

Expert Python Programming
Second Edition

Become an ace Python programmer by learning best
coding practices and advance-level concepts with
Python 3.5

Michał Jaworski

Tarek Ziadé

BIRMINGHAM - MUMBAI

Expert Python Programming
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2008

Second edition: May 2016

Production reference: 1160516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-685-0

www.packtpub.com

Credits

Authors
Michał Jaworski

Tarek Ziadé

Reviewer
Facundo Batista

Commissioning Editor
Kunal Parikh

Acquisition Editor
Meeta Rajani

Technical Editor
Pankaj Kadam

Copy Editor
Laxmi Subramanian

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Authors

Michał Jaworski has 7 years of experience in Python. He is also the creator of
graceful, which is a REST framework built on top of falcon. He has been in various
roles at different companies: from an ordinary full-stack developer through software
architect to VP of engineering in a fast-paced start-up company. He is currently a
lead backend engineer in TV Store team at Opera Software. He is highly experienced
in designing high-performance distributed services. He is also an active contributor
to some of the popular Python open source projects.

Tarek Ziadé is an engineering manager at Mozilla, working with a team
specialized in building web services in Python at scale for Firefox. He's contributed
to the Python packaging effort and has worked with a lot of different Python web
frameworks since Zope in the early days.

Tarek has also created Afpy, the French Python User Group, and has written two
books on Python in French. He has delivered numerous talks and tutorials in French
at international events such as Solutions Linux, PyCon, OSCON, and EuroPython.

About the Reviewer

Facundo Batista is a specialist in the Python programming language, with more
than 15 years of experience with it. He is a core developer of the language, and a
member by merit of the Python Software Foundation. He also received the 2009
Community Service Award for organizing PyCon Argentina and the Argentinian
Python community as well as contributions to the standard library and work in
translating the Python documentation.

He delivers talks in the main Python conferences in Argentina and other countries
(The United States and Europe). In general, he has strong distributed collaborative
experience from being involved in FLOSS development and working with people
around the globe for more than 10 years.

He worked as a telecommunication engineer at Telefónica Móviles and Ericsson, and
as a Python expert at Cyclelogic (developer in chief) and Canonical (senior software
developer, his current position).

He also loves playing tennis, and is a father of two wonderful children.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com

[i]

Table of Contents
Preface xi
Chapter 1: Current Status of Python 1

Where are we now and where we are going? 2
Why and how does Python change? 2
Getting up to date with changes – PEP documents 3
Python 3 adoption at the time of writing this book 4
The main differences between Python 3 and Python 2 5

Why should I care? 5
The main syntax differences and common pitfalls 5

Syntax changes 6
Changes in the standard library 7
Changes in datatypes and collections 8

The popular tools and techniques used for maintaining cross-version
compatibility 8

Not only CPython 12
Why should I care? 13
Stackless Python 13
Jython 14
IronPython 14
PyPy 15

Modern approaches to Python development 16
Application-level isolation of Python environments 17

Why isolation? 19
Popular solutions 21

virtualenv 21
venv 23
buildout 24

Which one to choose? 24

Table of Contents

[ii]

System-level environment isolation 25
Virtual development environments using Vagrant 26
Containerization versus virtualization 27

Popular productivity tools 28
Custom Python shells – IPython, bpython, ptpython, and so on 29

Setting up the PYTHONSTARTUP environment variable 30
IPython 30
bpython 30
ptpython 31

Interactive debuggers 31
Useful resources 32
Summary 33

Chapter 2: Syntax Best Practices – below the Class Level 35
Python's built-in types 36

Strings and bytes 36
Implementation details 38
String concatenation 39

Collections 40
Lists and tuples 40
Dictionaries 45
Sets 49
Beyond basic collections – the collections module 50

Advanced syntax 51
Iterators 51
The yield statement 52
Decorators 56

General syntax and possible implementations 57
Usage and useful examples 61

Context managers – the with statement 68
General syntax and possible implementations 69

Other syntax elements you may not know yet 72
The for … else … statement 73
Function annotations 73

The general syntax 74
The possible uses 74

Summary 75
Chapter 3: Syntax Best Practices – above the Class Level 77

Subclassing built-in types 78
Accessing methods from superclasses 80

Old-style classes and super in Python 2 82
Understanding Python's Method Resolution Order 83

Table of Contents

[iii]

super pitfalls 87
Mixing super and explicit class calls 87
Heterogeneous arguments 89

Best practices 90
Advanced attribute access patterns 91

Descriptors 92
Real-life example – lazily evaluated attributes 95

Properties 98
Slots 101

Metaprogramming 102
Decorators – a method of metaprogramming 103
Class decorators 103
Using the __new__() method to override instance creation process 105
Metaclasses 108

The general syntax 109
New Python 3 syntax for metaclasses 112
Metaclass usage 115
Metaclass pitfalls 115

Some tips on code generation 116
exec, eval, and compile 117
Abstract Syntax Tree 118
Projects using code generation patterns 120

Summary 123
Chapter 4: Choosing Good Names 125

PEP 8 and naming best practices 125
Why and when to follow PEP 8? 126
Beyond PEP 8 – team-specific style guidelines 126

Naming styles 127
Variables 127

Constants 128
Naming and usage 129
Public and private variables 130
Functions and methods 131
The private controversy 132
Special methods 134
Arguments 134
Properties 134
Classes 135
Modules and packages 135

The naming guide 136
Using the has or is prefix for Boolean elements 136
Using plurals for variables that are collections 136
Using explicit names for dictionaries 136

Table of Contents

[iv]

Avoiding generic names 136
Avoiding existing names 138

Best practices for arguments 138
Building arguments by iterative design 139
Trust the arguments and your tests 139
Using *args and **kwargs magic arguments carefully 141

Class names 143
Module and package names 143
Useful tools 144

Pylint 144
pep8 and flake8 146

Summary 147
Chapter 5: Writing a Package 149

Creating a package 149
The confusing state of Python packaging tools 150

The current landscape of Python packaging thanks to PyPA 150
Tool recommendations 151

Project configuration 152
setup.py 152
setup.cfg 153
MANIFEST.in 154
Most important metadata 154
Trove classifiers 155
Common patterns 156

The custom setup command 161
Working with packages during development 161

setup.py install 162
Uninstalling packages 162
setup.py develop or pip -e 162

Namespace packages 163
Why is it useful? 163
PEP 420 – implicit namespace packages 166
Namespace packages in previous Python versions 167

Uploading a package 168
PyPI – Python Package Index 169

Uploading to PyPI – or other package index 169
.pypirc 170

Source packages versus built packages 171
sdist 171
bdist and wheels 172

Standalone executables 174
When are standalone executables useful? 175

Table of Contents

[v]

Popular tools 176
PyInstaller 177
cx_Freeze 181
py2exe and py2app 183

Security of Python code in executable packages 184
Making decompilation harder 185

Summary 186
Chapter 6: Deploying Code 187

The Twelve-Factor App 188
Deployment automation using Fabric 189
Your own package index or index mirror 195

PyPI mirroring 196
Deployment using a package 197

Common conventions and practices 207
The filesystem hierarchy 207
Isolation 207
Using process supervision tools 208
Application code should be run in user space 210
Using reverse HTTP proxies 210
Reloading processes gracefully 211

Code instrumentation and monitoring 212
Logging errors – sentry/raven 213
Monitoring system and application metrics 215
Dealing with application logs 218

Basic low-level log practices 218
Tools for log processing 220

Summary 223
Chapter 7: Python Extensions in Other Languages 225

Different language means – C or C++ 226
How do extensions in C or C++ work 226

Why you might want to use extensions 228
Improving performance in critical code sections 228
Integrating existing code written in different languages 229
Integrating third-party dynamic libraries 230
Creating custom datatypes 230

Writing extensions 230
Pure C extensions 231

A closer look at Python/C API 235
Calling and binding conventions 240
Exception handling 242
Releasing GIL 244
Reference counting 246

Table of Contents

[vi]

Cython 248
Cython as a source to source compiler 248
Cython as a language 250

Challenges 253
Additional complexity 253
Debugging 254

Interfacing with dynamic libraries without extensions 255
ctypes 255

Loading libraries 255
Calling C functions using ctypes 257
Passing Python functions as C callbacks 258

CFFI 262
Summary 263

Chapter 8: Managing Code 265
Version control systems 265

Centralized systems 266
Distributed systems 268

Distributed strategies 270
Centralized or distributed? 271
Use Git if you can 271
Git flow and GitHub flow 272

Continuous development processes 276
Continuous integration 277

Testing every commit 278
Merge testing through CI 279
Matrix testing 280

Continuous delivery 280
Continuous deployment 281
Popular tools for continuous integration 282

Jenkins 282
Buildbot 286
Travis CI 288
GitLab CI 290

Choosing the right tool and common pitfalls 290
Problem 1 – too complex build strategies 291
Problem 2 – too long building time 291
Problem 3 – external job definitions 292
Problem 4 – lack of isolation 293

Summary 294
Chapter 9: Documenting Your Project 295

The seven rules of technical writing 295
Write in two steps 296
Target the readership 297

Table of Contents

[vii]

Use a simple style 298
Limit the scope of information 299
Use realistic code examples 299
Use a light but sufficient approach 300
Use templates 301

A reStructuredText primer 301
Section structure 303
Lists 305
Inline markup 306
Literal block 306
Links 307

Building the documentation 308
Building the portfolio 308

Design 309
Usage 310
Operations 315

Making your own portfolio 315
Building the landscape 316

Producer's layout 317
Consumer's layout 318

Documentation building and continuous integration 322
Summary 323

Chapter 10: Test-Driven Development 325
I don't test 325

Test-driven development principles 326
Preventing software regression 328
Improving code quality 329
Providing the best developer documentation 329
Producing robust code faster 330

What kind of tests? 330
Acceptance tests 330
Unit tests 331
Functional tests 331
Integration tests 332
Load and performance testing 332
Code quality testing 333

Python standard test tools 333
unittest 333
doctest 337

I do test 339
unittest pitfalls 339
unittest alternatives 340

nose 340
py.test 344

Table of Contents

[viii]

Testing coverage 348
Fakes and mocks 351

Building a fake 351
Using mocks 356

Testing environment and dependency compatibility 358
Dependency matrix testing 358

Document-driven development 362
Writing a story 362

Summary 364
Chapter 11: Optimization – General Principles and Profiling
Techniques 365

The three rules of optimization 365
Make it work first 366
Work from the user's point of view 367
Keep the code readable and maintainable 367

Optimization strategy 368
Find another culprit 368
Scale the hardware 368
Writing a speed test 369

Finding bottlenecks 370
Profiling CPU usage 370

Macro-profiling 371
Micro-profiling 375
Measuring Pystones 378

Profiling memory usage 379
How Python deals with memory 379
Profiling memory 382
C code memory leaks 390

Profiling network usage 391
Summary 392

Chapter 12: Optimization – Some Powerful Techniques 393
Reducing the complexity 394

Cyclomatic complexity 396
The big O notation 396

Simplifying 399
Searching in a list 399

Using a set instead of a list 400
Using collections 401

deque 401
defaultdict 403
namedtuple 404

Table of Contents

[ix]

Using architectural trade-offs 405
Using heuristics and approximation algorithms 405
Using task queues and delayed processing 406
Using probabilistic data structures 410

Caching 411
Deterministic caching 412
Nondeterministic caching 415
Cache services 416

Memcached 416
Summary 419

Chapter 13: Concurrency 421
Why concurrency? 422
Multithreading 423

What is multithreading? 424
How Python deals with threads 425
When should threading be used? 426

Building responsive interfaces 426
Delegating work 426
Multiuser applications 427
An example of a threaded application 428

Multiprocessing 442
The built-in multiprocessing module 445

Using process pools 449
Using multiprocessing.dummy as a multithreading interface 450

Asynchronous programming 451
Cooperative multitasking and asynchronous I/O 452
Python async and await keywords 453
asyncio in older versions of Python 457
A practical example of asynchronous programming 458
Integrating nonasynchronous code with async using futures 461

Executors and futures 462
Using executors in an event loop 464

Summary 465
Chapter 14: Useful Design Patterns 467

Creational patterns 467
Singleton 468

Structural patterns 471
Adapter 472

Interfaces 474
Proxy 487
Facade 489

Table of Contents

[x]

Behavioral patterns 490
Observer 490
Visitor 492
Template 495

Summary 498
Index 499

[xi]

Preface
Python rocks!

From the earliest version in the late 1980s to the current version, it has evolved with
the same philosophy: providing a multiparadigm programming language with
readability and productivity in mind.

People used to see Python as yet another scripting language and wouldn't feel right
about using it to build large systems. However, over the years and thanks to some
pioneer companies, it became obvious that Python could be used to build almost any
kind of system.

In fact, many developers that come from another language are charmed by Python
and make it their language of choice.

This is something you are probably aware of if you have bought this book, so there's
no need to convince you about the merits of the language any further.

This book is written to express many years of experience of building all kinds of
applications with Python, from small system scripts done in a couple of hours to
very large applications written by dozens of developers over several years.

It describes the best practices used by developers when working with Python.

This book covers some topics that do not focus on the language itself but rather on
the tools and techniques used to work with it.

In other words, this book describes how an advanced Python developer works
every day.

Preface

[xii]

What this book covers
Chapter 1, Current Status of Python, showcases the current state of the Python
language and its community. It shows how Python is constantly changing, why it
is changing, and also why these facts are important for anyone who wants to call
themselves a Python professional. This chapter also features the most popular and
canonical ways of working in Python—popular productivity tools and conventions
that are de facto standards now.

Chapter 2, Syntax Best Practices – below the Class Level, presents iterators, generators,
descriptors, and so on, in an advanced way. It also covers useful notes about Python
idioms and internal CPython types implementations with their computational
complexities as a rationale for showcased idioms.

Chapter 3, Syntax Best Practices – above the Class Level, explains syntax best practices,
but focuses above the class level. It covers more advanced object-oriented concepts
and mechanisms available in Python. This knowledge is required in order to
understand the last section of the chapter, which presents different approaches
to metaprogramming in Python.

Chapter 4, Choosing Good Names, involves choosing good names. It is an extension
to PEP 8 with naming best practices, but also gives tips on designing good APIs.

Chapter 5, Writing a Package, explains how to create the Python package and which
tools to use in order to properly distribute it on the official Python Package Index
or any other package repository. Information about packages is supplemented
with a brief review of the tools that allow you to create standalone executables
from Python sources.

Chapter 6, Deploying Code, aims mostly at Python web developers and backend
engineers, because it deals with code deployments. It explains how Python
applications should be built in order to be easily deployed to remote servers and
what tools you can use in order to automate that process. This chapter dovetails
with Chapter 5, Writing a Package, because it shows how packages and private
package repositories can be used to streamline your application deployments.

Chapter 7, Python Extensions in Other Languages, explains why writing C extensions
for Python might be a good solution sometimes. It also shows that it is not as hard
as it seems to be as long as the proper tools are used.

Chapter 8, Managing Code, gives some insight into how a project code base can be
managed and explains how to set up various continuous development processes.

Chapter 9, Documenting Your Project, covers documentation and provides tips on
technical writing and how Python projects should be documented.

Preface

[xiii]

Chapter 10, Test-Driven Development, explains the basic principles of test-driven
development and the tools that can be used in this development methodology.

Chapter 11, Optimization – General Principles and Profiling Techniques, explains
optimization. It provides profiling techniques and an optimization strategy guideline.

Chapter 12, Optimization – Some Powerful Techniques, extends Chapter 11, Optimization
– General Principles and Profiling Techniques, by providing some common solutions to
the performance problems that are often found in Python programs.

Chapter 13, Concurrency, introduces the vast topic of concurrency in Python. It explains
what concurrency is, when it might be necessary to write concurrent applications, and
what are the main approaches to concurrency for Python programmers.

Chapter 14, Useful Design Patterns, concludes the book with a set of useful design
patterns and example implementations in Python.

What you need for this book
This book is written for developers who work under any operating system for which
Python 3 is available.

This is not a book for beginners, so I assume you have Python installed in your
environment or know how to install it. Anyway, this book takes into account the fact
that not everyone needs to be fully aware of the latest Python features or officially
recommended tools. This is why the first chapter provides a recap of common
utilities (such as virtual environments and pip) that are now considered standard
tools of professional Python developers.

Who this book is for
This book is written for Python developers who wish to go further in mastering
Python. And by developers I mean mostly professionals, so programmers who write
software in Python for a living. This is because it focuses mostly on tools and practices
that are crucial for creating performant, reliable, and maintainable software in Python.

It does not mean that hobbyists won't find anything interesting. This book should be
great for anyone who is interested in learning advance-level concepts with Python.
Anyone who has basic Python skills should be able to follow the content of the book,
although it might require some additional effort from less experienced programmers.
It should also be a good introduction to Python 3.5 for those who are still a bit behind
and continue to use Python in version 2.7 or older.

Preface

[xiv]

Finally, the groups that should benefit most from reading this book are web
developers and backend engineers. This is because of two topics featured in here
that are especially important in their areas of work: reliable code deployments
and concurrency.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Use the str.encode(encoding, errors) method, which encodes the string using
a registered codec for encoding."

A block of code is set as follows:

[print("hello world")
print "goodbye python2"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

cdef long long fibonacci_cc(unsigned int n) nogil:
 if n < 2:
 return n
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

Any command-line input or output is written as follows:

$ pip show pip

Metadata-Version: 2.0

Name: pip

Version: 7.1.2

Summary: The PyPA recommended tool for installing Python packages.

Home-page: https://pip.pypa.io/

Author: The pip developers

Author-email: python-virtualenv@groups.google.com

Preface

[xv]

License: MIT

Location: /usr/lib/python2.7/site-packages

Requires:

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvi]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Expert-Python-Programming_Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Expert-Python-Programming_Second-Edition
https://github.com/PacktPublishing/Expert-Python-Programming_Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xvii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Current Status of Python
Python is good for developers.

No matter what operating system you or your customers are running, it will work.
Unless you are coding platform-specific things, or using a platform-specific library,
you can work on Linux and deploy on other systems, for example. However, that's
not uncommon anymore (Ruby, Java, and many other languages work in the same
way). Combined with the other qualities that we will discover throughout this book,
Python becomes a smart choice for a company's primary development language.

This book is focused on the latest version of Python, 3.5, and all code examples are
written in this version of the language unless another version is explicitly mentioned.
Because this release is not yet widely used, this chapter contains some description
of the current status quo of Python 3 to introduce readers to it, as well as some
introductory information on modern approaches to development in Python. This
chapter covers the following topics:

• How to maintain compatibility between Python 2 and Python 3
• How to approach the problem of environment isolation both on application

and operating system level for the purpose of development
• How to enhance the Python prompt
• How to install packages using pip

A book always starts with some appetizers. So, if you are already familiar with
Python (especially with the latest 3.x branch) and know how to properly isolate
environments for development purposes, you can skip the first two sections of
this chapter and just read the other sections quickly. They describe some tools and
resources that are not essential but can highly improve productivity in Python. Be
sure to read the section on application-level environment isolation and pip, though,
as their installation is mandatory for the rest of the book.

Current Status of Python

[2]

Where are we now and where we are
going?
Python history starts somewhere in the late 1980s, but its 1.0 release date was in
the year 1994, so it is not a very young language. There could be a whole timeline
of major Python releases mentioned here, but what really matters is a single date:
December 3, 2008 – the release date of Python 3.0.

At the time of writing, seven years have passed since the first Python 3 release. It is
also four years since the creation of PEP 404—the official document that "un-released"
Python 2.8 and officially closed the 2.x branch. Although a lot of time has passed, there
is a specific dichotomy in the Python community—while the language develops very
fast, there is a large group of its users that do not want to move forward with it.

Why and how does Python change?
The answer is simple—Python changes because there is such a need. The competition
does not sleep. Every few months a new language pops out out of nowhere claiming
to solve problems of all its predecessors. Most projects like these lose developers'
attention very quickly and their popularity is driven by a sudden hype.

Anyway, this is a sign of some bigger issue. People design new languages because
they find the existing ones unsuitable for solving their problems in the best ways
possible. It would be silly not to recognize such a need. Also, more and more
wide spread usage of Python shows that it could, and should, be improved in
many places.

Lots of improvements in Python are often driven by the needs of particular fields
where it is used. The most significant one is web development, which necessitated
improvements to deal with concurrency in Python.

Some changes are just caused by the age and maturity of the Python project.
Throughout the years, it has collected some of the clutter in the form of de-organized
and redundant standard library modules or some bad design decisions. First, the
Python 3 release aimed to bring major clean-up and refreshment to the language,
but time showed that this plan backfired a bit. For a long time, it was treated by
many developers only like curiosity, but, hopefully, this is changing.

Chapter 1

[3]

Getting up to date with changes – PEP
documents
The Python community has a well-established way of dealing with changes. While
speculative Python language ideas are mostly discussed on specific mailing lists
(python-ideas@python.org), nothing major ever gets changed without the existence
of a new document called a PEP. A PEP is a Python Enhancement Proposal. It is
a paper written that proposes a change on Python, and is a starting point for the
community to discuss it. The whole purpose, format, and workflow around these
documents is also standardized in the form of a Python Enhancement Proposal—
precisely, PEP 1 document (http://www.python.org/dev/peps/pep-0001).

PEP documents are very important for Python and depending on the topic, they
serve different purposes:

• Informing: They summarize the information needed by core Python
developers and notify about Python release schedules

• Standardizing: They provide code style, documentation, or other guidelines
• Designing: They describe the proposed features

A list of all the proposed PEPs is available as in a document—PEP 0 (https://www.
python.org/dev/peps/). Since they are easily accessible in one place and the actual
URL is also very easy to guess, they are usually referred to by the number in
the book.

Those who are wondering what the direction is in which the Python language is
heading but do not have time to track a discussion on Python mailing lists, the PEP 0
document can be a great source of information. It shows which documents have
already been accepted but are not yet implemented and also which are still under
consideration.

PEPs also serve additional purposes. Very often, people ask questions like:

• Why does feature A work that way?
• Why does Python not have feature B?

In most such cases, the extensive answer is available in specific PEP documents
where such a feature has already been mentioned. There are a lot of PEP documents
describing Python language features that were proposed but not accepted. These
documents are left as a historical reference.

http://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/

Current Status of Python

[4]

Python 3 adoption at the time of writing
this book
So, is Python 3, thanks to new exciting features, well adopted among its community?
Sadly, not yet. The popular page Python 3 Wall of Superpowers (https://
python3wos.appspot.com) that tracks the compatibility of most popular packages
with the Python 3 branch was, until not so long ago, named Python 3 Wall of Shame.
This situation is changing and the table of listed packages on the mentioned page
is slowly turning "more green" with every month. Still, this does not mean that all
teams building their applications will shortly use only Python 3. When all popular
packages are available on Python 3, the popular excuse—the packages that we use
are not ported yet—will no longer be valid.

The main reason for such a situation is that porting the existing application from
Python 2 to Python 3 is always a challenge. There are tools like 2to3 that can perform
automated code translation but they do not ensure that the result will be 100%
correct. Also, such translated code may not perform as well as in its original form
without manual adjustments. The moving of existing complex code bases to Python
3 might involve tremendous effort and cost that some organizations may not be able
to afford. Still such costs can be split in time. Some good software architecture design
methodologies, such as service-oriented architecture or microservices, can help to
achieve this goal gradually. New project components (services or microservices) can
be written using the new technology and existing ones can be ported one at a time.

In the long run, moving to Python 3 can only have beneficial effects on a project.
According to PEP-404, there won't be a 2.8 release in the 2.x branch of Python
anymore. Also, there may be a time in the future when all major projects such as
Django, Flask, and numpy will drop any 2.x compatibility and will only be available
on Python 3.

My personal opinion on this topic can be considered controversial. I think that the
best incentive for the community would be to completely drop Python 2 support
when creating new packages. This, of course, greatly limits the reach of such
software but it may be the only way to change the way of thinking of those who
insist on sticking to Python 2.x.

https://python3wos.appspot.com
https://python3wos.appspot.com

Chapter 1

[5]

The main differences between Python 3
and Python 2
It has already been said that Python 3 breaks backwards compatibility with Python 2.
Still, it is not a complete redesign. Also, it does not mean that every Python module
written for a 2.x release will stop working under Python 3. It is possible to write
completely cross-compatible code that will run on both major releases without
additional tools or techniques, but usually it is possible only for simple applications.

Why should I care?
Despite my personal opinion on Python 2 compatibility, exposed earlier in this
chapter, it is impossible to simply forget about it right at this time. There are still
some useful packages (such as fabric, mentioned in Chapter 6, Deploying the Code)
that are really worth using but are not likely to be ported in the very near future.

Also, sometimes we may be constrained by the organization we work in. The existing
legacy code may be so complex that porting it is not economically feasible. So, even if
we decide to move on and live only in the Python 3 world from now on, it will be
impossible to completely live without Python 2 for some time.

Nowadays, it is very hard to name oneself a professional developer without giving
something back to the community, so helping the open source developers in adding
Python 3 compatibility to the existing packages is a good way to pay off the "moral
debt" incurred by using them. This, of course, cannot be done without knowing the
differences between Python 2 and Python 3. By the way, this is also a great exercise
for those new in Python 3.

The main syntax differences and common
pitfalls
The Python documentation is the best reference for differences between every
release. Anyway, for readers' convenience, this section summarizes the most
important ones. This does not change the fact that the documentation is mandatory
reading for those not familiar with Python 3 yet (see https://docs.python.
org/3.0/whatsnew/3.0.html).

https://docs.python.org/3.0/whatsnew/3.0.html
https://docs.python.org/3.0/whatsnew/3.0.html

Current Status of Python

[6]

The breaking changes introduced by Python 3 can generally be divided into a
few groups:

• Syntax changes, wherein some syntax elements were removed/changed
and other elements were added

• Changes in the standard library
• Changes in datatypes and collections

Syntax changes
Syntax changes that make it difficult for the existing code to run are the easiest to
spot—they will cause the code to not run at all. The Python 3 code that features new
syntax elements will fail to run on Python 2 and vice versa. The elements that are
removed will make Python 2 code visibly incompatible with Python 3. The running
code that has such issues will immediately cause the interpreter to fail raising a
SyntaxError exception. Here is an example of the broken script that has exactly
two statements, of which none will be executed due to the syntax error:

print("hello world")
print "goodbye python2"

Its actual result when run on Python 3 is as follows:

$ python3 script.py

 File "script.py", line 2

 print "goodbye python2"

 ^

SyntaxError: Missing parentheses in call to 'print'

The list of such differences is a bit long and, from time to time, any new Python 3.x
release may add new elements of syntax that will raise such errors on earlier releases
of Python (even on the same 3.x branch). The most important of them are covered
in Chapter 2, Syntax Best Practices – below the Class Level, and Chapter 3, Syntax Best
Practices – above the Class Level, so there is no need to list all of them here.

The list of things dropped or changed from Python 2.7 is shorter, so here are the
most important ones:

• print is no longer a statement but a function instead, so the parenthesis is
now obligatory.

• Catching exceptions changed from except exc, var to except exc as var.
• The <> comparison operator has been removed in favor of !=.

Chapter 1

[7]

• from module import * (https://docs.python.org/3.0/reference/
simple_stmts.html#import) is now allowed only on a module level, no
longer inside the functions.

• from .[module] import name is now the only accepted syntax for relative
imports. All imports not starting with the dot character are interpreted as
absolute imports.

• The sort() function and the list's sorted() method no longer accept the cmp
argument. The key argument should be used instead.

• Division expressions on integers such as 1/2 return floats. The truncating
behavior is achieved through the // operator like 1//2. The good thing is
that this can be used with floats too, so 5.0//2.0 == 2.0.

Changes in the standard library
Breaking changes in the standard library are the second easiest to catch after
syntax changes. Each subsequent version of Python adds, deprecates, improves, or
completely removes standard library modules. Such a process was regular also in the
older versions of Python (1.x and 2.x), so it does not come as a shock in Python 3.
In most cases, depending on the module that was removed or reorganized (like
urlparse being moved to urllib.parse), it will raise exceptions on the import time
just after it was interpreted. This makes such issues so easy to catch. Anyway, in order
to be sure that all such issues are covered, the full test code coverage is essential.
In some cases (for example, when using lazily loaded modules), the issues that are
usually noticed on import time will not appear before some modules are used in code
as function calls. This is why, it is so important to make sure that every line of code is
actually executed during tests suite.

Lazily loaded modules
A lazily loaded module is a module that is not loaded on import time. In
Python, import statements can be included inside of functions so import
will happen on a function call and not on import time. In some cases,
such loading of modules may be a reasonable choice but in most cases, it
is a workaround for poorly designed module structures (for example, to
avoid circular imports) and should be generally avoided. For sure, there is
no justifiable reason to lazily load standard library modules.

https://docs.python.org/3.0/reference/simple_stmts.html#import
https://docs.python.org/3.0/reference/simple_stmts.html#import

Current Status of Python

[8]

Changes in datatypes and collections
Changes in how Python represents datatypes and collections require the most
effort when the developer tries to maintain compatibility or simply port existing
code to Python 3. While incompatible syntax or standard library changes are easily
noticeable and the most easy to fix, changes in collections and types are either
nonobvious or require a lot of repetitive work. A list of such changes is long and,
again, official documentation is the best reference.

Still, this section must cover the change in how string literals are treated in Python
3 because it seems to be the most controversial and discussed change in Python 3,
despite being a very good thing that now makes things more explicit.

All string literals are now Unicode and bytes literals require a b or B prefix. For
Python 3.0 and 3.1 using u prefix (like u"foo") was dropped and will raise a syntax
error. Dropping that prefix was the main reason for all controversies. It made really
hard to create code that was compatible in different branches of Python—version 2.x
relied on this prefix in order to create Unicode literals. This prefix was brought back in
Python 3.3 to ease the integration process, although without any syntactic meaning.

The popular tools and techniques used for
maintaining cross-version compatibility
Maintaining compatibility between versions of Python is a challenge. It may add a
lot of additional work depending on the size of the project but is definitely doable
and worth doing. For packages that are meant to be reused in many environments,
it is an absolute must have. Open source packages without well-defined and tested
compatibility bounds are very unlikely to become popular, but also, closed third-party
code that never leaves the company network can greatly benefit from being tested in
different environments.

It should be noted here that while this part focuses mainly on compatibility between
various versions of Python, these approaches apply for maintaining compatibility
with external dependencies like different package versions, binary libraries, systems,
or external services.

The whole process can be divided into three main areas, ordered by importance:

• Defining and documenting target compatibility bounds and how they will
be managed

• Testing in every environment and with every dependency version declared
as compatible

• Implementing actual compatibility code

Chapter 1

[9]

Declaration of what is considered compatible is the most important part of the
whole process because it gives the users of the code (developers) the ability to have
expectations and make assumptions on how it works and how it can change in the
future. Our code can be used as a dependency in different projects that may also
strive to manage compatibility, so the ability to reason how it behaves is crucial.

While this book tries to always give a few choices rather than to give an absolute
recommendation on specific options, here is one of the few exceptions. The best way
so far to define how compatibility may change in the future is by the proper approach
to versioning numbers using Semantic Versioning (http://semver.org/), or shortly,
semver. It describes a broadly accepted standard for marking the scope of change
in code by the version specifier consisting only of three numbers. It also gives some
advice on how to handle deprecation policies. Here is an excerpt from its summary:

Given a version number MAJOR.MINOR.PATCH, increment:

• A MAJOR version when you make incompatible API changes
• A MINOR version when you add functionality in a backwards-compatible

manner
• A PATCH version when you make backwards-compatible bug fixes

Additional labels for pre-release and build metadata are available as extensions
to the MAJOR.MINOR.PATCH format.

When it comes to testing, the sad truth is that to be sure that code is compatible with
every declared dependency version and in every environment (here, the Python
version), it must be tested in every combination of these. This, of course, may not
be possible when the project has a lot of dependencies because the number of
combinations grows rapidly with every new dependency in a version. So, typically
some trade off needs to be made so that running full compatibility tests does not
take ages. A selection of tools that help testing in so-called matrixes is presented in
Chapter 10, Test-Driven Development, that discusses testing in general.

The benefit of using projects that follow semver is that usually what needs
to be tested are only major releases because minor and patch releases
are guaranteed not to include backwards incompatible changes. This
is only true if such projects can be trusted not to break such a contract.
Unfortunately, mistakes happen to everyone and backward incompatible
changes happen in a lot of projects, even on patch versions. Still, since
semver declares strict compatibility on minor and patch version changes,
breaking it is considered a bug, so it may be fixed in patch release.

http://semver.org/

Current Status of Python

[10]

Implementation of the compatibility layer is last and also least important if bounds
of that compatibility are well-defined and rigorously tested. Still there are some tools
and techniques that every programmer interested in such a topic should know.

The most basic is Python's __future__ module. It ports back some features from
newer Python releases back into the older ones and takes the form of import
statement:

from __future__ import <feature>

Features provided by future statements are syntax-related elements that cannot be
easily handled by different means. This statement affects only the module where it
was used. Here is an example of Python 2.7 interactive session that brings Unicode
literals from Python 3.0:

Python 2.7.10 (default, May 23 2015, 09:40:32) [MSC v.1500 32 bit
(Intel)] on win32

Type "help", "copyright", "credits" or "license" for more
information.

>>> type("foo") # old literals

<type 'str'>

>>> from __future__ import unicode_literals

>>> type("foo") # now is unicode

<type 'unicode'>

Here is a list of all the available __future__ statement options that developers
concerned with 2/3 compatibility should know:

• division: This adds a Python 3 division operator (PEP 238)
• absolute_import: This makes every form of import statement not starting

with a dot character interpreted as an absolute import (PEP 328)
• print_function: This changes a print statement into a function call, so

parentheses around print becomes mandatory (PEP 3112)
• unicode_literals: This makes every string literal interpreted as Unicode

literals (PEP 3112)

Chapter 1

[11]

A list of the __future__ statement options is very short and it covers only a few
syntax features. The other things that have changed like the metaclass syntax (which
is an advanced feature covered in Chapter 3, Syntax Best Practices – above the Class
Level), are a lot harder to maintain. Reliably handling of multiple standard library
reorganizations also cannot be solved by future statements. Happily, there are some
tools that aim to provide a consistent layer of ready-to-use compatibility. The most
commonly known is Six (https://pypi.python.org/pypi/six/) that provides
whole common 2/3 compatibility boilerplate as a single module. The other promising
but slightly less popular tool is the future module (http://python-future.org/).

In some situations, developers may not want to include additional dependencies
in some small packages. A common practice is the additional module that gathers
all the compatibility code, usually named compat.py. Here is an example of such
a compat module taken from the python-gmaps project (https://github.com/
swistakm/python-gmaps):

-*- coding: utf-8 -*-
import sys

if sys.version_info < (3, 0, 0):
 import urlparse # noqa

 def is_string(s):
 return isinstance(s, basestring)

else:
 from urllib import parse as urlparse # noqa

 def is_string(s):
 return isinstance(s, str)

https://pypi.python.org/pypi/six/
http://python-future.org/
https://github.com/swistakm/python-gmaps
https://github.com/swistakm/python-gmaps

Current Status of Python

[12]

Such a compat.py module is popular even in projects that depends on Six for
2/3 compatibility because it is a very convenient way to store code that handles
compatibility with different versions of packages used as dependencies.

Downloading the example code
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address and
password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Expert-Python-Programming_
Second-Edition. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Not only CPython
The main Python implementation is written in the C language and is called CPython.
It is the one that the majority of people refer to when they talk about Python. When
the language evolves, the C implementation is changed accordingly. Besides C,
Python is available in a few other implementations that are trying to keep up with
the mainstream. Most of them are a few milestones behind CPython, but provide
a great opportunity to use and promote the language in a specific environment.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Expert-Python-Programming_Second-Edition
https://github.com/PacktPublishing/Expert-Python-Programming_Second-Edition
https://github.com/PacktPublishing/Expert-Python-Programming_Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Chapter 1

[13]

Why should I care?
There are plenty of alternative Python implementations available. The Python Wiki
page on that topic (https://wiki.python.org/moin/PythonImplementations)
features more than 20 different language variants, dialects, or implementations of
Python interpreter built with something else than C. Some of them implement only
a subset of the core language syntax, features, and built-in extensions but there is at
least a few that are almost fully compatible with CPython. The most important thing
to know is that while some of them are just toy projects or experiments, most of them
were created to solve some real problems – problems that were either impossible to
solve with CPython or required too much of the developer's effort. Examples of such
problems are:

• Running Python code on embedded systems
• Integration with code written for runtime frameworks such as Java or .NET

or in different languages
• Running Python code in web browsers

This section provides a short description of subjectively most popular and up-to-date
choices that are currently available for Python programmers.

Stackless Python
Stackless Python advertises itself as an enhanced version of Python. Stackless is
named so because it avoids depending on the C call stack for its own stack. It is in
fact a modified CPython code that also adds some new features that were missing
from core Python implementation at the time Stackless was created. The most
important of them are microthreads managed by the interpreter as a cheap and
lightweight alternative to ordinary threads that must depend on system kernel
context switching and tasks scheduling.

The latest available versions are 2.7.9 and 3.3.5 that implement 2.7 and 3.3 versions of
Python respectively. All the additional features provided by Stackless are exposed as
a framework within this distribution through the built-in stackless module.

Stackless isn't the most popular alternative implementation of Python, but it is worth
knowing because ideas introduced in it have had a strong impact on the language
community. The core switching functionality was extracted from Stackless and
published as an independent package named greenlet, which is now a basis for
many useful libraries and frameworks. Also, most of its features were re-implemented
in PyPy—another Python implementation that will be featured later. Refer to
http://stackless.readthedocs.org/.

https://wiki.python.org/moin/PythonImplementations
http://stackless.readthedocs.org/

Current Status of Python

[14]

Jython
Jython is a Java implementation of the language. It compiles the code into Java byte
code, and allows the developers to seamlessly use Java classes within their Python
modules. Jython allows people to use Python as the top-level scripting language on
complex application systems, for example, J2EE. It also brings Java applications into
the Python world. Making Apache Jackrabbit (which is a document repository API
based on JCR; see http://jackrabbit.apache.org) available in a Python program
is a good example of what Jython allows.

The latest available version of Jython is Jython 2.7, and this corresponds to 2.7
version of the language. It is advertised as implementing nearly all of the core
Python standard library and uses the same regression test suite. The version of
Jython 3.x is under development.

The main differences of Jython as compared to CPython implementation are:

• True Java's garbage collection instead of reference counting
• The lack of GIL (global interpreter lock) allows a better utilization of

multiple cores in multi-threaded applications

The main weakness of this implementation of the language is the lack of support
for C Python Extension APIs, so no Python extensions written in C will work with
Jython. This might change in the future because there are plans to support the
C Python Extension API in Jython 3.x.

Some Python web frameworks such as Pylons were known to be boosting Jython
development to make it available in the Java world. Refer to http://www.jython.org.

IronPython
IronPython brings Python into the .NET Framework. The project is supported
by Microsoft, where IronPython's lead developers work. It is quite an important
implementation for the promotion of a language. Besides Java, the .NET community
is one of the biggest developer communities out there. It is also worth noting that
Microsoft provides a set of free development tools that turn Visual Studio into
full-fledged Python IDE. This is distributed as Visual Studio plugins named PVTS
(Python Tools for Visual Studio) and is available as open source code on GitHub
(http://microsoft.github.io/PTVS).

http://jackrabbit.apache.org
http://www.jython.org
http://microsoft.github.io/PTVS

Chapter 1

[15]

The latest stable release is 2.7.5 and it is compatible with Python 2.7. Similar to
Jython, there is some development around Python 3.x implementation, but there is
no stable release available yet. Despite the fact that .NET runs primarily on Microsoft
Windows, it is possible to run IronPython also on Mac OS X and Linux. This is
thanks to Mono, a cross platform, open source .NET implementation.

Main differences or advantages of IronPython as compared to CPython are
as follows:

• Similar to Jython, the lack of GIL (global interpreter lock) allows the better
utilization of multiple cores in multi-threaded applications

• Code written in C# and other .NET languages can be easily integrated in
IronPython and vice versa

• Can be run in all major web browsers through Silverlight

When speaking about weaknesses, IronPython, again, seems very similar to Jython
because it does not support the C Python Extension APIs. This is important for
developers who would like to use packages such as numpy that are largely based
on C extensions. There is a project called ironclad (refer to https://github.com/
IronLanguages/ironclad) that aims to allow using such extensions seamlessly with
IronPython, albeit its last known supported release is 2.6 and development seems to
have stopped at this point. Refer to http://ironpython.net/.

PyPy
PyPy is probably the most exciting implementation, as its goal is to rewrite Python
into Python. In PyPy, the Python interpreter is itself written in Python. We have a
C code layer carrying out the nuts-and-bolts work for the CPython implementation
of Python. However, in the PyPy implementation, this C code layer is rewritten in
pure Python.

This means you can change the interpreter's behavior during execution time and
implement code patterns that couldn't be easily done in CPython.

PyPy currently aims to be fully compatible with Python 2.7, while PyPy3 is
compatible with Python 3.2.5 version.

https://github.com/IronLanguages/ironclad
https://github.com/IronLanguages/ironclad
http://ironpython.net/

Current Status of Python

[16]

In the past, PyPy was interesting mostly for theoretical reasons, and it interested
those who enjoyed going deep into the details of the language. It was not generally
used in production, but this has changed through the years. Nowadays, many
benchmarks show that surprisingly PyPy is often way faster than the CPython
implementation. This project has its own benchmarking site that tracks the
performance of each version measured using tens of different benchmarks (refer to
http://speed.pypy.org/). It clearly shows that PyPy with JIT enabled is at least
a few times faster than CPython. This and other features of PyPy makes more and
more developers decide to switch to PyPy in their production environments.

The main differences of PyPy as compared to the CPython implementation are:

• Garbage collection is used instead of reference counting
• Integrated tracing JIT compiler that allows impressive improvements

in performance
• Application-level Stackless features are borrowed from Stackless Python

Like almost every other alternative Python implementation, PyPy lacks the full
official support of C Python Extension API. Still it, at least, provides some sort
of support for C extensions through its CPyExt subsystem, although it is poorly
documented and still not feature complete. Also, there is an ongoing effort within
the community in porting NumPy to PyPy because it is the most requested feature.
Refer to http://pypy.org.

Modern approaches to Python
development
A deep understanding of the programming language of choice is the most important
thing to harness as an expert. This will always be true for any technology. Still, it
is really hard to develop a good software without knowing the common tools and
practices within the given language community. Python has no single feature that
could not be found in some other language. So, in direct comparison of syntax,
expressiveness, or performance, there will always be a solution that is better in one or
more fields. But the area in which Python really stands out from the crowd is in the
whole ecosystem built around the language. Its community has, for years, polished
the standard practices and libraries that help to create more reliable software in a
shorter time.

http://speed.pypy.org/
http://pypy.org

Chapter 1

[17]

The most obvious and important part of the mentioned ecosystem is a huge
collection of free and open source packages that solve a multitude of problems.
Writing new software is always an expensive and time-consuming process. Being
able to reuse the existing code instead of reinventing the wheel greatly reduces the
time and costs of development. For some companies, it is the only reason their
projects are economically feasible.

Due to this reason, Python developers put a lot of effort on creating tools and
standards to work with open source packages created by others. Starting from virtual
isolated environments, improved interactive shells and debuggers, to programs that
help to discover, search, and analyze the huge collection of packages available on
PyPI (Python Package Index).

Application-level isolation of Python
environments
Nowadays, a lot of operating systems come with Python as a standard component.
Most Linux distributions and Unix-based systems such as FreeBSD, NetBSD,
OpenBSD, or OS X come with Python are either installed by default or available
through system package repositories. Many of them even use it as part of some core
components—Python powers the installers of Ubuntu (Ubiquity), Red Hat Linux
(Anaconda), and Fedora (Anaconda again).

Due to this fact, a lot of packages from PyPI are also available as native packages
managed by the system's package management tools such as apt-get (Debian,
Ubuntu), rpm (Red Hat Linux), or emerge (Gentoo). Although it should be
remembered that the list of available libraries is very limited and they are mostly
outdated when compared to PyPI. This is the reason why pip should always be used
to obtain new packages in the latest version as a recommendation of PyPA (Python
Packaging Authority). Although it is an independent package starting from version
2.7.9 and 3.4 of CPython, it is bundled with every new release by default. Installing
the new package is as simple as this:

pip install <package-name>

Current Status of Python

[18]

Among other features, pip allows forcing specific versions of packages (using the
pip install package-name==version syntax) and upgrading to the latest version
available (using the ––upgrade switch). The full usage description for most of the
command-line tools presented in the book can be easily obtained simply by running
the command with the -h or --help switch, but here is an example session that
demonstrates the most commonly used options:

$ pip show pip

Metadata-Version: 2.0

Name: pip

Version: 7.1.2

Summary: The PyPA recommended tool for installing Python packages.

Home-page: https://pip.pypa.io/

Author: The pip developers

Author-email: python-virtualenv@groups.google.com

License: MIT

Location: /usr/lib/python2.7/site-packages

Requires:

$ pip install 'pip<7.0.0'

Collecting pip<7.0.0

 Downloading pip-6.1.1-py2.py3-none-any.whl (1.1MB)

 100% |████████████████████████████████| 1.1MB 242kB/s

Installing collected packages: pip

 Found existing installation: pip 7.1.2

 Uninstalling pip-7.1.2:

 Successfully uninstalled pip-7.1.2

Successfully installed pip-6.1.1

You are using pip version 6.1.1, however version 7.1.2 is available.

You should consider upgrading via the 'pip install --upgrade pip'
command.

$ pip install --upgrade pip

You are using pip version 6.1.1, however version 7.1.2 is available.

You should consider upgrading via the 'pip install --upgrade pip'
command.

Chapter 1

[19]

Collecting pip

 Using cached pip-7.1.2-py2.py3-none-any.whl

Installing collected packages: pip

 Found existing installation: pip 6.1.1

 Uninstalling pip-6.1.1:

 Successfully uninstalled pip-6.1.1

Successfully installed pip-7.1.2

In some cases, pip may not be available by default. From Python 3.4 version
onwards (and also Python 2.7.9), it can always be bootstrapped using the
ensurepip module:

$ python -m ensurepip

Ignoring indexes: https://pypi.python.org/simple

Requirement already satisfied (use --upgrade to upgrade): setuptools in /
usr/lib/python2.7/site-packages

Collecting pip

Installing collected packages: pip

Successfully installed pip-6.1.1

The most up-to-date information on how to install pip for older Python versions
is available on the project's documentation page at https://pip.pypa.io/en/
stable/installing/.

Why isolation?
pip may be used to install system-wide packages. On Unix-based and Linux systems,
this will require super user privileges, so the actual invocation will be:

sudo pip install <package-name>

Note that this is not required on Windows since it does not provide the Python
interpreter by default, and Python on Windows is usually installed manually by
the user without super user privileges.

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Current Status of Python

[20]

Anyway, installing system-wide packages directly from PyPI is not recommended and
should be avoided. This may seem like a contradiction with the previous statement
that using pip is a PyPA recommendation, but there are some serious reasons for
that. As explained earlier, Python is very often an important part of many packages
available through operating system package repositories and may power a lot of
important services. System distribution maintainers put a lot of effort in selecting
the correct versions of packages to match various package dependencies. Very often,
Python packages that are available from system's package repositories contain custom
patches or are kept outdated only to ensure compatibility with some other system
components. Forcing an update of such a package using pip to a version that breaks
some backwards compatibility might break some crucial system services.

Doing such things only on the local computer for development purposes is also not
a good excuse. Recklessly using pip that way is almost always asking for trouble
and will eventually lead to issues that are very hard to debug. This does not mean
that installing packages from PyPI globally is a strictly forbidden thing, but it should
always be done consciously and while knowing the related risks.

Fortunately, there is an easy solution to this problem—environment isolation. There
are various tools that allow the isolation of the Python runtime environment at
different levels of system abstraction. The main idea is to isolate project dependencies
from packages required by different projects and/or system services. The benefits of
this approach are:

• It solves the "Project X depends on version 1.x but Project Y needs 4.x"
dilemma. The developer can work on multiple projects with different
dependencies that may even collide without the risk of affecting each other.

• The project is no longer constrained by versions of packages that are
provided in his system distribution repositories.

• There is no risk of breaking other system services that depend on certain
package versions because new package versions are only available inside
such an environment.

• A list of packages that are project dependencies can be easily "frozen", so it is
very easy to reproduce them.

The easiest and most lightweight approach to isolation is to use application-level
virtual environments. They focus only on isolating the Python interpreter and
packages available in it. They are very easy to set up and are very often just enough
to ensure proper isolation during the development of small projects and packages.

Unfortunately, in some cases, this may not be enough to ensure enough consistency
and reproducibility. For such cases, system-level isolation is a good addition to the
workflow and some available solutions to that are explained later in this chapter.

Chapter 1

[21]

Popular solutions
There are several ways to isolate Python at runtime. The simplest and most
obvious, although hardest to maintain, is to manually change PATH and PYTHONPATH
environment variables and/or move Python binary to a different place to affect the
way it discovers available packages and change it to a custom place where we want
to store our project's dependencies. Fortunately, there are several tools available that
help in maintaining virtual environments and how installed packages are stored in the
system. These are mainly: virtualenv, venv, and buildout. What they do under the
hood is in fact the same as what we would do manually. The actual strategy depends
on the specific tool implementation, but generally, they are more convenient to use and
can provide additional benefits.

virtualenv
Virtualenv is by far the most popular tool in this list. Its name simply stands for
Virtual Environment. It's not a part of the standard Python distribution, so it needs to
be obtained using pip. It is one of the packages that is worth installing system-wide
(using sudo on Linux and Unix-based systems).

Once it is installed, a new virtual environment is created using the following
command:

virtualenv ENV

Here, ENV should be replaced by the desired name for the new environment. This
will create a new ENV directory in the current working directory path. It will contain
a few new directories inside:

• bin/: This is where the new Python executable and scripts/executables
provided by other packages are stored.

• lib/ and include/: These directories contain the supporting library files for
the new Python inside the virtual environment. The new packages will be
installed in ENV/lib/pythonX.Y/site-packages/.

Once the new environment is created, it needs to be activated in the current shell
session using Unix's source command:

source ENV/bin/activate

Current Status of Python

[22]

This changes the state of the current shell sessions by affecting its environment
variables. In order to make the user aware that he has activated the virtual
environment, it will change the shell prompt by appending the (ENV) string at
its beginning. Here is an example session that creates a new environment and
activates it to illustrate this:

$ virtualenv example

New python executable in example/bin/python

Installing setuptools, pip, wheel...done.

$ source example/bin/activate

(example)$ deactivate

$

The important thing to note about virtualenv is that it depends completely on its
state stored on a filesystem. It does not provide any additional abilities to track what
packages should be installed in it. These virtual environments are not portable and
should not be moved to another system/machine. This means that the new virtual
environment needs to be created from scratch for each new application deployment.
Because of that, there is a good practice used by virtualenv users to store all project
dependencies in the requirements.txt file (this is the naming convention), as
shown in the following code:

lines followed by hash (#) are treated as a comments

strict version names are best for reproducibility
eventlet==0.17.4
graceful==0.1.1

for projects that are well tested with different
dependency versions the relative version specifiers
are acceptable too
falcon>=0.3.0,<0.5.0

packages without versions should be avoided unless
latest release is always required/desired
pytz

With such files, all dependencies can be easily installed using pip because it accepts
the requirements file as its output:

pip install -r requirements.txt

Chapter 1

[23]

What needs to be remembered is that the requirements file is not always the ideal
solution because it does not define the exact list of dependencies, only those that are
to be installed. So, the whole project can work without problems in a development
environment but will fail to start in others if the requirements file is outdated and does
not reflect actual state of environment. There is, of course, the pip freeze command
that prints all packages in the current environment but it should not be used blindly—
it will output everything, even packages that are not used in the project but installed
only for testing. The other tool mentioned in the book, buildout, addresses this issue,
so it may be a better choice for some development teams.

For Windows users, virtualenv under Windows uses a different
naming for its internal structure of directories. You need to use
Scripts/, Libs/, and Include/ instead of bin/, lib/, include/,
to better match development conventions on that operating system. The
commands used for activating/deactivating the environment are also
different; you need to use ENV/Scripts/activate.bat and ENV/
Scripts/deactivate.bat instead of using source on activate and
deactivate scripts.

venv
Virtual environments shortly became well established and a popular tool within the
community. Starting from Python 3.3, creating virtual environments is supported
by standard library. The usage is almost the same as with Virtualenv, although
command-line options have quite a different naming convention. The new venv
module provides a pyvenv script for creating a new virtual environment:

pyvenv ENV

Here, ENV should be replaced by the desired name for the new environment.
Also, new environments can now be created directly from Python code because
all functionality is exposed from the built-in venv module. The other usage and
implementation details, like the structure of the environment directory and
activate/deactivate scripts are mostly the same as in Virtualenv, so migration to
this solution should be easy and painless.

For developers using newer versions of Python, it is recommended to use venv
instead of Virtualenv. For Python 3.3, switching to venv may require more effort
because in this version, it does not install setuptools and pip by default in the new
environment, so the users need to install them manually. Fortunately, it has changed
in Python 3.4, and also due to the customizability of venv, it is possible to override
its behavior. The details are explained in the Python documentation (refer to
https://docs.python.org/3.5/library/venv.html), but some users might find
it too tricky and will stay with Virtualenv for that specific version of Python.

https://docs.python.org/3.5/library/venv.html

Current Status of Python

[24]

buildout
Buildout is a powerful tool for bootstrapping and the deployment of applications
written in Python. Some of its advanced features will also be explained later in the
book. For a long time, it was also used as a tool to create isolated Python environments.
Because Buildout requires a declarative configuration that must be changed every time
there is a change in dependencies, instead of relying on the environment state, these
environments were easier to reproduce and manage.

Unfortunately, this has changed. The buildout package since version 2.0.0 no longer
tries to provide any level of isolation from system Python installation. Isolation
handling is left to other tools such as Virtualenv, so it is still possible to have isolated
Buildouts, but things become a bit more complicated. A Buildout must be initialized
inside an isolated environment in order to be really isolated.

This has a major drawback as compared to the previous versions of Buildout, since
it depends on other solutions for isolation. The developer working on this code can
no longer be sure whether the dependencies description is complete because some
packages can be installed by bypassing the declarative configuration. This issue can
of course be solved using proper testing and release procedures, but it adds some
more complexity to the whole workflow.

To summarize, Buildout is no longer a solution that provides environment isolation
but its declarative configuration can improve maintainability and the reproducibility
of virtual environments.

Which one to choose?
There is no best solution that will fit every use case. What is good in one organization
may not fit the workflow of other teams. Also, every application has different needs.
Small projects can easily depend on sole virtualenv or venv but bigger ones may
require additional help of buildout to perform more complex assembly.

What was not described in detail earlier is that previous versions of Buildout
(buildout<2.0.0) allowed the assembly of projects in an isolated environment with
similar results as provided by Virtualenv. Unfortunately, 1.x branch of this project
is no longer maintained, so using it for that purpose is discouraged.

I would recommend to use venv module instead of Virtualenv whenever it is
possible. So, this should be the default choice for projects targeting Python versions
3.4 and higher. Using venv in Python 3.3 may be a little inconvenient due to a lack
of built-in support for setuptools and pip. For projects targeting a wider spectrum
of Python run times (including alternative interpreters and 2.x branch), it seems that
Virtualenv is the best choice.

Chapter 1

[25]

System-level environment isolation
In most cases, software implementation can iterate fast because developers reuse a
lot of existing components. Don't Repeat Yourself—this is a popular rule and motto
of many programmers. Using other packages and modules to include them in the
codebase is only a part of that culture. What also can be considered under "reused
components" are binary libraries, databases, system services, third-party APIs, and
so on. Even whole operating systems should be considered as reused.

Backend services of web-based applications are a great example of how complex
such applications can be. The simplest software stack usually consists of a few layers
(starting from the lowest):

• A database or other kind of storage
• The application code implemented in Python
• An HTTP server such as Apache or NGINX

Of course such stack can be even simpler but it is very unlikely. In fact, big
applications are often so complex that it is hard to distinguish single layers. Big
applications can use many different databases, be divided into multiple independent
processes, and use many other system services for caching, queuing, logging, service
discovery, and so on. Sadly, there are no limits for complexity and it seems that code
simply follows the second law of thermodynamics.

What really is important is that not all of the software stack elements can be isolated
on the level of Python runtime environment. No matter whether it is an HTTP
server such as NGINX or RDBMS such as PostgreSQL, they are usually available in
different versions on different systems. Making sure that everyone in a development
team uses the same versions of every component is very hard without proper tools.
It is theoretically possible that all developers in a team working on a single project
will be able to get the same versions of services on their development boxes. But all
this effort is futile if they do not use the same operating system as in the production
environment. And forcing a programmer to work on something else other than his
beloved system of choice is impossible for sure.

The problem lies in the fact that portability is still a big challenge. Not all services
will work in exactly the same way in production environments as they do on the
developer's machines and that is very unlikely to change. Even Python can behave
differently on different systems despite how much work is put in to make it cross-
platform. Usually, this is well documented and happens only in places that depend
directly on system calls, but relying on the programmer's ability to remember a long
list of compatibility quirks is quite an error prone strategy.

Current Status of Python

[26]

A popular solution to this problem is by isolating whole systems as application
environments. This is usually achieved by leveraging different types of system
virtualization tools. Virtualization, of course, reduces performance, but with modern
computers that have hardware support for virtualization, the performance loss is
usually negligible. On the other hand, a list of possible gains is very long:

• The development environment can exactly match the system version and
services used in production, which helps in solving compatibility issues

• Definitions for system configuration tools such as Puppet, Chef, or Ansible
(if used) can be reused for configuration of the development environment

• The newly hired team members can easily hop into the project if the creation
of such environments is automated

• The developers can work directly with low system-level features that may
not be available on operating systems they use for work, for example, FUSE
(File System in User Space) that is not available in Windows

Virtual development environments using
Vagrant
Vagrant currently seems to be the most popular tool that provides a simple and
convenient way to create and manage development environments. It is available for
Windows, Mac OS, and a few popular Linux distributions (refer to https://www.
vagrantup.com). It does not have any additional dependencies. Vagrant creates new
development environments in the form of virtual machines or containers. The exact
implementation depends on a choice of virtualization providers. VirtualBox is the
default provider and it is bundled with the Vagrant installer but additional providers
are available as well. The most notable choices are VMware, Docker, LXC (Linux
Containers), and Hyper-V.

The most important configuration is provided to Vagrant in a single file named
Vagrantfile. It should be independent for every project. The following are the
most important things it provides:

• Choice of virtualization provider
• Box used as a virtual machine image
• Choice of provisioning method
• Shared storage between a VM and a VM's host
• Ports that need to be forwarded between a VM and its host

https://www.vagrantup.com
https://www.vagrantup.com

Chapter 1

[27]

Syntax language for the Vagrantfile is Ruby. The example configuration file
provides a good template to start the project and has an excellent documentation,
so the knowledge of this language is not required. Template configuration can be
created using a single command:

vagrant init

This will create a new file named Vagrantfile in the current working directory. The
best place to store this file is usually the root of the related project sources. This file
is already a valid configuration that will create a new VM using the default provider
and base box image. No provisioning is enabled by default. After the addition of
Vagrantfile, the new VM is started using:

vagrant up

The initial start can take a few minutes because the actual box must be downloaded
from the Web. There is also some initialization process that may take some time
depending on the used provider, box, and system performance every time the
already existing VM is brought up. Usually, this takes only a couple of seconds. Once
the new Vagrant environment is up and running, developers can connect to SSH
using this shorthand:

vagrant ssh

This can be done anywhere in the project source tree below the location of
Vagrantfile. For developers' convenience, we will look in the directories above for
the configuration file and match it with the related VM instance. Then, it establishes
the secure shell connection, so the development environment can be interacted with
like any ordinary remote machine. The only difference is that the whole project
source tree (root defined as a location of Vagrantfile) is available on the VM's
filesystem under /vagrant/.

Containerization versus virtualization
Containers are an alternative to full machine virtualization. It is a lightweight
method of virtualization, where the kernel and operating system allow the running
of multiple isolated user space instances. OS is shared between containers and host,
so it theoretically requires less overhead than in full virtualization. Such a container
contains only application code and its system-level dependencies, but from the
perspective of processes running inside, it looks like a completely isolated system
environment.

Current Status of Python

[28]

Software containers got their popularity mostly thanks to Docker; that is one of the
available implementations. Docker allows to describe its container in the form of a
simple text document called Dockerfile. Containers from such definitions can be
built and stored. It also supports incremental changes, so if new things are added
to the container then it does not need to be recreated from scratch.

Different tools such as Docker and Vagrant seem to overlap in features but the
main difference between them is the reason why these tools were built. Vagrant, as
mentioned earlier, is built primarily as a tool for development. It allows to bootstrap
the whole virtual machine with a single command, but does not allow to simply
pack it and deploy or release as is. Docker, on the other hand, is built exactly for
that—preparing complete containers that can be sent and deployed to production as a
whole package. If implemented well, this can greatly improve the process of product
deployment. Because of that, using Docker and similar solutions (Rocket, for example)
during development makes sense only if it also has to be used in the deployment
process on production. Using it only for isolation purposes during development may
generate too much overhead and also has a drawback of not being consistent.

Popular productivity tools
A productivity tool is a bit of a vague term. On one hand, almost every open source
code package released and available online is a kind of productivity booster—it
provides ready-to-use solutions to some problem, so no one needs to spend time
on it (ideally speaking). On the other hand, one could say that the whole of Python
is about productivity. And both are undoubtedly true. Almost everything in this
language and community surrounding it seems to be designed in order to make
software development as productive as it is possible.

This creates a positive feedback loop. Since writing code is fun and easy, a lot of
programmers spend their free time to create tools that make it even easier and fun.
And this fact will be used here as a basis for a very subjective and non-scientific
definition of a productivity tool—a piece of software that makes development easier
and more fun.

By nature, productivity tools focus mainly on certain elements of the development
process such as testing, debugging, and managing packages and are not core parts
of products that they help to build. In some cases, they may not even be referred to
anywhere in the project's codebase despite being used on a daily basis.

The most important productivity tools, pip and venv, were already discussed earlier
in this chapter. Some of them have packages for specific problems, such as profiling
and testing, and have their own chapters in the book. This section is dedicated to
other tools that are really worth mentioning, but have no specific chapter in the book
where they could be introduced.

Chapter 1

[29]

Custom Python shells – IPython, bpython,
ptpython, and so on
Python programmers spend a lot of time in interactive interpreter sessions. It is very
good for testing small code snippets, accessing documentation, or even debugging
code at run time. The default interactive Python session is very simple and does
not provide many features such as tab completion or code introspection helpers.
Fortunately, the default Python shell can be easily extended and customized.

The interactive prompt can be configured with a startup file. When it starts, it looks
for the PYTHONSTARTUP environment variable and executes the code in the file
pointed to by this variable. Some Linux distributions provide a default startup script,
which is generally located in your home directory. It is called .pythonstartup. Tab
completion and command history are often provided to enhance the prompt and are
based on the readline module. (You need the readline library.)

If you don't have such a file, you can easily create one. Here's an example of the
simplest startup file that adds completion with the <Tab> key and history:

python startup file
import readline
import rlcompleter
import atexit
import os

tab completion
readline.parse_and_bind('tab: complete')

history file
histfile = os.path.join(os.environ['HOME'], '.pythonhistory')
try:
 readline.read_history_file(histfile)

except IOError:
 pass

atexit.register(readline.write_history_file, histfile)
del os, histfile, readline, rlcompleter

Create this file in your home directory and call it .pythonstartup. Then, add a
PYTHONSTARTUP variable in your environment using the path of your file:

Current Status of Python

[30]

Setting up the PYTHONSTARTUP environment
variable
If you are running Linux or Mac OS X, the simplest way is to create the startup script
in your home folder. Then, link it with a PYTHONSTARTUP environment variable set
into the system shell startup script. For example, the Bash and Korn shells use the
.profile file, where you can insert a line as follows:

export PYTHONSTARTUP=~/.pythonstartup

If you are running Windows, it is easy to set a new environment variable as an
administrator in the system preferences, and save the script in a common place
instead of using a specific user location.

Writing on the PYTHONSTARTUP script may be a good exercise but creating good
custom shell all alone is a challenge that only few can find time for. Fortunately,
there are a few custom Python shell implementations that immensely improve the
experience of interactive sessions in Python.

IPython
IPyhton (http://ipython.scipy.org) provides an extended Python command
shell. Among the features provided, the most interesting ones are:

• Dynamic object introspection
• System shell access from the prompt
• Profiling direct support
• Debugging facilities

Now, IPython is a part of the larger project called Jupyter that provides interactive
notebooks with live code that can be written in many different languages.

bpython
bpython (http://bpython-interpreter.org/) advertises itself as a fancy interface
to the python interpreter. Here are some of the accented on the projects page:

• In-line syntax highlighting
• Readline-like autocomplete with suggestions displayed as you type
• Expected parameter lists for any Python function
• Autoindentation
• Python 3 support

http://ipython.scipy.org
http://bpython-interpreter.org/

Chapter 1

[31]

ptpython
ptpython (https://github.com/jonathanslenders/ptpython/) is another
approach to the topic of advanced Python shells. In this project, core prompt utilities
implementation is available as a separate package called prompt_toolkit (from
the same author). This allows you to easily create various aesthetically pleasing
interactive command-line interfaces.

It is often compared to bpython in functionalities but the main difference is that it
enables a compatibility mode with IPython and its syntax that enables additional
features such as %pdb, %cpaste, or %profile.

Interactive debuggers
Code debugging is an integral element of the software development process. Many
programmers can spend most of their life using only extensive logging and print
statements as their primary debugging tools but most professional developers
prefer to rely on some kind of debugger.

Python already ships with a built-in interactive debugger called pdb (refer to
https://docs.python.org/3/library/pdb.html). It can be invoked from the
command line on the existing script, so Python will enter post-mortem debugging
if the program exits abnormally:

python -m pdb script.py

Post-mortem debugging, while useful, does not cover every scenario. It is useful only
when the application exists with some exception if the bug occurs. In many cases,
faulty code just behaves abnormally but does not exit unexpectedly. In such cases,
custom breakpoints can be set on a specific line of code using this single-line idiom:

import pdb; pdb.set_trace()

This will cause the Python interpreter to start the debugger session on this line
during run time.

pdb is very useful for tracing issues and at first glance, it may look very familiar to
the well-known GDB (GNU Debugger). Because Python is a dynamic language, the
pdb session is very similar to an ordinary interpreter session. This means that the
developer is not limited to tracing code execution but can call any code and even
perform module imports.

https://github.com/jonathanslenders/ptpython/
https://docs.python.org/3/library/pdb.html

Current Status of Python

[32]

Sadly, because of its roots (bdb), the first experience with pdb can be a bit
overwhelming due to the existence of cryptic short letter debugger commands such
as h, b, s, n, j, and r. Whenever in doubt, the help pdb command typed during the
debugger session will provide extensive usage and additional information.

The debugger session in pdb is also very simple and does not provide additional
features like tab completion or code highlighting. Fortunately, there are few
packages available on PyPI that provide such features available from alternative
Python shells mentioned in the previous section. The most notable examples are:

• ipdb: This is a separate package based on ipython
• ptpdb: This is a separate package based on ptpython
• bpdb: This is bundled with bpython

Useful resources
The Web is full of useful resources for Python developers. The most important and
obvious ones were already mentioned earlier but here they are repeated to keep this
list consistent:

• Python documentation
• PyPI—Python Package Index
• PEP 0—Index of Python Enhancement Proposals

The other resources such as books and tutorials are useful but often get outdated
very fast. What does not get outdated are the resources that are actively curated
by the community or released periodically. The two that are mostly worth
recommending are:

• Awesome-python (https://github.com/vinta/awesome-python), which
includes a curated list of popular packages and frameworks

• Python Weekly (http://www.pythonweekly.com/) is a popular newsletter
that delivers to its subscribers dozens of new and interesting Python
packages and resources every week

These two resources will provide the reader with tons of additional reading for
several months.

https://github.com/vinta/awesome-python
http://www.pythonweekly.com/

Chapter 1

[33]

Summary
This chapter started with topic differences between Python 2 and 3 with advice
on how to deal with the current situation where a big part of its community is
torn between two worlds. Then, it came to the modern approaches to Python
development that were surprisingly developed mostly due to this unfortunate split
between two major versions of the language. These are mostly different solutions to
the environment isolation problem. The chapter ended with a short summary of the
popular productivity tools as well as popular resources for further reference.

[35]

Syntax Best Practices –
below the Class Level

The ability to write an efficient syntax comes naturally with time. If you take a look
back at your first program, you will probably agree with this. The right syntax
will appear to your eyes as a good-looking piece of code, and the wrong syntax
as something disturbing.

Besides the algorithms that are implemented and the architectural design for your
program, taking great care over how it is written weighs heavily on how it will
evolve. Many programs are ditched and rewritten from scratch because of their
obtuse syntax, unclear APIs, or unconventional standards.

But Python has evolved a lot in the last few years. So, if you were kidnapped for a
while by your neighbor (a jealous guy from the local Ruby developers user group)
and kept away from the news, you will probably be astonished by its new features.
From the earliest version to the current one (3.5 at this time), a lot of enhancements
have been made to make the language clearer, cleaner, and easier to write. Python
basics have not changed drastically, but the tools to play with them are now a lot
more ergonomic.

This chapter presents the most important elements of modern syntax and tips on
their usage:

• List comprehensions
• Iterators and generators
• Descriptors and properties
• Decorators
• with and contextlib

Syntax Best Practices – below the Class Level

[36]

The code performance tips for speed improvement or memory usage are covered in
Chapter 11, Optimization – General Principles and Profiling Techniques, and Chapter 12,
Optimization – Some Powerful Techniques.

Python's built-in types
Python provides a great set of datatypes. This is true for both numeric types and also
collections. Regarding the numeric types, there is nothing special about their syntax.
There are, of course, some differences for defining literals of every type and some
(maybe) not well-known details regarding operators, but there aren't a lot of choices
left for developers. Things change when it comes to collections and strings. Despite
the "there should be only one way to do something" mantra, the Python developer is
really left with plenty of choices. Some of the code patterns that seem intuitive and
simple to beginners are often considered non-Pythonic by experienced programmers
because they are either inefficient or simply too verbose.

Such Pythonic patterns for solving common problems (by many programmers called
idioms) may often seem like only aesthetics. This cannot be more wrong. Most of the
idioms are driven by the fact how Python is implemented internally and on how built-
in structures and modules work. Knowing more of such details is essential for a good
understanding of the language. Also, the community itself is not free from myths and
stereotypes about how things in Python work. Only by digging deeper yourself, will
you be able to tell which of the popular statements about Python are really true.

Strings and bytes
The topic of strings may provide some confusion for programmers that are used to
programming only in Python 2. In Python 3, there is only one datatype capable of
storing textual information. It is str or, simply, string. It is an immutable sequence
that stores Unicode code points. This is the major difference from Python 2, where
str represents byte strings—something that is now handled by the bytes objects
(but not exactly in the same way).

Strings in Python are sequences. This single fact should be enough to include them in
the section covering other container types, but they differ from other container types
in one important detail. Strings have very specific limitations on what type of data
they can store, and that is Unicode text.

bytes and its mutable alternative (bytearray) differs from str by allowing only bytes
as a sequence value—integers in the range 0 <= x < 256. This may be confusing at
the beginning, since when printed, they may look very similar to strings:
>>> print(bytes([102, 111, 111]))

b'foo'

Chapter 2

[37]

The true nature of bytes and bytearray is revealed when it is converted to another
sequence type like list or tuple:

>>> list(b'foo bar')

[102, 111, 111, 32, 98, 97, 114]

>>> tuple(b'foo bar')

(102, 111, 111, 32, 98, 97, 114)

A lot of Python 3 controversy was about breaking the backwards compatibility for
string literals and how Unicode is dealt with. Starting from Python 3.0, every un-
prefixed string literal is Unicode. So, literals enclosed by single quotes ('), double
quotes ("), or groups of three quotes (single or double) without any prefix represent
the str datatype:

>>> type("some string")

<class 'str'>

In Python 2, the Unicode literals required the u prefix (like u"some string"). This
prefix is still allowed for backward compatibility (starting from Python 3.3), but does
not hold any syntactic meaning in Python 3.

Bytes literals were already presented in some of the previous examples, but let's
explicitly present its syntax for the sake of consistency. Bytes literals are also
enclosed by single quotes, double quotes, or triple quotes, but must be preceded
by a b or B prefix:

>>> type(b"some bytes")

<class 'bytes'>

Note that there is no bytearray literals in the Python syntax.

Last but not least, Unicode strings contain "abstract" text that is independent from
the byte representation. This makes them unable to be saved on the disk or sent over
the network without encoding to binary data. There are two ways to encode string
objects into byte sequences:

• Using the str.encode(encoding, errors) method, which encodes the
string using a registered codec for encoding. Codec is specified using the
encoding argument, and, by default, it is 'utf-8'. The second errors
argument specifies the error handling scheme. It can be 'strict' (default),
'ignore', 'replace', 'xmlcharrefreplace', or any other registered
handler (refer to the built-in codecs module documentation).

Syntax Best Practices – below the Class Level

[38]

• Using the bytes(source, encoding, errors) constructor, which creates a
new bytes sequence. When the source is of the str type, then the encoding
argument is obligatory and it does not have a default value. The usage of
the encoding and errors arguments is the same as for the str.encode()
method.

Binary data represented by bytes can be converted to a string in the analogous ways:

• Using the bytes.decode(encoding, errors) method, which decodes the
bytes using the codec registered for encoding. The arguments of this method
have the same meaning and defaults as the arguments of str.encode().

• Using the str(source, encoding, error) constructor, which creates
a new string instance. Similar to the bytes() constructor, the encoding
argument in the str() call has no default value and must be provided
if the bytes sequence is used as a source.

Naming – bytes versus byte string
Due to changes made in Python 3, some people tend to refer to
the bytes instances as byte strings. This is mostly due to historic
reasons—bytes in Python 3 is the sequence type that is the closest
one to the str type from Python 2 (but not the same). Still, the bytes
instance is a sequence of bytes and also does not need to represent
textual data. So, in order to avoid any confusion, it is advisable to
always refer to them as either bytes or a byte sequence despite their
similarities to strings. The concept of strings is reserved for textual
data in Python 3 and this is now always str.

Implementation details
Python strings are immutable. This is also true to byte sequences. This is an
important fact because it has both advantages and disadvantages. It also affects the
way strings should be handled in Python efficiently. Thanks to immutability, strings
can be used as dictionary keys or set collection elements because once initialized,
they will never change their value. On the other hand, whenever a modified string is
required (even with only tiny modification), a completely new instance needs to be
created. Fortunately, bytearray as a mutable version of bytes does not introduce
such an issue. Byte arrays can be modified in-place (without the need of new object
creation) through item assignments and can be dynamically resized exactly like
lists—using appends, pops, inserts, and so on.

Chapter 2

[39]

String concatenation
Knowing the fact that Python strings are immutable imposes some problems when
multiple string instances need to be joined together. As stated before, concatenating
any immutable sequences result in the creation of a new sequence object. Consider
that a new string is built by the repeated concatenation of multiple strings, as follows:

s = ""
for substring in substrings:
 s += substring

This will result in a quadratic runtime cost in the total string length. In other words,
it is highly inefficient. For handling such situations, there is the str.join() method
available. It accepts iterable of strings as the argument and returns a joined string.
Because it is the method, the actual idiom uses the empty string literal as a source
of method:

s = "".join(substrings)

The string providing this method will be used as a separator between joined
substrings; consider the following example:

>>> ','.join(['some', 'comma', 'separated', 'values'])

'some,comma,separated,values'

It is worth remembering that just because it is faster (especially for large lists), it
does not mean that the join() method should be used in every situation where two
strings need to be concatenated. Despite being a widely recognized idiom, it does
not improve code readability – and readability counts! There are also some situations
where join() may not perform as well as ordinary concatenation through addition.
Here some examples of them:

• If the number of substrings is small and they are not contained already by
some iterable—in some cases, an overhead of creating a new sequence just
to perform concatenation can overshadow the gain of using join().

• When concatenating short literals, thanks to constant folding in CPython,
some complex literals (not only strings) such as 'a' + 'b' + 'c' to 'abc'
can be translated to a shorter form at compile time. Of course, this is enabled
only for constants (literals) that are relatively short.

Ultimately, the best readability of string concatenation if the number of strings is
known beforehand is ensured by proper string formatting, by either using the str.
format() method or the % operator. In code sections where the performance is not
critical or gain from optimizing string concatenation is very little, string formatting
is recommended as the best alternative.

Syntax Best Practices – below the Class Level

[40]

Constant folding and peephole optimizer
CPython uses the peephole optimizer on compiled source code in
order to improve performance. This optimizer implements a number of
common optimizations directly on Python's byte code. As mentioned,
constant folding is one such feature. The resulting constants are limited
in length by a hardcoded value. In Python 3.5, it is still invariably equal
to 20. Anyway, this particular detail is rather a curiosity than a thing
that can be relied on in day-to-day programming. Information of other
interesting optimizations performed by peephole optimizer can be
found in the Python/peephole.c file of Python's source code.

Collections
Python provides a good selection of built-in data collections that allows you to
efficiently solve many problems if you choose wisely. Types that you probably
already know are those that have dedicated literals:

• Lists
• Tuples
• Dictionaries
• Sets

Python is of course not limited to these four and it extends the list of possible choices
through its standard library. In many cases, the solution to a problem may be as
simple as making a good choice for data structure. This part of the book aims to ease
such a decision by providing deeper insight into the possible options.

Lists and tuples
The two most basic collection types in Python are lists and tuples, and they both
represent sequences of objects. The basic difference between them should be obvious
for anyone who has spent more than a few hours with Python—lists are dynamic so
can change their size, while tuples are immutable (they cannot be modified after they
are created).

Tuples, despite having many various optimizations that makes allocation/
deallocation of small objects fast, are the recommended datatype for structures
where the position of the element is information by itself. For example, tuple may
be a good choice for storing a pair of (x, y) coordinates. Anyway, details regarding
tuples are rather uninteresting. The only important thing about them in the scope
of this chapter is that tuple is immutable and thus hashable. What this means will
be covered later in a Dictionaries section. More interesting than tuple is its dynamic
counterpart, list, how it really works, and how to deal with it efficiently.

Chapter 2

[41]

Implementation details
Many programmers easily confuse Python's list type with the concept of linked
lists found often in standard libraries of other languages such as C, C++, or Java. In
fact, CPython lists are not lists at all. In CPython, lists are implemented as variable
length arrays. This should also be true for other implementations such as Jython and
IronPython, although such implementation details are often not documented in these
projects. The reasons for such confusion are clear. This datatype is named list and
also has an interface that could be expected from any linked list implementation.

Why is it important and what does it mean? Lists are one of the most popular data
structures and the way they are used greatly affects every application's performance.
Also, CPython is the most popular and used implementation, so knowing its internal
implementation details is crucial.

In detail, lists in Python is a contiguous array of references to other objects. The
pointer to this array and the length is stored in a lists head structure. This means that
every time an item is added or removed, the array of references needs to be resized
(reallocated). Fortunately, in Python, these arrays are created with exponential
over-allocation, so not every operation requires a resize. This is how the amortized
cost of appending and popping elements can be low in terms of complexity.
Unfortunately, some other operations that are considered "cheap" in ordinary
linked lists have relatively high computational complexity in Python:

• Inserting an item at arbitrary place using the list.insert method—
complexity O(n)

• Deleting an item using list.delete or using del—complexity O(n)

Here, n is the length of a list. At least retrieving or setting an element using index is
an operation that cost is independent of the list's size. Here is a full table of average
time complexities for most of the list operations:

Operation Complexity
Copy O(n)
Append O(1)
Insert O(n)
Get item O(1)
Delete item O(n)
Iteration O(n)
Get slice of length k O(k)
Del slice O(n)
Set slice of length k O(k+n)

Syntax Best Practices – below the Class Level

[42]

Operation Complexity
Extend O(k)
Multiply by k O(nk)
Test existence (element in list) O(n)
min()/max() O(n)
Get length O(1)

For situations where a real linked list is needed (or simply, a data structure that
has appends and pop at each side at O(1) complexity), Python provides deque in
collections built-in module. This is a generalization of stacks and queues and
should work fine anywhere where a doubly linked list is required.

List comprehensions
As you probably know, writing a piece of code such as this is painful:

>>> evens = []

>>> for i in range(10):

... if i % 2 == 0:

... evens.append(i)

...

>>> evens

[0, 2, 4, 6, 8]

This may work for C, but it actually makes things slower for Python because:

• It makes the interpreter work on each loop to determine what part of the
sequence has to be changed

• It makes you keep a counter to track what element has to be treated
• It requires an additional function lookup to be performed at every iteration

because append() is a list's method

A list comprehension is the correct answer to this pattern. It uses wired features that
automate parts of the previous syntax:

>>> [i for i in range(10) if i % 2 == 0]

[0, 2, 4, 6, 8]

Besides the fact that this writing is more efficient, it is way shorter and involves
fewer elements. In a bigger program, this means fewer bugs and code that is easier
to read and understand.

Chapter 2

[43]

List comprehensions and internal array resize
There is a myth among some Python programmers that the list
comprehensions can be a workaround for the fact that the internal
array representing the list object must be resized with every few
additions. Some say that the array will be allocated once in just the
right size. Unfortunately, this isn't true.
The interpreter during evaluation of the comprehension can't know
how big the resulting container will be and it can't preallocate the final
size of the array for it. Due to this, the internal array is reallocated in
the same pattern as it would be in the for loop. Still, in many cases,
list creation using comprehensions is both cleaner and faster than
using ordinary loops.

Other idioms
Another typical example of a Python idiom is the usage of enumerate. This built-in
function provides a convenient way to get an index when a sequence is used in a
loop. Consider the following piece of code as an example:

>>> i = 0

>>> for element in ['one', 'two', 'three']:

... print(i, element)

... i += 1

...

0 one

1 two

2 three

This can be replaced by the following code, which is shorter:

>>> for i, element in enumerate(['one', 'two', 'three']):

... print(i, element)

...

0 one

1 two

2 three

Syntax Best Practices – below the Class Level

[44]

When the elements of multiple lists (or any iterables) need to be aggregated in a
one-by-one fashion, then the built-in zip() function may be used. This is a very
common pattern for uniform iteration over two same-sized iterables:

>>> for item in zip([1, 2, 3], [4, 5, 6]):

... print(item)

...

(1, 4)

(2, 5)

(3, 6)

Note that the results of zip() can be reversed by another zip() call:

>>> for item in zip(*zip([1, 2, 3], [4, 5, 6])):

... print(item)

...

(1, 2, 3)

(4, 5, 6)

Another popular syntax element is sequence unpacking. It is not limited to lists and
tuples and will work with any sequence type (even strings and byte sequences). It
allows you to unpack a sequence of elements into another set of variables as long as
there are as many variables on the left-hand side of the assignment operator as the
number of elements in the sequence:

>>> first, second, third = "foo", "bar", 100

>>> first

'foo'

>>> second

'bar'

>>> third

100

Unpacking also allows you to capture multiple elements in a single variable using
starred expressions as long as it can be interpreted unambiguously. Unpacking
can also be performed on nested sequences. This can come in handy especially
when iterating on some complex data structures built of sequences. Here are some
examples of more complex unpacking:

>>> # starred expression to capture rest of the sequence

>>> first, second, *rest = 0, 1, 2, 3

>>> first

Chapter 2

[45]

0

>>> second

1

>>> rest

[2, 3]

>>> # starred expression to capture middle of the sequence

>>> first, *inner, last = 0, 1, 2, 3

>>> first

0

>>> inner

[1, 2]

>>> last

3

>>> # nested unpacking

>>> (a, b), (c, d) = (1, 2), (3, 4)

>>> a, b, c, d

(1, 2, 3, 4)

Dictionaries
Dictionaries are one of the most versatile data structures in Python. dict allows to
map a set of unique keys to values as follows:

{
 1: ' one',
 2: ' two',
 3: ' three',
}

Dictionary literals are a very basic thing and you should already know them.
Anyway, Python allows programmers to also create a new dictionary using
comprehensions similar to the list comprehensions mentioned earlier. Here is
a very simple example:

squares = {number: number**2 for number in range(100)}

Syntax Best Practices – below the Class Level

[46]

What is important is that the same benefits of using list comprehensions apply to
dictionary comprehensions. So, in many cases, they are more efficient, shorter, and
cleaner. For more complex code, when many if statements or function calls are
required to create a dictionary, the simple for loop may be a better choice, especially
if it improves the readability.

For Python programmers new to Python 3, there is one important note about iterating
over dictionary elements. The dictionary methods: keys(), values(), and items()
no longer have lists as their return value types. Also, their counterparts iterkeys(),
itervalues(), and iteritems() that returned iterators instead are missing in Python
3. Instead, what keys(), values(), and items() return now are view objects:

• keys(): This returns the dict_keys object that provides a view on all the
keys of a dictionary

• values(): This returns the dict_values object that provides views on all the
values of a dictionary

• items(): This returns the dict_items object providing views on all (key,
value) two tuples of a dictionary

View objects provide a view on the dictionary content in a dynamic way, so every
time the dictionary changes, the views will reflect these changes, as shown in
this example:

>>> words = {'foo': 'bar', 'fizz': 'bazz'}

>>> items = words.items()

>>> words['spam'] = 'eggs'

>>> items

dict_items([('spam', 'eggs'), ('fizz', 'bazz'), ('foo', 'bar')])

View objects join the behavior of lists returned by implementation of old
methods with iterators returned by their "iter" counterparts. Views do not need to
redundantly store all values in memory (like lists do), but still allow getting their
length (using len) and testing membership (using the in clause). Views are, of
course, iterable.

The last important thing is that both views returned by the keys() and values()
methods ensure the same order of keys and values. In Python 2, you could not
modify the dictionary content between these two calls if you wanted to ensure the
same order of retrieved keys and values. dict_keys and dict_values are now
dynamic so even if the content of a dictionary will change between keys() and
values() calls, the order of iteration is consistent between these two views.

Chapter 2

[47]

Implementation details
CPython uses hash tables with pseudo-random probing as an underlying data
structure for dictionaries. It seems like a very deep implementation detail, but it
is very unlikely to change in the near future, so it is also a very interesting fact for
the programmer.

Due to this implementation detail, only objects that are hashable can be used as a
dictionary key. An object is hashable if it has a hash value that never changes during
its lifetime and can be compared to different objects. Every Python's built-in type
that is immutable is also hashable. Mutable types such as list, dictionaries, and sets
are not hashable and so they cannot be used as dictionary keys. Protocol that defines
if a type is hashable consists of two methods:

• __hash__: This provides the hash value (as an integer) that is needed by the
internal dict implementation. For objects that are instances of user-defined
classes, it is derived from their id().

• __eq__: This compares if two objects that have the same value. All objects
that are instances of user-defined classes compare unequal, by default,
except for themselves.

Two objects that are compared equal must have the same hash value. The reverse
does not need to be true. This means collisions of hashes are possible—two objects
with the same hash may not be equal. It is allowed, and every Python implementation
must be able to resolve hash collisions. CPython uses open addressing to resolve
such collisions (https://en.wikipedia.org/wiki/Open_addressing). Still, the
probability of collisions greatly affects performance, and if it is high, the dictionary
will not benefit from its internal optimizations.

While three basic operations: adding, getting, and deleting an item have an average
time complexity equal to O(1), their amortized worst case complexities are a lot
higher—O(n), where n is the current dictionary size. Additionally, if user-defined class
objects are used as dictionary keys and they are hashed improperly (with a high risk of
collisions), then this will have a huge negative impact on the dictionary performance.
The full table of CPyhton's time complexities for dictionaries is as follows:

Operation Average complexity Amortized worst
case complexity

Get item O(1) O(n)
Set item O(1) O(n)
Delete item O(1) O(n)
Copy O(n) O(n)
Iteration O(n) O(n)

https://en.wikipedia.org/wiki/Open_addressing

Syntax Best Practices – below the Class Level

[48]

It is also important to know that the n number in worst-case complexities for copying
and iterating the dictionary is the maximum size that the dictionary ever achieved,
rather than the current item count. In other words, iterating over the dictionary that
once was huge but has greatly shrunk in time may take a surprisingly long time. So,
in some cases, it may be better to create a new dictionary object if it has to be iterated
often instead of just removing elements from the previous one.

Weaknesses and alternatives
One of the common pitfalls of using dictionaries is that they do not preserve
the order of elements in which new keys were added. In some scenarios, when
dictionary keys use consecutive keys whose hashes are also consecutive values (for
example, using integers), the resulting order might be the same due to the internal
implementation of dictionaries:

>>> {number: None for number in range(5)}.keys()

dict_keys([0, 1, 2, 3, 4])

Still, using other datatypes which hash differently shows that the order is not
preserved. Here is an example in CPython:

>>> {str(number): None for number in range(5)}.keys()

dict_keys(['1', '2', '4', '0', '3'])

>>> {str(number): None for number in reversed(range(5))}.keys()

dict_keys(['2', '3', '1', '4', '0'])

As shown in the preceding code, the resulting order is both dependent on the
hashing of the object and also on the order in which the elements were added. This is
not what can be relied on because it can vary with different Python implementations.

Still, in some cases, the developer might need dictionaries that preserve the order of
additions. Fortunately, the Python standard library provides an ordered dictionary
called OrderedDict in the collections module. It optionally accepts an iterable as
the initialization argument:

>>> from collections import OrderedDict

>>> OrderedDict((str(number), None) for number in range(5)).keys()

odict_keys(['0', '1', '2', '3', '4'])

It also has some additional features such as popping items from both ends using
the popitem() method or moving the specified element to one of the ends using
the move_to_end() method. A full reference on that collection is available in
the Python documentation (refer to https://docs.python.org/3/library/
collections.html).

https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.html

Chapter 2

[49]

The other important note is that in very old code bases, dict may be used as a
primitive set implementation that ensures the uniqueness of elements. While this
will give proper results, this should be omitted unless Python versions lower than
2.3 are targeted. Using dictionaries this way is wasteful in terms of resources. Python
has a built-in set type that serves this purpose. In fact, it has a very similar internal
implementation to dictionaries in CPython, but offers some additional features as
well as specific set-related optimizations.

Sets
Sets are a very robust data structure that are useful mostly in situations where the
order of elements is not as important as their uniqueness and efficiency of testing
if an element is contained by a collection. They are very similar to analogous
mathematic concepts. Sets are provided as built-in types in two flavors:

• set(): This is a mutable, non-ordered, finite collection of unique, immutable
(hashable) objects

• frozenset(): This is an immutable, hashable, non-ordered collection of
unique, immutable (hashable) objects

The immutability of frozenset() makes it possible to be used as dictionary keys
and also other set() and frozenset() elements. A plain mutable set() cannot be
used within another set or frozenset content as this will raise TypeError:

>>> set([set([1,2,3]), set([2,3,4])])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

The following set initializations are completely correct:

>>> set([frozenset([1,2,3]), frozenset([2,3,4])])

{frozenset({1, 2, 3}), frozenset({2, 3, 4})}

>>> frozenset([frozenset([1,2,3]), frozenset([2,3,4])])

frozenset({frozenset({1, 2, 3}), frozenset({2, 3, 4})})

Mutable sets can be created in three ways:

• Using a set() call that accepts optional iterable as the initialization
argument, such as set([0, 1, 2])

• Using a set comprehension such as {element for element in range(3)}
• Using set literals such as {1, 2, 3}

Syntax Best Practices – below the Class Level

[50]

Note that using literals and comprehensions for sets requires extra caution because
they are very similar in form to dictionary literals and comprehensions. Also, there
is no literal for empty set objects—empty curly brackets {} are reserved for empty
dictionary literals.

Implementation details
Sets in CPython are very similar to dictionaries. As a matter of fact, they are
implemented like dictionaries with dummy values, where only keys are actual
collection elements. Also, sets exploit this lack of values in mapping for additional
optimizations.

Thanks to this, sets allow very fast additions, deletions, and checking for
element existence with the average time complexity equal to O(1). Still, since the
implementation of sets in CPython relies on a similar hash table structure, the
worst-case complexity for these operations is O(n), where n is the current size
of a set.

Other implementation details also apply. The item to be included in a set must be
hashable, and if instances of user-defined classes in a set are hashed poorly, this will
have a negative impact on the performance.

Beyond basic collections – the collections module
Every data structure has its shortcomings. There is no single collection that can suit
every problem and four basic types of them (tuple, list, set, and dictionary) is still
not a wide range of choices. These are the most basic and important collections that
have a dedicated literal syntax. Fortunately, Python provides a lot more options in its
standard library through the collections built-in module. One of them was already
mentioned (deque). Here are the most important collections provided by this module:

• namedtuple(): This is a factory function for creating tuple subclasses
whose indexes can be accessed as named attributes

• deque: This is a double-ended queue, list-like generalization of stacks
and queues with fast appends and pops on both ends

• ChainMap: This is a dictionary-like class to create a single view of
multiple mappings

• Counter: This is a dictionary subclass for counting hashable objects
• OrderedDict: This is a dictionary subclass that preserves the order the

entries were added in
• defaultdict: This is a dictionary subclass that can supply missing values

with a provided default

Chapter 2

[51]

More details on selected collections from the collections module and
some advice on where it is worth using them are provided in Chapter 12,
Optimization – Some Powerful Techniques.

Advanced syntax
It is hard to objectively tell which element of language syntax is advanced. For the
purpose of this chapter on advanced syntax elements, we will consider the elements
that do not directly relate to any specific built-in datatypes and which are relatively
hard to grasp at the beginning. The most common Python features that may be hard
to understand are:

• Iterators
• Generators
• Decorators
• Context managers

Iterators
An iterator is nothing more than a container object that implements the iterator
protocol. It is based on two methods:

• __next__: This returns the next item of the container
• __iter__: This returns the iterator itself

Iterators can be created from a sequence using the iter built-in function. Consider
the following example:

>>> i = iter('abc')

>>> next(i)

'a'

>>> next(i)

'b'

>>> next(i)

'c'

>>> next(i)

Traceback (most recent call last):

 File "<input>", line 1, in <module>

StopIteration

Syntax Best Practices – below the Class Level

[52]

When the sequence is exhausted, a StopIteration exception is raised. It makes
iterators compatible with loops since they catch this exception to stop cycling. To
create a custom iterator, a class with a __next__ method can be written, as long as
it provides the special method __iter__ that returns an instance of the iterator:

class CountDown:
 def __init__(self, step):
 self.step = step
 def __next__(self):
 """Return the next element."""
 if self.step <= 0:
 raise StopIteration
 self.step -= 1
 return self.step
 def __iter__(self):
 """Return the iterator itself."""
 return self

Here is example usage of such iterator:

>>> for element in CountDown(4):

... print(element)

...

3

2

1

0

Iterators themselves are a low-level feature and concept, and a program can live
without them. But they provide the base for a much more interesting feature,
generators.

The yield statement
Generators provide an elegant way to write simple and efficient code for functions
that return a sequence of elements. Based on the yield statement, they allow you to
pause a function and return an intermediate result. The function saves its execution
context and can be resumed later, if necessary.

Chapter 2

[53]

For instance, the Fibonacci series can be written with an iterator (this is the example
provided in the PEP about iterators):

def fibonacci():
 a, b = 0, 1
 while True:
 yield b
 a, b = b, a + b

You can retrieve new values from generators as if it were iterators, so using next()
function or for loops:

>>> fib = fibonacci()

>>> next(fib)

1

>>> next(fib)

1

>>> next(fib)

2

>>> [next(fib) for i in range(10)]

[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

This function returns a generator object, a special iterator, which knows how to
save the execution context. It can be called indefinitely, yielding the next element of
the suite each time. The syntax is concise, and the infinite nature of the algorithm
does not disturb the readability of the code anymore. It does not have to provide a
way to make the function stoppable. In fact, it looks similar to how the series would
be designed in pseudocode.

In the community, generators are not used so often because the developers are not
used to thinking this way. The developers have been used to working with straight
functions for years. Generators should be considered every time you deal with a
function that returns a sequence or works in a loop. Returning the elements one at a
time can improve the overall performance, when they are passed to another function
for further work.

Syntax Best Practices – below the Class Level

[54]

In that case, the resources used to work out one element are most of the time less
important than the resources used for the whole process. Therefore, they can be
kept low, making the program more efficient. For instance, the Fibonacci sequence
is infinite, and yet the generator that generates it does not require an infinite amount
of memory to provide the values one at a time. A common use case is to stream data
buffers with generators. They can be paused, resumed, and stopped by third-party
code that plays over the data, and all the data does not need to be loaded before
starting the process.

The tokenize module from the standard library, for instance, generates tokens out
of a stream of text and returns an iterator for each treated line that can be passed
along to some processing:

>>> import tokenize

>>> reader = open('hello.py').readline

>>> tokens = tokenize.generate_tokens(reader)

>>> next(tokens)

TokenInfo(type=57 (COMMENT), string='# -*- coding: utf-8 -*-', start=(1,
0), end=(1, 23), line='# -*- coding: utf-8 -*-\n')

>>> next(tokens)

TokenInfo(type=58 (NL), string='\n', start=(1, 23), end=(1, 24), line='#
-*- coding: utf-8 -*-\n')

>>> next(tokens)

TokenInfo(type=1 (NAME), string='def', start=(2, 0), end=(2, 3),
line='def hello_world():\n')

Here, we can see that open iterates over the lines of the file and generate_tokens
iterates over them in a pipeline, doing additional work. Generators can also help
in breaking the complexity and raising the efficiency of some data transformation
algorithms that are based on several suites. Thinking of each suite as an iterator,
and then combining them into a high-level function is a great way to avoid a big,
ugly, and unreadable function. Moreover, this can provide a live feedback to the
whole processing chain.

In the following example, each function defines a transformation over a sequence.
They are then chained and applied. Each function call processes one element and
returns its result:

def power(values):
 for value in values:
 print('powering %s' % value)
 yield value

Chapter 2

[55]

def adder(values):
 for value in values:
 print('adding to %s' % value)
 if value % 2 == 0:
 yield value + 3
 else:
 yield value + 2

Here is the possible result of using these generators together:

>>> elements = [1, 4, 7, 9, 12, 19]

>>> results = adder(power(elements))

>>> next(results)

powering 1

adding to 1

3

>>> next(results)

powering 4

adding to 4

7

>>> next(results)

powering 7

adding to 7

9

Keep the code simple, not the data
It is better to have a lot of simple iterable functions that work over
sequences of values than a complex function that computes the
result for entire collection at once.

Another important feature available in Python regarding generators is the ability to
interact with the code called with the next function. yield becomes an expression,
and a value can be passed along with a new method called send:

def psychologist():
 print('Please tell me your problems')
 while True:
 answer = (yield)
 if answer is not None:
 if answer.endswith('?'):
 print("Don't ask yourself too much questions")
 elif 'good' in answer:

Syntax Best Practices – below the Class Level

[56]

 print("Ahh that's good, go on")
 elif 'bad' in answer:
 print("Don't be so negative")

Here is an example session with our psychologist() function:

>>> free = psychologist()

>>> next(free)

Please tell me your problems

>>> free.send('I feel bad')

Don't be so negative

>>> free.send("Why I shouldn't ?")

Don't ask yourself too much questions

>>> free.send("ok then i should find what is good for me")

Ahh that's good, go on

send acts like next, but makes yield return the value passed to it inside of the
function definition. The function can, therefore, change its behavior depending on
the client code. Two other functions were added to complete this behavior—throw
and close. They raise an error into the generator:

• throw: This allows the client code to send any kind of exception to be raised.
• close: This acts in the same way, but raises a specific exception,

GeneratorExit. In that case, the generator function must raise
GeneratorExit again, or StopIteration.

Generators are the basis of other concepts available in
Python—coroutines and asynchronous concurrency,
which are covered in Chapter 13, Concurrency.

Decorators
Decorators were added in Python to make function and method wrapping (a
function that receives a function and returns an enhanced one) easier to read and
understand. The original use case was to be able to define the methods as class
methods or static methods on the head of their definition. Without the decorator
syntax, it would require a rather sparse and repetitive definition:

class WithoutDecorators:
 def some_static_method():
 print("this is static method")
 some_static_method = staticmethod(some_static_method)

Chapter 2

[57]

 def some_class_method(cls):
 print("this is class method")
 some_class_method = classmethod(some_class_method)

If the decorator syntax is used for the same purpose, the code is shorter and easier
to understand:

class WithDecorators:
 @staticmethod
 def some_static_method():
 print("this is static method")

 @classmethod
 def some_class_method(cls):
 print("this is class method")

General syntax and possible implementations
The decorator is generally a named object (lambda expressions are not allowed)
that accepts a single argument when called (it will be the decorated function) and
returns another callable object. "Callable" is used here instead of "function" with
premeditation. While decorators are often discussed in the scope of methods and
functions, they are not limited to them. In fact, anything that is callable (any object
that implements the __call__ method is considered callable), can be used as a
decorator and often objects returned by them are not simple functions but more
instances of more complex classes implementing their own __call__ method.

The decorator syntax is simply only a syntactic sugar. Consider the following
decorator usage:

@some_decorator
def decorated_function():
 pass

This can always be replaced by an explicit decorator call and function reassignment:

def decorated_function():
 pass
decorated_function = some_decorator(decorated_function)

However, the latter is less readable and also very hard to understand if multiple
decorators are used on a single function.

Syntax Best Practices – below the Class Level

[58]

Decorator does not even need to return a callable!
As a matter of fact, any function can be used as a decorator because
Python does not enforce the return type of decorators. So, using some
function as a decorator that accepts a single argument but does not
return callable, let's say str, is completely valid in terms of syntax.
This will eventually fail if the user tries to call an object decorated this
way. Anyway, this part of decorator syntax creates a field for some
interesting experimentation.

As a function
There are many ways to write custom decorators, but the simplest way is to write a
function that returns a subfunction that wraps the original function call.

The generic patterns is as follows:

def mydecorator(function):
 def wrapped(*args, **kwargs):
 # do some stuff before the original
 # function gets called
 result = function(*args, **kwargs)
 # do some stuff after function call and
 # return the result
 return result
 # return wrapper as a decorated function
 return wrapped

As a class
While decorators almost always can be implemented using functions, there are some
situations when using user-defined classes is a better option. This is often true when
the decorator needs complex parametrization or it depends on a specific state.

The generic pattern for a nonparametrized decorator as a class is as follows:

class DecoratorAsClass:
 def __init__(self, function):
 self.function = function

 def __call__(self, *args, **kwargs):
 # do some stuff before the original
 # function gets called
 result = self.function(*args, **kwargs)
 # do some stuff after function call and
 # return the result
 return result

Chapter 2

[59]

Parametrizing decorators
In real code, there is often a need to use decorators that can be parametrized. When
the function is used as a decorator, then the solution is simple—a second level of
wrapping has to be used. Here is a simple example of the decorator that repeats
the execution of a decorated function the specified number of times every time
it is called:

def repeat(number=3):
 """Cause decorated function to be repeated a number of times.

 Last value of original function call is returned as a result
 :param number: number of repetitions, 3 if not specified
 """
 def actual_decorator(function):
 def wrapper(*args, **kwargs):
 result = None
 for _ in range(number):
 result = function(*args, **kwargs)
 return result
 return wrapper
 return actual_decorator

The decorator defined this way can accept parameters:

>>> @repeat(2)

... def foo():

... print("foo")

...

>>> foo()

foo

foo

Note that even if the parametrized decorator has default values for its arguments,
the parentheses after its name is required. The correct way to use the preceding
decorator with default arguments is as follows:

>>> @repeat()

... def bar():

... print("bar")

...

>>> bar()

bar

bar

bar

Syntax Best Practices – below the Class Level

[60]

Missing these parentheses will result in the following error when decorated function
is called:

>>> @repeat

... def bar():

... pass

...

>>> bar()

Traceback (most recent call last):

 File "<input>", line 1, in <module>

TypeError: actual_decorator() missing 1 required positional

argument: 'function'

Introspection preserving decorators
Common pitfalls of using decorators is not preserving function metadata (mostly
docstring and original name) when using decorators. All the previous examples
have this issue. They created a new function by composition and returned a new
object without any respect to the identity of the original one. This makes the
debugging of functions decorated that way harder and will also break most of the
auto-documentation tools that may be used because the original docstrings and
function signatures are no longer accessible.

But let's see this in detail. Assume that we have some dummy decorator that does
nothing more than decorating and some other functions decorated with it:

def dummy_decorator(function):
 def wrapped(*args, **kwargs):
 """Internal wrapped function documentation."""
 return function(*args, **kwargs)
 return wrapped

@dummy_decorator
def function_with_important_docstring():
 """This is important docstring we do not want to lose."""

If we inspect function_with_important_docstring() in a Python interactive
session, we can notice that it has lost its original name and docstring:

>>> function_with_important_docstring.__name__

'wrapped'

>>> function_with_important_docstring.__doc__

'Internal wrapped function documentation.'

Chapter 2

[61]

A proper solution to this problem is to use the built-in wraps() decorator provided
by the functools module:

from functools import wraps

def preserving_decorator(function):
 @wraps(function)
 def wrapped(*args, **kwargs):
 """Internal wrapped function documentation."""
 return function(*args, **kwargs)
 return wrapped

@preserving_decorator
def function_with_important_docstring():
 """This is important docstring we do not want to lose."""

With the decorator defined in such a way, the important function metadata
is preserved:

>>> function_with_important_docstring.__name__

'function_with_important_docstring.'

>>> function_with_important_docstring.__doc__

'This is important docstring we do not want to lose.'

Usage and useful examples
Since decorators are loaded by the interpreter when the module is first read, their
usage should be limited to wrappers that can be generically applied. If a decorator
is tied to the method's class or to the function's signature it enhances, it should
be refactored into a regular callable to avoid complexity. In any case, when the
decorators are dealing with APIs, a good practice is to group them in a module
that is easy to maintain.

The common patterns for decorators are:

• Argument checking
• Caching
• Proxy
• Context provider

Syntax Best Practices – below the Class Level

[62]

Argument checking
Checking the arguments that a function receives or returns can be useful when it is
executed in a specific context. For example, if a function is to be called through XML-
RPC, Python will not be able to directly provide its full signature as in the statically-
typed languages. This feature is needed to provide introspection capabilities, when
the XML-RPC client asks for the function signatures.

The XML-RPC protocol
The XML-RPC protocol is a lightweight Remote Procedure Call protocol
that uses XML over HTTP to encode its calls. It is often used instead of
SOAP for simple client-server exchanges. Unlike SOAP, which provides
a page that lists all callable functions (WSDL), XML-RPC does not have a
directory of available functions. An extension of the protocol that allows
discovering the server API was proposed, and Python's xmlrpc module
implements it (refer to https://docs.python.org/3/library/
xmlrpc.server.html).

A custom decorator can provide this type of signature. It can also make sure that
what goes in and comes out respects the defined signature parameters:

rpc_info = {}

def xmlrpc(in_=(), out=(type(None),)):
 def _xmlrpc(function):
 # registering the signature
 func_name = function.__name__
 rpc_info[func_name] = (in_, out)
 def _check_types(elements, types):
 """Subfunction that checks the types."""
 if len(elements) != len(types):
 raise TypeError('argument count is wrong')
 typed = enumerate(zip(elements, types))
 for index, couple in typed:
 arg, of_the_right_type = couple
 if isinstance(arg, of_the_right_type):
 continue
 raise TypeError(
 'arg #%d should be %s' % (index,
 of_the_right_type))

 # wrapped function
 def __xmlrpc(*args): # no keywords allowed

https://docs.python.org/3/library/xmlrpc.server.html
https://docs.python.org/3/library/xmlrpc.server.html

Chapter 2

[63]

 # checking what goes in
 checkable_args = args[1:] # removing self
 _check_types(checkable_args, in_)
 # running the function
 res = function(*args)
 # checking what goes out
 if not type(res) in (tuple, list):
 checkable_res = (res,)
 else:
 checkable_res = res
 _check_types(checkable_res, out)

 # the function and the type
 # checking succeeded
 return res
 return __xmlrpc
 return _xmlrpc

The decorator registers the function into a global dictionary and keeps a list of the
types for its arguments and for the returned values. Note that the example was
highly simplified to demonstrate argument-checking decorators.

A usage example is as follows:

class RPCView:
 @xmlrpc((int, int)) # two int -> None
 def meth1(self, int1, int2):
 print('received %d and %d' % (int1, int2))

 @xmlrpc((str,), (int,)) # string -> int
 def meth2(self, phrase):
 print('received %s' % phrase)
 return 12

When it is read, this class definition populates the rpc_infos dictionary and can be
used in a specific environment, where the argument types are checked:

>>> rpc_info

{'meth2': ((<class 'str'>,), (<class 'int'>,)), 'meth1': ((<class
'int'>, <class 'int'>), (<class 'NoneType'>,))}

>>> my = RPCView()

>>> my.meth1(1, 2)

received 1 and 2

>>> my.meth2(2)

Syntax Best Practices – below the Class Level

[64]

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 File "<input>", line 26, in __xmlrpc

 File "<input>", line 20, in _check_types

TypeError: arg #0 should be <class 'str'>

Caching
The caching decorator is quite similar to argument checking, but focuses on those
functions whose internal state does not affect the output. Each set of arguments
can be linked to a unique result. This style of programming is the characteristic of
functional programming (refer to http://en.wikipedia.org/wiki/Functional_
programming) and can be used when the set of input values is finite.

Therefore, a caching decorator can keep the output together with the arguments that
were needed to compute it, and return it directly on subsequent calls. This behavior
is called memoizing (refer to http://en.wikipedia.org/wiki/Memoizing) and is
quite simple to implement as a decorator:

import time
import hashlib
import pickle

cache = {}

def is_obsolete(entry, duration):
 return time.time() - entry['time']> duration

def compute_key(function, args, kw):
 key = pickle.dumps((function.__name__, args, kw))
 return hashlib.sha1(key).hexdigest()

def memoize(duration=10):
 def _memoize(function):
 def __memoize(*args, **kw):
 key = compute_key(function, args, kw)

 # do we have it already ?
 if (key in cache and
 not is_obsolete(cache[key], duration)):
 print('we got a winner')
 return cache[key]['value']

http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Memoizing

Chapter 2

[65]

 # computing
 result = function(*args, **kw)
 # storing the result
 cache[key] = {
 'value': result,
 'time': time.time()
 }
 return result
 return __memoize
 return _memoize

A SHA hash key is built using the ordered argument values, and the result is stored
in a global dictionary. The hash is made using a pickle, which is a bit of a shortcut
to freeze the state of all objects passed as arguments, ensuring that all arguments
are good candidates. If a thread or a socket is used as an argument, for instance,
a PicklingError will occur. (Refer to https://docs.python.org/3/library/
pickle.html.) The duration parameter is used to invalidate the cached value when
too much time has passed since the last function call.

Here's an example of the usage:

>>> @memoize()

... def very_very_very_complex_stuff(a, b):

... # if your computer gets too hot on this calculation

... # consider stopping it

... return a + b

...

>>> very_very_very_complex_stuff(2, 2)

4

>>> very_very_very_complex_stuff(2, 2)

we got a winner

4

>>> @memoize(1) # invalidates the cache after 1 second

... def very_very_very_complex_stuff(a, b):

... return a + b

...

>>> very_very_very_complex_stuff(2, 2)

4

>>> very_very_very_complex_stuff(2, 2)

we got a winner

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

Syntax Best Practices – below the Class Level

[66]

4

>>> cache

{'c2727f43c6e39b3694649ee0883234cf': {'value': 4, 'time':

1199734132.7102251)}

>>> time.sleep(2)

>>> very_very_very_complex_stuff(2, 2)

4

Caching expensive functions can dramatically increase the overall performance of a
program, but it has to be used with care. The cached value could also be tied to the
function itself to manage its scope and life cycle, instead of a centralized dictionary.
But in any case, a more efficient decorator would use a specialized cache library
based on advanced caching algorithm.

Chapter 12, Optimization – Some Powerful Techniques, provides detailed
information and techniques on caching.

Proxy
Proxy decorators are used to tag and register functions with a global mechanism.
For instance, a security layer that protects the access of the code, depending on the
current user, can be implemented using a centralized checker with an associated
permission required by the callable:

class User(object):
 def __init__(self, roles):
 self.roles = roles

class Unauthorized(Exception):
 pass

def protect(role):
 def _protect(function):
 def __protect(*args, **kw):
 user = globals().get('user')
 if user is None or role not in user.roles:
 raise Unauthorized("I won't tell you")
 return function(*args, **kw)
 return __protect
 return _protect

Chapter 2

[67]

This model is often used in Python web frameworks to define the security over
publishable classes. For instance, Django provides decorators to secure function access.

Here's an example, where the current user is kept in a global variable. The decorator
checks his or her roles when the method is accessed:

>>> tarek = User(('admin', 'user'))

>>> bill = User(('user',))

>>> class MySecrets(object):

... @protect('admin')

... def waffle_recipe(self):

... print('use tons of butter!')

...

>>> these_are = MySecrets()

>>> user = tarek

>>> these_are.waffle_recipe()

use tons of butter!

>>> user = bill

>>> these_are.waffle_recipe()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 7, in wrap

__main__.Unauthorized: I won't tell you

Context provider
A context decorator makes sure that the function can run in the correct context, or
run some code before and after the function. In other words, it sets and unsets a
specific execution environment. For example, when a data item has to be shared
among several threads, a lock has to be used to ensure that it is protected from
multiple access. This lock can be coded in a decorator as follows:

from threading import RLock
lock = RLock()

def synchronized(function):
 def _synchronized(*args, **kw):
 lock.acquire()
 try:
 return function(*args, **kw)

Syntax Best Practices – below the Class Level

[68]

 finally:
 lock.release()
 return _synchronized

@synchronized
def thread_safe(): # make sure it locks the resource
 pass

Context decorators are more often being replaced by the usage of the context
managers (the with statement) that are also described later in this chapter.

Context managers – the with statement
The try...finally statement is useful to ensure some cleanup code is run even if
an error is raised. There are many use cases for this, such as:

• Closing a file
• Releasing a lock
• Making a temporary code patch
• Running protected code in a special environment

The with statement factors out these use cases by providing a simple way to wrap
a block of code. This allows you to call some code before and after block execution
even if this block raises an exception. For example, working with a file is usually
done like this:

>>> hosts = open('/etc/hosts')

>>> try:

... for line in hosts:

... if line.startswith('#'):

... continue

... print(line.strip())

... finally:

... hosts.close()

...

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

Chapter 2

[69]

This example is specific to Linux since it reads the host file located in etc,
but any text file could have been used here in the same way.

By using the with statement, it can be rewritten like this:

>>> with open('/etc/hosts') as hosts:

... for line in hosts:

... if line.startswith('#'):

... continue

... print(line.strip)

...

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

In the preceding example, open used as a context manager ensures that the file will
be closed after executing the for loop and even if some exception will occur.

Some other items that are compatible with this statement are classes from the
threading module:

• threading.Lock

• threading.RLock

• threading.Condition

• threading.Semaphore

• threading.BoundedSemaphore

General syntax and possible implementations
The general syntax for the with statement in the simplest form is:

with context_manager:
 # block of code
 ...

Additionally, if the context manager provides a context variable, it can be stored
locally using the as clause:

with context_manager as context:
 # block of code
 ...

Syntax Best Practices – below the Class Level

[70]

Note that multiple context managers can be used at once, as follows:

with A() as a, B() as b:
 ...

This is equivalent to nesting them, as follows:

with A() as a:
 with B() as b:
 ...

As a class
Any object that implements the context manager protocol can be used as a context
manager. This protocol consists of two special methods:

• __enter__(self): More on this can be found at https://docs.python.
org/3.3/reference/datamodel.html#object.__enter__

• __exit__(self, exc_type, exc_value, traceback): More on this can
be found at https://docs.python.org/3.3/reference/datamodel.
html#object.__exit__

In short, the execution of the with statement proceeds as follows:

1. The __enter__ method is invoked. Any return value is bound to target the
specified as clause.

2. The inner block of code is executed.
3. The __exit__ method is invoked.

__exit__ receives three arguments that are filled when an error occurs within the
code block. If no error occurs, all three arguments are set to None. When an error
occurs, __exit__ should not re-raise it, as this is the responsibility of the caller. It
can prevent the exception being raised though, by returning True. This is provided
to implement some specific use cases, such as the contextmanager decorator that we
will see in the next section. But for most use cases, the right behavior for this method
is to do some cleaning, like what would be done by the finally clause; no matter
what happens in the block, it does not return anything.

The following is an example of some context manager that implements this protocol
to better illustrate how it works:

class ContextIllustration:
 def __enter__(self):
 print('entering context')

https://docs.python.org/3.3/reference/datamodel.html#object.__enter__
https://docs.python.org/3.3/reference/datamodel.html#object.__enter__
https://docs.python.org/3.3/reference/datamodel.html#object.__exit__
https://docs.python.org/3.3/reference/datamodel.html#object.__exit__

Chapter 2

[71]

 def __exit__(self, exc_type, exc_value, traceback):
 print('leaving context')

 if exc_type is None:
 print('with no error')
 else:
 print('with an error (%s)' % exc_value)

When run without exceptions raised, the output is as follows:

>>> with ContextIllustration():

... print("inside")

...

entering context

inside

leaving context

with no error

When the exception is raised, the output is as follows:

>>> with ContextIllustration():

... raise RuntimeError("raised within 'with'")

...

entering context

leaving context

with an error (raised within 'with')

Traceback (most recent call last):

 File "<input>", line 2, in <module>

RuntimeError: raised within 'with'

As a function – the contextlib module
Using classes seems to be the most flexible way to implement any protocol provided
in the Python language but may be too much boilerplate for many use cases. A
contextlib module was added to the standard library to provide helpers to use
with context managers. The most useful part of it is the contextmanager decorator.
It allows you to provide both __enter__ and __exit__ parts in a single function,
separated by a yield statement (note that this makes the function a generator). The
previous example written with this decorator would look like the following code:

from contextlib import contextmanager

@contextmanager
def context_illustration():

Syntax Best Practices – below the Class Level

[72]

 print('entering context')

 try:
 yield
 except Exception as e:
 print('leaving context')
 print('with an error (%s)' % e)
 # exception needs to be reraised
 raise
 else:
 print('leaving context')
 print('with no error')

If any exception occurs, the function needs to re-raise it in order to pass it along.
Note that the context_illustration could have some arguments if needed, as long
as they are provided in the call. This small helper simplifies the normal class-based
context API exactly as generators do with the classed-based iterator API.

The three other helpers provided by this module are:

• closing(element): This returns the context manager that calls the element's
close method on exit. This is useful for classes that deal with streams,
for instance.

• supress(*exceptions): This suppresses any of the specified exceptions
if they occur in the body of the with statement.

• redirect_stdout(new_target) and redirect_stderr(new_target): This
redirects the sys.stdout or sys.stderr output of any code within the block
to another file of the file-like object.

Other syntax elements you may not
know yet
There are some elements of the Python syntax that are not popular and rarely used.
It is because they either provide very little gain or their usage is simply hard to
memorize. Due to this, many Python programmers (even with years of experience)
simply do not know about their existence. The most notable examples of such
features are as follows:

• The for … else clause
• Function annotations

Chapter 2

[73]

The for … else … statement
Using the else clause after the for loop allows you to execute a code of block only if
the loop ended "naturally" without terminating with the break statement:

>>> for number in range(1):

... break

... else:

... print("no break")

...

>>>

>>> for number in range(1):

... pass

... else:

... print("break")

...

break

This comes in handy in some situations because it helps to remove some "sentinel"
variables that may be required if the user wants to store information if a break
occurred. This makes the code cleaner but can confuse programmers not familiar
with such syntax. Some say that such meaning of the else clause is counterintuitive,
but here is an easy tip that helps you to remember how it works—memorize that
else clause after the for loop simply means "no break".

Function annotations
Function annotation is one of the most unique features of Python 3. The official
documentation states that annotations are completely optional metadata information
about the types used by user-defined functions, but in fact, they are not restricted to type
hinting, and also there is no single feature in Python and its standard library that
leverages such annotations. This is why this feature is unique—it does not have any
syntactic meaning. Annotations can simply be defined for a function and can be
retrieved in runtime, but that is all. What to do with them is left to the developers.

Syntax Best Practices – below the Class Level

[74]

The general syntax
A slightly modified example from the Python documentation shows best how to
define and retrieve function annotations:

>>> def f(ham: str, eggs: str = 'eggs') -> str:

... pass

...

>>> print(f.__annotations__)

{'return': <class 'str'>, 'eggs': <class 'str'>, 'ham': <class 'str'>}

As presented, parameter annotations are defined by the expression evaluating to the
value of the annotation preceded by a colon. Return annotations are defined by the
expression between the colon denoting the end of the def statement and literal ->
that follows the parameter list.

Once defined, annotations are available in the __annotations__ attribute of the
function object as a dictionary and can be retrieved during application runtime.

The fact that any expression can be used as the annotation and it is located just
near the default arguments allows to create some confusing function definitions
as follows:

>>> def square(number: 0<=3 and 1=0) -> (\

... +9000): return number**2

>>> square(10)

100

However, such usage of annotations serves no other purpose than obfuscation
and even without them it is relatively easy to write code that is hard to read
and maintain.

The possible uses
While annotations have a great potential, they are not widely used. An article
explaining new features added to Python 3 (refer to https://docs.python.
org/3/whatsnew/3.0.html) says that the intent of this feature was "to encourage
experimentation through metaclasses, decorators, or frameworks". On the other
hand, PEP 3107 that officially proposed function annotations lists the following set of
possible use cases:

• Providing typing information
 ° Type checking
 ° Let IDEs show what types a function expects and returns

https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html

Chapter 2

[75]

 ° Function overloading / generic functions
 ° Foreign-language bridges
 ° Adaptation
 ° Predicate logic functions
 ° Database query mapping
 ° RPC parameter marshaling

• Other information

 ° Documentation for parameters and return values

Although the function annotations are as old as Python 3, it is still very hard to
find any popular and actively maintained package that uses them for something
else than type checking. So function annotations are still mostly good only for
experimentation and playing—the initial purpose why they were included in
initial release of Python 3.

Summary
This chapter covered various best syntax practices that do not directly relate to
Python classes and object-oriented programming. The first part of the chapter was
dedicated to syntax features around Python sequences and collections, strings
and byte-related sequences were also discussed. The rest of the chapter covered
independent syntax elements of two groups—those that are relatively hard to
understand for beginners (such as iterators, generators, and decorators) and those
that are simply less known (the for…else clause and function annotations).

Syntax Best Practices –
above the Class Level

We will now focus on syntax best practices for classes. It is not intended to cover
design patterns here, as they will be discussed in Chapter 14, Useful Design Patterns.
This chapter gives an overview of the advanced Python syntax to manipulate and
enhance the class code.

Object model evolved greatly during history of Python 2. For a long time we lived in
a world where two implementations of the object-oriented programming paradigm
coexisted in the same language. These two models were simply referred to as old-style
and new-style classes. Python 3 ended this dichotomy and only model known as
new-style classes is available to the developers. Anyway, it is still important to know
how both of them worked in Python 2 because it will help you in porting old code and
writing backwards compatible applications. Knowing how the object model changed
will also help you in understanding why it is designed that way right now. This is the
reason why the following chapter will have a relatively large number of notes about
old Python 2 features despite this book targets the latest Python 3 releases.

The following topics will be discussed in this chapter:

• Subclassing built-in types
• Accessing methods from super classes
• Using properties and slots
• Metaprogramming

Syntax Best Practices – above the Class Level

[78]

Subclassing built-in types
Subclassing built-in types in Python is pretty straightforward. A built-in type called
object is a common ancestor for all built-in types as well as all user-defined classes
that have no explicit parent class specified. Thanks to this, every time a class that
behaves almost like one of the built-in types needs to be implemented, the best
practice is to subtype it.

Now, we will show you the code for a class called distinctdict, which uses this
technique. It is a subclass of the usual Python dict type. This new class behaves
in most ways like an ordinary Python dict. But instead of allowing multiple keys
with the same value, when someone tries to add a new entry with an identical value,
it raises a ValueError subclass with a help message:

class DistinctError(ValueError):
 """Raised when duplicate value is added to a distinctdict."""

class distinctdict(dict):
 """Dictionary that does not accept duplicate values."""
 def __setitem__(self, key, value):
 if value in self.values():
 if (
 (key in self and self[key] != value) or
 key not in self
):
 raise DistinctError(
 "This value already exists for different key"
)

 super().__setitem__(key, value)

The following is an example of using distictdict in interactive session:

>>> my = distinctdict()

>>> my['key'] = 'value'

>>> my['other_key'] = 'value'

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 File "<input>", line 10, in __setitem__

DistinctError: This value already exists for different key

>>> my['other_key'] = 'value2'

>>> my

{'key': 'value', 'other_key': 'value2'}

Chapter 3

[79]

If you take a look at your existing code, you may find a lot of classes that partially
implement the built-in types, and could be faster and cleaner as subtypes. The list
type, for instance, manages the sequences and could be used every time a class
works internally with a sequence:

class Folder(list):
 def __init__(self, name):
 self.name = name

 def dir(self, nesting=0):
 offset = " " * nesting
 print('%s%s/' % (offset, self.name))

 for element in self:
 if hasattr(element, 'dir'):
 element.dir(nesting + 1)
 else:
 print("%s %s" % (offset, element))

Here is an example usage in interactive session:

>>> tree = Folder('project')

>>> tree.append('README.md')

>>> tree.dir()

project/

 README.md

>>> src = Folder('src')

>>> src.append('script.py')

>>> tree.append(src)

>>> tree.dir()

project/

 README.md

 src/

 script.py

Built-in types cover most use cases
When you are about to create a new class that acts like a sequence or
a mapping, think about its features and look over the existing built-in
types. The collections module extends basic built-in types with many
useful containers. You will end up using one of them most of the time.

Syntax Best Practices – above the Class Level

[80]

Accessing methods from superclasses
super is a built-in class that can be used to access an attribute belonging to an
object's superclass.

The Python official documentation lists super as a built-in function.
But it's a built-in class, even if it is used like a function:

>>> super

<class 'super'>

Its usage is a bit confusing when you are used to accessing a class attribute or
method by calling the parent class directly and passing self as the first argument.
This is really old pattern but still can be found in some codebases (especially in
legacy projects). See the following code:

class Mama: # this is the old way
 def says(self):
 print('do your homework')

class Sister(Mama):
 def says(self):
 Mama.says(self)
 print('and clean your bedroom')

When run in an interpreter session it gives following result:

>>> Sister().says()

do your homework

and clean your bedroom

Look particularly at the line Mama.says(self), where we use the technique just
described to call the says() method of the superclass (that is, the Mama class), and
pass self as the argument. This means, the says() method belonging to Mama
will be called. But the instance on which it will be called is provided as the self
argument, which is an instance of Sister in this case.

Instead, the super usage would be:

class Sister(Mama):
 def says(self):
 super(Sister, self).says()
 print('and clean your bedroom')

Chapter 3

[81]

Alternatively, you can also use the shorter form of the super() call:

class Sister(Mama):
 def says(self):
 super().says()
 print('and clean your bedroom')

The shorter form of super (without passing any arguments) is allowed inside the
methods but super is not limited to methods. It can be used in any place of code
where a call to the given instance superclass method implementation is required.
Still, if super is not used inside the method, then its arguments are mandatory:

>>> anita = Sister()

>>> super(anita.__class__, anita).says()

do your homework

The last and most important thing that should be noted about super is that its second
argument is optional. When only the first argument is provided, then super returns
an unbounded type. This is especially useful when working with classmethod:

class Pizza:
 def __init__(self, toppings):
 self.toppings = toppings

 def __repr__(self):
 return "Pizza with " + " and ".join(self.toppings)

 @classmethod
 def recommend(cls):
 """Recommend some pizza with arbitrary toppings,"""
 return cls(['spam', 'ham', 'eggs'])

class VikingPizza(Pizza):
 @classmethod
 def recommend(cls):
 """Use same recommendation as super but add extra spam"""
 recommended = super(VikingPizza).recommend()
 recommended.toppings += ['spam'] * 5
 return recommended

Note that the zero-argument super() form is also allowed for methods decorated
with the classmethod decorator. super() called without arguments in such a
method is treated as having only the first argument defined.

Syntax Best Practices – above the Class Level

[82]

The use cases presented earlier are very simple to follow and understand,
but when you face a multiple inheritance schema, it becomes hard to use super.
Before explaining these problems, understanding when super should be avoided
and how the Method Resolution Order (MRO) works in Python is important.

Old-style classes and super in Python 2
super() in Python 2 works almost exactly the same. The only difference in call
signature is that the shorter, zero-argument form is not available, so at least one
of the expected arguments must be provided always.

Another important thing for programmers who want to write cross-version
compatible code is that super in Python 2 works only for new-style classes.
The earlier versions of Python did not have a common ancestor for all classes in
the form of object. The old behavior was left in every Python 2.x branch release
for backwards compatibility, so in those versions, if the class definition has no
ancestor specified, it is interpreted as an old-style class and it cannot use super:

class OldStyle1:
 pass

class OldStyle2():
 pass

The new-style class in Python 2 must explicitly inherit from the object or other new-
style class:

class NewStyleClass(object):
 pass

class NewStyleClassToo(NewStyleClass):
 pass

Python 3 no longer maintains the concept of old-style classes, so any class that does
not inherit from any other class implicitly inherits from object. This means that
explicitly stating that a class inherits from object may seem redundant. The general
good practice is to not include redundant code, but removing such redundancy in
this case is a good approach only for projects that no longer target any of the Python
2 versions. Code that aims for cross-version compatibility of Python must always
include object as an ancestor of base classes even if this is redundant in Python 3.
Not doing so will result in such classes being interpreted as old style, and this will
eventually lead to issues that are very hard to diagnose.

Chapter 3

[83]

Understanding Python's Method
Resolution Order
Python's Method Resolution Order is based on C3, the MRO built for the Dylan
programming language (http://opendylan.org). The reference document,
written by Michele Simionato, is located at http://www.python.org/download/
releases/2.3/mro. It describes how C3 builds the linearization of a class, also
called precedence, which is an ordered list of the ancestors. This list is used to seek
an attribute. The C3 algorithm is described in more detail later in this section.

The MRO change was made to resolve an issue introduced with the creation of a
common base type (object). Before the change to the C3 linearization method, if a
class had two ancestors (refer to Figure 1), the order in which methods were resolved
was quite simple to compute and track for simple cases that do not use the multiple
inheritance model. Here is an example of code that under Python 2 would not use
C3 as a Method Resolution Order:

class Base1:
 pass

class Base2:
 def method(self):
 print('Base2')

class MyClass(Base1, Base2):
 pass

The following transcript from interactive session shows this method resolution
at work:

>>> MyClass().method()

Base2

http://opendylan.org
http://www.python.org/download/releases/2.3/mro
http://www.python.org/download/releases/2.3/mro

Syntax Best Practices – above the Class Level

[84]

When MyClass().method() is called, the interpreter looks for the method in
MyClass, then Base1, and then eventually finds it in Base2:

Figure 1 Classical hierarchy

When we introduce some CommonBase class on top of the two base classes (both
Base1 and Base2 inherit from it, refer to Figure 2), things get more complicated. As a
result, the simple resolution order that behaves according to the left to right depth first
rule is getting back to the top through the Base1 class before looking into the Base2
class. This algorithm results in a counterintuitive output. In some cases, the method
that is executed may not be the one that is the closest in the inheritance tree.

Such an algorithm is still available in Python 2 when old-style classes (not inheriting
from object) are used. Here is an example of the old method resolution in Python 2
using old-style classes:

class CommonBase:
 def method(self):
 print('CommonBase')

class Base1(CommonBase):
 pass

class Base2(CommonBase):
 def method(self):
 print('Base2')

class MyClass(Base1, Base2):
 pass

Chapter 3

[85]

The following transcript from interactive session shows that Base2.method() will
not be called despite Base2 is closer in the class hierarchy than CommonBase:

>>> MyClass().method()

CommonBase

Figure 2 The Diamond class hierarchy

Such an inheritance scenario is extremely uncommon, so this is more a problem
of theory than practice. The standard library does not structure the inheritance
hierarchies in this way, and many developers think it is a bad practice. But with the
introduction of object at the top of the types hierarchy, the multiple inheritance
problem pops up on the C side of the language, resulting in conflicts when doing
subtyping. Note also that every class in Python 3 has now the same common
ancestor. Since making it work properly with the existing MRO involved too
much work, a new MRO was a simpler and quicker solution.

So, the same example run under Python 3 gives a different result:

class CommonBase:
 def method(self):
 print('CommonBase')

class Base1(CommonBase):
 pass

Syntax Best Practices – above the Class Level

[86]

class Base2(CommonBase):
 def method(self):
 print('Base2')

class MyClass(Base1, Base2):
 pass

And here is usage showing that C3 serialization will pick method of the closest
ancestor:

>>> MyClass().method()

Base2

Note that the above behavior cannot be replicated in Python 2 without
the CommonBase class explicitly inheriting from object. The reasons
why it may be useful to specify object as a class ancestor in Python 3
even if this is redundant were mentioned in the previous section,
Old-style classes and super in Python 2.

The Python MRO is based on a recursive call over the base classes. To summarize the
Michele Simionato paper referenced at the beginning of this section, the C3 symbolic
notation applied to our example is:

L[MyClass(Base1, Base2)] =
 MyClass + merge(L[Base1], L[Base2], Base1, Base2)

Here, L[MyClass] is the linearization of the MyClass class, and merge is a specific
algorithm that merges several linearization results.

So, a synthetic description would be, as Simionato says:

"The linearization of C is the sum of C plus the merge of the linearizations of the
parents and the list of the parents"

The merge algorithm is responsible for removing the duplicates and preserving the
correct ordering. It is described in the paper like this (adapted to our example):

"Take the head of the first list, that is, L[Base1][0]; if this head is not in the tail of
any of the other lists, then add it to the linearization of MyClass and remove it from
the lists in the merge, otherwise look at the head of the next list and take it, if it is a
good head.

Then, repeat the operation until all the classes are removed or it is impossible to
find good heads. In this case, it is impossible to construct the merge, Python 2.3
will refuse to create the class MyClass and will raise an exception."

Chapter 3

[87]

The head is the first element of a list and the tail contains the rest of the elements.
For example, in (Base1, Base2, ..., BaseN), Base1 is the head, and (Base2,
..., BaseN) the tail.

In other words, C3 does a recursive depth lookup on each parent to get a sequence
of lists. Then it computes a left-to-right rule to merge all lists with a hierarchy
disambiguation, when a class is involved in several lists.

So the result is:

def L(klass):
 return [k.__name__ for k in klass.__mro__]

>>> L(MyClass)
['MyClass', 'Base1', 'Base2', 'CommonBase', 'object']

The __mro__ attribute of a class (which is read-only) stores the result of
the linearization computation, which is done when the class definition
is loaded.
You can also call MyClass.mro() to compute and get the result. This is
another reason why classes in Python 2 should be taken with extra case.
While old-style classes in Python 2 have a defined order in which methods
are resolved, they do not provide the __mro__ attribute and the mro()
method. So, despite the order of resolution, it is wrong to say that they
have MRO. In most cases, whenever someone refers to MRO in Python,
it means that they refer to the C3 algorithm described in this section.

super pitfalls
Back to super. Its usage, when using the multiple inheritance hierarchy, can be quite
dangerous, mainly because of the initialization of classes. In Python, the base classes
are not implicitly called in __init__(), and so it is up to the developer to call them.
We will see a few examples.

Mixing super and explicit class calls
In the following example taken from James Knight's website (http://fuhm.net/
super-harmful), a C class that calls its base classes using the __init__() method
will make the B class be called twice:

class A:
 def __init__(self):

http://fuhm.net/super-harmful
http://fuhm.net/super-harmful

Syntax Best Practices – above the Class Level

[88]

 print("A", end=" ")
 super().__init__()

class B:
 def __init__(self):
 print("B", end=" ")
 super().__init__()

class C(A, B):
 def __init__(self):
 print("C", end=" ")
 A.__init__(self)
 B.__init__(self)

Here is the output:

>>> print("MRO:", [x.__name__ for x in C.__mro__])

MRO: ['C', 'A', 'B', 'object']

>>> C()

C A B B <__main__.C object at 0x0000000001217C50>

This happens due to the A.__init__(self) call, which is made with the C instance,
thus making the super(A, self).__init__() call the B.__init__() method. In
other words, super should be used in the whole class hierarchy. The problem is
that sometimes a part of this hierarchy is located in third-party code. Many related
pitfalls on the hierarchy calls introduced by multiple inheritances can be found on
James's page.

Unfortunately, you cannot be sure that external packages use super() in their code.
Whenever you need to subclass some third-party class, it is always a good approach
to take a look inside of its code and code of other classes in the MRO. This may be
tedious, but as a bonus you get some information about the quality of code provided
by such a package and more understanding of its implementation. You may learn
something new that way.

Chapter 3

[89]

Heterogeneous arguments
Another issue with super usage is the argument passing in initialization. How can
a class call its base class __init__() code if it doesn't have the same signature?
This leads to the following problem:

class CommonBase:
 def __init__(self):
 print('CommonBase')
 super().__init__()

class Base1(CommonBase):
 def __init__(self):
 print('Base1')
 super().__init__()

class Base2(CommonBase):
 def __init__(self, arg):
 print('base2')
 super().__init__()

class MyClass(Base1 , Base2):
 def __init__(self, arg):
 print('my base')
 super().__init__(arg)

An attempt to create a MyClass instance will raise TypeError due to the mismatch
of the parent classes' __init__() signatures:

>>> MyClass(10)

my base

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 4, in __init__

TypeError: __init__() takes 1 positional argument but 2 were given

Syntax Best Practices – above the Class Level

[90]

One solution would be to use arguments and keyword arguments packed with
*args and **kwargs magic so that all constructors pass along all the parameters
even if they do not use them:

class CommonBase:
 def __init__(self, *args, **kwargs):
 print('CommonBase')
 super().__init__()

class Base1(CommonBase):
 def __init__(self, *args, **kwargs):
 print('Base1')
 super().__init__(*args, **kwargs)

class Base2(CommonBase):
 def __init__(self, *args, **kwargs):
 print('base2')
 super().__init__(*args, **kwargs)

class MyClass(Base1 , Base2):
 def __init__(self, arg):
 print('my base')
 super().__init__(arg)

With this approach the parent class signatures will always match:

>>> _ = MyClass(10)

my base

Base1

base2

CommonBase

This is an awful fix though, because it makes all constructors accept any kind of
parameter. It leads to weak code, since anything can be passed and gone through.
Another solution is to use the explicit __init__() calls of specific classes in MyClass,
but this would lead to the first pitfall.

Best practices
To avoid all the mentioned problems, and until Python evolves in this field, we need
to take into consideration the following points:

• Multiple inheritance should be avoided: It can be replaced with some
design patterns presented in Chapter 14, Useful Design Patterns.

Chapter 3

[91]

• super usage has to be consistent: In a class hierarchy, super should be
used everywhere or nowhere. Mixing super and classic calls is a confusing
practice. People tend to avoid super, for their code to be more explicit.

• Explicitly inherit from object in Python 3 if you target Python 2 too: Classes
without any ancestor specified are recognized as old-style classes in Python
2. Mixing old-style classes with new-style classes should be avoided in
Python 2.

• Class hierarchy has to be looked over when a parent class is called:
To avoid any problems, every time a parent class is called, a quick glance
at the involved MRO (with __mro__) has to be done.

Advanced attribute access patterns
When many C++ and Java programmers first learn Python, they are surprised by
Python's lack of a private keyword. The nearest concept is name mangling. Every
time an attribute is prefixed by __, it is renamed by the interpreter on the fly:

class MyClass:
 __secret_value = 1

Accessing the __secret_value attribute by its initial name will raise an
AttributeError exception:

>>> instance_of = MyClass()

>>> instance_of.__secret_value

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'MyClass' object has no attribute '__secret_value'

>>> dir(MyClass)

['_MyClass__secret_value', '__class__', '__delattr__', '__dict__', '__
dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__
setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__']

>>> instance_of._MyClass__secret_value

1

Syntax Best Practices – above the Class Level

[92]

This feature is provided to avoid name collision under inheritance, as the attribute is
renamed with the class name as a prefix. It is not a real lock, since the attribute can be
accessed through its composed name. This feature could be used to protect the access
of some attributes, but in practice, __ should never be used. When an attribute is not
public, the convention to use is a _ prefix. This does not call any mangling algorithm,
but just documents the attribute as a private element of the class and is the prevailing
style.

Other mechanisms are available in Python to build the public part of the class together
with the private code. The descriptors and properties that are the key features to OOP
design should be used to design a clean API.

Descriptors
A descriptor lets you customize what should be done when you refer to an attribute
on an object.

Descriptors are the base of a complex attribute access in Python. They are used
internally to implement properties, methods, class methods, static methods, and
the super type. They are classes that define how attributes of another class can be
accessed. In other words, a class can delegate the management of an attribute to
another one.

The descriptor classes are based on three special methods that form the
descriptor protocol:

• __set__(self, obj, type=None): This is called whenever the attribute is
set. In the following examples, we will refer to this as a setter.

• __get__(self, obj, value): This is called whenever the attribute is read
(referred to as a getter).

• __delete__(self, obj): This is called when del is invoked on the
attribute.

A descriptor that implements __get__() and __set__() is called a data descriptor.
If it just implements __get__(), then it is called a non-data descriptor.

Chapter 3

[93]

Methods of this protocol are in fact called by the object's special __getattribute__
() method (do not confuse it with __getattr__(), which has a different purpose) on
every attribute lookup. Whenever such a lookup is performed, either by using dotted
notation in the form of instance.attribute or by using the getattr(instance,
'attribute') function call, the __getattribute__() method is implicitly invoked
and it looks for an attribute in the following order:

1. It verifies if the attribute is a data descriptor on the class object of the
instance.

2. If not, it looks to see if the attribute can be found in the __dict__ of the
instance object.

3. Finally, it looks to see if the attribute is a non-data descriptor on the class
object of the instance.

In other words, data descriptors take precedence over __dict__ lookup and
__dict__ lookup takes precedence over non-data descriptors.

To make it more clear, here is an example from the official Python documentation
that shows how descriptors work on real code:

class RevealAccess(object):
 """A data descriptor that sets and returns values
 normally and prints a message logging their access.
 """

 def __init__(self, initval=None, name='var'):
 self.val = initval
 self.name = name

 def __get__(self, obj, objtype):
 print('Retrieving', self.name)
 return self.val

 def __set__(self, obj, val):
 print('Updating', self.name)
 self.val = val

class MyClass(object):
 x = RevealAccess(10, 'var "x"')
 y = 5

Syntax Best Practices – above the Class Level

[94]

And here is an example of using it in the interactive session:

>>> m = MyClass()

>>> m.x

Retrieving var "x"

10

>>> m.x = 20

Updating var "x"

>>> m.x

Retrieving var "x"

20

>>> m.y

5

The preceding example clearly shows that if a class has the data descriptor for the
given attribute, then the descriptor's __get__() method is called to return the value
every time the instance attribute is retrieved, and __set__() is called whenever a
value is assigned to such an attribute. Although the case for the descriptor's __del__
method is not shown in the preceding example, it should be obvious now: it is
called whenever an instance attribute is deleted with the del instance.attribute
statement or the delattr(instance, 'attribute') call.

The difference between data and non-data descriptors is important due to the fact
stated at the beginning. Python already uses the descriptor protocol to bind class
functions to instances as a methods. They also power the mechanism behind the
classmethod and staticmethod decorators. This is because, in fact, the function
objects are non-data descriptors too:

>>> def function(): pass

>>> hasattr(function, '__get__')

True

>>> hasattr(function, '__set__')

False

And this is also true for functions created with lambda expressions:

>>> hasattr(lambda: None, '__get__')

True

>>> hasattr(lambda: None, '__set__')

False

Chapter 3

[95]

So, without __dict__ taking precedence over non-data descriptors, we would not
be able to dynamically override specific methods on already constructed instances
at runtime. Fortunately, thanks to how descriptors work in Python. It is available,
so developers may use a popular technique called monkey-patching to change the
way how instances work without the need of subclassing.

Real-life example – lazily evaluated attributes
One example usage of descriptors may be to delay initialization of the class attribute to
the moment when it is accessed from the instance. This may be useful if initialization of
such attributes depends on the global application context. The other case is when such
initialization is simply expensive but it is not known whether it will be used anyway
when the class is imported. Such a descriptor could be implemented as follows:

class InitOnAccess:
 def __init__(self, klass, *args, **kwargs):
 self.klass = klass
 self.args = args
 self.kwargs = kwargs
 self._initialized = None

 def __get__(self, instance, owner):
 if self._initialized is None:
 print('initialized!')
 self._initialized = self.klass(*self.args,
 **self.kwargs)
 else:
 print('cached!')
 return self._initialized

And here is example usage:

>>> class MyClass:

... lazily_initialized = InitOnAccess(list, "argument")

...

>>> m = MyClass()

>>> m.lazily_initialized

initialized!

['a', 'r', 'g', 'u', 'm', 'e', 'n', 't']

>>> m.lazily_initialized

cached!

['a', 'r', 'g', 'u', 'm', 'e', 'n', 't']

Syntax Best Practices – above the Class Level

[96]

The official OpenGL Python library available on PyPI under the PyOpenGL name
uses a similar technique to implement lazy_property that is both a decorator and
a data descriptor:

class lazy_property(object):
 def __init__(self, function):
 self.fget = function

 def __get__(self, obj, cls):
 value = self.fget(obj)
 setattr(obj, self.fget.__name__, value)
 return value

Such an implementation is similar to using the property decorator (described later),
but the function that is wrapped with it is executed only once and then the class
attribute is replaced with a value returned by such a property. Such a technique is
often useful when the developer needs to fulfill the following two requirements at
the same time:

• An object instance needs to be stored as a class attribute shared between its
instances to save resources

• This object cannot be initialized on import time because its creation process
depends on some global application state/context

In the case of applications written using OpenGL, this is very often true. For
example, the creation of shaders in OpenGL is expensive because it requires
compilation of code written in GLSL (OpenGL Shading Language). It is reasonable
to create them only once and include their definition in close proximity to classes that
require them. On the other hand, shader compilation cannot be performed without
having initialized the OpenGL context, so it is hard to define and compile them
reliably in global module namespace at import time.

The following example shows the possible usage of the modified version of
PyOpenGL's lazy_property decorator (here lazy_class_attribute) in some
imaginary OpenGL-based application. The highlighted change to the original
lazy_property decorator was required in order to allow sharing the attribute
between different class instances:

import OpenGL.GL as gl
from OpenGL.GL import shaders

class lazy_class_attribute(object):
 def __init__(self, function):
 self.fget = function

Chapter 3

[97]

 def __get__(self, obj, cls):
 value = self.fget(obj or cls)
 # note: storing in class object not its instance
 # no matter if its a class-level or
 # instance-level access
 setattr(cls, self.fget.__name__, value)
 return value

class ObjectUsingShaderProgram(object):
 # trivial pass-through vertex shader implementation
 VERTEX_CODE = """
 #version 330 core
 layout(location = 0) in vec4 vertexPosition;
 void main(){
 gl_Position = vertexPosition;
 }
 """
 # trivial fragment shader that results in everything
 # drawn with white color
 FRAGMENT_CODE = """
 #version 330 core
 out lowp vec4 out_color;
 void main(){
 out_color = vec4(1, 1, 1, 1);
 }
 """

 @lazy_class_attribute
 def shader_program(self):
 print("compiling!")
 return shaders.compileProgram(
 shaders.compileShader(
 self.VERTEX_CODE, gl.GL_VERTEX_SHADER
),
 shaders.compileShader(
 self.FRAGMENT_CODE, gl.GL_FRAGMENT_SHADER
)
)

Syntax Best Practices – above the Class Level

[98]

Like every advanced Python syntax feature, this one should also be used with
caution and documented well in code. For unexperienced developers, the altered
class behavior might be very confusing and unexpected because descriptors affect
the very basic part of class behavior such as attribute access. Because of that, it is
very important to make sure that all team members are familiar with descriptors and
understand this concept well if it plays an important role in the project's codebase.

Properties
The properties provide a built-in descriptor type that knows how to link an attribute
to a set of methods. A property takes four optional arguments: fget, fset, fdel,
and doc. The last one can be provided to define a docstring that is linked to the
attribute as if it were a method. Here is an example of a Rectangle class that can
be controlled either by direct access to attributes that store two corner points or by
using the width, and height properties:

class Rectangle:
 def __init__(self, x1, y1, x2, y2):
 self.x1, self.y1 = x1, y1
 self.x2, self.y2 = x2, y2

 def _width_get(self):
 return self.x2 - self.x1

 def _width_set(self, value):
 self.x2 = self.x1 + value

 def _height_get(self):
 return self.y2 - self.y1

 def _height_set(self, value):
 self.y2 = self.y1 + value

 width = property(
 _width_get, _width_set,
 doc="rectangle width measured from left"
)
 height = property(
 _height_get, _height_set,
 doc="rectangle height measured from top"
)

 def __repr__(self):

Chapter 3

[99]

 return "{}({}, {}, {}, {})".format(
 self.__class__.__name__,
 self.x1, self.y1, self.x2, self.y2
)

The example usage of such defined properties in an interactive session is as follows:

>>> rectangle = Rectangle(10, 10, 25, 34)

>>> rectangle.width, rectangle.height

(15, 24)

>>> rectangle.width = 100

>>> rectangle

Rectangle(10, 10, 110, 34)

>>> rectangle.height = 100

>>> rectangle

Rectangle(10, 10, 110, 110)

help(Rectangle)

Help on class Rectangle in module chapter3:

class Rectangle(builtins.object)

 | Methods defined here:

 |

 | __init__(self, x1, y1, x2, y2)

 | Initialize self. See help(type(self)) for accurate signature.

 |

 | __repr__(self)

 | Return repr(self).

 |

 | --

 | Data descriptors defined here:

 | (...)

 |

 | height

 | rectangle height measured from top

 |

 | width

 | rectangle width measured from left

Syntax Best Practices – above the Class Level

[100]

The properties make it easier to write descriptors, but must be handled carefully
when using inheritance over classes. The created attribute is made on the fly using
the methods of the current class and will not use methods that are overridden in the
derived classes.

For instance, the following example will fail to override the implementation of the
fget method of the parent's class (Rectangle) width property:

>>> class MetricRectangle(Rectangle):

... def _width_get(self):

... return "{} meters".format(self.x2 - self.x1)

...

>>> Rectangle(0, 0, 100, 100).width

100

In order to solve this, the whole property simply needs to be overwritten in the
derived class:

>>> class MetricRectangle(Rectangle):

... def _width_get(self):

... return "{} meters".format(self.x2 - self.x1)

... width = property(_width_get, Rectangle.width.fset)

...

>>> MetricRectangle(0, 0, 100, 100).width

'100 meters'

Unfortunately, the preceding code has some maintainability issues. It can be a
source of issue if the developer decides to change the parent class, but forgets
about updating the property call. This is why overriding only parts of the property
behavior is not advised. Instead of relying on the parent class's implementation, it
is recommended to rewrite all the property methods in the derived classes, if there
is need to change how they work. In most cases, this is the only option anyway,
because usually the change to property setter behavior implies a change to the
behavior of the getter as well.

Due to the preceding reason, the best syntax for creating properties is using property
as a decorator. This will reduce the number of method signatures inside of the class
and make code more readable and maintainable:

class Rectangle:
 def __init__(self, x1, y1, x2, y2):
 self.x1, self.y1 = x1, y1
 self.x2, self.y2 = x2, y2

Chapter 3

[101]

 @property
 def width(self):
 """rectangle height measured from top"""
 return self.x2 - self.x1

 @width.setter
 def width(self, value):
 self.x2 = self.x1 + value

 @property
 def height(self):
 """rectangle height measured from top"""
 return self.y2 - self.y1

 @height.setter
 def height(self, value):
 self.y2 = self.y1 + value

Slots
An interesting feature that is almost never used by developers is slots. They allow
you to set a static attribute list for a given class with the __slots__ attribute, and
skip the creation of the __dict__ dictionary in each instance of the class. They were
intended to save memory space for classes with very few attributes, since __dict__
is not created at every instance.

Besides this, they can help to design classes whose signature needs to be frozen.
For instance, if you need to restrict the dynamic features of the language over a
class, defining slots can help:

>>> class Frozen:

... __slots__ = ['ice', 'cream']

...

>>> '__dict__' in dir(Frozen)

False

>>> 'ice' in dir(Frozen)

True

>>> frozen = Frozen()

>>> frozen.ice = True

>>> frozen.cream = None

>>> frozen.icy = True

Traceback (most recent call last):

 File "<input>", line 1, in <module>

AttributeError: 'Frozen' object has no attribute 'icy'

Syntax Best Practices – above the Class Level

[102]

This feature should be used carefully. When a set of available attributes is limited
using __slots__, it is much harder to add something to the object dynamically.
Some techniques, such as monkey-patching, will not work with instances of classes
that have slots defined. Fortunately, the new attributes can be added to the derived
class if it does not have its own slots defined:

>>> class Unfrozen(Frozen):

... pass

...

>>> unfrozen = Unfrozen()

>>> unfrozen.icy = False

>>> unfrozen.icy

False

Metaprogramming
There may be a good definition of metaprogramming from some academy
paper that could be cited here, but this is rather a book about good software
craftsmanship than about computer science theory. This is why we will use a
simple one:

"Metaprogramming is a technique of writing computer programs that can
treat themselves as data, so you can introspect, generate, and/or modify itself
while running."

Using this definition, we can distinguish two major approaches to metaprogramming
in Python.

The first approach concentrates on the language's ability to introspect its basic
elements such as functions, classes, or types and to create or modify them on the fly.
Python gives a lot of tools to developers in this area. The easiest ones are decorators
that allow to add additional functionality to the existing functions, methods, or
classes. Next are special methods of classes that allow you to interfere with class
instance process creation. The most powerful are metaclasses that allow programmers
to even completely redesign the Python's implementation of the object-oriented
programming paradigm. Here also, we have a good selection of different tools that
allow programmers to work directly with code either in its raw plain text format or in
the more programmatically accessible Abstract Syntax Tree (AST) form. This second
approach is of course more complicated and difficult to work with but allows for really
extraordinary things, such as extending Python's language syntax or even creating
your own Domain Specific Language (DSL).

Chapter 3

[103]

Decorators – a method of metaprogramming
The decorator syntax is explained in Chapter 2, Syntax Best Practices – below the Class
Level, as a simple pattern:

def decorated_function():
 pass
decorated_function = some_decorator(decorated_function)

This clearly shows what the decorator does. It takes a function object and modifies
it at run time. As a result, a new function (or anything else) is created based on the
previous function object with the same name. This may be even a complex operation
that performs some introspection to give different results depending on how the
original function is implemented. All this means is that decorators can be considered
as a metaprogramming tool.

This are good news. Decorators are relatively easy to catch and in most cases make
code shorter, easier to read, and also cheaper to maintain. Other metaprogramming
tools available in Python are more difficult to grasp and master. Also, they might not
make the code simple at all.

Class decorators
One of the less known syntax features of Python is the class decorator. The syntax and
the way that they work is exactly the same as with function decorators mentioned
in Chapter 2, Syntax Best Practices – below the Class Level. The only difference is that
they are expected to return a class instead of the function object. Here is an example
class decorator that modifies the __repr__() method to return the printable object
representation that is shortened to some arbitrary number of characters:

def short_repr(cls):
 cls.__repr__ = lambda self: super(cls, self).__repr__()[:8]
 return cls

@short_repr
class ClassWithRelativelyLongName:
 pass

The following is what you will see in the output:

>>> ClassWithRelativelyLongName()

<ClassWi

Syntax Best Practices – above the Class Level

[104]

Of course, the preceding code snippet is not an example of a good code by any
means because it is too cryptic. Still, it shows how multiple language features
explained in this chapter can be used together:

• Not only instances but also class objects can be modified at runtime
• Functions are descriptors too, so they can be added to the class at runtime

because the actual binding instance is performed on the attribute lookup
as part of the descriptor protocol

• The super() call can be used outside of a class definition scope as long as
proper arguments are provided

• Finally, class decorators can be used on class definitions

The other aspects of the writing function decorators apply to the class decorators
as well. Most importantly, they can use closures and be parametrized. Taking
advantage of these facts, the previous example can be rewritten into a more
readable and maintainable form:

def parametrized_short_repr(max_width=8):
 """Parametrized decorator that shortens representation"""
 def parametrized(cls):
 """Inner wrapper function that is actual decorator"""
 class ShortlyRepresented(cls):
 """Subclass that provides decorated behavior"""
 def __repr__(self):
 return super().__repr__()[:max_width]

 return ShortlyRepresented

 return parametrized

The major drawback of using closures this way in class decorators is that the resulting
objects are no longer instances of the class that was decorated but instances of the
subclass created dynamically in the decorator function. Among others, this will
affect the class's __name__ and __doc__ attributes:

@parametrized_short_repr(10)
class ClassWithLittleBitLongerLongName:
 pass

Such usage of class decorators will result in following changes to the class metadata:

>>> ClassWithLittleBitLongerLongName().__class__

<class 'ShortlyRepresented'>

>>> ClassWithLittleBitLongerLongName().__doc__

'Subclass that provides decorated behavior'

Chapter 3

[105]

Unfortunately, this cannot be fixed as simply as explained in the Introspection
Preserving Decorators section of Chapter 2, Syntax Best Practices – below the Class
Level, using the additional wraps decorator. This makes use of the class decorators
in this form limited in some circumstances. If no additional work is performed to
preserve the old class's metadata, then this can break results of many automated
documentation generation tools.

Still, despite this single caveat, class decorators are a simple and lightweight
alternative to the popular mixin class pattern.

A mixin in Python is a class that is not meant to be instantiated, but is instead used
to provide some reusable API or functionality to other existing classes. Mixin classes
are almost always added using multiple inheritance in the form of:

class SomeConcreteClass(MixinClass, SomeBaseClass):
 pass

Mixins are useful design patterns that are used in many libraries. To name one,
Django is one of the frameworks that uses them extensively. While useful and
popular, the mixins can cause some trouble if not designed well, because, in most
cases, they require the developer to rely on multiple inheritance. As was said earlier,
Python handles multiple inheritance relatively well, thanks to the MRO. Anyway,
it may be better to avoid subclassing multiple classes if it only does not require too
much additional work and makes code simpler. This is why class decorators may be
a good replacement of mixins.

Using the __new__() method to override
instance creation process
The special method __new__() is a static method responsible for creating class
instances. It is special-cased, so there is no need to declare it as a static using the
staticmethod decorator. This __new__(cls, [,...]) method is called prior to
the __init__() initialization method. Typically, the implementation of overridden
__new__() invokes its superclass version using super().__new__() with suitable
arguments and modifies the instance before returning it:

class InstanceCountingClass:
 instances_created = 0
 def __new__(cls, *args, **kwargs):
 print('__new__() called with:', cls, args, kwargs)
 instance = super().__new__(cls)
 instance.number = cls.instances_created
 cls.instances_created += 1

Syntax Best Practices – above the Class Level

[106]

 return instance

 def __init__(self, attribute):
 print('__init__() called with:', self, attribute)
 self.attribute = attribute

Here is the log of example interactive session that shows how our
InstanceCountingClass implementation works:

>>> instance1 = InstanceCountingClass('abc')

__new__() called with: <class '__main__.InstanceCountingClass'> ('abc',)
{}

__init__() called with: <__main__.InstanceCountingClass object at
0x101259e10> abc

>>> instance2 = InstanceCountingClass('xyz')

__new__() called with: <class '__main__.InstanceCountingClass'> ('xyz',)
{}

__init__() called with: <__main__.InstanceCountingClass object at
0x101259dd8> xyz

>>> instance1.number, instance1.instances_created

(0, 2)

>>> instance2.number, instance2.instances_created

(1, 2)

The __new__() method should usually return an instance of featured class but it is
also possible that it returns other class instances. If it does happen (different class
instance is returned) then the call to the __init__() method is skipped. This fact
is useful when there is a need to modify creation behavior of non-mutable class
instances such as some of Python's built-in types:

class NonZero(int):
 def __new__(cls, value):
 return super().__new__(cls, value) if value != 0 else None

 def __init__(self, skipped_value):
 # implementation of __init__ could be skipped in this case
 # but it is left to present how it may be not called
 print("__init__() called")
 super().__init__()

Chapter 3

[107]

Let's see this in the interactive session:

>>> type(NonZero(-12))

__init__() called

<class '__main__.NonZero'>

>>> type(NonZero(0))

<class 'NoneType'>

>>> NonZero(-3.123)

__init__() called

-3

So, when to use __new__()? The answer is simple: only when __init__() is not
enough. One such case was already mentioned. This is subclassing of non-mutable
built-in Python types such as int, str, float, frozenset, and so on. It's because
there is no way to modify such a nonmutable object instance in the __init__()
method once it is created.

Some programmers can argue that __new__() may be useful for performing
important object initialization that may be missed if the user forgets to use super().
The __init__() call is the overridden initialization method. While it sounds
reasonable, this has a major drawback. If such an approach is used, then it becomes
harder for the programmer to explicitly skip previous initialization steps if this is
the already desired behavior. It also breaks an unspoken rule of all initializations
performed in __init__().

Because __new__() is not constrained to return the same class instance, it can be
easily abused. Irresponsible usage of this method might do a lot of harm to the code,
so it should always be used carefully and backed with extensive documentation.
Generally, it is better to search for other solutions that may be available for the
given problem, instead of affecting object creation in a way that will break basic
programmers' expectations. Even overridden initialization of non-mutable types
mentioned earlier can be replaced with more predictable and well-established
design patterns, such as the Factory Method, which is described in Chapter 14,
Useful Design Patterns.

There is at least one aspect of Python programming where extensive usage of the
__new__() method is well justified. These are metaclasses that are described in the
next section.

Syntax Best Practices – above the Class Level

[108]

Metaclasses
Metaclass is a Python feature that is considered by many as one of the most difficult
thing in this language and thus avoided by a great number of developers. In reality,
it is not as complicated as it sounds once you understand few basic concepts. As
a reward, knowing this feature grants the ability to do some things that were not
possible using other approaches.

Metaclass is a type (class) that defines other types (classes). The most important
thing to know in order to understand how they work is that classes that define
object instances are objects too. So, if they are objects, then they have an associated
class. The basic type of every class definition is simply the built-in type class.
Here is a simple diagram that should make it clear:

Figure 3 How classes are typed

In Python, it is possible to substitute the metaclass for a class object with our own
type. Usually, the new metaclass is still the subclass of the type class (refer to Figure
4) because not doing so would make the resulting classes highly incompatible with
other classes in terms of inheritance.

Figure 4 Usual implementation of custom metaclasses

Chapter 3

[109]

The general syntax
The call to the built-in type() class can be used as a dynamic equivalent of the class
statement. It creates a new class object given its name, its base classes, and a mapping
containing its attributes:

def method(self):
 return 1

klass = type('MyClass', (object,), {'method': method})

The following is the output:

>>> instance = klass()

>>> instance.method()

1

This is equivalent to the explicit definition of the class:

class MyClass:
 def method(self):
 return 1

Here is what you will get:

>>> instance = MyClass()

>>> instance.method()

1

Every class created with the class statement implicitly uses type as its metaclass.
This default behavior can be changed by providing the metaclass keyword
argument to the class statement:

class ClassWithAMetaclass(metaclass=type):
 pass

The value provided as a metaclass argument is usually another class object, but it
can be any other callable that accepts the same arguments as the type class and is
expected to return another class object. The call signature is type(name, bases,
namespace), which is explained as follows:

• name: This is the name of class that will be stored in the __name__ attribute
• bases: This is the list of parent classes that will become the __bases__

attribute and will be used to construct the MRO of a newly created class

Syntax Best Practices – above the Class Level

[110]

• namespace: This is a namespace (mapping) with definitions for the class
body that will become the __dict__ attribute

One way of thinking about metaclasses is the __new__() method, but at a higher
level of class definition.

Despite the fact that functions that explicitly call type() can be used in place of
metaclasses, the usual approach is to use a different class that inherits from type for
this purpose. The common template for a metaclass is as follows:

class Metaclass(type):
 def __new__(mcs, name, bases, namespace):
 return super().__new__(mcs, name, bases, namespace)

 @classmethod
 def __prepare__(mcs, name, bases, **kwargs):
 return super().__prepare__(name, bases, **kwargs)

 def __init__(cls, name, bases, namespace, **kwargs):
 super().__init__(name, bases, namespace)

 def __call__(cls, *args, **kwargs):
 return super().__call__(*args, **kwargs)

The name, bases, and namespace arguments have the same meaning as in the type()
call explained earlier, but each of these four methods can have different purposes:

• __new__(mcs, name, bases, namespace): This is responsible for the actual
creation of the class object in the same way as it does for ordinary classes.
The first positional argument is a metaclass object. In the preceding example,
it would simply be a Metaclass. Note that mcs is the popular naming
convention for this argument.

• __prepare__(mcs, name, bases, **kwargs): This creates an empty
namespace object. By default, it returns an empty dict, but it can be
overridden to return any other mapping type. Note that it does not accept
namespace as an argument because before calling it the namespace does
not exist.

Chapter 3

[111]

• __init__(cls, name, bases, namespace, **kwargs): This is not
seen popularly in metaclass implementations but has the same meaning
as in ordinary classes. It can perform additional class object initialization
once it was created with __new__(). The first positional argument is now
named cls by convention to mark that this is already a created class object
(metaclass instance) and not a metaclass object. When __init__() gets
called, the class was already constructed and so this method can do less
things than the __new__() method. Implementing such a method is very
similar to using class decorators, but the main difference is that __init__()
will be called for every subclass, while class decorators are not called for
subclasses.

• __call__(cls, *args, **kwargs): This is called when an instance of a
metaclass is called. The instance of a metaclass is a class object (refer to Figure
3); it is invoked when you create new instances of a class. This can be used to
override the default way how class instances are created and initialized.

Each of the preceding methods can accept additional extra keyword arguments here
represented by **kwargs. These arguments can be passed to the metaclass object using
extra keyword arguments in the class definition in the form of the following code:

class Klass(metaclass=Metaclass, extra="value"):
 pass

Such amount of information can be overwhelming at the beginning without proper
examples, so let's trace the creation of metaclasses, classes, and instances with some
print() calls:

class RevealingMeta(type):
 def __new__(mcs, name, bases, namespace, **kwargs):
 print(mcs, "__new__ called")
 return super().__new__(mcs, name, bases, namespace)

 @classmethod
 def __prepare__(mcs, name, bases, **kwargs):
 print(mcs, "__prepare__ called")
 return super().__prepare__(name, bases, **kwargs)

 def __init__(cls, name, bases, namespace, **kwargs):
 print(cls, "__init__ called")
 super().__init__(name, bases, namespace)

 def __call__(cls, *args, **kwargs):
 print(cls, "__call__ called")
 return super().__call__(*args, **kwargs)

Syntax Best Practices – above the Class Level

[112]

Using RevealingMeta as a metaclass to create a new class definition will give the
following output in the Python interactive session:

>>> class RevealingClass(metaclass=RevealingMeta):

... def __new__(cls):

... print(cls, "__new__ called")

... return super().__new__(cls)

... def __init__(self):

... print(self, "__init__ called")

... super().__init__()

...

<class 'RevealingMeta'> __prepare__ called

<class 'RevealingMeta'> __new__ called

<class 'RevealingClass'> __init__ called

>>> instance = RevealingClass()

<class 'RevealingClass'> __call__ called

<class 'RevealingClass'> __new__ called

<RevealingClass object at 0x1032b9fd0> __init__ called

New Python 3 syntax for metaclasses
Metaclasses are not a new feature and are available in Python since version 2.2.
Anyway, the syntax of this changed significantly and this change is neither
backwards nor forwards compatible. While the new syntax is:

class ClassWithAMetaclass(metaclass=type):
 pass

In Python 2, this must be written as follows:

class ClassWithAMetaclass(object):
 __metaclass__ = type

Class statements in Python 2 do not accept keyword arguments, so Python 3 syntax
for defining metaclasses will raise the SyntaxError exception on import. It is still
possible to write a code using metaclasses that will run on both Python versions, but
it requires some extra work. Fortunately, compatibility-related packages such as six
provide simple and reusable solutions to this problem:

from six import with_metaclass

class Meta(type):
 pass

Chapter 3

[113]

class Base(object):
 pass

class MyClass(with_metaclass(Meta, Base)):
 pass

The other important difference is the lack of the __prepare__() hook in Python
2 metaclasses. Implementing such a function will not raise any exceptions under
Python 2 but is pointless because it will not be called in order to provide a clean
namespace object. This is why packages that need to maintain Python 2 compatibility
need to rely on more complex tricks if they want to achieve things that are a lot easier
to implement using __prepare__(). For instance, the Django REST Framework
(http://www.django-rest-framework.org) uses the following approach to
preserve the order in which attributes are added to a class:

class SerializerMetaclass(type):
 @classmethod
 def _get_declared_fields(cls, bases, attrs):
 fields = [(field_name, attrs.pop(field_name))
 for field_name, obj in list(attrs.items())
 if isinstance(obj, Field)]
 fields.sort(key=lambda x: x[1]._creation_counter)

 # If this class is subclassing another Serializer, add
 # that Serializer's fields.
 # Note that we loop over the bases in *reverse*.
 # This is necessary in order to maintain the
 # correct order of fields.
 for base in reversed(bases):
 if hasattr(base, '_declared_fields'):
 fields = list(base._declared_fields.items()) +
 fields

 return OrderedDict(fields)

 def __new__(cls, name, bases, attrs):
 attrs['_declared_fields'] = cls._get_declared_fields(
 bases, attrs
)
 return super(SerializerMetaclass, cls).__new__(
 cls, name, bases, attrs
)

http://www.django-rest-framework.org

Syntax Best Practices – above the Class Level

[114]

This is the workaround if the default namespace type, which is dict, does
not guarantee to preserve the order of the key-value tuples. The _creation_
counter attribute is expected to be in every instance of the Field class.
This Field.creation_counter attribute is created in the same way as
InstanceCountingClass.instance_number that was presented in the section
about the __new__() method. This is a rather complex solution that breaks a single
responsibility principle by sharing its implementation across two different classes
only to ensure a trackable order of attributes. In Python 3, this could be simpler
because __prepare__() can return other mapping types such as OrderedDict:

from collections import OrderedDict

class OrderedMeta(type):
 @classmethod
 def __prepare__(cls, name, bases, **kwargs):
 return OrderedDict()

 def __new__(mcs, name, bases, namespace):
 namespace['order_of_attributes'] = list(namespace.keys())
 return super().__new__(mcs, name, bases, namespace)

class ClassWithOrder(metaclass=OrderedMeta):
 first = 8
 second = 2

Here is what you will see:

>>> ClassWithOrderedAttributes.order_of_attributes

['__module__', '__qualname__', 'first', 'second']

>>> ClassWithOrderedAttributes.__dict__.keys()

dict_keys(['__dict__', 'first', '__weakref__', 'second',
'order_of_attributes', '__module__', '__doc__'])

For more examples, there's a great introduction to metaclass
programming in Python 2 by David Mertz, which is available at
http://www.onlamp.com/pub/a/python/2003/04/17/
metaclasses.html.

 http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html
 http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html
 http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html

Chapter 3

[115]

Metaclass usage
Metaclasses once mastered are a powerful feature but always complicate the code.
They might also make the code less robust that is intended to work on any kind of
class. For instance, you might encounter bad interactions when slots are used in
the class, or when some base class already implements a metaclass, which conflicts
with what yours does. They just do not compose well.

For simple things like changing the read/write attributes or adding new ones,
metaclasses can be avoided in favor of simpler solutions such as properties,
descriptors, or class decorators.

It is also true that often metaclasses can be replaced with other simpler approaches,
but there are situations where things cannot be easily done without them. For instance,
it is hard to imagine Django's ORM implementation built without extensive use of
metaclasses. It could be possible, but it is rather unlikely that the resulting solution
would be similarly easy to use. And frameworks are the place where metaclasses
are really well-suited. They usually have a lot of complex solutions that are not easy
to understand and follow, but eventually allow other programmers to write more
condensed and readable code that operates on a higher level of abstraction.

Metaclass pitfalls
Like some other advanced Python features, metaclasses are very elastic and can be
easily abused. While the call signature of the class is rather strict, Python does not
enforce the type of the return parameter. It can be anything as long as it accepts
incoming arguments on calls and has the required attributes whenever it is needed.

One such object that can be anything-anywhere is the instance of the Mock class
provided in the unittest.mock module. Mock is not a metaclass and also does not
inherit from the type class. It also does not return the class object on instantiating.
Still, it can be included as a metaclass keyword argument in the class definition
and this will not raise any issues, despite, it is pointless to do so:

>>> from unittest.mock import Mock

>>> class Nonsense(metaclass=Mock): # pointless, but illustrative

... pass

...

>>> Nonsense

<Mock spec='str' id='4327214664'>

Syntax Best Practices – above the Class Level

[116]

The preceding example, of course, completely does not make sense and will fail on
any attempt to instantiate such a Nonsense pseudo-class. It is still important to know
that such things are possible because issues with metaclass types that do not result
in the creation of the type subclass are sometimes very hard to spot and understand.
As a proof, here is a traceback of the exception raised when we try to create a new
instance of the Nonsense class presented earlier:

>>> Nonsense()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/Library/Frameworks/Python.framework/Versions/3.5/lib/
python3.5/unittest/mock.py", line 917, in __call__

 return _mock_self._mock_call(*args, **kwargs)

 File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/
unit
test/mock.py", line 976, in _mock_call

 result = next(effect)

StopIteration

Some tips on code generation
As already mentioned, dynamic code generation is the most difficult approach
to code generation. There are some tools in Python that allow you to generate and
execute code or even do some modifications to the already compiled code objects.
A complete book could be written about this and even that will not exhaust the
topic completely.

Various projects, such as Hy (mentioned later), show that even whole languages can
be re-implemented in Python using code generation techniques. This proves that the
possibilities are practically limitless. Knowing how vast this topic is and how badly it
is riddled with various pitfalls, I won't even try to give detailed suggestions on how
to create code this way or to provide useful code samples.

Anyway, knowing what is possible may be useful for you if you plan to study this
field deeper by yourself. So, treat this section only as a short summary of possible
starting points for further learning. Most of it is flavored with many warnings in case
you would like to eagerly jump into calling exec() and eval() in your own project.

Chapter 3

[117]

exec, eval, and compile
Python provides three built-in functions to manually execute, evaluate, and compile
arbitrary Python code:

• exec(object, globals, locals): This allows you to dynamically execute
the Python code. object should be a string or a code object (see the compile()
function). The globals and locals arguments provide global and local
namespaces for the executed code and are optional. If they are not provided,
then the code is executed in the current scope. If provided, globals must be
dictionary, while locals might be any mapping object; it always returns None.

• eval(expression, globals, locals): This is used to evaluate the given
expression returning its value. It is similar to exec(), but it accepts that
expression should be a single Python expression and not a sequence of
statements. It returns the value of the evaluated expression.

• compile(source, filename, mode): This compiles the source into the code
object or AST object. The code to be compiled is provided as a string in the
source argument. The filename should be the file from which the code was
read. If it has no file associated because its source was created dynamically,
then <string> is the value that is commonly used. Mode should be either
exec (sequence of statements), eval (single expression), or single (a single
interactive statement such as in Python interactive session).

The exec() and eval() functions are the easiest to start with when trying to
dynamically generate code because they can operate on strings. If you already
know how to program in Python, then you may know how to correctly generate
a working source code programmatically. I hope you do.

The most useful in the context of metaprogramming is obviously exec() because it
allows us to execute any sequence of Python statements. And the word any should be
alarming for you. Even eval(), which only allows evaluation of expressions in the
hands of a skillful programmer (when fed with the user input), can lead to serious
security holes. Note that crashing the Python interpreter is the least scary scenario
you should be afraid of. Introducing vulnerability to remote execution exploits due
to irresponsible use of exec() and eval() can cost you your image as a professional
developer, or even your job.

Even if used with a trusted input, there is a long list of little details about exec() and
eval() that is too long to be included here, but might affect how your application
works in the ways you would not expect. Armin Ronacher has a good article that
lists the most important of them called Be careful with exec and eval in Python (refer to
http://lucumr.pocoo.org/2011/2/1/exec-in-python/).

http://lucumr.pocoo.org/2011/2/1/exec-in-python/

Syntax Best Practices – above the Class Level

[118]

Despite all these frightening warnings, there are natural situations where the usage
of exec() and eval() is really justified. The popular statement about when you
have to use them is: you will know. In other words, in case of even the tiniest doubt,
you should not use them and try to find a different solution.

eval() and untrusted input
The signature of the eval() function might make you think that if
you provide empty globals and locals namespaces and wrap it
with proper try ... except statements, then it will be reasonably
safe. There could be nothing more wrong. Ned Batcheler has written
a very good article in which he shows how to cause an interpreter
segmentation fault in the eval() call even with erased access to all
Python built-ins (http://nedbatchelder.com/blog/201206/
eval_really_is_dangerous.html). This is a single proof that
both exec() and eval() should never be used with untrusted input.

Abstract Syntax Tree
The Python syntax is converted to Abstract Syntax Tree (AST) before it is compiled
to byte code. This is a tree representation of the abstract syntactic structure of the
source code. The processing of Python grammar is available thanks to the built-in ast
module. Raw AST of Python code can be created using the compile() function with
the ast.PyCF_ONLY_AST flag, or using the ast.parse() helper. Direct translation in
reverse is not that simple and there is no function provided in the built-ins for that.
Some projects, such as PyPy, do such things though.

The ast module provides some helper functions that allow working with the AST:

>>> tree = ast.parse('def hello_world(): print("hello world!")')

>>> tree

<_ast.Module object at 0x00000000038E9588>

>>> ast.dump(tree)

"Module(

 body=[

 FunctionDef(

 name='hello_world',

 args=arguments(

 args=[],

 vararg=None,

 kwonlyargs=[],

 kw_defaults=[],

http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

Chapter 3

[119]

 kwarg=None,

 defaults=[]

),

 body=[

 Expr(

 value=Call(

 func=Name(id='print', ctx=Load()),

 args=[Str(s='hello world!')],

 keywords=[]

)

)

],

 decorator_list=[],

 returns=None

)

]

)"

The output of ast.dump() in the preceding example was reformatted to increase the
readability and better show the tree-like structure of the AST. It is important to know
that the AST can be modified before being passed to the compile() call that gives
many new possibilities. For instance, new syntax nodes can be used for additional
instrumentation such as test coverage measurement. It is also possible to modify
the existing code tree in order to add new semantics to the existing syntax. Such a
technique is used by the MacroPy project (https://github.com/lihaoyi/macropy)
to add syntactic macros to Python using the already existing syntax (refer to Figure 5):

Figure 5: How MacroPy adds syntactic macros to Python modules on import

https://github.com/lihaoyi/macropy

Syntax Best Practices – above the Class Level

[120]

AST can also be created in a purely artificial manner and there is no need to parse
any source at all. This gives Python programmers the ability to create Python
bytecode for custom domain-specific languages or even completely implement
other existing programming languages on top of Python VM.

Import hooks
Taking advantage of the MacroPy's ability to modify original AST would not be as
easy as using the import macropy.activate statement if it would not somehow
override the Python import behavior. Fortunately, Python provides a way to
intercept imports using two kinds of import hooks:

• Meta hooks: These are called before any other import processing has
occurred. Using meta hooks, you can override the way how sys.path is
processed or even frozen and built-in modules. In order to add new meta
hook, a new meta path finder object must be added to the sys.meta_path list.

• Import path hooks: These are called as part of sys.path processing. They
are used if the path item associated with the given hook is encountered.
The import path hooks are added by extending the sys.path_hooks list
with a new path finder object.

The details on implementing both path finders and meta path finders are extensively
implemented in the official Python documentation (https://docs.python.org/3/
reference/import.html). The official documentation should be your primary
resource if you want to interact with imports on that level. It's so because import
machinery in Python is rather complex and any attempt to summarize it in a few
paragraphs would inevitably fail. Treat this section rather as a note that such things
are possible and as a reference to more detailed information.

Projects using code generation patterns
It is really hard to find a really usable implementation of the library that relies on
code generation patterns that is not only an experiment or simple proof of concepts.
The reasons for that situation are fairly obvious:

• Deserved fear of the exec() and eval() functions because if used
irresponsibly they can cause real disasters

• Successful code generation is simply very difficult because it requires a deep
understanding of the featured language and exceptional programming skills
in general

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html

Chapter 3

[121]

Despite these difficulties, there are some projects that successfully take this approach
either to improve performance or achieve things that would be impossible by other
means.

Falcon's compiled router
Falcon (http://falconframework.org/) is a minimalist Python WSGI web
framework for building fast and lightweight APIs. It strongly encourages REST
architectural style that is currently very popular around the Web. It is a good
alternative to other rather heavy frameworks such as Django or Pyramid. It is
also a strong competitor to other micro-frameworks that aim for simplicity such
as Flask, Bottle, and web2py.

One of its features is its very simple routing mechanism. It is not as complex as
the routing provided by Django urlconf and does not provide as many features
but in most cases is just enough for any API that follows the REST architectural
design. What is most interesting about falcon's routing is that the actual router
is implemented using the code generated from the list of routes provided to the
object that defines the API configuration. This is the effort to make routing fast.

Consider this very short API example taken from falcon's web documentation:

sample.py
import falcon
import json

class QuoteResource:
 def on_get(self, req, resp):
 """Handles GET requests"""
 quote = {
 'quote': 'I\'ve always been more interested in '
 'the future than in the past.',
 'author': 'Grace Hopper'
 }

 resp.body = json.dumps(quote)

api = falcon.API()
api.add_route('/quote', QuoteResource())

http://falconframework.org/

Syntax Best Practices – above the Class Level

[122]

The highlighted call to the api.add_route() method in brief words translates
to updating the whole dynamically generated router code tree, compiling using
compile() and generating the new route-finding function using eval(). Looking
at the __code__ attribute of the api._router._find() function shows that it was
generated from the string and that it changes with every call to api.add_route():

>>> api._router._find.__code__

<code object find at 0x00000000033C29C0, file "<string>", line 1>

>>> api.add_route('/none', None)

>>> api._router._find.__code__

<code object find at 0x00000000033C2810, file "<string>", line 1>

Hy
Hy (http://docs.hylang.org/) is the dialect of Lisp written entirely in Python.
Many similar projects implementing other code in Python usually try only to
tokenize the plain form of code provided either as a file-like object or string and
interpret it as a series of explicit Python calls. Unlike others, Hy can be considered
a language that runs fully in the Python run-time environment just as Python does.
Code written in Hy can use the existing built-in modules and external packages and
vice versa. Code written with Hy can be imported back to Python.

In order to embed Lisp in Python, Hy translates Lisp code directly to Python
Abstract Syntax Tree. Import interoperability is achieved using import hook that is
registered once the Hy module is imported in Python. Every module with the .hy
extension is treated as the Hy module and can be imported like the ordinary Python
module. Thanks to this fact, the following "hello world" program is written in this
Lisp dialect:

;; hyllo.hy
(defn hello [] (print "hello world!"))

It can be imported and executed by the following Python code:

>>> import hy

>>> import hyllo

>>> hyllo.hello()

hello world!

http://docs.hylang.org/

Chapter 3

[123]

If we dig deeper and try to disassemble hyllo.hello using the built-in dis module,
we will notice that the byte code of the Hy function does not differ significantly from
its pure Python counterpart:

>>> import dis

>>> dis.dis(hyllo.hello)

 2 0 LOAD_GLOBAL 0 (print)

 3 LOAD_CONST 1 ('hello world!')

 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)

 9 RETURN_VALUE

>>> def hello(): print("hello world!")

>>> dis.dis(hello)

 1 0 LOAD_GLOBAL 0 (print)

 3 LOAD_CONST 1 ('hello world!')

 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)

 9 POP_TOP

 10 LOAD_CONST 0 (None)

 13 RETURN_VALUE

Summary
This chapter presented the best syntax practices related with classes. It started
with basic information on how to subclass built-in types and call the method from
superclasses. After that, more advanced concepts of object oriented programing in
Python were presented. These were useful syntax features that focus on instance
attribute access: descriptors and properties. It was shown how they can be used
to create cleaner and more maintainable code. Slots too were featured, with an
important note that they should always be used with caution.

The rest of the chapter explored the vast topic of metaprogramming in Python.
The syntax features that favor the various metaprogramming patterns such as
decorators and metaclasses were described in detail with some examples taken
from real-life code.

The other important aspect of metaprogramming in the form of dynamic code
generation was described only briefly as it is too vast to fit in the limited space
of this book. However, it should be a good starting point that gives a quick
summary of the possible options in that field.

[125]

Choosing Good Names
Most of the standard library was built keeping usability in mind. For instance,
working with built-in types is done naturally and was designed to be easy to use.
Python, in this case, can be compared to the pseudocode you might think about
when working on a program. Most of the code can be read out loud. For instance,
this snippet should be understandable by anyone:

my_list = []

if 'd' not in my_list:
 my_list.append('d')

This is one of the reasons why writing Python is so easy when compared to other
languages. When you are writing a program, the flow of your thoughts is quickly
translated into lines of code.

This chapter focuses on the best practices for writing code that is easy to understand
and use, through:

• The usage of naming conventions, described in PEP 8
• The set of naming best practices
• The short summary of popular tools that allow you to check for compliance

with styling guides

PEP 8 and naming best practices
PEP 8 (http://www.python.org/dev/peps/pep-0008) provides a style guide for
writing Python code. Besides some basic rules such as space indentation, maximum
line length, and other details concerning the code layout, PEP 8 also provides a
section on naming conventions that most of the codebases follow.

http://www.python.org/dev/peps/pep-0008

Choosing Good Names

[126]

This section provides a quick summary of this PEP, and adds to it a naming best-
practice guide for each kind of element. You should still consider reading of PEP 8
document as mandatory.

Why and when to follow PEP 8?
If you are creating a new software package that is intended to be open-sourced, then
the answer is simple: always. PEP 8 is de facto the standard code style for most of the
open source software in Python. If you want to accept any collaboration from other
programmers, then you should definitely stick to PEP 8, even if you have different
views on the best code style guidelines. Doing so has the benefit of making it a lot
easier for other developers to jump straight into your project. Code will be easier
to read for newcomers because it will be consistent in style with most of the other
Python open source packages.

Also, starting with full PEP 8 compliance saves you time and trouble in the future.
If you want to release your code to the public, you will eventually face suggestions
from fellow programmers to switch to PEP 8. Arguments as to whether it is really
necessary to do so for a particular project tend to be never-ending flame wars that
are impossible to win. This is the sad truth, but you may eventually be forced to be
consistent with this style guide in order to not lose contributors.

Also, restyling of the whole project's codebase, if it is in a mature state of
development, might require a tremendous amount of work. In some cases, such
restyling might require changing almost every line of code. While most of the
changes can be automated (indentation, newlines, and trailing whitespaces), such
massive code overhaul usually introduces a lot of conflicts in every version control
workflow that is based on branching. It is also very hard to review so many changes
at once. These are the reasons why many open source projects have a rule that style
fixing changes should always be included in separate pull/merge requests or patches
that do not affect any feature or bug.

Beyond PEP 8 – team-specific style guidelines
Despite providing a comprehensive set of style guidelines, PEP 8 still leaves some
freedom for the developers. Especially in terms of nested data literals and multiline
function calls that require long lists of arguments. Some teams may decide that they
require additional styling rules and the best option is to formalize them in some kind
of document that is available for every team member.

Chapter 4

[127]

Also, in some situations, it may be impossible, or economically infeasible, to be
strictly consistent with PEP 8 in some old projects that had no style guide defined.
Such projects will still benefit from formalization of the actual coding conventions
even if they do not reflect the official set of PEP 8 rules. Remember, what is more
important than consistency with PEP 8 is consistency within the project. If rules are
formalized and available as a reference for every programmer, then it is way easier
to keep consistency within a project and organization.

Naming styles
The different naming styles used in Python are:

• CamelCase
• mixedCase
• UPPERCASE, and UPPER_CASE_WITH_UNDERSCORES
• lowercase and lower_case_with_underscores
• _leading and trailing_ underscores, and sometimes __doubled__ underscores

Lowercase and uppercase elements are often a single word, and sometimes a few
words concatenated. With underscores, they are usually abbreviated phrases. Using
a single word is better. The leading and trailing underscores are used to mark the
privacy and special elements.

These styles are applied to:

• Variables
• Functions and methods
• Properties
• Classes
• Modules
• Packages

Variables
There are two kinds of variables in Python:

• Constants
• Public and private variables

Choosing Good Names

[128]

Constants
For constant global variables, an uppercase with an underscore is used. It informs the
developer that the given variable represents a constant value.

There are no real constants in Python like those in C++, where const can
be used. You can change the value of any variable. That's why Python
uses a naming convention to mark a variable as a constant.

For example, the doctest module provides a list of option flags and directives
(http://docs.python.org/lib/doctest-options.html) that are small sentences,
clearly defining what each option is intended for:

from doctest import IGNORE_EXCEPTION_DETAIL
from doctest import REPORT_ONLY_FIRST_FAILURE

These variable names seem rather long, but it is important to clearly describe them.
Their usage is mostly located in initialization code rather than in the body of the code
itself, so this verbosity is not annoying.

Abbreviated names obfuscate the code most of the time. Don't be afraid of
using complete words when an abbreviation seems unclear.

Some constants' names are also driven by the underlying technology. For instance,
the os module uses some constants that are defined on C side, such as the EX_XXX
series, that defines Unix exit code numbers. The same name code can be found, for
example, in the system's sysexits.h C headers file:

import os
import sys

sys.exit(os.EX_SOFTWARE)

Another good practice when using constants is to gather them at the top of a module
that uses them and combine them under new variables when they are intended for
such operations:

import doctest
TEST_OPTIONS = (doctest.ELLIPSIS |
 doctest.NORMALIZE_WHITESPACE |
 doctest.REPORT_ONLY_FIRST_FAILURE)

http://docs.python.org/lib/doctest-options.html

Chapter 4

[129]

Naming and usage
Constants are used to define a set of values the program relies on, such as the default
configuration filename.

A good practice is to gather all the constants in a single file in the package. That is how
Django works, for instance. A module named settings.py provides all the constants:

config.py
SQL_USER = 'tarek'
SQL_PASSWORD = 'secret'
SQL_URI = 'postgres://%s:%s@localhost/db' % (
 SQL_USER, SQL_PASSWORD
)
MAX_THREADS = 4

Another approach is to use a configuration file that can be parsed with the
ConfigParser module, or an advanced tool such as ZConfig, which is the parser
used in Zope to describe its configuration files. But some people argue that it is
rather an overkill to use another file format in a language such as Python, where a
file can be edited and changed as easily as a text file.

For options that act like flags, a common practice is to combine them with Boolean
operations, as the doctest and re modules do. The pattern taken from doctest is
quite simple:

OPTIONS = {}

def register_option(name):
 return OPTIONS.setdefault(name, 1 << len(OPTIONS))

def has_option(options, name):
 return bool(options & name)

now defining options
BLUE = register_option('BLUE')
RED = register_option('RED')
WHITE = register_option('WHITE')

You will get:

>>> # let's try them

>>> SET = BLUE | RED

>>> has_option(SET, BLUE)

Choosing Good Names

[130]

True

>>> has_option(SET, WHITE)

False

When such a new set of constants is created, avoid using a common prefix for them,
unless the module has several sets. The module name itself is a common prefix.
Another solution would be to use the Enum class from the built-in enum module and
simply rely on the set collection instead of the binary operators. Unfortunately, the
Enum class has limited applications in code that targets old Python releases because
the enum module was provided in Python 3.4 version.

Using binary bit-wise operations to combine options is common
in Python. The inclusive OR (|) operator will let you combine
several options in a single integer, and the AND (&) operator will
let you check that the option is present in the integer (refer to the
has_option function).

Public and private variables
For global variables that are mutable and freely available through imports, a lowercase
letter with an underscore should be used when they need to be protected. But these
kinds of variables are not used frequently, since the module usually provides getters
and setters to work with them when they need to be protected. A leading underscore,
in that case, can mark the variable as a private element of the package:

_observers = []

def add_observer(observer):
 _observers.append(observer)

def get_observers():
 """Makes sure _observers cannot be modified."""
 return tuple(_observers)

Variables that are located in functions and methods follow the same rules, and are
never marked as private, since they are local to the context.

For class or instance variables, using the private marker (the leading underscore) has
to be done only if making the variable a part of the public signature does not bring
any useful information, or is redundant.

In other words, if the variable is used internally in the method to provide a public
feature, and is dedicated to this role, it is better to make it private.

Chapter 4

[131]

For instance, the attributes that are powering a property are good private citizens:
class Citizen(object):
 def __init__(self):
 self._message = 'Rosebud...'

 def _get_message(self):
 return self._message

 kane = property(_get_message)

Another example would be a variable that keeps an internal state. This value is not
useful for the rest of the code, but participates in the behavior of the class:

class UnforgivingElephant(object):
 def __init__(self, name):
 self.name = name
 self._people_to_stomp_on = []

 def get_slapped_by(self, name):
 self._people_to_stomp_on.append(name)
 print('Ouch!')

 def revenge(self):
 print('10 years later...')
 for person in self._people_to_stomp_on:
 print('%s stomps on %s' % (self.name, person))

Here is what you will see in interactive session:
>>> joe = UnforgivingElephant('Joe')

>>> joe.get_slapped_by('Tarek')

Ouch!

>>> joe.get_slapped_by('Bill')

Ouch!

>>> joe.revenge()

10 years later...

Joe stomps on Tarek

Joe stomps on Bill

Functions and methods
Functions and methods should be in lowercase with underscores. This rule
was not always true in the old standard library modules. Python 3 did a lot of
reorganizations to the standard library, so most of its functions and methods have
a consistent case. Still, for some modules like threading, you can access the old
function names that used mixedCase (for example, currentThread). This was left to
allow easier backwards compatibility, but if you don't need to run your code in older
versions of Python, then you should avoid using these old names.

Choosing Good Names

[132]

This way of writing methods was common before the lowercase norm became the
standard, and some frameworks, such as Zope and Twisted, are also using mixedCase
for methods. The community of developers working with them is still quite large. So
the choice between mixedCase and lowercase with an underscore is definitely driven
by the library you are using.

As a Zope developer, it is not easy to stay consistent because building an application
that mixes pure Python modules and modules that import Zope code is difficult. In
Zope, some classes mix both conventions because the code base is still evolving and
Zope developers try to adopt the common conventions accepted by so many.

A decent practice in this kind of library environment is to use mixedCase only for
elements that are exposed in the framework, and to keep the rest of the code in
PEP 8 style.

It is also worth noting that developers of the Twisted project took a completely
different approach to this problem. The Twisted project, same as Zope, predates the
PEP 8 document. It was started when there were no official guidelines for code style,
so it had its own. Stylistic rules about the indentation, docstrings, line lengths, and so
on could be easily adopted. On the other hand, updating all the code to match naming
conventions from PEP 8 would result in completely broken backwards compatibility.
And doing that for such a large project as Twisted is infeasible. So Twisted adopted as
much of PEP 8 as possible and left things like mixedCase for variables, functions, and
methods as part of its own coding standard. And this is completely compatible with
the PEP 8 suggestion because it specifically says that consistency within a project is
more important than consistency with PEP 8 style guide.

The private controversy
For private methods and functions, a leading underscore is conventionally added.
This rule was quite controversial because of the name-mangling feature in Python.
When a method has two leading underscores, it is renamed on the fly by the
interpreter to prevent a name collision with a method from any subclass.

So some people tend to use a double leading underscore for their private attributes
to avoid name collision in the subclasses:

class Base(object):
 def __secret(self):
 print("don't tell")

 def public(self):
 self.__secret()

Chapter 4

[133]

class Derived(Base):
 def __secret(self):
 print("never ever")

You will see:

>>> Base.__secret

Traceback (most recent call last):

 File "<input>", line 1, in <module>

AttributeError: type object 'Base' has no attribute '__secret'

>>> dir(Base)

['_Base__secret', ..., 'public']

>>> Derived().public()

don't tell

The original motivation for name mangling in Python was not to provide a private
gimmick, like in C++, but to make sure that some base classes implicitly avoid
collisions in subclasses, especially in multiple inheritance contexts. But using it for
every attribute obfuscates the code in private, which is not Pythonic at all.

Therefore, some people opined that the explicit name mangling should always
be used:

class Base:
 def _Base_secret(self): # don't do this !!!
 print("you told it ?")

This duplicates the class name all over the code and so __ should be preferred.

But the best practice, as the BDFL (Guido, the Benevolent Dictator For Life, see
http://en.wikipedia.org/wiki/BDFL) said, is to avoid using name mangling by
looking at the __mro__ (method resolution order) value of a class before writing
a method in a subclass. Changing the base class private methods has to be done
carefully.

For more information on this topic, an interesting thread occurred in the Python-
Dev mailing list many years ago, where people argued on the utility of name
mangling and its fate in the language. It can be found at http://mail.python.org/
pipermail/python-dev/2005-December/058555.html.

http://en.wikipedia.org/wiki/BDFL
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html

Choosing Good Names

[134]

Special methods
Special methods (https://docs.python.org/3/reference/datamodel.
html#special-method-names) start and end with a double underscore, and no
normal method should use this convention. Some developers used to call them
dunder methods as a portmanteau of double-underscore. They are used for operator
overloading, container definitions, and so on. For the sake of readability, they should
be gathered at the beginning of class definitions:

class WeirdInt(int):
 def __add__(self, other):
 return int.__add__(self, other) + 1

 def __repr__(self):
 return '<weirdo %d>' % self

 # public API
 def do_this(self):
 print('this')

 def do_that(self):
 print('that')

For a normal method, you should never use these kinds of names. So don't invent a
name for a method such as this:

class BadHabits:
 def __my_method__(self):
 print('ok')

Arguments
Arguments are in lowercase, with underscores if needed. They follow the same
naming rules as variables.

Properties
The names of properties are in lowercase, or in lowercase with underscores. Most of
the time, they represent an object's state, which can be a noun or an adjective, or a
small phrase when needed:

class Connection:
 _connected = []

 def connect(self, user):
 self._connected.append(user)

 @property

 def connected_people(self):
 return ', '.join(self._connected)

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names

Chapter 4

[135]

When run on interactive session:
>>> connection = Connection()

>>> connection.connect('Tarek')

>>> connection.connect('Shannon')

>>> print(connection.connected_people)

Tarek, Shannon

Classes
The names of classes are always in CamelCase, and may have a leading underscore
when they are private to a module.

The class and instance variables are often noun phrases, and form a usage logic with
the method names that are verb phrases:

class Database:
 def open(self):
 pass

class User:
 pass

Here is an example usage in interactive session:

>>> user = User()

>>> db = Database()

>>> db.open()

Modules and packages
Besides the special module __init__, the module names are in lowercase with no
underscores.

The following are some examples from the standard library:

• os

• sys

• shutil

When the module is private to the package, a leading underscore is added. Compiled
C or C++ modules are usually named with an underscore and imported in pure
Python modules.

Package names follow the same rules, since they act like more structured modules.

Choosing Good Names

[136]

The naming guide
A common set of naming rules can be applied on variables, methods, functions,
and properties. The names of classes and modules also play an important role in
namespace construction, and in turn in code readability. This mini-guide provides
common patterns and antipatterns for picking their names.

Using the has or is prefix for Boolean elements
When an element holds a Boolean value, the is and has prefixes provide a natural
way to make it more readable in its namespace:

class DB:
 is_connected = False
 has_cache = False

Using plurals for variables that are collections
When an element is holding a collection, it is a good idea to use a plural form. Some
mappings can also benefit from this when they are exposed like sequences:

class DB:
 connected_users = ['Tarek']
 tables = {
 'Customer': ['id', 'first_name', 'last_name']
 }

Using explicit names for dictionaries
When a variable holds a mapping, you should use an explicit name when possible.
For example, if a dict holds a person's address, it can be named persons_addresses:

persons_addresses = {'Bill': '6565 Monty Road',
 'Pamela': '45 Python street'}
persons_addresses['Pamela']
'45 Python street'

Avoiding generic names
Using terms such as list, dict, sequence, or elements, even for local variables, is
evil if your code is not building a new abstract datatype. It makes the code hard to
read, understand, and use. Using a built-in name has to be avoided as well, to avoid
shadowing it in the current namespace. Generic verbs should also be avoided, unless
they have a meaning in the namespace.

Chapter 4

[137]

Instead, domain-specific terms should be used:

def compute(data): # too generic
 for element in data:
 yield element ** 2

def squares(numbers): # better
 for number in numbers:
 yield number ** 2

There is also a list of prefixes and suffixes that despite being very common in
programming should be, in fact, avoided in function and class names:

• Manager
• Object
• Do, handle, or perform

The reason for this is that they are vague, ambiguous, and do not add any value
to the actual name. Jeff Atwood, the co-founder of Discourse and Stack Overflow,
has a very good article on this topic, which can be found on his blog at
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/.

There is also a list of package names that should be avoided. Everything that does
not give any clue about its content can do a lot of harm to the project in the long term.
Names such as misc, tools, utils, common, or core have a very strong tendency to
become endless bags of various unrelated code pieces of very poor quality that seem
to grow in size exponentially. In most cases, the existence of such a module is a sign
of laziness or lack of enough design efforts. Enthusiasts of such module names can
simply forestall the future and rename them to trash or dumpster because this is
exactly how their teammates will eventually treat such modules.

In most cases, it is almost always better to have more small modules, even with very
little content, but with names that well reflect what is inside. To be honest, there is
nothing inherently wrong with names such as utils and common and it is possible to
use them responsibly. But the reality shows that in many cases they instead become
a stub for dangerous structural antipatterns that proliferate very fast. And if you
don't act fast enough, you may not ever be able get rid of them. So the best approach
is simply to avoid such risky organizational patterns and nip them in the bud if
introduced by other people working on a project.

http://blog.codinghorror.com/i-shall-call-it-somethingmanager/

Choosing Good Names

[138]

Avoiding existing names
It is bad practice to use names that already exist in the context because it makes
reading and, more specifically, debugging very confusing:

>>> def bad_citizen():

... os = 1

... import pdb; pdb.set_trace()

... return os

...

>>> bad_citizen()

> <stdin>(4)bad_citizen()

(Pdb) os

1

(Pdb) import os

(Pdb) c

<module 'os' from '/Library/Frameworks/Python.framework/Versions/2.5/lib/
python2.5/os.pyc'>

In this example, the os name was shadowed by the code. Both built-ins and module
names from the standard library should be avoided.

Try to create original names, even if they are local to the context. For keywords, a
trailing underscore is a way to avoid a collision:

def xapian_query(terms, or_=True):
 """if or_ is true, terms are combined with the OR clause"""
 ...

Note that class is often replaced by klass or cls:

def factory(klass, *args, **kwargs):
 return klass(*args, **kwargs)

Best practices for arguments
The signatures of functions and methods are the guardians of code integrity. They
drive its usage and build its API. Besides the naming rules that we have seen
previously, special care has to be taken for arguments. This can be done through
three simple rules:

• Build arguments by iterative design
• Trust the arguments and your tests
• Use *args and **kwargs magic arguments carefully

Chapter 4

[139]

Building arguments by iterative design
Having a fixed and well-defined list of arguments for each function makes the code
more robust. But this can't be done in the first version, so arguments have to be built
by iterative design. They should reflect the precise use cases the element was created
for, and evolve accordingly.

For instance, when some arguments are appended, they should have default values
wherever possible, to avoid any regression:

class Service: # version 1
 def _query(self, query, type):
 print('done')

 def execute(self, query):
 self._query(query, 'EXECUTE')

>>> Service().execute('my query')
done

import logging

class Service(object): # version 2
 def _query(self, query, type, logger):
 logger('done')

 def execute(self, query, logger=logging.info):
 self._query(query, 'EXECUTE', logger)

>>> Service().execute('my query') # old-style call
>>> Service().execute('my query', logging.warning)
WARNING:root:done

When the argument of a public element has to be changed, a deprecation process is
to be used, which is presented later in this section.

Trust the arguments and your tests
Given the dynamic typing nature of Python, some developers use assertions at the
top of their functions and methods to make sure the arguments have proper content:

def division(dividend, divisor):
 assert isinstance(dividend, (int, float))
 assert isinstance(divisor, (int, float))
 return dividend / divisor

Choosing Good Names

[140]

>>> division(2, 4)
0.5
>>> division(2, None)
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "<input>", line 3, in division
AssertionError

This is often done by developers who are used to static typing and feel that
something is missing in Python.

This way of checking arguments is a part of the Design by Contract (DbC, see
http://en.wikipedia.org/wiki/Design_By_Contract) programming style,
where preconditions are checked before the code is actually run.

The two main problems with this approach are:

• DbC's code explains how it should be used, making it less readable
• This can make it slower, since the assertions are made on each call

The latter can be avoided with the "-O" option of the interpreter. In that case, all
assertions are removed from the code before the byte code is created, so that the
checking is lost.

In any case, assertions have to be done carefully, and should not be used to bend
Python to a statically typed language. The only use case for this is to protect the
code from being called nonsensically.

A healthy Test-Driven Development style provides a robust base code in most cases.
Here, the functional and unit tests validate all the use cases the code is created for.

When code in a library is used by external elements, making assertions can be useful,
as the incoming data might break things up or even create damage. This happens for
code that deals with databases or the filesystem.

Another approach to this is fuzz testing (http://en.wikipedia.org/wiki/
Fuzz_testing), where random pieces of data are sent to the program to detect its
weaknesses. When a new defect is found, the code can be fixed to take care of that,
together with a new test.

Let's take care that a code base, which follows the TDD approach, evolves in the right
direction, and gets increasingly robust, since it is tuned every time a new failure
occurs. When it is done in the right way, the list of assertions in the tests becomes
similar in some way to the list of pre-conditions.

http://en.wikipedia.org/wiki/Design_By_Contract

Chapter 4

[141]

Using *args and **kwargs magic arguments
carefully
The *args and **kwargs arguments can break the robustness of a function or
method. They make the signature fuzzy, and the code often starts to build a small
argument parser where it should not:

def fuzzy_thing(**kwargs):

 if 'do_this' in kwargs:
 print('ok i did')

 if 'do_that' in kwargs:
 print('that is done')

 print('errr... ok')

>>> fuzzy_thing(do_this=1)
ok i did
errr... ok
>>> fuzzy_thing(do_that=1)
that is done
errr... ok
>>> fuzzy_thing(hahaha=1)
errr... ok

If the argument list gets long and complex, it is tempting to add magic arguments.
But this is more a sign of a weak function or method that should be broken into
pieces or refactored.

When *args is used to deal with a sequence of elements that are treated the same
way in the function, asking for a unique container argument, such as an iterator,
is better:

def sum(*args): # okay
 total = 0
 for arg in args:
 total += arg
 return total

def sum(sequence): # better!
 total = 0
 for arg in sequence:
 total += arg
 return total

Choosing Good Names

[142]

For **kwargs, the same rule applies. It is better to fix the named arguments to make
the method's signature meaningful:

def make_sentence(**kwargs):
 noun = kwargs.get('noun', 'Bill')
 verb = kwargs.get('verb', 'is')
 adj = kwargs.get('adjective', 'happy')
 return '%s %s %s' % (noun, verb, adj)

def make_sentence(noun='Bill', verb='is', adjective='happy'):
 return '%s %s %s' % (noun, verb, adjective)

Another interesting approach is to create a container class that groups several related
arguments to provide an execution context. This structure differs from *args or
**kwargs because it can provide internals that work over the values and can evolve
independently. The code that uses it as an argument will not have to deal with
its internals.

For instance, a web request passed on to a function is often represented by an
instance of a class. This class is in charge of holding the data passed by the web
server:

def log_request(request): # version 1
 print(request.get('HTTP_REFERER', 'No referer'))

def log_request(request): # version 2
 print(request.get('HTTP_REFERER', 'No referer'))
 print(request.get('HTTP_HOST', 'No host'))

Magic arguments cannot be avoided sometimes, especially in meta-programming.
For instance, they are indispensable in the creation of decorators that work on
functions with any kind of signature. More globally, anywhere where working with
unknown data that just traverses the function, the magic arguments are great:

import logging

def log(**context):
 logging.info('Context is:\n%s\n' % str(context))

Chapter 4

[143]

Class names
The name of a class has to be concise, precise, so that it is sufficient to understand
from it what the class does. A common practice is to use a suffix that informs about
its type or nature, for example:

• SQLEngine
• MimeTypes
• StringWidget
• TestCase

For base or abstract classes, a Base or Abstract prefix can be used as follows:

• BaseCookie
• AbstractFormatter

The most important thing is to be consistent with the class attributes. For example,
try to avoid redundancy between the class and its attributes' names:

>>> SMTP.smtp_send() # redundant information in the namespace

>>> SMTP.send() # more readable and mnemonic

Module and package names
The module and package names inform about the purpose of their content. The
names are short, in lowercase, and without underscores:

• sqlite

• postgres

• sha1

They are often suffixed with lib if they are implementing a protocol:

import smtplib
import urllib
import telnetlib

They also need to be consistent within the namespace, so their usage is easier:

from widgets.stringwidgets import TextWidget # bad
from widgets.strings import TextWidget # better

Again, always avoid using the same name as that of one of the modules from the
standard library.

Choosing Good Names

[144]

When a module is getting complex, and contains a lot of classes, it is good practice to
create a package and split the module's elements in other modules.

The __init__ module can also be used to put back some APIs at the top level as
it will not impact its usage, but will help with re-organizing the code into smaller
parts. For example, consider the __init__ module in a foo package with the
following content:

from .module1 import feature1, feature2
from .module2 import feature3

This will allow users to import features directly, as shown in the following code:

from foo import feature1, feature2, feature3

But beware that this can increase your chances to get circular dependencies, and that
the code added in the __init__ module will be instantiated. So use it with care.

Useful tools
Part of the previous conventions and practices can be controlled and worked out
with the following tools:

• Pylint: This is a very flexible source code analyzer
• pep8 and flake8: These are a small code style checker, and a wrapper that

adds to it some more useful features, like static analysis and complexity
measurement

Pylint
Besides some quality assurance metrics, Pylint allows you to check whether a given
source code is following a naming convention. Its default settings correspond to
PEP 8, and a Pylint script provides a shell report output.

To install Pylint, you can use pip:

$ pip install pylint

After this step, the command is available and can be run against a module, or several
modules, using wildcards. Let's try it on Buildout's bootstrap.py script:

$ wget -O bootstrap.py https://bootstrap.pypa.io/bootstrap-buildout.py -q

$ pylint bootstrap.py

No config file found, using default configuration

Chapter 4

[145]

************* Module bootstrap

C: 76, 0: Unnecessary parens after 'print' keyword (superfluous-parens)

C: 31, 0: Invalid constant name "tmpeggs" (invalid-name)

C: 33, 0: Invalid constant name "usage" (invalid-name)

C: 45, 0: Invalid constant name "parser" (invalid-name)

C: 74, 0: Invalid constant name "options" (invalid-name)

C: 74, 9: Invalid constant name "args" (invalid-name)

C: 84, 4: Import "from urllib.request import urlopen" should be placed at
the top of the module (wrong-import-position)

...

Global evaluation

Your code has been rated at 6.12/10

Real Pylint's output is a bit longer and has been truncated here.

Notice that Pylint can give you bad rates or complaints. For instance, an import
statement that is not used by the code of the module itself is perfectly fine in some
cases (having it available in the namespace).

Making calls to libraries that are using mixedCase for methods can also lower your
rating. In any case, the global evaluation is not as important. Pylint is just a tool that
points the possible improvements.

The first thing to do to fine-tune Pylint is to create a .pylinrc configuration file in
your projects directory, with the –generate-rcfile option:

$ pylint --generate-rcfile > .pylintrc

This configuration file is self-documenting (every possible option is described with
comment) and should already contain every available configuration option.

Besides checking for compliance with some arbitrary coding standards, Pylint can
also give additional information about the overall code quality, like:

• Code duplication metrics
• Unused variables and imports
• Missing function, method, or class docstrings
• Too long function signatures

Choosing Good Names

[146]

The list of available checks that are enabled by default is very long. It is important to
know that some of the rules are arbitrary and will not easily apply to every codebase.
Remember that consistency is always more valuable than compliance with some
arbitrary standards. Fortunately, Pylint is very tunable, so if your team uses some
naming and coding conventions that are different than assumed by default, you
can easily configure it to check for consistency with these conventions.

pep8 and flake8
pep8 is a tool that has only one purpose: it provides only a stylecheck against code
conventions from PEP 8. This is the main difference from Pylint, which has many
additional features. This is the best option for programmers that are interested in
automated code style checking only for PEP 8 standard, without any additional
tool configuration, like in Pylint's case.

pep8 can be installed with pip:

$ pip install pep8

When run on the Buildout's bootstrap.py script, it will give a short list of code
style violations:

$ wget -O bootstrap.py https://bootstrap.pypa.io/bootstrap-buildout.py -q

$ pep8 bootstrap.py

bootstrap.py:118:1: E402 module level import not at top of file

bootstrap.py:119:1: E402 module level import not at top of file

bootstrap.py:190:1: E402 module level import not at top of file

bootstrap.py:200:1: E402 module level import not at top of file

The main difference from Pylint's output is its length. pep8 concentrates only on
style, so it does not provide any other warning, like unused variables, too long
function names, or missing docstrings. It also does not give any rating. And it really
makes sense because there is no such thing as partial consistency. Any, even the
slightest, violation of style guidelines makes the code immediately inconsistent.

Chapter 4

[147]

Output of pep8 is simpler than Pylint's and easier to parse, so it may be a better
choice if you want to integrate it with some continuous integration solutions, like
Jenkins. If you are missing some static analysis features, there is the flake8 package
that is a wrapper on pep8 and few other tools that is easily extendable and provides
a more extensive suite of features:

• McCabe complexity measurement
• Static analysis via pyflakes
• Disabling whole files or single lines using comments

Summary
This chapter explained the most accepted coding conventions by pointing to the official
Python style guide (the PEP 8 document). The official style guide was complemented
by some naming suggestions that will make your future code more explicit, and also a
few useful tools that are indispensable in keeping the code style consistent.

All of this prepares us for the first practical topic of the book—writing and distributing
packages. In the next chapter we will learn how to publish our very own package on a
public PyPI repository, and also how to leverage the power of the packaging
ecosystem in your private organization.

[149]

Writing a Package
This chapter focuses on a repeatable process to write and release Python packages.
Its intentions are:

• To shorten the time needed to set up everything before starting the real work
• To provide a standardized way to write packages
• To ease the use of a test-driven development approach
• To facilitate the releasing process

It is organized into the following four parts:

• A common pattern for all packages that describes the similarities between all
Python packages, and how distutils and setuptools play a central role

• What namespace packages are and why they can be useful
• How to register and upload packages in the Python Package Index (PyPI)

with emphasis on security and common pitfalls
• The stand-alone executables as an alternative way to package and distribute

Python applications

Creating a package
Python packaging can be a bit overwhelming at first. The main reason for that is the
confusion about proper tools for creating Python packages. Anyway, once you create
your first package, you will see that this is not as hard as it looks. Also, knowing
proper, state-of-the art packaging tools helps a lot.

You should know how to create packages even if you are not interested in
distributing your code as open source. Knowing how to make your own will
give you more insight into the packaging ecosystem and will help you to work
with third-party code available on PyPI that you are probably using.

Writing a Package

[150]

Also, having your closed source project or its components available as source
distribution packages can help you to deploy your code in different environments.
Advantages of leveraging the Python packaging ecosystem in code deployment will
be described in more detail in the next chapter. Here we will focus on proper tools
and techniques to create such distributions.

The confusing state of Python packaging
tools
The state of Python packaging was very confusing for a long time and it took many
years to bring organization to this topic. Everything started with the distutils
package introduced in 1998 that was later enhanced by setuptools in 2003. These
two projects started a long and knotted story of forks, alternative projects, and
complete rewrites that tried to once and for all fix Python's packaging ecosystem.
Unfortunately, most of these attempts never succeeded. The effect was quite the
opposite. Each new project that aimed to supersede setuptools or distutils
only added up to the already huge confusion around packaging tools. Some of
such forks were merged back to their ancestors (like distribute that was a fork
of setuptools) but some were left abandoned (like distutils2).

Fortunately, this state is gradually changing. An organization called Python
Packaging Authority (PyPA) was formed to bring back the order and organization
to the packaging ecosystem. Python Packaging User Guide (https://packaging.
python.org), maintained by PyPA, is the authoritative source of information about
the latest packaging tools and best practices. Treat it as the best source of information
about packaging and a complementary reading to this chapter. The guide also
contains a detailed history of changes and new projects related to packaging, so
it will be useful if you already know a bit but want to make sure you still use the
proper tools.

Stay away from other popular Internet resources, such as The Hitchhiker's Guide to
Packaging. It is old, not maintained, and mostly obsolete. It may be interesting only
for historical reasons and the Python Packaging User Guide is in fact a fork of this
old resource.

The current landscape of Python packaging thanks
to PyPA
PyPA, besides providing an authoritative guide for packaging, also maintains
packaging projects and the standardization process for new official aspects of
packaging. All of PyPA's projects can be found under a single organization
on GitHub: https://github.com/pypa.

https://packaging.python.org
https://packaging.python.org
https://github.com/pypa

Chapter 5

[151]

Some of them were already mentioned in the book. The most notable are:

• pip

• virtualenv

• twine

• warehouse

Note that most of them were started outside of this organization and only moved
under PyPA patronage as mature and widespread solutions.

Thanks to PyPA engagement, the progressive abandoning of the eggs format in
favor of wheels for built distributions is already happening. The future may bring
us even more fresh breath. PyPA is actively working on warehouse, which aims
to completely replace current PyPI implementations. This will be a huge step in
packaging history because pypi is so old and neglected a project that only a
few of us can imagine gradually improving it without a total rewrite.

Tool recommendations
Python Packaging User Guide gives a few suggestions on recommended tools for
working with packages. They can be generally divided into two groups: tools for
installing packages and tools for package creation and distribution.

Utilities from the first group recommended by PyPA were already mentioned
in Chapter 1, Current Status of Python, but let's repeat them here for the sake
of consistency:

• Use pip for installing packages from PyPI
• Use virtualenv or venv for application-level isolation of the Python

environment

The Python Packaging User Guide recommendations of tools for package creation
and distribution are as follows:

• Use setuptools to define projects and create source distributions
• Use wheels in favor of eggs to create built distributions
• Use twine to upload package distributions to PyPI

Writing a Package

[152]

Project configuration
It should be obvious that the easiest way to organize the code of big applications is to
split it into several packages. This makes the code simpler, and easier to understand,
maintain, and change. It also maximizes the reusability of
each package. They act like components.

setup.py
The root directory of a package that has to be distributed contains a setup.py
script. It defines all metadata as described in the distutils module, combined
as arguments in a call to the standard setup() function. Despite distutils is a
standard library module, it is recommended that you use the setuptools package
instead, which provides several enhancements to the standard distutils.

Therefore, the minimum content for this file is:

from setuptools import setup

setup(
 name='mypackage',
)

name gives the full name of the package. From there, the script provides several
commands that can be listed with the –-help-commands option:

$ python3 setup.py --help-commands

Standard commands:

 build build everything needed to install

 clean clean up temporary files from 'build' command

 install install everything from build directory

 sdist create a source distribution (tarball, zip file)

 register register the distribution with the PyP

 bdist create a built (binary) distribution

 check perform some checks on the package

 upload upload binary package to PyPI

Extra commands:

 develop install package in 'development mode'

 alias define a shortcut to invoke one or more commands

 test run unit tests after in-place build

 bdist_wheel create a wheel distribution

Chapter 5

[153]

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]

 or: setup.py --help [cmd1 cmd2 ...]

 or: setup.py --help-commands

 or: setup.py cmd --help

The actual list of commands is longer and can vary depending on the available
setuptools extensions. It was truncated to show only those that are most important
and relevant to this chapter. Standard commands are the built-in commands provided
by distutils, whereas extra commands are the ones created by third-party packages
such as setuptools or any other package that defines and registers a new command.
One such extra command registered by another package is bdist_wheel provided by
the wheel package.

setup.cfg
The setup.cfg file contains default options for commands of the setup.py script.
This is very useful if the process for building and distributing the package is more
complex and requires many optional arguments to be passed to the setup.py
commands. This allows you to store such default parameters in code on a per-project
basis. This will make your distribution flow independent from the project and also
provide transparency about how your package was built and distributed to the users
and other team members.

The syntax for the setup.cfg file is the same as provided by the built-in
configparser module so it is similar to the popular Microsoft Windows INI files.
Here is an example of the setup configuration file that provides some global, sdist,
and bdist_wheel command defaults:

[global]
quiet=1

[sdist]
formats=zip,tar

[bdist_wheel]
universal=1

This example configuration will ensure that source distributions will always be
created with two formats (ZIP and TAR) and built wheel distributions will be created
as universal wheels (Python version independent). Also, most of output will be
suppressed on every command by the global quiet switch. Note that this is only
for demonstration purposes and it may not be a reasonable choice to suppress the
output for every command by default.

Writing a Package

[154]

MANIFEST.in
When building a distribution with sdist command, distutils browses the package
directory looking for files to include in the archive. distutils will include:

• All Python source files implied by the py_modules, packages, and
scripts options

• All C source files listed in the ext_modules option

Files that match the glob pattern test/test*.py are: README, README.txt, setup.
py, and setup.cfg.

Besides, if your package is under subversion or CVS, sdist will browse folders such
as .svn to look for files to include. Integration with other version control systems is
also possible through extensions. sdist builds a MANIFEST file that lists all files and
includes them into the archive.

Let's say you are not using these version control systems, and need to include more
files. Now you can define a template called MANIFEST.in in the same directory
as that of setup.py for the MANIFEST file, where you indicate to sdist which files
to include.

This template defines one inclusion or exclusion rule per line, for example:

include HISTORY.txt
include README.txt
include CHANGES.txt
include CONTRIBUTORS.txt
include LICENSE
recursive-include *.txt *.py

The full list of the MANIFEST.in commands can be found in official distutils
documentation.

Most important metadata
Besides the name and the version of the package being distributed, the most
important arguments setup can receive are:

• description: This includes a few sentences to describe the package
• long_description: This includes a full description that can be in

reStructuredText
• keywords: This is a list of keywords that define the package
• author: This is the author's name or organization

Chapter 5

[155]

• author_email: This is the contact e-mail address
• url: This is the URL of the project
• license: This is the license (GPL, LGPL, and so on)
• packages: This is a list of all names in the package; setuptools provides a

small function called find_packages that calculates this
• namespace_packages: This is a list of namespaced packages

Trove classifiers
PyPI and distutils provide a solution for categorizing applications with the set of
classifiers called trove classifiers. All the classifiers form a tree-like structure. Each
classifier is a form of string where every namespace is separated by the :: substring.
Their list is provided to the package definition as a classifiers argument to the
setup() function. Here is an example list of classifiers for some project available on
PyPI (here solrq):

from setuptools import setup

setup(
 name="solrq",
 # (...)

 classifiers=[
 'Development Status :: 4 - Beta',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License',
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Programming Language :: Python :: 2',
 'Programming Language :: Python :: 2.6',
 'Programming Language :: Python :: 2.7',
 'Programming Language :: Python :: 3',
 'Programming Language :: Python :: 3.2',
 'Programming Language :: Python :: 3.3',
 'Programming Language :: Python :: 3.4',
 'Programming Language :: Python :: Implementation :: PyPy',
 'Topic :: Internet :: WWW/HTTP :: Indexing/Search',
],
)

Writing a Package

[156]

They are completely optional in the package definition but provide a useful
extension to the basic metadata available in the setup() interface. Among others,
trove classifiers may provide information about supported Python versions or
systems, the development stage of the project, or the license under which the code is
released. Many PyPI users search and browse the available packages by categories
so a proper classification helps packages to reach their target.

Trove classifiers serve an important role in the whole packaging ecosystem
and should never be ignored. There is no organization that verifies packages
classification, so it is your responsibility to provide proper classifiers for your
packages and not introduce chaos to the whole package index.

At the time of writing this book, there are 608 classifiers available on PyPI that are
grouped into nine major categories:

• Development status
• Environment
• Framework
• Intended audience
• License
• Natural language
• Operating system
• Programming language
• Topic

New classifiers are added from time to time, so it is possible that these numbers will
be different at the time you read it. The full list of currently available trove classifiers
is available with the setup.py register --list-classifiers command.

Common patterns
Creating a package for distribution can be a tedious task for inexperienced
developers. Most of the metadata that setuptools or distuitls accept in their
setup() function call can be provided manually, ignoring the fact that this may be
available in other parts of the project:

from setuptools import setup

setup(
 name="myproject",
 version="0.0.1",

Chapter 5

[157]

 description="mypackage project short description",
 long_description="""
 Longer description of mypackage project
 possibly with some documentation and/or
 usage examples
 """,
 install_requires=[
 'dependency1',
 'dependency2',
 'etc',
]
)

While this will definitely work, it is hard to maintain in the long term and leaves a
place for future mistakes and inconsistencies. Both setuptools and distutils cannot
automatically pick various metadata information from the project sources, so you need
to provide them by yourself. There are some common patterns among the Python
community for solving the most popular problems like dependency management,
version/readme inclusion, and so on. It is worth knowing at least a few of them
because they are so popular that they could be considered as packaging idioms.

Automated inclusion of version string from package
The PEP 440 (Version Identification and Dependency Specification) document
specifies a standard for version and dependency specification. It is a long document
that covers accepted version specification schemes and how version matching and
comparison in Python packaging tools should work. If you are using or plan to use a
complex project version numbering scheme, then reading this document is obligatory.
If you are using a simple scheme that consists of one, two, three, or more numbers
separated by dots, then you can let go the reading of PEP 440. If you don't know how
to choose the proper versioning scheme, I greatly recommend following semantic
versioning that was already mentioned in Chapter 1, Current Status of Python.

The other problem is where to include that version specifier for a package or module.
There is PEP 396 (Module Version Numbers), which deals exactly with this problem.
Note that it is only informational and has deferred status, so it is not a part of the
standards track. Anyway, it describes what seems to be a de facto standard now.
According to PEP 396, if a package or module has a version specified, it should be
included as a __version__ attribute of a package root (__init__.py) or module
file. Another de facto standard is to also include the VERSION attribute that contains
the tuple of version parts. This helps users to write compatibility code because such
version tuples can be easily compared if the versioning scheme is simple enough.

Writing a Package

[158]

So many packages available on PyPI follow both standards. Their __init__.py files
contain version attributes that look like the following:

version as tuple for simple comparisons
VERSION = (0, 1, 1)
string created from tuple to avoid inconsistency
__version__ = ".".join([str(x) for x in VERSION])

The other suggestion of deferred PEP 396 is that the version provided in the distutils'
setup() function should be derived from __version__, or vice versa. Python
Packaging User Guide features multiple patterns for a single-sourcing project version
and each of them has its own advantages and limitations. My personal favorite is
rather long and is not included in the PyPA's guide but has the advantage of limiting
the complexity to setup.py script only. This boiler plate assumes that the version
specifier is provided by the VERSION attribute of package's __init__ module and
extracts this data for inclusion in the setup() call. Here is the excerpt from some
imaginary package's setup.py script that presents this approach:

from setuptools import setup
import os

def get_version(version_tuple):
 # additional handling of a,b,rc tags, this can
 # be simpler depending on your versioning scheme
 if not isinstance(version_tuple[-1], int):
 return '.'.join(
 map(str, version_tuple[:-1])
) + version_tuple[-1]

 return '.'.join(map(str, version_tuple))

path to the packages __init__ module in project
source tree
init = os.path.join(
 os.path.dirname(__file__), 'src', 'some_package',
 '__init__.py'
)

version_line = list(
 filter(lambda l: l.startswith('VERSION'), open(init))
)[0]

Chapter 5

[159]

VERSION is a tuple so we need to eval its line of code.
We could simply import it from the package but we
cannot be sure that this package is importable before
finishing its installation
VERSION = get_version(eval(version_line.split('=')[-1]))

setup(
 name='some-package',
 version=VERSION,
 # ...
)

README file
Python Packaging Index can display a project's readme or the value of long_
description on the package page in PyPI portal. You can write this description
using reStructuredText (http://docutils.sourceforge.net/rst.html) markup,
so it will be formatted to HTML on upload. Unfortunately, only reStructuredText is
currently available as a documentation markup on PyPI. This is unlikely to change in
the near future. More likely, additional markup languages will be supported when
we see the warehouse project replacing completely current PyPI implementations.
Unfortunately, the final release of warehouse is still unknown.

Still, many developers want to use different markup languages for various reasons.
The most popular choice is Markdown, which is the default markup language on
GitHub—the place where most open source Python development currently happens.
So, usually, GitHub and Markdown enthusiasts either ignore this problem or
provide two independent documentation texts. Descriptions provided to PyPI are
either short versions of what is available on the project's GitHub page or it is plain
unformatted Markdown that does not present well on PyPI.

If you want to use something different than reStructuredText markup language for
your project's README, you can still provide it as a project description on the PyPI
page in a readable form. The trick lies in using the pypandoc package to translate
your other markup language into reStructuredText while uploading the package to
Python Package Index. It is important to do it with a fallback to plain content of your
readme file, so the installation won't fail if the user has no pypandoc installed:

try:
 from pypandoc import convert

 def read_md(f):
 return convert(f, 'rst')

http://docutils.sourceforge.net/rst.html

Writing a Package

[160]

except ImportError:
 convert = None
 print(
 "warning: pypandoc module not found, could not convert
 Markdown to RST"
)

 def read_md(f):
 return open(f, 'r').read() # noqa

README = os.path.join(os.path.dirname(__file__), 'README.md')

setup(
 name='some-package',
 long_description=read_md(README),
 # ...
)

Managing dependencies
Many projects require some external packages to be installed and/or used. When
the list of dependencies is very long there comes a question as to how to manage it.
The answer in most cases is very simple. Do not over-engineer the problem. Keep it
simple and provide the list of dependencies explicitly in your setup.py script:

from setuptools import setup
setup(
 name='some-package',
 install_requires=['falcon', 'requests', 'delorean']
 # ...
)

Some Python developers like to use requirements.txt files for tracking lists of
dependencies for their packages. In some situations, you might find a reason for
doing that but in most cases this is a relic of times where the code of that project was
not properly packaged. Anyway, even such notable projects as Celery still stick to
this convention. So if you are not willing to change your habits or you are somehow
forced to use requirement files, then at least do it properly. Here is one of the popular
idioms for reading the list of dependencies from the requirements.txt file:

from setuptools import setup
import os

def strip_comments(l):
 return l.split('#', 1)[0].strip()

Chapter 5

[161]

def reqs(*f):
 return list(filter(None, [strip_comments(l) for l in open(
 os.path.join(os.getcwd(), *f)).readlines()]))

setup(
 name='some-package',
 install_requires=reqs('requirements.txt')
 # ...
)

The custom setup command
distutils allows you to create new commands. A new command can be registered
with an entry point, which was introduced by setuptools as a simple way to define
packages as plug-ins.

An entry point is a named link to a class or a function that is made available through
some APIs in setuptools. Any application can scan for all registered packages and
use the linked code as a plug-in.

To link the new command, the entry_points metadata can be used in the setup call:

setup(
 name="my.command",
 entry_points="""
 [distutils.commands]
 my_command = my.command.module.Class
 """
)

All named links are gathered in named sections. When distutils is loaded, it scans
for links that were registered under distutils.commands.

This mechanism is used by numerous Python applications that provide extensibility.

Working with packages during development
Working with setuptools is mostly about building and distributing packages.
However, you still need to know how to use them to install packages directly from
project sources. And the reason for that is simple. It is good to test if your packaging
code works properly before submitting a package to PyPI. And the simplest way to
test it is by installing it. If you will send a broken package to the repository, then in
order to re-upload it, you need to increase the version number.

Writing a Package

[162]

Testing if your code is packaged properly before the final distribution saves you
from unnecessary version number inflation and obviously from wasted time. Also,
installation directly from your own sources using setuptools may be essential
when working on multiple related packages at the same time.

setup.py install
The install command installs the package into Python environment. It will try to
build the package if no previous build was made and then inject the result into the
Python tree. When a source distribution is provided, it can be uncompressed in a
temporary folder and then installed with this command. The install command will
also install dependencies that are defined in the install_requires metadata. This is
done by looking at the packages in the Python Package Index.

An alternative to the bare setup.py script when installing a package is to use
pip. Since it is a tool that is recommended by PyPA, you should use it even when
installing a package in your local environment for development purposes. In order
to install a package from local sources, run the following command:

pip install <project-path>

Uninstalling packages
Amazingly, setuptools and distutils lack the uninstall command. Fortunately,
it is possible to uninstall any Python package using pip:

pip uninstall <package-name>

Uninstalling can be a dangerous operation when attempted on system-wide
packages. This is another reason why it is so important to use virtual environments
for any development.

setup.py develop or pip -e
Packages installed with setup.py install are copied to the site-packages directory
of your current environment. This means whenever you make a change to the
sources of that package, you are required to re-install it. This is often a problem
during intensive development because it is very easy to forget about the need to
perform installation again. This is why setuptools provides an extra develop
command that allows us to install packages in development mode. This command
creates a special link to project sources in the deployment directory (site-packages)
instead of copying the whole package there. Package sources can be edited without
need of re-installation and it is available in sys.path as it were installed normally.

Chapter 5

[163]

pip also allows installing packages in such a mode. This installation option is called
editable mode and can be enabled with the -e parameter in the install command:

pip install -e <project-path>

Namespace packages
The Zen of Python, which you can read by writing import this in the interpreter
session, says the following about namespaces:

Namespaces are one honking great idea—let's do more of those!

And this can be understood in at least two ways. The first is a namespace in the
context of the language. We all use namespaces without even knowing:

• The global namespace of a module
• The local namespace of the function or method invocation
• The built-in name's namespace

The other kind of namespaces can be provided at packaging levels. These are
namespaced packages. This is often an overlooked feature that can be very useful in
structuring the package ecosystem in your organization or in a very large project.

Why is it useful?
Namespace packages can be understood as a way of grouping related packages or
modules higher than a meta-package level, where each of these packages can be
installed independently.

Namespace packages are especially useful if you have your application components
developed, packaged, and versioned independently but you still want to access
them from the same namespace. This helps to make clear to which organization or
project every package belongs. For instance, for some imaginary Acme company,
the common namespace could be acme. The result could lead to the creation of the
general acme namespace package that will serve as a container for other packages
from this organization. For example, if someone from Acme wants to contribute to
this namespace with, for example, an SQL-related library, he can create a new acme.
sql package that registers itself in acme.

Writing a Package

[164]

It is important to know the difference between normal and namespace packages and
what problems they solve. Normally (without namespace packages), you would
create a package acme with an sql subpackage/submodule with the following file
structure:

$ tree acme/

acme/

├── acme

│ ├── __init__.py

│ └── sql

│ └── __init__.py

└── setup.py

2 directories, 3 files

Whenever you want to add a new subpackage, let's say templating, you are forced
to include it in the source tree of acme:

$ tree acme/

acme/

├── acme

│ ├── __init__.py

│ ├── sql

│ │ └── __init__.py

│ └── templating

│ └── __init__.py

└── setup.py

3 directories, 4 files

Such an approach makes independent development of acme.sql and acme.
templating almost impossible. The setup.py script will also have to specify all
dependencies for every subpackage, so it is impossible (or at least very hard) to
have an installation of just some of the acme components optionally. Also, it is an
unresolvable issue if some of the subpackages have conflicting requirements.

Chapter 5

[165]

With namespace packages, you can store the source tree for each of these
subpackages independently:

$ tree acme.sql/

acme.sql/

├── acme

│ └── sql

│ └── __init__.py

└── setup.py

2 directories, 2 files

$ tree acme.templating/

acme.templating/

├── acme

│ └── templating

│ └── __init__.py

└── setup.py

2 directories, 2 files

You can also register them independently in PyPI or any package index you use.
Users can choose which of the subpackages they want to install from the acme
namespace but they never install the general acme package (it does not exist):

$ pip install acme.sql acme.templating

Note that independent source trees are not enough to create namespace packages
in Python. You need a bit of additional work if you don't want your packages to
overwrite each other. Also, proper handling may be different depending on the
Python language version you target. Details of that are described in the next
two sections.

Writing a Package

[166]

PEP 420 – implicit namespace packages
If you use and target only Python 3, then there is good news for you. PEP 420
(Implicit Namespace Packages) introduced a new way to define namespace
packages. It is a part of the standards track and became an official part of the language
since the 3.3 version. In short, every directory that contains Python packages or
modules (including namespace packages too) is considered a namespace package
if it does not contain the __init__.py file. So, the following are examples of file
structures presented in the previous section:

$ tree acme.sql/

acme.sql/

├── acme

│ └── sql

│ └── __init__.py

└── setup.py

2 directories, 2 files

$ tree acme.templating/

acme.templating/

├── acme

│ └── templating

│ └── __init__.py

└── setup.py

2 directories, 2 files

They are enough to define that acme is a namespace package in Python 3.3 and later.
Minimal setup.py scripts using setup tools will look like the following:

from setuptools import setup

setup(
 name='acme.templating',
 packages=['acme.templating'],
)

Chapter 5

[167]

Unfortunately, setuptools.find_packages() does not support PEP 420 at the time
of writing this book. Anyway, this may change in the future. Also, a requirement to
explicitly define a list of packages seems to be a very small price for easy integration
of namespace packages.

Namespace packages in previous Python
versions
There is no way to make the namespaces packages in PEP 420 layout to work in
Python versions older than 3.3. Still, this concept is very old and commonly used in
such mature projects like Zope, so it is definitely possible to use them but without
implicit definition. In older versions of Python, there are several ways to define that
the package should be treated as a namespace.

The simplest one is to create a file structure for each component that resembles
an ordinary package layout without namespace packages and leave everything to
setuptools. So, the example layout for acme.sql and acme.templating could be
the following:

$ tree acme.sql/

acme.sql/

├── acme

│ ├── __init__.py

│ └── sql

│ └── __init__.py

└── setup.py

2 directories, 3 files

$ tree acme.templating/

acme.templating/

├── acme

│ ├── __init__.py

│ └── templating

│ └── __init__.py

└── setup.py

2 directories, 3 files

Writing a Package

[168]

Note that for both acme.sql and acme.templating, there is an additional source
file acme/__init__.py. This must be left empty. The acme namespace package will
be created if we provide this name as a value of the namespace_packages keyword
argument of the setuptools.setup() function:

from setuptools import setup

setup(
 name='acme.templating',
 packages=['acme.templating'],
 namespace_packages=['acme'],
)

Easiest does not mean best. setuptools, in order to register a new namespace, will
call for the pkg_resources.declare_namespace() function in your __init__.py
file. It will happen even if the __init__.py file is empty. Anyway, as the official
documentation says, it is your own responsibility to declare namespaces in the
__init__.py file, and this implicit behavior of setuptools may be dropped in the
future. In order to be safe and "future-proof", you need to add the following line to
the file acme/__init__.py:

__import__('pkg_resources').declare_namespace(__name__)

Uploading a package
Packages will be useless without an organized way to store, upload, and download
them. Python Packaging Index is the main source of open source packages in
the Python community. Anyone can freely upload new packages and the only
requirement is to register on the PyPI site—https://pypi.python.org/pypi.

You are not limited, of course, to only this index and all packaging tools support the
usage of alternative package repositories. This is especially useful for distributing
closed source code among internal organizations or for deployment purposes. Details
of such packaging usage with instructions on how to create your own package index
will be explained in the next chapter. Here we focus only on open-source uploads to
PyPI with only a little mention on how to specify alternative repositories.

https://pypi.python.org/pypi

Chapter 5

[169]

PyPI – Python Package Index
Python Package Index is, as already mentioned, the official source of open source
package distributions. Downloading from it does not require any account or
permission. The only thing you need is a package manager that can download
new distributions from PyPI. Your preferred choice should be pip.

Uploading to PyPI – or other package index
Anyone can register and upload packages to PyPI provided that he or she has an
account registered. Packages are bound to the user, so, by default, only the user that
registered the name of the package is its admin and can upload new distributions.
This could be a problem for bigger projects, so there is an option to design other
users as package maintainers so that they are able to upload new distributions.

The easiest way to upload a package is to use the upload command of the
setup.py script:

$ python setup.py <dist-commands> upload

Here, <dist-commands> is a list of commands that creates distribution to upload.
Only distributions created during the same setup.py execution will be uploaded to
the repository. So, if you would upload source distribution, built distribution, and
wheel package at once, then you need to issue the following command:

$ python setup.py sdist bdist bdist_wheel upload

When uploading using setup.py, you cannot reuse already built distributions
and are forced to rebuild them on every upload. This might make some sense but can
be inconvenient for large or complex projects in which creation of the distribution
may actually take a considerable amount of time. Another problem of setup.py
upload is that it can use plaintext HTTP or unverified HTTPS connection on some
Python versions. This is why twine is recommended as a secure replacement for
setup.py upload.

Twine is the utility for interacting with PyPI that currently serves only one
purpose—securely uploading packages to the repository. It supports any packaging
format and always ensures that the connection is secure. It also allows you to
upload files that were already created, so you are able to test distributions before the
release. An example usage of twine still requires invoking setup.py for building
distributions:

$ python setup.py sdist bdist_wheel

$ twine upload dist/*

Writing a Package

[170]

If you have not yet registered this package, then the upload will fail because you
need to register it first. This can also be done using twine:

$ twine register dist/*

.pypirc

.pypirc is a configuration file that stores information about Python packages
repositories. It should be located in your home directory. The format for this file
is as follows:

[distutils]
index-servers =
 pypi
 other

[pypi]
repository: <repository-url>
username: <username>
password: <password>

[other]
repository: https://example.com/pypi
username: <username>
password: <password>

The distutils section should have the index-servers variable that lists all sections
describing all the available repositories and credentials to them. There are only three
variables that can be modified for each repository section:

• repository: This is the URL of the package repository (it defaults to
https://www.python.org/pypi)

• username: This is the username for authorization in the given repository
• password: This is the user password for authorization in plaintext

Note that storing your repository password in plaintext may not be the wisest
security choice. You can always leave it blank and you will be prompted for
it whenever it is necessary.

The .pypirc file should be respected by every packaging tool built for Python. While
this may not be true for every packaging-related utility out there, it is supported by
the most important ones such as pip, twine, distutils, and setuptools.

https://www.python.org/pypi

Chapter 5

[171]

Source packages versus built packages
There are generally two types of distributions for Python packages:

• Source distributions
• Built (binary) distributions

Source distributions are the simplest and most platform independent. For pure
Python packages, it is a no-brainer. Such a distribution contains only Python
sources and these should be already highly portable.

A more complex situation is when your package introduces some extensions written,
for example, in C. Source distributions will still work provided that the package user
has a proper development toolchain in his/her environment. This consists mostly of
the compiler and proper C header files. For such cases, the built distribution format
may be better suited because it may provide already built extensions for specific
platforms.

sdist
The sdist command is the simplest command available. It creates a release tree
where everything needed to run the package is copied. This tree is then archived in
one or many archive files (often, it just creates one tarball). The archive is basically
a copy of the source tree.

This command is the easiest way to distribute a package from the target system
independently. It creates a dist folder with the archives in it that can be distributed.
To be able to use it, an extra argument has to be passed to setup to provide a version
number. If you don't give it a version value, it will use version = 0.0.0:

from setuptools import setup

setup(name='acme.sql', version='0.1.1')

This number is useful to upgrade an installation. Every time a package is released,
the number is raised so that the target system knows it has changed.

Let's run the sdist command with this extra argument:

$ python setup.py sdist

running sdist

...

creating dist

tar -cf dist/acme.sql-0.1.1.tar acme.sql-0.1.1

Writing a Package

[172]

gzip -f9 dist/acme.sql-0.1.1.tar

removing 'acme.sql-0.1.1' (and everything under it)

$ ls dist/

acme.sql-0.1.1.tar.gz

Under Windows, the archive will be a ZIP file.

The version is used to mark the name of the archive, which can be distributed and
installed on any system that has Python. In the sdist distribution, if the package
contains C libraries or extensions, the target system is responsible for compiling
them. This is very common for Linux-based systems or Mac OS because they
commonly provide a compiler, but it is less usual to have it under Windows. That's
why a package should always be distributed with a prebuilt distribution as well,
when it is intended to run under several platforms.

bdist and wheels
To be able to distribute a prebuilt distribution, distutils provides the build
command, which compiles the package in four steps:

• build_py: This builds pure Python modules by byte-compiling them and
copying them into the build folder.

• build_clib: This builds C libraries, when the package contains any, using C
compiler and creating a static library in the build folder.

• build_ext: This builds C extensions and puts the result in the build folder
like build_clib.

• build_scripts: This builds the modules that are marked as scripts. It also
changes the interpreter path when the first line was set (!#) and fixes the file
mode so that it is executable.

Each of these steps is a command that can be called independently. The result of the
compilation process is a build folder that contains everything needed for the package
to be installed. There's no cross-compiler option yet in the distutils package. This
means that the result of the command is always specific to the system it was built on.

When some C extensions have to be created, the build process uses the system
compiler and the Python header file (Python.h). This include file is available from
the time Python was built from the sources. For a packaged distribution, an extra
package for your system distribution is probably required. At least in popular Linux
distributions, it is often named python-dev. It contains all the necessary header files
for building Python extensions.

Chapter 5

[173]

The C compiler used is the system compiler. For a Linux-based system or Mac OS
X, this would be gcc or clang respectively. For Windows, Microsoft Visual C++ can
be used (there's a free command-line version available) and the open-source project
MinGW can be used as well. This can be configured in distutils.

The build command is used by the bdist command to build a binary distribution.
It calls build and all the dependent commands, and then creates an archive in the
same way as sdist does.

Let's create a binary distribution for acme.sql under Mac OS X:

$ python setup.py bdist

running bdist

running bdist_dumb

running build

...

running install_scripts

tar -cf dist/acme.sql-0.1.1.macosx-10.3-fat.tar .

gzip -f9 acme.sql-0.1.1.macosx-10.3-fat.tar

removing 'build/bdist.macosx-10.3-fat/dumb' (and everything under it)

$ ls dist/

acme.sql-0.1.1.macosx-10.3-fat.tar.gz acme.sql-0.1.1.tar.gz

Notice that the newly created archive's name contains the name of the system and
the distribution it was built under (Mac OS X 10.3).

The same command called under Windows will create a specific distribution archive:

C:\acme.sql> python.exe setup.py bdist

...

C:\acme.sql> dir dist

25/02/2008 08:18 <DIR> .

25/02/2008 08:18 <DIR> ..

25/02/2008 08:24 16 055 acme.sql-0.1.win32.zip

 1 File(s) 16 055 bytes

 2 Dir(s) 22 239 752 192 bytes free

Writing a Package

[174]

If a package contains C code, apart from a source distribution, it's important to release
as many different binary distributions as possible. At the very least, a Windows
binary distribution is important for those who don't have a C compiler installed.

A binary release contains a tree that can be copied directly into the Python tree. It
mainly contains a folder that is copied into Python's site-packages folder. It may
also contain cached bytecode files (*.pyc files on Python 2 and __pycache__/*.pyc
on Python 3).

The other kind of built distributions are "wheels" provided by the wheel package.
When installed (for example, using pip), wheel adds a new bdist_wheel command
to the distutils. It allows creating platform-specific distributions (currently only for
Windows and Mac OS X) that provides alternatives to normal bdist distributions.
It was designed to replace another distribution introduced earlier by setuptools—
eggs. Eggs are now obsolete so won't be featured here. The list of advantages of using
wheels is quite long. Here are the ones that are mentioned in the Python Wheels page
(http://pythonwheels.com/):

• Faster installation for pure python and native C extension packages
• Avoids arbitrary code execution for installation. (Avoids setup.py)
• Installation of a C extension does not require a compiler on Windows or OS X
• Allows better caching for testing and continuous integration
• Creates .pyc files as part of the installation to ensure they match the Python

interpreter used
• More consistent installs across platforms and machines

According to PyPA recommendation, wheels should be your default distribution
format. Unfortunately, platform-specific wheels for Linux are not available yet so if
you have to distribute packages with C extensions, then you need to create sdist
distribution for Linux users.

Standalone executables
Creating standalone executables is a commonly overlooked topic in materials that
cover packaging of Python code. This is mainly because Python lacks proper tools in
its standard library that could allow programmers to create simple executables that
could be run by users without the need to install the Python interpreter.

http://pythonwheels.com/

Chapter 5

[175]

Compiled languages have a big advantage over Python in that they allow creation
of an executable application for the given system architecture that could be run by
users in a way that does not require them to have any knowledge of the underlying
technology. Python code, when distributed as a package, requires the Python
interpreter in order to be run. This creates a big inconvenience for users who
do not have enough technical proficiency.

Developer-friendly operating systems such as Mac OS X or most Linux distributions
come with Python pre-installed. So, for their users, the Python-based application
still could be distributed as a source package that relies on specific interpreter
directive in the main script file, which is popularly called shebang. For most
Python applications, this takes the following form:

#!/usr/bin/env python

Such directive, when used as a first line of script, will mark it to be interpreted by
default by the Python version for the given environment. This can, of course, take
a more detailed form, which requires a specific Python version such as python3.4,
python3, or python2. Note that this will work in most popular POSIX systems, but
isn't portable at all by definition. This solution relies on the existence of specific
Python versions and also availability of env executable exactly at /usr/bin/env.
Both of these assumptions may fail on some operating systems. Also, shebangs will
not work on Windows at all. Additionally, bootstrapping of the Python environment
on Windows can be a challenge even for experienced developers, so you cannot
expect that nontechnical users will be able to do that by themselves.

The other thing to consider is the simple user experience in the desktop environment.
Users usually expect that applications can be run from the desktop by simply
clicking on them. Not every desktop environment will support that with Python
applications distributed as a source.

Therefore, it would be best if we are able to create a binary distribution that would
work as any other compiled executable. Fortunately, it is possible to create an
executable that has both the Python interpreter and our project embedded. This
allows users to open our application without caring about Python or any other
dependency.

When are standalone executables useful?
Standalone executables are useful in situations where simplicity of user experience is
more important than the user's ability to interfere with applications' code. Note that
the fact that you are distributing application as executable only makes code reading
or modification harder—not impossible. It is not a way to secure applications code
and should only be used as a way to make interacting with an application simpler.

Writing a Package

[176]

Standalone executables should be a preferred way of distributing applications for
nontechnical end users and also seems to be the only reasonable way of distributing
a Python application for Windows.

Standalone executables are usually a good choice for:

• Applications that depend on specific Python versions that may not be easily
available on the target operating systems

• Applications that rely on modified precompiled CPython sources
• Applications with graphical interfaces
• Projects that have many binary extensions written in different languages
• Games

Popular tools
Python does not have any built-in support for building standalone executables.
Fortunately, there are some community projects solving that problem with varied
success. The four most notable are:

• PyInstaller
• cx_Freeze
• py2exe
• py2app

Each one of them is slightly different in use and also each one of them has slightly
different limitations. Before choosing your tool, you need to decide which platform
you want to target, because every packaging tool can support only a specific set of
operating systems.

The best case scenario is if you make such a decision at the very beginning of the
project's life. None of these tools, of course, require deep interaction in your code, but
if you start building standalone packages early, you can automate the whole process
and save future integration time and costs. If you leave this for later, you may find
yourself in a situation where the project is built in such a sophisticated way that none
of the available tools will work. Providing a standalone executable for such a project
will be problematic and will take a lot of your time.

Chapter 5

[177]

PyInstaller
PyInstaller (http://www.pyinstaller.org/) is by far the most advanced program
to freeze Python packages into standalone executables. It provides the most extensive
multiplatform compatibility among every available solution at the moment, so it is
the most recommended one. Platforms that PyInstaller supports are:

• Windows (32-bit and 64-bit)
• Linux (32-bit and 64-bit)
• Mac OS X (32-bit and 64-bit)
• FreeBSD, Solaris, and AIX

Supported versions of Python are Python 2.7 and Python 3.3, 3.4, and 3.5. It is
available on PyPI, so it can be installed in your working environment using pip.
If you have problems installing it this way, you can always download the installer
from the project's page.

Unfortunately, cross-platform building (cross-compilation) is not supported so
if you want to build your standalone executable for a specific platform, then you
need to perform building on that platform. This is not a big trouble today with the
advent of many virtualization tools. If you don't have a specific system installed on
your computer, you can always use Vagrant that will provide you with the desired
operating system as a virtual machine.

Usage for simple applications is easy. Let's assume our application is contained in
the script named myscript.py. This is a simple "Hello world!" application. We want
to create a standalone executable for Windows users and we had our sources located
under D://dev/app in the filesystem. Our application can be bundled with the
following short command:

$ pyinstaller myscript.py

2121 INFO: PyInstaller: 3.1

2121 INFO: Python: 2.7.10

2121 INFO: Platform: Windows-7-6.1.7601-SP1

2121 INFO: wrote D:\dev\app\myscript.spec

2137 INFO: UPX is not available.

2138 INFO: Extending PYTHONPATH with paths

['D:\\dev\\app', 'D:\\dev\\app']

2138 INFO: checking Analysis

http://www.pyinstaller.org/

Writing a Package

[178]

2138 INFO: Building Analysis because out00-Analysis.toc is non
existent

2138 INFO: Initializing module dependency graph...

2154 INFO: Initializing module graph hooks...

2325 INFO: running Analysis out00-Analysis.toc

(...)

25884 INFO: Updating resource type 24 name 2 language 1033

PyInstaller's standard output is quite long even for simple applications, so it was
truncated in the preceding example for the sake of brevity. If run on Windows,
the resulting structure of directories and files will be as follows:

$ tree /0066

│ myscript.py

│ myscript.spec

│

├───build

│ └───myscript

│ myscript.exe

│ myscript.exe.manifest

│ out00-Analysis.toc

│ out00-COLLECT.toc

│ out00-EXE.toc

│ out00-PKG.pkg

│ out00-PKG.toc

│ out00-PYZ.pyz

│ out00-PYZ.toc

│ warnmyscript.txt

│

└───dist

 └───myscript

 bz2.pyd

 Microsoft.VC90.CRT.manifest

 msvcm90.dll

 msvcp90.dll

 msvcr90.dll

 myscript.exe

Chapter 5

[179]

 myscript.exe.manifest

 python27.dll

 select.pyd

 unicodedata.pyd

 _hashlib.pyd

The dist/myscript directory contains the built application that can now be
distributed to the users. Note that the whole directory must be distributed. It
contains all additional files that are required to run our application (DLLs, compiled
extension libraries, and so on). A more compact distribution can be obtained with the
--onefile switch of the pyinstaller command:

$ pyinstaller --onefile myscript.py

(...)

$ tree /f

├───build

│ └───myscript

│ myscript.exe.manifest

│ out00-Analysis.toc

│ out00-EXE.toc

│ out00-PKG.pkg

│ out00-PKG.toc

│ out00-PYZ.pyz

│ out00-PYZ.toc

│ warnmyscript.txt

│

└───dist

 myscript.exe

When built with the --onefile option, the only file you need to distribute to other
users is the single executable found in the dist directory (here, myscript.exe). For
small applications, this is probably the preferred option.

Writing a Package

[180]

One of the side effects of running the pyinstaller command is the creation of the
*.spec file. This is an autogenerated Python module containing specification on how
to create executables from your sources. For example, we already used this in the
following code:

-*- mode: python -*-

block_cipher = None

a = Analysis(['myscript.py'],
 pathex=['D:\\dev\\app'],
 binaries=None,
 datas=None,
 hiddenimports=[],
 hookspath=[],
 runtime_hooks=[],
 excludes=[],
 win_no_prefer_redirects=False,
 win_private_assemblies=False,
 cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,
 a.scripts,
 a.binaries,
 a.zipfiles,
 a.datas,
 name='myscript',
 debug=False,
 strip=False,
 upx=True,
 console=True)

This .spec file contains all pyinstaller arguments specified earlier. This is very
useful if you have performed a lot of customizations to your build because this can
be used instead of building scripts that would have to store your configuration. Once
created, you can use it as an argument to the pyinstaller command instead of your
Python script:

$ pyinstaller.exe myscript.spec

Chapter 5

[181]

Note that this is a real Python module, so you can extend it and perform more
complex customizations to the building procedure using a language that you already
know. Customizing the .spec file is especially useful when you are targeting many
different platforms. Also, not all of the pyinstaller options are available through
the command-line arguments and can be used only when modifying .spec file.

PyInstaller is an extensive tool, which by its usage is very simple for the great majority
of programs. Anyway, the thorough reading of its documentation is recommended if
you are interested in using it as a tool to distribute your applications.

cx_Freeze
cx_Freeze (http://cx-freeze.sourceforge.net/) is another tool for creating
standalone executables. It is a simpler solution than PyInstaller, but also supports
the three major platforms:

• Windows
• Linux
• Mac OS X

Same as PyInstaller, it does not allow us to perform cross-platform builds, so you
need to create your executables on the same operating system you are distributing to.
The major disadvantage of cx_Freeze is that it does not allow us to create real single-
file executables. Applications built with it need to be distributed with related DLL
files and libraries. Assuming that we have the same application as featured in the
PyInstaller section, the example usage is very simple as well:

$ cxfreeze myscript.py

copying C:\Python27\lib\site-packages\cx_Freeze\bases\Console.exe ->
D:\dev\app\dist\myscript.exe

copying C:\Windows\system32\python27.dll ->
D:\dev\app\dist\python27.dll

writing zip file D:\dev\app\dist\myscript.exe

(...)

copying C:\Python27\DLLs\bz2.pyd -> D:\dev\app\dist\bz2.pyd

copying C:\Python27\DLLs\unicodedata.pyd ->
D:\dev\app\dist\unicodedata.pyd

http://cx-freeze.sourceforge.net/

Writing a Package

[182]

Resulting structure of files is as follows:

$ tree /f

│ myscript.py

│

└───dist

 bz2.pyd

 myscript.exe

 python27.dll

 unicodedata.pyd

Instead of providing the own format for build specification (like PyInstaller does),
cx_Freeze extends the distutils package. This means you can configure how
your standalone executable is built with the familiar setup.py script. This makes
cx_Freeze very convenient if you already distribute your package using setuptools
or distutils because additional integration requires only small changes to your
setup.py script. Here is an example of such a setup.py script using cx_Freeze.
setup() for creating standalone executables on Windows:

import sys
from cx_Freeze import setup, Executable

Dependencies are automatically detected, but it might need fine
tuning.
build_exe_options = {"packages": ["os"], "excludes": ["tkinter"]}

setup(
 name="myscript",
 version="0.0.1",
 description="My Hello World application!",
 options={
 "build_exe": build_exe_options
 },
 executables=[Executable("myscript.py")]
)

With such a file, the new executable can be created using the new build_exe
command added to the setup.py script:

$ python setup.py build_exe

Chapter 5

[183]

The usage of cx_Freeze seems a bit easier than PyInstaller's and distutils
integration is a very useful feature. Unfortunately this project may cause some
troubles for inexperienced developers:

• Installation using pip may be problematic under Windows
• The official documentation is very brief and lacking in some places

py2exe and py2app
py2exe (http://www.py2exe.org/) and py2app (https://pythonhosted.org/
py2app/) are two other programs that integrate with Python packaging either via
distutils or setuptools in order to create standalone executables. Here they are
mentioned together because they are very similar in both usage and their limitations.
The major drawback of py2exe and py2app is that they target only a single platform:

• py2exe allows building Windows executables
• py2app allows building Mac OS X apps

Because the usage is very similar and requires only modification of the setup.py
script, these packages seem to complement each other. The documentation of py2app
projects the following example of the setup.py script that allows to build standalone
executables with the right tool (either py2exe or py2app), depending on the platform
used:

import sys
from setuptools import setup

mainscript = 'MyApplication.py'

if sys.platform == 'darwin':
 extra_options = dict(
 setup_requires=['py2app'],
 app=[mainscript],
 # Cross-platform applications generally expect sys.argv to
 # be used for opening files.
 options=dict(py2app=dict(argv_emulation=True)),
)
elif sys.platform == 'win32':
 extra_options = dict(
 setup_requires=['py2exe'],
 app=[mainscript],
)

http://www.py2exe.org/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/

Writing a Package

[184]

else:
 extra_options = dict(
 # Normally unix-like platforms will use "setup.py install"
 # and install the main script as such
 scripts=[mainscript],
)

setup(
 name="MyApplication",
 **extra_options
)

With such a script, you can build your Windows executable using the python
setup.py py2exe command and Mac OS X app using python setup.py py2app.
Cross compilation is of course not possible.

Despite some limitations and less elasticity than PyInstaller or cx_Freeze, it is good to
know that there are always py2exe and py2app projects. In some cases, PyInstaller or
cx_Freeze might fail to build executable for the project properly. In such situations, it
is always worth checking whether other solutions can handle our code.

Security of Python code in executable
packages
It is important to know that standalone executables does not make application code
secure by any means. It is not an easy task to decompile the embedded code from
such executable files, but it is doable for sure. What is even more important is that
the results of such de-compilation (if done with proper tools) might look strikingly
similar to original sources.

This fact makes standalone Python executables not a viable solution for closed
source projects where leaking of the application code could harm the organization.
So, if your whole business can be copied simply by copying the source code of your
application, then you should think of other ways to distribute the application. Maybe
providing software as a service will be a better choice for you.

Chapter 5

[185]

Making decompilation harder
As already said, there is no reliable way to secure applications from de-compilation
with the tools available at the moment. Still, there are some ways to make this
process harder. But harder does not mean less probable. For some of us, the most
tempting challenges are the hardest ones. And we all know that the eventual prize
in this challenge is very high: the code that you tried to secure.

Usually the process of de-compilation consists of a few steps:

1. Extracting the project's binary representation of bytecode from standalone
executables.

2. Mapping of a binary representation to bytecode of a specific Python version.
3. Translation of bytecode to AST.
4. Recreation of sources directly from AST.

Providing the exact solutions for deterring developers from such reverse-engineering
of standalone executables would be pointless for obvious reasons. So here are only
some ideas for hampering of the de-compilation process or devaluating its results:

• Removing any code metadata available at runtime (docstrings), so the
eventual results will be a bit less readable

• Modifying the bytecode values used by the CPython interpreter so that
conversion from binary to bytecode and later to AST requires more effort

• Using a version of CPython sources modified in such a complex way that
even if decompiled sources of the application are available they are useless
without decompiling the modified CPython binary

• Using obfuscation scripts on sources before bundling them into executables,
which will make sources less valuable after the de-compilation

Such solutions make the development process a lot harder. Some of the above
ideas require a very deep understanding of Python runtime but each one of them
is riddled with many pitfalls and disadvantages. Mostly, they only defer what is
inevitable. Once your trick is broken, it renders all your additional efforts a waste
of time and resources.

The only reliable way to not allow your closed code leak outside of your application
is to not ship it directly to users in any form. And this is only true if other aspects of
your organization's security stay airtight.

Writing a Package

[186]

Summary
This chapter described details of Python's packaging ecosystem. Now, after reading
it, you should know which tools suit your packaging needs and also which types of
distributions your project requires. You should also know the popular techniques for
common problems and how to provide useful metadata to your project.

We also discussed the topic of standalone executables that are very useful, especially
in distributing desktop applications.

Next chapter will extensively rely on what we have learned here to show how to
efficiently deal with code deployments in a reliable and automated way.

Deploying Code
Even the perfect code (if it exists) is useless if it is not being run. So in order to serve
a purpose, our code needs to be installed on the target machine (computer) and
executed. The process of making a specific version of your application or service
available to the end users is called deployment.

In case of desktop applications, this seems to be simple—your job ends on providing
a downloadable package with optional installer, if necessary. It is the user's
responsibility to download and install it in his/her environment. Your responsibility
is to make this process as easy and convenient as possible. Proper packaging is still
not a simple task, but some tools were already explained in the previous chapter.

Surprisingly, things get more complicated when your code is not a product per se.
If your application only provides a service that is being sold to the users, then it is
your responsibility to run it on your own infrastructure. This scenario is typical for
a web application or any "X as a Service" product. In such a situation, the code is
deployed to set off remote machines that usually are hardly physically accessible to
the developers. This is especially true if you are already a user of cloud computing
services such as Amazon Web Services (AWS) or Heroku.

In this chapter, we will concentrate on the aspect of code deployment to remote
hosts because of the very high popularity of Python in the field of building various
web-related services and products. Despite the high portability of this language, it
has no specific quality that would make its code easily deployable. What matters the
most is how your application is built and what processes you use to deploy it to the
target environments. So this chapter will focus on the following topics:

• What are the main challenges in deploying the code to remote environments
• How to build applications in Python that are easily deployable
• How to reload web services without downtime

Deploying Code

[188]

• How to leverage Python packaging ecosystem in code deployment
• How to properly monitor and instrument code that runs remotely

The Twelve-Factor App
The main requirement for painless deployment is building your application in a
way that ensures that this process will be simple and as streamlined as possible.
This is mostly about removing obstacles and encouraging well-established practices.
Following such common practices is especially important in organizations where
only specific people are responsible for development (developers team or Dev
for short) and different people are responsible for deploying and maintaining the
execution environments (operations team or Ops for short).

All tasks related to server maintenance, monitoring, deployment, configuration, and
so on are often put to one single bag called operations. Even in organizations that have
no separate teams for operational tasks, it is common that only some of the developers
are authorized to do deployment tasks and maintain the remote servers. The common
name for such a position is DevOps. Also, it isn't such an unusual situation that every
member of the development team is responsible for operations, so everyone in such a
team can be called DevOps. Anyway, no matter how your organization is structured
and what the responsibilities of each developer are, everyone should know how
operations work and how code is deployed to the remote servers because, in the end,
the execution environment and its configuration is a hidden part of the product you
are building.

The following common practices and conventions are important mainly for the
following reasons:

• At every company people quit and new ones are hired. By using best
approaches, you are making it easier for fresh team members to jump into the
project. You can never be sure that new employees are already familiar with
common practices for system configuration and running applications
in a reliable way, but you at least make their fast adaptation more probable.

• In organizations where only some people are responsible for deployments, it
simply reduces the friction between the operations and development teams.

A good source of such practices that encourage building easily deployable apps is a
manifesto called Twelve-Factor App. It is a general language-agnostic methodology
for building software-as-a-service apps. One of its purposes is making applications
easier to deploy, but it also highlights other topics, such as maintainability and
making applications easier to scale.

Chapter 6

[189]

As its name says, the Twelve-Factor App consists of 12 rules:

• Codebase: One codebase tracked in revision control, many deploys
• Dependencies: Explicitly declare and isolate dependencies
• Config: Store config in the environment
• Backing services: Treat backing services as attached resources
• Build, release, run: Strictly separate build and run stages
• Processes: Execute the app as one or more stateless processes
• Port binding: Export services via port binding
• Concurrency: Scale out via the process model
• Disposability: Maximize robustness with fast startup and graceful shutdown
• Dev/prod parity: Keep development, staging, and production as similar

as possible
• Logs: Treat logs as event streams
• Admin processes: Run admin/management tasks as one-off processes

Extending each of these rules here is a bit pointless because the official page of
Twelve-Factor App methodology (http://12factor.net/) contains extensive
rationale for every app factor with examples of tools for different frameworks
and environments.

This chapter tries to stay consistent with the above manifesto, so we will discuss
some of them in detail when necessary. The techniques and examples that are
presented may sometimes slightly diverge from these 12 factors, but remember
that these rules are not carved in stone. They are great as long as they serve the
purpose. In the end, what matters is the working application (product) and not
being compatible with some arbitrary methodology.

Deployment automation using Fabric
For very small projects, it may be possible to do deploy your code "by hand", that
is, by manually typing the sequence of commands through the remote shell that are
necessary to install a new version of code and execute it on a remote shell. Anyway,
even for an average-sized project, this is error prone, tedious, and should be
considered a waste of most the precious resource you have, your own time.

http://12factor.net/

Deploying Code

[190]

The solution for that is automation. The simple rule of thumb could be if you needed
to perform the same task manually at least twice, you should automate it so you
won't need to do it for the third time. There are various tools that allow you to
automate different things:

• Remote execution tools such as Fabric are used for on-demand automated
execution of code on multiple remote hosts.

• Configuration management tools such as Chef, Puppet, CFEngine, Salt,
and Ansible are designed for automatized configuration of remote hosts
(execution environments). They can be used to set up backing services
(databases, caches, and so on), system permissions, users, and so on.
Most of them can be used also as a tool for remote execution like Fabric,
but depending on their architecture, this may be more or less easy.

Configuration management solutions is a complex topic that deserves a separate
book. The truth is that the simplest remote execution frameworks have the lowest
entry barrier and are the most popular choice, at least for small projects. In fact,
every configuration management tool that provides a way to declaratively specify
configuration of your machines has a remote execution layer implemented
somewhere deep inside.

Also, depending on some of the tools, thanks to their design, it may not be best
suited for actual automated code deployment. One such example is Puppet, which
really discourages the explicit running of any shell commands. This is why many
people choose to use both types of solution to complement each other: configuration
management for setting up system-level environment and on-demand remote
execution for application deployment.

Fabric (http://www.fabfile.org/) is so far the most popular solution used
by Python developers to automate remote execution. It is a Python library and
command-line tool for streamlining the use of SSH for application deployment or
systems administration tasks. We will focus on it because it is relatively easy to
start with. Be aware that, depending on your needs, it may not be the best solution
to your problems. Anyway, it is a great example of a utility that can add some
automation to your operations, if you don't have any yet.

http://www.fabfile.org/

Chapter 6

[191]

Fabric and Python 3
This book encourages you to develop only in Python 3 (if it is
possible) with notes about older syntax features and compatibility
caveats only to make the eventual version switch a bit more painless.
Unfortunately, Fabric, at the time of writing this book, still has
not been officially ported to Python 3. Enthusiasts of this tool are
being told for at least a few years that there is ongoing Fabric 2
development that will bring a compatibility update. This is said to
be a total rewrite with a lot of new features but there is no official
open repository for Fabric 2 and almost no one has seen its code.
Core Fabric developers do not accept any pull requests for Python
3 compatibility in the current development branch of this project
and close every feature request for it. Such an approach to the
development of popular open source projects is at best disturbing.
The history of this issue does not give us a high chance of seeing the
official release of Fabric 2 soon. Such secret development of a new
Fabric release raises many questions.
Regardless of anyone's opinions, this fact does not diminish the
usefulness of Fabric in its current state. So there are two options if
you already decided to stick with Python 3: use a fully compatible
and independent fork (https://github.com/mathiasertl/
fabric/) or write your application in Python 3 and maintain Fabric
scripts in Python 2. The best approach would be to do it in a separate
code repository.

You could of course automate all the work using only Bash scripts, but this is very
tedious and error-prone. Python has more convenient ways of string processing and
encourages code modularization. Fabric is in fact only a tool for gluing execution of
commands via SSH, so some knowledge about how the command-line interface and
its utilities work in your environment is still required.

To start working with Fabric, you need to install the fabric package (using pip) and
create a script named fabfile.py that is usually located in the root of your project.
Note that fabfile can be considered a part of your project configuration. So if you
want to strictly follow the Twelve-Factor App methodology, you should not maintain
its code in the source tree of the deployed application. Complex projects are in fact
very often built from various components maintained as separate codebases, so it is
another reason why it is a good approach to have one separate repository for all of
the project component configurations and Fabric scripts. This makes deployment of
different services more consistent and encourages good code reuse.

https://github.com/mathiasertl/fabric/
https://github.com/mathiasertl/fabric/

Deploying Code

[192]

An example fabfile that defines a simple deployment procedure will look like this:

-*- coding: utf-8 -*-
import os

from fabric.api import * # noqa
from fabric.contrib.files import exists

Let's assume we have private package repository created
using 'devpi' project
PYPI_URL = 'http://devpi.webxample.example.com'

This is arbitrary location for storing installed releases.
Each release is a separate virtual environment directory
which is named after project version. There is also a
symbolic link 'current' that points to recently deployed
version. This symlink is an actual path that will be used
for configuring the process supervision tool e.g.:
.
├── 0.0.1
├── 0.0.2
├── 0.0.3
├── 0.1.0
└── current -> 0.1.0/

REMOTE_PROJECT_LOCATION = "/var/projects/webxample"

env.project_location = REMOTE_PROJECT_LOCATION

roledefs map out environment types (staging/production)
env.roledefs = {
 'staging': [
 'staging.webxample.example.com',
],
 'production': [
 'prod1.webxample.example.com',
 'prod2.webxample.example.com',
],
}

def prepare_release():

Chapter 6

[193]

 """ Prepare a new release by creating source distribution and
 uploading to out private package repository
 """
 local('python setup.py build sdist upload -r {}'.format(
 PYPI_URL
))

def get_version():
 """ Get current project version from setuptools """
 return local(
 'python setup.py --version', capture=True
).stdout.strip()

def switch_versions(version):
 """ Switch versions by replacing symlinks atomically """
 new_version_path = os.path.join(REMOTE_PROJECT_LOCATION,
 version)
 temporary = os.path.join(REMOTE_PROJECT_LOCATION, 'next')
 desired = os.path.join(REMOTE_PROJECT_LOCATION, 'current')

 # force symlink (-f) since probably there is a one already
 run(
 "ln -fsT {target} {symlink}"
 "".format(target=new_version_path, symlink=temporary)
)
 # mv -T ensures atomicity of this operation
 run("mv -Tf {source} {destination}"
 "".format(source=temporary, destination=desired))

@task
def uptime():
 """
 Run uptime command on remote host - for testing connection.
 """
 run("uptime")

@task
def deploy():
 """ Deploy application with packaging in mind """
 version = get_version()

Deploying Code

[194]

 pip_path = os.path.join(
 REMOTE_PROJECT_LOCATION, version, 'bin', 'pip'
)

 prepare_release()

 if not exists(REMOTE_PROJECT_LOCATION):
 # it may not exist for initial deployment on fresh host
 run("mkdir -p {}".format(REMOTE_PROJECT_LOCATION))

 with cd(REMOTE_PROJECT_LOCATION):
 # create new virtual environment using venv
 run('python3 -m venv {}'.format(version))

 run("{} install webxample=={} --index-url {}".format(
 pip_path, version, PYPI_URL
))

 switch_versions(version)
 # let's assume that Circus is our process supervision tool
 # of choice.
 run('circusctl restart webxample')

Every function decorated with @task is treated as an available subcommand to
the fab utility provided with the fabric package. You can list all the available
subcommands using the -l or --list switch:

$ fab --list

Available commands:

 deploy Deploy application with packaging in mind

 uptime Run uptime command on remote host - for testing connection.

Now you can deploy the application to the given environment type with just a single
shell command:

$ fab –R production deploy

Chapter 6

[195]

Note that the preceding fabfile serves only illustrative purposes. In your own
code, you might want to provide extensive failure handling and also try to reload
the application without the need to restart the web worker process. Also, some of
the techniques presented here may be obvious right now but will be explained later
in this chapter. These are:

• Deploying an application using the private package repository
• Using Circus for process supervision on the remote host

Your own package index or index mirror
There are three main reasons why you might want to run your own index of
Python packages:

• The official Python Package Index does not have any availability guarantees.
It is run by Python Software Foundation thanks to numerous donations.
Because of that, it very often means that this site can be down. You don't
want to stop your deployment or packaging process in the middle due to
PyPI outage.

• It is useful to have reusable components written in Python properly
packaged even for the closed source that will never be published publicly.
It simplifies the code base because packages that are used across the
company for different projects do not need to be vendored. You can simply
install them from the repository. This simplifies maintenance for such shared
code and might reduce development costs for the whole company if it has
many teams working on different projects.

• It is very good practice to have your entire project packaged using
setuptools. Then, deployment of the new application version is often
as simple as running pip install --update my-application.

Deploying Code

[196]

Code vendoring
Code vendoring is a practice of including sources of the external
package in the source code (repository) of other projects. It is usually
done when the project's code depends on a specific version of some
external package that may also be required by other packages
(and in a completely different version). For instance, the popular
requests package vendors some version of urllib3 in its source
tree because it is very tightly coupled to it and is also very unlikely
to work with any other version of urllib3. An example of a
module that is particularly often vendored by others is six. It can
be found in sources of numerous popular projects such as Django
(django.utils.six), Boto (boto.vedored.six), or Matplotlib
(matplotlib.externals.six).
Although vendoring is practiced even by some large and successful
open source projects, it should be avoided if possible. This has
justifiable usage only in certain circumstances and should not be
treated as a substitute for package dependency management.

PyPI mirroring
The problem of PyPI outages can be somehow mitigated by allowing the installation
tools to download packages from one of its mirrors. In fact, the official Python
Package Index is already served through CDN (Content Delivery Network), so it is
intrinsically mirrored. This does not change the fact that it seems to have some bad
days from time to time when any attempt to download a package fails. Using unofficial
mirrors is not a solution here because it might raise some security concerns.

The best solution is to have your own PyPI mirror that will have all the packages
you need. The only party that will use it is you, so it will be much easier to ensure
proper availability. The other advantage is that whenever this service gets down,
you don't need to rely on someone else to bring it up. The mirroring tool maintained
and recommended by PyPA is bandersnatch (https://pypi.python.org/pypi/
bandersnatch). It allows you to mirror the whole content of Python Package Index
and it can be provided as the index-url option for the repository section in the
.pypirc file (as explained in the previous chapter). This mirror does not accept
uploads and does not have the web part of PyPI. Anyway, beware! A full mirror
might require hundreds of gigabytes of storage and its size will continue to grow
over time.

https://pypi.python.org/pypi/bandersnatch
https://pypi.python.org/pypi/bandersnatch

Chapter 6

[197]

But why stop on a simple mirror while we have a much better alternative? There is
a very small chance that you will require a mirror of the whole package index. Even
with a project that has hundreds of dependencies, it will be only a minor fraction of
all the available packages. Also, not being able to upload your own private package
is a huge limitation of such a simple mirror. It seems that the added value of using
bandersnatch is very low for such a high price. And this is true in most situations. If
the package mirror is to be maintained only for single of few projects, a much better
approach is to use devpi (http://doc.devpi.net/). It is a PyPI-compatible package
index implementation that provides both:

• A private index to upload nonpublic packages
• Index mirroring

The main advantage of devpi over bandersnatch is how it handles mirroring. It can
of course do a full generic mirror of other indexes, like bandersnatch does, but it
is not its default behavior. Instead of doing rather expensive backup of the whole
repository, it maintains mirrors for packages that were already requested by clients.
So whenever a package is requested by the installation tool (pip, setuptools, and
easyinstall), if it does not exist in the local mirror, the devpi server will attempt
to download it from the mirrored index (usually PyPI) and serve. Once the package
is downloaded, the devpi will periodically check for its updates to maintain a fresh
state of its mirror.

The mirroring approach leaves a slight risk of failure when you request a new
package that has not yet been mirrored and the upstream package index has an
outage. Anyway, this risk is reduced thanks to the fact that in most deploys you will
depend only on packages that were already mirrored in the index. The mirror state
for packages that were already requested has eventual consistency with PyPI and
new versions will be downloaded automatically. This seems to be a very reasonable
tradeoff.

Deployment using a package
Modern web applications have a lot of dependencies and often require a lot of steps
to properly install on the remote host. For instance, the typical bootstrapping process
for a new version of the application on a remote host consists of the following steps:

• Create new virtual environment for isolation
• Move the project code to the execution environment
• Install the latest project requirements (usually from the requirements.txt file)
• Synchronize or migrate the database schema

http://doc.devpi.net/

Deploying Code

[198]

• Collect static files from project sources and external packages to the
desired location

• Compile localization files for applications available in different languages

For more complex sites, there might be lot of additional tasks mostly related to
frontend code:

• Generate CSS files using preprocessors such as SASS or LESS
• Perform minification, obfuscation, and/or concatenation of static files

(JavaScript and CSS files)
• Compile code written in JavaScript superset languages (CoffeeScript,

TypeScript, and so on) to native JS
• Preprocess response template files (minification, style inlining, and so on)

All of these steps can be easily automated using tools such as Bash, Fabric, or Ansible
but it is not a good idea to do everything on remote hosts where the application is
being installed. Here are the reasons:

• Some of the popular tools for processing static assets can be either CPU-
or memory-intensive. Running them in production environments can
destabilize your application execution.

• These tools very often will require additional system dependencies that
may not be required for normal operation of your projects. These are
mostly additional runtime environments such as JVM, Node, or Ruby.
This adds complexity to configuration management and increases the
overall maintenance costs.

• If you are deploying your application to multiple servers (tenths, hundredths,
thousands), you are simply repeating a lot of work that could be done once.
If you have your own infrastructure, then you may not experience a huge
increase in costs, especially if you perform deployments in periods of low
traffic. But if you run cloud computing services in the pricing model that
charges you extra for spikes in load or generally for execution time, then
this additional cost may be substantial on a proper scale.

• Most of these steps just take a lot of time. You are installing your code
on a remote server, so the last thing you want is to have your connection
interrupted by some network issue. By keeping the deployment process
quick, you are lowering the chance of deploy interruption.

For obvious reasons, the results of the mentioned deployment steps can't be included
in your application code repository. Simply, there are things that must be done with
every release and you can't change that. It is obviously a place for proper automation
but the clue is to do it in the right place and at the right time.

Chapter 6

[199]

Most of the things such as static collection and code/asset preprocessing can be
done locally or in a dedicated environment, so the actual code that is deployed to
the remote server requires only a minimal amount of on-site processing. The most
notable deployment steps either in the process of building a distribution or installing
a package are:

• Installation of Python dependencies and transferring static assets
(CSS files and JavaScript) to the desired location can be handled as a
part of the install command of the setup.py script

• Preprocessing code (processing JavaScript supersets, minification/
obfuscation/concatenation of assets, and running SASS or LESS) and
things such as localized text compilation (for example, compilemessages in
Django) can be a part of the sdist/bdist command of the setup.py script

Inclusion of preprocessed code other than Python can be easily handled with the
proper MANIFEST.in file. Dependencies are of course best provided as an install_
requires argument of the setup() function call from the setuptools package.

Packaging the whole application of course will require some additional work from
you like providing your own custom setuptools commands or overriding the
existing ones, but gives you a lot of advantages and makes project deployment
a lot faster and reliable.

Let's use a Django-based project (in Django 1.9 version) as an example. I have chosen
this framework because it seems to be the most popular Python project of this type,
so there is a high chance that you already know it a bit. A typical structure of files in
such a project might look like the following:

$ tree . -I __pycache__ --dirsfirst

.

├── webxample

│ ├── conf

│ │ ├── __init__.py

│ │ ├── settings.py

│ │ ├── urls.py

│ │ └── wsgi.py

│ ├── locale

│ │ ├── de

│ │ │ └── LC_MESSAGES

│ │ │ └── django.po

│ │ ├── en

Deploying Code

[200]

│ │ │ └── LC_MESSAGES

│ │ │ └── django.po

│ │ └── pl

│ │ └── LC_MESSAGES

│ │ └── django.po

│ ├── myapp

│ │ ├── migrations

│ │ │ └── __init__.py

│ │ ├── static

│ │ │ ├── js

│ │ │ │ └── myapp.js

│ │ │ └── sass

│ │ │ └── myapp.scss

│ │ ├── templates

│ │ │ ├── index.html

│ │ │ └── some_view.html

│ │ ├── __init__.py

│ │ ├── admin.py

│ │ ├── apps.py

│ │ ├── models.py

│ │ ├── tests.py

│ │ └── views.py

│ ├── __init__.py

│ └── manage.py

├── MANIFEST.in

├── README.md

└── setup.py

15 directories, 23 files

Note that this slightly differs from the usual Django project template. By default,
the package that contains the WSGI application, the settings module, and the URL
configuration has the same name as the project. Because we decided to take the
packaging approach, this would be named webxample. This can cause some confusion,
so it is better to rename it conf.

Chapter 6

[201]

Without digging into the possible implementation details, let's just make a few
simple assumptions:

• Our example application has some external dependencies. Here, it will be
two popular Django packages: djangorestframework and django-allauth,
plus one non-Django package: gunicorn.

• djangorestframework and django-allauth are provided as INSTALLED_
APPS in the webexample.webexample.settings module.

• The application is localized in three languages (German, English, and Polish)
but we don't want to store the compiled gettext messages in the repository.

• We are tired of vanilla CSS syntax, so we decided to use the more powerful
SCSS language that we translate to CSS using SASS.

Knowing the structure of the project, we can write our setup.py script in a way that
make setuptools handle:

• Compilation of SCSS files under webxample/myapp/static/scss
• Compilation of gettext messages under webexample/locale from .po to

.mo format
• Installation of requirements
• A new script that provides an entry point to the package, so we will have the

custom command instead of the manage.py script

We have a bit of luck here. Python binding for libsass, a C/C++ port of SASS
engine, provides a handful integration with setuptools and distutils. With
only little configuration, it provides a custom setup.py command for running the
SASS compilation:

from setuptools import setup

setup(
 name='webxample',
 setup_requires=['libsass >= 0.6.0'],
 sass_manifests={
 'webxample.myapp': ('static/sass', 'static/css')
 },
)

Deploying Code

[202]

So instead of running the sass command manually or executing a subprocess in the
setup.py script we can type python setup.py build_scss and have our SCSS files
compiled to CSS. This is still not enough. It makes our life a bit easier but we want
the whole distribution to be fully automated so there is only one step for creating
new releases. To achieve this goal, we are forced to override a bit some of the existing
setuptools distribution commands.

The example setup.py file that handles some of the project preparation steps
through packaging might look like this:

import os

from setuptools import setup
from setuptools import find_packages
from distutils.cmd import Command
from distutils.command.build import build as _build

try:
 from django.core.management.commands.compilemessages \
 import Command as CompileCommand
except ImportError:
 # note: during installation django may not be available
 CompileCommand = None

this environment is requires
os.environ.setdefault(
 "DJANGO_SETTINGS_MODULE", "webxample.conf.settings"
)

class build_messages(Command):
 """ Custom command for building gettext messages in Django
 """
 description = """compile gettext messages"""
 user_options = []

 def initialize_options(self):
 pass

 def finalize_options(self):

 pass

Chapter 6

[203]

 def run(self):
 if CompileCommand:
 CompileCommand().handle(
 verbosity=2, locales=[], exclude=[]
)
 else:
 raise RuntimeError("could not build translations")

class build(_build):
 """ Overriden build command that adds additional build steps
 """
 sub_commands = [
 ('build_messages', None),
 ('build_sass', None),
] + _build.sub_commands

setup(
 name='webxample',
 setup_requires=[
 'libsass >= 0.6.0',
 'django >= 1.9.2',
],
 install_requires=[
 'django >= 1.9.2',
 'gunicorn == 19.4.5',
 'djangorestframework == 3.3.2',
 'django-allauth == 0.24.1',
],
 packages=find_packages('.'),
 sass_manifests={
 'webxample.myapp': ('static/sass', 'static/css')
 },
 cmdclass={
 'build_messages': build_messages,
 'build': build,
 },
 entry_points={
 'console_scripts': {
 'webxample = webxample.manage:main',
 }
 }
)

Deploying Code

[204]

With such an implementation, we can build all assets and create source distribution
of a package for the webxample project using this single terminal command:

$ python setup.py build sdist

If you already have your own package index (created with devpi) you can add the
install subcommand or use twine so this package will be available for installation
with pip in your organization. If we look into a structure of source distribution
created with our setup.py script, we can see that it contains the compiled gettext
messages and CSS style sheets generated from SCSS files:

$ tar -xvzf dist/webxample-0.0.0.tar.gz 2> /dev/null

$ tree webxample-0.0.0/ -I __pycache__ --dirsfirst

webxample-0.0.0/

├── webxample

│ ├── conf

│ │ ├── __init__.py

│ │ ├── settings.py

│ │ ├── urls.py

│ │ └── wsgi.py

│ ├── locale

│ │ ├── de

│ │ │ └── LC_MESSAGES

│ │ │ ├── django.mo

│ │ │ └── django.po

│ │ ├── en

│ │ │ └── LC_MESSAGES

│ │ │ ├── django.mo

│ │ │ └── django.po

│ │ └── pl

│ │ └── LC_MESSAGES

│ │ ├── django.mo

│ │ └── django.po

│ ├── myapp

│ │ ├── migrations

│ │ │ └── __init__.py

│ │ ├── static

│ │ │ ├── css

Chapter 6

[205]

│ │ │ │ └── myapp.scss.css

│ │ │ └── js

│ │ │ └── myapp.js

│ │ ├── templates

│ │ │ ├── index.html

│ │ │ └── some_view.html

│ │ ├── __init__.py

│ │ ├── admin.py

│ │ ├── apps.py

│ │ ├── models.py

│ │ ├── tests.py

│ │ └── views.py

│ ├── __init__.py

│ └── manage.py

├── webxample.egg-info

│ ├── PKG-INFO

│ ├── SOURCES.txt

│ ├── dependency_links.txt

│ ├── requires.txt

│ └── top_level.txt

├── MANIFEST.in

├── PKG-INFO

├── README.md

├── setup.cfg

└── setup.py

16 directories, 33 files

The additional benefit of using this approach is that we were able to provide our
own entry point for the project in place of Django's default manage.py script. Now
we can run any Django management command using this entry point, for instance:

$ webxample migrate

$ webxample collectstatic

$ webxample runserver

Deploying Code

[206]

This required a little change in the manage.py script for compatibility with the
entry_points argument in setup(), so the main part of its code is wrapped
with the main() function call:

#!/usr/bin/env python3
import os
import sys

def main():
 os.environ.setdefault(
 "DJANGO_SETTINGS_MODULE", "webxample.conf.settings"
)

 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

if __name__ == "__main__":
 main()

Unfortunately, a lot of frameworks (including Django) are not designed with the
idea of packaging your projects that way in mind. It means that depending on the
advancement of your application, converting it to a package may require a lot of
changes. In Django, this often means rewriting many of the implicit imports and
updating a lot of configuration variables in your settings file.

The other problem is the consistency of releases created using Python packaging.
If different team members are authorized to create application distribution, it is
crucial that this process takes place in the same replicable environment, especially
when you do a lot of asset preprocessing; it is possible that the package created in
two different environments will not look the same even if created from the same
code base. This may be due to different version of tools used during the build
process. The best practice is to move the distribution responsibility to a continuous
integration/delivery system such as Jenkins or Buildbot. The additional advantage
is that you can assert that the package passes all required tests before going to
distribution. You can even make the automated deployment as a part of such
continuous delivery system.

Despite this, distributing your code as Python packages using setuptools is not
simple and effortless; it will greatly simplify your deployments, so it is definitely
worth trying. Note that this is also in line with the detailed recommendation of
the sixth rule in the Twelve-Factor App: execute the app as one or more stateless
processes (http://12factor.net/processes).

http://12factor.net/processes

Chapter 6

[207]

Common conventions and practices
There is a set of common conventions and practices for deployment that not every
developer may know but that are obvious for anyone who has done some operations
in their life. As explained in the chapter introduction, it is crucial to know at least
a few of them even if you are not responsible for code deployment and operations
because it will allow you to make better design decisions during the development.

The filesystem hierarchy
The most obvious conventions that may come into your mind are probably about
filesystem hierarchy and user naming. If you are looking for such suggestions
here, then you will be disappointed. There is of course a Filesystem Hierarchy
Standard that defines the directory structure and directory contents in Unix and
Unix-like operating systems, but it is really hard to find an actual OS distribution
that is fully compliant with FHS. If system designers and programmers cannot
obey such standards, it is very hard to expect the same from its administrators. In
my experience, I've seen application code deployed almost everywhere where it
is possible, including nonstandard custom directories in the root filesystem level.
Almost always, the people behind such decisions had really strong arguments for
doing so. The only suggestions in this matter that I can give to you are as follows:

• Choose wisely and avoid surprises
• Be consistent across all the available infrastructure of your project
• Try to be consistent across your organization (the company you work in)

What really helps is to document conventions for your project. Just remember to
make sure that this documentation is accessible for every interested team member
and that everyone knows such a document exists.

Isolation
Reasons for isolation as well as recommended tools were already discussed in
Chapter 1, Current Status of Python. For the purpose of deployments, there is only
one important thing to add. You should always isolate project dependencies for
each release of your application. In practice it means that whenever you deploy a
new version of the application, you should create a new isolated environment for
this release (using virtualenv or venv). Old environments should be left for some
time on your hosts, so in case of issues you can easily perform a rollback to one of
the older versions of your application.

Deploying Code

[208]

Creating fresh environments for each release helps in managing their clean state and
compliance with a list of provided dependencies. By fresh environment we mean
creating a new directory tree in the filesystem instead of updating already existing
files. Unfortunately, it may make it a bit harder to perform things such as a graceful
reload of services, which is much easier to achieve if the environment is updated
in-place.

Using process supervision tools
Applications on remote servers usually are never expected to quit. If it is the web
application, its HTTP server process will indefinitely wait for new connections and
requests and will exit only if some unrecoverable error occurs.

It is of course not possible to run it manually in the shell and have a never-ending
SSH connection. Using nohup, screen, or tmux to semi-daemonize the process is not
an option. Doing so is like designing your service to fail.

What you need is to have some process supervision tool that can start and manage
your application process. Before choosing the right one you need to make sure it:

• Restarts the service if it quits
• Reliably tracks its state
• Captures its stdout/stderr streams for logging purposes
• Runs a process with specific user/group permissions
• Configures system environment variables

Most of the Unix and Linux distributions have some built-in tools/subsystems for
process supervision, such as initd scripts, upstart, and runit. Unfortunately,
in most cases they are not well suited for running user-level application code and
are really hard to maintain. Especially writing reliable init.d scripts is a real
challenge because it requires a lot of Bash scripting that is hard to do right. Some
Linux distributions such as Gentoo have a redesigned approach to init.d scripts,
so writing them is a lot easier. Anyway, locking yourself to a specific OS distribution
just for the purpose of a single process supervision tool is not a good idea.

Two popular tools in the Python community for managing application processes
are Supervisor (http://supervisord.org) and Circus (https://circus.
readthedocs.org/en/latest/). They are both very similar in configuration and
usage. Circus is a bit younger than Supervisor because it was created to address
some weaknesses of the latter. They both can be configured in simple INI-like
configuration format. They are not limited to running Python processes and can be
configured to manage any application. It is hard to say which one is better because
they both provide very similar functionality.

http://supervisord.org
https://circus.readthedocs.org/en/latest/
https://circus.readthedocs.org/en/latest/

Chapter 6

[209]

Anyway, Supervisor does not run on Python 3, so it does not get our blessing. While
it is not a problem to run Python 3 processes under Supervisor's control, I will take it
as an excuse and feature only the example of the Circus configuration.

Let's assume that we want to run the webxample application (presented previously
in this chapter) using gunicorn webserver under Circus control. In production, we
would probably run Circus under applicable system-level process supervision tools
(initd, upstart, and runit), especially if it was installed from the system packages
repository. For the sake of simplicity, we will run this locally inside of the virtual
environment. The minimal configuration file (here named circus.ini) that allows
us to run our application in Circus looks like this:

[watcher:webxample]
cmd = /path/to/venv/dir/bin/gunicorn webxample.conf.wsgi:application
numprocesses = 1

Now, the circus process can be run with this configuration file as the
execution argument:

$ circusd circus.ini

2016-02-15 08:34:34 circus[1776] [INFO] Starting master on pid 1776

2016-02-15 08:34:34 circus[1776] [INFO] Arbiter now waiting for commands

2016-02-15 08:34:34 circus[1776] [INFO] webxample started

[2016-02-15 08:34:34 +0100] [1778] [INFO] Starting gunicorn 19.4.5

[2016-02-15 08:34:34 +0100] [1778] [INFO] Listening at:
http://127.0.0.1:8000 (1778)

[2016-02-15 08:34:34 +0100] [1778] [INFO] Using worker: sync

[2016-02-15 08:34:34 +0100] [1781] [INFO] Booting worker with pid: 1781

Now you can use the circusctl command to run an interactive session and
control all managed processes using simple commands. Here is an example
of such a session:

$ circusctl

circusctl 0.13.0

webxample: active

(circusctl) stop webxample

ok

(circusctl) status

webxample: stopped

(circusctl) start webxample

ok

(circusctl) status

webxample: active

Deploying Code

[210]

Of course, both of the mentioned tools have a lot more features available. All of them
are explained in their documentation, so before making your choice, you should read
them carefully.

Application code should be run in user space
Your application code should be always run in user space. This means it must not
be executed under super-user privileges. If you designed your application following
Twelve-Factor App, it is possible to run your application under a user that has
almost no privileges. The conventional name for a user that owns no files and is in
no privileged groups is nobody, anyway the actual recommendation is to create a
separate user for each application daemon. The reason for that is system security.
It is to limit the damage that a malicious user can do if it gains control over your
application process. In Linux, processes of the same user can interact with each
other, so it is important to have different applications separated at the user level.

Using reverse HTTP proxies
Multiple Python WSGI-compliant web servers can easily serve HTTP traffic all by
themselves without the need for any other web server on top of them. It is still very
common to hide them behind a reverse proxy such as Nginx for various reasons:

• TLS/SSL termination is usually better handled by top-level web servers
such as Nginx and Apache. The Python application can then speak only
simple HTTP protocol (instead of HTTPS), so complexity and configuration
of secure communication channels is left for the reverse proxy.

• Unprivileged users cannot bind low ports (in the range of 0-1000), but HTTP
protocol should be served to the users on port 80, and HTTPS should be
served on port 443. To do this, you must run the process with super-user
privileges. Usually, it is safer to have your application serving on high port
or on Unix Domain Socket and use that as an upstream for a reverse proxy
that is run under the more privileged user.

• Usually, Nginx can serve static assets (images, JS, CSS, and other media)
more efficiently than Python code. If you configure it as a reverse proxy,
then it is only few more lines of configuration to serve static files through it.

• When single host needs to serve multiple applications from different
domains, Apache or Nginx are indispensable for creating virtual hosts
for different domains served on the same port.

• Reverse proxies can improve performance by adding an additional caching
layer or can be configured as simple load-balancers.

Chapter 6

[211]

Some of the web servers actually are recommended to be run behind a proxy, such
as Nginx. For example, gunicorn is a very robust WSGI-based server that can give
exceptional performance results if its clients are fast as well. On the other hand,
it does not handle slow clients well, so it is easily susceptible to denial-of-service
attacks based on slow client connection. Using a proxy server that is able to buffer
slow clients is the best way to solve this problem.

Reloading processes gracefully
The ninth rule of the Twelve-Factor App methodology deals with process
disposability and says that you should maximize robustness with fast startup
times and graceful shutdowns. While a fast startup time is quite self-explanatory,
graceful shutdowns require some additional discussion.

In the scope of web applications, if you terminate the server process in a nongraceful
way, it will quit immediately without time to finish processing requests and reply
with the proper responses to connected clients. In the best case scenario, if you use
some kind of reverse proxy, then the proxy might reply to the connected clients
with some generic error response (for example, 502 Bad Gateway), even though it is
not the right way to notify users that you have restarted your application and have
deployed a new release.

According to the Twelve-Factor App, the web serving process should be able to
quit gracefully upon receiving Unix SIGTERM signal (for example, kill -TERM
<process-id>). This means the server should stop accepting new connections, finish
processing all the pending requests, and then quit with some exit code when there is
nothing more to do.

Obviously, when all of the serving processes quit or start their shutdown procedure,
you are not able to process new requests any longer. This means your service will
still experience an outage, so there is an additional step you need to perform—start
new workers that will be able to accept new connections while the old ones are
gracefully quitting. Various Python WSGI-compliant web server implementations
allow reloading the service gracefully without any downtime. The most popular are
Gunicorn and uWSGI:

• Gunicorn's master process, upon receiving the SIGHUP signal (kill -HUP
<process-pid>), will start new workers (with new code and configuration)
and attempt a graceful shutdown on the old ones.

• uWSGI has at least three independent schemes for doing graceful reloads.
Each of them is too complex to explain briefly, but its official documentation
provides full information on all the possible options.

Deploying Code

[212]

Graceful reloads are today a standard in deploying web applications. Gunicorn
seems to have an approach that is the easiest to use but also leaves you with the
least flexibility. Graceful reloads in uWSGI on the other hand allow much better
control on reloads but require more effort to automate and setup. Also, how
you handle graceful reloads in your automated deploys is also affected on what
supervision tools you use and how they are configured. For instance, in Gunicorn,
graceful reloads are as simple as:

kill -HUP <gunicorn-master-process-pid>

But if you want to properly isolate project distributions by separating virtual
environments for each release and configure process supervision using symbolic
links (as presented in the fabfile example earlier), you will shortly notice that this
does not work as expected. For more complex deployments, there is still no solution
available that will just work for you out-of-the-box. You will always need to do a bit
of hacking and sometimes this will require a substantial level of knowledge about
low-level system implementation details.

Code instrumentation and monitoring
Our work does not end with writing an application and deploying it to the target
execution environment. It is possible to write an application that after deployment
will not require any further maintenance, although it is very unlikely. In reality, we
need to ensure that it is properly observed for errors and performance.

To be sure that our product works as expected, we need to properly handle
application logs and monitor the necessary application metrics. This often includes:

• Monitoring web application access logs for various HTTP status codes
• A collection of process logs that may contain information about runtime

errors and various warnings
• Monitoring system resources (CPU load, memory, and network traffic) on

remote hosts where the application is run
• Monitoring application-level performance and metrics that are business

performance indicators (customer acquisition, revenue, and so on)

Luckily there are a lot of free tools available for instrumenting your code and
monitoring its performance. Most of them are very easy to integrate.

Chapter 6

[213]

Logging errors – sentry/raven
No matter how precisely your application is tested, the truth is painful. Your code
will eventually fail at some point. This can be anything—unexpected exception,
resource exhaustion, some backing service crashing, network outage, or simply an
issue in the external library. Some of the possible issues, such as resource exhaustion,
can be predicted and prevented with proper monitoring, but there will be always
something that passes your defences no matter how much you try.

What you can do is be well prepared for such scenarios and make sure that no
error passes unnoticed. In most cases, any unexpected failure scenario results in
an exception raised by the application and logged through the logging system.
This can be stdout, sderr, file, or whatever output you have configured for
logging. Depending on your implementation, this may or may not result in the
application quitting with some system exit code.

You could, of course, depend only on such logs stored in files for finding and
monitoring your application errors. Unfortunately, observing errors in textual
logs is quite painful and does not scale well beyond anything more complex than
running code in development. You will eventually be forced to use some services
designed for log collection and analysis. Proper log processing is very important for
other reasons that will be explained a bit later but does not work well for tracking
and debugging production errors. The reason is simple. The most common form of
error logs is just Python stack trace. If you stop only on that, you will soon realize
that it is not enough to find the root cause of your issues—especially when errors
occur in unknown patterns or in certain load conditions.

What you really need is as much context information about error occurrence as
possible. It is also very useful to have a full history of errors that have occurred in
the production environment that you can browse and search in some convenient
way. One of the most common tools that gives such capabilities is Sentry (https://
getsentry.com). It is a battle-tested service for tracking exceptions and collecting
crash reports. It is available as open source, is written in Python, and originated as a
tool for backend web developers. Now it has outgrown its initial ambitions and has
support for many more languages, including PHP, Ruby, and JavaScript, but still
stays the most popular tool of choice for most Python web developers.

https://getsentry.com
https://getsentry.com

Deploying Code

[214]

Exception stack tracebacks in web applications
It is common that web applications do not exit on unhandled exceptions
because HTTP servers are obliged to return an error response with a
status code from the 5XX group if any server error occurs. Most Python
web frameworks do such things by default. In such cases, the exception
is in fact handled but on a lower framework-level. Anyway, this, in
most cases, will still result in the exception stack trace being printed
(usually on standard output).

Sentry is available in a paid software-as-a-service model, but it is open source,
so it can be hosted for free on your own infrastructure. The library that provides
integration with Sentry is raven (available on PyPI). If you haven't worked with it
yet, want to test it but have no access to your own Sentry server, then you can easily
signup for a free trial on Sentry's on-premise service site. Once you have access to a
Sentry server and have created a new project, you will obtain a string called DSN,
or Data Source Name. This DSN string is the minimal configuration setting needed
to integrate your application with sentry. It contains protocol, credentials, server
location, and your organization/project identifier in the following form:

'{PROTOCOL}://{PUBLIC_KEY}:{SECRET_KEY}@{HOST}/{PATH}{PROJECT_ID}'

Once you have DSN, the integration is pretty straightforward:

from raven import Client

client = Client('https://<key>:<secret>@app.getsentry.com/<project>')

try:
 1 / 0
except ZeroDivisionError:
 client.captureException()

Raven has numerous integrations with the most popular Python frameworks, such
as Django, Flask, Celery, and Pyramid, to make integration easier. These integrations
will automatically provide additional context that is specific to the given framework.
If your web framework of choice does not have dedicated support, the raven
package provides generic WSGI middleware that makes it compatible with any
WSGI-based web servers:

from raven import Client
from raven.middleware import Sentry

Chapter 6

[215]

note: application is some WSGI application object defined earlier
application = Sentry(
 application,
 Client('https://<key>:<secret>@app.getsentry.com/<project>')
)

The other notable integration is the ability to track messages logged through
Python's built-in logging module. Enabling such support requires only a few
additional lines of code:

from raven.handlers.logging import SentryHandler
from raven.conf import setup_logging

client = Client('https://<key>:<secret>@app.getsentry.com/<project>')
handler = SentryHandler(client)
setup_logging(handler)

Capturing logging messages may have some not obvious caveats, so make sure to
read the official documentation on that topic if you are interested in such a feature.
This should save you from unpleasant surprises.

The last note is about running your own Sentry as a way to save some money. "There
ain't no such thing as a free lunch." You will eventually pay additional infrastructure
costs and Sentry will be just another service to maintain. Maintenance = additional
work = costs! As your application grows, the number of exceptions grow, so you will
be forced to scale Sentry as you scale your product. Fortunately, this is a very robust
project, but will not give you any value if overwhelmed with too much load. Also,
keeping Sentry prepared for a catastrophic failure scenario where thousands of crash
reports per second can be sent is a real challenge. So you must decide which option
is really cheaper for you, and whether you have enough resources and wit to do all
of this by yourself. There is of course no such dilemma if security policies in your
organization deny sending any data to third parties. If so, just host it on your own
infrastructure. There are costs of course, but ones that are definitely worth paying.

Monitoring system and application metrics
When it comes to monitoring performance, the amount of tools to choose from may
be overwhelming. If you have high expectations, then it is possible that you will
need to use a few of them at the same time.

Deploying Code

[216]

Munin (http://munin-monitoring.org) is one of the popular choices used by
many organizations regardless of the technology stack they use. It is a great tool
for analyzing resource trends and provides a lot of useful information even with
default installation without additional configuration. Its installation consists of
two main components:

• The Munin master that collects metrics from other nodes and serves
metrics graphs

• The Munin node that is installed on a monitored host, which gathers
local metrics and sends it to the Munin master

Master, node, and most of the plugins are written in Perl. There are also node
implementations in other languages: munin-node-c is written in C (https://github.
com/munin-monitoring/munin-c) and munin-node-python is written in Python
(https://github.com/agroszer/munin-node-python). Munin comes with a huge
number of plugins available in its contrib repository. This means it provides out-of-
the-box support for most of the popular databases and system services. There are even
plugins for monitoring popular Python web servers such as uWSGI, and Gunicorn.

The main drawback of Munin is the fact it serves graphs as static images and actual
plotting configuration is included in specific plugin configurations. This does not
help in creating flexible monitoring dashboards and comparing metric values from
different sources at the same graph. But this is the price we need to pay for simple
installation and versatility. Writing your own plugins is quite simple. There is the
munin-python package (http://python-munin.readthedocs.org/en/latest/)
that helps writing Munin plugins in Python.

Unfortunately, the architecture of Munin that assumes that there is always a separate
monitoring daemon process on every host that is responsible for collection of metrics
may not be the best solution for monitoring custom application performance metrics.
It is indeed very easy to write your own Munin plugins, but under the assumption
that the monitoring process can already report its performance statistics in some way.
If you want to collect some custom application-level metrics, it might be necessary
to aggregate and store them in some temporary storage until reporting to a custom
Munin plugin. It makes creation of custom metrics more complicated, so you might
want to consider other solutions for this purpose.

http://munin-monitoring.org
https://github.com/munin-monitoring/munin-c
https://github.com/munin-monitoring/munin-c
https://github.com/agroszer/munin-node-python
http://python-munin.readthedocs.org/en/latest/

Chapter 6

[217]

The other popular solution that makes it especially easy to collect custom metrics
is StatsD (https://github.com/etsy/statsd). It's a network daemon written in
Node.js that listens to various statistics such as counters, timers, and gauges. It is
very easy to integrate, thanks to the simple protocol based on UDP. It is also easy to
use the Python package named statsd for sending metrics to the StatsD daemon:

>>> import statsd

>>> c = statsd.StatsClient('localhost', 8125)

>>> c.incr('foo') # Increment the 'foo' counter.

>>> c.timing('stats.timed', 320) # Record a 320ms 'stats.timed'.

Because UDP is connectionless, it has a very low performance overhead on the
application code so it is very suitable for tracking and measuring custom events
inside the application code.

Unfortunately, StatsD is the only metrics collection daemon, so it does not provide
any reporting features. You need other processes that are able to process data from
StatsD in order to see the actual metrics graphs. The most popular choice is Graphite
(http://graphite.readthedocs.org). It does mainly two things:

• Stores numeric time-series data
• Renders graphs of this data on demand

Graphite provides you with the ability to save graph presets that are highly
customizable. You can also group many graphs into thematic dashboards. Graphs
are, similarly to Munin, rendered as static images, but there is also the JSON API
that allows other frontends to read graph data and render it by other means. One of
the great dashboard plugins integrated with Graphite is Grafana (http://grafana.
org). It is really worth trying because it has way better usability than plain Graphite
dashboards. Graphs provided in Grafana are fully interactive and easier to manage.

Graphite is unfortunately a bit of a complex project. It is not a monolithic service and
consists of three separate components:

• Carbon: This is a daemon written using Twisted that listens for
time-series data

• whisper: This is a simple database library for storing time-series data
• graphite webapp: This is a Django web application that renders graphs

on-demand as static images (using Cairo library) or as JSON data

https://github.com/etsy/statsd
http://graphite.readthedocs.org
http://grafana.org
http://grafana.org

Deploying Code

[218]

When used with the StatsD project, the statsd daemon sends its data to carbon
daemon. This makes the full solution a rather complex stack of various applications,
where each of them is written using a completely different technology. Also, there
are no preconfigured graphs, plugins, and dashboards available, so you will need to
configure everything by yourself. This is a lot of work at the beginning and it is very
easy to miss something important. This is the reason why it might be a good idea to
use Munin as a monitoring backup even if you decide to have Graphite as your core
monitoring service.

Dealing with application logs
While solutions such as Sentry are usually way more powerful than ordinary textual
output stored in files, logs will never die. Writing some information to a standard
output or file is one of the simplest things that an application can do and this should
never be underestimated. There is a risk that messages sent to Sentry by raven
will not get delivered. The network can fail. Sentry's storage can get exhausted or
may not be able to handle incoming load. Your application might crash before any
message is sent (with segmentation fault, for example). These are only a few of
the possible scenarios. What is less likely is your application won't be able to log
messages that are going to be written to the filesystem. It is still possible, but let's
be honest. If you face such a condition where logging fails, probably you have a lot
more burning issues than some missing log messages.

Remember that logs are not only about errors. Many developers used to think about
logs only as a source of data that is useful when debugging issues and/or which can be
used to perform some kind of forensics. Definitely, less of them try to use it as a source
for generating application metrics or to do some statistical analysis. But logs may be
a lot more useful than that. They can be even the core of the product implementation.
A great example of building a product with logs is the Amazon article presenting an
example architecture for a real-time bidding service, where everything is centered
around access log collection and processing. See https://aws.amazon.com/blogs/
aws/real-time-ad-impression-bids-using-dynamodb/.

Basic low-level log practices
The Twelve-Factor App says that logs should be treated as event streams. So a log
file is not a log per se, but only an output format. The fact that they are streams
means they represent time ordered events. In raw, they are typically in a text format
with one line per event, although in some cases they may span multiple lines.
This is typical for any backtraces related to run-time errors.

https://aws.amazon.com/blogs/aws/real-time-ad-impression-bids-using-dynamodb/
https://aws.amazon.com/blogs/aws/real-time-ad-impression-bids-using-dynamodb/

Chapter 6

[219]

According to the Twelve-Factor App methodology, the application should never be
aware of the format in which logs are stored. This means that writing to the file, or
log rotation and retention should never be maintained by the application code. These
are the responsibilities of the environment in which applications are run. This may be
confusing because a lot of frameworks provide functions and classes for managing
log files as well as rotation, compression, and retention utilities. It is tempting to use
them because everything can be contained in your application codebase, but actually
it is an anti-pattern that should be really avoided.

The best conventions for dealing with logs can be closed in a few rules:

• The application should always write logs unbuffered to the standard
output (stdout)

• The execution environment should be responsible for the collection and
routing of logs to the final destination

The main part of the mentioned execution environment is usually some kind of
process supervision tool. The popular Python solutions, such as Supervisor or
Circus, are the first ones responsible for dealing with log collection and routing. If
logs are to be stored in the local filesystem, then only they should write to actual
log files.

Both Supervisor and Circus are also capable of handling log rotation and retention
for managed processes but you should really consider whether this is a path that
you want to go. Successful operations are mostly about simplicity and consistency.
Logs of your own application are probably not the only ones that you want to
process and archive. If you use Apache or Nginx as a reverse proxy, you might
want to collect their access logs. You might also want to store and process logs for
caches and databases. If you are running some popular Linux distribution, then the
chances are very high that each of these services have their own log files processed
(rotated, compressed, and so on) by the popular utility named logrotate. My strong
recommendation is to forget about Supervisor's and Circus' log rotation capabilities
for the sake of consistency with other system services. logrotate is way more
configurable and also supports compression.

Deploying Code

[220]

logrotate and Supervisor/Circus
There is an important thing to know when using logrotate with
Supervisor or Circus. The rotation of logs will always happen
while the process Supervisor still has an open descriptor to rotated
logs. If you don't take proper countermeasures, then new events
will be still written to file descriptor that was already deleted
by logrotate. As a result, nothing more will be stored in a
filesystem. Solutions to this problem are quite simple. Configure
logrotate for log files of processes managed by Supervisor or
Circus with the copytruncate option. Instead of moving the
log file after rotation, it will copy it and truncate the original file
to zero size in-place. This approach does not invalidate any of
existing file descriptors and processes that are already running can
write to log files uninterrupted. The Supervisor can also accept the
SIGUSR2 signal that will make it reopen all the file descriptors.
It may be included as the postrotate script in the logrotate
configuration. This second approach is more economical in the
terms of I/O operations but is also less reliable and harder to
maintain.

Tools for log processing
If you have no experience of working with large amounts of logs, you will eventually
gain it when working with a product that has some substantial load. You will shortly
notice that a simple approach based on storing them in files and backing in some
persistent storage for later retrieval is not enough. Without proper tools, this will
become crude and expensive. Simple utilities such as logrotate help you only to
ensure that the hard disk is not overflown by the ever-increasing amount of new
events, but splitting and compressing log files only helps in the data archival process
but does not make data retrieval or analysis simpler.

When working with distributed systems that span multiple nodes, it is nice to have a
single central point from which all logs can be retrieved and analyzed. This requires
a log processing flow that goes way beyond simple compression and backing up.
Fortunately this is a well-known problem so there are many tools available that aim
to solve it.

One of the popular choices among many developers is Logstash. This is the log
collection daemon that can observe active log files, parse log entries and send them
to the backing service in a structured form. The choice of backing stays almost
always the same—Elasticsearch. Elasticsearch is the search engine built on top of
Lucene. Among text search capabilities, it has a unique data aggregation framework
that fits extremely well into the purpose of log analysis.

Chapter 6

[221]

The other addition to this pair of tools is Kibana. It is a very versatile monitoring,
analysis, and visualization platform for Elasticsearch. The way how these three tools
complement each other is the reason why they are almost always used together as a
single stack for log processing.

The integration of existing services with Logstash is very simple because it can
listen on existing log files changes for the new events with only minimal changes
in your logging configuration. It parses logs in textual form and has preconfigured
support for some of the popular log formats, such as Apache/Nginx access logs.
The only problem with Logstash is that it does not handle log rotation well, and this
is a bit surprising. Forcing a process to reopen its file descriptors by sending one of
the defined Unix signals (usually SIGHUP or SIGUSR1) is a pretty well-established
pattern. It seems that every application that deals with logs (exclusively) should
know that and be able to process various log file rotation scenarios. Sadly, Logstash
is not one of them, so if you want to manage log retention with the logrotate utility,
remember to rely heavily on its copytruncate option. The Logstash process can't
handle situations when the original log file was moved or deleted, so without the
copytruncate option it wouldn't be able to receive new events after log rotation.
Logstash can of course handle different inputs of log streams such as UDP packets,
TCP connections, or HTTP requests.

The other solution that seems to fill some of Logstash gaps is Fluentd. It is an
alternative log collection daemon that can be used interchangeably with Logstash in
the mentioned log monitoring stack. It also has an option to listen and parse log events
directly in log files, so minimal integration requires only a little effort. In contrast
to Logstash, it handles reloads very well and does not even need to be signaled if
log files were rotated. Anyway, the biggest advantage comes from using one of its
alternative log collection options that will require some substantial changes to logging
configuration in your application.

Fluentd really treats logs as event streams (as recommended by the Twelve-Factor
App). The file-based integration is still possible but it is only kind of backward
compatibility for legacy applications that treat logs mainly as files. Every log entry
is an event and it should be structured. Fluentd can parse textual logs and has
multiple plugin options to handle:

• Common formats (Apache, Nginx, and syslog)
• Arbitrary formats specified using regular expressions or handled with

custom parsing plugins
• Generic formats for structured messages such as JSON

Deploying Code

[222]

The best event format for Fluentd is JSON because it adds the least amount of
overhead. Messages in JSON can be also passed almost without any change to
the backing service like Elasticsearch or the database.

The other very useful feature of Fluentd is the ability to pass event streams using
transports other than a log file written to the disk. Most notable built-in input
plugins are:

• in_udp: With this plugin every log event is sent as UDP packets
• in_tcp: With this plugin events are sent through TCP connection
• in_unix: With this plugin events are sent through Unix Domain Socket

(names socket)
• in_http: With this plugin events are sent as HTTP POST requests
• in_exec: With this plugin Fluentd process executes an external command

periodically to pull events in the JSON or MessagePack format
• in_tail: With this plugin Fluentd process listens for an event in a textual file

Alternative transports for log events may be especially useful in situations where
you need to deal with poor I/O performance of machine storage. It is very often
on cloud computing services that the default disk storage has a very low number
of IOPS (Input Output Operations Per Second) and you need to pay a lot of
money for better disk performance. If your application outputs large amount of log
messages, you can easily saturate your I/O capabilities even if the data size is not
very high. With alternate transports, you can use your hardware more efficiently
because you leave the responsibility of data buffering only to a single process—log
collector. When configured to buffer messages in memory instead of disk, you can
even completely get rid of disk writes for logs, although this may greatly reduce the
consistency guarantees of collected logs.

Using different transports seems to be slightly against the 11th rule of the Twelve-
Factor App methodology. Treat logs as event streams when explained in detail
suggests that the application should always log only through a single standard
output stream (stdout). It is still possible to use alternate transports without
breaking this rule. Writing to stdout does not necessarily mean that this stream
must be written to file. You can leave your application logging that way and wrap it
with an external process that will capture this stream and pass it directly to Logstash
or Fluentd without engaging the filesystem. This is an advanced pattern that may not
be suitable for every project. It has an obvious disadvantage of higher complexity,
so you need to consider by yourself whether it is really worth doing.

Chapter 6

[223]

Summary
Code deployment is not a simple topic and you should already know that after
reading this chapter. Extensive discussion of this problem could easily take a few
books. Even though we limited our scope exclusively to web application, we have
barely scratched the surface. This chapter takes as a basis the Twelve-Factor App
methodology. We discussed in detail only a few of them: log treatment, managing
dependencies, and separating build/run stages.

After reading this chapter, you should know how to properly automate your
deployment process, taking into consideration best practices, and be able to add
proper instrumentation and monitoring for code that is run on your remote hosts.

[225]

Python Extensions in
Other Languages

When writing Python-based applications, you are not limited to the Python language
alone. There are tools such as Hy, mentioned briefly in Chapter 3, Syntax Best Practices
– above the Class Level. It allows you to write modules, packages, or even whole
applications with some other language (dialect of Lisp) that will run in Python
virtual machine. Although it gives you the ability to express program logic with
completely different syntax, it is still quite the same language because it compiles to
the same bytecode. It means that it has the same limitations as ordinary Python code:

• Threading usability is greatly reduced due to the existence of GIL
• It is not compiled
• It does not provide static typing and possible optimizations that come with it

The solution that helps in overcoming such core limitations are extensions that are
entirely written in a different language and expose their interface through Python
extension APIs.

This chapter will discuss the main reasons for writing your own extensions in other
languages and introduce you to the popular tools that help to create them. You
will learn:

• How to write simple extensions in C using the Python/C API
• How to do the same using Cython
• What are the main challenges and problems introduced by extensions
• How to interface with compiled dynamic libraries without creating dedicated

extensions and using only Python code

Python Extensions in Other Languages

[226]

Different language means – C or C++
When we talk about extensions in different languages, we think almost exclusively
about C and C++. Even tools such as Cython or Pyrex that provide Python language
supersets only for the purpose of extensions are in fact source-to-source compilers
that generate the C code from extended Python-like syntax.

It's true that you can use dynamic/shared libraries written in any language in
Python if only such compilation is possible and so it goes a way beyond C and C++.
But shared libraries are intrinsically generic. They can be used in any language that
supports their loading. So, even if you write such a library in a completely different
language (let's say Delphi or Prolog), it is hard to name such library a Python
extension if it does not use the Python/C API.

Unfortunately, writing your own extensions only in C or C++ using the bare Python/C
API is quite demanding. Not only because it requires a good understanding of one
of the two languages that are relatively hard to master, but also because it requires
exceptional amount of boilerplate. There is a lot of repetitive code that must be written
only to provide an interface that will glue your implemented logic with Python and its
datatypes. Anyway, it is good to know how pure C extensions are built because:

• You will understand better how Python works in general
• One day you may need to debug or maintain a native C/C++ extension
• It helps with understanding how higher-level tools for building

extensions work

How do extensions in C or C++ work
Python interpreter is able to load extensions from dynamic/shared libraries if they
provide an applicable interface using Python/C API. This API must be incorporated
in source code of extension using the Python.h C header file that is distributed with
Python sources. In many distributions of Linux, this header file is contained in a
separate package (for example, python-dev in Debian/Ubuntu) but under Windows,
it is distributed by default and can be found in the includes/ directory of your
Python installation.

Python/C API traditionally changes with every release of Python. In most cases,
these are only additions of new features to the API, so it is typically source-
compatible. Anyway, in most cases, they are not binary compatible due to changes
in the Application Binary Interface (ABI). This means that extensions must be built
separately for every version of Python. Note also that different operating systems
have noncompatible ABIs, so this makes it practically impossible to create a binary
distribution for every possible environment. This is the reason why most Python
extensions are distributed in source form.

Chapter 7

[227]

Since Python 3.2, a subset of Python/C API has been defined to have stable ABIs.
It is possible then to build extensions using this limited API (with a stable ABI), so
extensions can be built only once and will work with any version of Python higher
than or equal to 3.2 without the need for recompilation. Anyway, this limits the
amount of API features and does not solve the problems of older Python versions
or the distribution of the extension in binary form to environments using different
operating systems. So this is a trade-off, and price of the stable ABI seems to be a bit
high for very low gain.

One thing you need to know is that Python/C API is a feature that is limited to
CPython implementations. Some efforts were made to bring extension support to
alternative implementations such as PyPI, Jython, or IronPython, but it seems that
there is no viable solution for them at the moment. The only alternative Python
implementation that should deal easily with extensions is Stackless Python because
it is in fact only a modified version of CPython.

C extensions for Python need to be compiled into shared/dynamic libraries before
they will be available to use because obviously there is no native way to import
C/C++ code into Python directly from sources. Fortunately, distutils and
setuptools provide helpers to define compiled extensions as modules so compilation
and distribution can be handled using the setup.py script as if they were ordinary
Python packages. This is an example of the setup.py script from the official
documentation that handles the packaging of simple packages with built extensions:

from distutils.core import setup, Extension

module1 = Extension(
 'demo',
 sources=['demo.c']
)

setup(
 name='PackageName',
 version='1.0',
 description='This is a demo package',
 ext_modules=[module1]
)

Once prepared that way, there is one additional step required in your distribution
flow:

python setup.py build

Python Extensions in Other Languages

[228]

This will compile all your extensions provided as the ext_modules argument
according to all additional compiler settings provided with the Extension() call.
The compiler that will be used is the one that is default for your environment. This
compilation step is not required if the package is going to be distributed with source
distribution. In that case, you need to be sure that the target environment has all
compilation prerequisites, such as a compiler, header files, and additional libraries
that are going to be linked to the binary (if your extension needs any). More details
of packaging the Python extensions will be explained later in the Challenges section.

Why you might want to use extensions
It's not easy to say when it is a reasonable decision to write extensions in C/C++. The
general rule of thumb could be, never, unless you have no other choice. But this is a very
subjective statement that leaves a lot of room for interpretation of what is not doable
in Python. In fact, it is hard to find a thing that cannot be done using pure Python
code, but there are some problems where extensions may be especially useful:

• Bypassing GIL (Global Interpreter Lock) in the Python threading model
• Improving performance in critical code sections
• Integrating third-party dynamic libraries
• Integrating source code written in different languages
• Creating custom datatypes

For example, the core language constraints such as GIL can easily be overcome
with a different approach to concurrency, such as green threads or multiprocessing
instead of a threading model.

Improving performance in critical code
sections
Let's be honest. Python is not chosen by developers because of performance. It
does not execute quickly, but allows you to develop quickly. Still, no matter how
performant we are as programmers, thanks to this language, we may sometimes
find a problem that may not be solved efficiently using pure Python.

Chapter 7

[229]

In most cases, solving performance problems is really only about choosing proper
algorithms and data structures and not about limiting the constant factor of language
overhead. And it is not actually a good solution to rely on extensions in order to
shave off some CPU cycles if the code is already written poorly or does not use proper
algorithms. It is often possible that performance can be improved to an acceptable
level without the need to increase the complexity of your project by looping in another
language to the stack. And if it is possible, it should be done that way in the first place.
Anyway, it is also very likely that even with state of the art algorithmic approach and
the best suited data structures that are available to our disposal, we will not be able to
fit some arbitrary technological constraints using Python alone.

The example field that puts some well-defined limits on the application's performance
is the Real Time Bidding (RTB) business. In short, the whole RTB is about buying
and selling advertisement inventory (places for ads) in a way similar to real auctions
or stock exchanges. The trading usually takes place through some ad exchange service
that sends information about available inventory to demand-side platforms (DSP)
interested in buying them. And this is the place where things get exciting. Most ad
exchanges use the OpenRTB protocol (which is based on HTTP) for communication
with potential bidders where DSP is the site responsible for serving responses to its
HTTP requests. And ad exchanges always put very limited time constraints (usually
between 50 and 100 ms) on the whole process—from the first TPC packet received
to the last byte written by the server. To spice things up, it is not uncommon for DSP
platforms to process tens of thousands of requests per second. Being able to push the
time of request processing even by a few milliseconds is the to be or not to be in this
business. This means that porting even trivial code to C may be reasonable in that
situation but only if it's a part of some performance bottleneck and cannot be improved
any further algorithmically. As someone once said:

"You can't beat a loop written in C."

Integrating existing code written in different
languages
A lot of useful libraries have been written during the short history of computer
science. It would be a great loss to forget about all that heritage every time a new
programming language pops out, but it is also impossible to reliably port any piece
of software that was ever written to any available language.

The C and C++ languages seem to be the most important languages that provide
a lot of libraries and implementation that you would like to integrate in your
application code without the need to port them completely to Python. Fortunately,
CPython is already written in C, so the most natural way to integrate such code is
precisely through custom extensions.

Python Extensions in Other Languages

[230]

Integrating third-party dynamic libraries
Integration of code written using different technologies does not end with C/C++. A
lot of libraries, especially third-party software with closed sources, are distributed as
compiled binaries. In C, it is really easy to load such shared/dynamic libraries and
call their functions. This means that you can use any C library as long as you wrap it
with extensions using Python/C API.

This, of course, is not the only solution and there are tools such as ctypes or CFFI
that allow you to interact with dynamic libraries using pure Python without the need
of writing extensions in C. Very often, the Python/C API may still be a better choice
because it provides a better separation between the integration layer (written in C)
and the rest of the application.

Creating custom datatypes
Python provides a very versatile selection of built-in datatypes. Some of them really
use state of the art internal implementations (at least in CPython) that are specifically
tailored for usage in the Python language. The number of basic types and collections
available out-of-the-box may look impressive for newcomers, but it is clear that it
does not cover all of our possible needs.

You can, of course, create many custom data structures in Python either by basing
them completely on some built-in types or by building them from scratch as
completely new classes. Unfortunately, for some applications that may heavily rely
on such custom data structures, the performance might not be enough. The whole
power of complex collections such as dict or set comes from their underlying C
implementation. Why not do the same and implement some of your custom data
structures in C too?

Writing extensions
As already said, writing extensions is not a simple task but in exchange for your hard
work, it can give you a lot of advantages. The easiest and recommended approach
to your own extensions is to use tools such as Cython or Pyrex or simply integrate
the existing dynamic libraries with ctypes or cffi. These projects will increase
your productivity and also make code easier to develop, read, and maintain.

Chapter 7

[231]

Anyway, if you are new to this topic, it is good to know that you can start your
adventure with extensions by writing one using nothing more than bare C code and
Python/C API. This will improve your understanding of how extensions work and
will also help you to appreciate the advantages of alternative solutions. For the sake
of simplicity, we will take a simple algorithmic problem as an example and try to
implement it using three different approaches:

• Writing a pure C extension
• Using Cython
• Using Pyrex

Our problem will be finding the nth number of the Fibonacci sequence. It is
very unlikely that you would like to create compiled extensions solely for this
problem, but it is very simple so it will serve as a very good example of wiring
any C function to Python/C APIs. Our only goals are clarity and simplicity, so we
won't try to provide the most efficient solution. Once we know this, our reference
implementation of the Fibonacci function implemented in Python looks as follows:

"""Python module that provides fibonacci sequence function"""

def fibonacci(n):
 """Return nth Fibonacci sequence number computed recursively.
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

Note that this is one of the most simple implementations of the fibonnaci()
function and a lot of improvements could be applied to it. We refuse to improve our
implementation (using a memoization pattern, for instance) though because this is
not the purpose of our example. In the same manner, we won't optimize our code
later when discussing implementations in C or Cython even though the compiled
code gives many more possibilities to do so.

Pure C extensions
Before we fully dive into the code examples of Python extensions written in C, here
is a huge warning. If you want to extend Python with C, you need to already know
both of these languages well. This is especially true for C. Lack of proficiency with
it can lead to real disasters because it can be easily mishandled.

Python Extensions in Other Languages

[232]

If you have decided that you need to write C extension for Python, I assume that
you already know the C language to a level that will allow you to fully understand
the examples that are presented. Nothing other than Python/C API details will be
explained here. This book is about Python and not any other language. If you don't
know C at all, you should definitely not try to write your own Python extensions
in C until you gain enough experience and skills. Leave it to others and stick with
Cython or Pyrex because they are a lot safer from the beginner's perspective. This
is mostly because Python/C API, despite having been crafted with great care, is
definitely not a good introduction to C.

As proposed earlier, we will try to port the fibonacci() function to C and expose
it to Python code as an extension. The bare implementation without the wiring to
Python/C API that is analogous to the previous Python example could be roughly
as follows:

long long fibonacci(unsigned int n) {
 if (n < 2) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

And here is the example of a complete, fully functional extension that exposes this
single function in a compiled module:

#include <Python.h>

long long fibonacci(unsigned int n) {
 if (n < 2) {
 return 1;
 } else {
 return fibonacci(n-2) + fibonacci(n-1);
 }
}

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int)n));
 }

Chapter 7

[233]

 return result;
}

static char fibonacci_docs[] =
 "fibonacci(n): Return nth Fibonacci sequence number "
 "computed recursively\n";

static PyMethodDef fibonacci_module_methods[] = {
 {"fibonacci", (PyCFunction)fibonacci_py,
 METH_VARARGS, fibonacci_docs},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef fibonacci_module_definition = {
 PyModuleDef_HEAD_INIT,
 "fibonacci",
 "Extension module that provides fibonacci sequence function",
 -1,
 fibonacci_module_methods
};

PyMODINIT_FUNC PyInit_fibonacci(void) {
 Py_Initialize();

 return PyModule_Create(&fibonacci_module_definition);
}

The preceding example might be a bit overwhelming at first glance because we had
to add four times more code just to make the fibonacci() C function accessible
from Python. We will discuss every bit of that code later, so don't worry. But before
we do that, let's see how it can be packaged and executed in Python. The minimal
setuptools configuration for our module needs to use the setuptools.Extension
class in order to instruct the interpreter how our extension is compiled:

from setuptools import setup, Extension

setup(
 name='fibonacci',
 ext_modules=[
 Extension('fibonacci', ['fibonacci.c']),
]
)

Python Extensions in Other Languages

[234]

The build process for the extension can be initialized with Python's setup.py build
command, but will also be automatically performed on package installation. The
following transcript presents the result of installation in development mode and a
simple interactive session where our compiled fibonacci() function is inspected
and executed:

$ ls -1a

fibonacci.c

setup.py

$ pip install -e .

Obtaining file:///Users/swistakm/dev/book/chapter7

Installing collected packages: fibonacci

 Running setup.py develop for fibonacci

Successfully installed Fibonacci

$ ls -1ap

build/

fibonacci.c

fibonacci.cpython-35m-darwin.so

fibonacci.egg-info/

setup.py

$ python

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import fibonacci

>>> help(fibonacci.fibonacci)

Help on built-in function fibonacci in fibonacci:

fibonacci.fibonacci = fibonacci(...)

 fibonacci(n): Return nth Fibonacci sequence number computed
recursively

Chapter 7

[235]

>>> [fibonacci.fibonacci(n) for n in range(10)]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>>>

A closer look at Python/C API
Since we know how to properly package, compile, and install custom C extensions
and we are sure that it works as expected, now it is the right time to discuss our code
in detail.

The extensions module starts with a single C preprocessor directive that includes the
Python.h header file:

#include <Python.h>

This pulls the whole Python/C API and is everything you need to include to be
able to write your extensions. In more realistic cases, your code will require a lot
more preprocessor directives to take benefit from C standard library functions
or to integrate other source files. Our example was simple, so no more directives
were required.

Next we have the core of our module:

long long fibonacci(unsigned int n) {
 if (n < 2) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

The preceding fibonacci() function is the only part of our code that does
something useful. It is pure C implementation that Python by default can't
understand. The rest of our example will create the interface layer that will
expose it through Python/C API.

The first step of exposing this code to Python is the creation of the C function that
is compatible with the CPython interpreter. In Python, everything is an object. This
means that C functions called in Python also need to return real Python objects.
Python/C APIs provide a PyObject type and every callable must return the
pointer to it. The signature of our function is:

static PyObject* fibonacci_py(PyObject* self, PyObject* args)s

Python Extensions in Other Languages

[236]

Note that the preceding signature does not specify the exact list of arguments but
only PyObject* args that will hold the pointer to the structure that contains the
tuple of the provided values. The actual validation of the argument list must be
performed inside of the function body and this is exactly what fibonacci_py()
does. It parses the args argument list assuming it is the single unsigned int type
and uses that value as an argument to the fibonacci() function to retrieve the
Fibonacci sequence element:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int)n));
 }

 return result;
}

The preceding example function has some serious bugs, which the eyes
of an experienced developer should spot very easily. Try to find it as an
exercise in working with C extensions. For now, we leave it as it is for
the sake of brevity. We will try to fix it later when discussing details of
dealing with errors in the Exception handling section.

The "l" string in the PyArg_ParseTuple(args, "l", &n) call means that we expect
args to contain only a single long value. In case of failure, it will return NULL and
store information about the exception in the per-thread interpreter state. The details
of exception handling will be described a bit later in the Exception handling section.

The actual signature of the parsing function is int PyArg_ParseTuple(PyObject
*args, const char *format, ...) and what goes after the format string is a
variable length list of arguments that represents parsed value output (as pointers).
This is analogous to how the scanf() function from the C standard library works.
If our assumption fails and the user provides an incompatible arguments list, then
PyArg_ParseTuple() will raise the proper exception. This is a very convenient
way to encode function signatures once you get used to it but has a huge downside
when compared to plain Python code. Such Python call signatures implicitly defined
by the PyArg_ParseTuple() calls cannot be easily inspected inside of the Python
interpreter. You need to remember this fact when using code provided as extensions.

Chapter 7

[237]

As already said, Python expects objects to be returned from callables. This means
that we cannot return a raw long long value obtained from the fibonacci()
function as a result of fibonacci_py(). Such an attempt would not even compile
and there is no automatic casting of basic C types to Python objects. The Py_
BuildValue(*format, ...) function must be used instead. It is the counterpart of
PyArg_ParseTuple() and accepts a similar set of format strings. The main difference
is that the list of arguments is not a function output but an input, so actual values
must be provided instead of pointers.

After fibonacci_py() is defined, most of the heavy work is done. The last step is to
perform module initialization and add metadata to our function that will make usage
a bit simpler for users. This is the boilerplate part of our extension code that for some
simple examples, such as this one, can take more place than actual functions that we
want to expose. In most cases, it simply consists of some static structures and one
initialization function that will be executed by the interpreter on module import.

At first, we create a static string that will be a content of Python docstring for the
fibonacci_py() function:

static char fibonacci_docs[] =
 "fibonacci(n): Return nth Fibonacci sequence number "
 "computed recursively\n";

Note that this could be inlined somewhere later in fibonacci_module_methods, but
it is a good practice to have docstrings separated and stored in close proximity to the
actual function definition that they refer to.

The next part of our definition is the array of the PyMethodDef structures that define
methods (functions) that will be available in our module. This structure contains
exactly four fields:

• char* ml_name: This is the name of the method.
• PyCFunction ml_meth: This is the pointer to the C implementation of the

function.
• int ml_flags: This includes the flags indicating either the calling

convention or binding convention. The latter is applicable only for
definition of class methods.

• char* ml_doc: This is the pointer to the content of method/function
docstring.

Python Extensions in Other Languages

[238]

Such an array must always end with a sentinel value of {NULL, NULL, 0, NULL}
that indicates its end. In our simple case, we created the static PyMethodDef
fibonacci_module_methods[] array that contains only two elements (including
the sentinel value):

static PyMethodDef fibonacci_module_methods[] = {
 {"fibonacci", (PyCFunction)fibonacci_py,
 METH_VARARGS, fibonacci_docs},
 {NULL, NULL, 0, NULL}
};

And this is how the first entry maps to the PyMethodDef structure:

• ml_name = "fibonacci": Here, the fibonacci_py() C function will be
exposed as a Python function under the fibonacci name

• ml_meth = (PyCFunction)fibonacci_py: Here, the casting to PyCFunction
is simply required by Python/C API and is dictated by the call convention
defined later in ml_flags

• ml_flags = METH_VARARGS: Here, the METH_VARARGS flag indicates that the
calling convention of our function accepts a variable list of arguments and
no keyword arguments

• ml_doc = fibonacci_docs: Here, the Python function will be documented
with the content of the fibonacci_docs string

When an array of function definitions is complete, we can create another structure that
contains the definition of the whole module. It is described using the PyModuleDef
type and contains multiple fields. Some of them are useful only for more complex
scenarios, where fine-grained control over the module initialization process is
required. Here we are interested only in the first five of them:

• PyModuleDef_Base m_base: This should always be initialized with
PyModuleDef_HEAD_INIT.

• char* m_name: This is the name of the newly created module. In our case it is
fibonacci.

• char* m_doc: This is the pointer to the docstring content for the module. We
usually have only a single module defined in one C source file, so it is OK to
inline our documentation string in the whole structure.

Chapter 7

[239]

• Py_ssize_t m_size: This is the size of the memory allocated to keep the
module state. This is only used when support for multiple subinterpreters or
multiphase initialization is required. In most cases, you don't need that and it
is gets the value -1.

• PyMethodDef* m_methods: This is a pointer to the array containing module-
level functions described by the PyMethodDef values. It could be NULL if the
module does not expose any functions. In our case, it is fibonacci_module_
methods.

The other fields are explained in detail in the official Python documentation (refer
to https://docs.python.org/3/c-api/module.html) but are not needed in our
example extension. They should be set to NULL if not required and they will be
initialized with that value implicitly when not specified. This is why our module
description contained in the fibonacci_module_definition variable can take this
simple five-element form:

static struct PyModuleDef fibonacci_module_definition = {
 PyModuleDef_HEAD_INIT,
 "fibonacci",
 "Extension module that provides fibonacci sequence function",
 -1,
 fibonacci_module_methods
};

The last piece of code that crowns our work is the module initialization function.
This must follow a very specific naming convention, so the Python interpreter
can easily pick it when the dynamic/shared library is loaded. It should be named
PyInit_name, where name is your module name. So it is exactly the same string that
was used as the m_base field in the PyModuleDef definition and as the first argument
of the setuptools.Extension() call. If you don't require a complex initialization
process for the module, it takes a very simple form, exactly like in our example:

PyMODINIT_FUNC PyInit_fibonacci(void) {
 return PyModule_Create(&fibonacci_module_definition);
}

The PyMODINIT_FUNC macro is a preprocessor macro that will declare the return type
of this initialization function as PyObject* and add any special linkage declarations
if required by the platform.

https://docs.python.org/3/c-api/module.html

Python Extensions in Other Languages

[240]

Calling and binding conventions
As explained in the A closer look at Python/C API section, the ml_flags bitfield of the
PyMethodDef structure contains flags for calling and binding conventions. Calling
convention flags are:

• METH_VARARGS: This is a typical convention for the Python function or
method that only accepts arguments as its parameters. The type provided
as the ml_meth field for such a function should be PyCFunction. The
function will be provided with two arguments of the PyObject* type. The
first is either the self object (for methods) or the module object (for module
functions). A typical signature for the C function with that calling convention
is PyObject* function(PyObject* self, PyObject* args).

• METH_KEYWORDS: This is the convention for the Python function that
accepts keyword arguments when called. Its associated C type is
PyCFunctionWithKeywords. The C function must accept three arguments
of the PyObject* type: self, args, and a dictionary of keyword arguments.
If combined with METH_VARARGS, the first two arguments have the same
meaning as for the previous calling convention, otherwise args will be NULL.
The typical C function signature is: PyObject* function(PyObject* self,
PyObject* args, PyObject* keywds).

• METH_NOARGS: This is the convention for Python functions that do not accept
any other argument. The C function should be of the PyCFunction type, so
the signature is the same as that of the METH_VARARGS convention (two self
and args arguments). The only difference is that args will always be NULL,
so there is no need to call PyArg_ParseTuple(). This cannot be combined
with any other calling convention flag.

• METH_O: This is the shorthand for functions and methods accepting single
object arguments. The type of C function is again PyCFunction, so it
accepts two PyObject* arguments: self and args. Its difference from
METH_VARARGS is that there is no need to call PyArg_ParseTuple() because
PyObject* provided as args will already represent the single argument
provided in the Python call to that function. This also cannot be combined
with any other calling convention flag.

Chapter 7

[241]

A function that accepts keywords is described either with METH_KEYWORDS
or a bitwise combination of calling convention flags in the form of METH_
VARARGS | METH_KEYWORDS. If so, it should parse its arguments with PyArg_
ParseTupleAndKeywords() instead of PyArg_ParseTuple() or PyArg_
UnpackTuple(). Here is an example module with a single function that returns None
and accepts two named keyword arguments that are printed on standard output:

#include <Python.h>

static PyObject* print_args(PyObject *self, PyObject *args,
PyObject *keywds)
{
 char *first;
 char *second;

 static char *kwlist[] = {"first", "second", NULL};

 if (!PyArg_ParseTupleAndKeywords(args, keywds, "ss", kwlist,
 &first, &second))
 return NULL;

 printf("%s %s\n", first, second);

 Py_INCREF(Py_None);
 return Py_None;
}

static PyMethodDef module_methods[] = {
 {"print_args", (PyCFunction)print_args,
 METH_VARARGS | METH_KEYWORDS,
 "print provided arguments"},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef module_definition = {
 PyModuleDef_HEAD_INIT,
 "kwargs",
 "Keyword argument processing example",
 -1,
 module_methods
};

PyMODINIT_FUNC PyInit_kwargs(void) {
 return PyModule_Create(&module_definition);
}

Python Extensions in Other Languages

[242]

Argument parsing in Python/C API is very elastic and is extensively described in the
official documentation at https://docs.python.org/3.5/c-api/arg.html. The
format argument in PyArg_ParseTuple() and PyArg_ParseTupleAndKeywords()
allows fine grained control over argument number and types. Every advanced
calling convention known in Python can be coded in C with this API including:

• Functions with default values for arguments
• Functions with arguments specified as keyword-only
• Functions with a variable number of arguments

The binding convention flags are METH_CLASS, METH_STATIC, and METH_COEXIST,
are reserved for methods, and cannot be used to describe module functions. The
first two are quite self-explanatory. They are the C counterparts of classmethod and
staticmethod decorators and change the meaning of the self argument passed to
the C function.

METH_COEXIST allows loading a method in place of the existing definition. It is useful
very rarely. This is mostly when you would like to provide an implementation of the
C method that would be generated automatically from the other features of the type
that was defined. Python documentation gives an example of the __contains__()
wrapper method that would be generated if the type has the sq_contains slot
defined. Unfortunately, defining your own classes and types using Python/C API is
beyond the scope of this introductory chapter. We will cover creating your own types
in extensions later when discussing Cython because doing that in pure C requires
way too much boilerplate code and leaves a lot of room for making mistakes.

Exception handling
C, unlike Python, or even C++ does not have syntax for raising and catching
exceptions. All error handling is usually handled with function return values and
optional global state for storing details that can explain the cause of the last failure.

Exception handling in Python/C API is built around that simple principle. There is
a global per thread indicator of the last error that occurred and functioned in the C
API. It is set to describe the cause of a problem. There is also a standardized way to
inform the caller of a function if this state was changed during the call:

• If the function is supposed to return a pointer, it returns NULL
• If the function is supposed to return an int type, it returns -1

The only exceptions from the preceding rules in Python/C API are the PyArg_*()
functions that return 1 to indicate success and 0 to indicate failure.

https://docs.python.org/3.5/c-api/arg.html

Chapter 7

[243]

To see how this works in practice, let's recall our fibonacci_py() function from the
example in the previous sections:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
 }

 return result;
}

Lines that somehow take part in our error handling are highlighted. It starts at the
very beginning with the initialization of the result variable that is supposed to
store the return value of our function. It is initialized with NULL that, as we already
know, is an indicator of error. And this is how you will usually code your extensions,
assuming that error is the default state of your code.

Later we have the PyArg_ParseTuple() call that will set error info in case of an
exception and return 0. This is part of the if statement and in that case we don't do
anything more and return NULL. Whoever calls our function will be notified about
the error.

Py_BuildValue() can also raise an exception. It is supposed to return PyObject*
(pointer), so in case of failure it gives NULL. We can simply store it as our result
variable and pass further as a return value.

But our job does not end with caring for exceptions raised by Python/C API calls. It
is very probable that you will need to inform the extension user that some other kind
of error or failure occurred. Python/C API has multiple functions that help you to
raise an exception, but the most common one is PyErr_SetString(). It sets an error
indicator with the given exception type with an additional string provided as the
error cause explanation. The full signature of this function is:

void PyErr_SetString(PyObject* type, const char* message)

I have already said that implementation of our fibonacci_py() function has serious
bug. Now is the right time to fix it. Fortunately, we have proper tools to do that.
The problem lies in insecure casting of the long type to unsigned int in the
following lines:

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
 }

Python Extensions in Other Languages

[244]

Thanks to the PyArg_ParseTuple() call, the first and only argument will be
interpreted as a long type (the "l" specifier) and stored in the local n variable. Then
it is cast to unsigned int so the issue will occur if the user calls the fibonacci()
function from Python with a negative value. For instance, -1, as a signed 32-bit
integer, will be interpreted as 4294967295 when cast to an unsigned 32-bit integer.
Such a value will cause deep recursion and will result in stack overflow and a
segmentation fault. Note that the same may happen if the user gives an arbitrarily
large positive argument. We cannot fix this without a complete redesign of the C
fibonacci() function, but we can at least try to ensure that argument that is passed
meets some preconditions. Here we check if the value of the n argument is greater
than or equal to zero and we raise a ValueError exception if that's not true:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;
 long long fib;

 if (PyArg_ParseTuple(args, "l", &n)) {
 if (n<0) {
 PyErr_SetString(PyExc_ValueError,
 "n must not be less than 0");
 } else {
 result = Py_BuildValue("L", fibonacci((unsigned
 int)n));
 }
 }

 return result;
}

The last note is that the global error state does not clear by itself. Some of the errors
can be handled gracefully in your C functions (same as using the try ... except
clause in Python) and you need to be able to clear the error indicator if it is no longer
valid. The function for that is PyErr_Clear().

Releasing GIL
I have already mentioned that extensions can be a way to bypass Python GIL. There
is a famous limitation of the CPython implementation stating that only one thread at
a time can execute Python code. While multiprocessing is the suggested approach to
circumvent this problem, it may not be a good solution for some highly parallelizable
algorithms due to the resource overhead of running additional processes.

Chapter 7

[245]

Because extensions are mostly used in cases where a bigger part of the work
is performed in pure C without any calls to Python/C API, it is possible (even
advisable) to release GIL in some application sections. Thanks to this, you can still
benefit from having multiple CPU cores and multithreaded application design. The
only thing you need to do is to wrap blocks of code that are known to not use any of
Python/C API calls or Python structures with specific macros provided by Python/C
API. These two preprocessor macros are provided to simplify the whole procedure
of releasing and reacquiring the Global Interpreter Lock:

• Py_BEGIN_ALLOW_THREADS: This declares the hidden local variable where the
current thread state is saved and it releases GIL

• Py_END_ALLOW_THREADS: This reacquires GIL and restores the thread state
from the local variable declared with the previous macro

When we look carefully at our fibonacci extension example, we can clearly see that
the fibonacci() function does not execute any Python code and does not touch any
of the Python structures. This means that the fibonacci_py() function that simply
wraps the fibonacci(n) execution could be updated to release GIL around that call:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;
 long long fib;

 if (PyArg_ParseTuple(args, "l", &n)) {
 if (n<0) {
 PyErr_SetString(PyExc_ValueError,
 "n must not be less than 0");
 } else {
 Py_BEGIN_ALLOW_THREADS;
 fib = fibonacci(n);
 Py_END_ALLOW_THREADS;

 result = Py_BuildValue("L", fib);
 }
 }

 return result;
}

Python Extensions in Other Languages

[246]

Reference counting
Finally, we come to the important topic of memory management in Python. Python
has its own garbage collector, but it is designed only to solve the issue of cyclic
references in the reference counting algorithm. Reference counting is the primary
method of managing the deallocation of objects that are no longer needed.

Python/C API documentation introduces an ownership of references to explain how
it deals with deallocation of objects. Objects in Python are never owned and they
are always shared. The actual creation of objects is managed by Python's memory
manager. It is the component of CPython interpreter that is responsible for allocating
and deallocating memory for objects that are stored in a private heap. What can be
owned instead is a reference to the object.

Every object in Python that is represented by a reference (PyObject* pointer) has
an associated reference count. When it goes to zero, it means that no one holds any
valid reference to the object and the deallocator associated with its type can be called.
Python/C API provides two macros for increasing and decreasing reference counts:
Py_INCREF(), and Py_DECREF(). But before we discuss their details, we need to
understand a few more terms related to reference ownership:

• Passing of ownership: Whenever we say that the function passes the
ownership over a reference, it means that it has already increased the reference
count and it is the responsibility of the caller to decrease the count when the
reference to the object is no longer needed. Most of the functions that return
the newly created objects, such as Py_BuildValue, do that. If that object is
going to be returned from our function to another caller, then the ownership
is passed again. We do not decrease the reference count in that case because
it is no longer our responsibility. This is why the fibonacci_py() function
does not call Py_DECREF() on the result variable.

• Borrowed references: The borrowing of references happens when the function
receives a reference to some Python object as an argument. The reference
count for such a reference should never be decreased in that function unless
it was explicitly increased in its scope. In our fibonacci_py() function the
self and args arguments are such borrowed references and thus we do not
call PyDECREF() on them. Some of the Python/C API functions may also
return borrowed references. The notable examples are PyTuple_GetItem()
and PyList_GetItem(). It is often said that such references are unprotected.
There is no need to dispose of its ownership unless it will be returned as a
function's return value. In most cases, extra care should be taken if we use
such borrowed references as arguments of other Python/C API calls. It may
be necessary in some circumstances to additionally protect such references
with additional Py_INCREF() before using as argument to other function and
then calling Py_DECREF() when it is no longer needed.

Chapter 7

[247]

• Stolen references: It is also possible for the Python/C API function to steal
the reference instead of borrowing it when provided as a call argument.
This is the case of exactly two functions: PyTuple_SetItem() and PyList_
SetItem(). They fully take over the responsibility of the reference passed to
them. They do not increase the reference count by themselves but will call
Py_DECREF() when the reference is no longer needed.

Keeping an eye on the reference counts is one of the hardest things when writing
complex extensions. Some of the not-so-obvious issues may not be noticed until
the code is run in a multithreaded setup.

The other common problem is caused by the very nature of Python's object model
and the fact that some functions return borrowed references. When the reference
count goes to zero, the deallocation function is executed. For user-defined classes,
it is possible to define a __del__() method that will be called at that moment. This
can be any Python code and it is possible that it will affect other objects and their
reference counts. The official Python documentation gives the following example
of code that may be affected by this problem:

void bug(PyObject *list) {
 PyObject *item = PyList_GetItem(list, 0);

 PyList_SetItem(list, 1, PyLong_FromLong(0L));
 PyObject_Print(item, stdout, 0); /* BUG! */
}

It looks completely harmless, but the problem is in fact that we cannot know what
elements the list object contains. When PyList_SetItem() sets a new value on the
list[1] index, the ownership of the object that was previously stored at that index
is disposed. If it was the only existing reference, the reference count will become 0
and the object will become deallocated. It is possible that it was some user-defined
class with a custom implementation of the __del__() method. A serious issue
will occur if in the result of such a __del__() execution item[0] will be removed
from the list. Note that PyList_GetItem() returns a borrowed reference! It does not
call Py_INCREF() before returning a reference. So in that code, it is possible that
PyObject_Print() will be called with a reference to an object that no longer exists.
This will cause a segmentation fault and crash the Python interpreter.

The proper approach is to protect borrowed references for the whole time we need
them because there is a possibility that any call in-between may cause deallocation
of any other object—even if they are seemingly unrelated:

void no_bug(PyObject *list) {
 PyObject *item = PyList_GetItem(list, 0);

Python Extensions in Other Languages

[248]

 Py_INCREF(item);
 PyList_SetItem(list, 1, PyLong_FromLong(0L));
 PyObject_Print(item, stdout, 0);
 Py_DECREF(item);
}

Cython
Cython is both an optimizing static compiler and the name of a programming
language that is a superset of Python. As a compiler, it can perform source to source
compilation of native Python code and its Cython dialect to Python C extensions
using Python/C API. It allows you to combine the power of Python and C without
the need to manually deal with Python/C API.

Cython as a source to source compiler
For extensions created using Cython, the major advantage you will get is using the
superset language that it provides. Anyway, it is possible to create extensions from
plain Python code using source to source compilation. This is the simplest approach
to Cython because it requires almost no changes to the code and can give some
significant performance improvements at a very low development cost.

Cython provides a simple cythonize utility function that allows you to easily
integrate the compilation process with distutils or setuptools. Let's assume
that we would like to compile a pure Python implementation of our fibonacci()
function to a C extension. If it is located in the fibonacci module, the minimal
setup.py script could be as follows:

from setuptools import setup
from Cython.Build import cythonize

setup(
 name='fibonacci',
 ext_modules=cythonize(['fibonacci.py'])
)

Cython used as a source compilation tool for the Python language has another
benefit. Source to source compilation to extensions can be a fully optional part of
source distribution installation process. If the environment where the package needs
to be installed does not have Cython or any other building prerequisites, it can be
installed as a normal pure Python package. The user should not notice any functional
difference in the behavior of code distributed that way.

Chapter 7

[249]

A common approach for distributing extensions built with Cython is to include both
Python/Cython sources and C code that would be generated from these source
files. This way the package can be installed in three different ways depending on
the existence of building prerequisites:

• If the installation environment has Cython available, the extension C code is
generated from the Python/Cython sources that are provided

• If Cython is not available but there are available building prerequisites
(C compiler, Python/C API headers), the extension is built from distributed
pre-generated C files

• If neither of the preceding prerequisites is available but the extension is
created from pure Python sources, the modules are installed like ordinary
Python code, and the compilation step is skipped

Note that Cython documentation says that including generated C files as well as
Cython sources is the recommended way of distributing Cython extensions. The
same documentation says that Cython compilation should be disabled by default
because the user may not have the required version of Cython in his environment
and this may result in unexpected compilation issues. Anyway, with the advent of
environment isolation, this seems to be a less worrying problem today. Also, Cython
is a valid Python package that is available on PyPI, so it can easily be defined as your
project requirement in a specific version. Including such a prerequisite is, of course, a
decision with serious implications and should be considered very carefully. The safer
solution is to leverage the power of the extras_require feature in the setuptools
package and allow the user to decide whether he wants to use Cython with a specific
environment variable:

import os

from distutils.core import setup
from distutils.extension import Extension

try:
 # cython source to source compilation available
 # only when Cython is available
 import Cython
 # and specific environment variable says
 # explicitely that Cython should be used
 # to generate C sources
 USE_CYTHON = bool(os.environ.get("USE_CYTHON"))

except ImportError:
 USE_CYTHON = False

Python Extensions in Other Languages

[250]

ext = '.pyx' if USE_CYTHON else '.c'

extensions = [Extension("fibonacci", ["fibonacci"+ext])]

if USE_CYTHON:
 from Cython.Build import cythonize
 extensions = cythonize(extensions)

setup(
 name='fibonacci',
 ext_modules=extensions,
 extras_require={
 # Cython will be set in that specific version
 # as a requirement if package will be intalled
 # with '[with-cython]' extra feature
 'cython': ['cython==0.23.4']
 }
)

The pip installation tool supports the installation of packages with the extras option
by adding the [extra-name] suffix to the package name. For the preceding example,
the optional Cython requirement and compilation during the installation from local
sources can be enabled using the following command:

$ USE_CYTHON=1 pip install .[with-cython]

Cython as a language
Cython is not only a compiler but also a superset of the Python language. Superset
means that any valid Python code is allowed and it can be further updated with
additional features, such as support for calling C functions or declaring C types
on variables and class attributes. So any code written in Python is also written in
Cython. This explains why ordinary Python modules can be so easily compiled
to C using the Cython compiler.

But we won't stop on that simple fact. Instead of saying that our reference
fibonacci() function is also code for valid extensions in this superset of Python, we
will try to improve it a bit. This won't be any real optimization to our function design
but some minor updates that will allow it to benefit from being written in Cython.

Chapter 7

[251]

Cython sources use a different file extension. It is .pyx instead of .py. Let's
assume that we still want to implement our Fibbonacci sequence. The content
of fibonacci.pyx might look like this:

"""Cython module that provides fibonacci sequence function."""

def fibonacci(unsigned int n):
 """Return nth Fibonacci sequence number computed
 recursively."""
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

As you can see, the only thing that has really changed is the signature of the
fibonacci() function. Thanks to optional static typing in Cython, we can declare
the n argument as unsigned int, and this should slightly improve the way our
function works. Additionally, it does a lot more than we did previously when
writing extensions by hand. If the argument of the Cython function is declared with
a static type, then the extension will automatically handle conversion and overflow
errors by raising proper exceptions:

>>> from fibonacci import fibonacci

>>> fibonacci(5)

5

>>> fibonacci(-1)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "fibonacci.pyx", line 21, in fibonacci.fibonacci (fibonacci.c:704)

OverflowError: can't convert negative value to unsigned int

>>> fibonacci(10 ** 10)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "fibonacci.pyx", line 21, in fibonacci.fibonacci (fibonacci.c:704)

OverflowError: value too large to convert to unsigned int

Python Extensions in Other Languages

[252]

We already know that Cython compiles only source to source and the generated code
uses the same Python/C API that we would use when writing C code for extensions
by hand. Note that fibonacci() is a recursive function, so it calls itself very often.
This will mean that although we declared a static type for input argument, during
the recursive call it will treat itself like any other Python function. So n-1 and n-2
will be packed back into the Python object and then passed to the hidden wrapper
layer of the internal fibonacci() implementation that will again bring it back to the
unsigned int type. This will happen again and again until we reach the final depth
of recursion. This is not necessarily a problem but involves a lot more argument
processing than really required.

We can cut off the overhead of Python function calls and argument processing by
delegating more of the work to a pure C function that does not know anything about
Python structures. We did this previously when creating C extensions with pure C
and we can do that in Cython too. We can use the cdef keyword to declare C-style
functions that accept and return only C types:

cdef long long fibonacci_cc(unsigned int n):
 if n < 2:
 return n
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

def fibonacci(unsigned int n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 return fibonacci_cc(n)

We can go even further. With a plain C example, we finally showed how to release
GIL during the call of our pure C function, so the extension was a bit nicer for
multithreaded applications. In previous examples, we have used Py_BEGIN_ALLOW_
THREADS and Py_END_ALLOW_THREADS preprocessor macros from Python/C API
headers to mark section of code as free from Python calls. The Cython syntax is a lot
shorter and easier to remember. GIL can be released around the section of code using
a simple with nogil statement:

def fibonacci(unsigned int n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 with nogil:
 result = fibonacci_cc(n)

 return fibonacci_cc(n)

Chapter 7

[253]

You can also mark the whole C style function as safe to call without GIL:

cdef long long fibonacci_cc(unsigned int n) nogil:
 if n < 2:
 return n
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

It is important to know that such functions cannot have Python objects as arguments
or return types. Whenever a function marked as nogil needs to perform any
Python/C API call, it must acquire GIL using the with gil statement.

Challenges
To be honest, I started my adventure with Python only because I was tired of all
the difficulty of writing software in C and C++. In fact, it is very common that
programmers start to learn Python when they realize that other languages do not
deliver what the users need. Programming in Python, when compared to C, C++, or
Java, is a breeze. Everything seems to be simple and well designed. You might think
that there are no places where you can trip and there are no other programming
languages required anymore.

And of course nothing could be more wrong. Yes, Python is an amazing language
with a lot of cool features and it is used in many fields. But it does not mean that it is
perfect and does not have any downsides. It is easy to understand and write, but this
easiness comes with a price. It is not as slow as many think, but will never be as fast
as C. It is highly portable, but its interpreter is not available on as many architectures
as compilers for other languages are. We could go with that list forever.

One of the solutions to that problem is to write extensions, so we can bring of some
of the advantages of good old C back to Python. And in most cases, it works well. The
question is: are we really using Python because we want to extend it with C? The
answer is no. This is only an inconvenient necessity in situations where we don't
have any better option.

Additional complexity
It is not a secret that developing applications in many different languages is not an
easy task. Python and C are completely different technologies and it is very hard to
find anything that they have in common. It is also true that there is no application
that is free of bugs. If extensions become common in your codebase, debugging can
become painful. Not only because debugging of C code requires completely different
workflow and tools, but also because you will need to switch context between two
different languages very often.

Python Extensions in Other Languages

[254]

We are all humans and all have limited cognitive capabilities. There are, of course,
people who can handle multiple layers of abstraction and technology stacks at the
same time efficiently but they seem to be very rare specimens. No matter how skilled
you are, there is always an additional price to pay for maintaining such hybrid
solutions. This will either involve extra effort and time required to switch between
C and Python, or additional stress that will make you eventually less efficient.

According to the TIOBE index, C is still one of the most popular programming
languages. Despite this fact, it is very common for Python programmers to know
very little or almost nothing about it. Personally, I think that C should be lingua
franca in the programming world, but my opinion is very unlikely to change
anything in this matter. Python also is so seductive and easy to learn that a lot of
programmers forget about all their previous experiences and completely switch to
the new technology. And programming is not like riding a bike. This particular skill
erodes faster if not used and polished sufficiently. Even programmers with strong
C background are risking to gradually lose their previous knowledge if they decide
to dive into Python for too long. All of the above leads to one simple conclusion—it
is harder to find people who will be able to understand and extend your code. For
open source packages, this means fewer voluntary contributors. In closed source, this
means that not all of your teammates will be able to develop and maintain extensions
without breaking things.

Debugging
When it comes to failures, extensions may break, very badly. Static typing gives you
a lot of advantages over Python and allows you to catch a lot of issues during the
compilation step that would be hard to notice in Python without a rigorous testing
routine and full test coverage. On the other hand, all memory management must be
performed manually. And faulty memory management is the main reason of most
programming errors in C. In the best case scenario, such mistakes will only result
in some memory leaks that will gradually eat all of your environment resources.
The best case does not mean easy to handle. Memory leaks are really tricky to find
without using proper external tools such as Valgrind. Anyway, in most cases, the
memory management issues in your extension's code will result in a segmentation
fault that is unrecoverable in Python and will cause the interpreter to crash without
raising any exception. This means that you will eventually need to arm up with
additional tools that most Python programmers don't need to use. This adds
complexity to your development environment and workflow.

Chapter 7

[255]

Interfacing with dynamic libraries without
extensions
Thanks to ctypes (a module in the standard library) or cffi (an external package),
you can integrate just about every compiled dynamic/shared library in Python no
matter in what language it was written. And you can do that in pure Python without
any compilation steps, so this is an interesting alternative to writing extensions in C.

This does not mean you don't need to know anything about C. Both solutions
require from you a reasonable understanding of C and how dynamic libraries work
in general. On the other hand, they remove the burden of dealing with Python
reference counting and greatly reduce the risk of making painful mistakes. Also
interfacing with C code through ctypes or cffi is more portable than writing and
compiling the C extension module.

ctypes
ctypes is the most popular module to call functions from dynamic or shared
libraries without the need of writing custom C extensions. The reason for that is
obvious. It is part of the standard library, so it is always available and does not
require any external dependencies. It is a foreign function interface (FFI) library
and provides an API for creating C-compatible datatypes.

Loading libraries
There are four types of dynamic library loaders available in ctypes and two
conventions to use them. The classes that represent dynamic and shared libraries are
ctypes.CDLL, ctypes.PyDLL, ctypes.OleDLL, and ctypes.WinDLL. The last two are
only available on Windows, so we won't discuss them here. The differences between
CDLL and PyDLL are as follows:

• ctypes.CDLL: This class represents loaded shared libraries. The functions in
these libraries use the standard calling convention, and are assumed to return
int. GIL is released during the call.

• ctypes.PyDLL: This class works like CDLL, but GIL is not released during
the call. After execution, the Python error flag is checked and an exception
is raised if it is set. It is only useful when directly calling functions from
Python/C API.

Python Extensions in Other Languages

[256]

To load a library, you can either instantiate one of the preceding classes with proper
arguments or call the LoadLibrary() function from the submodule associated with
a specific class:

• ctypes.cdll.LoadLibrary() for ctypes.CDLL
• ctypes.pydll.LoadLibrary() for ctypes.PyDLL
• ctypes.windll.LoadLibrary() for ctypes.WinDLL
• ctypes.oledll.LoadLibrary() for ctypes.OleDLL

The main challenge when loading shared libraries is how to find them in a portable
way. Different systems use different suffixes for shared libraries (.dll on Windows,
.dylib on OS X, .so on Linux) and search for them in different places. The main
offender in this area is Windows, that does not have a predefined naming scheme
for libraries. Because of that, we won't discuss the details of loading libraries with
ctypes on this system and concentrate mainly on Linux and Mac OS X that deal
with this problem in a consistent and similar way. If you are anyway interested
in Windows platform, refer to the official ctypes documentation that has plenty
of information about supporting that system (refer to https://docs.python.
org/3.5/library/ctypes.html).

Both library loading conventions (the LoadLibrary() function and specific library-
type classes) require you to use the full library name. This means all the predefined
library prefixes and suffixes need to be included. For example, to load the C standard
library on Linux, you need to write the following:

>>> import ctypes

>>> ctypes.cdll.LoadLibrary('libc.so.6')

<CDLL 'libc.so.6', handle 7f0603e5f000 at 7f0603d4cbd0>

Here, for Mac OS X, this would be:

>>> import ctypes

>>> ctypes.cdll.LoadLibrary('libc.dylib')

Fortunately, the ctypes.util submodule provides a find_library() function that
allows to load a library using its name without any prefixes or suffixes and will work
on any system that has a predefined scheme for naming shared libraries:

>>> import ctypes

>>> from ctypes.util import find_library

>>> ctypes.cdll.LoadLibrary(find_library('c'))

<CDLL '/usr/lib/libc.dylib', handle 7fff69b97c98 at 0x101b73ac8>

>>> ctypes.cdll.LoadLibrary(find_library('bz2'))

https://docs.python.org/3.5/library/ctypes.html
https://docs.python.org/3.5/library/ctypes.html

Chapter 7

[257]

<CDLL '/usr/lib/libbz2.dylib', handle 10042d170 at 0x101b6ee80>

>>> ctypes.cdll.LoadLibrary(find_library('AGL'))

<CDLL '/System/Library/Frameworks/AGL.framework/AGL', handle 101811610 at
0x101b73a58>

Calling C functions using ctypes
When the library is successfully loaded, the common pattern is to store it as a
module-level variable with the same name as library. The functions can be accessed
as object attributes, so calling them is like calling a Python function from any other
imported module:

>>> import ctypes

>>> from ctypes.util import find_library

>>>

>>> libc = ctypes.cdll.LoadLibrary(find_library('c'))

>>>

>>> libc.printf(b"Hello world!\n")

Hello world!

13

Unfortunately, all the built-in Python types except integers, strings, and bytes are
incompatible with C datatypes and thus must be wrapped in the corresponding
classes provided by the ctypes module. Here is the full list of compatible datatypes
that comes from the ctypes documentation:

ctypes type C type Python type
c_bool _Bool bool (1)
c_char char 1-character bytes object
c_wchar wchar_t 1-character string
c_byte char int

c_ubyte unsigned char int

c_short short int

c_ushort unsigned short int

c_int int int

c_uint unsigned int int

c_long long int

c_ulong unsigned long int

c_longlong __int64 or long long int

Python Extensions in Other Languages

[258]

ctypes type C type Python type
c_ulonglong unsigned __int64 or unsigned

long long
int

c_size_t size_t int

c_ssize_t ssize_t or Py_ssize_t int

c_float float float

c_double double float

c_longdouble long double float

c_char_p char * (NUL terminated) bytes object or None
c_wchar_p wchar_t * (NUL terminated) string or None
c_void_p void * int or None

As you can see, the preceding table does not contain dedicated types that would
reflect any of the Python collections as C arrays. The recommended way to create
types for C arrays is to simply use the multiplication operator with the desired basic
ctypes type:

>>> import ctypes

>>> IntArray5 = ctypes.c_int * 5

>>> c_int_array = IntArray5(1, 2, 3, 4, 5)

>>> FloatArray2 = ctypes.c_float * 2

>>> c_float_array = FloatArray2(0, 3.14)

>>> c_float_array[1]

3.140000104904175

Passing Python functions as C callbacks
It is a very popular design pattern to delegate part of the work of function
implementation to custom callbacks provided by the user. The most known function
from the C standard library that accepts such callbacks is a qsort() function that
provides a generic implementation of the Quicksort algorithm. It is rather unlikely
that you would like to use this algorithm instead of the default Python Timsort
that is more suited for sorting Python collections. Anyway, qsort() seems to be a
canonical example of an efficient sorting algorithm and a C API that uses the callback
mechanism that is found in many programming books. This is why we will try to use
it as an example of passing the Python function as a C callback.

Chapter 7

[259]

The ordinary Python function type will not be compatible with the callback function
type required by the qsort() specification. Here is the signature of qsort() from
the BSD man page that also contains the type of accepted callback type (the compar
argument):

void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void *, const void *));

So in order to execute qsort() from libc, you need to pass:

• base: This is the array that needs to be sorted as a void* pointer.
• nel: This is the number of elements as size_t.
• width: This is the size of the single element in the array as size_t.
• compar: This is the pointer to the function that is supposed to return int and

accepts two void* pointers. It points to the function that compares the size of
two elements being sorted.

We already know from the Calling C functions using ctypes section how to construct
the C array from other ctypes types using the multiplication operator. nel should be
size_t, and it maps to Python int, so it does not require any additional wrapping
and can be passed as len(iterable). The width value can be obtained using the
ctypes.sizeof() function once we know the type of our base array. The last thing
we need to know is how to create the pointer to the Python function compatible with
the compar argument.

The ctypes module contains a CFUNTYPE() factory function that allows us to wrap
Python functions and represents them as C callable function pointers. The first
argument is the C return type that the wrapped function should return. It is followed
by the variable list of C types that the function accepts as its arguments. The function
type compatible with the compar argument of qsort() will be:

CMPFUNC = ctypes.CFUNCTYPE(
 # return type
 ctypes.c_int,
 # first argument type
 ctypes.POINTER(ctypes.c_int),
 # second argument type
 ctypes.POINTER(ctypes.c_int),
)

Python Extensions in Other Languages

[260]

CFUNTYPE() uses the cdecl calling convention, so it is compatible
only with the CDLL and PyDLL shared libraries. The dynamic libraries
on Windows that are loaded with WinDLL or OleDLL use the stdcall
calling convention. This means that the other factory must be used to
wrap Python functions as C callable function pointers. In ctypes, it is
WINFUNCTYPE().

To wrap everything up, let's assume that we want to sort a randomly shuffled list of
integer numbers with a qsort() function from the standard C library. Here is the
example script that shows how to do that using everything that we have learned
about ctypes so far:

from random import shuffle

import ctypes
from ctypes.util import find_library

libc = ctypes.cdll.LoadLibrary(find_library('c'))

CMPFUNC = ctypes.CFUNCTYPE(
 # return type
 ctypes.c_int,
 # first argument type
 ctypes.POINTER(ctypes.c_int),
 # second argument type
 ctypes.POINTER(ctypes.c_int),
)

def ctypes_int_compare(a, b):
 # arguments are pointers so we access using [0] index
 print(" %s cmp %s" % (a[0], b[0]))

 # according to qsort specification this should return:
 # * less than zero if a < b
 # * zero if a == b
 # * more than zero if a > b
 return a[0] - b[0]

def main():
 numbers = list(range(5))
 shuffle(numbers)
 print("shuffled: ", numbers)

Chapter 7

[261]

 # create new type representing array with length
 # same as the length of numbers list
 NumbersArray = ctypes.c_int * len(numbers)
 # create new C array using a new type
 c_array = NumbersArray(*numbers)

 libc.qsort(
 # pointer to the sorted array
 c_array,
 # length of the array
 len(c_array),
 # size of single array element
 ctypes.sizeof(ctypes.c_int),
 # callback (pointer to the C comparison function)
 CMPFUNC(ctypes_int_compare)
)
 print("sorted: ", list(c_array))

if __name__ == "__main__":
 main()

The comparison function provided as a callback has an additional print statement,
so we can see how it is executed during the sorting process:

$ python ctypes_qsort.py

shuffled: [4, 3, 0, 1, 2]

 4 cmp 3

 4 cmp 0

 3 cmp 0

 4 cmp 1

 3 cmp 1

 0 cmp 1

 4 cmp 2

 3 cmp 2

 1 cmp 2

sorted: [0, 1, 2, 3, 4]

Python Extensions in Other Languages

[262]

CFFI
CFFI is a Foreign Function Interface for Python that is an interesting alternative
to ctypes. It is not a part of the standard library but is easily available as a cffi
package on PyPI. It is different from ctypes because it puts more emphasis on
reusing plain C declarations instead of providing extensive Python APIs in a single
module. It is way more complex and also has a feature that also allows you to
automatically compile some parts of your integration layer into extensions using
C compiler. So it can be used as a hybrid solution that fills the gap between
C extensions and ctypes.

Because it is a very large project, it is impossible to shortly introduce it in a few
paragraphs. On the other hand, it would be a shame to not say something more
about it. We have already discussed one example of integrating the qsort()
function from the standard library using ctypes. So, the best way to show the main
differences between these two solutions will be to re-implement the same example
with cffi. I hope that one block of code is worth more than a few paragraphs of text:

from random import shuffle

from cffi import FFI

ffi = FFI()

ffi.cdef("""
void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void *, const void *));
""")
C = ffi.dlopen(None)

@ffi.callback("int(void*, void*)")
def cffi_int_compare(a, b):
 # Callback signature requires exact matching of types.
 # This involves less more magic than in ctypes
 # but also makes you more specific and requires
 # explicit casting
 int_a = ffi.cast('int*', a)[0]
 int_b = ffi.cast('int*', b)[0]
 print(" %s cmp %s" % (int_a, int_b))

 # according to qsort specification this should return:
 # * less than zero if a < b
 # * zero if a == b
 # * more than zero if a > b
 return int_a - int_b

def main():
 numbers = list(range(5))

Chapter 7

[263]

 shuffle(numbers)
 print("shuffled: ", numbers)

 c_array = ffi.new("int[]", numbers)

 C.qsort(
 # pointer to the sorted array
 c_array,
 # length of the array
 len(c_array),
 # size of single array element
 ffi.sizeof('int'),
 # callback (pointer to the C comparison function)
 cffi_int_compare,
)
 print("sorted: ", list(c_array))

if __name__ == "__main__":
 main()

Summary
This chapter explained one of the most advanced topics in the book. We discussed
the reasons and tools for building Python extensions. We started from writing pure
C extensions that depend only on Python/C API and then re-implemented them
with Cython to show how easy it can be if you only choose the proper tool.

There are still some reasons for doing things the hard way and using nothing more than
the pure C compiler and the Python.h headers. Anyway, the best recommendation
is to use tools such as Cython or Pyrex (not featured here) because it will make your
codebase more readable and maintainable. It will also save you from most of the issues
caused by incautious reference counting and memory management.

Our discussion of extensions ended with the presentation of ctypes and CFFI as an
alternative way to solve the problems of integrating shared libraries. Because they do
not require writing custom extensions to call functions from compiled binaries, they
should be your tools of choice for doing that—especially if you don't need to use
custom C code.

In next chapter, we will take a short rest from low-level programming techniques
and delve into topics that are no less important—code management and version
control systems.

[265]

Managing Code
Working on a software project that involves more than one person is tough.
Everything slows down and gets harder. This happens for several reasons. This
chapter will expose these reasons and will try to provide some ways to fight
against them.

This chapter is divided into two parts, which explain:

• How to work with a version control system
• How to set up continuous development processes

First of all, a code base evolves so much that it is important to track all the changes
that are made, even more so when many developers work on it. That is the role of a
version control system.

Next, several brains that are not directly wired together can still work on the same
project. They have different roles and work on different aspects. Therefore, a lack
of global visibility generates a lot of confusion about what is going on and what is
being done by others. This is unavoidable, and some tools have to be used to provide
continuous visibility and mitigate the problem. This is done by setting up a series
of tools for continuous development processes such as continuous integration or
continuous delivery.

Now we will discuss these two aspects in detail.

Version control systems
Version control systems (VCS) provide a way to share, synchronize, and back up
any kind of file. They are categorized into two families:

• Centralized systems
• Distributed systems

Managing Code

[266]

Centralized systems
A centralized version control system is based on a single server that holds the files
and lets people check in and check out the changes that are made to those files. The
principle is quite simple—everyone can get a copy of the files on his/her system and
work on them. From there, every user can commit his/her changes to the server. They
will be applied and the revision number will be raised. The other users will then be
able to get those changes by synchronizing their repository copy through an update.

The repository evolves through all the commits, and the system archives all revisions
into a database to undo any change or provide information on what has been done:

Figure 1

Every user in this centralized configuration is responsible for synchronizing his/
her local repository with the main one in order to get the other user's changes. This
means that some conflicts can occur when a locally modified file has been changed
and checked in by someone else. A conflict resolution mechanism is carried out, in
this case on the user system, as shown in the following figure:

Figure 2

Chapter 8

[267]

This will help you understand better:

1. Joe checks in a change.
2. Pamela attempts to check in a change on the same file.
3. The server complains that her copy of the file is out of date.
4. Pamela updates her local copy. The version control software may or may not

be able to merge the two versions seamlessly (that is, without a conflict).
5. Pamela commits a new version that contains the latest changes made by Joe

and her own.

This process is perfectly fine on small-sized projects that involve a few developers
and a small number of files. But it becomes problematic for bigger projects. For
instance, a complex change involves a lot of files, which is time consuming, and
keeping everything local before the whole work is done is unfeasible. The problems
of such approach are:

• It is dangerous because the user may keep his/her computer changes that
are not necessarily backed up

• It is hard to share with others until it is checked in and sharing it before it is
done would leave the repository in an unstable state, and so the other users
would not want to share

Centralized VCS has resolved this problem by providing branches and merges. It is
possible to fork from the main stream of revisions to work on a separated line and
then to get back to the main stream.

In Figure 3, Joe starts a new branch from revision 2 to work on a new feature. The
revisions are incremented in the main stream and in his branch every time a change
is checked in. At revision 7, Joe has finished his work and commits his changes into
the trunk (the main branch). This requires, most of the time, some conflict resolution.

But in spite of their advantages, centralized VCS has several pitfalls:

• Branching and merging is quite hard to deal with. It can become a nightmare.
• Since the system is centralized, it is impossible to commit changes offline.

This can lead to a huge, single commit to the server when the user gets back
online. Lastly, it doesn't work very well for projects such as Linux, where
many companies permanently maintain their own branch of the software
and there is no central repository that everyone has an account on.

Managing Code

[268]

For the latter, some tools are making it possible to work offline, such as SVK, but a
more fundamental problem is how the centralized VCS works.

Figure 3

Despite these pitfalls, centralized VCS is still quite popular among many companies
mainly due to inertia of corporate environments. The main examples of centralized
VCSes used by many organizations are Subversion (SVN) and Concurrent Version
System (CVS). The obvious issues with centralized architecture for version control
systems is the reason why most of the open source communities have already
switched to the more reliable architecture of Distributed VCS (DVCS).

Distributed systems
Distributed VCS is the answer to the centralized VCS deficiencies. It does not rely on
a main server that people work with, but on peer-to-peer principles. Everyone can
hold and manage his/her own independent repository for a project and synchronize
it with other repositories:

Chapter 8

[269]

Figure 4

In Figure 4, we can see an example of such a system in use:

1. Bill pulls the files from HAL's repository.
2. Bill makes some changes on the files.
3. Amina pulls the files from Bill's repository.
4. Amina changes the files too.
5. Amina pushes the changes to HAL.
6. Kenny pulls the files from HAL.
7. Kenny makes changes.
8. Kenny regularly pushes his changes to HAL.

The key concept is that people push and pull the files to or from other repositories,
and this behavior changes according to the way people work and the way the project
is managed. Since there is no main repository anymore, the maintainer of the project
needs to define a strategy for people to push and pull the changes.

Furthermore, people have to be a bit smarter when they work with several
repositories. In most distributed version control systems, revision numbers are
local to each repository, and there are no global revision numbers anyone can refer
to. Therefore, tags have to be used to make things clearer. They are textual labels
that can be attached to a revision. Lastly, users are responsible for backing up their
own repositories, which is not the case in a centralized infrastructure where the
administrator usually sets back up strategies.

Managing Code

[270]

Distributed strategies
A central server is, of course, still desirable with a DVCS if you're working in a
company setting with everyone working toward the same goal. But the purpose
of that server is completely different than in centralized VCS. It is simply a hub
that allows all developers to share their changes in a single place rather than pull
and push between each other's repositories. Such a single central repository (often
called upstream) serves also as a backup for all the changes tracked in the individual
repositories of all team members.

Different approaches can be applied to sharing code with the central repository
in DVCS. The simplest one is to set up a server that acts like a regular centralized
server, where every member of the project can push his/her changes into a common
stream. But this approach is a bit simplistic. It does not take full advantage of the
distributed system, since people will use push and pull commands in the same
way as they would with a centralized system.

Another approach consists of providing several repositories on a server with
different levels of access:

• An unstable repository is where everyone can push changes.
• A stable repository is read-only for all members except the release

managers. They are allowed to pull changes from the unstable repository
and decide what should be merged.

• Various release repositories correspond to the releases and are read-only,
as we will see later in the chapter.

This allows people to contribute, and managers to review, the changes before they
make it to the stable repository. Anyway, depending on the tools used, this may be
too much of an overhead. In many distributed version control systems, this can also
be handled with a proper branching strategy.

The other strategies can be made up, since DVCS provides infinite combinations. For
instance, the Linux Kernel, which is using Git (http://git-scm.com/), is based on a
star model, where Linus Torvalds is maintaining the official repository and pulls the
changes from a set of developers he trusts. In this model, people who wish to push
changes to the kernel will, hopefully, try to push them to the trusted developers so
that they reach Linus through them.

http://git-scm.com/

Chapter 8

[271]

Centralized or distributed?
Just forget about the centralized version control systems.

Let's be honest. Centralized version control systems are relict of the past. In a time
when most of us have the opportunity to work remotely full-time, it is unreasonable
to be constrained by all the deficiencies of centralized VCS. For instance, with CVS or
SVN you can't track the changes when offline. And that's silly. What should you do
when the Internet connection at your workplace is temporarily broken or the central
repository goes down? Should you forget about all your workflow and just allow
changes to pile up until the situation changes and then just commit it as a one huge
blob of unstructured updates? No!

Also, most of the centralized version control systems do not handle branching
schemes efficiently. And branching is a very useful technique that allows you to
limit the number of merge conflicts in the projects where many people work on
multiple features. Branching in SVN is so ridiculous that most of the developers try
to avoid it at all costs. Instead, most of the centralized VCS provides some file-locking
primitives that should be considered the anti-pattern for any version control system.
The sad truth about every version control tool is that if it contains a dangerous option,
someone in your team will start using it on a daily basis eventually. And locking is
one such feature that in return of fewer merge conflicts will drastically reduce the
productivity of your whole team. By choosing a version control system that does not
allow for such bad workflows, you are making a situation, which makes it more likely
that your developers will use it effectively.

Use Git if you can
Git is currently the most popular distributed version control system. It was created
by Linus Torvalds for maintaining versions of the Linux kernel when its core
developers needed to resign from proprietary BitKeeper that was used previously.

If you have not used any of the version control systems then you should start with
Git from the beginning. If you already use some other tools for version control, learn
Git anyway. You should definitely do that even if your organization is unwilling to
switch to Git in the near future, otherwise you risk becoming a living fossil.

I'm not saying that Git is the ultimate and best DVCS version control system. It
surely has some disadvantages. Most of all, it is not an easy-to-use tool and is very
challenging for newcomers. Git's steep learning curve is already a source of many
jokes online. There may be some version control systems that may perform better for
a lot of projects and the full list of open source Git contenders would be quite long.
Anyway, Git is currently the most popular DVCS, so the network effect really works
in its favor.

Managing Code

[272]

Briefly speaking, the network effect causes that the overall benefit of using popular
tools is greater than using others, even if slightly better, precisely due to its high
popularity (this is how VHS killed Betamax). It is very probable that people in your
organization, as well as new hires, are somewhat proficient with Git, so the cost of
integrating exactly this DVCS will be lower than trying something less popular.

Anyway, it is still always good to know something more and familiarizing yourself
with other DVCS won't hurt you. The most popular open source rivals of Git are
Mercurial, Bazaar, and Fossil. The first one is especially neat because it is written
in Python and was the official version control system for CPython sources. There
are some signs that it may change in the near future, so CPython developers may
already use Git by the time you read this book. But it really does not matter. Both
systems are great. If there would be no Git, or it were less popular, I would definitely
recommend Mercurial. There is evident beauty in its design. It's definitely not as
powerful as Git, but a lot easier to master for beginners.

Git flow and GitHub flow
The very popular and standardized methodology for working with Git is simply
called Git flow. Here is the brief description of the main rules of that flow:

• There is a main working branch, usually called develop, where all the
developments for the latest version of the application occurs.

• New project features are implemented in separate branches called feature
branches that always start from the develop branch. When work on a feature
is finished and the code is properly tested, this branch is merged back
to develop.

• When the code in develop is stabilized (without known bugs) and there is a
need for new application release, a new release branch is created. This release
branch usually requires additional tests (extensive QA tests, integration
tests, and so on) so new bugs will be definitely found. If additional changes
(such as bug fixes) are included in a release branch, they need to eventually
be merged back to the develop branch.

• When code on a release branch is ready to be deployed/released, it is merged
to the master branch and the latest commit on the master is labeled with
an appropriate version tag. No other branches but release branches can
be merged to the master. The only exceptions are hot fixes that need to be
immediately deployed or released.

• Hot fixes that require urgent release are always implemented on separate
branches that start from the master. When the fix is done, it is merged to
both the develop and master branches. Merging of the hot fix branch is done
like it were an ordinary release branch, so it must be properly tagged and
the application version identifier should be modified accordingly.

Chapter 8

[273]

The visual example of Git flow in action is presented in Figure 5. For those that have
never worked in such a way, and have also never used distributed version control
systems, this may be a bit overwhelming. Anyway, it is really worth trying in your
organization if you don't have any formalized workflow. It has multiple benefits and
also solves real problems. It is especially useful for teams of multiple programmers
that are working on many separate features and when continuous support for
multiple releases needs to be provided.

This methodology is also handy if you want to implement continuous delivery using
continuous deployment processes because it is always clear in your organization and
which version of code represents a deliverable release of your application or service.
It is also a great tool for open source projects because it provides great transparency
to both the users and the active contributors.

Figure 5 Visual presentation of Git flow in action

Managing Code

[274]

So, if you think that this short summary of Git flow makes a bit of sense and it did
not scare you yet, then you should dig deeper into online resources on that topic.
It is really hard to say who the original author of the preceding workflow is,
but most online sources point to Vincent Driessen. Thus, the best starting material
to learn about Git flow is his online article titled A successful Git branching model
(refer to http://nvie.com/posts/a-successful-git-branching-model/).

Like every other popular methodology, Git flow gained a lot of criticism over the
Internet from programmers that do not like it. The most commented thing about
Vincent Driessen's article is the rule (strictly technical) saying that every merge should
create a new artificial commit representing that merge. Git has an option to do fast
forward merges and Vincent discourages that option. This is, of course, an unsolvable
problem because the best way to perform merges is a completely subjective matter
to the organization Git is being used in. Anyway, the real issue of Git flow is that it is
noticeably complicated. The full set of rules is really long, so it is easy to make some
mistakes. It is very probable that you would like to choose something simpler.

One such flow is used at GitHub and described by Scott Chacon on his blog
(refer to http://scottchacon.com/2011/08/31/github-flow.html). It is
referred to as GitHub flow and is very similar to Git flow:

• Anything in the master branch is deployable
• The new features are implemented on separate branches

The main difference from Git flow is simplicity. There is only one main development
branch (master) and it is always stable (in contrast to the develop branch in Git
flow). There are also no release branches and a big emphasis is placed on tagging
the code. There is no such need at GitHub because, as they say, when something is
merged into the master it is usually deployed to production immediately. Diagram
presenting an example of GitHub flow in action is shown in Figure 6.

GitHub flow seems like a good and lightweight workflow for teams that want to
have a continuous deployment process setup for their project. Such a workflow is,
of course, not viable for any project that has a strong notion of release (with strict
version numbers)—at least without any modifications. It is important to know that
the main assumption of the always deployable master branch is that it cannot be
ensured without proper automated testing and a building procedure. This is what
continuous integration systems take care of and we will discuss that a bit later. The
following is a diagram presenting an example of GitHub flow in action:

http://nvie.com/posts/a-successful-git-branching-model/
http://scottchacon.com/2011/08/31/github-flow.html

Chapter 8

[275]

Figure 6 Visual presentation of GitHub flow in action

Note that both Git flow and GitHub flow are only branching strategies, so despite
having Git in their names, they are not limited to that single DVCS solution. It's true
that the official article describing Git flow mentions specific git command parameters
that should be used when performing a merge, but the general idea can be easily
applied to almost any other distributed version control system. In fact, due to the
way it is suggested to handle merges, Mercurial seems like a better tool to use for
this specific branching strategy! The same applies to GitHub flow. This is the only
branching strategy sprinkled with a bit of specific development culture, so it can
be used in any version control system that allows you to easily create and merge
branches of code.

Managing Code

[276]

As a last comment, remember that no methodology is carved in stone and no one
forces you to use it. They are created to solve some existing problems and keep you
from making common mistakes. You can take all of their rules or modify some of
them to your own needs. They are great tools for beginners that may easily get into
common pitfalls. If you are not familiar with any version control system, you should
then start with a lightweight methodology like GitHub flow without any custom
modification. You should start thinking about more complex workflows only when
you get enough experience with Git, or any other tool of your choice. Anyway, as
you will gain more and more proficiency, you will eventually realize that there is no
perfect workflow that suits every project. What works well in one organization does
not need to work well in others.

Continuous development processes
There are some processes that can greatly streamline your development and reduce
a time in getting the application ready to be released or deployed to the production
environment. They often have continuous in their name, and we will discuss the
most important and popular ones in this section. It is important to highlight that they
are strictly technical processes, so they are almost unrelated to project management
technologies, although they can highly dovetail with the latter.

The most important processes we will mention are:

• Continuous integration
• Continuous delivery
• Continuous deployment

The order of listing is important because each one of them is an extension of the
previous one. Continuous deployment could be simply considered even a variation
of continuous delivery. We will discuss them separately anyway, because what is
only a minor difference for one organization may be critical in others.

The fact that these are technical processes means that their implementation strictly
depends on the usage of proper tools. The general idea behind each of them is rather
simple, so you could build your own continuous integration/delivery/deployment
tools, but the best approach is to choose something that is already built. This way,
you can focus more on building your product instead of the tool chain for continuous
development.

Chapter 8

[277]

Continuous integration
Continuous integration, often abbreviated as CI, is a process that takes benefit
from automated testing and version control systems to provide a fully automatic
integration environment. It can be used with centralized version control systems but
in practice it spreads its wings only when a good DVCS tool is being used to manage
the code.

Setting up a repository is the first step towards continuous integration, which is a
set of software practices that have emerged from eXtreme Programming (XP). The
principles are clearly described on Wikipedia (http://en.wikipedia.org/wiki/
Continuous_integration#The_Practices) and define a way to make sure the
software is easy to build, test, and deliver.

The first and most important requirement to implement continuous integration is
to have a fully automated workflow that can test the whole application in the given
revision in order to decide if it is technically correct. Technically correct means that
it is free of known bugs and that all the features work as expected.

The general idea behind CI is that tests should always be run before merging to
the mainstream development branch. This could be handled only through formal
arrangements in the development team, but practice shows that this is not a reliable
approach. The problem is that, as programmers, we tend to be overconfident and
are unable to look critically at our code. If continuous integration is built only
on team arrangements, it will inevitably fail because some of the developers will
eventually skip their testing phase and commit possibly faulty code to the mainstream
development branch that should always remain stable. And, in reality, even simple
changes can introduce critical issues.

The obvious solution is to utilize a dedicated build server that automatically runs all
the required application tests whenever the codebase changes. There are many tools
that streamline this process and they can be easily integrated with version control
hosting services such as GitHub or Bitbucket and self-hosted services such as GitLab.
The benefit of using such tools is that the developer may locally run only the selected
subset of tests (that, according to him, are related to his current work) and leave a
potentially time consuming whole suite of integration tests for the build server. This
really speeds up the development but still reduces the risk that new features will
break the existing stable code found in the mainstream code branch.

http://en.wikipedia.org/wiki/Continuous_integration#The_Practices
http://en.wikipedia.org/wiki/Continuous_integration#The_Practices

Managing Code

[278]

Another plus of using a dedicated build server is that tests can be run in the
environment that is closer to the production. Developers should also use
environments that match the production as closely as possible and there are great
tools for that (Vagrant, for instance); it is, however, hard to enforce this in any
organization. You can easily do that on one dedicated build server or even on a
cluster of build servers. Many CI tools make that even less problematic by utilizing
various virtualization tools that help to ensure that tests are run always in the same,
and completely fresh, testing environment.

Having a build server is also a must if you create desktop or mobile applications
that must be delivered to users in binary form. The obvious thing to do is to always
perform such a building procedure in the same environment. Almost every CI
system takes into account the fact that applications often need to be downloaded
in binary form after testing/building is done. Such building results are commonly
referred to as build artifacts.

Because CI tools originated in times where most of the applications were written
in compiled languages, they mostly use the term "building" to describe their main
activity. For languages such as C or C++, this is obvious because applications cannot
be run and tested if it is not built (compiled). For Python, this makes a bit less sense
because most of the programs are distributed in a source form and can be run
without any additional building step. So, in the scope of our language, the building
and testing terms are often used interchangeably when talking about continuous
integration.

Testing every commit
The best approach to continuous integration is to perform the whole test suite on
every change pushed to the central repository. Even if one programmer pushed
a series of multiple commits in a single branch, it very often makes sense to test
each change separately. If you decide to test only the latest changeset in a single
repository push, then it will be harder to find sources of possible regression
problems introduced somewhere in the middle.

Of course, many DVCS such as Git or Mercurial allow you to limit time spent on
searching regression sources by providing commands to bisect the history of changes,
but in practice it is much more convenient to do that automatically as part of your
continuous integration process.

Chapter 8

[279]

Of course there is the issue of projects that have very long running test suites that
may require tens of minutes or even hours to complete. One server may be not
enough to perform all the builds on every commit made in the given time frame. This
will make waiting for results even longer. In fact, long running tests is a problem on
its own that will be described later in the Problem 2 – too long building time section. For
now, you should know that you should always strive to test every commit pushed
to the repository. If you have no power to do that on a single server, then set up the
whole building cluster. If you are using a paid service, then pay for a higher pricing
plan with more parallel builds. Hardware is cheap. Your developers' time is not.
Eventually, you will save more money by having faster parallel builds and a more
expensive CI setup than you would save on skipping tests for selected changes.

Merge testing through CI
Reality is complicated. If the code on a feature branch passes all the tests, it does not
mean that the build will not fail when it is merged to a stable mainstream branch.
Both of the popular branching strategies mentioned in the Git flow and GitHub
flow sections assume that code merged to the master branch is always tested and
deployable. But how can you be sure that this assumption is met if you have not
perform the merge yet? This is a lesser problem for Git flow (if implemented well
and used precisely) due to its emphasis on release branches. But it is a real problem
for the simple GitHub flow where merging to master is often related with conflicts
and is very likely to introduce regressions in tests. Even for Git flow, this is a serious
concern. This is a complex branching model, so for sure people will make mistakes
when using it. So, you can never be sure that the code on master will pass the tests
after merging if you won't take the special precautions.

One of the solutions to this problem is to delegate the duty of merging feature
branches into a stable mainstream branch to your CI system. In many CI tools, you
can easily set up an on-demand building job that will locally merge a specific feature
branch to the stable branch and push it to the central repository only if it passed
all the tests. If the build fails, then such a merge will be reverted, leaving the stable
branch untouched. Of course, this approach gets more complex in fast paced projects
where many feature branches are developed simultaneously because there is a high
risk of conflicts that can't be resolved automatically by any CI system. There are, of
course, solutions to that problem, like rebasing in Git.

Such an approach to merging anything into the stable branch in a version
control system is practically a must if you are thinking about going further and
implementing continuous delivery processes. It is also required if you have a strict
rule in your workflow stating that everything in a stable branch is releasable.

Managing Code

[280]

Matrix testing
Matrix testing is a very useful tool if your code needs to be tested in different
environments. Depending on your project needs, the direct support of such
a feature in your CI solution may be less or more required.

The easiest way to explain the idea of matrix testing is to take the example of some
open source Python package. Django, for instance, is the project that has a strictly
specified set of supported Python language versions. The 1.9.3 version lists the
Python 2.7, Python 3.4, and Python 3.5 versions as required in order to run Django
code. This means that every time Django core developers make a change to the
project, the full tests suite must be executed on these three Python versions in order
to back this claim. If even a single test fails on one environment, the whole build
must be marked as failed because the backwards compatibility constraint was
possibly broken. For such a simple case, you do not need any support from CI. There
is a great Tox tool (refer to https://tox.readthedocs.org/) that, among other
features, allows you to easily run test suites in different Python versions in isolated
virtual environments. This utility can also be easily used in local development.

But this was only the simplest example. It is not uncommon that the application must
be tested in multiple environments where completely different parameters must be
tested. To name a few:

• Different operating systems
• Different databases
• Different versions of backing services
• Different types of filesystems

The full set of combinations forms a multi-dimensional environment parameter
matrix, and this is why such a setup is called matrix testing. When you need such a
deep testing workflow, it is very possible that you require some integrated support for
matrix testing in your CI solution. With a large number of possible combinations, you
will also require a highly parallelizable building process because every run over the
matrix will require a large amount of work from your building server. In some cases,
you will be forced to do some tradeoff if your test matrix has too many dimensions.

Continuous delivery
Continuous delivery is a simple extension of the continuous integration idea. This
approach to software engineering aims to ensure that the application can be released
reliably at any time. The goal of continuous delivery is to release software in short
circles. It generally reduces both costs and the risk of releasing software by allowing
the incremental delivery of changes to the application in production.

https://tox.readthedocs.org/

Chapter 8

[281]

The main prerequisites for building successful continuous delivery processes are:

• A reliable continuous integration process
• An automated process of deployment to the production environment (if the

project has a notion of the production environment)
• A well-defined version control system workflow or branching strategy that

allows you to easily define what version of software represents releasable
code

In many projects, the automated tests are not enough to reliably tell if the given
version of the software is really ready to be released. In such cases, the additional
manual user acceptance tests are usually performed by skilled QA staff. Depending
on your project management methodology, this may also require some approval
from the client. This does not mean that you can't use Git flow, GitHub flow, or a
similar branching strategy, if some of your acceptance tests must be performed
manually by humans. This only changes the semantics of your stable and release
branches from ready to be deployed to ready for user acceptance tests and approval.

Also, the previous paragraph does not change the fact that code deployment should
always be automated. We already discussed some of the tools and benefits of
automation in Chapter 6, Deploying Code. As stated there, it will always reduce the
cost and risk of a new release. Also, most of the available CI tools allow you to set
up special build targets that, instead of testing, will perform automated deployment
for you. In most continuous delivery processes, this is usually triggered manually
(on demand) by authorized staff members when they are sure there is required
approval and all acceptance tests ended with success.

Continuous deployment
Continuous deployment is a process that takes continuous delivery to the next
level. It is a perfect approach for projects where all acceptance tests are automated
and there is no need for manual approval from the client. In short, once code is
merged to the stable branch (usually master), it is automatically deployed to the
production environment.

This approach seems to be very nice and robust but is not often used because it is
very hard to find a project that does not need manual QA testing and someone's
approval before a new version is released. Anyway, it is definitely doable and
some companies claim to be working in that way.

Managing Code

[282]

In order to implement continuous deployment, you need the same basic
prerequisites as the continuous delivery process. Also, a more careful approach
to merging into a stable branch is very often required. What gets merged into the
master in continuous integration usually goes instantly to the production. Because
of that, it is reasonable to handoff the merging task to your CI system, as explained
in the Merge testing through CI section.

Popular tools for continuous integration
There is a tremendous variety of choices for CI tools nowadays. They greatly vary
on ease of use and available features, and almost each one of them has some unique
features that others will lack. So, it is hard to give a good general recommendation
because each project has completely different needs and also a different development
workflow. There are, of course, some great free and open source projects, but paid
hosted services are also worth researching. It's because although open source
software such as Jenkins or Buildbot are freely available to install without any fee, it
is false thinking that they are free to run. Both hardware and maintenance are added
costs of having your own CI system. In some circumstances, it may be less expensive
to pay for such a service instead of paying for additional infrastructure and spending
time on resolving any issues in open source CI software. Still, you need to make sure
that sending your code to any third-party service is in line with security policies at
your company.

Here we will review some of the popular free open source tools, as well as paid
hosted services. I really don't want to advertise any vendor, so we will discuss only
those that are available without any fees for open source projects to justify this rather
subjective selection. No best recommendation will be given, but we will point out
both the good and bad sides of any solution. If you are still in doubt, the next section
that describes common continuous integration pitfalls should help you in making
good decisions.

Jenkins
Jenkins (https://jenkins-ci.org) seems to be the most popular tool for
continuous integration. It is also one of the oldest open source projects in this field,
in pair with Hudson (the development of these two projects split and Jenkins is a
fork of Hudson).

https://jenkins-ci.org

Chapter 8

[283]

Figure 7 Preview of Jenkins main interface

Jenkins is written in Java and was initially designed mainly for building projects
written in the Java language. It means that for Java developers, it is a perfect
CI system, but you will need to struggle a bit if you want to use it with other
technology stack.

Managing Code

[284]

One big advantage of Jenkins is its very extensive list of features that Jenkins have
implemented straight out of the box. The most important one, from the Python
programmer's point of view, is the ability to understand test results. Instead of
giving only plain binary information about build success, Jenkins is able to present
the results of all tests that were executed during a run in the form of tables and
graphs. This will, of course, not work automatically and you need to provide those
results in a specific format (by default, Jenkins understands JUnit files) during your
build. Fortunately, a lot of Python testing frameworks are able to export results in a
machine-readable format.

The following is an example presentation of unit test results in Jenkins in its web UI:

Figure 8 Presentation of unit test results in Jenkins

Chapter 8

[285]

The following screenshot illustrates how Jenkins presents additional build information
such as trends or downloadable artifacts:

Figure 9 Test result trends graph on example Jenkins project

Surprisingly, most of Jenkins' power does not come from its built-in features but
from a huge repository of free plugins. What is available from clean installation
may be great for Java developers but programmers using different technologies will
need to spend a lot of time to make it suited for their project. Even support for Git is
provided by some plugin.

It is great that Jenkins is so easily extendable, but this has also some serious downsides.
You will eventually depend on installed plugins to drive your continuous integration
process and these are developed independently from Jenkins core. Most authors of
popular plugins try to keep them up to date and compatible with the latest releases of
Jenkins. Nevertheless, the extensions with smaller communities will be updated less
frequently, and some day you may be either forced to resign from them or postpone
the update of the core system. This may be a real problem when there is urgent need
for an update (security fix, for instance), but some of the plugins that are critical for
your CI process will not work with the new version.

Managing Code

[286]

The basic Jenkins installation that provides you with a master CI server is also
capable of performing builds. This is different from other CI systems that put more
emphasis on distribution and create a strict separation from master and slave build
servers. This is both good and bad. On the one side, it allows you to set up a wholly
working CI server in a few minutes. Jenkins, of course, supports deferring work to
build slaves, so you can scale out in future whenever it is needed. On the other hand,
it is very common that Jenkins is underperforming because it is deployed in single-
server settings, and its users complain regarding performance without providing it
enough resources. It is not hard to add new building nodes to the Jenkins cluster. It
seems that this is rather a mental challenge than a technical problem for those that
got used to the single-server setup.

Buildbot
Buildbot (http://buildbot.net/) is a software written in Python that automates
the compile and test cycles for any kind of software project. It is configurable in
a way that every change made on a source code repository generates some builds
and launches some tests and then provides some feedback:

Figure 10 Buildbot's Waterfall view for CPython 3.x branch

http://buildbot.net/

Chapter 8

[287]

This tool is used, for instance, by CPython core and can be seen at
http://buildbot.python.org/all/waterfall?&category=3.x.stable.

The default Buildbot's representation of build results is a Waterfall view, as shown in
Figure 10. Each column corresponds to a build composed of steps and is associated
with some build slaves. The whole system is driven by the build master:

• The build master centralizes and drives everything
• A build is a sequence of steps used to build an application and run tests

over it
• A step is an atomic command, for example:

 ° Check out the files of a project
 ° Build the application
 ° Run tests

A build slave is a machine that is in charge of running a build. It can be located
anywhere as long as it can reach the build master. Thanks to this architecture,
Buildbot scales very well. All of heavy lifting is done on build slaves and you
can have as many of them as you want.

Very simple and clear design makes Buildbot very flexible. Each build step is just a
single command. Buildbot is written in Python but it is completely language agnostic.
So the build step can be absolutely anything. The process exit code is used to decide if
the step ended as a success and all standard output of the step command is captured
by default. Most of the testing tools and compilers follow good design practices,
and they indicate failures with proper exit codes and return readable error/warning
messages on sdout or stderr output streams. If it's not true, you can usually easily
wrap them with a Bash script. In most cases, this is a simple task. Thanks to this, a lot
of projects can be integrated with Buildbot with only minimal effort.

The next advantage of Buildbot is that it supports many version control systems out
of the box without the need to install any additional plugins:

• CVS
• Subversion
• Perforce
• Bzr
• Darcs
• Git
• Mercurial
• Monotone

http://buildbot.python.org/all/waterfall?&category=3.x.stable

Managing Code

[288]

The main disadvantage of Buildbot is its lack of higher-level presentation tools for
presenting build results. For instance, other projects, such as Jenkins, can take the
notion of unit tests run during the build. If you feed them with test results data
presented in the proper format (usually XML), they can present all the tests in a
readable form like tables and graphs. Buildbot does not have such a built-in feature
and this is the price it pays for its flexibility and simplicity. If you need some extra
bells and whistles, you need to build them by yourself or search for some custom
extension. On the other hand, thanks to such simplicity, it is easier to reason about
Buildbot's behavior and maintain it. So, there is always a tradeoff.

Travis CI
Travis CI (https://travis-ci.org/) is a continuous integration system sold
in Software as a Service form. It is a paid service for enterprises but can be used
completely for free in open source projects hosted on GitHub.

Figure 11 Travis CI page for django-userena project showing failed builds in its build matrix

https://travis-ci.org/

Chapter 8

[289]

Naturally, this is the free part of its pricing plan that made it very popular.
Currently, it is one of the most popular CI solutions for projects hosted on GitHub.
But the biggest advantage over older projects such as Buildbot or Jenkins, is how the
build configuration is stored. All build definition is provided in a single .travis.
yml file in the root of the project repository. Travis works only with GitHub, so if you
have enabled such integration, your project will be tested on every commit if there is
only a .travis.yml file.

Having the whole CI configuration for a project in its code repository is really a great
approach. This makes the whole process a lot clearer for the developers and also
allows for more flexibility. In systems where build configuration must be provided
to build a server separately (using web interface or through server configuration),
there is always some additional friction when something new needs to be added
to the testing rig. In some organizations, where only selected staff are authorized
to maintain the CI system, this really slows the process of adding new build steps
down. Also, sometimes there is a need to test different branches of the code with
completely different procedures. When build configuration is available in project
sources, it is a lot easier to do so.

The other great feature of Travis is the emphasis it puts on running builds in clean
environments. Every build is executed in a completely fresh virtual machine, so
there is no risk of some persisted state that would affect build results. Travis uses
a rather big virtual machine image, so you have a lot of open source software and
programming environments available without the need of additional installs. In this
isolated environment, you have full administrative rights so you can download and
install anything you need to perform your build and the syntax of the .travis.
yml file makes it very easy. Unfortunately, you do not have a lot of choice over the
operating system available as the base of your testing environment. Travis does not
allow to provide your own virtual machine images, so you must rely on the very
limited options provided. Usually there is no choice at all and all the builds must
be done in some version of Ubuntu or Mac OS X (still experimental at the time of
writing the book). Sometimes there is an option to select some legacy version of
the system or the preview of the new testing environment, but such a possibility is
always temporary. There is always a way to bypass this. You can run another virtual
machine inside of the one provided by Travis. This should be something that allows
you to easily encode VM configuration in your project sources such as Vagrant or
Docker. But this will add more time to your builds, so it is not the best approach you
will take. Stacking virtual machines that way may not be the best and most efficient
approach if you need to perform tests under different operating systems. If this is an
important feature for you, then this is a sign that Travis is not a service for you.

The biggest downside of Travis is that it is completely locked to GitHub. If you
would like to use it in your open source project, then this is not a big deal. For
enterprises and closed source projects, this is mostly an unsolvable issue.

Managing Code

[290]

GitLab CI
GitLab CI is a part of a larger GitLab project. It is available as both a paid service
(Enterprise Edition) and an open source project that you may host on your own
infrastructure (Community Edition). The open source edition lacks some of the paid
service features, but in most cases is everything that any company needs from the
software that manages version control repositories and continuous integration.

GitLab CI is very similar in feature sets to the Travis. It is even configured with a
very similar YAML syntax stored in the .gitlab-ci.yml file. The biggest difference
is that the GitLab Enterprise Edition pricing model does not provide you with free
accounts for open source projects. The Community Edition is open source by itself
but you need to have some own infrastructure in order to run it.

When compared with Travis, the GitLab has an obvious advantage of having more
control over the execution environment. Unfortunately, in the area of environment
isolation, the default build runner in GitLab is a bit inferior. The process called Gitlab
Runner executes all the build steps in the same environment it is run in, so it works
more like Jenkins' or Buildbot's slave servers. Fortunately, it plays well with Docker,
so you can easily add more isolation with container-based virtualization, but this
will require some effort and additional setup. In Travis, you get full isolation out
of the box.

Choosing the right tool and common pitfalls
As already said, there is no perfect CI tool that will suit every project and, most
importantly, every organization and workflow it uses. I can give only a single
suggestion for open source projects hosted on GitHub. For small code bases with
platform independent code, Travis CI seems like the best choice. It is easy to start
with and will give you almost instant gratification with a minimal amount of work.

For projects with closed sources, the situation is completely different. It is possible
that you will need to evaluate a few CI systems in various setups until you are able
decide which one is best for you. We discussed only four of the popular tools but it
should be a rather representative group. To make your decision a bit easier, we will
discuss some of the common problems related to continuous integration systems. In
some of the available CI systems, it is more possible to make certain kinds of mistakes
than in others. On the other hand, some of the problems may not be important to
every application. I hope that by combining the knowledge of your needs with this
short summary, it will be easier to make your first decision the right one.

Chapter 8

[291]

Problem 1 – too complex build strategies
Some organizations like to formalize and structure things beyond the reasonable
levels. In companies that create computer software, this is especially true in two
areas: project management tools and build strategies on CI servers.

Excessive configuration of project management tools usually ends with issue
processing workflows on JIRA (or any other management software) so complicated
that they will never fit a single wall when expressed as graphs. If your manager
has such configuration/control mania, you can either talk to him or switch him for
another manager (read: quit your current job). Unfortunately, this does not reliably
ensure any improvement in that matter.

But when it comes to CI, we can do more. Continuous integration tools are usually
maintained and configured by us: developers. These are OUR tools that are
supposed to improve OUR work. If someone has irresistible temptation to toggle
every switch and turn every knob possible, then he should be kept away from
configuration of CI systems, especially if his main job is to talk the whole day and
make decisions.

There is really no need for making complex strategies to decide which commit or
branch should be tested. No need to limit testing to specific tags. No need to queue
commits in order to perform larger builds. No need to disable building via custom
commit messages. Your continuous integration process should be simple to reason
about. Test everything! Test always! That's all! If there are not enough hardware
resources to test every commit, then add more hardware. Remember that the
programmer's time is more expensive than silicon chips.

Problem 2 – too long building time
Long building times is a thing that kills performance of any developer. If you need to
wait hours to know if your work was done properly, then there is no way you can be
productive. Of course, having something else to do when your feature is being tested
helps a lot. Anyway, as humans, we are really terrible at multitasking. Switching
between different problems takes time and, in the end, reduces our programming
performance to zero. It's simply hard to keep focus when working on multiple
problems at once.

The solution is very simple: keep your builds fast at any price. At first, try to find
bottlenecks and optimize them. If the performance of build servers is the problem,
then try to scale out. If this does not help, then split each build into smaller parts
and parallelize.

Managing Code

[292]

There are plenty of solutions to speed up slow build tests, but sometimes nothing
can be done about that problem. For instance, if you have automated browser
tests or need to perform long running calls to external services, then it is very hard
to improve performance beyond some hard limit. For instance, when speed of
automated acceptance test in your CI becomes a problem, then you can loosen the
test everything, test always rule a bit. What matters the most for programmers are
usually unit tests and static analysis. So, depending on your workflow, the slow
browser tests may be sometimes deferred in time to the moment when release is
being prepared.

The other solution to slow build runs is rethinking the overall architecture design of
your application. If testing the application takes a lot of time, it is very often a sign
that it should be split into a few independent components that can be developed and
tested separately. Writing software as huge monoliths is one of the shortest paths
to failure. Usually any software engineering process breaks on software that is not
modularized properly.

Problem 3 – external job definitions
Some continuous integration systems, especially Jenkins, allow you to set up most of
the build configurations and testing processes completely through web UI, without
the need to touch the code repository. But you should really avoid putting anything
more than simple entry points to the build steps/commands into externals systems.
This is the kind of CI anti-pattern that can cause nothing more than troubles.

Your building and testing process is usually tightly tied to your codebase. If you
store its whole definition in external system such as Jenkins or Buildbot, then it
will be really hard to introduce changes to that process.

As an example of a problem introduced by global external build definition, let's
assume that we have some open source project. The initial development was hectic
and we did not care for any style guidelines. Our project was successful, so the
development required another major release. After some time, we moved from
0.x version to 1.0 and decided to reformat all of your code to conform to PEP 8
guidelines. It is a good approach to have a static analysis check as part of CI builds,
so we decided to add the execution of the pep8 tool to our build definition. If we had
only a global external build configuration, then there would be a problem if some
improvement needs to be done to the code in older versions. Let's say that there is a
critical security issue that needs to be fixed in both branches of the application: 0.x
and 1.y. We know that anything below version 1.0 wasn't compliant with the style
guide and the newly introduced check against PEP 8 will mark the build as failed.

Chapter 8

[293]

The solution to the problem is to keep the definition of your build process as close to
the source as possible. With some CI systems (Travis CI and GitLab CI), you get that
workflow by default. With other solutions (Jenkins and Buildbot) you need to take
additional care in order to ensure that most of the build processes are included in
your code instead of some external tool configuration. Fortunately, you have a lot
of choices that allow that kind of automation:

• Bash scripts
• Makefiles
• Python code

Problem 4 – lack of isolation
We have discussed the importance of isolation when programming in Python
many times already. We know that the best approach to isolate Python execution
environment on the package level is to use virtual environments with virtualenv
or python -m venv. Unfortunately, when testing code for the purpose of continuous
integration processes, it is usually not enough. The testing environment should be as
close as possible to the production environment and it is really hard to achieve that
without additional system-level virtualization.

The main issues you may experience when not ensuring proper system-level
isolation when building your application are:

• Some state persisted between builds either on the filesystem or in backing
services (caches, databases, and so on)

• Multiple builds or tests interfacing with each other through the environment,
filesystem or backing services

• Problems that would occur due to specific characteristics of the production
operating system not caught on the build server

The preceding issues are particularly troublesome if you need to perform concurrent
builds of the same application or even parallelize single builds.

Some Python frameworks (mostly Django) provide some additional level of isolation
for databases that try to ensure the storage will be cleaned before running tests.
There is also quite a useful extension for py.test called pytest-dbfixtures (refer
to https://github.com/ClearcodeHQ/pytest-dbfixtures) that allows you to
achieve that even more reliably. Anyway, such solutions add even more complexity
to your builds instead of reducing it. Always clearing the virtual machine on every
build (in the style of Travis CI) seems like a more elegant and simpler approach.

https://github.com/ClearcodeHQ/pytest-dbfixtures

Managing Code

[294]

Summary
We have learned the following things in this chapter:

• What is the difference between centralized and distributed version
control systems

• Why you should prefer distributed version control systems over centralized
• Why Git should be your first choice for DVCS
• What are the common workflows and branching strategies for Git
• What is continuous integration/delivery/deployment and what are the

popular tools that allow you to implement these processes

The next chapter will explain how to clearly document your code.

[295]

Documenting Your Project
Documentation is the work that is often neglected by developers and sometimes by
managers. This is often due to a lack of time towards the end of development cycles,
and the fact that people think they are bad at writing. Some of them are bad indeed,
but the majority of them are able to produce a fine documentation.

In any case, the result is a disorganized documentation made of documents that are
written in a rush. Developers hate doing this kind of work most of the time. Things
get even worse when the existing documents need to be updated. Many projects out
there are just providing poor, out-of-date documentation because the manager does
not know how to deal with it.

But setting up a documentation process at the beginning of the project and treating
documents as if they were modules of code makes documenting easier. Writing can
even be fun when a few rules are followed.

This chapter provides a few tips to start documenting your project through:

• The seven rules of technical writing that summarize the best practices
• A reStructuredText primer, which is a plain text markup syntax used in

most of the Python projects
• A guide for building good project documentation

The seven rules of technical writing
Writing good documentation is easier in many aspects than writing code. Most
developers think it is very hard, but by following a simple set of rules it becomes
really easy.

We are not talking here about writing a book of poems but a comprehensive piece
of text that can be used to understand a design, an API, or anything that makes up
the codebase.

Documenting Your Project

[296]

Every developer is able to produce such material, and this section provides seven
rules that can be applied in all cases:

• Write in two steps: Focus on ideas and then on reviewing and shaping
your text.

• Target the readership: Who is going to read it?
• Use a simple style: Keep it straight and simple. Use good grammar.
• Limit the scope of the information: Introduce one concept at a time.
• Use realistic code examples: "Foos" and "bars" should be avoided.
• Use a light but sufficient approach: You are not writing a book!
• Use templates: Help the readers to get habits.

These rules are mostly inspired and adapted from Agile Documentation: A Pattern Guide
to Producing Lightweight Documents for Software Projects, Wiley, a book by Andreas
Rüping that focuses on producing the best documentation in software projects.

Write in two steps
Peter Elbow, in Writing With Power: Techniques for Mastering the Writing Process,
Oxford University Press, explains that it is almost impossible for any human being
to produce a perfect text in one shot. The problem is that many developers write
documentation and try to directly come up with some perfect text. The only way
they succeed in this exercise is by stopping writing after every two sentences
to read them back and doing some corrections. This means that they are focusing
both on the content and the style of the text.

This is too hard for the brain and the result is often not as good as it could be. A lot
of time and energy is spent in polishing the style and shape of the text before its
meaning is completely thought through.

Another approach is to drop the style and organization of the text and focus on
its content. All ideas are laid down on paper, no matter how they are written. The
developer starts to write a continuous stream and does not pause when he or she
makes grammatical mistakes, or for anything that is not about the content. For
instance, it does not matter if the sentences are barely understandable as long
as the ideas are written down. He or she just writes down what he wants to say
with a rough organization.

By doing this, the developer focuses on what he or she wants to say and will
probably get more content out of his or her mind than he or she initially thought
they would.

Chapter 9

[297]

Another side-effect when doing free writing is that other ideas that are not directly
related to the topic will easily go through the mind. A good practice is to write them
down on a second piece of paper or screen when they appear, so they are not lost,
and then get back to the main writing.

The second step consists of reading back the whole text and polishing it so that it is
comprehensible to everyone. Polishing a text means enhancing its style, correcting
its faults, reorganizing it a bit, and removing any redundant information it has.

When the time dedicated to writing documentation is limited, a good practice is to
split this time into two halves—one for writing the content and one to clean and
organize the text.

Focus on the content and then on style and cleanliness.

Target the readership
When writing content, there is a simple question the writer should consider: Who is
going to read it?

This is not always obvious, as a technical text explains how a piece of software works
and is often written for every person who might get and use the code. The reader can
be a researcher who is looking for an appropriate technical solution to a problem or a
developer who needs to implement a feature with it. A designer might also read it to
know if the package fits his or her needs from an architectural point of view.

Good documentation should follow a simple rule—each text should have only one
kind of reader.

This philosophy makes the writing easier. The writer precisely knows what kind
of reader he or she is dealing with. He or she can provide concise and precise
documentation that is not vaguely intended for all kinds of readers.

A good practice is to provide a small introductory text that explains in one sentence
what the documentation is about and guides the reader to the appropriate part:

Atomisator is a product that fetches RSS feeds and saves them in a
database, with a filtering process.

If you are a developer, you might want to look at the API description
(api.txt)

Documenting Your Project

[298]

If you are a manager, you can read the features list and the FAQ
(features.txt)

If you are a designer, you can read the architecture and
infrastructure notes (arch.txt)

By taking care of directing your readers in this way, you will probably produce
better documentation.

Know your readership before you start to write.

Use a simple style
Seth Godin is one of the best-selling writers on marketing topics. You might
want to read Unleashing the Ideavirus, Hachette Books, which is available for
free on the Internet (http://www.sethgodin.com/ideavirus/downloads/
IdeavirusReadandShare.pdf).

Some time ago, he made an analysis on his blog to try to understand why his books
sold so well. He made a list of all the best sellers in the marketing area and compared
the average number of words per sentences in each one of them.

He realized that his books had the lowest number of words per sentence (thirteen
words). This simple fact, Seth explained, proved that readers prefer short and simple
sentences, rather than long and stylish ones.

By keeping sentences short and simple, your writings will consume less brain power
for their content to be extracted, processed, and then understood. Writing technical
documentation aims to provide a software guide to readers. It is not a fiction story
and should be closer to your microwave notice than to the latest Stephen King novel.

A few tips to keep in mind are:

• Use simple sentences. They should not be longer than two lines.
• Each paragraph should be composed of three or four sentences, at the most,

that express one main idea. Let your text breathe.
• Don't repeat yourself too much. Avoid journalistic styles where ideas are

repeated again and again to make sure they are understood.
• Don't use several tenses. The present tense is enough most of the time.
• Do not make jokes in the text if you are not a really fine writer. Being funny

in a technical text is really hard, and few writers master it. If you really want
to distill some humor, keep it in code examples and you will be fine.

http://www.sethgodin.com/ideavirus/downloads/IdeavirusReadandShare.pdf
http://www.sethgodin.com/ideavirus/downloads/IdeavirusReadandShare.pdf

Chapter 9

[299]

You are not writing fiction, so keep the style as
simple as possible.

Limit the scope of information
There's a simple sign of bad documentation in a software—you are looking for
some information that you know is present somewhere but you cannot find it. After
spending some time reading the table of contents, you are starting to grep the files
trying several word combinations but cannot get what you are looking for.

This happens when writers are not organizing their texts in topics. They might
provide tons of information, but it is just gathered in a monolithic or non-logical
way. For instance, if a reader is looking for a big picture of your application, he or
she should not have to read the API documentation—that is a low-level matter.

To avoid this effect, paragraphs should be gathered under a meaningful title for
a given section, and the global document title should synthesize the content in a
short phrase.

A table of contents could be made of all the section's titles.

A simple practice to compose your titles is to ask yourself, "What phrase would I
type in Google to find this section?"

Use realistic code examples
Foo and bar are bad citizens. When a reader tries to understand how a piece of code
works with a usage example, having an unrealistic example will make it harder
to understand.

Why not use a real-world example? A common practice is to make sure that each
code example can be cut and pasted in a real program.

To show an example of bad usage, let's assume we want to show how to use the
parse() function:

>>> from atomisator.parser import parse

>>> # Let's use it:

>>> stuff = parse('some-feed.xml')

>>> next(stuff)

{'title': 'foo', 'content': 'blabla'}

Documenting Your Project

[300]

A better example would be when the parser knows how to return a feed content with
the parse function, available as a top-level function:

>>> from atomisator.parser import parse

>>> # Let's use it:

>>> my_feed = parse('http://tarekziade.wordpress.com/feed')

>>> next(my_feed)

{'title': 'eight tips to start with python', 'content': 'The first tip
is..., ...'}

This slight difference might sound overkill, but in fact it makes your documentation
a lot more useful. A reader can copy those lines into a shell, understand that parse
uses a URL as a parameter, and that it returns an iterator that contains blog entries.

Of course, giving a realistic example is not always possible or viable. This is
especially true to very generic code. Even this book has few occurrences of vague foo
and bar strings where the name context is unimportant. Anyway, you should always
strive to reduce the amount of such unrealistic examples to minimum.

Code examples should be directly reusable in real
programs.

Use a light but sufficient approach
In most agile methodologies, documentation is not the first citizen. Making software
that works is the most important thing over detailed documentation. So a good
practice, as Scott Ambler explains in his book Agile Modeling: Effective Practices for
eXtreme Programming and the Unified Process, John Wiley & Sons, is to define the real
documentation needs, rather than create an exhaustive set of documents.

For instance, let's see an example documentation of some simple project—ianitor—
that is available on GitHub under https://github.com/ClearcodeHQ/ianitor. It
is a tool that helps registering processes in the Consul service discovery cluster, so
it is mostly aimed at system administrators. If you take a look at its documentation,
you will realize that this is just a single document (the README.md file). It only
explains how it works and how to use it. From the administrator's perspective, this
is sufficient. They only need to know how to configure and run the tool and there is
no other group of people expected to use ianitor. This document limits its scope by
answering one question, "How do I use ianitor on my server?"

https://github.com/ClearcodeHQ/ianitor

Chapter 9

[301]

Use templates
Every page on Wikipedia is similar. There are boxes on the one side that are used
to summarize dates or facts. At the beginning of the document is a table of contents
with links that refer to anchors in the same text. There is always a reference section
at the end.

Users get used to it. For instance, they know they can have a quick look at the table
of contents, and if they do not find the info they are looking for, they will go directly
to the reference section to see if they can find another website on the topic. This
works for any page on Wikipedia. You learn the Wikipedia way to be more efficient.

So, using templates forces a common pattern for documents and therefore makes
people more efficient in using them. They get used to the structure and know how
to read it quickly.

Providing a template for each kind of document also provides a quick start for writers.

A reStructuredText primer
reStructuredText is also called reST (refer to http://docutils.sourceforge.net/
rst.html). It is a plain text markup language widely used in the Python community
to document packages. The great thing about reST is that the text is still readable
since the markup syntax does not obfuscate the text like LaTeX would.

Here's a sample of such a document:

=====
Title
=====

Section 1
=========
This *word* has emphasis.

Section 2
=========

Subsection
::::::::::

Text.

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

Documenting Your Project

[302]

reST comes in docutils, a package that provides a suite of scripts to transform a
reST file to various formats, such as HTML, LaTeX, XML, or even S5, Eric Meyer's
slide show system (refer to http://meyerweb.com/eric/tools/s5).

Writers can focus on the content and then decide how to render it, depending on the
needs. For instance, Python itself is documented into reST, which is then rendered in
HTML to build http://docs.python.org, and in various other formats.

The minimum elements one should know to start writing reST are:

• Section structure
• Lists
• Inline markup
• Literal block
• Links

This section is a really fast overview of the syntax. A quick reference is available
for more information at: http://docutils.sourceforge.net/docs/user/rst/
quickref.html, which is a good place to start working with reST.

To install reStructuredText, install docutils:

$ pip install docutils

For instance, the rst2html script provided by the docutils package will produce
HTML output given a reST file:

$ more text.txt

Title

=====

content.

$ rst2html.py text.txt

<?xml version="1.0" encoding="utf-8" ?>

...

<html ...>

<head>

...

</head>

<body>

http://meyerweb.com/eric/tools/s5
http://docs.python.org
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

Chapter 9

[303]

<div class="document" id="title">

<h1 class="title">Title</h1>

<p>content.</p>

</div>

</body>

</html>

Section structure
The document's title and its sections are underlined using nonalphanumeric
characters. They can be overlined and underlined, and a common practice is
to use this double markup for the title and keep a simple underline for sections.

The most used characters to underline a section title are in the following order of
precedence: =, -, _, :, #, +, ^.

When a character is used for a section, it is associated with its level and it has to be
used consistently throughout the document.

Consider the following code for example:

==============
Document title
==============

Introduction to the document content.

Section 1
=========

First document section with two subsections.

Note the ``=`` used as heading underline.

Subsection A

First subsection (A) of Section 1.

Note the ``-`` used as heading underline.

Documenting Your Project

[304]

Subsection B

Second subsection (B) of Section 1.

Section 2
=========

Second section of document with one subsection.

Subsection C

Subsection (C) of Section 2.

Figure 1 reStructuredText converted to HTML and rendered in the browser

Chapter 9

[305]

Lists
reST provides readable syntax for bullet lists, enumerated lists, and definition lists
with autoenumeration features:

Bullet list:

- one
- two
- three

Enumerated list:

1. one
2. two
#. auto-enumerated

Definition list:

one
 one is a number.

two
 two is also a number.

Figure 2 Different types of lists rendered as HTML

Documenting Your Project

[306]

Inline markup
The text can be styled using an inline markup:

• *emphasis*: Italics
• **strong emphasis**: Boldface
• ``inline preformated``: Inline preformatted text (usually monospaced,

terminal-like)
• `a text with a link`_: This will be replaced by a hyperlink as long as it is

provided in the document (see in the Links section)

Literal block
When you need to present some code examples, a literal block can be used. Two
colons are used to mark the block, which is an indented paragraph:

This is a code example

::

 >>> 1 + 1
 2

Let's continue our text

Don't forget to add a blank line after :: and after the block,
otherwise it will not be rendered.

Notice that the colon characters can be put in a text line. In that case, they will be
replaced by a single colon in various rendering formats:

This is a code example::

 >>> 1 + 1
 2

Let's continue our text

Chapter 9

[307]

If you don't want to keep a single colon, you can insert a space between the leading
text and ::. In that case, :: will be interpreted and totally removed.

Figure 3 Code samples in reST rendered as HTML

Links
A text can be changed into an external link with a special line starting with two dots,
as long as it is provided in the document:

Try `Plone CMS`_, it is great ! It is based on Zope_.

.. _`Plone CMS`: http://plone.org

.. _Zope: http://zope.org

A usual practice is to group the external links at the end of the document. When the
text to be linked contains spaces, it has to be surrounded with ` (backtick) characters.

Internal links can also be used by adding a marker in the text:

This is a code example

.. _example:

::

 >>> 1 + 1
 2

Let's continue our text, or maybe go back to
the example_.

Documenting Your Project

[308]

Sections are also targets that can be used:

==============
Document title
==============

Introduction to the document content.

Section 1
=========

First document section.

Section 2
=========

-> go back to `Section 1`_

Building the documentation
An easier way to guide your readers and your writers is to provide each one
of them with helpers and guidelines, as we have learned in the previous section
of this chapter.

From a writer's point of view, this is done by having a set of reusable templates
together with a guide that describes how and when to use them in a project. It is
called a documentation portfolio.

From a reader's point of view, it is important to be able to browse the documentation
with no pain, and getting used to finding the information efficiently. It is done by
building a document landscape.

Building the portfolio
There are many kinds of documents a software project can have, from low-level
documents that refer directly to the code, to design papers that provide a high-level
overview of the application.

For instance, Scott Ambler defines an extensive list of document types in his book,
Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process,
John Wiley & Sons. He builds a portfolio from early specifications to operations
documents. Even the project management documents are covered, so the whole
documenting needs are built with a standardized set of templates.

Chapter 9

[309]

Since a complete portfolio is tightly related to the methodologies used to build the
software, this chapter will only focus on a common subset that you can complete
with your specific needs. Building an efficient portfolio takes a long time as it
captures your working habits.

A common set of documents in software projects can be classified into three categories:

• Design: This includes all the documents that provide architectural
information and low-level design information, such as class diagrams or
database diagrams

• Usage: This includes all the documents on how to use the software; this can
be in the shape of a cookbook and tutorials or a module-level help

• Operations: This provides guidelines on how to deploy, upgrade, or operate
the software

Design
The important point when creating such documents is to make sure the target
readership is perfectly known and the content scope is limited. So, a generic template
for design documents can provide a light structure with a little advice for the writer.

Such a structure might include:

• Title
• Author
• Tags (keywords)
• Description (abstract)
• Target (who should read this?)
• Content (with diagrams)
• References to other documents

The content should be three or four pages when printed, at the most, to be sure
to limit the scope. If it gets bigger, it should be split into several documents or
summarized.

The template also provides the author's name and a list of tags to manage its
evolutions and ease its classification. This will be covered later in the chapter.

Documenting Your Project

[310]

The example design document template in reST could be as follows:

===
Design document title
===

:Author: Document Author
:Tags: document tags separated with spaces

:abstract:

 Write here a small abstract about your design document.

.. contents ::

Audience
========

Explain here who is the target readership.

Content
=======

Write your document here. Do not hesitate to split it in several
sections.

References
==========

Put here references, and links to other documents.

Usage
The usage documentation describes how a particular part of the software is used.
This documentation can describe low-level parts, such as how a function works, but
also high-level parts, such as command-line arguments for calling the program. This
is the most important part of documentation in framework applications, since the
target readership is mainly the developers that are going to reuse the code.

Chapter 9

[311]

The three main kinds of documents are:

• Recipe: This is a short document that explains how to do something. This
kind of document targets one readership and focuses on one specific topic.

• Tutorial: This is a step-by-step document that explains how to use a feature
of the software. This document can refer to recipes, and each instance is
intended to one readership.

• Module helper: This is a low-level document that explains what a module
contains. This document could be shown (for instance) when you call the
help built-in over a module.

Recipe
A recipe answers a very specific problem and provides a solution to resolve it. For
example, ActiveState provide a huge repository of Python recipes online where
developers can describe how to do something in Python (refer to http://code.
activestate.com/recipes/langs/python/). Such a set of recipes related to a
single area/project is often called cookbook.

These recipes must be short and are structured like this:

• Title
• Submitter
• Last updated
• Version
• Category
• Description
• Source (the source code)
• Discussion (the text explaining the code)
• Comments (from the Web)

Often, they are one-screen long and do not go into great detail. This structure
perfectly fits a software's needs and can be adapted in a generic structure, where
the target readership is added and the category is replaced by tags:

• Title (short sentence)
• Author
• Tags (keywords)
• Who should read this?

http://code.activestate.com/recipes/langs/python/
http://code.activestate.com/recipes/langs/python/

Documenting Your Project

[312]

• Prerequisites (other documents to read, for example)
• Problem (a short description)
• Solution (the main text, one or two screens)
• References (links to other documents)

The date and version are not useful here, since project documentation should be rather
managed like a source code in the project. This means that the best way to handle the
documentation is to manage it through the version control system. In most cases, this
is exactly the same code repository as the one used for the project's code.

A simple reusable template for the recipes could be as follows:

===========
Recipe name
===========

:Author: Recipe Author
:Tags: document tags separated with spaces

:abstract:

 Write here a small abstract about your design document.

.. contents ::

Audience
========

Explain here who is the target readership.

Prerequisites
=============

Write the list of prerequisites for implementing this recipe. This
can be additional documents, software, specific libraries, environment
settings or just anything that is required beyond the obvious language
interpreter.

Problem
=======

Chapter 9

[313]

Explain the problem that this recipe is trying to solve.

Solution
========

Give solution to problem explained earlier. This is the core of a
recipe.

References
==========

Put here references, and links to other documents.

Tutorial
A tutorial differs from a recipe in its purpose. It is not intended to resolve an isolated
problem, but rather describes how to use a feature of the application step by step.
This can be longer than a recipe and can concern many parts of the application.
For example, Django provides a list of tutorials on its website. Writing your first
Django App, part 1 (refer to https://docs.djangoproject.com/en/1.9/intro/
tutorial01/) explains in few screens how to build an application with Django.

A structure for such a document will be:

• Title (short sentence)
• Author
• Tags (words)
• Description (abstract)
• Who should read this?
• Prerequisites (other documents to read, for example)
• Tutorial (the main text)
• References (links to other documents)

Module helper
The last template that can be added in our collection is the module helper template.
A module helper refers to a single module and provides a description of its contents,
together with usage examples.

https://docs.djangoproject.com/en/1.9/intro/tutorial01/
https://docs.djangoproject.com/en/1.9/intro/tutorial01/

Documenting Your Project

[314]

Some tools can automatically build such documents by extracting the docstrings
and computing module help using pydoc, such as Epydoc (refer to http://epydoc.
sourceforge.net). So it is possible to generate an extensive documentation based
on API introspection. This kind of documentation is often provided in Python
frameworks. For instance, Plone provides an http://api.plone.org server that
keeps an up-to-date collection of module helpers.

The main problems with this approach are:

• There is no smart selection performed over the modules that are really
interesting to the document

• The code can be obfuscated by the documentation

Furthermore, a module documentation provides examples that sometimes refer to
several parts of the module and that are hard to split between the functions' and
classes' docstrings. The module docstring could be used for that purpose by writing
text at the top of the module. But this ends in having a hybrid file composed of a
block of text rather than a block of code. This is rather obfuscating when the code
represents less than 50% of the total length. If you are the author, this is perfectly
fine. But when people try to read the code (not the documentation), they will have
to skip the docstrings part.

Another approach is to separate the text in its own file. A manual selection can then
be operated to decide which Python module will have its module helper file. The
documents can then be separated from the code base and allowed to live their own
life, as we will see in the next part. This is how Python is documented.

Many developers will disagree on the fact that doc and code separation is better than
docstrings. This approach means that the documentation process is fully integrated
in the development cycle; otherwise it will quickly become obsolete. The docstrings
approach solves this problem by providing proximity between the code and its usage
example but doesn't bring it to a higher level—a document that can be used as part
of a plain documentation.

The template for a module helper is really simple, as it contains just a little metadata
before the content is written. The target is not defined since it is the developers who
wish to use the module:

• Title (module name)
• Author
• Tags (words)
• Content

http://epydoc.sourceforge.net
http://epydoc.sourceforge.net
http://api.plone.org

Chapter 9

[315]

The next chapter will cover test-driven development using
doctests and module helpers.

Operations
Operation documents are used to describe how the software can be operated.
Consider the following points for instance:

• Installation and deployment documents
• Administration documents
• Frequently Asked Questions (FAQ) documents
• Documents that explain how people can contribute, ask for help,

or provide feedback

These documents are very specific but they can probably use the tutorial template
defined in the earlier section.

Making your own portfolio
The templates that we discussed earlier are just a basis that you can use to document
your software. With time, you will eventually develop your own templates and
style for making documentation. But always keep in mind the light but sufficient
approach for project documentation: each document added should have a clearly
defined target readership and should fill a real need. Documents that don't add
a real value should not be written.

Each project is unique and has different documentation needs. For example, small
terminal tools with simple usage can definitely live with only a single README file
as its document landscape. Having such a minimal single-document approach is
completely fine if the target readers are precisely defined and consistently grouped
(system administrators, for instance).

Also, do not apply the provided templates too rigorously. Some additional
metadata provided as an example is really useful in either big projects or in strictly
formalized teams. Tags, for instance, are intended to improve textual search in
big documentations but will not provide any value in a documentation landscape
consisting only of a few documents.

Documenting Your Project

[316]

Also, including the document author is not always a good idea. Such an approach
may be especially questionable in open source projects. In such projects, you will
want the community to also contribute to documentation. In most cases, such
documents are continuously updated whenever there is such a need by whoever
makes the contribution. People tend to treat the document author also as the
document owner. This may discourage people to update the documentation if every
document has its author always specified. Usually, the version control software
provides clearer and more transparent information about real document authors
than explicitly provided metadata annotations. The situations where explicit authors
are really recommended are various design documents, especially in projects where
the design process is strictly formalized. The best example is the series of PEP
documents with the Python language enhancement proposals.

Building the landscape
The document portfolio built in the previous section provides a structure at
document level but does not provide a way to group and organize it to build
the documentation the readers will have. This is what Andreas Rüping calls a
document landscape, referring to the mental map the readers use when they browse
documentation. He came up with the conclusion that the best way to organize
documents is to build a logical tree.

In other words, the different kinds of documents composing the portfolio need to
find a place to live within a tree of directories. This place must be obvious to the
writers when they create the document and to the readers when they are looking
for it.

A great help when browsing documentation is the index pages at each level that can
drive writers and readers.

Building a document landscape is done in two steps:

• Building a tree for the producers (the writers)
• Building a tree for the consumers (the readers) on top of the producers' tree

This distinction between producers and consumers is important since they access the
documents in different places and different formats.

Chapter 9

[317]

Producer's layout
From a producer's point of view, each document is processed exactly like a Python
module. It should be stored in the version control system and works like code.
Writers do not care about the final appearance of their prose and where it is
available, they just want to make sure that they are writing a document, so it is the
single source of truth on the topic covered. reStructuredText files stored in a folder
tree are available in the version control system together with the software code and
are a convenient solution to building the documentation landscape for producers.

By convention, the docs folder is used as a root of documentation tree:

$ cd my-project

$ find docs

docs

docs/source

docs/source/design

docs/source/operations

docs/source/usage

docs/source/usage/cookbook

docs/source/usage/modules

docs/source/usage/tutorial

Notice that the tree is located in a source folder because the docs folder will be used
as a root folder to set up a special tool in the next section.

From there, an index.txt file can be added at each level (besides the root),
explaining what kind of documents the folder contains or summarizing what
each subfolder contains. These index files can define a listing of the documents
they contain. For instance, the operations folder can contain a list of operations
documents available:

==========
Operations
==========

This section contains operations documents:

− How to install and run the project
− How to install and manage a database for the project

It is important to know that people tend to forget to update such lists of documents
and tables of content. So it is better to have them updated automatically. In the
next subsection, we will discuss one tool that, among many other features, can also
handle this use case.

Documenting Your Project

[318]

Consumer's layout
From a consumer's point of view, it is important to work out the index files and to
present the whole documentation in a format that is easy to read and looks good.
Web pages are the best pick and are easy to generate from reStructuredText files.

Sphinx (http://sphinx.pocoo.org) is a set of scripts and docutils extensions
that can be used to generate an HTML structure from our text tree. This tool is used
(for instance) to build the Python documentation, and many projects are now using
it for their documentation. Among its built-in features, it produces a really nice
browsing system, together with a light but sufficient client-side JavaScript search
engine. It also uses pygments for rendering code examples, which produces really
nice syntax highlights.

Sphinx can be easily configured to stick with the document landscape defined in the
earlier section. It can be easily installed with pip as Sphinx package.

The easiest way to start working with Sphinx is to use the sphinx-quickstart
script. This utility will generate a script together with Makefile, which can be used
to generate the web documentation every time it is needed. It will interactively ask
you some questions and then bootstrap the whole initial documentation source tree
and configuration file. Once it is done, you can easily tweak it whenever you want.
Let's assume we have already bootstrapped the whole Sphinx environment and we
want to see its HTML representation. This can be easily done using the make html
command:

project/docs$ make html

sphinx-build -b html -d _build/doctrees . _build/html

Running Sphinx v1.3.6

making output directory...

loading pickled environment... not yet created

building [mo]: targets for 0 po files that are out of date

building [html]: targets for 1 source files that are out of date

updating environment: 1 added, 0 changed, 0 removed

reading sources... [100%] index

looking for now-outdated files... none found

pickling environment... done

checking consistency... done

preparing documents... done

writing output... [100%] index

generating indices... genindex

http://sphinx.pocoo.org

Chapter 9

[319]

writing additional pages... search

copying static files... done

copying extra files... done

dumping search index in English (code: en) ... done

dumping object inventory... done

build succeeded.

Build finished. The HTML pages are in _build/html.

Figure 4 An example HTML version of documentation built with Sphinx –
http://graceful.readthedocs.org/en/latest/

Documenting Your Project

[320]

Besides the HTML versions of the documents, the tool also builds automatic pages,
such as a module list and an index. Sphinx provides a few docutils extensions to
drive these features. The main ones are:

• A directive that builds a table of contents
• A marker that can be used to register a document as a module helper
• A marker to add an element in the index

Working on the index pages
Sphinx provides a toctree directive that can be used to inject a table of contents in
a document with links to other documents. Each line must be a file with its relative
path, starting from the current document. Glob-style names can also be provided to
add several files that match the expression.

For example, the index file in the cookbook folder, which we have previously
defined in the producer's landscape, can look like this:

========
Cookbook
========

Welcome to the Cookbook.

Available recipes:

.. toctree::
 :glob:
 *

With this syntax, the HTML page will display a list of all the reStructuredText
documents available in the cookbook folder. This directive can be used in all
the index files to build a browsable documentation.

Registering module helpers
For module helpers, a marker can be added so that it is automatically listed and
available in the module's index page:

=======
session
=======

.. module:: db.session

The module session...

Chapter 9

[321]

Notice that the db prefix here can be used to avoid module collision. Sphinx will use it
as a module category and will group all modules that start with db. in this category.

Adding index markers
Another option can be used to fill the index page by linking the document to
an entry:

=======
session
=======

.. module:: db.session

.. index::
 Database Access
 Session

The module session...

Two new entries, Database Access and Session, will be added in the index page.

Cross-references
Finally, Sphinx provides an inline markup to set cross-references. For instance, a link
to a module can be done like this:

:mod:`db.session`

Here, :mod: is the module marker's prefix and `db.session` is the name of the
module to be linked to (as registered previously); keep in mind that :mod: as well
as the previous elements are the specific directives introduced in reSTructuredText
by Sphinx.

Sphinx provides a lot more features that you can discover on its website.
For instance, the autodoc feature is a great option to automatically extract
your doctests to build the documentation. Refer to http://sphinx.
pocoo.org.

http://sphinx.pocoo.org
http://sphinx.pocoo.org

Documenting Your Project

[322]

Documentation building and continuous
integration
Sphinx really improves the readability and experience of reading documentation
from the consumer's point of view. As already said, it is especially helpful when
some of its parts are tightly coupled to the code, so in the form of dosctrings or
module helpers. While this approach really makes it easier to ensure that the source
version of the documentation matches with the code it documents, it does not
guarantee that documentation readership will have access to the latest and most
up to date compiled version.

Having only minimal source representation is also not enough if the target readers of
the documentation are not proficient enough with command-line tools and will not
know how to build it into browsable and readable form. This is why it is important
to build your documentation into a consumer-friendly form automatically whenever
any change to the code repository is committed/pushed.

The best way to host the documentation built with Sphinx is to generate an HTML
build and serve it as a static resource with your web server of choice. Sphinx
provides proper Makefile to build HTML files with the make html command.
Because make is a very common utility, it should be very easy to integrate this
process with any continuous integration systems discussed in Chapter 8,
Managing Code.

If you are documenting an open source project with Sphinx, then you will make your
life a lot easier by using Read the Docs (https://readthedocs.org/). It is a free
service for hosting documentation of open source Python projects with Sphinx. The
configuration is completely hassle-free and it integrates very easily with two popular
code hosting services: GitHub and Bitbucket. In practice, if you have your accounts
properly connected and code repository properly set up, enabling documentation
hosting on Read the Docs is a matter of just a few clicks.

https://readthedocs.org/

Chapter 9

[323]

Summary
This chapter explained in detail how to:

• Use a few rules for efficient writing
• Use reStructuredText, the Pythonista's LaTeX
• Build a document portfolio and landscape
• Use Sphinx to generate useful web documentations

The hardest thing to do when documenting a project is to keep it accurate and up
to date. Making the documentation part of the code repository makes it a lot easier.
From there, every time a developer changes a module, he or she should change the
corresponding documentation as well.

This can be quite difficult in big projects, and adding a list of related documents in
the header of the modules can help in that case.

A complementary approach to make sure the documentation is always accurate
is to combine the documentation with tests through doctests. This is covered in
the next chapter, which presents test-driven development principles and then
document-driven development.

[325]

Test-Driven Development
Test-Driven Development (TDD) is a simple technique to produce high quality
software. It is widely used in the Python community, but it is also very popular
in other communities.

Testing is especially important in Python due to its dynamic nature. It lacks static
typing so many, even minute, errors won't be noticed until the code is run and
each of its line is executed. But the problem is not only how types in Python work.
Remember that most bugs are not related to bad syntax usage, but rather to logical
errors and subtle misunderstandings that can lead to major failures.

This chapter is split into two parts:

• I don't test, which advocates TDD and quickly describes how to do it with the
standard library

• I do test, which is intended for developers who practice tests and wish to get
more out of them

I don't test
If you have already been convinced to TDD, you should move to the next section.
It will focus on advanced techniques and tools for making your life easier when
working with tests. This part is mainly intended for those who are not using this
approach and tries to advocate its usage.

Test-Driven Development

[326]

Test-driven development principles
The test-driven development process, in its simplest form, consists of three steps:

1. Writing automated tests for a new functionality or improvement that has not
been implemented yet.

2. Providing minimal code that just passes all the defined tests.
3. Refactoring code to meet the desired quality standards.

The most important fact to remember about this development cycle is that tests
should be written before implementation. It is not an easy task for unexperienced
developers, but it is the only approach which guarantees that the code you are going
to write will be testable.

For example, a developer who is asked to write a function that checks whether the
given number is a prime number, writes a few examples on how to use it and what
the expected results are:

assert is_prime(5)
assert is_prime(7)
assert not is_prime(8)

The developer that implements the feature does not need to be the only one
responsible for providing tests. The examples can be provided by another person
as well. For instance, very often the official specifications of network protocols or
cryptography algorithms provide test vectors that are intended to verify correctness
of implementation. These are a perfect basis for test cases.

From there, the function can be implemented until the preceding examples work:

def is_prime(number):
 for element in range(2, number):
 if number % element == 0:
 return False
 return True

A bug or an unexpected result is a new example of usage the function should be able
to deal with:

>>> assert not is_prime(1)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AssertionError

Chapter 10

[327]

The code can be changed accordingly, until the new test passes:

def is_prime(number):
 if number in (0, 1):
 return False

 for element in range(2, number):
 if number % element == 0:
 return False

 return True

And more cases show that the implementation is still incomplete:

>>> assert not is_prime(-3)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AssertionError

The updated code is as follows:

def is_prime(number):
 if number < 0 or number in (0, 1):
 return False

 for element in range(2, number):
 if number % element == 0:
 return False

 return True

From there, all tests can be gathered in a test function, which is run every time the
code evolves:

def test_is_prime():
 assert is_prime(5)
 assert is_prime(7)

 assert not is_prime(8)
 assert not is_prime(0)
 assert not is_prime(1)

 assert not is_prime(-1)
 assert not is_prime(-3)
 assert not is_prime(-6)

Test-Driven Development

[328]

Every time we come up with a new requirement, the test_is_prime() function
should be updated first to define the expected behavior of the is_prime() function.
Then, the test is run to check if the implementation delivers the desired results.
Only if the tests are known to be failing, there is a need to update code for the
tested function.

Test-driven development provides a lot of benefits:

• It helps to prevent software regression
• It improves software quality
• It provides a kind of low-level documentation of code behavior
• It allows you to produce robust code faster in short development cycles

The best convention to deal in with test is to gather all of them in a single module
or package (usually named tests) and have an easy way to run the whole suite
using a single shell command. Fortunately, there is no need to build whole test tool
chains all by yourself. Both Python standard library and Python Package Index come
with plenty of test frameworks and utilities that allow you to build, discover, and
run tests in a convenient way. We will discuss the most notable examples of such
packages and modules later in this chapter.

Preventing software regression
We all face software regression issues in our developer lives. Software regression is
a new bug introduced by a change. It manifests when features or functionalities that
were known to be working in the previous versions of the software get broken and
stop working at some point during project development.

The main reason for regressions is high complexity of software. At some point, it is
impossible to guess what a single change in the codebase might lead to. Changing
some code might break some other features and sometimes lead to vicious side
effects, such as silently corrupting data. And high complexity is not only the problem
of huge codebases. There is, of course, obvious correlation between the amount
of code and its complexity, but even small projects (few hundredths/thousands
lines of code) may have such convoluted architecture that it is hard to predict all
consequences of relatively small changes.

To avoid regression, the whole set of features the software provides should be tested
every time a change occurs. Without this, you are not able to reliably tell difference
between bugs that have always existed in your software from the new ones
introduced to parts that were working correctly just some time ago.

Chapter 10

[329]

Opening up a codebase to several developers amplifies the problem, since each person
will not be fully aware of all the development activities. While having a version control
system prevents conflicts, it does not prevent all unwanted interactions.

TDD helps reduce software regression. The whole software can be automatically
tested after each change. This will work as long as each feature has the proper set of
tests. When TDD is properly done, the testbase grows together with the codebase.

Since a full test campaign can last for quite a long time, it is a good practice to
delegate it to some continuous integration system which can do the work in the
background. We discussed such solutions already in Chapter 8, Managing Code.
Nevertheless, the local re-launching of the tests should be performed manually by
the developer too, at least for the concerned modules. Relying only on continuous
integration will have a negative effect on the developers' productivity. Programmers
should be able to run selections of tests easily in their environments. This is the
reason why you should carefully choose testing tools for the project.

Improving code quality
When a new module, class, or a function is written, a developer focuses on how to
write it and how to produce the best piece of code he or she can. But while he or she
is concentrating on algorithms, he or she might lose the user's point of view: How
and when will his or her function be used? Are the arguments easy and logical to
use? Is the name of the API right?

This is done by applying the tips described in the previous chapters, such as
Chapter 4, Choosing Good Names. But the only way to do it efficiently is to write usage
examples. This is the moment when the developer realizes if the code he or she wrote
is logical and easy to use. Often, the first refactoring occurs right after the module,
class, or function is finished.

Writing tests, which are use cases for the code, helps in having a user point of view.
Developers will, therefore, often produce a better code when they use TDD. It is
difficult to test gigantic functions and huge monolithic classes. Code that is written
with testing in mind tends to be architected more cleanly and modularly.

Providing the best developer documentation
Tests are the best place for a developer to learn how software works. They are
the use cases the code was primarily created for. Reading them provides a quick
and deep insight into how the code works. Sometimes an example is worth
a thousand words.

Test-Driven Development

[330]

The fact that these tests are always up to date with the codebase makes them the best
developer documentation that a piece of software can have. Tests don't go stale in
the same way documentation does, otherwise they would fail.

Producing robust code faster
Writing without testing leads to long debugging sessions. A consequence of a bug in
one module might manifest itself in a completely different part of the software. Since
you don't know who to blame, you spend an inordinate amount of time debugging.
It's better to fight small bugs one at a time when a test fails, because you'll have
a better clue as to where the real problem is. And testing is often more fun than
debugging because it is coding.

If you measure the time taken to fix the code together with the time taken to write
it, it will usually be longer than the time a TDD approach would take. This is not
obvious when you start a new piece of code. This is because the time taken to set up
a test environment and write the first few tests is extremely long compared to the
time taken just to write the first pieces of code.

But there are some test environments that are really hard to set up. For instance,
when your code interacts with an LDAP or an SQL server, writing tests is not
obvious at all. This is covered in the Fakes and mocks section in this chapter.

What kind of tests?
There are several kinds of tests that can be made on any software. The main ones are
acceptance tests (or functional tests) and unit tests, and these are the ones that most
people think of when discussing the topic of software testing. But there are a few
other kinds of tests that you can use in your project. We will discuss some of them
shortly in this section.

Acceptance tests
An acceptance test focuses on a feature and deals with the software like a black box.
It just makes sure that the software really does what it is supposed to do, using the
same media as that of the users and controlling the output. These tests are usually
written out of the development cycle to validate that the application meets the
requirements. They are usually run as a checklist over the software. Often, these tests
are not done through TDD and are built by managers, QA staff, or even customers.
In that case, they are often called user acceptance tests.

Chapter 10

[331]

Still, they can and they should be done with TDD principles. Tests can be provided
before the features are written. Developers get a pile of acceptance tests, usually
made out of the functional specifications, and their job is to make sure the code
will pass all of them.

The tools used to write those tests depend on the user interface the software
provides. Some popular tools used by Python developers are:

Application type Tool
Web application Selenium (for Web UI with JavaScript)
Web application zope.testbrowser (doesn't test JS)
WSGI application paste.test.fixture (doesn't test JS)
Gnome Desktop application dogtail
Win32 Desktop application pywinauto

For an extensive list of functional testing tools, Grig Gheorghiu
maintains a wiki page at https://wiki.python.org/moin/
PythonTestingToolsTaxonomy.

Unit tests
Unit tests are low-level tests that perfectly fit test-driven development. As the name
suggests, they focus on testing software units. A software unit can be understood as
the smallest testable piece of the application code. Depending on the application, the
size may vary from whole modules to a single method or function, but usually unit
tests are written for the smallest fragments of code possible. Unit tests usually isolate
the tested unit (module, class, function, and so on) from the rest of the application
and other units. When external dependencies are required, such as web APIs or
databases, they are often replaced by fake objects or mocks.

Functional tests
Functional tests focus on whole features and functionalities instead of small code
units. They are similar in their purpose to acceptance tests. The main difference is
that functional tests do not necessarily need to use the same interface that a user
does. For instance, when testing web applications, some of the user interactions (or
its consequences) can be simulated by synthetic HTTP requests or direct database
access, instead of simulating real page loading and mouse clicks.

https://wiki.python.org/moin/PythonTestingToolsTaxonomy
https://wiki.python.org/moin/PythonTestingToolsTaxonomy

Test-Driven Development

[332]

This approach is often easier and faster than testing with tools used in user acceptance
tests. The downside of limited functional tests is that they tend not to cover enough
parts of the application where different abstraction layers and components meet.
Tests that focus on such meeting points are often called integration tests.

Integration tests
Integration tests represent a higher level of testing than unit tests. They test bigger
parts of code and focus on situations where many application layers or components
meet and interact with each other. The form and scope of integration tests varies
depending on the project's architecture and complexity. For example, in small and
monolithic projects, this may be as simple as running more complex functional tests
and allowing them to interact with real backing services (databases, caches, and so
on) instead of mocking or faking them. For complex scenarios or products that are
built from multiple services, the real integration tests may be very extensive and
even require running the whole project in a big distributed environment that mirrors
the production.

Integration tests are often very similar to functional tests and the border between
them is very blurry. It is very common that integration tests are also logically testing
separate functionalities and features.

Load and performance testing
Load tests and performance tests provide objective information about code efficiency
rather than its correctness. The terms of load testing and performance testing are
used by some interchangeably but the first one in fact refers to a limited aspect of
performance. Load testing focuses on measuring how code behaves under some
artificial demand (load). This is a very popular way of testing web applications
where load is understood as web traffic from real users or programmatic clients. It
is important to note that load tests tend to cover whole requests to the application
so are very similar to integration and functional tests. This makes it important to be
sure that tested application components are fully verified to be working correctly.
Performance tests are generally all the tests that aim to measure code performance
and can target even small units of code. So, load tests are only a specific subtype of
performance tests.

They are special kind of tests because they do not provide binary results (failure/
success) but only some performance quality measurement. This means that single
results need to be interpreted and/or compared with results of different test runs. In
some cases, the project requirements may set some hard time or resource constraints
on the code but this does not change the fact that there is always some arbitrary
interpretation involved in these kinds of testing approaches.

Chapter 10

[333]

Load performance tests are a great tool during the development of any software
that needs to fulfill some Service Level Agreements because it helps to reduce the
risk of compromising the performance of critical code paths. Anyway, it should not
be overused.

Code quality testing
Code quality does not have the arbitrary scale that would say for definite if it is bad
or good. Unfortunately, the abstract concept of code quality cannot be measured
and expressed in the form of numbers. But instead, we can measure various metrics
of the software that are known to be highly correlated with the quality of code. To
name a few:

• The number of code style violations
• The amount of documentation
• Complexity metrics, such as McCabe's cyclomatic complexity
• The number of static code analysis warnings

Many projects use code quality testing in their continuous integration workflows.
The good and popular approach is to test at least basic metrics (static code analysis
and code style violations) and not allow the merging of any code to the mainstream
that makes these metrics lower.

Python standard test tools
Python provides two main modules in the standard library to write tests:

• unittest (https://docs.python.org/3/library/unittest.html): This
is the standard and most common Python unit testing framework based on
Java's JUnit and was originally written by Steve Purcell (formerly PyUnit)

• doctest (https://docs.python.org/3/library/doctest.html): This is a
literate programing testing tool with interactive usage examples

unittest
unittest basically provides what JUnit does for Java. It offers a base class called
TestCase, which has an extensive set of methods to verify the output of function
calls and statements.

This module was created to write unit tests, but acceptance tests can also be
written with it as long as the test uses the user interface. For instance, some testing
frameworks provide helpers to drive tools such as Selenium on top of unittest.

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html

Test-Driven Development

[334]

Writing a simple unit test for a module using unittest is done by subclassing
TestCase and writing methods with the test prefix. The final example from
the Test-driven development principles section will look like this:

import unittest

from primes import is_prime

class MyTests(unittest.TestCase):
 def test_is_prime(self):
 self.assertTrue(is_prime(5))
 self.assertTrue(is_prime(7))

 self.assertFalse(is_prime(8))
 self.assertFalse(is_prime(0))
 self.assertFalse(is_prime(1))

 self.assertFalse(is_prime(-1))
 self.assertFalse(is_prime(-3))
 self.assertFalse(is_prime(-6))

if __name__ == "__main__":
 unittest.main()

The unittest.main() function is the utility that allows to make the whole module
to be executable as a test suite:

$ python test_is_prime.py -v

test_is_prime (__main__.MyTests) ... ok

--

Ran 1 test in 0.000s

OK

The unittest.main() function scans the context of the current module and looks
for classes that subclass TestCase. It instantiates them, then runs all methods that
start with the test prefix.

Chapter 10

[335]

A good test suite follows the common and consistent naming conventions. For
instance, if the is_prime function is included in the primes.py module, the test
class could be called PrimesTests and put into the test_primes.py file:

import unittest

from primes import is_prime

class PrimesTests(unittest.TestCase):
 def test_is_prime(self):
 self.assertTrue(is_prime(5))
 self.assertTrue(is_prime(7))

 self.assertFalse(is_prime(8))
 self.assertFalse(is_prime(0))
 self.assertFalse(is_prime(1))

 self.assertFalse(is_prime(-1))
 self.assertFalse(is_prime(-3))
 self.assertFalse(is_prime(-6))

if __name__ == '__main__':
 unittest.main()

From there, every time the utils module evolves, the test_utils module gets
more tests.

In order to work, the test_primes module needs to have the primes module
available in the context. This can be achieved either by having both modules in the
same package by adding a tested module explicitly to the Python path. In practice,
the develop command of setuptools is very helpful here.

Running tests over the whole application presupposes that you have a script that
builds a test campaign out of all test modules. unittest provides a TestSuite
class that can aggregate tests and run them as a test campaign, as long as they
are all instances of TestCase or TestSuite.

Test-Driven Development

[336]

In Python's past, there was convention that test module provides a test_suite
function that returns a TestSuite instance either used in the __main__ section,
when the module is called by Command Prompt, or used by a test runner:

import unittest

from primes import is_prime

class PrimesTests(unittest.TestCase):
 def test_is_prime(self):
 self.assertTrue(is_prime(5))

 self.assertTrue(is_prime(7))

 self.assertFalse(is_prime(8))
 self.assertFalse(is_prime(0))
 self.assertFalse(is_prime(1))

 self.assertFalse(is_prime(-1))
 self.assertFalse(is_prime(-3))
 self.assertFalse(is_prime(-6))

class OtherTests(unittest.TestCase):
 def test_true(self):
 self.assertTrue(True)

def test_suite():
 """builds the test suite."""
 suite = unittest.TestSuite()
 suite.addTests(unittest.makeSuite(PrimesTests))
 suite.addTests(unittest.makeSuite(OtherTests))

 return suite

if __name__ == '__main__':
 unittest.main(defaultTest='test_suite')

Chapter 10

[337]

Running this module from the shell will print the test campaign output:

$ python test_primes.py -v

test_is_prime (__main__.PrimesTests) ... ok

test_true (__main__.OtherTests) ... ok

--

Ran 2 tests in 0.001s

OK

The preceding approach was required in the older versions of Python when the
unittest module did not have proper test discovery utilities. Usually, running of all
tests was done by a global script that browses the code tree looking for tests and runs
them. This is called test discovery and will be covered more extensively later in this
chapter. For now, you should only know that unittest provides a simple command
that can discover all tests from modules and packages with a test prefix:

$ python -m unittest -v

test_is_prime (test_primes.PrimesTests) ... ok

test_true (test_primes.OtherTests) ... ok

--

Ran 2 tests in 0.001s

OK

If you use the preceding command, then there is no requirement to manually define
the __main__ sections and invoke the unittest.main() function.

doctest
doctest is a module that extracts snippets in the form of interactive prompt sessions
from docstrings or text files and replays them to check whether the example output
is the same as the real one.

For instance, the text file with the following content could be run as a test:

Check addition of integers works as expected::

>>> 1 + 1
2

Test-Driven Development

[338]

Let's assume this documentation file is stored in the filesystem under test.rst
name. The doctest module provides some functions to extract and run the tests
from such documentation:

>>> import doctest

>>> doctest.testfile('test.rst', verbose=True)

Trying:

 1 + 1

Expecting:

 2

ok

1 items passed all tests:

 1 tests in test.rst

1 tests in 1 items.

1 passed and 0 failed.

Test passed.

TestResults(failed=0, attempted=1)

Using doctest has many advantages:

• Packages can be documented and tested through examples
• Documentation examples are always up to date
• Using examples in doctests to write a package helps to maintain the user's

point of view

However, doctests do not make unit tests obsolete; they should be used only to
provide human-readable examples in documents. In other words, when the tests are
concerning low-level matters or need complex test fixtures that would obfuscate the
document, they should not be used.

Some Python frameworks such as Zope use doctests extensively, and they are at
times criticized by people who are new to the code. Some doctests are really hard
to read and understand, since the examples break one of the rules of technical
writing—they cannot be taken and run in a simple prompt, and they need extensive
knowledge. So, documents that are supposed to help newcomers are really hard to
read because the code examples, which are doctests built through TDD, are based
on complex test fixtures or even specific test APIs.

Chapter 10

[339]

As explained in Chapter 9, Documenting Your Project, when you use
doctests that are part of the documentation of your packages, be
careful to follow the seven rules of technical writing.

At this stage, you should have a good overview of what TDD brings. If you are still
not convinced, you should give it a try over a few modules. Write a package using
TDD and measure the time spent on building, debugging, and then refactoring.
You should find out quickly that it is truly superior.

I do test
If you are coming from the I don't test section and are now convinced to do
test-driven development, then congratulations! You know the basics of test-driven
development, but there are some more things you should learn before you will be
able to efficiently use this methodology.

This section describes a few problems developers bump into when they write tests
and some ways to solve them. It also provides a quick review of popular test runners
and tools available in the Python community.

unittest pitfalls
The unittest module was introduced in Python 2.1 and has been massively used
by developers since then. But some alternative test frameworks were created in the
community by people who were frustrated with the weaknesses and limitations
of unittest.

These are the common criticisms that are often made:

• The framework is heavy to use because:
 ° You have to write all your tests in subclasses of TestCase
 ° You have to prefix the method names with test
 ° You are encouraged to use assertion methods provided in TestCase

instead of plain assert statements and existing methods may not
cover every use case

• The framework is hard to extend because it requires massive subclassing of
its base classes or tricks such as decorators.

Test-Driven Development

[340]

• Test fixtures are sometimes hard to organize because the setUp and
tearDown facilities are tied to the TestCase level, though they run once per
test. In other words, if a test fixture concerns many test modules, it is not
simple to organize its creation and cleanup.

• It is not easy to run a test campaign over Python software. The default test
runner (python -m unittest) indeed provides some test discovery but
does not provide enough filtering capabilities. In practice, extra scripts have
to be written to collect the tests, aggregate them, and then run them in a
convenient way.

A lighter approach is needed to write tests without suffering from the rigidity of a
framework that looks too much like its big Java brother, JUnit. Since Python does not
require working with a 100% class-based environment, it is preferable to provide a
more Pythonic test framework that is not based on subclassing.

A common approach would be:

• To provide a simple way to mark any function or any class as a test
• To extend the framework through a plug-in system
• To provide a complete test fixture environment for all test levels: the whole

campaign, a group of tests at module level, and at test level
• To provide a test runner based on test discovery with an extensive set

of options

unittest alternatives
Some third-party tools try to solve the problems just mentioned by providing extra
features in the shape of unittest extensions.

Python wiki provides a very long list of various testing utilities and frameworks
(refer to https://wiki.python.org/moin/PythonTestingToolsTaxonomy), but
there are just two projects that are especially popular:

• nose: http://nose.readthedocs.org
• py.test: http://pytest.org

nose
nose is mainly a test runner with powerful discovery features. It has extensive
options that allow running all kind of test campaigns in a Python application.

https://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://nose.readthedocs.org
http://pytest.org

Chapter 10

[341]

It is not a part of standard library but is available on PyPI and can be easily installed
with pip:

pip install nose

Test runner
After installing nose, a new command called nosetests is available at the prompt.
Running the tests presented in the first section of the chapter can be done directly
with it:

nosetests -v

test_true (test_primes.OtherTests) ... ok

test_is_prime (test_primes.PrimesTests) ... ok

builds the test suite. ... ok

--

Ran 3 tests in 0.009s

OK

nose takes care of discovering the tests by recursively browsing the current directory
and building a test suite on its own. The preceding example at first glance does not
look like any improvement over the simple python -m unittest. The difference
will be noticeable if you run this command with the --help switch. You will notice
that nose provides tens of parameters that allow you to control test discovery and
execution.

Writing tests
nose goes a step further by running all classes and functions whose name matches
the regular expression ((?:^|[b_.-])[Tt]est) located in modules that match
it too. Roughly, all callables that start with test and are located in a module that
match the pattern will also be executed as a test.

For instance, this test_ok.py module will be recognized and run by nose:

$ more test_ok.py

def test_ok():

 print('my test')

$ nosetests -v

test_ok.test_ok ... ok

Test-Driven Development

[342]

Ran 1 test in 0.071s

OK

Regular TestCase classes and doctests are executed as well.

Last, nose provides assertion functions that are similar to TestCase methods. But
these are provided as functions that follow the PEP 8 naming conventions, rather
than using the Java convention unittest uses (refer to http://nose.readthedocs.
org/).

Writing test fixtures
nose supports three levels of fixtures:

• Package level: The setup and teardown functions can be added in the
__init__.py module of a test's package containing all test modules

• Module level: A test module can have its own setup and teardown functions
• Test level: The callable can also have fixture functions using the with_setup

decorator provided

For instance, to set a test fixture at the module and test level, use this code:

def setup():
 # setup code, launched for the whole module
 ...

def teardown():
 # teardown code, launched for the whole module
 ...

def set_ok():
 # setup code launched only for test_ok
 ...

@with_setup(set_ok)
def test_ok():
 print('my test')

http://nose.readthedocs.org/
http://nose.readthedocs.org/

Chapter 10

[343]

Integration with setuptools and a plug-in system
Last, nose integrates smoothly with setuptools and so the test command can
be used with it (python setup.py test). This integration is done by adding the
test_suite metadata in the setup.py script:

setup(
 #...
 test_suite='nose.collector',
)

nose also uses setuptool's entry point machinery for developers to write nose
plugins. This allows you to override or modify every aspect of the tool from test
discovery to output formatting.

A list of nose plugins is maintained at https://nose-plugins.
jottit.com.

Wrap-up
nose is a complete testing tool that fixes many of the issues unittest has. It is still
designed to use implicit prefix names for tests, which remains a constraint for some
developers. While this prefix can be customized, it still requires one to follow a
convention.

This convention over configuration statement is not bad and is a lot better than the
boiler-plate code required in unittest. But using explicit decorators, for example,
could be a nice way to get rid of the test prefix.

Also, the ability to extend nose with plugins makes it very flexible and allows a
developer to customize the tool to meet his/her needs.

If your testing workflow requires overriding a lot of nose parameters, you can easily
add a .noserc or a nose.cfg file in your home directory or project root. It will
specify the default set of options for the nosetests command. For instance, a good
practice is to automatically look for doctests during test run. An example of the nose
configuration file that enables running doctests is as follows:

[nosetests]

with-doctest=1

doctest-extension=.txt

https://nose-plugins.jottit.com
https://nose-plugins.jottit.com

Test-Driven Development

[344]

py.test
py.test is very similar to nose. In fact, the latter was inspired by py.test, so we
will focus mainly on details that make these tools different from each other. The
tool was born as part of a larger package called py but now these are developed
separately.

Like every third-party package mentioned in this book, py.test is available on PyPI
and can be installed with pip as pytest:

$ pip install pytest

From there, a new py.test command is available at the prompt that can be used
exactly like nosetests. The tool uses similar pattern-matching and a test discovery
algorithm to catch tests to be run. The pattern is stricter than that which nose uses
and will only catch:

• Classes that start with Test, in a file that starts with test
• Functions that start with test, in a file that starts with test

Be careful to use the right character case. If a function starts with
a capital "T", it will be taken as a class, and thus ignored. And if
a class starts with a lowercase "t", py.test will break because it
will try to deal with it as a function.

The advantages of py.test are:

• The ability to easily disable some test classes
• A flexible and original mechanism for dealing with fixtures
• The ability to distribute tests among several computers

Writing test fixtures
py.test supports two mechanisms to deal with fixtures. The first one, modeled after
xUnit framework, is similar to nose. Of course semantics differ a bit. py.test will
look for three levels of fixtures in each test module as shown in following example:

def setup_module(module):
 """ Setup up any state specific to the execution
 of the given module.
 """

def teardown_module(module):
 """ Teardown any state that was previously setup

Chapter 10

[345]

 with a setup_module method.
 """

def setup_class(cls):
 """ Setup up any state specific to the execution
 of the given class (which usually contains tests).
 """

def teardown_class(cls):
 """ Teardown any state that was previously setup
 with a call to setup_class.
 """

def setup_method(self, method):
 """ Setup up any state tied to the execution of the given
 method in a class. setup_method is invoked for every
 test method of a class.
 """

def teardown_method(self, method):
 """ Teardown any state that was previously setup
 with a setup_method call.
 """

Each function will get the current module, class, or method as an argument. The test
fixture will, therefore, be able to work on the context without having to look for it,
as with nose.

The alternative mechanism for writing fixtures with py.test is to build on
the concept of dependency injection, allowing to maintain the test state in a
more modular and scalable way. The non xUnit-style fixtures (setup/teardown
procedures) always have unique names and need to be explicitly activated by
declaring their use in test functions, methods, and modules in classes.

The simplest implementation of fixtures takes the form of a named function declared
with the pytest.fixture() decorator. To mark a fixture as used in the test, it needs
to be declared as a function or method argument. To make it more clear, consider the
previous example of the test module for the is_prime function rewritten with the
use of py.test fixtures:

import pytest

from primes import is_prime

Test-Driven Development

[346]

@pytest.fixture()
def prime_numbers():
 return [3, 5, 7]

@pytest.fixture()
def non_prime_numbers():
 return [8, 0, 1]

@pytest.fixture()
def negative_numbers():
 return [-1, -3, -6]

def test_is_prime_true(prime_numbers):
 for number in prime_numbers:
 assert is_prime(number)

def test_is_prime_false(non_prime_numbers, negative_numbers):
 for number in non_prime_numbers:
 assert not is_prime(number)

 for number in non_prime_numbers:
 assert not is_prime(number)

Disabling test functions and classes
py.test provides a simple mechanism to disable some tests upon certain conditions.
This is called skipping, and the pytest package provides the .skipif decorator
for that purpose. If a single test function or a whole test class decorator needs to
be skipped upon certain conditions, it needs to be defined with this decorator and
with some value provided that verifies if the expected condition was met. Here is an
example from the official documentation that skips running the whole test case class
on Windows:

import pytest

@pytest.mark.skipif(
 sys.platform == 'win32',
 reason="does not run on windows"
)

Chapter 10

[347]

class TestPosixCalls:

 def test_function(self):
 """will not be setup or run under 'win32' platform"""

You can, of course, predefine the skipping conditions in order to share them across
your testing modules:

import pytest

skipwindows = pytest.mark.skipif(
 sys.platform == 'win32',
 reason="does not run on windows"
)

@skip_windows
class TestPosixCalls:

 def test_function(self):
 """will not be setup or run under 'win32' platform"""

If a test is marked in such a way, it will not be executed at all. However, in some
cases, you want to run such a test and want to execute it, but you know, it is expected
to fail under known conditions. For this purpose, a different decorator is provided.
It is @mark.xfail and ensures that the test is always run, but it should fail at some
point if the predefined condition occurs:

import pytest

@pytest.mark.xfail(
sys.platform == 'win32',
 reason="does not run on windows"
)
class TestPosixCalls:

 def test_function(self):
 """it must fail under windows"""

Using xfail is much stricter than skipif. Test is always executed and if it does not
fail when it is expected to, then the whole py.test run will result in a failure.

Test-Driven Development

[348]

Automated distributed tests
An interesting feature of py.test is its ability to distribute the tests across several
computers. As long as the computers are reachable through SSH, py.test will be
able to drive each computer by sending tests to be performed.

However, this feature relies on the network; if the connection is broken, the slave
will not be able to continue working since it is fully driven by the master.

Buildbot, or other continuous integration tools, is preferable when a project has
long test campaigns. But the py.test distributed model can be used for the ad hoc
distribution of tests when you are working on an application that consumes a lot
of resources to run the tests.

Wrap-up
py.test is very similar to nose since no boilerplate code is needed to aggregate
the tests in it. It also has a good plugin system and there are a great number of
extensions available on PyPI.

Lastly, py.test focuses on making the tests run fast and is truly superior compared
to the other tools in this area. The other notable feature is the original approach to
fixtures that really helps in managing a reusable library of fixtures. Some people
may argue that there is too much magic involved but it really streamlines the
development of a test suite. This single advantage of py.test makes it my tool
of choice, so I really recommend it.

Testing coverage
Code coverage is a very useful metric that provides objective information on how
well project code is tested. It is simply a measurement of how many and which lines
of code are executed during all test executions. It is often expressed as a percentage
and 100% coverage means that every line of code was executed during tests.

The most popular code coverage tool is called simply coverage and is freely available
on PyPI. The usage is very simple and consists only of two steps. The first step is to
run the coverage run command in your shell with the path to your script/program
that runs all the tests as an argument:

$ coverage run --source . `which py.test` -v

===================== test session starts ======================

platformdarwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1 --
/Users/swistakm/.envs/book/bin/python3

cachedir: .cache

Chapter 10

[349]

rootdir: /Users/swistakm/dev/book/chapter10/pytest, inifile:

plugins: capturelog-0.7, codecheckers-0.2, cov-2.2.1, timeout-1.0.0

collected 6 items

primes.py::pyflakes PASSED

primes.py::pep8 PASSED

test_primes.py::pyflakes PASSED

test_primes.py::pep8 PASSED

test_primes.py::test_is_prime_true PASSED

test_primes.py::test_is_prime_false PASSED

========= 6 passed, 1 pytest-warnings in 0.10 seconds ==========

The coverage run also accepts -m parameter that specifies a runnable module name
instead of a program path that may be better for some testing frameworks:

$ coverage run -m unittest

$ coverage run -m nose

$ coverage run -m pytest

The next step is to generate a human-readable report of your code coverage from
results cashed in the .coverage file. The coverage package supports a few output
formats and the simplest one just prints an ASCII table in your terminal:

$ coverage report

Name StmtsMiss Cover

primes.py 7 0 100%

test_primes.py 16 0 100%

TOTAL 23 0 100%

The other useful coverage report format is HTML that can be browsed in your web
browser:

$ coverage html

Test-Driven Development

[350]

The default output folder of this HTML report is htmlcov/ in your working
directory. The real advantage of the coverage html output is that you can browse
annotated sources of your project with highlighted parts that have missing test
coverage (as shown in Figure 1):

Figure 1 Example of annotated sources in coverage HTML report

You should remember that while you should always strive to ensure 100% test
coverage, it is never a guarantee that code is tested perfectly and there is no place
where code can break. It means only that every line of code was reached during
execution, but not necessarily every possible condition was tested. In practice, it may
be relatively easy to ensure full code coverage, but it is really hard to make sure that
every branch of code was reached. This is especially true for the testing of functions
that may have multiple combinations of if statements and specific language
constructs like list/dict/set comprehensions. You should always care for good
test coverage, but you should never treat its measurement as the final answer of how
good your testing suite is.

Chapter 10

[351]

Fakes and mocks
Writing unit tests presupposes that you isolate the unit of code that is being tested.
Tests usually feed the function or method with some data and verify its return value
and/or the side effects of its execution. This is mainly to make sure the tests:

• Are concerning an atomic part of the application, which can be a function,
method, class, or interface

• Provide deterministic, reproducible results

Sometimes, the proper isolation of the program component is not obvious. For
instance, if the code sends e-mails, it will probably call Python's smtplib module,
which will work with the SMTP server through a network connection. If we want
our tests to be reproducible and are just testing if e-mails have the desired content,
then probably this should not happen. Ideally, unit tests should run on any computer
with no external dependencies and side effects.

Thanks to Python's dynamic nature, it is possible to use monkey patching to modify
the runtime code from the test fixture (that is, modify software dynamically at
runtime without touching the source code) to fake the behavior of a third-party
code or library.

Building a fake
A fake behavior in the tests can be created by discovering the minimal set of
interactions needed for the tested code to work with the external parts. Then, the
output is manually returned or uses a real pool of data that has been previously
recorded.

This is done by starting an empty class or function and using it as a replacement. The
test is then launched, and the fake is iteratively updated until it behaves correctly.
This is possible thanks to nature of a Python type system. The object is considered
compatible with the given type as long as it behaves as the expected type and does
not need to be its ancestor via subclassing. This approach to typing in Python is
called duck typing—if something behaves like a duck, it can be treated like a duck.

Let's take an example with a function called send in a module called mailer that
sends e-mails:

import smtplib
import email.message

def send(
 sender, to,

Test-Driven Development

[352]

 subject='None',
 body='None',
 server='localhost'
):
 """sends a message."""
 message = email.message.Message()
 message['To'] = to
 message['From'] = sender
 message['Subject'] = subject
 message.set_payload(body)

 server = smtplib.SMTP(server)
 try:
 return server.sendmail(sender, to, message.as_string())
 finally:
 server.quit()

py.test will be used to demonstrate fakes and mocks in this section.

The corresponding test can be:

from mailer import send

def test_send():
 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

This test will pass and work as long as there is an SMTP server on the local host. If
not, it will fail like this:

$ py.test --tb=short

========================= test session starts =========================

platform darwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: /Users/swistakm/dev/book/chapter10/mailer, inifile:

plugins: capturelog-0.7, codecheckers-0.2, cov-2.2.1, timeout-1.0.0

collected 5 items

Chapter 10

[353]

mailer.py ..

test_mailer.py ..F

============================== FAILURES ===============================

______________________________ test_send ______________________________

test_mailer.py:10: in test_send

 'body'

mailer.py:19: in send

 server = smtplib.SMTP(server)

.../smtplib.py:251: in __init__

 (code, msg) = self.connect(host, port)

.../smtplib.py:335: in connect

 self.sock = self._get_socket(host, port, self.timeout)

.../smtplib.py:306: in _get_socket

 self.source_address)

.../socket.py:711: in create_connection

 raise err

.../socket.py:702: in create_connection

 sock.connect(sa)

E ConnectionRefusedError: [Errno 61] Connection refused

======== 1 failed, 4 passed, 1 pytest-warnings in 0.17 seconds ========

A patch can be added to fake the SMTP class:

import smtplib
import pytest
from mailer import send

class FakeSMTP(object):
 pass

@pytest.yield_fixture()
def patch_smtplib():
 # setup step: monkey patch smtplib
 old_smtp = smtplib.SMTP
 smtplib.SMTP = FakeSMTP

Test-Driven Development

[354]

 yield

 # teardown step: bring back smtplib to
 # its former state
 smtplib.SMTP = old_smtp

def test_send(patch_smtplib):
 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

In the preceding code, we have used a new pytest.yield_fixture() decorator. It
allows us to use a generator syntax to provide both setup and teardown procedures
in a single fixture function. Now our test suite can be run again with the patched
version of smtplib:

$ py.test --tb=short -v

======================== test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1 --
/Users/swistakm/.envs/book/bin/python3

cachedir: .cache

rootdir: /Users/swistakm/dev/book/chapter10/mailer, inifile:

plugins: capturelog-0.7, codecheckers-0.2, cov-2.2.1, timeout-1.0.0

collected 5 items

mailer.py::pyflakes PASSED

mailer.py::pep8 PASSED

test_mailer.py::pyflakes PASSED

test_mailer.py::pep8 PASSED

test_mailer.py::test_send FAILED

============================= FAILURES ==============================

_____________________________ test_send _____________________________

test_mailer.py:29: in test_send

 'body'

Chapter 10

[355]

mailer.py:19: in send

 server = smtplib.SMTP(server)

E TypeError: object() takes no parameters

======= 1 failed, 4 passed, 1 pytest-warnings in 0.09 seconds =======

As we can see from the preceding transcript, our FakeSMTP class implementation
is not complete. We need to update its interface to match the original SMTP class.
According to the duck typing principle, we need only to provide interfaces that are
required by the tested send() function:

class FakeSMTP(object):
 def __init__(self, *args, **kw):
 # arguments are not important in our example
 pass

 def quit(self):
 pass

 def sendmail(self, *args, **kw):
 return {}

Of course, the fake class can evolve with new tests to provide more complex
behaviors. But it should be as short and simple as possible. The same principle can
be used with more complex outputs, by recording them to serve them back through
the fake API. This is often done for third-party servers such as LDAP or SQL.

It is important to know that special care should be taken when monkey patching any
built-in or third-party module. If not done properly, such an approach might leave
unwanted side effects that will propagate between tests. Fortunately, many testing
frameworks and tools provide proper utilities that make the patching of any code
units safe and easy. In our example, we did everything manually and provided a
custom patch_smtplib() fixture function with separated setup and teardown steps.
A typical solution in py.test is much easier. This framework comes with a built-in
monkey patch fixture that should satisfy most of our patching needs:

import smtplib
from mailer import send

class FakeSMTP(object):
 def __init__(self, *args, **kw):
 # arguments are not important in our example
 pass

Test-Driven Development

[356]

 def quit(self):
 pass

 def sendmail(self, *args, **kw):
 return {}

def test_send(monkeypatch):
 monkeypatch.setattr(smtplib, 'SMTP', FakeSMTP)

 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

You should know that fakes have real limitations. If you decide to fake an external
dependency, you might introduce bugs or unwanted behaviors the real server
wouldn't have or vice versa.

Using mocks
Mock objects are generic fake objects that can be used to isolate the tested code. They
automate the building process of the object's input and output. There is a greater use
of mock objects in statically typed languages, where monkey patching is harder, but
they are still useful in Python to shorten the code to mimic external APIs.

There are a lot of mock libraries available in Python, but the most recognized one is
unittest.mock and is provided in the standard library. It was created as a third-
party package and not as a part of the Python distribution but was shortly included
into the standard library as a provisional package (refer to https://docs.python.
org/dev/glossary.html#term-provisional-api). For Python versions older than
3.3, you will need to install it from PyPI:

pip install Mock

In our example, using unittest.mock to patch SMTP is way simpler than creating a
fake from scratch:

import smtplib
from unittest.mock import MagicMock
from mailer import send

https://docs.python.org/dev/glossary.html#term-provisional-api
https://docs.python.org/dev/glossary.html#term-provisional-api

Chapter 10

[357]

def test_send(monkeypatch):
 smtp_mock = MagicMock()
 smtp_mock.sendmail.return_value = {}

 monkeypatch.setattr(
 smtplib, 'SMTP', MagicMock(return_value=smtp_mock)
)

 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

The return_value argument of a mock object or method allows you to define what
value is returned by the call. When the mock object is used, every time an attribute
is called by the code, it creates a new mock object for the attribute on the fly. Thus,
no exception is raised. This is the case (for instance) for the quit method we wrote
earlier that does not need to be defined anymore.

In the preceding example, we have in fact created two mocks:

• The first one that mocks the SMTP class object and not its instance. This
allows you to easily create a new object regardless of the expected __init__
() method. Mocks by default return new Mock() objects if treated as callable.
This is why we needed to provide another mock as its return_value
keyword argument to have control on the instance interface.

• The second one that mocks the actual instance returned on the patched
smtplib.SMTP() call. In this mock, we control the behavior of the
sendmail()method.

In our example, we have used the monkey-patching utility available from the
py.test framework, but unittest.mock provides its own patching utilities. In
some situations (like patching class objects), it may be simpler and faster to use them
instead of your framework-specific tools. Here is example of monkey patching with
the patch() context manager provided by unittest.mock module:

from unittest.mock import patch
from mailer import send

def test_send():
 with patch('smtplib.SMTP') as mock:
 instance = mock.return_value

Test-Driven Development

[358]

 instance.sendmail.return_value = {}
 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

Testing environment and dependency
compatibility
The importance of environment isolation has already been mentioned in this book
many times. By isolating your execution environment on both application level
(virtual environments) and system level (system virtualization), you are able to
ensure that your tests run under repeatable conditions. This way, you protect
yourself from rare and obscure problems caused by broken dependencies.

The best way to allow the proper isolation of a test environment is to use good
continuous integration systems that support system virtualization. There are
good free solutions for open source projects such as Travis CI (Linux and OS X) or
AppVeyor (Windows), but if you need such a thing for testing proprietary software,
it is very likely that you will need to spend some time on building such a solution
by yourself on top of some existing open source CI tools (GitLab CI, Jenkins, and
Buildbot).

Dependency matrix testing
Testing matrixes for open source Python projects in most cases focus only on
different Python versions and rarely on different operating systems. Not doing your
tests and builds on different systems is completely OK for projects that are purely
Python and where there are no expected system interoperability issues. But some
projects, especially when distributed as compiled Python extensions, should be
definitely tested on various target operating systems. For open source projects, you
may even be forced to use a few independent CI systems to provide builds for just
the three most popular ones (Windows, Linux, and Mac OS X). If you are looking for
a good example, you can take a look at the small pyrilla project (refer to https://
github.com/swistakm/pyrilla) that is a simple C audio extension for Python. It
uses both Travis CI and AppVeyor in order to provide compiled builds for Windows
and Mac OS X and a large range of CPython versions.

https://github.com/swistakm/pyrilla
https://github.com/swistakm/pyrilla

Chapter 10

[359]

But dimensions of test matrixes do not end on systems and Python versions.
Packages that provide integration with other software such as caches, databases,
or system services very often should be tested on various versions of integrated
applications. A good tool that makes such testing easy is tox (refer to http://
tox.readthedocs.org). It provides a simple way to configure multiple testing
environments and run all tests with a single tox command. It is a very powerful and
flexible tool but is also very easy to use. The best way to present its usage is to show
you an example of a configuration file that is in fact the core of tox. Here is the tox.
ini file from the django-userena project (refer to https://github.com/bread-and-
pepper/django-userena):

[tox]
downloadcache = {toxworkdir}/cache/

envlist =
 ; py26 support was dropped in django1.7
 py26-django{15,16},
 ; py27 still has the widest django support
 py27-django{15,16,17,18,19},
 ; py32, py33 support was officially introduced in django1.5
 ; py32, py33 support was dropped in django1.9
 py32-django{15,16,17,18},
 py33-django{15,16,17,18},
 ; py34 support was officially introduced in django1.7
 py34-django{17,18,19}
 ; py35 support was officially introduced in django1.8
 py35-django{18,19}

[testenv]
usedevelop = True
deps =
 django{15,16}: south
 django{15,16}: django-guardian<1.4.0
 django15: django==1.5.12
 django16: django==1.6.11
 django17: django==1.7.11
 django18: django==1.8.7
 django19: django==1.9
 coverage: django==1.9
 coverage: coverage==4.0.3
 coverage: coveralls==1.1

basepython =
 py35: python3.5

http://tox.readthedocs.org
http://tox.readthedocs.org
https://github.com/bread-and-pepper/django-userena
https://github.com/bread-and-pepper/django-userena

Test-Driven Development

[360]

 py34: python3.4
 py33: python3.3
 py32: python3.2
 py27: python2.7
 py26: python2.6

commands={envpython} userena/runtests/runtests.py userenaumessages
{posargs}

[testenv:coverage]
basepython = python2.7
passenv = TRAVIS TRAVIS_JOB_ID TRAVIS_BRANCH
commands=
 coverage run --source=userena userena/runtests/runtests.py
userenaumessages {posargs}
 coveralls

This configuration allows you to test django-userena on five different versions
of Django and six versions of Python. Not every Django version will work on
every Python version and the tox.ini file makes it relatively easy to define such
dependency constraints. In practice, the whole build matrix consists of 21 unique
environments (including a special environment for code coverage collection). It
would require tremendous effort to create each testing environment manually or
even using shell scripts.

Tox is great but its usage gets more complicated if we would like to change other
elements of the testing environment that are not plain Python dependencies. This is
a situation when we need to test under different versions of system packages and
backing services. The best way to solve this problem is again to use good continuous
integration systems that allow you to easily define matrixes of environment variables
and install system software on virtual machines. A good example of doing that
using Travis CI is provided by the ianitor project (refer to https://github.com/
ClearcodeHQ/ianitor/) that was already mentioned in Chapter 9, Documenting Your
Project. It is a simple utility for the Consul discovery service. The Consul project has
a very active community and many new versions of its code are released every year.
This makes it very reasonable to test against various versions of that service. This
makes sure that the ianitor project is still up to date with the latest version of that
software but also does not break compatibility with previous Consul versions. Here
is the content of the .travis.yml configuration file for Travis CI that allows you to
test against three different Consul versions and four Python interpreter versions:

language: python

install: pip install tox --use-mirrors
env:

https://github.com/ClearcodeHQ/ianitor/
https://github.com/ClearcodeHQ/ianitor/

Chapter 10

[361]

 matrix:
 # consul 0.4.1
 - TOX_ENV=py27 CONSUL_VERSION=0.4.1
 - TOX_ENV=py33 CONSUL_VERSION=0.4.1
 - TOX_ENV=py34 CONSUL_VERSION=0.4.1
 - TOX_ENV=py35 CONSUL_VERSION=0.4.1

 # consul 0.5.2
 - TOX_ENV=py27 CONSUL_VERSION=0.5.2
 - TOX_ENV=py33 CONSUL_VERSION=0.5.2
 - TOX_ENV=py34 CONSUL_VERSION=0.5.2
 - TOX_ENV=py35 CONSUL_VERSION=0.5.2

 # consul 0.6.4
 - TOX_ENV=py27 CONSUL_VERSION=0.6.4
 - TOX_ENV=py33 CONSUL_VERSION=0.6.4
 - TOX_ENV=py34 CONSUL_VERSION=0.6.4
 - TOX_ENV=py35 CONSUL_VERSION=0.6.4

 # coverage and style checks
 - TOX_ENV=pep8 CONSUL_VERSION=0.4.1
 - TOX_ENV=coverage CONSUL_VERSION=0.4.1

before_script:
 - wget https://releases.hashicorp.com/consul/${CONSUL_VERSION}/
consul_${CONSUL_VERSION}_linux_amd64.zip
 - unzip consul_${CONSUL_VERSION}_linux_amd64.zip
 - start-stop-daemon --start --background --exec `pwd`/consul --
agent -server -data-dir /tmp/consul -bootstrap-expect=1

script:
 - tox -e $TOX_ENV

The preceding example provides 14 unique test environments (including pep8 and
coverage builds) for the ianitor code. This configuration also uses tox to create
actual testing virtual environments on Travis VMs. This is actually a very popular
approach to integrate tox with different CI systems. By moving as much of a test
environment configuration as possible to tox, you are reducing the risk of locking
yourself to a single vendor. Things like the installation of new services or defining
system environment variables are supported by most of the Travis CI competitors, so
it should be relatively easy to switch to a different service provider if there is a better
product available on the market or Travis will change their pricing model for open
source projects.

Test-Driven Development

[362]

Document-driven development
doctests are a real advantage in Python compared to other languages. The fact
that documentation can use code examples that are also runnable as tests changes
the way TDD can be done. For instance, a part of the documentation can be done
through doctests during the development cycle. This approach also ensures that
the provided examples are always up to date and really working.

Building software through doctests rather than regular unit tests is called
Document-Driven Development (DDD). Developers explain what the code
is doing in plain English while they are implementing it.

Writing a story
Writing doctests in DDD is done by building a story about how a piece of code
works and should be used. The principles are described in plain English and then
a few code usage examples are distributed throughout the text. A good practice is
to start to write text on how the code works and then add some code examples.

To see an example of doctests in practice, let's look at the atomisator package
(refer to https://bitbucket.org/tarek/atomisator). The documentation text
for its atomisator.parser subpackage (under packages/atomisator.parser/
atomisator/parser/docs/README.txt) is as follows:

=================
atomisator.parser
=================

The parser knows how to return a feed content, with
the `parse` function, available as a top-level function::

>>> from atomisator.parser import Parser

This function takes the feed url and returns an iterator
over its content. A second parameter can specify a maximum
number of entries to return. If not given, it is fixed to 10::

>>> import os
>>> res = Parser()(os.path.join(test_dir, 'sample.xml'))
>>> res
<itertools.imap ...>

Each item is a dictionary that contain the entry::

https://bitbucket.org/tarek/atomisator

Chapter 10

[363]

>>> entry = res.next()
>>> entry['title']
u'CSSEdit 2.0 Released'

The keys available are:

>>> keys = sorted(entry.keys())
>>> list(keys)
 ['id', 'link', 'links', 'summary', 'summary_detail', 'tags',
 'title', 'title_detail']

Dates are changed into datetime::

>>> type(entry['date'])
>>>

Later, the doctest will evolve to take into account new elements or the required
changes. This doctest is also a good documentation for developers who want
to use the package and should be changed with this usage in mind.

A common pitfall in writing tests in a document is to transform it into an unreadable
piece of text. If this happens, it should not be considered as part of the documentation
anymore.

That said, some developers that are working exclusively through doctests often
group their doctests into two categories: the ones that are readable and usable so that
they can be a part of the package documentation, and the ones that are unreadable
and are just used to build and test the software.

Many developers think that doctests should be dropped for the latter in favor of
regular unit tests. Others even use dedicated doctests for bug fixes.

So, the balance between doctests and regular tests is a matter of taste and is up to the
team, as long as the published part of the doctests is readable.

When DDD is used in a project, focus on the readability and decide which
doctests are eligible to be a part of the published documentation.

Test-Driven Development

[364]

Summary
This chapter advocated the usage of TDD and provided more information on:

• unittest pitfalls
• Third-party tools: nose and py.test
• How to build fakes and mocks
• Documentation-driven development

Since we already know how to build, package, and test software, in the next two
chapters we will focus on ways to find performance bottlenecks and optimize
your programs.

[365]

Optimization – General
Principles and Profiling

Techniques
"We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil."

 – Donald Knuth

This chapter is about optimization and provides a set of general principles and
profiling techniques. It gives the three rules of optimization every developer should
be aware of and provides guidelines on optimization. Last, it focuses on how to
find bottlenecks.

The three rules of optimization
Optimization has a price, no matter what the results are. When a piece of code
works, it might be better (sometimes) to leave it alone than to try making it faster at
all costs. There are a few rules to keep in mind when doing any kind of optimization:

• Make it work first
• Work from the user's point of view
• Keep the code readable

Optimization – General Principles and Profiling Techniques

[366]

Make it work first
A very common mistake is to try to optimize the code while you are writing it. This
is mostly pointless because the real bottlenecks are often located where you would
have never thought they would be.

An application is usually composed of very complex interactions, and it is impossible
to get a full picture of what is going on before it is really used.

Of course, this is not a reason to write a function or a method without trying to
make it as fast as possible. You should be careful to lower its complexity as much as
possible and avoid useless repetition. But the first goal is to make it work. This goal
should not be hindered by optimization efforts.

For line-level code, the Python philosophy is that there's one, and preferably only
one, way to do it. So, as long as you stick with a Pythonic syntax, described in
Chapter 2, Syntax Best Practices – below the Class Level, and Chapter 3, Syntax Best
Practices – above the Class Level, your code should be fine. Often, writing less code is
better and faster than writing more code.

Don't do any of these things until you have gotten your code working and you are
ready to profile:

• Start to write a global dictionary to cache data for a function
• Think about externalizing a part of the code in C or hybrid languages such

as Cython
• Look for external libraries to do some basic calculation

For very specialized areas, such as scientific calculation or games, the usage of
specialized libraries and externalization might be unavoidable from the beginning.
On the other hand, using libraries like NumPy might ease the development of
specific features and produce simpler and faster code at the end. Furthermore, you
should not rewrite a function if there is a good library that does it for you.

For instance, Soya 3D, which is a game engine on top of OpenGL (see http://home.
gna.org/oomadness/en/soya3d/index.html), uses C and Pyrex for fast matrix
operations when rendering real-time 3D.

Optimization is carried out on programs that already work.
As Kent Beck says, "Make it work, then make it right, then make it fast."

http://home.gna.org/oomadness/en/soya3d/index.html
http://home.gna.org/oomadness/en/soya3d/index.html

Chapter 11

[367]

Work from the user's point of view
I have seen teams working on optimizing the startup time of an application server
that worked really fine when it was already up and running. Once they finished
speeding it, they promoted that work to their customers. They were a bit frustrated
to notice that the customers didn't really care about it. This was because the speed-up
work was not motivated by the user feedback but by the developer's point of view.
The people who built the system were launching the server multiple times every day.
So the startup time meant a lot to them but not to their customers.

While making a program start faster is a good thing from an absolute point of view,
teams should be careful to prioritize the optimization work and ask themselves the
following questions:

• Have I been asked to make it faster?
• Who finds the program slow?
• Is it really slow, or acceptable?
• How much will it cost to make it go faster and is it worth it?
• What parts need to be fast?

Remember that optimization has a cost and that the developer's point of view is
meaningless to customers, unless you are writing a framework or a library and
the customer is a developer too.

Optimization is not a game. It should be done only when necessary.

Keep the code readable and maintainable
Even if Python tries to make the common code patterns the fastest, optimization
work might obfuscate your code and make it really hard to read. There's a balance to
keep between producing readable, and therefore maintainable, code and defacing it
in order to make it faster.

When you have reached 90% of your optimization objectives and the 10% left to be
done makes your code completely unreadable, it might be a good idea to stop the
work there or to look for other solutions.

Optimization should not make your code unreadable. If it happens,
you should look for alternative solutions such as externalization or
redesign. Look for a good compromise between readability and speed.

Optimization – General Principles and Profiling Techniques

[368]

Optimization strategy
Let's say your program has a real speed problem you need to resolve. Do not try to
guess how to make it faster. Bottlenecks are often hard to find by looking at the code,
and a set of tools is needed to find the real problem.

A good optimization strategy can start with three steps:
• Find another culprit: Make sure a third-party server or resource is not faulty
• Scale the hardware: Make sure the resources are sufficient
• Write a speed test: Create a scenario with speed objectives

Find another culprit
Often, a performance problem occurs at production level and the customer alerts you
that it is not working as it used to when the software was being tested. Performance
problems might occur because the application was not planned to work in the real
world with a high number of users and an increase of data size.

But if the application interacts with other applications, the first thing to do is to check
if the bottlenecks are located on those interactions. For instance, a database server
or an LDAP server might be responsible for extra overhead and might make
everything slower.

The physical links between applications should also be considered. Maybe the
network link between your application server and another server in the intranet
is really slow due to a misconfiguration or congestion.

The design documentation should provide a diagram of all interactions and the
nature of each link to get an overall picture of the system and offer help when
trying to resolve a speed problem.

If your application uses third-party servers of resources, every interaction
should be audited to make sure the bottleneck is not located there.

Scale the hardware
When there is no more volatile memory available, the system starts to use the hard
disk to store data. This is swapping.

This involves a lot of overhead and the performances drop drastically. From a user's
point of view, the system is considered dead at this stage. So, it is important to scale
the hardware to prevent this.

Chapter 11

[369]

While having enough memory on a system is important, it is also important to make
sure that the applications are not acting crazy and eating too much memory. For
instance, if a program works on big video files that can weigh in at several hundreds
of megabytes, it should not load them entirely in memory but rather work on chunks
or use disk streams.

Disk usage is also important. A full partition might really slow down your
application if the I/O errors are hidden in the code that tries to write repeatedly on
the disk. Furthermore, even if the code only tries to write once, the hardware and
OS might try to write multiple times.

Note that scaling up the hardware (vertical scaling) has some obvious limitations.
You cannot fit an infinite amount of hardware to a single rack. Also, highly efficient
hardware is extremely expensive (law of diminishing returns), so there is also an
economical bound to this approach. From this point of view, it is always better to
have the system that can be scaled by adding new computation nodes or workers
(horizontal scaling). This allows you to scale out your service with commodity
software that has the best performance/price ratio.

Unfortunately, designing and maintaining highly scalable distributed systems is
both hard and expensive. If your system cannot be easily scaled horizontally or it is
faster and cheaper to scale it vertically, it may be better to do so instead of wasting
time and resources on a total redesign of your system architecture. Remember that
hardware invariably tends to be faster and cheaper with time. Many products stay
in this sweet spot where their scaling needs align with the trend of raising hardware
performance.

Writing a speed test
When starting with optimization work, it is important to work using a workflow
similar to test-driven development rather than running some manual tests
continuously. A good practice is to dedicate a test module in the application where
the sequence of calls that are to be optimized is written. Having this scenario will
help you to track your progress while you are optimizing the application.

You can even write a few assertions where you set some speed objectives. To prevent
speed regression, these tests can be left after the code has been optimized:

>>> def test_speed():

... import time

... start = time.time()

... the_code()

... end = time.time() - start

Optimization – General Principles and Profiling Techniques

[370]

... assert end < 10, \

... "sorry this code should not take 10 seconds !"

...

Measuring the execution speed depends on the power of the
CPU used. But we will see in the next section how to write
universal duration measures.

Finding bottlenecks
Finding bottlenecks is done by:

• Profiling CPU usage
• Profiling memory usage
• Profiling network usage

Profiling CPU usage
The first source of bottlenecks is your code. The standard library provides all the
tools needed to perform code profiling. They are based on a deterministic approach.

A deterministic profiler measures the time spent in each function by adding a timer
at the lowest level. This introduces a bit of overhead but provides a good idea on
where the time is consumed. A statistical profiler, on the other hand, samples the
instruction pointer usage and does not instrument the code. The latter is less accurate
but allows running the target program at full speed.

There are two ways to profile the code:

• Macro-profiling: This profiles the whole program while it is being used and
generates statistics

• Micro-profiling: This measures a precise part of the program by
instrumenting it manually

Chapter 11

[371]

Macro-profiling
Macro-profiling is done by running the application in a special mode where the
interpreter is instrumented to collect statistics on the code usage. Python provides
several tools for this:

• profile: This is a pure Python implementation
• cProfile: This is a C implementation that provides the same interface as that

of the profile tool but has less overhead

The recommended choice for most Python programmers is cProfile due to its
reduced overhead. Anyway, if you need to extend the profiler in some way, then
profile will probably be a better choice because it does not use C extensions.

Both tools have the same interface and usage, so we will use only one of them to
show how they work. The following is a myapp.py module with a main function
that we are going to test with cProfile:

import time

def medium():
 time.sleep(0.01)

def light():
 time.sleep(0.001)

def heavy():
 for i in range(100):
 light()
 medium()
 medium()
 time.sleep(2)

def main():
 for i in range(2):
 heavy()

if __name__ == '__main__':
 main()

Optimization – General Principles and Profiling Techniques

[372]

The module can be called directly from the prompt and the results are summarized
here:

$ python3 -m cProfile myapp.py

 1208 function calls in 8.243 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)

 1 0.000 0.000 8.243 8.243 myapp.py:2(<module>)

 1 0.000 0.000 8.243 8.243 myapp.py:21(main)

 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)

 200 0.000 0.000 0.212 0.001 myapp.py:9(light)

 1 0.000 0.000 8.243 8.243 {built-in method exec}

 602 8.241 0.014 8.241 0.014 {built-in method sleep}

The statistics provided are a print view of a statistic object filled by the profiler. A
manual invocation of the tool can be:

>>> import cProfile

>>> from myapp import main

>>> profiler = cProfile.Profile()

>>> profiler.runcall(main)

>>> profiler.print_stats()

 1206 function calls in 8.243 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall file:lineno(function)

 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)

 1 0.000 0.000 8.243 8.243 myapp.py:21(main)

 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)

 200 0.000 0.000 0.212 0.001 myapp.py:9(light)

 602 8.241 0.014 8.241 0.014 {built-in method sleep}

Chapter 11

[373]

The statistics can also be saved in a file and then read by the pstats module. This
module provides a class that knows how to handle profile files and gives a few
helpers to play with them invocation:

>>> import pstats

>>> import cProfile

>>> from myapp import main

>>> cProfile.run('main()', 'myapp.stats')

>>> stats = pstats.Stats('myapp.stats')

>>> stats.total_calls

1208

>>> stats.sort_stats('time').print_stats(3)

Mon Apr 4 21:44:36 2016 myapp.stats

 1208 function calls in 8.243 seconds

 Ordered by: internal time

 List reduced from 8 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall file:lineno(function)

 602 8.241 0.014 8.241 0.014 {built-in method sleep}

 400 0.001 0.000 4.025 0.010 myapp.py:5(medium)

 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)

From there, you can browse the code by printing out the callers and callees for
each function:

>>> stats.print_callees('medium')

 Ordered by: internal time

 List reduced from 8 to 1 due to restriction <'medium'>

Function called...

 ncalls tottime cumtime

myapp.py:5(medium) -> 400 4.025 4.025 {built-in method sleep}

>>> stats.print_callees('light')

 Ordered by: internal time

 List reduced from 8 to 1 due to restriction <'light'>

Function called...

 ncalls tottime cumtime

myapp.py:9(light) -> 200 0.212 0.212 {built-in method sleep}

Optimization – General Principles and Profiling Techniques

[374]

Being able to sort the output allows working on different views to find the
bottlenecks. For instance, consider the following scenarios:

• When the number of calls is really high and takes up most of the global time,
the function or method is probably in a loop. Possible optimization may be
done by moving this call to different scope in order to reduce number of
operations

• When one function is taking very long time, a cache might be a good option,
if possible

Another great way to visualize bottlenecks from profiling data is to transform
them into diagrams (see Figure 1). Gprof2Dot (https://github.com/jrfonseca/
gprof2dot) can be used to turn profiler data into a dot graph. You can download
this simple script PyPI using pip and use it on the stats as long as Graphviz (see
http://www.graphviz.org/) is installed in your environment:
$ gprof2dot.py -f pstats myapp.stats | dot -Tpng -o output.png

The advantage of gprof2dot is that it tries to be language agnostic. It is not limited
to Python profile or cProfile output and can read from multiple other profiles
such as Linux perf, xperf, gprof, Java HPROF, and many others.

Figure 1 An example of profiling overview diagram generated with gprof2dot

https://github.com/jrfonseca/gprof2dot
https://github.com/jrfonseca/gprof2dot
http://www.graphviz.org/

Chapter 11

[375]

Macro-profiling is a good way to detect the function that has a problem, or at least its
neighborhood. When you have found it, you can jump to micro-profiling.

Micro-profiling
When the slow function is found, it is sometimes necessary to do more profiling
work that tests just a part of the program. This is done by manually instrumenting
a part of the code in a speed test.

For instance, the cProfile module can be used from a decorator:

>>> import tempfile, os, cProfile, pstats

>>> def profile(column='time', list=5):

... def _profile(function):

... def __profile(*args, **kw):

... s = tempfile.mktemp()

... profiler = cProfile.Profile()

... profiler.runcall(function, *args, **kw)

... profiler.dump_stats(s)

... p = pstats.Stats(s)

... p.sort_stats(column).print_stats(list)

... return __profile

... return _profile

...

>>> from myapp import main

>>> @profile('time', 6)

... def main_profiled():

... return main()

...

>>> main_profiled()

Mon Apr 4 22:01:01 2016 /tmp/tmpvswuovz_

 1207 function calls in 8.243 seconds

 Ordered by: internal time

 List reduced from 7 to 6 due to restriction <6>

Optimization – General Principles and Profiling Techniques

[376]

 ncalls tottime percall cumtime percall file:lineno(function)

 602 8.241 0.014 8.241 0.014 {built-in method sleep}

 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)

 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)

 200 0.000 0.000 0.213 0.001 myapp.py:9(light)

 1 0.000 0.000 8.243 8.243 myapp.py:21(main)

 1 0.000 0.000 8.243 8.243 <stdin>:1(main_profiled)

>>> from myapp import light

>>> stats = profile()(light)

>>> stats()

Mon Apr 4 22:01:57 2016 /tmp/tmpnp_zk7dl

 3 function calls in 0.001 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall file:lineno(function)

 1 0.001 0.001 0.001 0.001 {built-in method sleep}

 1 0.000 0.000 0.001 0.001 myapp.py:9(light)

This approach allows testing parts of the application and sharpens the statistics
output. But at this stage, having a list of callees is probably not interesting, as the
function has already been pointed out as the one to optimize. The only interesting
information is to know how fast it is, and then enhance it.

timeit fits this need better by providing a simple way to measure the execution
time of a small code snippet with the best underlying timer the host system provides
(time.time or time.clock):

>>> from myapp import light

>>> import timeit

>>> t = timeit.Timer('main()')

>>> t.timeit(number=5)

10000000 loops, best of 3: 0.0269 usec per loop

10000000 loops, best of 3: 0.0268 usec per loop

10000000 loops, best of 3: 0.0269 usec per loop

Chapter 11

[377]

10000000 loops, best of 3: 0.0268 usec per loop

10000000 loops, best of 3: 0.0269 usec per loop

5.6196951866149902

The module allows you to repeat the call and is oriented to try out isolated code
snippets. This is very useful outside the application context, in a prompt, for
instance, but is not really handy to use within an existing application.

A deterministic profiler will provide results depending on what the
computer is doing, and so results may vary each time. Repeating the
same test multiple times and making averages provides more accurate
results. Furthermore, some computers have special CPU features, such
as SpeedStep, that might change the results if the computer is idling
when the test is launched (see http://en.wikipedia.org/wiki/
SpeedStep). So, continually repeating the test is a good practice for small
code snippets. There are also various caches to keep in mind such as DNS
caches or CPU caches.

But the results of timeit should be used with caution. It is a very good tool to
objectively compare two short snippets of code but it also allows you to easily
make dangerous mistakes that will lead you to confusing conclusions. Here, for
example, is the comparison of two innocent snippets of code with the timeit
module that could make you think that string concatenation by addition is faster
than the str.join() method:

$ python3 -m timeit -s 'a = map(str, range(1000))' '"".join(a)'

1000000 loops, best of 3: 0.497 usec per loop

$ python3 -m timeit -s 'a = map(str, range(1000)); s=""' 'for i in a: s
+= i'

10000000 loops, best of 3: 0.0808 usec per loop

From Chapter 2, Syntax Best Practices – below the Class Level, we know that string
concatenation by addition in not a good pattern. Despite there are some minor
CPython micro-optimizations designed exactly for such use case, it will eventually
lead to quadratic run time. The problem lies in nuances about the setup argument of
timeit (-s parameter in the command line) and how the range in Python 3 works.
I won't discuss the details of the problem but will leave it to you as an exercise.
Anyway, here is the correct way to compare string concatenation in addition with
the str.join() idiom under Python 3:

$ python3 -m timeit -s 'a = [str(i) for i in range(10000)]' 's="".
join(a)'

10000 loops, best of 3: 128 usec per loop

http://en.wikipedia.org/wiki/SpeedStep
http://en.wikipedia.org/wiki/SpeedStep

Optimization – General Principles and Profiling Techniques

[378]

$ python3 -m timeit -s 'a = [str(i) for i in range(10000)]' '

>s = ""

>for i in a:

> s += i

>'

1000 loops, best of 3: 1.38 msec per loop

Measuring Pystones
When measuring execution time, the result depends on the computer hardware.
To be able to produce a universal measure, the simplest way is to benchmark the
speed of a fixed sequence of code and calculate a ratio out of it. From there, the time
taken by a function can be translated to a universal value that can be compared on
any computer.

A lot of generic benchmarking tools for the measurement of computer
performance are available. Surprisingly, some of them that were created
many years ago are still used today. For instance, Whetstone was
created in 1972, and back then it provided a computer performance
analyzer in Algol 60 (see http://en.wikipedia.org/wiki/
Whetstone_%28benchmark%29). It is used to measure the Millions Of
Whetstone Instructions Per Second (MWIPS). A table of results for old
and modern CPUs is maintained at http://freespace.virgin.net/
roy.longbottom/whetstone%20results.htm.

Python provides a benchmark utility in its test package that measures the duration
of a sequence of well-chosen operations. The result is a number of pystones per
second the computer is able to perform and the time used to perform the benchmark,
which is generally around one second on modern hardware:

>>> from test import pystone

>>> pystone.pystones()

(1.0500000000000007, 47619.047619047589)

The rate can be used to translate a profile duration into a number of pystones:

>>> from test import pystone

>>> benchtime, pystones = pystone.pystones()

>>> def seconds_to_kpystones(seconds):

... return (pystones*seconds) / 1000

...

http://en.wikipedia.org/wiki/Whetstone_%28benchmark%29
http://en.wikipedia.org/wiki/Whetstone_%28benchmark%29
http://freespace.virgin.net/roy.longbottom/whetstone%20results.htm
http://freespace.virgin.net/roy.longbottom/whetstone%20results.htm

Chapter 11

[379]

...

>>> seconds_to_kpystones(0.03)

1.4563106796116512

>>> seconds_to_kpystones(1)

48.543689320388381

>>> seconds_to_kpystones(2)

97.087378640776762

The seconds_to_kpystones returns the number of kilo pystones. This conversion
can be included in your test if you want to code some speed assertions.

Having pystones will allow you to use this decorator in tests so that you can set
assertions on execution times. These tests will be runnable on any computer and
will allow developers to prevent speed regressions. When a part of the application
has been optimized, they will be able to set its maximum execution time in tests
and make sure it won't be breached by further changes. This approach is, of course,
not ideal and 100% accurate, but it is at least better than hardcoding execution time
assertions in raw values expressed as seconds.

Profiling memory usage
Another problem you may encounter when optimizing an application is memory
consumption. If a program starts to eat so much memory that the system begins
to swap, there is probably a place in your application where too many objects are
created or objects that you don't intend to keep are still kept alive by some unintended
reference. This is often easy to detect through classical profiling because consuming
enough memory to make a system swap involves a lot of CPU work that can be
detected. But sometimes it is not obvious and the memory usage has to be profiled.

How Python deals with memory
Memory usage is probably the hardest thing to profile in Python when you use the
CPython implementation. While languages such as C allow you to get the memory
size of any element, Python will never let you know how much a given object
consumes. This is due to the dynamic nature of the language, and the fact that
memory management is not directly accessible to the language user.

Optimization – General Principles and Profiling Techniques

[380]

Some raw details of memory management were already explained in Chapter 7,
Python Extensions in Other Languages. We already know that CPython uses reference
counting to manage object allocation. This is the deterministic algorithm which
ensures that object deallocation will be triggered when the reference count of the
object goes to zero. Despite being deterministic, this process is not easy to track
manually and to reason about in complex codebases. Also, the deallocation of objects
on a reference count level does not necessarily mean that the actual process heap
memory is freed by the interpreter. Depending on CPython interpreter compilation
flags, system environment, or runtime context, the internal memory manager layer
might decide to leave some blocks of free memory for future reallocation instead
of releasing it completely.

Additional micro-optimizations in CPython implementation also make it even
harder to predict actual memory usage. For instance, two variables that point to the
same short string or small integer value might or might not point to the same object
instance in memory.

Despite being quite scary and seemingly complex, memory management in Python
is very well documented (refer to https://docs.python.org/3/c-api/memory.
html). Note that, micro-optimizations mentioned earlier can, in most cases, be
ignored when debugging memory issues. Also, reference counting is roughly based
on a simple statement—if a given object is not referenced anymore, it is removed. In
other words, all local references in a function are removed after the interpreter:

• Leaves the function
• Makes sure the object is not being used anymore

So, objects that remain in memory are:

• Global objects
• Objects that are still referenced in some way

Be careful with the argument inbound outbound edge case. If an object is created
within the arguments, the argument reference will still be alive if the function returns
the object. This can lead to unexpected results if it is used as a default value:

>>> def my_function(argument={}): # bad practice

... if '1' in argument:

... argument['1'] = 2

... argument['3'] = 4

... return argument

...

https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html

Chapter 11

[381]

>>> my_function()

{'3': 4}

>>> res = my_function()

>>> res['4'] = 'I am still alive!'

>>> print my_function()

{'3': 4, '4': 'I am still alive!'}

That is why nonmutable objects should always be used, like this:

>>> def my_function(argument=None): # better practice

... if argument is None:

... argument = {} # a fresh dict is created everytime

... if '1' in argument:

... argument['1'] = 2

... argument['3'] = 4

... return argument

...

>>> my_function()

{'3': 4}

>>> res = my_function()

>>> res['4'] = 'I am still alive!'

>>> print my_function()

{'3': 4}

Reference counting in Python is handy and frees you from the obligation of manually
tracking object references of objects, and therefore you don't have to manually
destroy them. Although this introduces another problem, since developers never
clean up instances in memory, it might grow in an uncontrolled way if developers
don't pay attention to the way they use their data structures.

The usual memory eaters are:

• Caches that grow uncontrolled
• Object factories that register instances globally and do not keep track of their

usage, such as a database connector creator used on the fly every time a
query is called

• Threads that are not properly finished

Optimization – General Principles and Profiling Techniques

[382]

• Objects with a __del__ method and involved in a cycle are also memory
eaters. In older versions of Python (prior to 3.4 version), the garbage collector
will not break the cycle since it cannot be sure which object should be deleted
first. Hence, you will leak memory. Using this method is a bad idea in
most cases.

Unfortunately, the management of reference counts must be done manually in C
extensions using Python/C API with Py_INCREF() and Py_DECREF() macros. We
discussed caveats of handling reference counts and reference ownership earlier in
Chapter 7, Python Extensions in Other Languages, so you should already know that
it is a pretty hard topic riddled with various pitfalls. This is the reason why most
memory issues are caused by C extensions that are not written properly.

Profiling memory
Before starting to hunt down memory issues in Python, you should know that the
nature of memory leaks in Python is quite special. In some of the compiled languages
such as C and C++, the memory leaks are almost exclusively caused by allocated
memory blocks that are no longer referenced by any pointer. If you don't have
reference to memory, you cannot release it, and this very situation is called a memory
leak. In Python, there is no low level memory management available for the user,
so we rather deal with leaking references—references to objects that are not needed
anymore but were not removed. This stops the interpreter from releasing resources
but is not the same situation as a memory leak in C. Of course, there is always the
exceptional case of C extensions, but they are a different kind of beast that need
completely different tool chains and cannot be easily inspected from Python code.

So, memory issues in Python are mostly caused by unexpected or unplanned
resource acquiring patterns. It happens very rarely that this is an effect of real bugs
caused by the mishandling of memory allocation and deallocation routines. Such
routines are available to the developer only in CPython when writing C extension
with Python/C APIs and you will deal with them very rarely, if ever. Thus, most
so-called memory leaks in Python are mostly caused by the overblown complexity
of the software and minor interactions between its components that are really hard
to track. In order to spot and locate such deficiencies of your software, you need to
know how an actual memory usage looks in the program.

Getting information about how many objects are controlled by the Python interpreter
and about their real size is a bit tricky. For instance, knowing how much a given
object weighs in bytes would involve crawling down all its attributes, dealing with
cross-references and then summing up everything. It's a pretty difficult problem if
you consider the way objects tend to refer to each other. The gc module does not
provide high-level functions for this, and it would require Python to be compiled in
debug mode to have a full set of information.

Chapter 11

[383]

Often, programmers just ask the system about the memory usage of their application
after and before a given operation has been performed. But this measure is an
approximation and depends a lot on how the memory is managed at system level.
Using the top command under Linux or the Task Manager under Windows, for
instance, makes it possible to detect memory problems when they are obvious.
But this approach is laborious and makes it really hard to track down the faulty
code block.

Fortunately, there are a few tools available to make memory snapshots and calculate
the number and size of loaded objects. But let's keep in mind that Python does not
release memory easily, preferring to hold on to it in case it is needed again.

For some time, one of most popular tools to use when debugging memory issues and
usage in Python was Guppy-PE and its Heapy component. Unfortunately, it seems to
be no longer maintained and it lacks Python 3 support. Luckily, there are some other
alternatives that are Python 3 compatible to some extent:

• Memprof (http://jmdana.github.io/memprof/): It is declared to work
on Python 2.6, 2.7, 3.1, 3.2, and 3.3 and some POSIX-compliant systems
(Mac OS X and Linux)

• memory_profiler (https://pypi.python.org/pypi/memory_profiler):
It is declared to support the same Python versions and systems as Memprof

• Pympler (http://pythonhosted.org/Pympler/): It is declared to support
Python 2.5, 2.6, 2.7, 3.1, 3.2, 3.3, and 3.4 and to be OS independent

Note that the preceding information is based purely on trove classifiers used by the
latest distributions of featured packages. This could easily change in the time after
this book was written. Nevertheless, there is one package that currently supports
the widest spectrum of Python versions and is also known to work flawlessly under
Python 3.5. It is objgraph. Its APIs seem to be a bit clumsy and have a very limited
set of functionalities. But it works, does well what it needs to and is really easy to
use. Memory instrumentation is not a thing that is added to the production code
permanently, so this tool does not need to be pretty. Because of its wide support
of Python versions in OS independence, we will focus only on objgraph when
discussing examples of memory profiling. The other tools mentioned in this section
are also exciting pieces of software but you need to research them by yourself.

http://jmdana.github.io/memprof/
https://pypi.python.org/pypi/memory_profiler
http://pythonhosted.org/Pympler/

Optimization – General Principles and Profiling Techniques

[384]

objgraph
objgraph (refer to http://mg.pov.lt/objgraph/) is a simple tool for creating
diagrams of object references that should be useful when hunting memory leaks in
Python. It is available on PyPI but it is not a completely standalone tool and requires
Graphviz in order to create memory usage diagrams. For developer-friendly systems
like Mac OS X or Linux, you can easily obtain it using your preferred system package
manager. For Windows, you need to download the Graphviz installer from the
project page (refer to http://www.graphviz.org/) and install it manually.

objgraph provides multiple utilities that allow you to list and print various statistics
about memory usage and object counts. An example of such utilities in use is shown
in the following transcript of interpreter session.

>>> import objgraph

>>> objgraph.show_most_common_types()

function 1910

dict 1003

wrapper_descriptor 989

tuple 837

weakref 742

method_descriptor 683

builtin_function_or_method 666

getset_descriptor 338

set 323

member_descriptor 305

>>> objgraph.count('list')

266

>>> objgraph.typestats(objgraph.get_leaking_objects())

{'Gt': 1, 'AugLoad': 1, 'GtE': 1, 'Pow': 1, 'tuple': 2, 'AugStore': 1,
'Store': 1, 'Or': 1, 'IsNot': 1, 'RecursionError': 1, 'Div': 1, 'LShift':
1, 'Mod': 1, 'Add': 1, 'Invert': 1, 'weakref': 1, 'Not': 1, 'Sub': 1,
'In': 1, 'NotIn': 1, 'Load': 1, 'NotEq': 1, 'BitAnd': 1, 'FloorDiv':
1, 'Is': 1, 'RShift': 1, 'MatMult': 1, 'Eq': 1, 'Lt': 1, 'dict': 341,
'list': 7, 'Param': 1, 'USub': 1, 'BitOr': 1, 'BitXor': 1, 'And': 1,
'Del': 1, 'UAdd': 1, 'Mult': 1, 'LtE': 1}

As already said, objgraph allows you to create diagrams of memory usage patterns
and cross-references that link all the objects in the given namespace. The most useful
diagramming utilities of that library are objgraph.show_refs() and objgraph.
show_backrefs(). They both accept reference to the object being inspected and
save a diagram image to file using the Graphviz package. Examples of such graphs
are presented in Figure 2 and Figure 3.

http://mg.pov.lt/objgraph/
http://www.graphviz.org/

Chapter 11

[385]

Here is the code that was used to create these diagrams:

import objgraph

def example():
 x = []
 y = [x, [x], dict(x=x)]

 objgraph.show_refs(
 (x, y),
 filename='show_refs.png',
 refcounts=True
)
 objgraph.show_backrefs(
 (x, y),
 filename='show_backrefs.png',
 refcounts=True
)

if __name__ == "__main__":
 example()

Figure 2 shows the diagram of all references hold by x and y objects. From top to
bottom and left to right it presents exactly four objects:

• y = [x, [x], dict(x=x)] list instance
• dict(x=x) dictionary instance
• [x] list instance
• x = [] list instance

Figure 2 An example result of the show_refs() diagram from the example() function

Optimization – General Principles and Profiling Techniques

[386]

Figure 3 shows not only references between x and y but also all the objects that hold
references to these two instances. There are so-called back references and are really
helpful in finding objects that stop other objects from being deallocated.

Figure 3 An example result of the show_backrefs() diagram from the example() function

In order to show how objgraph may be used in practice, let's review some practical
examples. As we have already noted a few times in this book, CPython has its own
garbage collector that exists independently from its reference counting method. It's
not used for general purpose memory management but only to solve the problem of
cyclic references. In many situations, objects may reference each other in a way that
would make it impossible to remove them using simple techniques based on tracking
the number of references. Here is the most simple example:

x = []
y = [x]
x.append(y)

Such a situation is visually presented in Figure 4. In the preceding case, even if all
external references to x and y objects will be removed (for instance, by returning from
local scope of a function), these two objects cannot be removed because there are still
two cross-references owned by these two objects. This is the situation where Python
garbage collector steps in. It can detect cyclic references to objects and trigger their
deallocation if there are no other valid references to these objects outside the cycle.

Chapter 11

[387]

Figure 4 An example diagram of cyclic references between two objects

The real problem starts when at least one of the objects in such a cycle has the
custom __del__() method defined. It is a custom deallocation handler that will
be called when the object's reference count finally goes to zero. It can execute any
arbitrary Python code and so can also create new references to featured object. This
is the reason why garbage collector prior to Python 3.4 version could not break
reference cycles if at least one of the objects provided the custom __del__() method
implementation. PEP 442 introduced safe object finalization to Python and became
a part of the standard starting from Python 3.4. Anyway, this may still be a problem
for packages that worry about backwards compatibility and target a wide spectrum
of Python interpreter versions. The following snippet of code shows you the
differences in behavior of cyclic garbage collector in different Python versions:

import gc
import platform
import objgraph

class WithDel(list):
 """ list subclass with custom __del__ implementation """
 def __del__(self):
 pass

def main():
 x = WithDel()
 y = []
 z = []

 x.append(y)
 y.append(z)
 z.append(x)

 del x, y, z

Optimization – General Principles and Profiling Techniques

[388]

 print("unreachable prior collection: %s" % gc.collect())
 print("unreachable after collection: %s" % len(gc.garbage))
 print("WithDel objects count: %s" %
 objgraph.count('WithDel'))

if __name__ == "__main__":
 print("Python version: %s" % platform.python_version())
 print()
 main()

The output of the preceding code, when executed under Python 3.3, shows that the
cyclic garbage collector in the older versions of Python cannot collect objects that
have the __del__() method defined:

$ python3.3 with_del.py

Python version: 3.3.5

unreachable prior collection: 3

unreachable after collection: 1

WithDel objects count: 1

With a newer version of Python, the garbage collector can safely deal with
finalization of objects even if they have the __del__() method defined:

$ python3.5 with_del.py

Python version: 3.5.1

unreachable prior collection: 3

unreachable after collection: 0

WithDel objects count: 0

Although custom finalization is no longer tricky in the latest Python releases, it still
poses a problem for applications that need to work under different environments.
As mentioned earlier, the objgraph.show_refs() and objgraph.show_backrefs()
functions allow you to easily spot problematic class instances. For instance, we
can easily modify the main() function to show all back references to the WithDel
instances in order to see if we have leaking resources:

def main():
 x = WithDel()
 y = []
 z = []

Chapter 11

[389]

 x.append(y)
 y.append(z)
 z.append(x)

 del x, y, z

 print("unreachable prior collection: %s" % gc.collect())
 print("unreachable after collection: %s" % len(gc.garbage))
 print("WithDel objects count: %s" %
 objgraph.count('WithDel'))

 objgraph.show_backrefs(
 objgraph.by_type('WithDel'),
 filename='after-gc.png'
)

Running the preceding example under Python 3.3 will result in a diagram (see Figure
5), which shows that gc.collect() could not succeed in removing x, y, and z object
instances. Additionally, objgraph highlights all the objects that have the custom
__del__() method defined to make spotting such issues easier.

Figure 5 The diagram showing an example of cyclic references that can't be picked by
the Python garbage collector prior to version 3.4

Optimization – General Principles and Profiling Techniques

[390]

C code memory leaks
If the Python code seems perfectly fine and the memory still increases when you loop
through the isolated function, the leak might be located on the C side. This happens,
for instance, when a Py_DECREF call is missing.

The Python core code is pretty robust and tested for leaks. If you use packages that
have C extensions, they might be a good place to look first. Because you will be
dealing with code operating on a much lower level of abstraction than Python, you
need to use completely different tools to resolve such memory issues.

Memory debugging is not easy in C, so before diving into extension internals make
sure to properly diagnose the source of your problem. It is a very popular approach
to isolate a suspicious package with code similar in nature to unit tests:

• Write a separate test for each API unit or functionality of an extension you
are suspecting to leak memory

• Perform the test in a loop for an arbitrarily long time in isolation (one test
per run)

• Observe from outside which of the tested functionalities increase memory
usage over time

Using such an approach, you can isolate the faulty part of the extension and this
will reduce the time required later to inspect and fix its code. This process may seem
burdensome because it requires a lot of additional time and coding, but it really pays
off in the long run. You can always ease your work by reusing some testing tools
introduced in Chapter 10, Test-Driven Development. Utilities such as tox were perhaps
not designed exactly for this case, but they can at least reduce the time required to
run multiple tests in isolated environments.

Hopefully, you have isolated the part of the extension that is leaking memory and
can finally start actual debugging. If you're lucky, a simple manual inspection of the
source code may give the desired results. In many cases, the problem is as simple
as adding the missing Py_DECREF call. Nevertheless, in most cases, our work is not
that simple. In such situations, you need to bring out some bigger guns. One of the
notable generic tools for fighting memory leaks in compiled code that should be in
every programmer's toolbelt is Valgrind. It is a whole instrumentation framework
for building dynamic analysis tools. Because of this, it may not be easy to learn and
master, but you should definitely know the basics.

Chapter 11

[391]

Profiling network usage
As I said earlier, an application that communicates with third-party programs such
as databases, caches, web services, or an LDAP server can be slowed down when
those applications are slow. This can be tracked with a regular code profiling method
on the application side. But if the third-party software works fine on its own, the
culprit is probably the network.

The problem might be a misconfigured hub, a low-bandwidth network link, or
even a high number of traffic collisions that make computers send the same packets
several times.

Here are a few elements to get you in. To find out what is going on, there are three
fields to investigate at first:

• Watch the network traffic using tools such as:
 ° ntop: http://www.ntop.org (Linux only)
 ° wireshark: www.wireshark.org (previously named Ethereal)

• Track down unhealthy or misconfigured devices with net-snmp
(http://www.net-snmp.org).

• Estimate the bandwidth between two computers using Pathrate, a statistical
tool. See http://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html.

If you want to go further on network performance issues, you might also want to
read Network Performance Open Source Toolkit, Wiley, by Richard Blum. This book
exposes strategies to tune the applications that are heavily using the network and
provides a tutorial to scan complex network problems.

High Performance MySQL, O'Reilly Media, by Jeremy Zawodny is also a good book to
read when writing an application that uses MySQL.

http://www.ntop.org
www.wireshark.org
http://www.net-snmp.org
http://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html

Optimization – General Principles and Profiling Techniques

[392]

Summary
In this chapter, we have seen:

• The three rules of optimization:
 ° Make it work first
 ° Take the user's point of view
 ° Keep the code readable

• An optimization strategy based on writing a scenario with speed objectives
• How to profile CPU or memory usage and a few tips for network profiling

Now that you know how to locate your performance problems, the next chapter
provides some popular and generic strategies to get rid of them.

[393]

Optimization – Some
Powerful Techniques

Optimizing a program is not a magical process. It is done by following a simple
algorithm, synthesized by Stefan Schwarzer at Europython 2006 in his original
pseudocode example:

def optimize():
 """Recommended optimization"""
 assert got_architecture_right(), "fix architecture"
 assert made_code_work(bugs=None), "fix bugs"
 while code_is_too_slow():
 wbn = find_worst_bottleneck(just_guess=False,
 profile=True)
 is_faster = try_to_optimize(wbn,
 run_unit_tests=True,
 new_bugs=None)
 if not is_faster:
 undo_last_code_change()

By Stefan Schwarzer, Europython 2006

This example probably isn't the neatest and clearest one but captures pretty much all
the important aspects of an organized optimization procedure. The main things we
learn from it are:

• Optimization is an iterative process where not every iteration leads to
better results

• The main prerequisite is code that is verified to be working properly
with tests

• You should always focus on optimizing the current application bottleneck

Optimization – Some Powerful Techniques

[394]

Making your code work faster is not an easy task. In case of abstract mathematical
problems, the solution of course lies in choosing the right algorithm and proper data
structures. But in that case, it is very hard to provide some generic tips and tricks
that can be used in any code for solving algorithmic issues. There are of course some
generic methodologies for designing a new algorithm, or even meta-heuristics that
can be applied to a large variety of problems but they are pretty language-agnostic
and thus are rather out of scope of this book.

Anyway, some performance issues are only caused by certain code quality defects
or application usage context. For instance, the speed of the application might be
reduced by:

• Bad usage of basic built-in types
• Too much complexity
• Hardware resource usage patterns not matching with the execution

environment
• Waiting too long for responses from third-party APIs or backing services
• Doing too much in time-critical parts of the application

More often, the solving of such performance issues does not require advanced
academic knowledge but only good software craftsmanship. And a big part of
craftsmanship is knowing when to use the proper tools. Fortunately, there are some
well-known patterns and solutions for dealing with performance problems.

In this chapter, we will discuss some popular and reusable solutions that allow you
to non-algorithmically optimize your program through:

• Reducing the complexity
• Using architectural trade offs
• Caching

Reducing the complexity
Before we dig further into optimization techniques, let's define exactly what we
are going to deal with. From the chapter's introduction, we know that focusing on
improving application bottlenecks is critical for successful optimization. A bottleneck
is a single component that severely limits the capacity of a program or computer
system. An important characteristic of every piece of code with performance issues is
that it usually has only a single bottleneck. We discussed some profiling techniques
in the previous chapter, so you should already be familiar with the tools required to
locate and isolate such places. If your profiling results show that there are few places
that need immediate improvement, then you should at first try to treat each as a
separate component and optimize independently.

Chapter 12

[395]

Of course, if there is no explicit bottleneck but your application still performs
under your expectations, then you are really in a bad position. The gains of the
optimization process are proportional to the performance impact of optimized
bottlenecks. Optimizing every small component that does not substantially
contribute to the overall execution time or resource consumption will only give
you minimal benefit for all the time spent on profiling and optimization. If your
application does not seem to have real bottlenecks, there is a possibility that you
have missed something. Try using different profiling strategies or tools or look at it
from a different perspective (memory, I/O operations, or network throughput). If
that does not help, you should really consider revising your software architecture.

But if you have successfully found a single and integral component that limits
your application performance, then you are really lucky. There is high chance that
with only minimal code improvement, you will be able to really improve code
execution time and/or resource usage. And the gain from optimization will, again,
be proportional to the bottleneck size.

The first and most obvious aspect to look after when trying to improve application
performance is complexity. There are many definitions of what makes a program
complex and many ways to express it. Some complexity metrics can provide
objective information about how the code behaves and such information can
sometimes be extrapolated into performance expectations. An experienced
programmer can even reliably guess how two different implementations will
perform in practice knowing their complexities and realistic execution contexts.

The two popular ways to define application complexity are:

• Cyclomatic complexity that is very often correlated with application
performance

• The Landau notation, also known as big O notation, that is an algorithm
classification method that is very useful in objectively judging performance

From there, the optimization process may be sometimes understood as a process
of reducing the complexity. This section provides simple tips for this work by
simplifying loops. But first of all, let's learn how to measure complexity.

Optimization – Some Powerful Techniques

[396]

Cyclomatic complexity
Cyclomatic complexity is a metric developed by Thomas J. McCabe in 1976. Because
of its author, it is very often called McCabe's complexity. It measures the number of
linear paths through the code. All if, for, and while loops are counted to come up
with a measure.

The code can then be categorized as follows:

Cyclomatic Complexity What it means
1 to 10 Not complex
11 to 20 Moderately complex
21 to 50 Really complex
More than 50 Too complex

Cyclomatic complexity is rather the code quality score than a metric that objectively
judges its performance. It does not replace the need for code profiling for finding
performance bottlenecks. Anyway, code that has high cyclomatic complexity often
tends to utilize rather complex algorithms that may not perform well with larger
inputs.

Although cyclomatic complexity is not a reliable way to judge application
performance, it has one very nice advantage. It is a source code metric so it can be
measured with proper tools. This cannot be said about other ways of expressing
complexity—the big O notation. Thanks to measurability, cyclomatic complexity
may be a useful addition to profiling that gives you more information about
problematic parts of the software. Complex parts of code are the first to review
when considering radical code architecture redesigns.

Measuring McCabe's complexity is relatively simple in Python because it can be
deduced from its Abstract Syntax Tree. Of course, you don't need to do that by
yourself. A popular tool that provides cyclomatic complexity measurement for
Python is flake8 (with the mccabe plugin), which has already been introduced
in Chapter 4, Choosing Good Names.

The big O notation
The most canonical method to define function complexity is the big O notation
(see http://en.wikipedia.org/wiki/Big_O_notation). This metric defines how
an algorithm is affected by the size of the input data. For instance, does the algorithm
scale linearly with the size of the input data or quadratically?

http://en.wikipedia.org/wiki/Big_O_notation

Chapter 12

[397]

Calculating the big O notation manually for an algorithm is the best approach to
get an overview on how its performance is related with the size of the input data.
Knowing the complexity of your application components gives you the ability to
detect and focus on the parts that will really slow down the code.

To measure the big O notation, all constants and low-order terms are removed in order
to focus on the portion that really weighs when the input data grows. The idea is to try
to categorize the algorithm in one of these categories, even if it is an approximation:

Notation Type
O(1) Constant. Does not depend on the input

data.
O(n) Linear. Will grow as "n" grows.
O(n log n) Quasi linear.
O(n2) Quadratic complexity.
O(n3) Cubic complexity.
O(n!) Factorial complexity.

For instance, we already know from Chapter 2, Syntax Best Practices – below the
Class Level, that a dict lookup has an average complexity of O(1). It is considered
constant regardless of how many elements are in the dict, whereas looking through
a list of items for a particular item is O(n).

Let's take another example:

>>> def function(n):

... for i in range(n):

... print(i)

...

In that case, the print statement will be executed n times. Loop speed will depend on
n, so its complexity expresses using the big O notation will be O(n).

If the function has conditions, the correct notation to keep is the highest one:

>>> def function(n):

... if some_test:

... print('something')

... else:

... for i in range(n):

... print(i)

...

Optimization – Some Powerful Techniques

[398]

In this example, the function could be O(1) or O(n), depending on the test. But the
worst case is O(n), so whole function complexity is O(n).

When discussing complexity expressed in big O notation, we usually review the
worst case scenario. While this is the best method to define complexity when
comparing two independent algorithms, it may not be the best approach in every
practical situation. Many algorithms change the runtime performance depending
on the statistical characteristic of input data or amortize the cost of worst case
operations by doing clever tricks. This is why, in many cases, it may be better to
review your implementation in terms of average complexity or amortized complexity.

For example, take a look at the operation of appending a single element to Python's
list type instance. We know that list in CPython uses an array with overallocation
for the internal storage instead of linked lists. In case an array is already full,
appending a new element requires allocation of the new array and copying all
existing elements (references) to a new area in the memory. If we look from the point
of the worst-case complexity, it is clear that the list.append() method has O(n)
complexity. And this is a bit expensive when compared to a typical implementation
of the linked list structure.

But we also know that the CPython list type implementation uses overallocation to
mitigate the complexity of such occasional reallocation. If we evaluate the complexity
over a sequence of operations, we will see that the average complexity of list.
append() is O(1) and this is actually a great result.

When solving problems, we often know a lot of details about our input data such
as its size or statistical distribution. When optimizing the application, it is always
worth using every bit of knowledge about your input data. Here, another problem of
worst-case complexity starts to show up. It is intended to show the limiting behavior
of the function when the input tends toward large values or infinity, rather than give
a reliable performance approximation for real-life data. Asymptotic notation is great
when defining the growth rate of a function but it won't give a reliable answer for the
simple question: which implementation will take less time? Worst-case complexity
dumps all those little details about both your implementation and data characteristic
to show you how your program will behave asymptotically. It works for arbitrarily
large inputs that you may not even need to consider.

For instance, let's assume that you have a problem to solve regarding data consisting
of n independent elements. Let's suppose also that you know two different ways to
solve this problem—program A and program B. You know that program A requires
100n2 operations to finish and program B requires 5n3 operations to give the problem
a solution. Which one would you choose? When speaking about very large inputs,
program A is of course the better choice because it behaves better asymptotically. It
has O(n2) complexity compared to O(n3) complexity that characterizes program B.

Chapter 12

[399]

But by solving a simple 100 n2 > 5 n3 inequality, we can find that program B will
take fewer operations when n is less than 20. If we know a bit more about our input
bounds, we can make slightly better decisions.

Simplifying
To reduce the complexity of code, the way data is stored is fundamental. You should
pick your data structure carefully. This section provides a few examples on how the
performance of simple code snippets can be improved by the proper datatypes for
the job.

Searching in a list
Due to implementation details of the list type in Python, searching for a specific
value in a list isn't a cheap operation. The complexity of the list.index() method is
O(n), where n is the number of list elements. Such linear complexity is not especially
bad if you don't need to perform many element index lookups, but it can have a
negative performance impact if there is a need for many such operations.

If you need fast search over a list, you can try the bisect module from the Python
standard library. The functions in this module are mainly designed for inserting or
finding insertion indexes for given values in a way that will preserve the order of the
already sorted sequence. Anyway, they can be used for efficiently finding element
indexes with a bisection algorithm. Here is the recipe from the official documentation
of the function that finds the element index using a binary search:

def index(a, x):
 'Locate the leftmost value exactly equal to x'
 i = bisect_left(a, x)
 if i != len(a) and a[i] == x:
 return i
 raise ValueError

Note that every function from the bisect module requires a sorted sequence in order
to work. If your list is not in the correct order, then sorting it is a task with at least
O(n log n) complexity. This is a worse class than O(n), so sorting the whole list for
performing only a single search will definitely not pay off. However, if you need to
perform a lot of index searches in a huge list that does not need to change often, then
using a single sort operation bisect may be a very good trade off.

Also, if you already have a sorted list, you can insert new items into that list using
bisect without needing to re-sort it.

Optimization – Some Powerful Techniques

[400]

Using a set instead of a list
When you need to build a sequence of distinct values out of a given sequence,
the first algorithm that might come to your mind is:

>>> sequence = ['a', 'a', 'b', 'c', 'c', 'd']

>>> result = []

>>> for element in sequence:

... if element not in result:

... result.append(element)

...

>>> result

['a', 'b', 'c', 'd']

The complexity is introduced by the lookup in the result list with the in operator
that has the time complexity, O(n). It is then used in the loop, which costs O(n). So,
the overall complexity is quadratic—O(n2).

Using a set type for the same work will be faster because the stored values are
looked up using hashes same as in the dict type. Also, set ensures the uniqueness
of elements, so we don't need to do anything more but create a new set from our
sequence object. In other words, for each value in sequence, the time taken to see
if it is already in the set will be constant:

>>> sequence = ['a', 'a', 'b', 'c', 'c', 'd']

>>> result = set(sequence)

>>> result

set(['a', 'c', 'b', 'd'])

This lowers the complexity to O(n), which is the complexity of the set object
creation. The additional advantage is shorter and more explicit code.

When you try to reduce the complexity of an algorithm, carefully
consider your data structures. There are a range of built-in types,
so pick the right one.

Cut the external calls, reduce the workload
A part of the complexity is introduced by calls to other functions, methods, and
classes. In general, get as much of the code out of the loops as possible. This is
doubly important for nested loops. Don't recalculate over and over those things
that can be calculated before the loop even begins. Inner loops should be tight.

Chapter 12

[401]

Using collections
The collections module provides high-performance alternatives to the built-in
container types. The main types available in this module are:

• deque: A list-like type with extra features
• defaultdict: A dict-like type with a built-in default factory feature
• namedtuple: A tuple-like type that assigns keys for members

deque
A deque is an alternative implementation for lists. While a list is based on arrays,
a deque is based on a doubly linked list. Hence, a deque is much faster when you
need to insert something into its middle or head but much slower when you need
to access an arbitrary index.

Of course, thanks to the overallocation of an internal array in the Python list
type, not every list.append() call requires memory reallocation, and the average
complexity of this method is O(1). Still, pops and appends are generally faster when
performed on linked lists instead of arrays. The situation changes dramatically when
the element needs to be added on arbitrary point of sequence. Because all elements
on the right of the new one need to be shifted in an array, the complexity of list.
insert() is O(n). If you need to perform a lot of pops, appends, and inserts, the
deque in place of the list may provide substantial performance improvement. But
always be sure to profile your code before switching from a list to the deque,
because a few things that are fast in arrays (such as accessing arbitrary index) are
extremely inefficient in linked lists.

For example, if we measure the time of appending one element and removing it
from the sequence with timeit, the difference between list and deque may not
even be noticeable:

$ python3 -m timeit \

> -s 'sequence=list(range(10))' \

> 'sequence.append(0); sequence.pop();'

1000000 loops, best of 3: 0.168 usec per loop

$ python3 -m timeit \

> -s 'from collections import deque; sequence=deque(range(10))' \

> 'sequence.append(0); sequence.pop();'

1000000 loops, best of 3: 0.168 usec per loop

Optimization – Some Powerful Techniques

[402]

But if we do similar comparison for situations when we want to add and remove the
first element of the sequence, the performance difference is impressive:

$ python3 -m timeit \

> -s 'sequence=list(range(10))' \

> 'sequence.insert(0, 0); sequence.pop(0)'

1000000 loops, best of 3: 0.392 usec per loop

$ python3 -m timeit \

> -s 'from collections import deque; sequence=deque(range(10))' \

> 'sequence.appendleft(0); sequence.popleft()'

10000000 loops, best of 3: 0.172 usec per loop

And the difference is, it gets bigger when the size of the sequence grows. Here is an
example of the same test performed on lists containing 10,000 elements:

$ python3 -m timeit \

> -s 'sequence=list(range(10000))' \

> 'sequence.insert(0, 0); sequence.pop(0)'

100000 loops, best of 3: 14 usec per loop

$ python3 -m timeit \

> -s 'from collections import deque; sequence=deque(range(10000))' \

> 'sequence.appendleft(0); sequence.popleft()'

10000000 loops, best of 3: 0.168 usec per loop

Thanks to efficient append() and pop() methods that work at the same speed from
both ends of the sequence, deque makes a perfect type for implementing queues. For
example, a FIFO (First In First Out) queue will definitely be much more efficient if
implemented with a deque instead of list.

deque works great when implementing queues. Anyway, starting
from Python 2.6 there is a separate queue module in Python's standard
library that provides basic implementation for FIFO, LIFO, and priority
queues. If you want to utilize queues as a mechanism of interthread
communication, you should really use classes from the queue module
instead of collections.deque. This is because these classes provide
all the necessary locking semantics. If you don't use threading and don't
utilize queues as a communication mechanism, then deque should be
enough to provide queue implementation basics.

Chapter 12

[403]

defaultdict
The defaultdict type is similar to the dict type but adds a default factory for new
keys. This avoids writing an extra test to initialize the mapping entry and is more
efficient than the dict.setdefault method.

defaultdict seems just like syntactic sugar over dict that simply allows you to
write shorter code. In fact, the fallback to a predefined value on a failed key lookup is
also slightly faster than the dict.setdefault() method:

$ python3 -m timeit \

> -s 'd = {}'

> 'd.setdefault("x", None)'

10000000 loops, best of 3: 0.153 usec per loop

$ python3 -m timeit \

> -s 'from collections import defaultdict; d=defaultdict(lambda: None)' \

> 'd["x"]'

10000000 loops, best of 3: 0.0447 usec per loop

The difference isn't great because the computational complexity hasn't changed.
The dict.setdefault method consist of two steps (key lookup and key set), both
of which have a complexity of O(1), as we have seen in the Dictionaries section in
Chapter 2, Syntax Best Practices – below the Class Level. There is no way to have a
complexity class lower than O(1). But it is indisputably faster in some situations
and it is worth knowing because every small speed improvement counts when
optimizing critical code sections.

The defaultdict type takes a factory as a parameter and can therefore be used
with built-in types or classes whose constructor does not take arguments. Here is an
example from the official documentation that shows how to use defaultdict for
counting:

>>> s = 'mississippi'

>>> d = defaultdict(int)

>>> for k in s:

... d[k] += 1

...

>>> list(d.items())

[('i', 4), ('p', 2), ('s', 4), ('m', 1)]

Optimization – Some Powerful Techniques

[404]

namedtuple
namedtuple is a class factory that takes a type name and a list of attributes and
creates a class out of it. The class can then be used to instantiate a tuple-like object
and provide accessors for its elements:

>>> from collections import namedtuple

>>> Customer = namedtuple(

... 'Customer',

... 'firstname lastname'

...)

>>> c = Customer('Tarek', 'Ziadé')

>>> c.firstname

'Tarek'

It can be used to create records that are easier to write compared to a custom class
that would require some boilerplate code to initialize values. On the other hand, it is
based on tuple, so access to its elements by index is very fast. The generated class can
be subclassed to add more operations.

The gain from using namedtuple instead of other datatypes may not be obvious
at first. The main advantage is that it is way more easier to use, understand, and
interpret than ordinary tuples. Tuple indexes don't carry any semantics, so it is great
to access tuple elements by attributes too. However, you could get the same benefit
from dictionaries that have an O(1) average complexity of get/set operations.

The first advantage in terms of performance is that namedtuple is still the
flavor of tuple. It means that it is immutable, so the underlying array storage is
allocated exactly for the needed size. Dictionaries, on the other hand, need to use
overallocation of the internal hash table to ensure low average complexity of get/set
operations. So, namedtuple wins over dict in terms of memory efficiency.

The fact that namedtuple is based on a tuple may also be beneficial for performance.
Its elements may be accessed by an integer index, like in two other simple sequence
objects—lists and tuples. This operation is both simple and fast. In the case of dict or
custom class instances (that also use dictionaries for storing attributes), the element
access requires hash table lookup. It is highly optimized to ensure good performance
independently from collection size, but the mentioned O(1) complexity is actually
only the average complexity. The actual, amortized worst case complexity for set/
get operations in dict is O(n). The real amount of work when performing such an
operation at a given moment is dependent on both collection size and its history. So,
in sections of code that are critical for performance, sometimes it may be wise to use
lists or tuples instead of dictionaries. This is only because they are more predictable
when it comes to performance.

Chapter 12

[405]

In such a situation, namedtuple is a great type that combines the advantages of
dictionaries and tuples:

• In sections where readability is more important, the attribute access may
be preferred

• In performance-critical sections, elements may be accessed by their indexes

Reduced complexity can be achieved by storing the data in an efficient
data structure that works well with the way the algorithm will use it.
That said, when the solution is not obvious, you should consider
dropping and rewriting the incriminated part instead of killing the code
readability for the sake of performance.
Often, the Python code can be both readable and fast. So, try to find a
good way to perform the work instead of trying to work around a flawed
design.

Using architectural trade-offs
When your code cannot be improved any further by reducing the complexity or
choosing the proper data structure, a good approach may be to consider doing some
trade-offs. If we review user problems and define what is really important for them,
we can relax some of the application requirements. The performance can often be
improved by:

• Replacing exact solution algorithms with heuristics and approximation
algorithms

• Deferring some work to delayed task queues
• Using probabilistic data structures

Using heuristics and approximation
algorithms
Some algorithmic problems simply don't have good state of the art solutions that
could run in time acceptable to the user. For example, consider a program that deals
with some complex optimization problems such as Traveling Salesman Problem
(TSP) or Vehicle Routing Problem (VRP). Both problems are NP-hard problems
in combinatorial optimization. The exact algorithms for such problems that have
low complexity are not known. This means that the size of the problems that can be
practically solved is greatly limited. For very large inputs, it is very unlikely that it will
be able to provide the exact solution in a time that would be acceptable for any user.

Optimization – Some Powerful Techniques

[406]

Fortunately, it is very probable that the user is not interested in the best possible
solution but the one that is good enough and the one that can be obtained in a timely
manner. So, it really makes sense to use heuristics or approximation algorithms
whenever they provide an acceptable quality of results:

• Heuristics solve given problems by trading optimality, completeness,
accuracy, or precision for speed. They concentrate on the speed, but it may
be really hard to prove their solution quality compared to the result of
exact algorithms.

• Approximation algorithms are similar in idea to heuristics, but unlike
heuristics have provable solution quality and run-time bounds.

For instance, there are known good heuristics and approximation problems that can
solve extremely large TSP problems within a reasonable time. They also have a high
probability of producing results just 2-5% from the optimal solution.

Another good thing about heuristics is that they don't always need to be constructed
from scratch for every new problem you need to solve. Their higher-level versions,
called metaheuristics, provide strategies for solving mathematical optimization
problems that are not problem-specific and can thus be applied in many situations.
Some popular metaheuristic algorithms include:

• Simulated annealing
• Genetic algorithms
• Tabu search
• Ant colony optimization
• Evolutionary computation

Using task queues and delayed processing
Sometimes it's not about doing a lot but about doing things at the right time. A
good example of that is sending e-mails in web applications. In that case, increased
response times may not necessarily be the result of your implementation. The
response time may be dominated by some third-party service, such as an e-mail
server. Can you optimize your application if it just spends most of its time on
waiting for other services to reply?

Chapter 12

[407]

The answer is both: yes and no. If you don't have any control over a service that is
the main contributor to your processing time and there is no other faster solution
you could use, you, of course, cannot speed it up any further. You cannot simply
skip in time to get the replies you are waiting for. A simple example of processing an
HTTP request that results in sending an e-mail is presented in the following figure
(Figure 1). You cannot reduce the waiting time, but you can change the way users
will perceive it!

Figure 1 An example of synchronous e-mail delivery in web application

The usual pattern for such type of problems is using message/task queues. When
you need to do something that may take an indefinite amount of time, just add this
to the queue of work that needs to be done and immediately respond to the user
whose request was accepted. Here, we come to the reason why sending e-mails is
such a great example. E-mails are already task queues! If you submit a new message
to the e-mail server using SMTP protocol, the successful response does not mean that
your e-mail was delivered to addressee. It means that the e-mail was delivered to the
e-mail server and it will try later to deliver it further.

Optimization – Some Powerful Techniques

[408]

So, if the response from the server does not guarantee that the e-mail was delivered
at all, you don't need to wait for it in order to generate an HTTP response for the
user. The updated flow of processing requests with the usage of the task queue is
presented in the following figure:

Figure 2 An example of asynchronous e-mail delivery in web application

Of course, your e-mail server may be responding blazingly fast, but you need some
more time to generate the message that needs to be sent. Perhaps you are generating
yearly reports in an XLS format or maybe delivering invoices in PDF files. If you
use e-mail transport that is already asynchronous, then put the whole message
generation task to the message processing system too. If you cannot guarantee the
exact time of delivery, then you should not bother to generate your deliverables
synchronously.

Chapter 12

[409]

The proper usage of task/message queues in critical sections of the application can
also give you other benefits:

• Web workers that serve HTTP requests will be relieved from additional work
and processing requests faster. This means that you will be able to process
more requests with the same resources and thus handle greater load.

• Message queues are generally more immune to transient failures of external
services. For instance, if your database or e-mail server times out from time
to time, you can always re-queue the currently processed task and retry
it later.

• With a good message queue implementation, you can easily distribute the
work on multiple machines. This approach may improve the scalability of
some of your application components.

As you can see in Figure 2, adding an asynchronous task processing to your
application inevitably increases the complexity of the whole system's architecture.
You will need to set up some new backing services (a message queue such as
RabbitMQ) and create workers that will be able to process these asynchronous
jobs. Fortunately, there are some popular tools for building distributed task
queues. The most popular one among Python developers is Celery (http://www.
celeryproject.org/). It is a full-fledged task queue framework with support of
multiple message brokers that also allows for the scheduled execution of tasks (it can
replace your cron jobs). If you need something simpler, then RQ (http://python-
rq.org/) might be a good alternative. It is a lot simpler than Celery and uses Redis
key/value storage as its message broker (RQ actually stands for Redis Queue).

Although there are some good and battle-tested tools, you should always carefully
consider your approach to the task queues. Definitely not every kind of work should
be processed in queues. They are good at solving a few types of issues but also
introduce a load of new problems:

• Increased complexity of system architecture
• Dealing with more than once deliveries
• More services to maintain and monitor
• Larger processing delays
• More difficult logging

http://www.celeryproject.org/
http://www.celeryproject.org/
http://python-rq.org/
http://python-rq.org/

Optimization – Some Powerful Techniques

[410]

Using probabilistic data structures
Probabilistic data structures are structures that are designed to store collections of
values in a way that allows you to answer some specific questions within time or
resource constraints that would not be possible with other data structures. The most
important fact is that the answer is only probable to be true or is the approximation
of the real value. However, the probability of the correct answer or its accuracy can
be easily estimated. So, despite not always giving the correct answer, it can be still
useful if we accept some level of error.

There are a lot of data structures with such probabilistic properties. Each one of them
solves some specific problems, and due to theirs stochastic nature cannot be used in
every situation. But to give a practical example, let's talk about one of them
that is especially popular—HyperLogLog.

HyperLogLog (refer to https://en.wikipedia.org/wiki/HyperLogLog) is an
algorithm that approximates the number of distinct elements in a multiset. With
ordinary sets, you need to store every element, and this may be very impractical for
very large datasets. HLL is distinct from the classical way of implementing sets as
programming data structures. Without digging into implementation details, let's
say that it only concentrates on providing an approximation of the set cardinality.
Thus, real values are never stored. They cannot be retrieved, iterated, and tested for
membership. HyperLogLog trades accuracy and correctness for time complexity and
size in memory. For instance, the Redis implementation of HLL takes only 12k bytes
with a standard error of 0.81% with no practical limit of collection size.

Using probabilistic data structures is a very interesting way of solving performance
problems. In most cases, it is about trading off some accuracy or correctness for faster
processing or better resource usage. But it does not always need to be that way.
Probabilistic data structures are very often used in key/value storage systems to
speed up key lookups. One of the popular techniques used in such systems is called
approximate member query (AMQ). One interesting data structure that can be used
for that purpose is Bloom filter (refer to https://en.wikipedia.org/wiki/Bloom_
filter).

https://en.wikipedia.org/wiki/HyperLogLog
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter

Chapter 12

[411]

Caching
When some of your application function takes too long to compute, the useful
technique to consider is caching. Caching is nothing but saving a return value for
future reference. The result of a function or method that is expensive to run can be
cached as long as:

• The function is deterministic and the results have the same value every time,
given the same input

• The return value of the function continues to be useful and valid for some
period of time (nondeterministic)

In other words, a deterministic function always returns the same result for the same
set of arguments, whereas a nondeterministic one returns results that may vary in
time. Such an approach usually greatly reduces the time of computation and allows
you to save a lot of computer resources.

The most important requirement for any caching solution is to have a storage that
allows you to retrieve saved values significantly faster than it takes to calculate them.
Good candidates for caching are usually:

• Results from callables that query databases
• Results from callables that render static values, such as file content, web

requests, or PDF rendering
• Results from deterministic callables that perform complex calculations
• Global mappings that keep track of values with expiration times, such as web

session objects
• Results that needs to be accessed often and quickly

Another important use case for caching is saving results from third-party APIs
served over the Web. This may greatly improve application performance by cutting
off the network latencies but also allows you to save money if you are billed for
every request to such API.

Depending on your application architecture, the cache can be implemented in
many ways and with various levels of complexity. There are many ways to provide
caching and complex applications can use different approaches on different levels
of the application architecture stack. Sometimes a cache may be as simple as a
single global data structure (usually a dict) kept in the process memory. In other
situations, you may want to set up a dedicated caching service that will run on
carefully tailored hardware. This section will provide you with basic information on
the most popular caching approaches and guide you through the usual use cases and
also the common pitfalls.

Optimization – Some Powerful Techniques

[412]

Deterministic caching
Deterministic functions are the easiest and safest use case for caching. Deterministic
functions always return the same value if given exactly the same input, so generally
you can store their result indefinitely. The only limitation is the size of storage you
use for caching. The simplest way to cache such results is to put them into process
memory because it is usually the fastest place to retrieve data from. Such a technique
is often called memoization.

Memoization is very useful when optimizing recursive functions that may evaluate
the same inputs multiple times. We already discussed recursive implementation for
the Fibonacci sequence in Chapter 7, Python Extensions in Other Languages. Back then,
we tried to improve the performance of our program with C and Cython. Now we
will try to achieve the same goal by simpler means—with the help of caching. But
before we do that, let's recall the code for the fibonacci() function:

def fibonacci(n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

As we see, fibonacci() is a recursive function that calls itself twice if the input
value is more than two. This makes it highly inefficient. The run time complexity
is O(2n) and its execution creates a very deep and vast call tree. For the large value,
this function will take extremely long to execute and there is high chance of quickly
exceeding the maximal recursion limit of the Python interpreter.

If you take a closer look at Figure 3, which presents an example call tree, you will see
that it evaluates many of the intermediate results multiple times. A lot of time and
resources could be saved if we could reuse some of these values.

Figure 3 Call tree for fibonacci(5) execution

Chapter 12

[413]

A simple memoization attempt would be to store results of the previous runs in
a dictionary and retrieve them if they are available. Both the recursive calls in the
fibonacci() function are contained in a single line of code:

return fibonacci(n - 1) + fibonacci(n - 2)

We know that Python evaluates instructions from left to right. This means that, in
this situation, the call to the function with a higher argument value will be executed
before the call to the function with a lower argument. Thanks to this, we can provide
memoizaton by constructing a very simple decorator:

def memoize(function):
 """ Memoize the call to single-argument function
 """
 call_cache = {}

 def memoized(argument):
 try:
 return call_cache[argument]
 except KeyError:
 return call_cache.setdefault(argument,
 function(argument))

 return memoized

@memoize
def fibonacci(n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

Optimization – Some Powerful Techniques

[414]

We used the dictionary on the closure of the memoize() decorator as a simple storage
from cached values. Saving and retrieving value to that data structure has an average
O(1) complexity, so this greatly reduces the overall complexity of the memoized
function. Every unique function call will be evaluated only once. The call tree of such
an updated function is presented in Figure 4. Without going into mathematical proofs,
we can visually deduce that without changing the core of the fibonacci() function,
we reduced the complexity from the very expensive O(2n) to the linear O(n).

Figure 4 A call tree for fibonacci(5) execution with memoization

The implementation of our memoize() decorator is, of course, not perfect. It worked
well for that simple example, but it definitely isn't a reusable piece of software. If
you need to memoize functions with multiple arguments or want to limit the size of
your cache, you need something more generic. Luckily, the Python standard library
provides a very simple and reusable utility that may be used in most cases when
you need to cache in memory the results of deterministic functions. It is the lru_
cache(maxsize, typed) decorator from the functools module. The name comes
from the LRU cache, which stands for last recently used. The additional parameters
allow for finer control over memoization behavior:

• maxsize: This sets the maximum size of the cache. The None value means no
limit at all.

• typed: This defines if the values of different types that compare as equal
should be cached as giving the same result.

The usage of lru_cache in our Fibonacci sequence example would be as follows:

@lru_cache(None)
def fibonacci(n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

Chapter 12

[415]

Nondeterministic caching
The caching of nondeterministic functions is way more trickier that memoization.
Due to the fact that every execution of such a function may give different results, it
is usually impossible to use previous values for an arbitrarily long amount of time.
What you need to do is to decide for how long a cached value can be considered
valid. After a defined period of time passes, the stored results are considered to be
stale and the cache needs to be refreshed by a new value.

Nondeterministic functions that are usually a subject of caching very often depend
on some external state that is hard to track inside of your application code. Typical
examples of components are:

• Relational databases and generally any type of structured data storage engine
• Third-party services accessible through network connection (web APIs)
• Filesystems

So, in other words, nondeterministic caching is used in any situation when you
temporarily use precomputed results without being sure if they represent a state that
is consistent with the state of other system components (usually, the backing service).

Note that such an implementation of caching is obviously a trade-off. Thus, it is
somehow related to the techniques we featured in the Using architectural trade-offs
section. If you resign from running part of your code every time and instead use the
results saved in the past, you are risking using data that becomes stale or represents
an inconsistent state of your system. This way, you are trading the correctness and/
or completeness for speed and performance.

Of course, such caching is efficient as long as the time taken to interact with the cache
is less than the time taken by the function. If it's faster to simply recalculate the value,
by all means do so! That's why setting up a cache has to be done only if it's worth it;
setting it up properly has a cost.

The actual things that are cached are usually the whole results of interaction with
other components of your system. If you want to save time and resources when
communicating with the database, it is worth to cache expensive queries. If you want
to reduce the number of I/O operations, you may want to cache the content of the
files that are accessed very often (configuration files, for instance).

Techniques for caching non-deterministic functions are actually very similar to those
used in caching the deterministic ones. The most notable difference is that they
usually require the option to invalidate cached values by their age. This means that
the lru_cache() decorator from the functools module has very limited use in such
situations. It should not be so hard to extend this function to provide the expiration
feature, but I will leave it as an exercise for you.

Optimization – Some Powerful Techniques

[416]

Cache services
We said that nondeterministic caching can be implemented using local process
memory, but actually it is rarely done that way. It's because local process memory
is very limited in its utility as storage for caching in large applications.

If you run into a situation where non-deterministic caching is your preferred solution
to solve performance problems, you usually need something more than that. Usually,
nondeterministic caching is your must have solution when you need to serve data or
service to multiple users at the same time. If it's true, then sooner or later you will
need to ensure that users can be served concurrently. While local memory provides
a way to share data between multiple threads, it may not be the best concurrency
model for every application. It does not scale well, so you will eventually need
to run your application as multiple processes.

If you are lucky enough, you may need to run your application on hundreds or
thousands of machines. If you would like to store cached values in local memory,
it means that your cache needs to be duplicated on every process that requires it. It
isn't only a total waste of resources. If every process has its own cache, that is already
a trade-off between speed and consistency, how can you guarantee that all caches are
consistent with each other?

Consistency across subsequent request is a serious concern (especially) for web
applications with distributed backends. In complex distributed systems, it is
extremely hard to ensure that the user will be always consistently served by the same
process hosted on the same machine. It is of course doable to some extent, but once
you solve that problem, ten others will pop up.

If you are making an application that will need to serve multiple concurrent users,
then the best way to handle a nondeterministic cache is to use some dedicated
service for that. With tools such as Redis or Memcached, you allow all your
application processes to share the same cached results. This both reduces the usage
of precious computing resources and saves you from problems caused by having
multiple independent and inconsistent caches.

Memcached
If you want to be serious about caching, Memcached is a very popular and battle-
tested solution. This cache server is used by big applications such as Facebook or
Wikipedia to scale their websites. Among simple caching features, it has clustering
capabilities that makes it possible to set up a highly efficient distributed cache system
in no time.

Chapter 12

[417]

The tool is Unix-based but can be driven from any platform and from many
languages. There are many Python clients that differ slightly from each other but the
basic usage is usually the same. The simplest interaction with Memcached almost
always consists of three methods:

• set(key, value): This saves the value for the given key
• get(key): This gets the value for the given key if it exists
• delete(key): This deletes the value under the given key if it exists

Here is an example of integration with Memcached using one of the popular Python
packages—pymemcached:

from pymemcache.client.base import Client

setup Memcached client running under 11211 port on localhost
client = Client(('localhost', 11211))

cache some value under some key and expire it after 10 seconds
client.set('some_key', 'some_value', expire=10)

retrieve value for the same key
result = client.get('some_key')

One of the downsides of Memcached is that it is designed to store values either as
strings or a binary blob, and this isn't compatible with every native Python type.
Actually, it is compatible with only one—strings. This means that more complex
types need to be serialized in order to be successfully stored in Memcached. A
common serialization choice for simple data structures is JSON. Here is an example
of using JSON serialization with pymemcached:

import json
from pymemcache.client.base import Client

def json_serializer(key, value):
 if type(value) == str:
 return value, 1
 return json.dumps(value), 2

def json_deserializer(key, value, flags):
 if flags == 1:
 return value
 if flags == 2:
 return json.loads(value)
 raise Exception("Unknown serialization format")

Optimization – Some Powerful Techniques

[418]

client = Client(('localhost', 11211), serializer=json_serializer,
 deserializer=json_deserializer)
client.set('key', {'a':'b', 'c':'d'})
result = client.get('key')

The other problem that is very common when working with every caching service
that works on the key/value storage principle is how to choose key names.

For cases when you cache simple function invocations that have basic parameters,
the problem is usually simple. You can convert the function name and its arguments
to strings and concatenate them together. The only thing you need to care about is to
make sure there are no collisions between keys created for different functions if you
use cache in many parts of your application.

A more problematic case is when cached functions have complex arguments
consisting of dictionaries or custom classes. In that case, you need to find a way to
convert such invocation signatures to cache keys in a consistent manner.

The last problem is that Memcached, like many other caching services, does not tend
to like very long key strings. Usually, the shorter the better. Long keys may either
reduce performance or just not fit the hardcoded service limits. For instance, if you
cache whole SQL queries, the query strings themselves are generally good unique
identifiers that could be used as keys. But on the other hand, complex queries are
generally too long to be stored in typical caching services such as Memcached. A
common practice is to calculate the MD5, SHA, or any other hash function and use
it as a cache key instead. The Python standard library has a hashlib module that
provides implementation for few popular hash algorithms.

Remember that calculating a hash comes at a price. However, sometimes it is the
only viable solution. It is also a very useful technique when dealing with complex
types that need to be used when creating cache keys. One important thing to care
about when using hashing functions is hash collisions. There is no hash function
that guarantees that collisions will never occur, so always be sure to know the
probability and mind such risks.

Chapter 12

[419]

Summary
In this chapter, you have learned:

• How to define the complexity of the code and some approaches to reduce it
• How to improve performance using some architectural trade-offs
• What caching is and how to use it to improve application performance

The preceding methods concentrated our optimization efforts inside a single
process. We tried to reduce the code complexity, choose better datatypes, or reuse
old function results. If that did not help, we tried to make some trade-offs using
approximations, doing less, or leaving work for later.

In the next chapter, we will discuss a few techniques for concurrency and parallel
processing in Python.

[421]

Concurrency
Concurrency and one of its manifestations—parallel processing—is one of the
broadest topics in the area of software engineering. Most of the chapters in this
book also cover vast areas, and almost all of them could be big enough topics for
a separate book. But the topic of concurrency by itself is so huge that it could take
dozens of positions and we would still not be able to discuss all of its important
aspects and models.

This is why I won't try to fool you, and from the very beginning state that we will
barely touch the surface of this topic. The purpose of this chapter is to show why
concurrency may be required in your application, when to use it, and what are the
most important concurrency models that you may use in Python:

• Multithreading
• Multiprocessing
• Asynchronous programming

We will also discuss some of the language features, built-in modules, and third-party
packages that allow you to implement these models in your code. But we won't
cover them in much detail. Treat the content of this chapter as an entry point for your
further research and reading. It is here to guide you through the basic ideas and help
in deciding if you really need concurrency, and if so, which approach will best suit
your needs.

Concurrency

[422]

Why concurrency?
Before we answer the question why concurrency, we need to ask what is concurrency
at all?

And the answer to the second question may be surprising for some who used to
think that this is a synonym for parallel processing. But concurrency is not the same
as parallelism. Concurrency is not a matter of application implementation but only
a property of a program, algorithm, or problem. And parallelism is only one of the
possible approaches to problems that are concurrent.

Leslie Lamport in his Time, Clocks, and the Ordering of Events in Distributed Systems
paper from 1976, says:

"Two events are concurrent if neither can causally affect the other."

By extrapolating events to programs, algorithms, or problems, we can say that
something is concurrent if it can be fully or partially decomposed into components
(units) that are order-independent. Such units may be processed independently
from each other, and the order of processing does not affect the final result. This
means that they can also be processed simultaneously or in parallel. If we process
information this way, then we are indeed dealing with parallel processing. But this
is still not obligatory.

Doing work in a distributed manner, preferably using capabilities of multicore
processors or computing clusters, is a natural consequence of concurrent problems.
Anyway, it does not mean that this is the only way of efficiently dealing with
concurrency. There are a lot of use cases where concurrent problems can be
approached in other than synchronous ways, but without the need for parallel
execution.

So, once we know what concurrency really is, it is time to explain what the fuss is
about. When the problem is concurrent, it gives you the opportunity to deal with it
in a special, preferably more efficient, way.

We often get used to deal with problems in a classical way by performing a sequence
of steps. This is how most of us think and process information—using synchronous
algorithms that do one thing at a time, step by step. But this way of processing
information is not well suited for solving large-scale problems or when you need to
satisfy the demands of multiple users or software agents simultaneously:

• The time to process the job is limited by the performance of the single
processing unit (single machine, CPU core, and so on)

• You are not able to accept and process new inputs until your program has
finished processing the previous one

Chapter 13

[423]

So generally, approaching concurrent problems concurrently is the best approach
when:

• The scale of problems is so big that the only way to process them in an
acceptable time or within the range of available resources is to distribute
execution to multiple processing units that can handle the work in parallel

• Your application needs to maintain responsiveness (accept new inputs) even
if it has not finished processing the old ones

This covers most of the situations where concurrent processing is a reasonable
option. The first group of problems definitely needs the parallel processing solution
so it is usually solved with multithreading and multiprocessing models. The second
group does not necessarily need to be processed in parallel, so the actual solution
really depends on the problem details. Note that this group also covers cases
where the application needs to serve multiple clients (users or software agents)
independently, without the need to wait for others to be successfully served.

The other thing worth mentioning is that the preceding two groups are not exclusive.
Very often you need to maintain application responsiveness and at the same time
you are not able to handle the input on a single processing unit. This is the reason
why different and seemingly alternative or conflicting approaches to concurrency
may often be used at the same time. This is especially common in the development of
web servers where it may be necessary to use asynchronous event loops, or threads
with a conjunction of multiple processes, in order to utilize all the available resources
and still maintain low latencies under high load.

Multithreading
Threading is often considered to be a complex topic by developers. While this
statement is totally true, Python provides high-level classes and functions that ease
the usage of threading. CPython's implementation of threads comes with some
inconvenient details that make them less useful than in other languages. They are
still completely fine for some set problems that you may want to solve, but not for as
many as in C or Java. In this section, we will discuss the limitations of multithreading
in CPython, as well as the common concurrent problems where Python threads are a
viable solution.

Concurrency

[424]

What is multithreading?
Thread is short for a thread of execution. A programmer can split his or her work
into threads that run simultaneously and share the same memory context. Unless
your code depends on third-party resources, multithreading will not speed it up on
a single-core processor, and will even add some overhead for thread management.
Multi-threading will benefit from a multiprocessor or multi-core machine and will
parallelize each thread execution on each CPU core, thus making the program
faster. Note that this is a general rule that should hold true for most programming
languages. In Python, the performance benefit from multithreading on multicore
CPUs has some limits, but we will discuss that later. For simplicity, let's assume for
now that this statement is true.

The fact that the same context is shared among threads means you must protect data
from concurrent access. If two threads update the same data without any protection,
a race condition occurs. This is called a race hazard, where unexpected results may
happen because of the code run by each thread making false assumptions about the
state of the data.

Lock mechanisms help in protecting data, and thread programming has always
been a matter of making sure that the resources are accessed by threads in a safe
way. This can be quite hard and thread programming often leads to bugs that are
hard to debug, since they are hard to reproduce. The worst problem occurs when,
due to poor code design, two threads lock a resource and try to get the resource that
the other thread has locked. They will wait for each other forever. This is called a
deadlock and is quite hard to debug. Reentrant locks help a bit in this by making
sure a thread doesn't get locked by attempting to lock a resource twice.

Nevertheless, when threads are used for isolated needs with tools that were built for
them, they might increase the speed of the program.

Multithreading is usually supported at the system kernel level. When the
machine has one single processor with a single core, the system uses a timeslicing
mechanism. Here, the CPU switches from one thread to another so fast that there is
an illusion of threads running simultaneously. This is done at the processing level
as well. Parallelism without multiple processing units is obviously virtual and there
is no performance gain from running multiple threads on such hardware. Anyway,
sometimes it is still useful to implement code with threads even if it has to execute
on a single core, and we will see a possible use case later.

Everything changes when your execution environment has multiple processors or
multiple CPU cores for its disposition. Even if timeslicing is used, processes and
threads are distributed among CPUs, providing the ability to run your program faster.

Chapter 13

[425]

How Python deals with threads
Unlike some other languages, Python uses multiple kernel-level threads that can
each run any of the interpreter-level threads. But the standard implementation of the
language—CPython—comes with major limitation that renders threads less usable in
many contexts. All threads accessing Python objects are serialized by one global lock.
This is done because much of the interpreter internal structures, as well as third-party
C code, are not thread-safe and need to be protected.

This mechanism is called the Global Interpreter Lock (GIL) and its implementation
details on the Python/C API level were already discussed in the Releasing GIL section
of Chapter 7, Python Extensions in Other Languages. The removal of GIL is a topic that
occasionally appears on the python-dev e-mail list and was postulated by developers
multiple times. Sadly, until this time, no one ever managed to provide a reasonable
and simple solution that would allow us to get rid of this limitation. It is highly
improbable that we will see any progress in this area soon. It is safer to assume that
GIL will stay in CPython forever. So we need to learn how to live with it.

So what is the point of multithreading in Python?

When threads contain only pure Python code, there is little point in using threads
to speed up the program since the GIL will serialize it. But remember that GIL just
enforces that only one thread can execute the Python code at any time. In practice,
the global interpreter lock is released on a number of blocking system calls and can
be released in sections of C extensions that do not use any Python/C API functions.
This means, multiple threads can do I/O operations or execute C code in certain
third-party extensions in parallel.

For nonpure code blocks where external resources are used or C code is involved,
multithreading is useful for waiting for a third-party resource to return results. This
is because a sleeping thread that has explicitly released the GIL can stand by and
wake up when the results are back. Last, whenever a program needs to provide a
responsive interface, multithreading is the answer even if it uses timeslicing. The
program can interact with the user while doing some heavy computing in the
so-called background.

Note that GIL does not exist in every implementation of the Python language. It is
a limitation of CPython, Stackless Python, and PyPy, but does not exist in Jython
and IronPython (see Chapter 1, Current Status of Python). There is although some
development of the GIL-free version of PyPy, but at the time of writing this book,
it is still at an experimental stage and the documentation is lacking. It is based
on Software Transactional Memory and is called PyPy-STM. It is really hard to
say when (or if) it will be officially released as a production-ready interpreter.
Everything seems to indicate that it won't happen soon.

Concurrency

[426]

When should threading be used?
Despite the GIL limitation, threads can be really useful in some cases. They can
help in:

• Building responsive interfaces
• Delegating work
• Building multiuser applications

Building responsive interfaces
Let's say you ask your system to copy files from a folder to another through a
graphical user interface. The task will possibly be pushed into the background and
the interface window will be constantly refreshed by the main thread. This way you
get live feedback on the progress of the whole process. You will also be able to cancel
the operation. This is less irritating than a raw cp or copy shell command that does
not provide any feedback until all work is finished.

A responsive interface also allows a user to work on several tasks at the same time.
For instance, Gimp will let you play around with a picture while another one is
being filtered, since the two tasks are independent.

When trying to achieve such responsive interfaces, a good approach is to try to push
long running tasks into the background, or at least try to provide constant feedback
to the user. The easiest way to achieve that is to use threads. In such a scenario, they
are not intended to increase performance, but only to make sure that the user can still
operate the interface even if it needs to process some data for a longer period of time.

In case such background tasks perform a lot of I/O operations, you are able to still
get some benefit from multicore CPUs. Then it's a win-win situation.

Delegating work
If your process depends on third-party resources, threads might really speed up
everything.

Let's consider the case of a function that indexes files in a folder and pushes the built
indexes into a database. Depending on the type of file, the function calls a different
external program. For example, one is specialized in PDFs and another one in
OpenOffice files.

Chapter 13

[427]

Instead of treating each file in a sequence, by executing the right program and
then storing the result into the database, your function can set up a thread for
each converter and push jobs to be done to each one of them through a queue. The
overall time taken by the function will be closer to the processing time of the slowest
converter than to the sum of all the work.

Converter threads can be initialized from the start and the code in charge of pushing
the result into the database can also be a thread that consumes available results in
the queue.

Note that such an approach is somewhat a hybrid between multithreading and
multiprocessing. If you delegate the work to external processes (for example, using
the run() function from the subprocess module), you are in fact doing work in
multiple processes, so this has symptoms of multiprocessing. But in our scenario,
we are waiting for the processing results in separate threads, so it is still mostly
multithreading from the view of the Python code.

The other common use case for threads is performing multiple HTTP requests to
external services. For instance, if you want to fetch multiple results from a distant
web API, it could take a lot of time to do that synchronously. If you wait for every
previous response before making new requests, you will spend a lot of time just
waiting for the external service to respond and additional roundtrip time delays will
be added to every such request. If you are communicating with an efficient service
(Google Maps API, for instance), it is highly probable that it can serve most of your
requests concurrently without affecting response times of separate requests. It is
then reasonable to perform multiple queries in separate threads. Remember that
when doing an HTTP request, most of time is spent on reading from the TCP socket.
This is a blocking I/O operation, so CPython will release the GIL when performing
the recv() C function. This allows for great improvements in your application's
performance.

Multiuser applications
Threading is also used as a concurrency base for multiuser applications. For instance,
a web server will push a user request into a new thread and then will become idle,
waiting for new requests. Having a thread dedicated to each request simplifies a lot
of work, but requires the developer to take care of locking the resources. But this is
not a problem when all the shared data is pushed into a relational database that takes
care of concurrency matters. So threads in a multi-user application act almost like
separate independent processes. They are under the same process only to simplify
their management at the application level.

Concurrency

[428]

For instance, a web server will be able to put all requests in a queue and wait for a
thread to be available to send the work to it. Furthermore, it allows memory sharing
that can boost some work and reduce the memory load. The two very popular
Python WSGI-compliant webservers: Gunicorn (refer to http://gunicorn.org/)
and uWSGI (refer to https://uwsgi-docs.readthedocs.org), allow you to serve
HTTP requests with threaded workers in a way that generally follows this principle.

Using multithreading to enable concurrency in multiuser applications is less
expensive than using multiprocessing. Separate processes cost more resources since
a new interpreter needs to be loaded for each one of them. On the other hand, having
too many threads is expensive too. We know that the GIL isn't such a problem for
I/O extensive applications, but there is always a time where you will need to execute
Python code. Since you cannot parallelize all of the application parts with bare
threads, you will never be able to utilize all resources on machines with multicore
CPUs and a single Python process. This is why often the optimal solution is a hybrid
of multiprocessing and multithreading—multiple workers (processes) running
with multiple threads. Fortunately, many of the WSGI-compliant web servers
allow for such a setup.

But before you marry multithreading with multiprocessing, consider if such an
approach is really worth all the cost. Such an approach uses multiprocessing for
better resource utilization and additionally multithreading for more concurrency,
which should be lighter than running multiple processes. But it does not need to be
true. Maybe getting rid of threads and increasing the number of processes is not as
expensive as you think? When choosing the best setup, you always need to do load
testing of your application (see the Load and performance testing section in Chapter 10,
Test-Driven Development). Also, as a side effect of using multiple threads, you get
a less safe environment where shared memory creates a risk of data corruption or
dreadful deadlock. Maybe a better alternative would be using some asynchronous
approach with event loops, green threads, or coroutines. We will cover such
solutions later in the Asynchronous programming section. Again, without sensible load
testing and experimentation, you cannot really tell what approach will work best in
your context.

An example of a threaded application
To see how Python threading works in practice, let's construct an example
application that can take some benefit from implementing multithreading. We
will discuss a simple problem that you may encounter from time to time in your
professional practice—making multiple parallel HTTP queries. This problem was
already mentioned as a common use case for multithreading.

http://gunicorn.org/
https://uwsgi-docs.readthedocs.org

Chapter 13

[429]

Let's say we need to fetch data from some web service using multiple queries that
cannot be batched into a single big HTTP request. As a realistic example, we will
use geocoding endpoints from Google Maps API. The reasons for that choice are
as follows:

• It is very popular and a well-documented service
• There is a free tier of this API that does not require any authentication keys
• There is a python-gmaps package available on PyPI that allows you to

interact with various Google Maps API endpoints and is extremely easy
to use

Geocoding means simply the transformation of address or place into coordinates. We
will try to geocode a predefined list of various cities into latitude/longitude tuples
and display results on the standard output with python-gmaps. It is as simple as
shown in the following code:

>>> from gmaps import Geocoding

>>> api = Geocoding()

>>> geocoded = api.geocode('Warsaw')[0]

>>> print("{:>25s}, {:6.2f}, {:6.2f}".format(

... geocoded['formatted_address'],

... geocoded['geometry']['location']['lat'],

... geocoded['geometry']['location']['lng'],

...))

Warsaw, Poland, 52.23, 21.01

Since our goal is to show how a multithreaded solution to concurrent problems
compares to standard synchronous solution, we will start with an implementation
that does not use threads at all. Here is the code of a program that loops over the
list of cities, queries the Google Maps API, and displays information about their
addresses and coordinates in a text-formatted table:

import time

from gmaps import Geocoding

api = Geocoding()

PLACES = (
 'Reykjavik', 'Vien', 'Zadar', 'Venice',

Concurrency

[430]

 'Wrocław', 'Bolognia', 'Berlin', 'Słubice',
 'New York', 'Dehli',
)

def fetch_place(place):
 geocoded = api.geocode(place)[0]

 print("{:>25s}, {:6.2f}, {:6.2f}".format(
 geocoded['formatted_address'],
 geocoded['geometry']['location']['lat'],
 geocoded['geometry']['location']['lng'],
))

def main():
 for place in PLACES:
 fetch_place(place)

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

Around the execution of the main() function, we added a few statements that are
intended to measure how much time it took to finish the job. On my computer, this
program usually takes around 2 to 3 seconds to complete its task:

$ python3 synchronous.py

 Reykjavík, Iceland, 64.13, -21.82

 Vienna, Austria, 48.21, 16.37

 Zadar, Croatia, 44.12, 15.23

 Venice, Italy, 45.44, 12.32

 Wrocław, Poland, 51.11, 17.04

 Bologna, Italy, 44.49, 11.34

 Berlin, Germany, 52.52, 13.40

 Slubice, Poland, 52.35, 14.56

 New York, NY, USA, 40.71, -74.01

 Dehli, Gujarat, India, 21.57, 73.22

time elapsed: 2.79s

Chapter 13

[431]

Every run of our script will always take a different amount of time because
it mostly depends on a remote service accessible through a network
connection. So there is a lot of nondeterministic factors affecting the final
result. The best approach would be to make longer tests, repeat them
multiple times, and also calculate some average from the measurements.
But for the sake of simplicity, we won't do that. You will see later that this
simplified approach is just enough for illustrational purposes.

Using one thread per item
Now it is time for improvement. We don't do a lot of processing in Python and the
long execution time is caused by communication with the external service. We send
an HTTP request to the server, it calculates the answer, and then we wait until the
response is transferred back. There is a lot of I/O involved, so multithreading seems
like a viable option. We can start all the requests at once in separate threads and
then just wait until they receive data. If the service that we are communicating with
is able to process our request concurrently, we should definitely see a performance
improvement.

So let's start with the easiest approach. Python provides clean and easy to use
abstraction over system threads with the threading module. The core of this
standard library is the Thread class that represents a single thread instance. Here is
a modified version of the main() function, which creates and starts a new thread for
every place to geocode and then waits until all the threads finish:

from threading import Thread

def main():
 threads = []
 for place in PLACES:
 thread = Thread(target=fetch_place, args=[place])
 thread.start()
 threads.append(thread)

 while threads:
 threads.pop().join()

Concurrency

[432]

It is quick-and-dirty change that has some serious issues that we will try to address
later. It approaches the problem in a bit of a frivolous way, and it is not a way to
write reliable software that will serve thousands or millions of users. But hey,
it works:

$ python3 threaded.py

 Wrocław, Poland, 51.11, 17.04

 Vienna, Austria, 48.21, 16.37

 Dehli, Gujarat, India, 21.57, 73.22

 New York, NY, USA, 40.71, -74.01

 Bologna, Italy, 44.49, 11.34

 Reykjavík, Iceland, 64.13, -21.82

 Zadar, Croatia, 44.12, 15.23

 Berlin, Germany, 52.52, 13.40

 Slubice, Poland, 52.35, 14.56

 Venice, Italy, 45.44, 12.32

time elapsed: 1.05s

So when we know that threads have a beneficial effect on our application, it is
time to use them in a slightly saner way. First we need to identify the issues in
the preceding code:

• We start a new thread for every parameter. Thread initialization also takes
some time but this minor overhead is not the only problem. Threads also
consume other resources such as memory and file descriptors. Our example
input has a strictly defined number of items, what if it did not have? You
definitely don't want to run an unbound number of threads that depend
on the arbitrary size of data input.

• The fetch_place() function executed in threads calls the built-in print()
function and in practice it is very unlikely that you would want to do that
outside of the main application thread. At first, it is due to the fact how the
standard output is buffered in Python. You can experience malformed output
when multiple calls to this function interleave between threads. Also, the
print() function is considered slow. If used recklessly in multiple threads,
it can lead to serialization, which will undo all the benefits of multithreading.

Chapter 13

[433]

• Last but not least, by delegating every function call to a separate thread, we
make it extremely hard to control the rate at which our input is processed.
Yes, we want to do the job as fast as possible, but very often external services
enforce hard limits on the rate of requests from a single client that they can
process. Sometimes it is reasonable to design the program in a way that
enables you to throttle the rate of processing, so your application won't be
blacklisted by external APIs for abusing their usage limits.

Using a thread pool
The first issue we will try to solve is the unbound limit of threads that are run by our
program. A good solution would be to build a pool of threaded workers with strictly
defined sizes that will handle all the parallel work and communicate with workers
through some thread-safe data structure. By using this thread pool approach, we will
also make it easier to solve the two other problems that we just mentioned.

So the general idea is to start some predefined number of threads that will consume
the work items from a queue until it is done. When there is no other work to do,
the threads will return and we will be able to exit from the program. A good
candidate for our structure to be used to communicate with the workers is the
Queue class from the built-in queue module. It is a FIFO (First In First Out) queue
implementation that is very similar to the deque collection from the collections
module and was specifically designed to handle interthread communication. Here
is a modified version of the main() function that starts only a limited number of
worker threads with a new worker() function as a target, and communicates with
them using a thread-safe queue:

from queue import Queue, Empty
from threading import Thread

THREAD_POOL_SIZE = 4

def worker(work_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 fetch_place(item)
 work_queue.task_done()

Concurrency

[434]

def main():
 work_queue = Queue()

 for place in PLACES:
 work_queue.put(place)

 threads = [
 Thread(target=worker, args=(work_queue,))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

The result of running a modified version of our program is similar to the previous one:

$ python threadpool.py

 Reykjavík, Iceland, 64.13, -21.82

 Venice, Italy, 45.44, 12.32

 Vienna, Austria, 48.21, 16.37

 Zadar, Croatia, 44.12, 15.23

 Wrocław, Poland, 51.11, 17.04

 Bologna, Italy, 44.49, 11.34

 Slubice, Poland, 52.35, 14.56

 Berlin, Germany, 52.52, 13.40

 New York, NY, USA, 40.71, -74.01

 Dehli, Gujarat, India, 21.57, 73.22

time elapsed: 1.20s

The run time will be slower than in a situation with one thread per argument, but at
least now it is not possible to exhaust all the computing resources with an arbitrary
long input. Also, we can tweak the THREAD_POOL_SIZE parameter a for better
resource/time balance.

Chapter 13

[435]

Using two-way queues
The other issue that we are now able to solve is the potentially problematic printing
of the output in threads. It would be much better to leave such a responsibility to the
main thread that started the other threads. We can handle that by providing another
queue that will be responsible for collecting results from our workers. Here is the
complete code that puts everything together with the main changes highlighted:

import time
from queue import Queue, Empty
from threading import Thread

from gmaps import Geocoding

api = Geocoding()

PLACES = (
 'Reykjavik', 'Vien', 'Zadar', 'Venice',
 'Wrocław', 'Bolognia', 'Berlin', 'Słubice',
 'New York', 'Dehli',
)

THREAD_POOL_SIZE = 4

def fetch_place(place):
 return api.geocode(place)[0]

def present_result(geocoded):
 print("{:>25s}, {:6.2f}, {:6.2f}".format(
 geocoded['formatted_address'],
 geocoded['geometry']['location']['lat'],
 geocoded['geometry']['location']['lng'],
))

def worker(work_queue, results_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get(block=False)
 except Empty:
 break

Concurrency

[436]

 else:
 results_queue.put(
 fetch_place(item)
)
 work_queue.task_done()

def main():
 work_queue = Queue()
 results_queue = Queue()

 for place in PLACES:
 work_queue.put(place)

 threads = [
 Thread(target=worker, args=(work_queue, results_queue))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

 while not results_queue.empty():
 present_result(results_queue.get())

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

Chapter 13

[437]

This eliminates the risk of malformed output, which we could experience if the
present_result() function does more print() statements or performs some
additional computation. We don't expect any performance improvement from this
approach with small inputs, but in fact we also reduce the risk of thread serialization
due to slow print() execution. Here is our final output:

$ python threadpool_with_results.py

 Vienna, Austria, 48.21, 16.37

 Reykjavík, Iceland, 64.13, -21.82

 Zadar, Croatia, 44.12, 15.23

 Venice, Italy, 45.44, 12.32

 Wrocław, Poland, 51.11, 17.04

 Bologna, Italy, 44.49, 11.34

 Slubice, Poland, 52.35, 14.56

 Berlin, Germany, 52.52, 13.40

 New York, NY, USA, 40.71, -74.01

 Dehli, Gujarat, India, 21.57, 73.22

time elapsed: 1.30s

Dealing with errors and rate limiting
The last of the issues mentioned earlier that you may experience when dealing with
such problems are rate limits imposed by external service providers. In the case of
the Google Maps API, at the time of writing this book, the official rate limit for
free and non-authenticated requests is 10 requests per second and 2,500 requests
per day. When using multiple threads, it is very easy to exhaust such a limit. The
problem is even more serious due to the fact that we did not cover any failure
scenarios yet, and dealing with exceptions in multithreaded Python code is a bit
more complicated than usual.

The api.geocode() function will raise an exception when the client exceeds
Google's rate and this is good news. But this exception is raised separately and will
not crash the entire program. The worker thread will of course exit immediately,
but the main thread will wait for all tasks stored on work_queue to be finished
(with the work_queue.join() call). This means that our worker threads should
gracefully handle possible exceptions and make sure that all items from the queue
are processed. Without further improvement, we may end up in a situation where
some of the worker threads crashed and the program will never exit.

Concurrency

[438]

Let's make some minor changes to our code in order to be prepared for any issues
that may occur. In the case of exceptions in the worker thread, we may put an error
instance in the results_queue queue and mark the current task as done, the same
as we would do if there was no error. That way we make sure that the main thread
won't lock indefinitely while waiting in work_queue.join(). The main thread might
then inspect the results and re-raise any of the exceptions found on the results queue.
Here are the improved versions of the worker() and main() functions that can deal
with exceptions in a safer way:

def worker(work_queue, results_queue):
 while True:
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 try:
 result = fetch_place(item)
 except Exception as err:
 results_queue.put(err)
 else:
 results_queue.put(result)
 finally:
 work_queue.task_done()

def main():
 work_queue = Queue()
 results_queue = Queue()

 for place in PLACES:
 work_queue.put(place)

 threads = [
 Thread(target=worker, args=(work_queue, results_queue))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

Chapter 13

[439]

 while threads:
 threads.pop().join()

 while not results_queue.empty():
 result = results_queue.get()

 if isinstance(result, Exception):
 raise result

 present_result(result)

When we are ready to handle exceptions, it is time to break our code and exceed the
rate limit. We can do that easily by modifying some initial conditions. Let's increase
the number of places to geocode and the size of our thread pool:

PLACES = (
 'Reykjavik', 'Vien', 'Zadar', 'Venice',
 'Wrocław', 'Bolognia', 'Berlin', 'Słubice',
 'New York', 'Dehli',
) * 10

THREAD_POOL_SIZE = 10

If your execution environment is fast enough, you should get a similar error soon:

$ python3 threadpool_with_errors.py

 New York, NY, USA, 40.71, -74.01

 Berlin, Germany, 52.52, 13.40

 Wrocław, Poland, 51.11, 17.04

 Zadar, Croatia, 44.12, 15.23

 Vienna, Austria, 48.21, 16.37

 Bologna, Italy, 44.49, 11.34

 Reykjavík, Iceland, 64.13, -21.82

 Venice, Italy, 45.44, 12.32

 Dehli, Gujarat, India, 21.57, 73.22

 Slubice, Poland, 52.35, 14.56

 Vienna, Austria, 48.21, 16.37

 Zadar, Croatia, 44.12, 15.23

 Venice, Italy, 45.44, 12.32

 Reykjavík, Iceland, 64.13, -21.82

Concurrency

[440]

Traceback (most recent call last):

 File "threadpool_with_errors.py", line 83, in <module>

 main()

 File "threadpool_with_errors.py", line 76, in main

 raise result

 File "threadpool_with_errors.py", line 43, in worker

 result = fetch_place(item)

 File "threadpool_with_errors.py", line 23, in fetch_place

 return api.geocode(place)[0]

 File "...\site-packages\gmaps\geocoding.py", line 37, in geocode

 return self._make_request(self.GEOCODE_URL, parameters, "results")

 File "...\site-packages\gmaps\client.py", line 89, in _make_request

)(response)

gmaps.errors.RateLimitExceeded: {'status': 'OVER_QUERY_LIMIT', 'results':
[], 'error_message': 'You have exceeded your rate-limit for this API.',
'url': 'https://maps.googleapis.com/maps/api/geocode/json?address=Wroc%C5
%82aw&sensor=false'}

The preceding exception is of course not the result of faulty code. This program
simply is a bit too fast for this free service. It makes too many concurrent requests,
and in order to work correctly, we need to have a way to limit their rate.

Limiting the pace of work is often called throttling. There are a few packages on PyPI
that allow you to limit the rate of any kind of work and are really easy to use. But we
won't use any external code here. Throttling is a good opportunity to introduce some
locking primitives for threading, so we will try to build a solution from scratch.

The algorithm we will use is sometimes called token bucket and is very simple:

1. There is a bucket with a predefined amount of tokens.
2. Each token responds to a single permission to process one item of work.
3. Each time the worker asks for a single or multiple tokens (permission):

 ° We measure how much time was spent from the last time we refilled
the bucket

 ° If the time difference allows for it, we refill the bucket with the
amount of tokens that respond to this time difference

 ° If the amount of stored tokens is bigger or equal to the amount
requested, we decrease the number of stored tokens and return
that value

 ° If the amount of stored tokens is less than requested, we return zero

Chapter 13

[441]

The two important things are to always initialize the token bucket with zero tokens
and never allow it to fill with more tokens that is available by its rate, expressed in
tokens, as per our standard quant of time. If we don't follow these precautions, we
can release the tokens in bursts that exceed the rate limit. Because in our situation the
rate limit is expressed in requests per second, we don't need to deal with arbitrary
quants of time. We assume that the base for our measurement is one second, so we
will never store more tokens than the number of requests allowed for that quant of
time. Here is an example implementation of the class that allows for throttling with a
token bucket algorithm:

From threading import Lock

class Throttle:
 def __init__(self, rate):
 self._consume_lock = Lock()
 self.rate = rate
 self.tokens = 0
 self.last = 0

 def consume(self, amount=1):
 with self._consume_lock:
 now = time.time()

 # time measument is initialized on first
 # token request to avoid initial bursts
 if self.last == 0:
 self.last = now

 elapsed = now - self.last

 # make sure that quant of passed time is big
 # enough to add new tokens
 if int(elapsed * self.rate):
 self.tokens += int(elapsed * self.rate)
 self.last = now

 # never over-fill the bucket
 self.tokens = (
 self.rate
 if self.tokens > self.rate
 else self.tokens
)

Concurrency

[442]

 # finally dispatch tokens if available
 if self.tokens >= amount:
 self.tokens -= amount
 else:
 amount = 0

 return amount

The usage of this class is very simple. Assume that we created only one instance
of Throttle (with Throttle(10) for instance) in the main thread and passed it
to every worker thread as a positional argument. Using the same data structure in
different threads is safe because we guarded manipulation of its internal state with
the instance of Lock class from the threading module. We can now update the
worker() function implementation to wait with every item until throttle releases
a new token:

def worker(work_queue, results_queue, throttle):
 while True:
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 while not throttle.consume():
 pass

 try:
 result = fetch_place(item)
 except Exception as err:
 results_queue.put(err)
 else:
 results_queue.put(result)
 finally:
 work_queue.task_done()

Multiprocessing
Let's be honest, multithreading is challenging—we have already seen that in the
previous section. It's a fact that the simplest approach to the problem required
only minimal effort. But dealing with threads in a sane and safe manner required
a tremendous amount of code.

Chapter 13

[443]

We had to set up thread pool and communication queues, gracefully handle exceptions
from threads, and also care about thread safety when trying to provide rate limiting
capability. Tens lines of code only to execute one function from an external library in
parallel! And we only assume that this is production-ready because there is a promise
from the external package creator that his library is thread-safe. Sounds like a high
price for a solution that is practically applicable only for doing I/O bound tasks.

An alternative approach that allows you to achieve parallelism is multiprocessing.
Separate Python processes that do not constrain each other with GIL allow for
better resource utilization. This is especially important for applications running on
multicore processors that are performing really CPU-extensive tasks. Right now this
is the only built-in concurrent solution available for Python developers (using the
CPython interpreter) that allows you to take benefit from multiple processor cores.

The other advantage of using multiple processes is the fact that they do not share
memory context. So it is harder to corrupt data and introduce deadlocks into your
application. Not sharing the memory context means that you need some additional
effort to pass the data between separate processes, but fortunately there are many
good ways to implement reliable interprocess communication. In fact, Python
provides some primitives that make communication between processes as easy
as possible between threads.

The most basic way to start new processes in any programming language is usually
by forking the program at some point. On POSIX systems (Unix, Mac OS, and Linux)
a fork is a system call exposed in Python through the os.fork() function, which will
create a new child process. The two processes then continue the program on their
own right after forking. Here is an example script that forks itself exactly once:

import os

pid_list = []

def main():
 pid_list.append(os.getpid())
 child_pid = os.fork()

 if child_pid == 0:
 pid_list.append(os.getpid())
 print()
 print("CHLD: hey, I am the child process")
 print("CHLD: all the pids i know %s" % pid_list)

 else:
 pid_list.append(os.getpid())

Concurrency

[444]

 print()
 print("PRNT: hey, I am the parent")
 print("PRNT: the child is pid %d" % child_pid)
 print("PRNT: all the pids i know %s" % pid_list)

if __name__ == "__main__":
 main()

And here is an example of running it in a terminal:

$ python3 forks.py

PRNT: hey, I am the parent

PRNT: the child is pid 21916

PRNT: all the pids i know [21915, 21915]

CHLD: hey, I am the child process

CHLD: all the pids i know [21915, 21916]

Notice how both processes have exactly the same initial state of their data before the
os.fork() call. They both have the same PID number (process identifier) as a first
value of the pid_list collection. Later, both states diverge and we can see that the
child process added the 21916 value while the parent duplicated its 21915 PID. This
is because the memory contexts of these two processes are not shared. They have the
same initial conditions but cannot affect each other after the os.fork() call.

After the fork memory context is copied to the child, each process deals with its own
address space. To communicate, processes need to work with system-wide resources
or use low-level tools such as signals.

Unfortunately, os.fork is not available under Windows, where a new interpreter
needs to be spawned in order to mimic the fork feature. So it needs to be different
depending on the platform. The os module also exposes functions that allow you
to spawn new processes under Windows, but eventually you will use them rarely.
This is also true for os.fork(). Python provides great a multiprocessing module
that creates a high-level interface for multiprocessing. The great advantage of this
module is that it provides some of the abstractions that we had to code from scratch
in An example of a threaded application section. It allows you to limit the amount of
boilerplate code, so it improves application maintainability and reduces its complexity.
Surprisingly, despite its name, the multiprocessing module also exposes a similar
interface for threads, so you will probably want to use the same interface for both
approaches.

Chapter 13

[445]

The built-in multiprocessing module
multiprocessing provides a portable way to work with processes as if they
were threads.

This module contains a Process class that is very similar to the Thread class, and
can be used on any platform:

from multiprocessing import Process
import os

def work(identifier):
 print(
 'hey, i am a process {}, pid: {}'
 ''.format(identifier, os.getpid())
)

def main():
 processes = [
 Process(target=work, args=(number,))
 for number in range(5)
]
 for process in processes:
 process.start()

 while processes:
 processes.pop().join()

if __name__ == "__main__":
 main()

The preceding script, when executed, gives the following result:

$ python3 processing.py

hey, i am a process 1, pid: 9196

hey, i am a process 0, pid: 8356

hey, i am a process 3, pid: 9524

hey, i am a process 2, pid: 3456

hey, i am a process 4, pid: 6576

Concurrency

[446]

When the processes are created, the memory is forked (on POSIX systems). The most
efficient usage of processes is to let them work on their own after they have been
created to avoid overhead, and check on their states from the main thread. Besides
the memory state that is copied, the Process class also provides an extra args
argument in its constructor so that data can be passed along.

The communication between process modules requires some additional work
because their local memory is not shared by default. To simplify this, the
multiprocessing module provides a few ways of communication between processes:

• Using the multiprocessing.Queue class, which is a near clone of queue.
Queue, which was used earlier for communication between threads

• Using multiprocessing.Pipe, which is a socket-like two-way
communication channel

• Using the multiprocessing.sharedctypes module, which allows you to
create arbitrary C types (from the ctypes module) in a dedicated pool of
memory that is shared between processes

The multiprocessing.Queue and queue.Queue classes have the same interface. The
only difference is that the first is designed for use in multiple process environments,
rather than with multiple threads, so it uses different internal transports and locking
primitives. We already saw how to use Queue with multithreading in the An example
of a threaded application section, so we won't do the same for multiprocessing. The
usage stays exactly the same, so such an example would not bring anything new.

A more interesting pattern right now is provided by the Pipe class. It is a duplex
(two-way) communication channel that is very similar in concept to Unix pipes.
The interface of Pipe is also very similar to a simple socket from the built-in socket
module. The difference from raw system pipes and sockets is that it allows you to
send any pickable object (using the pickle module) instead of just raw bytes. This
allows for a lot easier communication between processes because you can send
almost any basic Python type:

from multiprocessing import Process, Pipe

class CustomClass:
 pass

def work(connection):
 while True:
 instance = connection.recv()

Chapter 13

[447]

 if instance:
 print("CHLD: {}".format(instance))

 else:
 return

def main():
 parent_conn, child_conn = Pipe()

 child = Process(target=work, args=(child_conn,))

 for item in (
 42,
 'some string',
 {'one': 1},
 CustomClass(),
 None,
):
 print("PRNT: send {}:".format(item))
 parent_conn.send(item)

 child.start()
 child.join()

if __name__ == "__main__":
 main()

When looking at an example output of the preceding script, you will see that you can
easily pass custom class instances and that they have different addresses depending
on the process:

PRNT: send: 42

PRNT: send: some string

PRNT: send: {'one': 1}

PRNT: send: <__main__.CustomClass object at 0x101cb5b00>

PRNT: send: None

CHLD: recv: 42

CHLD: recv: some string

CHLD: recv: {'one': 1}

CHLD: recv: <__main__.CustomClass object at 0x101cba400>

Concurrency

[448]

The other way to share a state between processes is to use raw types in a shared
memory pool with the classes provided in multiprocessing.sharedctypes. The
most basic ones are Value and Array. Here is an example code from the official
documentation of the multiprocessing module:

from multiprocessing import Process, Value, Array

def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
 a[i] = -a[i]

if __name__ == '__main__':
 num = Value('d', 0.0)
 arr = Array('i', range(10))

 p = Process(target=f, args=(num, arr))
 p.start()
 p.join()

 print(num.value)
 print(arr[:])

And this example will print the following output:

3.1415927

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

When working with multiprocessing.sharedctypes, you need to remember
that you are dealing with shared memory, so to avoid the risk of data corruption
you need to use locking primitives. Multiprocessing provides some of the classes
available in threading, such as Lock, RLock, and Semaphore, to do that. The
downside of classes from sharedctypes is that they allow you only to share the
basic C types from the ctypes module. If you need to pass more complex structures
or class instances, you need to use Queue, Pipe, or other interprocess communication
channels instead. In most cases, it is reasonable to avoid types from sharedctypes
because they increase code complexity and bring all the dangers known from
multithreading.

Chapter 13

[449]

Using process pools
Using multiple processes instead of threads adds some substantial overhead. Mostly,
it increases the memory footprint because each process has its own independent
memory context. This means allowing for an unbound number of child processes
is even more of a problematic issue than in multithreaded applications.

The best pattern to control resource usage in applications that rely on multiprocessing
for better resource utilization is to build a process pool in a similar way as described
for threads in the Using a thread pool section.

And the best thing about the multiprocessing module is that it provides a
ready-to-use Pool class that handles all the complexity of managing multiple process
workers for you. This pool implementation greatly reduces the amount of boilerplate
required and the number of issues related to two-way communication. You also are
not required to use the join() method manually, as Pool can be used as the context
manager (using the with statement). Here is one of our previous threading examples
rewritten to use the Pool class from the multiprocessing module:

from multiprocessing import Pool

from gmaps import Geocoding

api = Geocoding()

PLACES = (
 'Reykjavik', 'Vien', 'Zadar', 'Venice',
 'Wrocław', 'Bolognia', 'Berlin', 'Słubice',
 'New York', 'Dehli',
)

POOL_SIZE = 4

def fetch_place(place):
 return api.geocode(place)[0]

def present_result(geocoded):
 print("{:>25s}, {:6.2f}, {:6.2f}".format(
 geocoded['formatted_address'],
 geocoded['geometry']['location']['lat'],
 geocoded['geometry']['location']['lng'],
))

Concurrency

[450]

def main():
 with Pool(POOL_SIZE) as pool:
 results = pool.map(fetch_place, PLACES)

 for result in results:
 present_result(result)

if __name__ == "__main__":
 main()

As you can see, the code is now a lot shorter. It means that it is now easier to
maintain and debug in case of issues. Actually, there are now only two lines of
code that explicitly deal with multiprocessing. This is a great improvement over the
situation where we had to build the processing pool from scratch. Now we don't
even need to care about communication channels because they are created implicitly
inside of the Pool implementation.

Using multiprocessing.dummy as a multithreading
interface
The high-level abstractions from the multiprocessing module, such as the Pool
class, are great advantages over the simple tools provided in the threading module.
But no, it does not mean that multiprocessing is always a better approach than
multithreading. There are a lot of use cases where threads may be a better solution
than processes. This is especially true for situations where low latency and/or high
resource efficiency is required.

But it does not mean that you need to sacrifice all the useful abstractions from the
multiprocessing module whenever you want to use threads instead of processes.
There is the multiprocessing.dummy module, which replicates the multiprocessing
API but uses multiple threads instead of forking/spawning new processes.

This allows you to reduce the amount of boilerplate in your code and also make
a more pluggable interface. For instance, let's take yet another look at our main()
function from the previous examples. If we wanted to give the user control over
which processing backend he wants to use (processes or threads), we could do that
simply by replacing the Pool class:

from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool

def main(use_threads=False):
 if use_threads:

Chapter 13

[451]

 pool_cls = ThreadPool
 else:
 pool_cls = ProcessPool

 with pool_cls(POOL_SIZE) as pool:
 results = pool.map(fetch_place, PLACES)

 for result in results:
 present_result(result)

Asynchronous programming
Asynchronous programming has gained a lot of traction in recent years. In Python
3.5, it finally got some syntax features that solidify concepts of asynchronous
execution. But it does not mean that asynchronous programming is only possible
starting from Python 3.5. A lot of libraries and frameworks were provided a lot
earlier, and most of them have origins in the old versions of Python 2. There is even
a whole alternate implementation of Python called Stackless (see Chapter 1, Current
Status of Python), which concentrated on this single programming approach. Some
of these solutions, such as Twisted, Tornado, or Eventlet, still have huge and active
communities and are really worth knowing. Anyway, starting from Python 3.5,
asynchronous programming is easier than ever before. So it is expected that its
built-in asynchronous features will replace the bigger parts of older tools, or external
projects will gradually transform into a kind of high-level frameworks based on
Python built-ins.

When trying to explain what asynchronous programming is, the easiest way is to think
about this approach as something similar to threads but without system scheduling
involved. This means that an asynchronous program can concurrently process
problems but its context is switched internally and not by a system scheduler.

But, of course, we don't use threads to concurrently handle the work in an
asynchronous program. Most of the solutions use a different kind of concept and,
depending on the implementation, it is named differently. Some example names
used to describe such concurrent program entities are:

• Green threads or greenlets (greenlet, gevent, or eventlet projects)
• Coroutines (Python 3.5 native asynchronous programming)
• Tasklets (Stackless Python)

These are mainly the same concepts, but often implemented in a bit different way.
For obvious reasons, in this section, we will concentrate only on coroutines that are
natively supported by Python, starting from version 3.5.

Concurrency

[452]

Cooperative multitasking and asynchronous
I/O
Cooperative multitasking is the core of asynchronous programming. In this style of
computer multitasking, it's not a responsibility of the operating system to initiate a
context switch (to another process or thread), but instead every process voluntarily
releases control when it is idle to enable simultaneous execution of multiple
programs. This is why it is called cooperative. All processes need to cooperate
in order to multitask smoothly.

This model of multitasking was sometimes employed in operating systems, but now
it is hardly ever found as a system-level solution. This is because there is a risk that
one poorly designed service can easily break the whole system's stability. Thread and
process scheduling with context switches managed directly by the operating system
is now the dominant approach for concurrency on the system level. But cooperative
multitasking is still a great concurrency tool on the application level.

When speaking about cooperative multitasking on the application level, we do not
deal with threads or processes that need to release control because all the execution
is contained within a single process and thread. Instead, we have multiple tasks
(coroutines, tasklets, and green threads) that release control to the single function that
handles the coordination of tasks. This function is usually some kind of event loop.

To avoid confusion later (due to Python terminology), from now on we will refer
to such concurrent tasks as coroutines. The most important problem in cooperative
multitasking is when to release control. In most of asynchronous applications,
control is released to the scheduler or event loop on I/O operations. No matter
whether a program reads data from a filesystem or communicates through a socket,
such I/O operation is always related to some waiting time when the process becomes
idle. The waiting time depends on the external resource, so it is a good opportunity
to release control so that other coroutines can do their work until they too would
need to wait.

This makes such an approach somewhat similar in behavior to how multithreading
is implemented in Python. We know that GIL serializes Python threads but it is
also released on every I/O operation. The main difference is that threads in Python
are implemented as system-level threads, so the operating system can preempt the
currently running thread and give control to another one at any point in time. In
asynchronous programming, tasks are never preempted by the main event loop. This
is why this style of multitasking is also called non-preemptive multitasking.

Chapter 13

[453]

Of course every Python application runs on an operating system where there are
other processes competing for resources. This means that the operating system
always has the right to preempt the whole process and give control to another one.
But when our asynchronous application is running back, it continues from the
same place where it was paused when the system scheduler stepped in. This is
why coroutines are still considered nonpreemptive.

Python async and await keywords
The async and await keywords are the main building blocks in Python
asynchronous programming.

The async keyword used before the def statement defines a new coroutine. The
execution of the coroutine function may be suspended and resumed in strictly
defined circumstances. Its syntax and behavior is very similar to generators (refer
to Chapter 2, Syntax Best Practices – below the Class Level) In fact, generators need to
be used in older versions of Python in order to implement coroutines. Here is an
example of a function declaration that uses the async keyword:

async def async_hello():
 print("hello, world!")

Functions defined with the async keyword are special. When called, they do not
execute the code inside but instead return a coroutine object:

>>> async def async_hello():

... print("hello, world!")

...

>>> async_hello()

<coroutine object async_hello at 0x1014129e8>

The coroutine object does not do anything until its execution is scheduled in the
event loop. The asyncio module is available in order to provide the basic event
loop implementation, as well as lot of other asynchronous utilities:

>>> import asyncio

>>> async def async_hello():

... print("hello, world!")

...

>>> loop = asyncio.get_event_loop()

>>> loop.run_until_complete(async_hello())

hello, world!

>>> loop.close()

Concurrency

[454]

Obviously, since we have created only one simple coroutine, there is no concurrency
involved in our program. In order to see something really concurrent, we need to
create more tasks that will be executed by the event loop.

New tasks can be added to the loop by calling the loop.create_task() method
or by providing another object to wait for using the asyncio.wait() function. We
will use the latter approach and try to asynchronously print a sequence of numbers
generated with the range() function:

import asyncio

async def print_number(number):
 print(number)

if __name__ == "__main__":
 loop = asyncio.get_event_loop()

 loop.run_until_complete(
 asyncio.wait([
 print_number(number)
 for number in range(10)
])
)
 loop.close()

The asyncio.wait() function accepts a list of coroutine objects and returns
immediately. The result is a generator that yields objects representing future results
(futures). As the name suggests, it is used to wait until all of the provided coroutines
complete. The reason why it returns a generator instead of a coroutine object is
backwards compatibility with previous versions of Python, which will be explained
later. The result of running this script may be as follows:

$ python asyncprint.py

0

7

8

3

9

4

1

5

2

6

Chapter 13

[455]

As we can see, the numbers are not printed in the same order as we created our
coroutines. But this is exactly what we wanted to achieve.

The second important keyword added in Python 3.5 is await. It is used to wait for
the results of coroutine or a future (explained later) and release the control over
execution to the event loop. To better understand how it works, we need to
review a more complex example of code.

Let's say we want to create two coroutines that will perform some simple task
in a loop:

• Wait a random number of seconds
• Print some text provided as an argument and the amount of time spent

in sleep

Let's start with a simple implementation that has some concurrency issues which we
will later try to improve with the additional await usage:

import time
import random
import asyncio

async def waiter(name):
 for _ in range(4):
 time_to_sleep = random.randint(1, 3) / 4
 time.sleep(time_to_sleep)
 print(
 "{} waited {} seconds"
 "".format(name, time_to_sleep)
)

async def main():
 await asyncio.wait([waiter("foo"), waiter("bar")])

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())
 loop.close()

Concurrency

[456]

When executed in the terminal (with the time command to measure time), it might
give the following output:

$ time python corowait.py

bar waited 0.25 seconds

bar waited 0.25 seconds

bar waited 0.5 seconds

bar waited 0.5 seconds

foo waited 0.75 seconds

foo waited 0.75 seconds

foo waited 0.25 seconds

foo waited 0.25 seconds

real 0m3.734s

user 0m0.153s

sys 0m0.028s

As we can see, both the coroutines completed their execution but not in an
asynchronous manner. The reason is that they both use the time.sleep() function
that is blocking but not releasing the control to the event loop. This would work
better in a multithreaded setup, but we don't want to use threads now. So how
do we fix this?

The answer is to use asyncio.sleep(), which is the asynchronous version of
time.sleep() and await its result using the await keyword. We already used this
statement in the first version of the main() function, but it was only to improve
clarity of code. It clearly did not make our implementation more concurrent. Let's see
an improved version of the waiter() coroutine that uses await asyncio.sleep():

async def waiter(name):
 for _ in range(4):
 time_to_sleep = random.randint(1, 3) / 4
 await asyncio.sleep(time_to_sleep)
 print(
 "{} waited {} seconds"
 "".format(name, time_to_sleep)
)

Chapter 13

[457]

If we run the updated script, we can see how the output of two functions interleave
with each other:

$ time python corowait_improved.py

bar waited 0.25 seconds

foo waited 0.25 seconds

bar waited 0.25 seconds

foo waited 0.5 seconds

foo waited 0.25 seconds

bar waited 0.75 seconds

foo waited 0.25 seconds

bar waited 0.5 seconds

real 0m1.953s

user 0m0.149s

sys 0m0.026s

The additional advantage of this simple improvement is that the code ran faster. The
overall execution time was less than the sum of all sleeping times because coroutines
were cooperatively releasing control.

asyncio in older versions of Python
The asyncio module appeared in Python 3.4. So it is the only version of Python
that has serious support for asynchronous programming before Python 3.5.
Unfortunately, it looks like these two subsequent versions are just enough to
introduce compatibility concerns.

Like it or not, the core of asynchronous programming in Python was introduced
earlier than the syntax elements supporting this pattern. Better late than never, but
this created a situation where there are two syntaxes available for working with
coroutines.

Starting from Python 3.5, you can use async and await:

async def main():
 await asyncio.sleep(0)

Concurrency

[458]

But for Python 3.4, you need to use the asyncio.coroutine decorator and the yield
from statement:

@asyncio.couroutine
def main():
 yield from asyncio.sleep(0)

The other useful fact is that the yield from statement was introduced in Python 3.3
and there is an asyncio backport available on PyPI. This means that you can use this
implementation of cooperative multitasking with Python 3.3 too.

A practical example of asynchronous
programming
As has already been mentioned multiple times in this chapter, asynchronous
programming is a great tool for handling I/O bound operations. So it's time to build
something more practical than the simple printing of sequences or asynchronous
waiting.

For the sake of consistency, we will try to handle the same problem we solved with
the help of multithreading and multiprocessing. So we will try to asynchronously
fetch some data from external resources through the network connection. It would
be great if we could use the same python-gmaps package as in the previous sections.
Unfortunately, we can't.

The creator of python-gmaps was a bit lazy and took a shortcut. In order to simplify
development, he chose a requests package as his HTTP client library of choice.
Unfortunately, requests do not support asynchronous I/O with async and await.
There are some other projects that aim to provide some concurrency to the requests
project, but they either rely on Gevent (grequests, refer to https://github.com/
kennethreitz/grequests) or thread/process pool execution (requests-futures,
refer to https://github.com/ross/requests-futures). Neither of these solves
our problem.

Before you get upset that I'm scolding an innocent open source developer,
calm down. The person behind the python-gmaps package is me. Poor
selection of dependencies is one of the issues of this project. I just like to
publicly criticize myself from time to time. This should be a bitter lesson
for me as python-gmaps in its most recent version (0.3.1 at the time of
writing this book) cannot be easily integrated with Python's asynchronous
I/O. Anyway, this may change in the future, so nothing is lost.

https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/ross/requests-futures

Chapter 13

[459]

Knowing the limitations of the library that was so easy to use in the previous
examples, we need to build something that will fill in the gap. The Google Maps
API is really simple to use, so we will build a quick-and-dirty asynchronous utility
only for illustration purposes. The standard library for Python in version 3.5 still
lacks a library that would make asynchronous HTTP requests as simple as calling
urllib.urlopen(). We definitely don't want to build the whole protocol support
from scratch, so we will use a little help from the aiohttp package available on PyPI.
It's a really promising library that adds both client and server implementations for
asynchronous HTTP. Here is a small module built on top of aiohttp that creates a
single geocode() helper function which makes geocoding requests to the Google
Maps API service:

import aiohttp

session = aiohttp.ClientSession()

async def geocode(place):
 params = {
 'sensor': 'false',
 'address': place
 }
 async with session.get(
 'https://maps.googleapis.com/maps/api/geocode/json',
 params=params
) as response:
 result = await response.json()
 return result['results']

Let's assume that this code is stored in a module named asyncgmaps, which we are
going to use later. Now we are ready to rewrite the example used when discussing
multithreading and multiprocessing. Previously, we used to split the whole
operation into two separate steps:

1. Perform all request to the external service in parallel using the
fetch_place() function.

2. Display all the results in a loop using the present_result() function.

Concurrency

[460]

But because cooperative multitasking is something completely different from
using multiple processes or threads, we can slightly modify our approach. Most of
the issues raised in the Using one thread per item section are no longer our concern.
Coroutines are nonpreemptive, so we can easily display results immediately after
HTTP responses are awaited. This will simplify our code and make it clearer:

import asyncio
note: local module introduced earlier
from asyncgmaps import geocode, session

PLACES = (
 'Reykjavik', 'Vien', 'Zadar', 'Venice',
 'Wrocław', 'Bolognia', 'Berlin', 'Słubice',
 'New York', 'Dehli',
)

async def fetch_place(place):
 return (await geocode(place))[0]

async def present_result(result):
 geocoded = await result
 print("{:>25s}, {:6.2f}, {:6.2f}".format(
 geocoded['formatted_address'],
 geocoded['geometry']['location']['lat'],
 geocoded['geometry']['location']['lng'],
))

async def main():
 await asyncio.wait([
 present_result(fetch_place(place))
 for place in PLACES
])

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

 # aiohttp will raise issue about unclosed
 # ClientSession so we perform cleanup manually
 loop.run_until_complete(session.close())
 loop.close()

Chapter 13

[461]

Integrating nonasynchronous code with
async using futures
Asynchronous programming is great, especially for backend developers interested
in building scalable applications. In practice, it is one of the most important tools
for building highly concurrent servers.

But the reality is painful. A lot of popular packages that deal with I/O bound
problems are not meant to be used with asynchronous code. The main reasons
for that are:

• Still low adoption of Python 3 and some of its advanced features
• Low understanding of various concurrency concepts among Python beginners

This means that very often migration of the existing synchronous multithreaded
applications and packages is either impossible (due to architectural constraints)
or too expensive. A lot of projects could benefit greatly from incorporating the
asynchronous style of multitasking, but only a few of them will eventually do that.

This means that right now, you will experience a lot of difficulties when trying to
build asynchronous applications from the start. In most cases, this will be something
similar to the problem mentioned in the A practical example of asynchronous programming
section—incompatible interfaces and nonasynchronous blocking of I/O operations.

Of course, you can sometimes resign from await when you experience such
incompatibility and just fetch the required resources synchronously. But this will
block every other coroutine from executing its code while you wait for the results.
It technically works but also ruins all the gains of asynchronous programming.
So in the end, joining asynchronous I/O with synchronous I/O is not an option.
It is a kind of all or nothing game.

The other problem is long running CPU-bound operations. When you are
performing an I/O operation, it is not a problem to release control from a coroutine.
When writing/reading from a filesystem or socket, you will eventually wait, so
calling using await is the best you can do. But what to do when you need to actually
compute something and you know it will take a while? You can of course slice the
problem into parts and release control every time you move the work forward a bit.
But you will shortly find that this is not a good pattern. Such a thing may make the
code a mess, and also does not guarantee good results. Timeslicing should be the
responsibility of the interpreter or operating system.

Concurrency

[462]

So what to do if you have some code that makes long synchronous I/O operations
that you can't or are unwilling to rewrite. Or what to do when you have to
make some heavy CPU-bound operations in an application designed mostly
with asynchronous I/O in mind? Well... you need to use a workaround. And
by workaround I mean multithreading or multiprocessing.

This may not sound nice, but sometimes the best solution may be the one that we
tried to escape from. Parallel processing of CPU-extensive tasks in Python is always
done better with multiprocessing. And multithreading may deal with I/O operations
equally good (fast and without lot of resource overhead) as async and await,
if set-up properly and handled with care.

So sometimes when you don't know what to do, when something simply does not
fit your asynchronous application, use a piece of code that will defer it to separate
thread or process. You can pretend that this was a coroutine, release control to the
event loop and eventually process the results when they are ready. Fortunately for
us, the Python standard library provides the concurrent.futures module, which
is also integrated with the asyncio module. These two modules together allow you
to schedule blocking functions executed in threads or additional processes as it were
asynchronous nonblocking coroutines.

Executors and futures
Before we see how to inject threads or processes into an asynchronous event loop,
we will take a closer look at the concurrent.futures module, which will later be
the main ingredient of our so-called workaround.

The most important classes in the concurrent.futures module are Executor
and Future.

Executor represents a pool of resources that may process work items in parallel.
This may seem very similar in purpose to classes from the multiprocessing
module—Pool and dummy.Pool—but has a completely different interface and
semantics. It is a base class not intended for instantiation and has two concrete
implementations:

• ThreadPoolExecutor: This is the one that represents a pool of threads
• ProcessPoolExecutor: This is the one that represents a pool of processes

Chapter 13

[463]

Every executor provides three methods:

• submit(fn, *args, **kwargs): This schedules the fn function for
execution on a pool of resources and returns the Future object representing
the execution of a callable

• map(func, *iterables, timeout=None, chunksize=1): This executes
the func function over an iterable in a similar way to the multiprocessing.
Pool.map() method

• shutdown(wait=True): This shuts down the executer and frees all of its
resources

The most interesting method is submit() because of the Future object it returns. It
represents the asynchronous execution of a callable and only indirectly represents
its result. In order to obtain the actual return value of the submitted callable, you
need to call the Future.result() method. And if the callable is already finished,
the result() method will not block it and will just return the function output. If it
is not true, it will block it until the result is ready. Treat it like a promise of a result
(actually it is the same concept as a promise in JavaScript). You don't need to unpack
it immediately after receiving it (with the result() method), but if you try to do that
it is guaranteed to eventually return something:

>>> def loudy_return():

... print("processing")

... return 42

...

>>> from concurrent.futures import ThreadPoolExecutor

>>> with ThreadPoolExecutor(1) as executor:

... future = executor.submit(loudy_return)

...

processing

>>> future

<Future at 0x33cbf98 state=finished returned int>

>>> future.result()

42

Concurrency

[464]

If you want to use the Executor.map() method, it does not differ in usage from the
Pool.map() method of the Pool class from multiprocessing module:

def main():
 with ThreadPoolExecutor(POOL_SIZE) as pool:
 results = pool.map(fetch_place, PLACES)

 for result in results:
 present_result(result)

Using executors in an event loop
The Future class instances returned by the Executor.submit() method is
conceptually very close to the coroutines used in asynchronous programming. This
is why we can use executors to make hybrid between cooperative multitasking and
multiprocessing or multithreading.

The core of this workaround is the BaseEventLoop.run_in_executor(executor,
func, *args) method of the event loop class. It allows you to schedule the
execution of the func function in a process or thread pool represented by the
executor argument. The most important thing about that method is that it returns a
new awaitable (an object that can be awaited with the await statement). So thanks to
this, you can execute a blocking function that is not a coroutine exactly as it were a
coroutine, and it will not block no matter how long it takes to finish. It will stop only
the function that is awaiting results from such a call, but the whole event loop will
still keep spinning.

And a useful fact is that you don't need to even create your executor instance. If you
pass None as an executor argument, the ThreadPoolExecutor class will be used
with the default number of threads (for Python 3.5 it is the number of processors
multiplied by 5).

So, let's assume that we did not want to rewrite the problematic part of the
python-gmaps package that was the cause of our headache. We can easily defer the
blocking call to a separate thread with the loop.run_in_executor() invocation
while still leaving the fetch_place() function as an awaitable coroutine:

async def fetch_place(place):
 coro = loop.run_in_executor(None, api.geocode, place)
 result = await coro
 return result[0]

Such a solution is not as good as having a fully asynchronous library to do the job,
but you know half a loaf is better than no bread.

Chapter 13

[465]

Summary
It was a long journey, but we successfully struggled through the most basic
approaches to concurrent programming available for Python programmers.

After explaining what concurrency really is, we jumped into action and dissected one
of the typical concurrent problems with the help of multithreading. After identifying
the basic deficiencies of our code and fixing them, we turned to multiprocessing to
see how it would work in our case.

We found that multiple processes are much easier to use with the multiprocessing
module than base threads with threading. But just after that, we have realized that
we can use the same API with threads too, thanks to multiprocessing.dummy. So
the choice between multiprocessing and multithreading is now only a matter of
which solution better suits the problem and not which solution has a better interface.

And speaking about problem fit, we finally tried asynchronous programming, which
should be the best solution for I/O bound applications, only to realize that we cannot
completely forget about threads and processes. So we made a circle, back to the place
where we started!

And this leads us to the final conclusion of this chapter. There is no silver bullet.
There are some approaches that you may prefer or like more. There are some
approaches that may fit better for a given set of problems, but you need to know
them all in order to be successful. In realistic scenarios, you may find yourself using
the whole arsenal of concurrency tools and styles in a single application and this is
not uncommon.

The preceding conclusion is a great introduction to the topic of the next chapter,
Chapter 14, Useful Design Patterns. This is because there is no single pattern that will
solve all of your problems. You should know as many as possible because eventually
you will end up using all of them on a daily basis.

[467]

Useful Design Patterns
A design pattern is a reusable, somewhat language-specific solution to a common
problem in software design. The most popular book on this topic is Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley Professional, written by
Gamma, Helm, Johnson, and Vlissides, also known as the Gang of Four or GoF. It
is considered as a major writing in this area and provides a catalogue of 23 design
patterns with examples in SmallTalk and C++.

While designing an application code, these patterns help in solving common
problems. They ring a bell to all developers since they describe proven development
paradigms. But they should be studied with the used language in mind, since some
of them do not make sense in some languages or are already built-in.

This chapter describes the most useful patterns in Python or patterns that are
interesting to discuss, with implementation examples. The following are the three
sections that correspond to design pattern categories defined by the GoF:

• Creational patterns: These are patterns that are used to generate objects with
specific behaviors

• Structural patterns: These are patterns that help in structuring the code for
specific use cases

• Behavioral patterns: These are patterns that help in assigning responsibilities
and encapsulating behaviors

Creational patterns
Creational patterns deal with object instantiation mechanism. Such a pattern
might define a way as to how object instances are created or even how classes
are constructed.

Useful Design Patterns

[468]

These are very important patterns in compiled languages such as C or C++, since it is
harder to generate types on-demand at run time.

But creating new types at runtime is pretty straightforward in Python. The built-in
type function lets you define a new type object by code:

>>> MyType = type('MyType', (object,), {'a': 1})

>>> ob = MyType()

>>> type(ob)

<class '__main__.MyType'>

>>> ob.a

1

>>> isinstance(ob, object)

True

Classes and types are built-in factories. We already dealt with the creation of new
class objects and you can interact with class and object generation using metaclasses.
These features are the basics for implementing the factory design pattern, but we
won't further describe it in this section because we extensively covered the topic of
class and object creation in Chapter 3, Syntax Best Practices – above the Class Level.

Besides factory, the only other creational design pattern from the GoF that is
interesting to describe in Python is singleton.

Singleton
Singleton restricts the instantiation of a class to only a single object instance.

The singleton pattern makes sure that a given class has always only one living
instance in the application. This can be used, for example, when you want to restrict
a resource access to one and only one memory context in the process. For instance,
a database connector class can be a singleton that deals with synchronization and
manages its data in memory. It makes the assumption that no other instance is
interacting with the database in the meantime.

This pattern can simplify a lot the way concurrency is handled in an application.
Utilities that provide application-wide functions are often declared as singletons.
For instance, in web applications, a class that is in charge of reserving a unique
document ID would benefit from the singleton pattern. There should be one and
only one utility doing this job.

Chapter 14

[469]

There is a popular semi-idiom to create singletons in Python by overriding the
__new__() method of a class:

class Singleton:
 _instance = None

 def __new__(cls, *args, **kwargs):
 if cls._instance is None:
 cls._instance = super().__new__(cls, *args, **kwargs)

 return cls._instance

If you try to create multiple instances of that class and compare their IDs, you will
find that they all represent the same object:

>>> instance_a = Singleton()

>>> instance_b = Singleton()

>>> id(instance_a) == id(instance_b)

True

>>> instance_a == instance_b

True

I call this a semi-idiom because it is a really dangerous pattern. The problem starts
when you try to subclass your base singleton class and create an instance of this new
subclass if you already created an instance of the base class:

>>> class ConcreteClass(Singleton): pass

>>> Singleton()

<Singleton object at 0x000000000306B470>

>>> ConcreteClass()

<Singleton object at 0x000000000306B470>

This may become even more problematic when you notice that this behavior is
affected by an instance creation order. Depending on your class usage order, you
may or may not get the same result. Let's see what the results are if you create the
subclass instance first and after that, the instance of the base class:

>>> class ConcreteClass(Singleton): pass

>>> ConcreteClass()

<ConcreteClass object at 0x00000000030615F8>

>>> Singleton()

<Singleton object at 0x000000000304BCF8>

Useful Design Patterns

[470]

As you can see, the behavior is completely different and very hard to predict. In large
applications, it may lead to very dangerous and hard-to-debug problems. Depending
on the run time context, you may or may not use the classes that you were meant to.
Because such a behavior is really hard to predict and control, the application may
break because of changed import order or even user input. If your singleton is not
meant to be subclassed, it may be relatively safe to implement that way. Anyway,
it's a ticking bomb. Everything may blow up if someone disregards the risk in future
and decides to create a subclass from your singleton object. It is safer to avoid this
particular implementation and use an alternative one.

It is a lot safer to use a more advanced technique—metaclasses. By overriding
the __call__() method of a metaclass, you can affect the creation of your custom
classes. This allows creating a reusable singleton code:

class Singleton(type):
 _instances = {}

 def __call__(cls, *args, **kwargs):
 if cls not in cls._instances:
 cls._instances[cls] = super().__call__(*args,
 **kwargs)
 return cls._instances[cls]

By using this Singleton as a metaclass for your custom classes, you are able to get
singletons that are safe to subclass and independent of instance creation order:

>>> ConcreteClass() == ConcreteClass()

True

>>> ConcreteSubclass() == ConcreteSubclass()

True

>>> ConcreteClass()

<ConcreteClass object at 0x000000000307AF98>

>>> ConcreteSubclass()

<ConcreteSubclass object at 0x000000000307A3C8>

Another way to overcome the problem of trivial singleton implementation is to use
what Alex Martelli proposed. He came out with something similar in behavior to
singleton but completely different in structure. This is not a classical design pattern
coming from the GoF book, but it seems to be common among Python developers. It
is called Borg or Monostate.

Chapter 14

[471]

The idea is quite simple. What really matters in the singleton pattern is not the
number of living instances a class has, but rather the fact that they all share the same
state at all times. So, Alex Martelli came up with a class that makes all instances of
the class share the same __dict__:

class Borg(object):
 _state = {}

 def __new__(cls, *args, **kwargs):
 ob = super().__new__(cls, *args, **kwargs)
 ob.__dict__ = cls._state
 return ob

This fixes the subclassing issue but is still dependent on how the subclass code
works. For instance, if __getattr__ is overridden, the pattern can be broken.

Nevertheless, singletons should not have several levels of inheritance. A class that is
marked as a singleton is already specific.

That said, this pattern is considered by many developers as a heavy way to deal with
uniqueness in an application. If a singleton is needed, why not use a module with
functions instead, since a Python module is already singleton? The most common
pattern is to define a module-level variable as an instance of a class that needs to be
singleton. This way, you also don't constrain the developers to your initial design.

The singleton factory is an implicit way of dealing with the uniqueness
of your application. You can live without it. Unless you are working
in a framework à la Java that requires such a pattern, use a module
instead of a class.

Structural patterns
Structural patterns are really important in big applications. They decide how the
code is organized and give developers recipes on how to interact with each part of
the application.

For a long time, the most well-known implementation of many structural patterns in
the Python world provided the Zope project with its Zope Component Architecture
(ZCA). It implements most of the patterns described in this section and provides
a rich set of tools to work with them. The ZCA is intended to run not only in the
Zope framework, but also in other frameworks such as Twisted. It provides an
implementation of interfaces and adapters among other things.

Useful Design Patterns

[472]

Unfortunately (or not), Zope lost almost all of its momentum and is not as popular
as it used to be. But its ZCA may still be a good reference on implementing
structural patterns in Python. Baiju Muthukadan created A Comprehensive Guide to
Zope Component Architecture. It is available both in print and freely online (refer to
http://muthukadan.net/docs/zca.html). It was written in 2009, so it does not
cover the latest versions of Python but should still be a good read because it provides
a lot of rationale for some of the mentioned patterns.

Python already provides some of the popular structural patterns through its syntax.
For instance, the class and function decorators can be considered a flavor of the
decorator pattern. Also, support for creating and importing modules is an emanation
of module pattern.

The list of common structural patterns is actually quite long. The original Design
Patterns book featured as many as seven of them and the list was later extended by
other literature. We won't discuss all of them but will focus only on the three most
popular and recognized ones, which are:

• Adapter
• Proxy
• Facade

Adapter
The Adapter pattern allows the interface of an existing class to be used from another
interface. In other words, an adapter wraps a class or an object A so that it works in
a context intended for a class or an object B.

Creating adapters in Python is actually very straightforward due to how typing in
this language works. The typing philosophy in Python is commonly referred to as
duck-typing:

"If it walks like a duck and talks like a duck, then it's a duck!"

According to this rule, if a value for a function or method is accepted, the decision
should not be based on its type but rather on its interface. So, as long as the object
behaves as expected, that is, has proper method signatures and attributes, its type
is considered compatible. This is completely different from many statically typed
languages where such a thing is rarely available.

In practice, when some code is intended to work with a given class, it is fine to feed
it with objects from another class as long as they provide the methods and attributes
used by the code. Of course, this assumes that the code isn't calling an instance to
verify that the instance is of a specific class.

http://muthukadan.net/docs/zca.html

Chapter 14

[473]

The adapter pattern is based on this philosophy and defines a wrapping mechanism
where a class or an object is wrapped in order to make it work in a context that was
not primarily intended for it. StringIO is a typical example, as it adapts the str
type, so it can be used as a file type:

>>> from io import StringIO

>>> my_file = StringIO('some content')

>>> my_file.read()

'some content'

>>> my_file.seek(0)

>>> my_file.read(1)

's'

Let's take another example. A DublinCoreInfos class knows how to display the
summary of some subset of Dublin Core information (see http://dublincore.
org/) for a given document provided as a dict. It reads a few fields, such as the
author's name or the title, and prints them. To be able to display Dublin Core for a
file, it has to be adapted in the same way StringIO does. The following figure shows
a UML-like diagram for such a kind of adapter pattern implementation.

Figure 2 UML diagram for simple adapter pattern example

DublinCoreAdapter wraps a file instance and provides metadata access over it:

from os.path import split, splitext

class DublinCoreAdapter:
 def __init__(self, filename):
 self._filename = filename

 @property
 def title(self):
 return splitext(split(self._filename)[-1])[0]

http://dublincore.org/
http://dublincore.org/

Useful Design Patterns

[474]

 @property
 def languages(self):
 return ('en',)

 def __getitem__(self, item):
 return getattr(self, item, 'Unknown')

class DublinCoreInfo(object):
 def summary(self, dc_dict):
 print('Title: %s' % dc_dict['title'])
 print('Creator: %s' % dc_dict['creator'])
 print('Languages: %s' % ', '.join(dc_dict['languages']))

And here is the example usage:

>>> adapted = DublinCoreAdapter('example.txt')

>>> infos = DublinCoreInfo()

>>> infos.summary(adapted)

Title: example

Creator: Unknown

Languages: en

Besides the fact that it allows substitution, the adapter pattern can also change the
way developers work. Adapting an object to work in a specific context makes the
assumption that the class of the object does not matter at all. What matters is that
this class implements what DublinCoreInfo is waiting for and this behavior is
fixed or completed by an adapter. So, the code can, somehow, simply tell whether
it is compatible with objects that are implementing a specific behavior. This can be
expressed by interfaces.

Interfaces
An interface is a definition of an API. It describes a list of methods and attributes a
class should have to implement with the desired behavior. This description does not
implement any code but just defines an explicit contract for any class that wishes to
implement the interface. Any class can then implement one or several interfaces in
whichever way it wants.

While Python prefers duck-typing over explicit interface definitions, it may be better
to use them sometimes. For instance, explicit interface definition makes it easier for
a framework to define functionalities over interfaces.

Chapter 14

[475]

The benefit is that classes are loosely coupled, which is considered as a good practice.
For example, to perform a given process, a class A does not depend on a class B, but
rather on an interface I. Class B implements I, but it could be any other class.

The support for such a technique is built-in in many statically typed languages such
as Java or Go. The interfaces allow the functions or methods to limit the range of
acceptable parameter objects that implement a given interface, no matter what kind
of class it comes from. This allows for more flexibility than restricting arguments to
given types or their subclasses. It is like an explicit version of duck-typing behavior:
Java uses interfaces to verify a type safety at compile time rather than use duck-
typing to tie things together at run time.

Python has a completely different typing philosophy to Java, so it does not have
native support for interfaces. Anyway, if you would like to have more explicit
control on application interfaces, there are generally two solutions to choose from:

• Use some third-party framework that adds a notion of interfaces
• Use some of the advanced language features to build your methodology for

handling interfaces.

Using zope.interface
There are a few frameworks that allow you to build explicit interfaces in Python. The
most notable one is a part of the Zope project. It is the zope.interface package.
Although, nowadays, Zope is not as popular as it used to be, the zope.interface
package is still one of the main components of the Twisted framework.

The core class of the zope.interface package is the Interface class. It allows you
to explicitly define a new interface by subclassing. Let's assume that we want to
define the obligatory interface for every implementation of a rectangle:

from zope.interface import Interface, Attribute

class IRectangle(Interface):
 width = Attribute("The width of rectangle")
 height = Attribute("The height of rectangle")

 def area():
 """ Return area of rectangle
 """

 def perimeter():
 """ Return perimeter of rectangle
 """

Useful Design Patterns

[476]

Some important things to remember when defining interfaces with zope.interface
are as follows:

• The common naming convention for interfaces is to use I as the name suffix.
• The methods of the interface must not take the self parameter.
• As the interface does not provide concrete implementation, it should

consist only of empty methods. You can use the pass statement, raise
NotImplementedError, or provide a docstring (preferred).

• An interface can also specify the required attributes using the Attribute class.

When you have such a contract defined, you can then define new concrete classes
that provide implementation for our IRectangle interface. In order to do that, you
need to use the implementer() class decorator and implement all of the defined
methods and attributes:

@implementer(IRectangle)
class Square:
 """ Concrete implementation of square with rectangle interface
 """

 def __init__(self, size):
 self.size = size

 @property
 def width(self):
 return self.size

 @property
 def height(self):
 return self.size

 def area(self):
 return self.size ** 2

 def perimeter(self):
 return 4 * self.size

@implementer(IRectangle)
class Rectangle:
 """ Concrete implementation of rectangle
 """
 def __init__(self, width, height):
 self.width = width
 self.height = height

Chapter 14

[477]

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return self.width * 2 + self.height * 2

It is common to say that the interface defines a contract that a concrete
implementation needs to fulfill. The main benefit of this design pattern is being able
to verify consistency between contract and implementation before the object is being
used. With the ordinary duck-typing approach, you only find inconsistencies when
there is a missing attribute or method at runtime. With zope.interface, you can
introspect the actual implementation using two methods from the zope.interface.
verify module to find inconsistencies early on:

• verifyClass(interface, class_object): This verifies the class object
for existence of methods and correctness of their signatures without looking
for attributes

• verifyObject(interface, instance): This verifies the methods, their
signatures, and also attributes of the actual object instance

Since we have defined our interface and two concrete implementations, let's verify
their contracts in an interactive session:

>>> from zope.interface.verify import verifyClass, verifyObject

>>> verifyObject(IRectangle, Square(2))

True

>>> verifyClass(IRectangle, Square)

True

>>> verifyObject(IRectangle, Rectangle(2, 2))

True

>>> verifyClass(IRectangle, Rectangle)

True

Nothing impressive. The Rectangle and Square classes carefully follow the defined
contract so there is nothing more to see than a successful verification. But what
happens when we make a mistake? Let's see an example of two classes that fail
to provide full IRectangle interface implementation:

@implementer(IRectangle)
class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

Useful Design Patterns

[478]

@implementer(IRectangle)
class Circle:
 def __init__(self, radius):
 self.radius = radius

 def area(self):
 return math.pi * self.radius ** 2

 def perimeter(self):
 return 2 * math.pi * self.radius

The Point class does not provide any method or attribute of the IRectangle
interface, so its verification will show inconsistencies already on the class level:

>>> verifyClass(IRectangle, Point)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "zope/interface/verify.py", line 102, in verifyClass

 return _verify(iface, candidate, tentative, vtype='c')

 File "zope/interface/verify.py", line 62, in _verify

 raise BrokenImplementation(iface, name)

zope.interface.exceptions.BrokenImplementation: An object has failed to
implement interface <InterfaceClass __main__.IRectangle>

 The perimeter attribute was not provided.

The Circle class is a bit more problematic. It has all the interface methods defined
but breaks the contract on the instance attribute level. This is the reason why, in
most cases, you need to use the verifyObject() function to completely verify the
interface implementation:

>>> verifyObject(IRectangle, Circle(2))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "zope/interface/verify.py", line 105, in verifyObject

 return _verify(iface, candidate, tentative, vtype='o')

 File "zope/interface/verify.py", line 62, in _verify

 raise BrokenImplementation(iface, name)

Chapter 14

[479]

zope.interface.exceptions.BrokenImplementation: An object has failed to
implement interface <InterfaceClass __main__.IRectangle>

 The width attribute was not provided.

Using zope.inteface is an interesting way to decouple your application. It allows
you to enforce proper object interfaces without the need for the overblown complexity
of multiple inheritance, and it also allows to catch inconsistencies early. However,
the biggest downside of this approach is the requirement that you explicitly define
that the given class follows some interface in order to be verified. This is especially
troublesome if you need to verify instances coming from external classes of built-in
libraries. zope.interface provides some solutions for that problem, and you can
of course handle such issues on your own by using the adapter pattern, or even
monkey-patching. Anyway, the simplicity of such solutions is at least arguable.

Using function annotations and abstract base classes
Design patterns are meant to make problem solving easier and not to provide you
with more layers of complexity. The zope.interface is a great concept and may
greatly fit some projects, but it is not a silver bullet. By using it, you may soon find
yourself spending more time on fixing issues with incompatible interfaces for
third-party classes and providing never-ending layers of adapters instead of writing
the actual implementation. If you feel that way, then this is a sign that something
went wrong. Fortunately, Python supports for building lightweight alternative to the
interfaces. It's not a full-fledged solution like zope.interface or its alternatives but
it generally provides more flexible applications. You may need to write a bit more
code, but in the end you will have something that is more extensible, better handles
external types, and may be more future proof.

Note that Python in its core does not have explicit notions of interfaces, and probably
will never have, but has some of the features that allow you to build something that
resembles the functionality of interfaces. The features are:

• Abstract base classes (ABCs)
• Function annotations
• Type annotations

The core of our solution is abstract base classes, so we will feature them first.

As you probably know, the direct type comparison is considered harmful and not
pythonic. You should always avoid comparisons as follows:

assert type(instance) == list

Useful Design Patterns

[480]

Comparing types in functions or methods that way completely breaks the ability to
pass a class subtype as an argument to the function. The slightly better approach is
to use the isinstance() function that will take the inheritance into account:

assert isinstance(instance, list)

The additional advantage of isinstance() is that you can use a larger range of types
to check the type compatibility. For instance, if your function expects to receive some
sort of sequence as the argument, you can compare against the list of basic types:

assert isinstance(instance, (list, tuple, range))

Such a way of type compatibility checking is OK in some situations but it is still not
perfect. It will work with any subclass of list, tuple, or range, but will fail if the
user passes something that behaves exactly the same as one of these sequence types
but does not inherit from any of them. For instance, let's relax our requirements and
say that you want to accept any kind of iterable as an argument. What would you
do? The list of basic types that are iterable is actually pretty long. You need to cover
list, tuple, range, str, bytes, dict, set, generators, and a lot more. The list of applicable
built-in types is long, and even if you cover all of them it will still not allow you to
check against the custom class that defines the __iter__() method, but will instead
inherit directly from object.

And this is the kind of situation where abstract base classes (ABC) are the proper
solution. ABC is a class that does not need to provide a concrete implementation
but instead defines a blueprint of a class that may be used to check against type
compatibility. This concept is very similar to the concept of abstract classes and
virtual methods known in the C++ language.

Abstract base classes are used for two purposes:

• Checking for implementation completeness
• Checking for implicit interface compatibility

So, let's assume we want to define an interface which ensures that a class has a
push() method. We need to create a new abstract base class using a special ABCMeta
metaclass and an abstractmethod() decorator from the standard abc module:

from abc import ABCMeta, abstractmethod

class Pushable(metaclass=ABCMeta):

 @abstractmethod
 def push(self, x):
 """ Push argument no matter what it means
 """

Chapter 14

[481]

The abc module also provides an ABC base class that can be used instead of the
metaclass syntax:

from abc import ABCMeta, abstractmethod

class Pushable(metaclass=ABCMeta):
 @abstractmethod
 def push(self, x):
 """ Push argument no matter what it means
 """

Once it is done, we can use that Pushable class as a base class for concrete
implementation and it will guard us from the instantiation of objects that would
have incomplete implementation. Let's define DummyPushable, which implements all
interface methods and the IncompletePushable that breaks the expected contract:

class DummyPushable(Pushable):
 def push(self, x):
 return

class IncompletePushable(Pushable):
 pass

If you want to obtain the DummyPushable instance, there is no problem because it
implements the only required push() method:

>>> DummyPushable()

<__main__.DummyPushable object at 0x10142bef0>

But if you try to instantiate IncompletePushable, you will get TypeError because of
missing implementation of the interface() method:

>>> IncompletePushable()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class IncompletePushable with
abstract methods push

Useful Design Patterns

[482]

The preceding approach is a great way to ensure implementation completeness of
base classes but is as explicit as the zope.interface alternative. The DummyPushable
instances are of course also instances of Pushable because Dummy is a subclass of
Pushable. But how about other classes with the same methods but not descendants
of Pushable? Let's create one and see:

>>> class SomethingWithPush:

... def push(self, x):

... pass

...

>>> isinstance(SomethingWithPush(), Pushable)

False

Something is still missing. The SomethingWithPush class definitely has a compatible
interface but is not considered as an instance of Pushable yet. So, what is missing? The
answer is the __subclasshook__(subclass) method that allows you to inject your
own logic into the procedure that determines whether the object is an instance of a
given class. Unfortunately, you need to provide it by yourself, as abc creators did not
want to constrain the developers in overriding the whole isinstance() mechanism.
We got full power over it, but we are forced to write some boilerplate code.

Although you can do whatever you want to, usually the only reasonable thing to do
in the __subclasshook__() method is to follow the common pattern. The standard
procedure is to check whether the set of defined methods are available somewhere in
the MRO of the given class:

from abc import ABCMeta, abstractmethod

class Pushable(metaclass=ABCMeta):

 @abstractmethod
 def push(self, x):
 """ Push argument no matter what it means
 """

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Pushable:
 if any("push" in B.__dict__ for B in C.__mro__):
 return True
 return NotImplemented

Chapter 14

[483]

With the __subclasshook__() method defined that way, you can now confirm that
the instances that implement the interface implicitly are also considered instances of
the interface:

>>> class SomethingWithPush:

... def push(self, x):

... pass

...

>>> isinstance(SomethingWithPush(), Pushable)

True

Unfortunately, this approach to the verification of type compatibility and
implementation completeness does not take into account the signatures of class
methods. So, if the number of expected arguments is different in implementation, it
will still be considered compatible. In most cases, this is not an issue, but if you need
such fine-grained control over interfaces, the zope.interface package allows for
that. As already said, the __subclasshook__() method does not constrain you in
adding more complexity to the isinstance() function's logic to achieve a similar
level of control.

The two other features that complement abstract base classes are function
annotations and type hints. Function annotation is the syntax element described
briefly in Chapter 2, Syntax Best Practices – below the Class Level. It allows you to
annotate functions and their arguments with arbitrary expressions. As explained
in Chapter 2, Syntax Best Practices – below the Class Level, this is only a feature stub
that does not provide any syntactic meaning. There is no utility in the standard
library that uses this feature to enforce any behavior. Anyway, you can use it as a
convenient and lightweight way to inform the developer of the expected argument
interface. For instance, consider this IRectangle interface rewritten from zope.
interface to abstract the base class:

from abc import (
 ABCMeta,
 abstractmethod,
 abstractproperty
)

class IRectangle(metaclass=ABCMeta):

 @abstractproperty
 def width(self):
 return

Useful Design Patterns

[484]

 @abstractproperty
 def height(self):
 return

 @abstractmethod
 def area(self):
 """ Return rectangle area
 """

 @abstractmethod
 def perimeter(self):
 """ Return rectangle perimeter
 """

 @classmethod
 def __subclasshook__(cls, C):
 if cls is IRectangle:
 if all([
 any("area" in B.__dict__ for B in C.__mro__),
 any("perimeter" in B.__dict__ for B in C.__mro__),
 any("width" in B.__dict__ for B in C.__mro__),
 any("height" in B.__dict__ for B in C.__mro__),
]):
 return True
 return NotImplemented

If you have a function that works only on rectangles, let's say draw_rectangle(),
you could annotate the interface of the expected argument as follows:

def draw_rectangle(rectangle: IRectange):
 ...

This adds nothing more than information for the developer about expected
information. And even this is done through an informal contract because, as we
know, bare annotations contain no syntactic meaning. However, they are accessible
at runtime, so we can do something more. Here is an example implementation of
a generic decorator that is able to verify interface from function annotation if it is
provided using abstract base classes:

def ensure_interface(function):
 signature = inspect.signature(function)
 parameters = signature.parameters

 @wraps(function)
 def wrapped(*args, **kwargs):

Chapter 14

[485]

 bound = signature.bind(*args, **kwargs)
 for name, value in bound.arguments.items():
 annotation = parameters[name].annotation

 if not isinstance(annotation, ABCMeta):
 continue

 if not isinstance(value, annotation):
 raise TypeError(
 "{} does not implement {} interface"
 "".format(value, annotation)
)

 function(*args, **kwargs)

 return wrapped

Once it is done, we can create some concrete class that implicitly implements
the IRectangle interface (without inheriting from IRectangle) and update
the implementation of the draw_rectangle() function to see how the whole
solution works:

class ImplicitRectangle:
 def __init__(self, width, height):
 self._width = width
 self._height = height

 @property
 def width(self):
 return self._width

 @property
 def height(self):
 return self._height

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return self.width * 2 + self.height * 2

@ensure_interface
def draw_rectangle(rectangle: IRectangle):
 print(

Useful Design Patterns

[486]

 "{} x {} rectangle drawing"
 "".format(rectangle.width, rectangle.height)
)

If we feed the draw_rectangle() function with an incompatible object, it will now
raise TypeError with a meaningful explanation:

>>> draw_rectangle('foo')

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 File "<input>", line 101, in wrapped

TypeError: foo does not implement <class 'IRectangle'> interface

But if we use ImplicitRectangle or anything else that resembles the IRectangle
interface, the function executes as it should:

>>> draw_rectangle(ImplicitRectangle(2, 10))

2 x 10 rectangle drawing

Our example implementation of ensure_interface() is based on the
typechecked() decorator from the typeannotations project that tries to provide
run-time checking capabilities (refer to https://github.com/ceronman/
typeannotations). Its source code might give you some interesting ideas about
how to process type annotations to ensure run-time interface checking.

The last feature that can be used to complement this interface pattern landscape
are type hints. Type hints are described in detail by PEP 484 and were added to
the language quite recently. They are exposed in the new typing module and are
available from Python 3.5. Type hints are built on top of function annotations and
reuse this slightly forgotten syntax feature of Python 3. They are intended to guide
type hinting and check for various yet-to-come Python type checkers. The typing
module and PEP 484 document aim to provide a standard hierarchy of types and
classes that should be used for describing type annotations.

Still, type hints do not seem to be something revolutionary because this feature
does not come with any type checker built-in into the standard library. If you
want to use type checking or enforce strict interface compatibility in your code, you
need to create your own tool because there is none worth recommendation yet. This
is why we won't dig into details of PEP 484. Anyway, type hints and the documents
describing them are worth mentioning because if some extraordinary solution
emerges in the field of type checking in Python, it is highly probable that it will be
based on PEP 484.

https://github.com/ceronman/typeannotations
https://github.com/ceronman/typeannotations

Chapter 14

[487]

Using collections.abc
Abstract base classes are like small building blocks for creating a higher level of
abstraction. They allow you to implement really usable interfaces but are very
generic and designed to handle lot more than this single design pattern. You can
unleash your creativity and do magical things but building something generic and
really usable may require a lot of work. Work that may never pay off.

This is why custom abstract base classes are not used so often. Despite that, the
collections.abc module provides a lot of predefined ABCs that allow to verify
interface compatibility of many basic Python types. With base classes provided in
this module, you can check, for example, whether a given object is callable, mapping,
or if it supports iteration. Using them with the isinstance() function is way better
than comparing them against the base python types. You should definitely know
how to use these base classes even if you don't want to define your own custom
interfaces with ABCMeta.

The most common abstract base classes from collections.abc that you will use
from time to time are:

• Container: This interface means that the object supports the in operator and
implements the __contains__() method

• Iterable: This interface means that the object supports the iteration and
implements the __iter__() method

• Callable: This interface means that it can be called like a function and
implements the __call__() method

• Hashable: This interface means that the object is hashable (can be included in
sets and as key in dictionaries) and implements the __hash__ method

• Sized: This interface means that the object has size (can be a subject of the
len() function) and implements the __len__() method

A full list of the available abstract base classes from the collections.abc module
is available in the official Python documentation (refer to https://docs.python.
org/3/library/collections.abc.html).

Proxy
Proxy provides indirect access to an expensive or a distant resource. A Proxy is
between a Client and a Subject, as shown in the following figure:

https://docs.python.org/3/library/collections.abc.html
https://docs.python.org/3/library/collections.abc.html

Useful Design Patterns

[488]

It is intended to optimize Subject accesses if they are expensive. For instance, the
memoize() and lru_cache() decorators described in Chapter 12, Optimization – Some
Powerful Techniques, can be considered as proxies.

A proxy can also be used to provide smart access to a subject. For instance, big video
files can be wrapped into proxies to avoid loading them into memory when the user
just asks for their titles.

An example is given by the urllib.request module. urlopen is a proxy for
the content located at a remote URL. When it is created, headers can be retrieved
independently from the content itself without the need to read the rest of the response:

>>> class Url(object):

... def __init__(self, location):

... self._url = urlopen(location)

... def headers(self):

... return dict(self._url.headers.items())

... def get(self):

... return self._url.read()

...

>>> python_org = Url('http://python.org')

>>> python_org.headers().keys()

dict_keys(['Accept-Ranges', 'Via', 'Age', 'Public-Key-Pins', 'X-Clacks-
Overhead', 'X-Cache-Hits', 'X-Cache', 'Content-Type', 'Content-Length',
'Vary', 'X-Served-By', 'Strict-Transport-Security', 'Server', 'Date',
'Connection', 'X-Frame-Options'])

This can be used to decide whether the page has been changed before getting its
body to update a local copy, by looking at the last-modified header. Let's take an
example with a big file:

>>> ubuntu_iso = Url('http://ubuntu.mirrors.proxad.net/hardy/ubuntu-8.04-
desktop-i386.iso')

>>> ubuntu_iso.headers()['Last-Modified']

'Wed, 23 Apr 2008 01:03:34 GMT'

Another use case of proxies is data uniqueness.

For example, let's consider a website that presents the same document in several
locations. Extra fields specific to each location are appended to the document, such as
a hit counter and a few permission settings. A proxy can be used in that case to deal
with location-specific matters and also to point to the original document instead of
copying it. So, a given document can have many proxies, and if its content changes,
all locations will benefit from it without having to deal with version synchronization.

Chapter 14

[489]

Generally speaking, proxy pattern is useful for implementing a local handle of
something that may live somewhere else to:

• Make the process faster
• Avoid external resource access
• Reduce memory load
• Ensure data uniqueness

Facade
Facade provides high-level, simpler access to a subsystem.

A facade is nothing but a shortcut to use a functionality of the application, without
having to deal with the underlying complexity of a subsystem. This can be done, for
instance, by providing high-level functions at the package level.

Facade is usually done on existing systems, where a package's frequent usage is
synthesized in high-level functions. Usually, no classes are needed to provide such a
pattern and simple functions in the __init__.py module are sufficient.

A good example of project that provides a big facade over complicated and complex
interfaces is the requests package (refer to http://docs.python-requests.org/).
It really simplifies the madness of dealing with HTTP requests and responses in
Python by providing a clean API that is easily readable to developers. It is actually
even advertised as HTTP for humans. Such ease of use always comes at some price
but eventual tradeoffs and additional overhead does not scare most people from
using the Requests project as their HTTP tool of choice. In the end, it allows us
to finish projects faster and a developer's time is usually more expensive than
hardware.

Facade simplifies the usage of your packages. Facades are usually added
after a few iterations with usage feedback.

http://docs.python-requests.org/

Useful Design Patterns

[490]

Behavioral patterns
Behavioral patterns are intended to simplify the interactions between classes by
structuring the processes of their interaction.

This section provides three examples of popular behavioral patterns that you may
want to consider when writing Python code:

• Observer
• Visitor
• Template

Observer
The observer pattern is used to notify a list of objects about a state change of the
observed component.

Observer allows adding features in an application in a pluggable way by de-coupling
the new functionality from the existing code base. An event framework is a typical
implementation of the observer pattern and is described in the figure that follows.
Every time an event occurs, all observers for this event are notified with the subject
that has triggered this event.

An event is created when something happens. In graphical user interface
applications, event-driven programming (see http://en.wikipedia.org/wiki/
Event-driven_programming) is often used to link the code to user actions. For
instance, a function can be linked to the MouseMove event so it is called every time
the mouse moves over the window.

In case of GUI application, de-coupling the code from the window management
internals simplifies the work a lot. Functions are written separately and then
registered as event observers. This approach exists from the earliest versions of
Microsoft's MFC framework (see http://en.wikipedia.org/wiki/Microsoft_
Foundation_Class_Library) and in all GUI development tools such as Qt or
GTK. Many frameworks use the notion of signals, but they are simply another
manifestation of the observer pattern.

http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library

Chapter 14

[491]

The code can also generate events. For instance, in an application that stores
documents in a database, DocumentCreated, DocumentModified, and
DocumentDeleted can be three events provided by the code. A new feature that
works on documents can register itself as an observer to get notified every time a
document is created, modified, or deleted and do the appropriate work. A document
indexer could be added that way in an application. Of course, this requires that
all the code in charge of creating, modifying, or deleting documents is triggering
events. But this is rather easier than adding indexing hooks all over the application
code base! A popular web framework that follows this pattern is Django with its
mechanism of signals.

An Event class can be implemented for the registration of observers in Python by
working at the class level:

class Event:
 _observers = []

 def __init__(self, subject):
 self.subject = subject

 @classmethod
 def register(cls, observer):
 if observer not in cls._observers:
 cls._observers.append(observer)

 @classmethod
 def unregister(cls, observer):
 if observer in cls._observers:
 cls._observers.remove(observer)

 @classmethod
 def notify(cls, subject):
 event = cls(subject)
 for observer in cls._observers:
 observer(event)

The idea is that observers register themselves using the Event class method and
get notified with Event instances that carry the subject that triggered them. Here
is an example of the concrete Event subclass with some observers subscribed to its
notifications:

class WriteEvent(Event):
 def __repr__(self):
 return 'WriteEvent'

Useful Design Patterns

[492]

def log(event):
 print(
 '{!r} was fired with subject "{}"'
 ''.format(event, event.subject)
)

class AnotherObserver(object):
 def __call__(self, event):
 print(
 "{!r} trigerred {}'s action"
 "".format(event, self.__class__.__name__)
)

WriteEvent.register(log)
WriteEvent.register(AnotherObserver())

And here is an example result of firing the event with the WriteEvent.notify()
method:

>>> WriteEvent.notify("something happened")

WriteEvent was fired with subject "something happened"

WriteEvent trigerred AnotherObserver's action

This implementation is simple and serves only as illustrational purposes. To make it
fully functional, it could be enhanced by:

• Allowing the developer to change the order or events
• Making the event object hold more information than just the subject

De-coupling your code is fun and the observer is the right pattern to do it. It
componentizes your application and makes it more extensible. If you want to use
an existing tool, try Blinker (refer to https://pythonhosted.org/blinker/). It
provides fast and simple object-to-object and broadcast signaling for Python objects.

Visitor
Visitor helps in separating algorithms from data structures and has a similar goal to
that of the observer pattern. It allows extending the functionalities of a given class
without changing its code. But the visitor goes a bit further by defining a class that
is responsible for holding data and pushes the algorithms to other classes called
Visitors. Each visitor is specialized in one algorithm and can apply it on the data.

https://pythonhosted.org/blinker/

Chapter 14

[493]

This behavior is quite similar to the MVC paradigm (refer to http://en.wikipedia.
org/wiki/Model-view-controller), where documents are passive containers
pushed to views through controllers, or where models contain data that is altered by
a controller.

Visitor pattern is implemented by providing an entry point in the data class that can
be visited by all kinds of visitors. A generic description is a Visitable class that
accepts Visitor instances and calls them, as shown in the following figure:

The Visitable class decides how it calls the Visitor class, for instance, by deciding
which method is called. For example, a visitor in charge of printing built-in type
content can implement the visit_TYPENAME() methods, and each of these types can
call the given method in its accept() method:

class VisitableList(list):
 def accept(self, visitor):
 visitor.visit_list(self)

class VisitableDict(dict):
 def accept(self, visitor):
 visitor.visit_dict(self)

class Printer(object):
 def visit_list(self, instance):
 print('list content: {}'.format(instance))

 def visit_dict(self, instance):
 print('dict keys: {}'.format(
 ', '.join(instance.keys()))
)

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller

Useful Design Patterns

[494]

This is done as shown in the following example:

>>> visitable_list = VisitableList([1, 2, 5])

>>> visitable_list.accept(Printer())

list content: [1, 2, 5]

>>> visitable_dict = VisitableDict({'one': 1, 'two': 2, 'three': 3})

>>> visitable_dict.accept(Printer())

dict keys: two, one, three

But this pattern means that each visited class needs to have an accept method to be
visited, which is quite painful.

Since Python allows code introspection, a better idea is to automatically link visitors
and visited classes:

>>> def visit(visited, visitor):

... cls = visited.__class__.__name__

... method_name = 'visit_%s' % cls

... method = getattr(visitor, method_name, None)

... if isinstance(method, Callable):

... method(visited)

... else:

... raise AttributeError(

... "No suitable '{}' method in visitor"

... "".format(method_name)

...)

...

>>> visit([1,2,3], Printer())

list content: [1, 2, 3]

>>> visit({'one': 1, 'two': 2, 'three': 3}, Printer())

dict keys: two, one, three

>>> visit((1, 2, 3), Printer())

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 File "<input>", line 10, in visit

AttributeError: No suitable 'visit_tuple' method in visitor

Chapter 14

[495]

This pattern is used in this way in the ast module, for instance, by the NodeVisitor
class that calls the visitor with each node of the compiled code tree. This is because
Python doesn't have a match operator like Haskell.

Another example is a directory walker that calls Visitor methods depending on the
file extension:

>>> def visit(directory, visitor):

... for root, dirs, files in os.walk(directory):

... for file in files:

... # foo.txt → .txt

... ext = os.path.splitext(file)[-1][1:]

... if hasattr(visitor, ext):

... getattr(visitor, ext)(file)

...

>>> class FileReader(object):

... def pdf(self, filename):

... print('processing: {}'.format(filename))

...

>>> walker = visit('/Users/tarek/Desktop', FileReader())

processing slides.pdf

processing sholl23.pdf

If your application has data structures that are visited by more than one algorithm,
the Visitor pattern will help in separating concerns. It is better for a data container
to focus only on providing access to data and holding them, and nothing else.

Template
Template helps in designing a generic algorithm by defining abstract steps which
are implemented in subclasses. This pattern uses the Liskov substitution principle,
which is defined by Wikipedia as:

"If S is a subtype of T, then objects of type T in a program may be replaced with
objects of type S without altering any of the desirable properties of that program."

In other words, an abstract class can define how an algorithm works through steps
that are implemented in concrete classes. The abstract class can also give a basic or
partial implementation of the algorithm and let developers override its parts. For
instance, some methods of the Queue class in the queue module can be overridden
to make its behavior vary.

Useful Design Patterns

[496]

Let's implement an example, as shown in the figure that follows.

Indexer is an indexer class that processes a text in five steps, which are common
steps no matter what indexing technique is used:

• Text normalization
• Text split
• Stop words removal
• Stem words
• Frequency

An Indexer provides partial implementation for the process algorithm but
requires _remove_stop_words and _stem_words to be implemented in a subclass.
BasicIndexer implements the strict minimum, while LocalIndex uses a stop word
file and a stem words database. FastIndexer implements all steps and could be
based on a fast indexer such as Xapian or Lucene.

Chapter 14

[497]

A toy implementation can be:

from collections import Counter

class Indexer:
 def process(self, text):
 text = self._normalize_text(text)
 words = self._split_text(text)
 words = self._remove_stop_words(words)
 stemmed_words = self._stem_words(words)

 return self._frequency(stemmed_words)

 def _normalize_text(self, text):
 return text.lower().strip()

 def _split_text(self, text):
 return text.split()

 def _remove_stop_words(self, words):
 raise NotImplementedError

 def _stem_words(self, words):
 raise NotImplementedError

 def _frequency(self, words):
 return Counter(words)

From there, a BasicIndexer implementation can be:

class BasicIndexer(Indexer):
 _stop_words = {'he', 'she', 'is', 'and', 'or', 'the'}

 def _remove_stop_words(self, words):
 return (
 word for word in words
 if word not in self._stop_words
)

 def _stem_words(self, words):
 return (
 (
 len(word) > 3 and

Useful Design Patterns

[498]

 word.rstrip('aeiouy') or
 word
)
 for word in words
)

And, like always, here is an example usage for the preceding example code:

>>> indexer = BasicIndexer()

>>> indexer.process("Just like Johnny Flynn said\nThe breath I've taken
and the one I must to go on")

Counter({"i'v": 1, 'johnn': 1, 'breath': 1, 'to': 1, 'said': 1, 'go': 1,
'flynn': 1, 'taken': 1, 'on': 1, 'must': 1, 'just': 1, 'one': 1, 'i': 1,
'lik': 1})

Template should be considered for an algorithm that may vary and can be expressed
into isolated substeps. This is probably the most used pattern in Python and does
not always needs to be implemented via subclassing. For instance, a lot of built-in
Python functions that deal with algorithmic problems accept arguments that allow
you to delegate part of the implementation to external implementation. For instance,
the sorted() function allows for an optional key keyword argument that is later
used by a sorting algorithm. This is also the same for min() and max() functions
that find minimum and maximum values in the given collection.

Summary
Design patterns are reusable, somewhat language-specific solutions to common
problems in software design. They are a part of the culture of all developers, no
matter what language they use.

So, using implementation examples for the most used patterns for a given language
is a great way to document that. Both on the Web and in other books, you will easily
find implementation for every design pattern mentioned in GoF books. This is why
we concentrated only on patterns that are the most common and popular in the
context of the Python language.

[499]

Index
A
abstract base classes (ABCs)

about 479
reference link 487

Abstract Syntax Tree (AST)
about 102, 118, 119
import hooks 120

acceptance tests 330
adapter pattern 472-474
Amazon Web Services (AWS) 187
Application Binary Interface (ABI) 226
application-level isolation

buildout 24
need for 19, 20
popular solutions 21
Python environments 17-19
venv 23
virtualenv 21, 22

approximate member query (AMQ) 410
approximation algorithms 406
architectural trade offs

heuristics and approximation
algorithms, using 405

using 405
argument checking 62, 63
argument inbound outbound 380
asynchronous programming

about 451
asynchronous I/O 452
asyncio module 457
await keywords 453-456
cooperative multitasking 452
example 458-460

nonasynchronous code integration, with
async using futures 461, 462

Python async 453-456
atomisator package

URL 362
attribute access patterns

about 91, 92
descriptors 92-94
lazily evaluated attributes 95-98
properties 98, 99
slots 100, 101

automation
deploying, Fabric used 189-194

Awesome-python
URL 32

B
bandersnatch

URL 196
behavioral patterns

about 490
observer pattern 490-492
template 495-498
visitor 492-495

Benevolent Dictator For Life (BDFL)
reference link 133

best practices 90, 91
best practices, arguments

*args argument 141, 142
**kwargs argument 141, 142
iterative design, used for building 139
rules 138
trusting 139, 140

[500]

bidding service
URL 218

big O notation
about 395-398
URL 396

binding convention flags 242
Blinker

reference link 492
Bloom filter

URL 410
Borg 470
bottlenecks

CPU usage, profiling 370
finding 370
memory usage, profiling 379
network usage, profiling 391

bpython
about 30
URL 30

build artifacts 278
Buildbot

about 286-288
reference link 286

buildout 24
build slaves 287
built-in multiprocessing module

about 445-448
multiprocessing.dummy, using as

multithreading interface 450
process pools, using 449, 450

bytes
about 36-38
versus byte string 38

C
C

about 226
extensions, working 226, 227

C++
about 226
extensions, working 226, 227

C3 83
cache services

about 416
memcached 416, 418

caching
about 64-66, 411
deterministic caching 412, 414
nondeterministic caching 415

CDN (Content Delivery Network) 196
Celery

URL 409
challenges

about 253
additional complexity 253
debugging 254

Circus
about 220
URL 208

clang 173
class decorators

__new__() method, overriding for instance
creation process 105-107

about 103-105
class names

selecting 143
client 487
code

application logs, dealing with 218
errors, logging 213-215
instrumenting 212
log processing, tools 220-222
low-level log practices 218, 219
monitoring 212
system and application metrics,

monitoring 215-218
code coverage 348-350
code generation

Falcons compiled router 121, 122
Hy 122, 123
tips 120

code vendoring
URL 196

collections
about 40
collections module 50, 51
dictionaries 45, 46
lists 40
module 50
sets 49
tuples 40

[501]

collections.abc, abstract base classes
Callable 487
Container 487
Hashable 487
Iterable 487
Sized 487

collections module
about 401
defaultdict 403
deque 401, 402
namedtuple 404

common pattern
about 149, 156, 157
automated inclusion of version

string 157, 158
dependencies, managing 160
README file 159

compile 117
complexity

about 394, 395
cyclomatic complexity 396
reducing 394
worst-case complexity 398

concurrency
about 421-423
benefits 422
issues, approaching 423

Concurrent Version System (CVS) 268
consumer layout

cross-references 321
index markers, adding 321
index pages, working on 320
module helpers, registering 320

containerization
versus virtualization 27, 28

contextlib module 71
context managers

about 68, 69
as class 70, 71
as function 71, 72
implementations 69
syntax 69

context provider 67, 68
continuous delivery 265
continuous development processes

about 276
common pitfalls 290

continuous delivery 280, 281
continuous delivery, prerequisites 281
continuous deployment 281
continuous integration (CI) 277, 278
continuous integration, popular tools 282
right tool, selecting 290

continuous integration (CI)
about 265
every commit, testing 278
matrix testing 280
reference link 277
testing, merging through 279
tools 282

convention flags
METH_KEYWORDS 240
METH_NOARGS 240
METH_O 240
METH_VARARGS 240

CPU usage, bottlenecks
macro-profiling 371-375
micro-profiling 375-377
profiling 370
Pystones, measuring 378

CPython 12
creational patterns

about 467, 468
singleton 468-471

cross-version compatibility
maintaining tools 8-12

ctypes
about 255
CFFI 262
libraries, loading 255, 256
Python functions, passing as

C callbacks 258-261
used, for calling C functions 257, 258

ctypes.CDLL class 255
ctypes.PyDLL class 255
cx_Freeze

reference link 181
cyclomatic complexity 395, 396
Cython

about 248
as language 250-252
as source to source compiler 248-250

[502]

D
data descriptor 93
data uniqueness 488
deadlock 424
decorator pattern 472
decorators

about 56, 57
as class 58
as functions 58
implementations 57, 58
introspection preserving 60, 61
parametrizing 59, 60
syntax 57, 58

defaultdict 403
delayed processing

using 406-409
demand-side platforms (DSP) 229
dependency compatibility 358
dependency matrix testing 358-361
deque 401, 402
descriptor protocol 92
design patterns

about 467
behavioral patterns 490
creational patterns 467
structural patterns 471

deterministic caching 412-414
deterministic profiler 370
development mode 162
devpi

URL 197
dictionaries

about 45, 46
implementation details 47
weaknesses and alternatives 48

distributed systems
about 268, 269
distributed strategies 270

Distributed VCS (DVCS) 268
Django REST Framework

URL 113
django-userena project

URL 359
doctest

about 337, 339
URL 333

doctest module
reference link 128

documentation
building 308
portfolio, building 308, 309

documentation portfolio 308
Document-Driven Development (DDD)

about 362
story, writing 362, 363

document landscape 308
Domain Specific Language (DSL) 102
Dublin Core information

reference link 473
Dylan programming language

URL 83
dynamic libraries, without extensions

ctypes 255
interfacing 255

E
Elasticsearch 220
Epydoc

reference link 314
eval() 117, 118
event-driven programming

reference link 490
exec

about 117
URL 117

executors
and futures 462, 463
using, in event loop 464

extensions
custom datatypes, creating 230
Cython 248
existing code written in different languages,

integrating 229
performance, improving in critical code

sections 228, 229
pure C extensions 231-233
third-party dynamic libraries,

integrating 230
using 228
writing 230, 231

extra commands 153
eXtreme Programming (XP) 277

[503]

F
Fabric

and Python 3 191
URL 190
used, for deploying automation 189-194

fake
about 351
building 351-356

Falcons compiled router
about 121
URL 121

FIFO (First In First Out) queue 402
filesystem hierarchy 207
flake8 146
foreign function library

reference link 256
for … else … statement 73
forking 443
functional programming

URL 64
functional testing

URL 331
functional tests 331
function annotations

about 73
general syntax 74
possible uses 74, 75

function library
reference link 256

future module
URL 11

futures
and executors 462, 463
used, for integrating nonasynchronous

code with async 461, 462
fuzz testing

reference link 140

G
gcc 173
getter 92
Gevent

reference link 458
Git

reference link 270

Git flow
about 272-276
reference link 274

GitHub flow
about 272, 274
reference link 274

GitLab CI 290
Global Interpreter Lock (GIL) 425
GLSL (OpenGL Shading Language) 96
Gprof2Dot

URL 374
Grafana

URL 217
Graphite

about 217
carbon 217
graphite webapp 217
URL 217
whisper 217

Graphviz
URL 374

Gunicorn
reference link 428

H
hashable 40, 47
heuristics algorithms 406
Hy

about 116, 122
URL 122

HyperLogLog
about 410
URL 410

I
immutable 40
import path hooks 120
index 195, 196
index mirror 195, 196
integration tests 332
interactive debuggers 31, 32
interfaces, structural patterns

about 474
abstract base classes, using 479-486
collections.abc, using 487

[504]

function annotations, using 479-484
zope.interface, using 475-478

interpreter directive 175
IOPS (Input Output Operations

Per Second) 222
IPython

about 30
URL 30

ironclad
URL 15

IronPython
about 14, 15
URL 14

isolation 207, 208
iterators 51, 52

J
Jenkins

about 282-286
advantages 284
reference link 282

Jython
about 14
URL 14

K
Kibana 221
kilo pystones 379

L
landscape, building

about 316
consumer's layout 318-320
producer's layout 317

lazily loaded modules 7
linearization 83
Liskov substitution principle 495
lists

about 40
comprehensions 42, 43
external calls, cutting 400
implementation details 41
other idioms 43, 44
searching in 399
set, using instead 400

workload, reducing 400
load tests 332
logrotate 220
Logstash 220

M
macro-profiling 371-375
MacroPy project

URL 119
MD5 418
memcached 416-418
memoizing

URL 64
memory_profiler

URL 383
memory usage, bottlenecks

C code memory 390
memory, profiling 382, 383
memory, usage 379-382
objgraph 384-389
profiling 379

Memprof
URL 383

metaclasses
new Python 3 syntax 112-114
pitfalls 115, 116
syntax 109-112
usage 115

metaheuristics 406
meta hooks 120
metaprogramming

about 102
class decorators 103-105
methods 103

metaclasses 108
Method Resolution Order (MRO) 82
MFC framework

reference link 490
micro-profiling 375-377
Millions Of Whetstone Instructions Per

Second (MWIPS)
URL 378

mixedCase 132
mocks

using 356, 357

[505]

module names
rules 143, 144

module pattern 472
monkey patching 351
Monostate 470
multiprocessing

about 443, 444
built-in module 445

multithreading
about 423, 424
in Python 425
threaded application, example 428
used, for building responsive interfaces 426
used, for delegating work 426, 427
used, for multiuser applications 427, 428
using 426

Munin
URL 216

munin-node-c
URL 216

munin-node-python
URL 216

munin-python package
URL 216

MVC paradigm
reference link 493

N
namedtuple 404, 405
namespace packages

about 149, 163
features 163, 164
in previous Python versions 167, 168
PEP 420 (Implicit Namespace

Packages) 166, 167
naming guide

about 136
existing names, avoiding 138
explicit names, using for dictionaries 136
generic names, avoiding 136, 137
has prefix, using for Boolean elements 136
is prefix, using for Boolean elements 136
plural, using for variables 136
reference link 137

naming styles
about 127
applying, to variables 127

net-snmp
URL 391

network usage, bottlenecks
profiling 391

non-data descriptor 93
nondeterministic caching 415
non-preemptive multitasking 452
nose

about 340
setuptools and plug-in system, integration

with 343
test fixtures, writing 342
test runner 341
tests, writing 341
URL 340
wrap-up 343, 344

ntop
URL 391

O
object built-in type 78
objgraph 384-388
observer pattern 490-492
open addressing

URL 47
optimization

about 393, 394
code, making maintainable 367
code, making readable 367
rules 365
users point of view, working from 367
work, prioritizing 366

optimization, strategy
about 368
faults, detecting 368
hardware resources, examining 368, 369
speed test, examining 369

P
package

creating 149, 150
custom setup command 161
pip -e 162

[506]

project configuration 152
Python Package Index (PyPI) 169
Python packaging tools, confusing

state 150
setup.py develop 162
setup.py install command 162
source packages, versus built

packages 171, 172
uninstalling 162
uploading 168
used, for deployment 197-206
working with, in development stage 161

package names
rules 143, 144

parallel processing 422
Pathrate

URL 391
pdb

URL 31
Peephole optimizer 40
PEP 8

about 125, 126
advantages 126
naming best practices 125
reference links 125
team-specific style guidelines 126

pep8 tool 146
PEP 420 (Implicit Namespace Packages) 166
PEP 440 (Version Identification and

Dependency Specification) 157
PEP 3107 74
performance tests 332
pickle

URL 65
pitfalls, continuous integration (CI)

complex build strategies 291
external job definitions 292
lack of isolation 293
long building time 291

Plone
reference link 314

portfolio
continuous integration 322
creating 315
documentation, building 322
landscape, building 316

portfolio, building
about 308
design 309
operations 315
usage 309, 310

precedence 83
probabilistic data structures

using 410
process supervision tools

using 208-210
productivity tools

about 28
custom Python shells 29
PYTHONSTARTUP environment variable,

setting up 30
project configuration

about 152
common patterns 156, 157
important metadata 154, 155
MANIFEST.in 154
setup.cfg 153
setup.py 152
trove classifiers 155, 156

provisional package
URL 356

proxy 488
proxy decorators 66, 67
ptpython

about 31
URL 31

pure C extensions
about 232
conventions, binding 240-242
conventions, calling 240-242
exception handling 242-244
GIL, releasing 244, 245
Python/C API 235-239
reference counting 246, 247
reference counting algorithm 246

PVTS (Python Tools for Visual Studio) 14
py2app

reference link 183
py2exe

reference link 183
PyInstaller

reference link 177

[507]

Pylint 144, 145
Pympler

URL 383
PyPA (Python Packaging Authority) 17
PyPI

reference link 168
PyPI mirroring 196, 197
PyPI (Python Package Index) 17
PyPy 15, 16
pyrilla project

URL 358
Pystones

about 378
measuring 378

py.test
about 344
distributed tests, automated 348
test fixtures, writing 344
test functions and classes,

disabling 346, 347
URL 340
wrap-up 348

pytest-dbfixtures
reference link 293

Python
about 1
built-in types 36
changes 2
features 51
history 2
implementation details 38
reference link 302
strings and bytes 36-38
URL 380
useful resources 32
wiki page, URL 13

Python 2
old style classes 82
super 82
URL 5

Python 3
adoption 4
datatypes and collections, changes 8
groups 6
new features, URL 74
standard library, changes 7

syntax changes 6
URL 5

Python built-ins
URL 118

Python/C API
reference link 242

Python development
modern approaches 16

Python-Dev mailing list
reference link 133

Python documentation
URL 48

Python Enhancement Proposal (PEP)
changes 3
purposes 3
URL 3

Python environments
application-level isolation 17-19

Python Method Resolution Order 83-87
Python Package Index (PyPI)

.pypirc 170
about 149, 169
uploading to 169

Python packaging tools
about 150
current landscape 150, 151
recommendations 151

Python Packaging User Guide
recommendations 151
reference link 150

Python shells
bpython 29
IPython 29
ptpython 29

Python standard test tools
about 333
doctest 337-339
unittest 333-337

PYTHONSTARTUP environment variable
setting up 30

Python Timsort 258
Python Weekly

URL 32
Python Wheels page

reference link 174

[508]

Q
Quicksort algorithm 258

R
race hazard 424
Read the Docs

reference link 322
Real Time Bidding (RTB) 229
Redis Queue (RQ)

URL 409
Reentrant locks 424
reference counting algorithm 246
reference ownership

borrowed references 246
passing of ownership 246
stolen references 247

repositories
release repositories 270
stable repository 270
unstable repository 270

requests package
reference link 489

reStructuredText
about 301, 302
inline markup 306
links 307
lists 305
literal block 306
reference link 159, 301, 302
section structure 303

reverse HTTP proxies 210, 211
rules, technical writing

about 295, 296
information scope, limiting 299
readership, targeting 297
realistic code examples, using 299, 300
simple style, reference link 298
simple style, using 298
sufficient approach, reference link 300
sufficient approach, using 300
templates, using 301
two step writing 296, 297

S
S5

reference link 302
Semantic Versioning

URL 9
Sentry

URL 213
Service Level Agreements 333
sets

about 49
implementation details 50

setter 92
SHA 418
shebang 175
signals 444
slots 100, 101
source packages, versus built packages

about 171
bdist 172-174
sdist 171
wheels 172-174

Soya 3D
URL 366

special methods
reference link 134

SpeedStep 377
Sphinx

about 321
reference link 318

Stackless Python
about 13
URL 13

standalone executables
about 149, 174, 175
popular tools 176
Python code, security 184
Python code security, decompilation

process 185
uses 175, 176

standard commands 153
statistical profiler 370
StatsD

URL 217
step 287

[509]

string
about 36, 37
concatenation 39, 40

structural patterns
about 471
adapter pattern 472-474
facade 489
interfaces 474
proxy 487, 488

subclassing built-in types 78, 79
Subversion (SVN) 268
super

about 82
and explicit class calls, mixing 87, 88
heterogeneous arguments 89, 90
pitfalls 87

superclasses
methods, accessing from 80, 81

Supervisor
about 220
URL 208

system-level environment isolation
about 25, 26
containerization, versus

virtualization 27, 28
Vagrant used 26, 27

T
task queues

using 406-409
TDD

about 326-328
benefits 328
code quality, improving 329
developer documentation, providing 329
robust code, producing 330
software regression, preventing 328

TDD, tests
about 330
acceptance tests 330, 331
code quality testing 333
functional tests 331
integration tests 332
load and performance testing 332
unit tests 331

technical writing
rules 295

template pattern 495-498
test discovery 337
Test-Driven Development. See TDD
test fixtures

module level 342
package level 342
test level 342
writing 342

testing
URL 359

threaded application example
about 428-431
errors, dealing with 437-442
one thread per item, using 431, 432
rate limiting 437-442
thread pool, using 433, 434
two-way queues, using 435-437

timeslicing mechanism 424
tools

flake8 144, 146
pep8 144, 146
Pylint 144

tools, continuous integration (CI)
about 282
Buildbot 286-288
GitLab CI 290
Jenkins 282-286
Travis CI 288, 289

tools, standalone executables
cx_Freeze 181, 182
py2app 183, 184
py2exe 183, 184
PyInstaller 177-181

Tox tool
reference link 280

Traveling Salesman Problem (TSP) 405
Travis CI

about 288-290
reference link 288
URL 360

trove classifiers 155
tuples 40
Twelve-Factor App

about 188
application code, running in user space 210

[510]

conventions and practices 207
Filesystem Hierarchy Standard 207
isolation 207, 208
processes, reloading 211, 212
process supervision tools, using 208-210
reverse HTTP proxies, using 210, 211
rules 189
URL 189

type annotations
reference link 486

U
unittest

about 333-335
alternatives 340
pitfalls 339, 340
URL 333

unit tests 331
usage, portfolio

about 310
module helper 311-314
recipe 311
tutorial 311-313

user acceptance tests 330
uWSGI

reference link 428

V
Vagrant

using, for virtual development
environments 26, 27

Valgrind 390
variables

arguments 134
classes 135
constants 128
functions 131
methods 132
modules 135
naming 129, 130
packages 135

private controversy 132, 133
private variable 130, 131
properties 134
public variable 130
special methods 134
usage 129, 130

Vehicle Routing Problem (VRP) 405
venv

about 23
URL 23

version control systems (VCS)
about 265
centralized systems 266-268
centralized version control systems 271
distributed systems 268
Git flow 272-276
GitHub flow 272-276
Git, using 271

virtualenv 21-23
virtualization

versus containerization 28
visitor pattern 492-495

W
wireshark

URL 391
worst-case complexity 398

X
XML-RPC protocol

URL 62

Y
yield statement 53-56

Z
Zope Component Architecture (ZCA)

about 471
reference link 472

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Current Status of Python
	Where are we now and where we are going?
	Why and how does Python change?
	Getting up to date with changes – PEP documents
	Python 3 adoption at the time of writing this book
	The main differences between Python 3 and Python 2
	Why should I care?
	The main syntax differences and common pitfalls
	Syntax changes
	Changes in the standard library
	Changes in datatypes and collections

	The popular tools and techniques used for maintaining cross-version compatibility

	Not only CPython
	Why should I care?
	Stackless Python
	Jython
	IronPython
	PyPy

	Modern approaches to Python development
	Application-level isolation of Python environments
	Why isolation?
	Popular solutions
	virtualenv
	venv
	buildout

	Which one to choose?

	System-level environment isolation
	Virtual development environments using Vagrant
	Containerization versus virtualization

	Popular productivity tools
	Custom Python shells – IPython, bpython, ptpython, and so on
	Setting up the PYTHONSTARTUP environment variable
	IPython
	bpython
	ptpython

	Interactive debuggers

	Useful resources
	Summary

	Chapter 2: Syntax Best Practices – below the Class Level
	Python's built-in types
	Strings and bytes
	Implementation details
	String concatenation

	Collections
	Lists and tuples
	Dictionaries
	Sets
	Beyond basic collections – the collections module

	Advanced syntax
	Iterators
	The yield statement
	Decorators
	General syntax and possible implementations
	Usage and useful examples

	Context managers – the with statement
	General syntax and possible implementations

	Other syntax elements you may not
know yet
	The for … else … statement
	Function annotations
	The general syntax
	The possible uses

	Summary

	Chapter 3: Syntax Best Practices – above the Class Level
	Subclassing built-in types
	Accessing methods from superclasses
	Old-style classes and super in Python 2
	Understanding Python's Method
Resolution Order
	super pitfalls
	Mixing super and explicit class calls
	Heterogeneous arguments

	Best practices

	Advanced attribute access patterns
	Descriptors
	Real-life example – lazily evaluated attributes

	Properties
	Slots

	Metaprogramming
	Decorators – a method of metaprogramming
	Class decorators
	Using the __new__() method to override instance creation process
	Metaclasses
	The general syntax
	New Python 3 syntax for metaclasses
	Metaclass usage
	Metaclass pitfalls

	Some tips on code generation
	exec, eval, and compile
	Abstract Syntax Tree
	Projects using code generation patterns

	Summary

	Chapter 4: Choosing Good Names
	PEP 8 and naming best practices
	Why and when to follow PEP 8?
	Beyond PEP 8 – team-specific style guidelines

	Naming styles
	Variables
	Constants
	Naming and usage
	Public and private variables
	Functions and methods
	The private controversy
	Special methods
	Arguments
	Properties
	Classes
	Modules and packages

	The naming guide
	Using the has or is prefix for Boolean elements
	Using plurals for variables that are collections
	Using explicit names for dictionaries
	Avoiding generic names
	Avoiding existing names

	Best practices for arguments
	Building arguments by iterative design
	Trust the arguments and your tests
	Using *args and **kwargs magic arguments carefully

	Class names
	Module and package names
	Useful tools
	Pylint
	pep8 and flake8

	Summary

	Chapter 5: Writing a Package
	Creating a package
	The confusing state of Python packaging tools
	The current landscape of Python packaging thanks to PyPA
	Tool recommendations

	Project configuration
	setup.py
	setup.cfg
	MANIFEST.in
	Most important metadata
	Trove classifiers
	Common patterns

	The custom setup command
	Working with packages during development
	setup.py install
	Uninstalling packages
	setup.py develop or pip -e

	Namespace packages
	Why is it useful?
	PEP 420 – implicit namespace packages
	Namespace packages in previous Python versions

	Uploading a package
	PyPI – Python Package Index
	Uploading to PyPI – or other package index
	.pypirc

	Source packages versus built packages
	sdist
	bdist and wheels

	Standalone executables
	When are standalone executables useful?
	Popular tools
	PyInstaller
	cx_Freeze
	py2exe and py2app

	Security of Python code in executable packages
	Making decompilation harder

	Summary

	Chapter 6: Deploying Code
	The Twelve-Factor App
	Deployment automation using Fabric
	Your own package index or index mirror
	PyPI mirroring
	Deployment using a package

	Common conventions and practices
	The filesystem hierarchy
	Isolation
	Using process supervision tools
	Application code should be run in user space
	Using reverse HTTP proxies
	Reloading processes gracefully

	Code instrumentation and monitoring
	Logging errors – sentry/raven
	Monitoring system and application metrics
	Dealing with application logs
	Basic low-level log practices
	Tools for log processing

	Summary

	Chapter 7: Python Extensions in Other Languages
	Different language means – C or C++
	How do extensions in C or C++ work

	Why you might want to use extensions
	Improving performance in critical code sections
	Integrating existing code written in different languages
	Integrating third-party dynamic libraries
	Creating custom datatypes

	Writing extensions
	Pure C extensions
	A closer look at Python/C API
	Calling and binding conventions
	Exception handling
	Releasing GIL
	Reference counting

	Cython
	Cython as a source to source compiler
	Cython as a language

	Challenges
	Additional complexity
	Debugging

	Interfacing with dynamic libraries without extensions
	ctypes
	Loading libraries
	Calling C functions using ctypes
	Passing Python functions as C callbacks

	CFFI

	Summary

	Chapter 8: Managing Code
	Version control systems
	Centralized systems
	Distributed systems
	Distributed strategies

	Centralized or distributed?
	Use Git if you can
	Git flow and GitHub flow

	Continuous development processes
	Continuous integration
	Testing every commit
	Merge testing through CI
	Matrix testing

	Continuous delivery
	Continuous deployment
	Popular tools for continuous integration
	Jenkins
	Buildbot
	Travis CI
	GitLab CI

	Choosing the right tool and common pitfalls
	Problem 1 – too complex build strategies
	Problem 2 – too long building time
	Problem 3 – external job definitions
	Problem 4 – lack of isolation

	Summary

	Chapter 9: Documenting Your Project
	The seven rules of technical writing
	Write in two steps
	Target the readership
	Use a simple style
	Limit the scope of information
	Use realistic code examples
	Use a light but sufficient approach
	Use templates

	A reStructuredText primer
	Section structure
	Lists
	Inline markup
	Literal block
	Links

	Building the documentation
	Building the portfolio
	Design
	Usage
	Operations

	Making your own portfolio
	Building the landscape
	Producer's layout
	Consumer's layout

	Documentation building and continuous integration

	Summary

	Chapter 10: Test-Driven Development
	I don't test
	Test-driven development principles
	Preventing software regression
	Improving code quality
	Providing the best developer documentation
	Producing robust code faster

	What kind of tests?
	Acceptance tests
	Unit tests
	Functional tests
	Integration tests
	Load and performance testing
	Code quality testing

	Python standard test tools
	unittest
	doctest

	I do test
	unittest pitfalls
	unittest alternatives
	nose
	py.test

	Testing coverage
	Fakes and mocks
	Building a fake
	Using mocks

	Testing environment and dependency compatibility
	Dependency matrix testing

	Document-driven development
	Writing a story

	Summary

	Chapter 11: Optimization – General Principles and Profiling Techniques
	The three rules of optimization
	Make it work first
	Work from the user's point of view
	Keep the code readable and maintainable

	Optimization strategy
	Find another culprit
	Scale the hardware
	Writing a speed test

	Finding bottlenecks
	Profiling CPU usage
	Macro-profiling
	Micro-profiling
	Measuring Pystones

	Profiling memory usage
	How Python deals with memory
	Profiling memory
	C code memory leaks

	Profiling network usage

	Summary

	Chapter 12: Optimization – Some Powerful Techniques
	Reducing the complexity
	Cyclomatic complexity
	The big O notation

	Simplifying
	Searching in a list
	Using a set instead of a list

	Using collections
	deque
	defaultdict
	namedtuple

	Using architectural trade-offs
	Using heuristics and approximation algorithms
	Using task queues and delayed processing
	Using probabilistic data structures

	Caching
	Deterministic caching
	Nondeterministic caching
	Cache services
	Memcached

	Summary

	Chapter 13: Concurrency
	Why concurrency?
	Multithreading
	What is multithreading?
	How Python deals with threads
	When should threading be used?
	Building responsive interfaces
	Delegating work
	Multiuser applications
	An example of a threaded application

	Multiprocessing
	The built-in multiprocessing module
	Using process pools
	Using multiprocessing.dummy as a multithreading interface

	Asynchronous programming
	Cooperative multitasking and asynchronous I/O
	Python async and await keywords
	asyncio in older versions of Python
	A practical example of asynchronous programming
	Integrating nonasynchronous code with async using futures
	Executors and futures
	Using executors in an event loop

	Summary

	Chapter 14: Useful Design Patterns
	Creational patterns
	Singleton

	Structural patterns
	Adapter
	Interfaces

	Proxy
	Facade

	Behavioral patterns
	Observer
	Visitor
	Template

	Summary

	Index

