
https://github.com/Mayeu/ansible-playbook-sensu/blob/master/vagrant/site.yml

Monitoring with Sensu

250

2.	 Next, let's create an inventory. I'm assuming you are using the default location for
the inventory; otherwise, use the -i switch on the ansible-playbook command
to specify one in the location of your choice. In the inventory, ensure that you have
the following:
[sensu_servers]
 <<SENSUSERVERS>

[sensu_clients]
 <<SENSUCLIENTS>>

Where <<SENSUSERVER>> is the DNS name of your Sensu server and <<SENSU_
CLIENTS>> are the DNS names of your Sensu clients.

3.	 Now, we need to create a new playbook; create a new file called <<playbook>>/
sensu.yml and insert the following content:
- hosts: sensu_servers
 user: <<sudo_user>>
 vars:
 - sensu_install_server: true
 - sensu_install_client: false
 vars_files:
 - group_vars/sensu.yml
 roles:
 - Mayeu.sensu

- hosts: sensu_clients
 user: <<sudo_user>>
 vars:
 - sensu_install_server: false
 - sensu_install_client: true
 - sensu_client_hostname: '{{ ansible_hostname }}'
 - sensu_client_address: '{{ ansible_eth0["ipv4"]["address"]
 - sensu_client_subscription_names [common]
}}'
 vars_files:
 - group_vars/sensu.yml
 roles:
 - Mayeu.sensu

Chapter 10

251

4.	 Replace <<playbook>> with the name of the directory you wish your playbook to
reside in. Also replace the <<sudo_user>> with a user that has sudo permissions
on the servers you are connecting to.

As you can see, in this playbook we are defining two different plays: one for the Sensu
Server and another for the Sensu clients. Note how each play references a variable
file allowing us to define certain shared configuration items. We are also setting
certain variables at the client level where we need differences.

5.	 Next, we need to create some directories to contain the files that the Ansible role will
require. Use the following command to create them:
mkdir -p <playbook>/files/sensu/extensions && mkdir -p <playbook>/
files/sensu/handlers && mkdir -p <playbook>/files/sensu/plugins

These folders are to hold your handlers, plugins, and if you use them, your
extensions.

You can find details of Sensu extensions at https://sensuapp.org/
docs/0.20/extensions.

6.	 For instance, if you wish to add a new plugin, you will first add the plugin ruby file to
the <playbook>/files/sensu/plugins directory; this will then be placed in the
appropriate place on the Sensu server.

7.	 Next, create a folder to hold your Sensu certificates:
mkdir -p <playbook>/files/sensu/certs

Now, copy your certificates into the newly created folder.

You can find the details for how to create the certificates in the recipe
entitled How to install a sensu server.

8.	 Now, let's create the variables file for the common Sensu items. Create a new
file under <<playbook>>/group_vars called sensu.yml and insert the
following content:
sensu_server_rabbitmq_hostname: '<<SENSUSERVERDNSNAME>>'
sensu_server_rabbitmq_user: <<sensuMQuser>>
sensu_server_rabbitmq_password: <<sensuMQpassword>>
sensu_server_rabbitmq_vhost: "sensu"
sensu_server_api_user: <<SENSU_USER>>
sensu_server_api_password: <<SENSU_PASSWORD>>

https://sensuapp.org/docs/0.20/extensions.
https://sensuapp.org/docs/0.20/extensions.

Monitoring with Sensu

252

The values in this file define the settings for your Sensu server and cover aspects
such as the MQ to connect to the vhost, username, password, and so on. You may
notice that this seems to be a short list; this is because this particular role has very
sensible defaults. You can find the list of defaults on the readme at https://
galaxy.ansible.com/detail#/role/279.

9.	 Now we have configured our server and client, the next step is to define some checks
to run on the client. First, we configure the server to send out a request for the check
to the common subscription. Insert the following into the <<playbook>>/group_
vars/sensu.yml file:
sensu_checks:
 cpu_check:
 handler: default
 command: "/usr/local/bin/check-cpu.rb"
 interval: 60
 subscribers:
 - common

10.	 You will also need to install the check-package onto the clients; you can do this
by inserting the following code within the role that sets up the client. I normally
recommend making this part of any common role that is used to setup all hosts:
name: "Install Sensu CPU Check Plugin"
gem: name='sensu-plugins-cpu-checks' state=present

11.	 Finally, we should define a handler on the Sensu server; insert the following code into
the <<playbook>>/group_vars/sensu.yml file:
sensu_handlers:
 basic_mailer:
 type: pipe
 command: "mailx -s 'Sensu Alert' opsuser@opsaddress.com"

The preceding handler will send a simple e-mail if there is an alert, and you can use
the same technique to set up as many handlers as you like.

12.	 Run Ansible using the following command:
ansible-playbook -K sensu.yml

This should install Sensu and Uchiwa, and configure the clients with a CPU check,
plus add a simple handler.

See also
You can find details of the Sensu Ansible role at https://github.com/Mayeu/ansible-
playbook-sensu.

https://galaxy.ansible.com/detail#/role/279
https://galaxy.ansible.com/detail#/role/279
https://github.com/Mayeu/ansible-playbook-sensu
https://github.com/Mayeu/ansible-playbook-sensu

Chapter 11

253

11
IAAS with Amazon AWS

In this chapter, we are going to cover the following topics:

ff Signing up for AWS

ff Setting up IAM

ff Creating your first security group

ff Creating your first EC2 host

ff Using Elastic Load Balancers

ff Managing DNS with route53

ff Using Ansible to create EC2 hosts

Introduction
The term cloud computing has diluted immensely over the years and the cloud label is being
applied to any technology that interacts over the network. Originally though, it was used to
describe what is now being termed as Infrastructure-as-a-Service (IAAS).

IAAS has revolutionized the approach of many companies by helping them build applications
and infrastructure, and for many companies, has turned infrastructure into a utility rather
than a massive internal cost center. This in turn has freed them to explore new platforms and
systems without the requirement of building costly servers and data centers. At it's heart, IAAS
platforms offer the ability to provision servers rapidly, but it may also offer additional features,
such as load balancers, persistent storage, and other elements of a traditional data center
offering; thus, allowing you to run a full-bodied infrastructure on a pay-as-you-go basis.

IAAS with Amazon AWS

254

Amazon was one of the earliest IAAS vendors and it became the most popular very rapidly.
Its features are possibly the most complete of all IAAS vendors, offering features, such as
compute units, load balancers, big data tools, and orchestration facilities. Amazon boasts
clients of every size, from one-man development companies, through to the giants of the
industry, such as Netflix. However, there are alternative. For some, the sheer complexity of
the Amazon platform can be an issue and there are many competitors available, ranging
from compute focused companies, such as DigitalOcean to fully featured offerings, such
as Rackspace.

There are disadvantages of using IAAS platforms and it is important that you design your
architecture to suit the particular foibles of such an offering. First, IAAS platforms are heavily
contended for RAM, CPU, Disk, and network, and performance is not guaranteed. Your
applications should be able to balance the load across many nodes, rather than relying
on single, powerful nodes to do the heavy lifting. There is also the issue of cost; generally
speaking, costing large IAAS platforms can be a complex task, with elements, such as CPU
and RAM being charged by the minute, disks being charged via usage, and networks being
charged by the megabyte of transferred data (sometimes on differing rates depending on it
being external, or inter-DC traffic). However, as long as you are aware of the shortcomings, the
benefits of using an IAAS can be vast.

Signing up for AWS
Before you can use any of the features of Amazon AWS, you need to register and set up
your account to be ready for use. This recipe takes you through the steps required to set up
an account.

Getting ready
For this recipe, you will require a web browser, an e-mail address to sign up with. You will
also need a valid credit/debit card, but this will not be charged until you start using a
billable compute.

How to do it…
Before we can approach any recipe in this chapter, we need to create a new AWS account. You
can create an account by navigating to https://aws.amazon.com and the following the
steps detailed in the signup process.

https://aws.amazon.com

Chapter 11

255

See also
ff You can find the AWS getting started guide at https://aws.amazon.com/

documentation/gettingstarted/

ff You can see pricing information at https://aws.amazon.com/ec2/pricing/

Setting up IAM
Security is a critical part of managing any infrastructure regardless of its origin and a key part
of security is having the ability to identify and limit access to the platform. Amazon provides a
tool known as Identity and Access Management (IAM) that allows you to set up fine-grained
users and access rights to access your AWS infrastructure. Using IAM, you can ensure that all
the relevant users can access your AWS resources. It also ensures that users are only able to
access and interact with the resources in the manner of your choice.

Getting ready
For this recipe, you will need an AWS account.

https://aws.amazon.com/documentation/gettingstarted/
https://aws.amazon.com/documentation/gettingstarted/
https://aws.amazon.com/ec2/pricing/

IAAS with Amazon AWS

256

How to do it…
The following steps will illustrate how to use the AWS IAM system to create a new user and
assign suitable roles:

1.	 Log in to your AWS account and select the IAM panel by selecting the following icon:

2.	 You will be greeted by a page that gives you a summary of your users. It will also
give a recommendation checklist for a new account and it should look similar to the
following screen shot:

Chapter 11

257

Click on the drop-down menu beside Activate MFA on your root account and select
Manage MFA.

MFA stands for Multi Factor Authentication and ensures
that in addition to a password, you also need a device that
will give you a one-time code to enter alongside it. MFA is a
crucial part of keeping your AWS account secure and I highly
recommend enabling it.

3.	 The next screen will prompt you to select a type of MFA token, either a virtual or a
hardware token; both offer the same functionality but differ in form factor. If you
have a smartphone, then you will be able to use one of many applications, such as
Google Authenticator that offers MFA tokens; select the virtual option if you wish to
use these.

4.	 If you select the virtual MFA option, then you should be presented with a barcode that
will allow you to register your MFA device and it will resemble the following screenshot:

IAAS with Amazon AWS

258

In your smartphone app, you should be able to point your camera at the screen and it
will register the account and offer you the MFA tokens. Enter the first two codes when
prompted and select Activate Virtual MFA.

5.	 Now that you have secured the root AWS account, it is good to create individual users
to login. This gives the ability to audit and lock down users from certain activities. You
can start by returning to the IAM panel and selecting Create individual IAM users
and then Manage users.

You will be presented with a list of your current users. Select Create New Users.
In the next screen, you should be able to enter a list of usernames that you want
to create:

Notice the tick box; this controls the creation of access keys to be used for the API. If
you are creating users that will only interact with AWS via the web console, then you
can leave this un-ticked. Once you are happy with your users, click on Create.

The next screen will show you a confirmation that your users have been created and,
if requested, the details for the API access.

6.	 Now that we have created users, we can provide permissions via user-groups. Return
to the IAM panel and select Use groups to assign permissions and click on Manage
groups. Like the user panel, you will be presented with a list of your current groups.
Click on Create New Group.

Chapter 11

259

7.	 Start by assigning a name for your group and click on Next step. This will take you to
the policy selection; these should look a little something similar to this:

These policies allow you to control the amount of access that users in this group will
have in considerable detail. Select the appropriate policy, and click on Next Step.

You can see what a policy will do by reading its name; you can
also find more details of IAM policies at http://docs.aws.
amazon.com/IAM/latest/UserGuide/policies_
managed-vs-inline.html#aws-managed-policies.

For this recipe, I recommend that you apply the AdministratorAccess role to any user
that you will be following the recipes in this chapter with.

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_managed-vs-inline.html#aws-managed-policies

IAAS with Amazon AWS

260

8.	 The next screen will allow you to review your choices; check that you are happy with
them and select Create Group.

9.	 You should be returning to the Groups list. To add users to your new group, click on
it in the list and select Add Users to Group. You can then select the users you wish to
apply the new role to and add them.

10.	 Finally, you can set the overall password policy for your AWS infrastructure by
returning it to the IAM panel and selecting Apply an IAM policy. A password policy
is very important and allows you to ensure that your users set strong passwords. In
combination with an MFA token, it makes the brute force cracking of user accounts
as hugely unlikely. The Password Policy panel resembles the following screenshot:

Select the options that make the most sense for your organization; you should ensure
a decent length of password and at least some guarantee of variety.

Chapter 11

261

See also
You can find details of the IAM utility at https://aws.amazon.com/documentation/iam/

Creating your first security group
Security groups are the equivalent of a firewall and defines the type of traffic that can be
directed to a host, both originating from your platform and from the outside world. Like
any firewall, it's important to define the security groups correctly, as this is the first point of
securing your traffic.

This recipe will show you how to define a new security group ready to be applied to new EC2
hosts to use as a basic web server.

Getting ready
For this recipe, you need an AWS account.

How to do it…
The following recipe will demonstrate how to use the EC2 security group configuration to set a
secure policy.

1.	 Log into the AWS management console, and select the EC2 options:

In the EC2 panel you will find a menu on the left-hand side; select the menu entry
called Security Groups around halfway down the menu.

2.	 In the Security Groups panel, you should find a list of security groups; by default,
you should only have one, the default group. To create a new one, select the Create
Security Group button.

https://aws.amazon.com/documentation/iam/

IAAS with Amazon AWS

262

3.	 You should be presented with a screen similar to the following:

This allows you to give your new security group a name, a description, and attach it to
a VPC.

A VPC is a virtual private cloud. AWS allows you to have
several segregated clouds, each with its own policies and
hosts. This allows separation of concern between them, for
instance a development infrastructure and a production
environment. It is not to be confused with availability zones,
which offers geographically separated sites to aid with
reliability and performance.

Once you have named your group and given it a description, click on the Add
Rule button.

Chapter 11

263

4.	 The next step is to create your inbound rule set; this is the traffic that you will allow to
reach your instances from the outside world. Click on the button titled Add Rule; this
will open a window that allows you to select the rules you wish to add. The dropdown
list allows you to select either from a set of common types or a free-form custom
type. In my example, I've added the common ports for a web server as shown in the
following screenshot:

5.	 Note that I have also added SSH to the inbound group; this is to allow me to manage
instances. It's worth noting that I have locked this rule down to a specific IP address
to ensure that it can't be accessed via random port brushing by opportunistic
scripted attacks.

6.	 Now, since we have set our inbound rules, we can now set our outbound rules. By
default, these are set to allow all traffic out; this can be a valid configuration, but
if possible, it is better to lock this down by removing the default outbound rule and
allowing only certain protocols. In the following example, I've limited any instance
using this security group to only be able to access DNS and SMTP:

Once you have edited the rule-set to your liking, click on the Create button. The
security group is now available for use everywhere within this VPC.

See also
You can find details of the AWS security groups at http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/using-network-security.html.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

IAAS with Amazon AWS

264

Creating your first EC2 host
The basic unit of an IAAS platform is a compute unit and on AWS it is comprised of EC2
(Elastic Compute) instances. An EC2 instance is a highly configurable server, which is able
to cater to almost any conceivable usage; from CPU hungry analysis platforms to IO bound
database instances. As noted in the introduction, you should keep in mind that these are
generally contended, and you should factor that into application design.

Within the creation process of an EC2 instance, you have the option to create
a dedicated instance. This allows you to remove some of the contention
constrains and allows security conscious users to ensure that they are not
physically sharing equipment. This is a particular concern for users in the
industries, such as the financial sector.

This recipe will show you how to create a new EC2 host running Ubuntu.

Getting ready
For this recipe, you will need an AWS account.

How to do it…
The following steps will demonstrate how to create a new Elastic Compute instance and
assign a security group to it.

1.	 Login to the AWS management panel and select the EC2 panel using the
following icon:

2.	 The EC2 panel gives you a top-level overview of the EC2 resources you are using and
gives you a quick view of the health of your region.

Keep in mind, this view is just for a single region. If you are
using multiple regions, then you will need to use the drop
down in the top right of the screen to select that particular
region. It can be easy to forget that an instance is running if
it's not in your default region.

Chapter 11

265

It is also where you can launch new Instances. Click on the button marked Launch
Instance to start a new EC2 compute instance.

3.	 The first step is to select the type of Amazon Machine Image (AMI) that you wish to
create. This essentially boils down to selecting the operating system/distribution that
you prefer and covers the most popular Linux distributions and even Window.

If you select a commercial distribution, such as RedHat or
Windows; it attracts a higher cost due to licensing. This is
reflected in the hourly running cost of the instance.

Select your preferred distribution and click on the button marked Select next to it.

It's worth noting that you can create your own AMI's from
launched instances. This allows you to create your own AMI,
complete with tools that you require rather than the generic
images offered.

4.	 The next choice is the instance type. As you can see in the following screenshot, this
is essentially your choice of virtual hardware and storage type and varies from the
micro instances made-up of a single processor and 1GB of memory, to the compute
optimized instances made up of 36 processors and 60GB of RAM.

5.	 Select the instance type that fits your intended usage and budget.

IAAS with Amazon AWS

266

EC2 pricing can become extremely complex and it's worth
reading up on the various costs at https://aws.amazon.
com/ec2/pricing/. There are calculators available on the
pricing portal that will allow you to come to an indicative price
for your AWS infrastructure.

6.	 You can click on the Review and Launch button at this point. This will launch the
instance with a default security group and the default VPC; however, for this example,
click the button marked Configure Instance Details to set more options.

7.	 The next screen will allow you to configure the details of your instance, as you can
see in the following screenshot:

This includes elements, such as the number of instances, network, and subnet if you
have multiple VPC's defined. One element to consider is if you want this instance to
be publicly available; if you do, you can select the option marked Auto-assign Public
IP. This will give this instance a publicly available IP address from Amazon's pool and
make the instance available to the wider Internet.

8.	 You can also receive detailed monitoring using Amazon's monitoring product,
Cloudwatch; you can leave this un-ticked and still receive the basic Cloudwatch
package. However, if you require any level of detail about the instance usage, the
commercial Cloudwatch package is probably of interest.

9.	 By setting the Tenancy option, you can run it on an isolated hardware; thus, ensuring
that you are not sharing the compute unit with other clients; this can be useful if you
have security policies that demand a certain level of isolation. Be aware though, that
this option attracts a higher hourly fee.

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

Chapter 11

267

10.	 Once you are happy with your selections, click on Add Storage.

11.	 The storage page allows you choose both the size of your EBS (Elastic Block Store)
volumes and the type and performance.

Of particular note in this panel is the volume type option; here, you can select from
a general purpose SSD, guaranteed IOP's SSD, and platter based magnetic storage.
Each of these has a trade-off in terms of cost and performance and you should select
the one most suitable for your usage. You can also select what happens to your
data when you terminate your EC2 instance; by default, it is deleted along with the
instance. However, you can use this panel to save certain partitions so that they are
kept when the instance is terminated.

12.	 Once you have created the appropriate storage for your image, select Tag Instance.

13.	 Within the tag instance page, you can add free form metadata in the form of key
value pairs. This allows you to set a tag to denote the environment this instance is
for, department, or any other relevant information. See the following screenshot for
examples of tagging:

Once you've added tags, click on the button marked Configure Security Group.

IAAS with Amazon AWS

268

14.	 The security group page allows you to add the security group details for your new
instances. By default, you can create a new security group, or alternatively, you can
select a pre-existing group.

From my experience, it is better to create your own security
groups up front rather than creating them on a per instance
basis. This helps to keep a cohesive policy in place and
avoids configuration drift and replication.

If you have an existing security group, you can select Select an existing security
group and a list of the existing groups will be displayed. Similar to the following
screenshot:

Make a note that you can create a new security group based on an existing one by
selecting the Copy to new option. This is useful when you have an existing complex
policy that requires a simple tweak for the new instance.

15.	 Once you are happy with your selections, click on Review and Launch.

16.	 The next page allows you to review your instance details and gives you the
option to edit any elements that don't look quite right. Once you're happy, you can
select launch.

17.	 If you haven't uploaded an SSH key pair you will be prompted to create one in the
following screenshot:

Chapter 11

269

18.	 You also have the option to proceed without using a Key pair; however, I do not
recommend this unless you are using a custom AMI with pre-existing secure
authentication methods built in.

19.	 Once you have created and downloaded your key pair, click on Launch instance.

THIS IS THE ONLY TIME YOU CAN DOWNLOAD THE KEYS. Be
sure that you have copied them down, as there is absolutely
no way to re-download them afterwards.

You will be shown a page that shows the EC2 instance being set up and you will
return to the EC2 panel. Your new instance should be listed alongside its Public
IP and you should now be able to log in using the key pair you downloaded in the
previous step.

See also
You can find the documentation for EC2 at https://aws.amazon.com/documentation/
ec2/.

https://aws.amazon.com/documentation/ec2/
https://aws.amazon.com/documentation/ec2/

IAAS with Amazon AWS

270

Using Elastic Load Balancers
One of the key elements of running applications on an IAAS platform is to ensure that work
can be balanced between many nodes. This offers an increased resiliency, but also allows
you to offset one of the weaknesses of an IAAS platform, performance issues caused by
contention. Unless you have a compelling reason not to, you should use load balancing for any
production instance of an application.

This recipe shows that you how to set up an Elastic Load balancer group that directs web
traffic between two different nodes.

Getting ready
For this recipe, you will require an AWS account and at least a single EC2 instance.

How to do it…
The following steps show you how to create a new EC2 Elastic Load Balancer and assign both
balanced ports and an EC2 to host it:

1.	 Start by logging into your AWS management panel and select the EC2 link.

2.	 In the EC2 management panel, locate the link titled Load Balancers in the left-hand
menu and click on it.

3.	 The next page gives you a summary of your Load Balancers. If this is your first time
in this panel, it should be blank. Click on the blue button at the top of the screen
marked Create Load Balancer to create a new Load Balancer.

4.	 The next page allows you to set certain basic elements of your load balancer. In this
example, I am going to create a load balancer to balance common web traffic (HTTP
and HTTPS). You can start by giving the load balancer a name that will allow you to
identify it. Next, you can select the VPC you wish to create the load balancer in and
select if this is an internal only load balancer

Internal load balancers are extremely useful to balance
load between your applications internally, and is especially
crucial when designing architectures, such as a Micro
Service based app.

Chapter 11

271

5.	 You can also perform advanced VPC configurations at this point, allowing you
to select specific VPCs to load balance to if you require granularity over the
configuration.

6.	 Next, we have the listener configuration. This is where you select the ports you wish to
load balance.

Notice that you can select the load balancer and instance
port to be different; this is exceptionally useful when you
cannot make the application listen on port 80 directly; for
instance, with applications that run inside Tomcat containers.

As you can see in the following screenshot, I have kept it simple and added both HTTP
and HTTPS to be load balanced:

Once your happy with your choices, click on the button titled 'Assign Security Groups

7.	 Much like creating an EC2 instance, assigning security groups allows you to set
the pre-existing security group you wish to use or alternatively to set up new ones.
If you create a new group, it should use the initial listener configuration to create
a template.

8.	 Once you have created/selected a group that you are happy with; click on Configure
Security Settings.

9.	 If you have selected a listener to be HTTPS then you will be directed to the next page,
Configure Security Settings, otherwise you will have to click through a warning that
notes that you have no secure listener.

It is now expected that a website should be usable over
HTTPS, and indeed, it is becoming increasingly common for
sites to only offer HTTPS connections, and Google will penalize
the site in it's page ranking if they do not offer HTTPS.

IAAS with Amazon AWS

272

This page allows you to upload an SSL certificate, which will allow the load balancer
to terminate the SSL connections for you, saving you the need to configure individual
servers to handle an SSL termination. If you have previously uploaded a certificate,
then you can select it here; otherwise, you can paste the details into this form:

Once you have entered your certificate details, click on the button marked as
Configure Health Check.

10.	 In the next screen, you can set the health check that will be regularly sent to the
instances that the load balancer is sending traffic to. This allows the load balancer
to remove instances that are no longer capable of serving requests or are no longer
performant. The health check comprises of either a HTTP or HTTPS request for a
nominated health page, or can use a simple TCP or SSL check on a certain port.

Chapter 11

273

As you can see in the preceding screenshot, you can also set a reasonable set of
granularity to the checks; thus, allowing you to tweak how slowly a node should respond
to be considered unhealthy and how often to call the health check itself. Once you are
happy with your choices, click on the button marked Add EC2 Instances.

11.	 The next screen will show you a list of your EC2 instances and will allow you to select
the members for your load balancer group. Select each of the instances that you wish
to partake in the load-balanced group. If you are using multiple availability zones,
you can also set options to allow you to balance across them, allowing you to spread
traffic geographically.

12.	 Once you have selected the EC2 instances that you wish to include in the load
balancer, click on the button marked as Add Tags.

13.	 The next screen allows you to set tags against the load balancer; as with EC2
instances, this allows you to add key value pairs and helps you to identify your
load balancer within a busy AWS infrastructure.

Add any tags you believe are relevant and click on the blue button marked
Review and Create.

14.	 The next screen will show you a summary of the load balancer you are about to create
and it will offer you the opportunity to amend any details. Review them and when you
are happy, click on the button marked Create load balancer. The load balancer will
be created and you will be passed back to the Load Balancer management screen.

15.	 The Load Balancer management screen should list your new load balancer and it
should look something similar to the following screenshot:

Note the DNS name; you should use a CNAME DNS record to point your records that
you wish to be load balanced.

Do not be tempted to use an A record; the IP address of the
Elastic Load Balancers can and will shift.

16.	 You should now be able to direct traffic at your new load balancer and have it
balanced across your selected EC2 instances.

IAAS with Amazon AWS

274

See also
You can find further details of Elastic Load Balancing at https://docs.aws.amazon.com/
ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.
html.

Managing DNS with route53
Domain Name Services (DNS) underpins the Internet and a reliable and performant DNS
service is crucial to running a web service of any kind. It's a surprisingly neglected area of
performance monitoring and a poorly configured or poorly performing DNS server can have
a very large impact on the health of your application.

AWS Route53 is a highly scalable DNS server, which has advanced features allowing for
geo-routing, Apex CNAME records, and so on. It is also highly performant with DNS servers
in most major geographical areas, allowing for a minimum network hops to resolution.

This recipe will show you how to set up a new DNS zone and how to add new records.

Getting ready…
For this recipe, you need an active AWS account. You will also need a registered domain
name that you wish to use.

How to do it…
This recipe will show you how to take an existing domain and manage its DNS records using
Amazon Route53:

1.	 Log into your AWS management console and select the Route 53 panel by clicking
on the following icon:

https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html
https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html
https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html

Chapter 11

275

This will take you into the Route53 panel and if this is your first time, you will be
greeted with the following introductory screen:

For this recipe, I'm going to assume that you already have a
domain to manage; if this is not the case, then you can select
the domain registration and register them via AWS.

2.	 Click on the button titled Get Started Now underneath the DNS management header;
this will take you to the DNS management panel. The management panel allows you
to see at a glance the DNS zones that you are managing via Route53. Click on the
blue button marked Create Hosted Zone to create a new zone.

This should open a panel allowing you to input your Zone name and resembles the
following screenshot:

IAAS with Amazon AWS

276

This allows you to enter your zone name (for instance, example.com), and select
the scope. By default, it is created as a public DNS zone and will make the zone
available to all public clients; however, you can create zones that are only available
to instances hosted within AWS. This is useful in building your internal network and
keeping its records hidden from public view.

Input your domain name into the input and click on the blue button titled Create.

3.	 Once you have entered your domain name, you will be taken to the record set
management screen. This allows you to enter the records that describe your
infrastructure and any permissible DNS record type.

You can find a good rundown of DNS record
types at https://support.google.
com/a/answer/48090?hl=en.

By default, the Zone will be populated with the name server records, and should look
like this:

4.	 To create a new record, click on the blue button marked Create Record Set.

5.	 The record set creation screen allows you to enter your DNS record; for instance,
creating an A record would look something like this:

https://support.google.com/a/answer/48090?hl=en
https://support.google.com/a/answer/48090?hl=en

Chapter 11

277

6.	 Route53 is like many DNS systems in that you enter a record name, select the DNS
type, and enter a relevant value and TTL (Time to live). Where Route53 differs is
its routing policy. Routing policies allow you to add additional flexibility to your DNS
infrastructure, allowing you to add features, such as Geographical DNS, allowing
different countries to resolve to different IP's.

Enter the desired record type and click 'create' to create your new record. Once
you click on create, your record will be created, propagated, and made available to
the public.

See also
You can find further details of Route53 at https://aws.amazon.com/documentation/
route53/.

https://aws.amazon.com/documentation/route53/
https://aws.amazon.com/documentation/route53/

IAAS with Amazon AWS

278

Using Ansible to create EC2 hosts
Using an IAAS platform ensures that you automate early and often; due to the cost model of
AWS, it's more efficient to be as on demand or elastic as possible. By using automation, you
can automate the deployment of an application across its entire lifecycle, from the creation of
a host to deployment of an application and finally, the destruction of the host. This also allows
you to stand up to new environments easily, as there is no need to provision new hardware,
networks, or any other such activities.

This recipe will demonstrate how to use Ansible to create a new EC2 host.

Getting ready
For this recipe, you will need an active AWS account and an Ansible client.

How to do it…
The following recipe demonstrates how to use a very simple Ansible playbook to automatically
create an EC2 instance:

1.	 First, create a directory to hold your Ansible code using the following command:
mkdir ansibleec2

2.	 Next, we create our inventory. Create a new file called ec2inventory and insert the
following content:
[ec2]
localhost

Note that you are simply asking Ansible to run commands on the same host on which
the Ansible playbook is run; this is because you are essentially using your own host
to run commands against Amazon's EC2 API rather than interactively working directly
with AWS.

3.	 Now we have an inventory, we can use Ansible to create our EC2 instance. Create a
new file called ec2.yml and add the following code:
- hosts: ec2
 connection: local
 tasks:
 - name: 'Create EC2 instance'
 ec2:
 aws_access_key: AKIAICW3HOQKY6LMCD4A
 aws_secret_key: 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

Chapter 11

279

 key_name: test
 region: us-west-2
 group: webserver
 instance_type: t2.micro
 image: ami-5189a661
 wait: yes
 wait_timeout: 50
 monitoring: yes
 vpc_subnet_id: subnet-89770eec
 assign_public_ip: yes

This code is relatively straightforward and is an example of using a playbook outside
of a role. First, it ensures that it uses the localhost entry listed in the inventory and
also uses a local connection rather than the usual SSH. Next, we define our list of
tasks, in this case calling the Ansible EC2 module and giving it several parameters.
These are generally self-explanatory and map directly back to the options you could
use in the GUI. One interesting parameter is the wait parameter; this ensures that
Ansible will only return once the host is created, rather than assuming that all is well.

4.	 Run the playbook using the following command:

ansible-playbook -i ec2inventory ec2.yml

This will create a new EC2 instance and start its running.

Its also worth pointing out that in production use you will want
to either pass the AWS credentials as an environment variable
or encrypt them using Ansible vault. You can find the details at
http://docs.ansible.com/ansible/guide_aws.
html#authentication.

See also
You can find further details of the EC2 Ansible module at http://docs.ansible.com/
ansible/ec2_module.html.

http://docs.ansible.com/ansible/guide_aws.html#authentication
http://docs.ansible.com/ansible/guide_aws.html#authentication
http://docs.ansible.com/ansible/ec2_module.html
http://docs.ansible.com/ansible/ec2_module.html

Chapter 12

281

12
Application

Performance Monitoring
with New Relic

In this chapter, we are going to cover the following topics:

ff Signing up for a New Relic account

ff Installing the New Relic Java agent

ff Using the performance overview

ff Locating performance bottlenecks with Transaction Traces

ff Observing database performance with New Relic

ff Release performance monitoring with New Relic

ff Server Monitoring with New Relic

Introduction
Monitoring is a key part of running any system, from the smallest to the largest; however,
monitoring takes many forms. We covered application monitoring in Chapter 10, Monitoring
with Sensu and those recipes demonstrated how to set up monitoring for application
faults. Fault monitoring is only one part of the picture; however, for a true reflection of
your application's health, you need to know how well it is performing, how effectively it can
communicate with it's dependencies (Databases, external API's, and so on), and if there are
particular elements that are not performing as you expect.

Application Performance Monitoring with New Relic

282

This monitoring niche can be filled with an Application Performance Monitoring tool (APM).
APM solutions offer the ability to drill into your application, exposing performance and
reliability issues with considerable detail. Generally speaking, they use some form of agent
that allows the APM tool to insert hooks into the running code at runtime, allowing it access
to method calls, network calls, and so on. It may also offer additional tools, such as more
'traditional' server monitoring, external site monitoring, and so on.

The key to a good APM tool is the ability to present this myriad form of data in an accessible
form and allow proactive reporting and alerting to be set up against it. Most, if not all APM
tools on the market today offer web consoles that allow you to drill into the data in a fairly
intuitive fashion; this is important, as it can offer a meeting place for Developers, stake
holders, and infrastructure staff to examine issues, without needing to learn many different
esoteric tools.

The APM market place is growing and at the time of writing, there are several competitors,
but by far, the most popular tools are AppDynamics and New Relic; both offer a broad set
of features allowing detailed monitoring of application performance and both offer a SAAS
platform (although AppDynamics also offers on premises options). Both AppDynamics and
New Relic are commercial tools, albeit ones that offer free limited accounts. At present, the
open source community has yet to create a tool that can compete on features; however, that
looks to be changing, with several projects showing promise.

In this chapter, we are going to briefly look at New Relic. New Relic is easy to use, offers a free
(if limited account), and a trial of its full package. To cover the product in detail requires a
book in itself; so, I have focused on some of the key elements, with recipes that demonstrate
how to pinpoint common application bottlenecks.

Signing up for a New Relic account
Before we can use New Relic, we need to create an account. This is straightforward and
by default, it will offer you a trial of the full enterprise product. After the trial expiration, the
account will revert to a free limited account. The free account misses many of the options;
thus, allowing for detailed monitoring; however, it still allows for an excellent top-level view of
your application.

Getting ready
For this recipe, you will need a web browser.

Chapter 12

283

How to do it…
Let's start up with signing up with New Relic account:

1.	 Open the following URL in your browser:

https://newrelic.com/signup

2.	 You should see a screen similar to the following:

This single page form is all you need to fill in order to create your account. Ensure that
the e-mail address you use is valid, as you will need to confirm the sign up.

https://newrelic.com/signup

Application Performance Monitoring with New Relic

284

3.	 Once your account has been created, you will be taken to the initial sign in page; this
will show you a banner of the New Relic application stack:

These links allow you to access the various products that New Relic offers, from the
APM product, to mobile app monitoring, Real User Monitoring from the browser, data
exploration, and external site monitoring.

See also
You can find further details on the signup process at https://docs.newrelic.com/
docs/accounts-partnerships/accounts/account-setup/create-your-new-
relic-account.

Installing the New Relic Java agent
To gather statistics, New Relic uses an agent that views transactions as they pass through the
application. This is then recorded and sent onto New Relic. The Java agent is suitable for use
with any Java based application, both inside and outside of a container. In this recipe, we will
demonstrate how to setup the New Relic agent within a Tomcat container.

Getting ready
For this recipe, you will need a New Relic account and an application that runs within a
Tomcat container.

How to do it…
Let's install the New Relic Java component:

1.	 Log into your New Relic Account and click on the profile menu in the top-right corner.
From the drop-down, select the item title Account Settings. On the right-hand side
of the next screen, you will find a list of available agents. Click on the Java release to
download it.

https://docs.newrelic.com/docs/accounts-partnerships/accounts/account-setup/create-your-new-relic-account
https://docs.newrelic.com/docs/accounts-partnerships/accounts/account-setup/create-your-new-relic-account
https://docs.newrelic.com/docs/accounts-partnerships/accounts/account-setup/create-your-new-relic-account

Chapter 12

285

You'll notice that there is a separate download for the Java
8 installer; keep this in mind when downloading the agent.
There are also links to 'established' releases. These are the
versions that have the most established user base. Use this
one if you are cautious.

2.	 Copy the zip file containing the Java agent onto the server that you wish to monitor
and unzip it using the following command:
$ unzip -d /opt <pathto_newrelic.zip>

Where <newrelic.zip> is the versioned zip file. This will unpack the New Relic
agent into the /opt directory.

3.	 With your favorite editor, open up the setenv.sh file within your Tomcat application,
this will be located within the bin directory of your Tomcat installation. If one does not
exist, create it and edit it to resemble the following:
JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/newrelic/newrelic.jar"

This is based on a vanilla install of Tomcat; if you already
have your JAVA_OPTS set, ensure that you add the
-javaagent option in the correct place.

4.	 Restart your application. After start-up, pause for around five minutes for New Relic
to start logging data and then log into your account. Click on the APM menu and you
should see a screen similar to the following:

Application Performance Monitoring with New Relic

286

5.	 Click on the My Application, and you should see the following screen:

Your application is now set up and is recording performance metrics.

By default, all data is transmitted to a New Relic using SSL
and you can obfuscate certain data elements to ensure that
sensitive information is not stored within their platform. See
https://docs.newrelic.com/docs/accounts-
partnerships/accounts/security/security for
details of what you can secure.

See also
Further details of the Java agent can be found at https://docs.newrelic.com/docs/
agents/java-agent.

Using the performance overview
New Relic offers a huge amount of information in a readable format; this allows you to see at
a glance if your application and dependencies are performing, as you would expect. This data
is readily available on the performance overview screen and gives you a window into the detail
that New Relic holds about your application. This recipe briefly touches on the major parts of
the overview screen and highlights elements that can reveal issues.

https://docs.newrelic.com/docs/accounts-partnerships/accounts/security/security
https://docs.newrelic.com/docs/accounts-partnerships/accounts/security/security
https://docs.newrelic.com/docs/agents/java-agent
https://docs.newrelic.com/docs/agents/java-agent

Chapter 12

287

Getting ready
For this recipe, you need a New Relic account and an application reporting data.

How to do it…
Now let's go through the performance overview:

1.	 Log into your New Relic account and select the APM tab; you will be presented with a
list of applications that are currently reporting to New Relic. Select the app you wish
to examine; this will take you onto the summary screen for that application.

2.	 The first part to focus on is the main graph and should look a little something like this:

This chart summarizes the following areas:

�� Response times of the application split by its components (in this case, the
JVM or application code and database).

�� The throughput of the application in requests per minute

�� The Apdex rating of the application

Apdex is a method of taking the measurements that New
Relic gathers and presenting them in a single easy to use
metric. The Apdex measures user satisfaction, allows you to
set an overall goal (the site should respond in n seconds),
which can then be used to extrapolate how many of your
users are satisfied, tolerating, and frustrated. More details
can be found here: http://www.apdex.org.

http://www.apdex.org

Application Performance Monitoring with New Relic

288

The response time chart is stacked and will include the following:

�� JVM (App) response time

�� Database response time

�� External resources response time

3.	 Clicking the legend will allow you to strip the elements out; thus, allowing you to
focus on a badly behaving component. You can also drag on the chart to zoom in
on a particular time period and this will cause any other view you visit to reflect the
time selected.

4.	 Also, note that the chart is split between web and non-web transactions. You can
change the view by clicking on the drop-down menu on the top-left of the chart, it
should resemble the following screenshot:

5.	 Underneath the charts, you can see a list of transactions in the selected time period,
a chart of the current Error rate, and a complete list of the Recent Events. It should
look something like this:

6.	 Look first at the Transactions list:

Chapter 12

289

This is a list of the top transactions that the platform has processed in the time
period, and the average response time. These can be clicked on, and are linked to
the more detailed transaction list, and allows you to see exactly where the time is
being spent in these processes.

7.	 Next, we have the Error rate chart.

Application Performance Monitoring with New Relic

290

8.	 Any time an error is logged within the application that generates one of the following
response codes, New Relic logs it:

�� 400 Bad Request

�� 401 Unauthorized

�� 403 Forbidden

�� 502 Bad Gateway

�� 503 Service Unavailable

It is possible within the New Relic settings to exclude
certain errors; this can be useful if they are expected,
and can stop alerts being generated.

9.	 Next, we have the Recent events list:

Any time a significant event happens; New Relic will record it and display it here.
Significant events can be anything from serious application errors, to deployments,
to warnings, and offers you a quick way to check if an event has occurred you were
unaware of.

Chapter 12

291

10.	 Finally, we have the server list:

New Relic records details of every server hosting the application in the current time
span and offers a brief summary of its throughput, responsiveness, and resource
usage. This is linked to the New Relic server monitoring and if the monitoring agent is
installed, it allows you to view server-monitoring statistics during this period.

See also
You can find further details of the summary screen at https://docs.newrelic.com/
docs/apm/applications-menu/monitoring/apm-overview-dashboard.

Locating performance bottlenecks with
Transaction Traces

New Relic can dig deep into the reasons as to why an application may not be performing
well by performing a Transaction Trace. Transaction Tracing allows for a huge level of details,
allowing you to see why a certain transaction is running slow, right down to the individual
method calls.

Transaction Tracing is initiated when New Relic notices and records certain transactions that
are breaching the Apdex rating. At this point, it starts to sample these transactions, recording
in detail what the transaction is doing.

Using the Transaction Traces, you can easily spot where code is less than optimum, highlighting
inefficient SQL queries, long running elements of code, and slow external services.

Getting ready
For this recipe, you will require a New Relic account (paid) and an application with the New
Relic agent installed.

https://docs.newrelic.com/docs/apm/applications-menu/monitoring/apm-overview-dashboard
https://docs.newrelic.com/docs/apm/applications-menu/monitoring/apm-overview-dashboard

Application Performance Monitoring with New Relic

292

How to do it…
1.	 Log into the New Relic portal and click on the APM in the top menu. From the left-

hand menu on the next screen, select Transactions.

2.	 You should see a screen similar to the following:

Notice the table on the bottom left-hand side of the screen;
this is a list of Transaction Traces. Select one by clicking on
the link.

3.	 When you click on the Trace, it opens a new overlaid window with the Trace details
and it should resemble something like this:

Chapter 12

293

This is a break down of the wall clock time of this particular trace, including a graph
demonstrating where the time was spent. The list of components lists the slowest
elements of this transaction, and most importantly, how many times it was called.
This can be useful if you are looping through and calling resources unnecessarily,
such as multiple SQL queries that could be collapsed into a single and more
efficient query.

Application Performance Monitoring with New Relic

294

4.	 Click on the tab titled Trace Details. This should show a screen similar to
the following:

Chapter 12

295

5.	 This is a list of the methods that the transaction called and the wall clock time that
each method took. Notice that New Relic has highlighted the element of code that is
problematic. We can drill into this by clicking on the magnifying glass icon; this will
then expand the method to show the stack trace, allowing you to examine in greater
detail what this piece of code was doing; it should look something like this:

Application Performance Monitoring with New Relic

296

See also
You can find further details of Transaction Tracing at https://docs.newrelic.com/
docs/apm/transactions/transaction-traces/transaction-traces.

Observing database performance with New
Relic

Many, if not most, modern applications are backed by a SQL database, generally providing a
persistent data storage. The performance of this data store is critical to the overall application
performance and yet it can be somewhat opaque to view.

New Relic tracks database calls, allowing you to see both the overall performance of the
database and the details of where the database calls originate within the application and
where it may be running slowly.

Getting ready
For this recipe, you will need a New Relic account (trial or paid), an application deployed with
the New Relic agent, and a database that the application connects to (and a JDBC compatible
database should work).

How to do it…
1.	 Log into your New Relic account and click on the menu item titled APM. From the

next screen, select the link on the left-hand sidebar titled Databases. This should
present you with a screen that looks similar to the following screenshot:

https://docs.newrelic.com/docs/apm/transactions/transaction-traces/transaction-traces
https://docs.newrelic.com/docs/apm/transactions/transaction-traces/transaction-traces

Chapter 12

297

2.	 This is a list of every database call made during the selected time period and it
graphs the duration of the top calls and response time of the database operations
and finally a throughput of the database.

3.	 You can easily sort between the most time consuming and the slowest response time
throughput by clicking on the Sort by menu at the top of the transaction list. This
enables you to quickly zero in on interesting data on these three axis.

Application Performance Monitoring with New Relic

298

4.	 When you find a transaction that interests you, click on it in the list. This will open the
detailed transaction view and should resemble the following screenshot:

This gives you a breakdown of that particular transaction and highlights the response
over time alongside throughput. Of particular interest is the bottom graph; this
illustrates the most common transactions that are calling this an SQL query, charted
by the overall time spent being called by that particular transaction. These are linked
to the transaction view; thus, allowing you to see detailed information about that
particular transaction.

Chapter 12

299

See also
You can find further details of the New Relic SQL monitoring at https://docs.newrelic.
com/docs/apm/applications-menu/monitoring/databases-slow-queries-
dashboard.

Release performance monitoring with New
Relic

One of the most important events to track in any monitoring is a release; this can be anything
from a software release, through to server upgrades and anything in between. New Relic allows
you to add these as reportable elements, allowing you to perform before and after performance
reporting. Using the release monitoring you can take the guesswork out of the effectiveness of a
release and this allows you to use empirical data to judge if a release was good.

New Relic offers an API to record a release, allowing you to integrate your automated release
tools, configuration management, and others. Using the New Relic API, you should be able to
ensure that any automated process can register the release.

In this recipe, we will examine using the New Relic REST API to trigger a deployment
notification using a simple curl from the command line.

Getting ready
For this recipe, you will need a New Relic account (free/trial/paid) and an application with the
New Relic agent installed.

How to do it…
1.	 First, we need to enable the API access. Log onto your New Relic account and click

on the profile menu located in the menu on the top-left. From the drop down menu,
select the entry titled Account settings and in the next screen, click on the link in the
left-hand sidebar titled Data sharing.

2.	 In the data-sharing screen, you will be offered the option to create a new REST API
Key. Click on this link and a new API key will be generated and API access to the
account will be granted.

3.	 From your command line, use the following command to record a release against
your application:
curl -H "x-api-key:<APIKEY>" \
-d "deployment[application_id]=<APPLICATION ID>" \
-d "deployment[description]=<DEPLOYMENT DESCRIPTION>" \

https://docs.newrelic.com/docs/apm/applications-menu/monitoring/databases-slow-queries-dashboard
https://docs.newrelic.com/docs/apm/applications-menu/monitoring/databases-slow-queries-dashboard
https://docs.newrelic.com/docs/apm/applications-menu/monitoring/databases-slow-queries-dashboard

Application Performance Monitoring with New Relic

300

-d "deployment[revision]=<NEW APP VERSION>" \
-d "deployment[changelog]=<LIST OF CHANGES>" \
-d "deployment[user]=Michael Duffy" https://api.newrelic.com/
deployments.xml

Ensure that you replace the elements between the angle brackets with your
own items.

You can find the Application ID within the deployments tab,
underneath the link titled Show instructions.

4.	 If all goes well, you should receive an XML reply containing a summary of elements
prior to release; it will resemble something along these lines:
<?xml version="1.0" encoding="UTF-8"?>
<deployment>
 <account-id type="integer">1078425</account-id>
 <agent-id type="integer">8699096</agent-id>
 <avg-apdex-f type="integer" nil="true"></avg-apdex-f>
 <avg-apdex-s type="integer" nil="true"></avg-apdex-s>
 <avg-apdex-t type="integer" nil="true"></avg-apdex-t>
 <avg-apdex-threshold type="float" nil="true"></avg-apdex-
threshold>
 <avg-cpu type="float">0</avg-cpu>
 <avg-db type="float">0</avg-db>
 <avg-enduser-apdex-f type="integer" nil="true"></avg-enduser-
apdex-f>
 <avg-enduser-apdex-s type="integer" nil="true"></avg-enduser-
apdex-s>
 <avg-enduser-apdex-t type="integer" nil="true"></avg-enduser-
apdex-t>
 <avg-enduser-apdex-threshold type="integer" nil="true"></avg-
enduser-apdex-threshold>
 <avg-enduser-rt type="float">0.0</avg-enduser-rt>
 <avg-enduser-throughput type="float">0.0</avg-enduser-
throughput>
 <avg-errors type="float">0.0</avg-errors>
 <avg-memory type="float">1359.3242187499998</avg-memory>
 <avg-rt type="float">0.0</avg-rt>
 <avg-throughput type="float">0.0</avg-throughput>
 <changelog>I added many interesting things to the code.</
changelog>
 <description>A shiny deployment</description>
 <end-time type="datetime" nil="true"></end-time>
 <id type="integer">8908958</id>

Chapter 12

301

 <revision>1f1f1</revision>
 <timestamp type="datetime">2015-09-10T13:59:28-07:00</timestamp>
 <user>Michael Duffy</user>
</deployment>

5.	 Log into your New Relic account and click on the item titled APM from the top menu.
From the left-hand menu on the next screen, click on the item marked Deployments
under the events heading.

6.	 The next screen offers a list of deployments and a brief summary of the Apdex score,
Response time and throughput. If you click on one of the deployments, you should
see a screen similar to the following:

This details the performance prior to the release and after, with the grey bar marking
the point of release.

Application Performance Monitoring with New Relic

302

See also
You can find further details of release monitoring at https://docs.newrelic.com/docs/
release-notes/agent-release-notes/java-release-notes.

Server Monitoring with New Relic
New Relic is made up of several different products and combined allow you to see end-to-end
performance metrics of every part of your application. For instance, if the APM-panel tells you,
there are performance issues; one of the first things you should do is look at the performance
of the underlying server.

New Relic offers a simple, yet easy to use server monitoring tool, allowing you to monitor your
servers alongside your applications. Although lacking some of the sophistication of other
monitoring packages, it has the advantage that it is closely tied to APM monitoring. If you are
looking at a particular time span in the APM, you can check the server monitoring and have
it automatically adjust the time-range to match your app. New Relic can also map apps to
servers, allowing you see at a glance, which app is running on which server.

Finally, at the time of writing, Server Monitoring is a free component and you can add as many
servers as you like; they do not need to have applications that are monitored within the APM.
This allows you to monitor your app servers, but also dependencies, such as database servers
and file servers within the same place.

Getting ready
For this recipe, you will require an Ubuntu 14.04 server and a New Relic account.

How to do it…
1.	 On the host on which you wish to install the New Relic server monitoring, run the

following command:
$ sudo echo deb http://apt.newrelic.com/debian/ newrelic non-free
>> /etc/apt/sources.list.d/newrelic.list && wget -O- https://
download.newrelic.com/548C16BF.gpg | apt-key add -

2.	 This adds the New Relic package repository and adds the signing key. Next, run apt-
get update using the following command:
$ sudo apt-get update

https://docs.newrelic.com/docs/release-notes/agent-release-notes/java-release-notes
https://docs.newrelic.com/docs/release-notes/agent-release-notes/java-release-notes

Chapter 12

303

3.	 You can install the New Relic server monitoring package using the following
command:
apt-get install newrelic-sysmond

4.	 Although the package is installed, you still need to configure it to send data to your
New Relic account. To do this, use the following command:
$ sudo nrsysmond-config --set license_key=<LICENSE>

Replace <LICENSE> with your New Relic account license. You can find this by
clicking on the profile menu on the top-right of the New Relic panel and by clicking on
Account Settings. On the next screen, you should find a panel on the right-hand side
that resembles the following screenshot:

5.	 Finally, you can start the New Relic server monitor by issuing the following command:
$ sudo service newrelic-sysmond start

Application Performance Monitoring with New Relic

304

6.	 You should wait for around five minutes for initial data to be propagated to New Relic,
but once you have, you can log into your New Relic account and click on servers. You
should be able to see the server that you added to the list, and if you click on it, you
should see something similar to the following screenshot:

From here, you can explore details of the process running on the server, network, and
disk and, if you use it, Docker usage.

See also
You can find more details of the New Relic server monitoring solution at http://newrelic.
com/server-monitoring.

http://newrelic.com/server-monitoring
http://newrelic.com/server-monitoring

305

Index
A
Amazon Machine Image (AMI) 265
Ansible

about 80
installing 80
used, for creating EC2 hosts 278, 279
used, for installing Sensu 249-252

Ansible control node
installing, on CentOS 28-31
installing, on Ubuntu 27

Ansible galaxy
URL 249

ansible-galaxy command 83
Ansible module user

references 89
ansible-playbook command

reference 86
Apdex

URL 287
Application Performance Monitoring

(APM) 176
application server role

creating, Tomcat and Ansible used 96-103
aptly

about 41
URL 41

Apt mirror
creating, aptly used 41-45

automated installation
PXE boot and Preseed file, used 46-53

automation 79
AWS

signing up 254, 255
URL 254

B
basic Docker operations

performing 122, 123
basic OS statistics

gathering 9-12

C
check prerequisites

installing 233
Classless Inter-Domain Routing (CIDR)

format 4
cobbler project

URL 47
command-line snapshots

managing 74-77
common role

creating 83-87
community checks

finding 233, 234
URL 234

community disk checks
reference 238

connections
monitoring, with ss command 7, 8

container
restoring 131, 132
running, in detached mode 129, 130
running, interactively 123
saving 131, 132

containerization 117
continuous integration (CI) 139, 140
CPU check

adding 242, 243
reference 243

306

D
dashboards

creating, with Grafana 191-195
data

exploring, with InfluxDB data
explorer 184-187

database performance
observing, with New Relic 296-298

disaster recovery (DR) 40
disk check

adding 237, 238
Distributed Version Control Software

(DVCS) 2
DNS check

adding 234-236
URL 237

DNS record types
reference 276

Docker
about 118
installing 119

Docker containers
building, Jenkins used 159-163

Dockerfile
creating 124-128

Domain Name Services (DNS)
managing, with route53 274-277

Do not repeat yourself (DRY) 30
DSL (Domain Specific Language) 79
Dynamic Host Configuration Protocol

(DHCP) server 46

E
EC2 Ansible module

URL 279
EC2 host

about 264
creating 264-269
creating, with Ansible 278, 279
URL 269

Elastic Block Store (EBS) 267
Elastic Load Balancers

about 270
URL 274
using 270-273

Elasticsearch
installing 204-207
logs importing, with Logstash 208-211
URL 207

e-mail alerts
creating 243-245

e-mail handler
reference 245

esxcli command
reference 73

ESXi
configuring 60
installing 59-62
references 60
SSH access, allowing to 66-68
URL 59

ESXi command line
used, for destroying guests 73, 74
used, for starting guests 73, 74
used, for stopping guests 73, 74

events
logging, with InfluxDB REST API 180-182

existing Git repository
cloning 19

Extra Packages for Enterprise Linux
(EPEL) 28

F
FPM

URL 233
freeform commands

executing, with Ansible 34

G
Git branch

creating 23, 24
git checkout -b command 24
Git client

configuring 15
installing 15

git merge command 24
Git plugin

installing 146-150
Git remote

changes, pushing to 21, 22

307

Git repository
changes, checking 20
creating 18

Grafana
about 188
dashboard list 192
graph 192
installing 188-190
text option 192
URL 191
used, for creating dashboards 191-195

guest
resources, allocating to 72

guest performance
host, tuning for 77, 78

H
HAProxy

installing, with Ansible 108-111
managing, with Ansible 108-112

historical resource usage
viewing, with SAR 12-14

host
about 29
statistics, gathering with Telegraf 182-184
tuning, for guest performance 77, 78

host only network
using 132, 133

Hugo static blog engine
URL 154

hypervisor
URL 70

I
IAM (Identity and Access Management)

policies, URL 259
setting up 255-260

Icinga
URL 224

idempotency 26
images

managing, with private registry 136
pulling, from private registry 138
pushing, to private registry 137, 138

InfluxDB
about 176
installing 176-178
line protocol, URL 179
REST API, URL 182
URL 180

InfluxDB database
about 178
creating 178, 179

InfluxDB data explorer
used, for exploring data 184-187

InfluxDB REST API
used, for logging events 180, 181

Infrastructure-as-a-Service (IAAS)
about 253
disadvantages 254

installation
Grafana 188, 190
InfluxDB 176-178

J
Java agent

URL 286
Java application

deployment to Tomcat, Ansible used 163-173
Jenkins

Docker containers, building with 159-163
installing 141-145

Jenkins job
creating 153-158

Jenkins slave
installing 150-152

K
Kibana

installing 204-207
URL 219

Kibana queries
URL 222
used, for examining data 219-221
used, for exploring data 211-218

KVM
about 58
URL 58

308

L
lineinfile module

reference 92
Log forwarder

URL 211
Logical Volume Manager (LVM) device 52
Logrotate utility

used, for managing log rotation 202, 203
logs

centralizing, with Syslog 198-200
Logstash

installing 204-207
reference link 210
used, for importing logs into

Elasticsearch 210
used, for importing logs into

Elasticsearch 208-211

M
mailer 244
Microsoft HyperV

about 59
URL 59

Multi Factor Authentication (MFA) 257
MySQL

about 104
installing, Ansible used 103-108

N
Nagios

URL 224
network details

monitoring, with IP command 5, 6
network interfaces

configuring 3, 4
controlling 2

new guest
creating 69-71

New Relic
account, signing up for 282-284
database performance, observing

with 296-298
release performance, monitoring

with 299- 301
URL 283

New Relic Java agent
installing 284-286

New Relic server monitoring solution
reference 304

New Relic SQL monitoring
reference 299

New Relic, using SSL
reference 286

Nginx documentation
reference 96

nginx logging
reference 211

NTP servers
reference 78

O
options, for stopping virtual machine

force 74
hard 74
soft 74

Oracle Virtualbox
about 58
URL 58

P
packages

installing, with Ansible 32, 33
performance bottlenecks

locating, with Transaction Traces 291-295
performance overview

using 286-291
Personal Package Archive (PPA) 27
 Platform-as-a-Service (PAAS) 118
post install tasks

automating 54, 55
private Docker registry

running 133-136
process check

adding 240, 241
URL 241

public Docker registry
image, pulling from 120, 121

PXE booting environment
setting up 47

python-simplejson
installing, raw module used 31, 32

309

R
RabbitMQ

URL 249
RAM check

adding 238
URL 240

raw module
using, for installing python-simplejson 31, 32

Redis
reference 249

release monitoring
reference 302

release performance
monitoring, with New Relic 299-301

resources
allocating, to guest 72

route53
URL 277
using, with Domain Name

Services (DNS) 274-277
Rsyslog

property replacer, URL 202

S
scaffold playbook

creating 81-83
security group

about 261
creating 261, 263

Sensu
about 224
installing, Ansible used 249-252
reference 224

Sensu Ansible role
URL 252

Sensu check format
reference 234

Sensu client
installing 230-232
reference 233

Sensu extensions
reference 251

Sensu handlers
reference 245

Sensu server
installing 225-229

Server Monitoring
with New Relic 302-304

ServerSpec
using, for testing playbook 112-116

ServerSpec Homepage
URL 116

services
restarting, with Ansible 34

signup process
reference 284

SMART alerts
reference 237

SMS alerts
creating 246-248

SSH access
allowing, to ESXi 66-68

ssh-copy-id to copy keys
using 17

SSH key
creating, for Git 15, 16
managing, with Ansible 36, 37

summary screen
reference 291

Syslog
logs, centralizing with 198-200

syslog templates
using 201

System Activity Report (SAR) tool 12

T
Telegraf

URL 184
used, for gathering host statistics 182-184

Time Ranges
reference 187

time series database 176
Transaction Traces

performance bottlenecks, locating
with 291-295

Trivial File Transfer Protocol (TFTP) server 46
Twilio

limitations 247
reference 246, 247

310

U
Uchiwa

URL 229
users

managing, with Ansible 35, 36

V
virtualization 57
virtual private cloud (VPC) 262
vmkfstools utility

reference 71
vSphere Client

installing 63-65
using 63-66

W
webserver

creating, Ansible and Nginx used 89-94

X
Xen

about 58
URL 58

Y
YAML (Yet Another Markup Language) 80

Thank you for buying

DevOps Automation Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Continuous Delivery and
DevOps – A Quickstart Guide
Second Edition
ISBN: 978-1-78439-931-3 Paperback: 196 pages

Deliver quality software regularly and painlessly by
adopting CD and DevOps

1.	 Use DevOps and the Continuous Delivery
approach to identify the underlying problems
that can stifle the delivery of quality software and
overcome them.

2.	 Learn how Continuous Delivery and DevOps work
together with other agile tools.

3.	 A guide full of illustrations and best practices to
help you consistently ship quality software.

Implementing OpenShift
ISBN: 978-1-78216-472-2 Paperback: 116 pages

A fast-paced, practical guide for using OpenShift to
deploy your own open source Platform-as-a-Service

1.	 Discover what the cloud is, tear through the
marketing jargon, and go right to the tech.

2.	 Understand what makes an open source Platform-
as-a-Service work by learning about OpenShift
architecture.

3.	 Deploy your own OpenShift Platform-as-a-
Service cloud using DevOps orchestration and
configuration management.

Please check www.PacktPub.com for information on our titles

Learning AWS OpsWorks
ISBN: 978-1-78217-110-2 Paperback: 126 pages

Learn how to exploit advanced technologies to deploy
and auto-scale web stacks

1.	 Discover how a DevOps cloud management
solution can accelerate your path to delivering
highly scalable infrastructure and applications.

2.	 Learn about infrastructure automation, auto-
scaling, and distributed architecture using a Chef-
based framework.

3.	 Includes illustrations, details, and practical
examples for successful scaling in the cloud.

Jenkins Continuous
Integration Cookbook
ISBN: 978-1-84951-740-9 Paperback: 344 pages

Over 80 recipes to maintain, secure, communicate, test,
build, and improve the software development process
with Jenkins

1.	 Explore the use of more than 40 best of breed
plugins.

2.	 Use code quality metrics, integration testing
through functional and performance testing to
measure the quality of your software.

3.	 Get a problem-solution approach enriched
with code examples for practical and easy
comprehension.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basic Command Line Tools
	Introduction
	Controlling network interfaces
	Monitoring network details with the IP command
	Monitoring connections using the ss command
	Gathering basic OS statistics
	Viewing historical resource usage with SAR
	Installing and configuring a Git client
	Creating an SSH key for Git
	Using ssh-copy-id to copy keys
	Creating a new Git repository
	Cloning an existing Git repository
	Checking changes into a Git repository
	Pushing changes to a Git remote
	Creating a Git branch

	Chapter 2: Ad Hoc Tasks with Ansible
	Introduction
	Installing an Ansible control node on Ubuntu
	Installing an Ansible control node on CentOS
	Creating an Ansible inventory
	Using the raw module to install
python-simplejson
	Installing packages with Ansible
	Restarting services using Ansible
	Executing freeform commands with Ansible
	Managing users with Ansible
	Managing SSH keys with Ansible

	Chapter 3: Automatic Host builds
	Introduction
	Creating an Apt mirror using aptly
	Automated installation using PXE boot and a Preseed file
	Automating post-installation tasks

	Chapter 4: Virtualization with VMware ESXi
	Introduction
	Installing ESXi
	Installing and using the vSphere Client
	Allowing SSH access to ESXi
	Creating a new guest
	Allocating resources to a guest
	Using the ESXi command line to start, stop, and destroy guests
	Managing command-line snapshots
	Tuning the host for guest performance

	Chapter 5: Automation with Ansible
	Introduction
	Installing Ansible
	Creating a scaffold Playbook
	Creating a common role
	Creating a webserver using Ansible and Nginx
	Creating an application server role using Tomcat and Ansible
	Installing MySQL using Ansible
	Installing and managing HAProxy with Ansible
	Using ServerSpec to test your Playbook

	Chapter 6: Containerization with Docker
	Introduction
	Installing Docker
	Pulling an image from the public Docker registry
	Performing basic Docker operations
	Running a container interactively
	Creating a Dockerfile
	Running a container in detached mode
	Saving and restoring a container
	Using the host only network
	Running a private Docker registry
	Managing images with a private registry

	Chapter 7: Using Jenkins for Continuous Deployment
	Introduction
	Installing Jenkins
	Installing the Git plugin
	Installing a Jenkins slave
	Creating your first Jenkins job
	Building Docker containers using Jenkins
	Deploying a Java application to Tomcat with zero downtime using Ansible

	Chapter 8: Metric Collection with InfluxDB
	Introduction
	Installing InfluxDB
	Creating a new InfluxDB database
	Logging events with the InfluxDB REST API
	Gathering host statistics with Telegraf
	Exploring data with the InfluxDB data explorer
	Installing Grafana
	Creating dashboards with Grafana

	Chapter 9: Log Management
	Introduction
	Centralizing logs with Syslog
	Using syslog templates
	Managing log rotation with the Logrotate utility
	Installing ElasticSearch, Logstash, and Kibana
	Importing logs into Elasticsearch with Logstash
	Using Kibana queries to explore data
	Using Kibana queries to examine data

	Chapter 10: Monitoring with Sensu
	Introduction
	Installing a Sensu server
	Installing a Sensu client
	Installing check prerequisites
	Finding community checks
	Adding a DNS check
	Adding a disk check
	Adding a RAM check
	Adding a process check
	Adding a CPU check
	Creating e-mail alerts
	Creating SMS alerts
	Using Ansible to install Sensu

	Chapter 11: IAAS with Amazon AWS
	Introduction
	Signing up for AWS
	Setting up IAM
	Creating your first Security group
	Creating your first EC2 host
	Using Elastic Load Balancers
	Managing DNS with route53
	Using Ansible to create EC2 hosts

	Chapter 12: Application Performance Monitoring with New Relic
	Introduction
	Signing up for a New Relic account
	Installing the New Relic Java agent
	Using the performance overview
	Locating performance bottlenecks with Transaction Traces
	Observing database performance with New Relic
	Release performance monitoring with New Relic
	Server Monitoring with New Relic

	Index

