

Artificial Intelligence with
Python

Build real-world Artificial Intelligence applications with Python
to intelligently interact with the world around you

 Prateek Joshi

 BIRMINGHAM - MUMBAI

Artificial Intelligence with Python

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1230117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-439-2

www.packtpub.com

http://www.packtpub.com

Credits

Author

Prateek Joshi

Copy Editors

Vikrant Phadkay

Safis Editing

Reviewer

Richard Marsden

Project Coordinator

Nidhi Joshi

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Mariammal Chettiyar

Content Development Editor

Aishwarya Pandere

Production Coordinator

Shantanu N. Zagade

Technical Editor

Karan Thakkar

About the Author
Prateek Joshi is an artificial intelligence researcher, published author of five books, and
TEDx speaker. He is the founder of Pluto AI, a venture-funded Silicon Valley startup
building an analytics platform for smart water management powered by deep learning. His
work in this field has led to patents, tech demos, and research papers at major IEEE
conferences. He has been an invited speaker at technology and entrepreneurship
conferences including TEDx, AT&T Foundry, Silicon Valley Deep Learning, and Open
Silicon Valley. Prateek has also been featured as a guest author in prominent tech
magazines.

His tech blog (www.prateekjoshi.com) has received more than 1.2 million page views from
200 over countries and has over 6,600+ followers. He frequently writes on topics such as
artificial intelligence, Python programming, and abstract mathematics. He is an avid coder
and has won many hackathons utilizing a wide variety of technologies. He graduated from
University of Southern California with a master’s degree specializing in artificial
intelligence. He has worked at companies such as Nvidia and Microsoft Research. You can
learn more about him on his personal website at www.prateekj.com.

http://www.prateekjoshi.com
http://www.prateekj.com

About the Reviewer
Richard Marsden has over 20 years of professional software development experience. After
starting in the field of geophysical surveying for the oil industry, he has spent the last ten
years running the Winwaed Software Technology LLC independent software vendor.
Winwaed specializes in geospatial tools and applications including web applications, and
operates the h t t p ://w w w . m a p p i n g - t o o l s . c o m website for tools and add-ins for geospatial
applications such as Caliper Maptitude and Microsoft MapPoint.

Richard was also a technical reviewer of the following Packt publications: Python Geospatial
Development and Python Geospatial Analysis Essentials, both by Erik Westra; Python Geospatial
Analysis Cookbook by Michael Diener; Mastering Python Forensics by Drs Michael Spreitzenbarth
and Dr Johann Uhrmann; and Effective Python Penetration Testing by Rejah Rehim.

http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com
http://www.mapping-tools.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

mailto:customerreviews@packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Artificial Intelligence 7

What is Artificial Intelligence? 8
Why do we need to study AI? 8
Applications of AI 12
Branches of AI 14
Defining intelligence using Turing Test 16
Making machines think like humans 18
Building rational agents 20
General Problem Solver 21

Solving a problem with GPS 22
Building an intelligent agent 22

Types of models 24
Installing Python 3 24

Installing on Ubuntu 25
Installing on Mac OS X 25
Installing on Windows 26

Installing packages 26
Loading data 27
Summary 29

Chapter 2: Classification and Regression Using Supervised Learning 30

Supervised versus unsupervised learning 30
What is classification? 31
Preprocessing data 32

Binarization 32
Mean removal 33
Scaling 34
Normalization 35

Label encoding 36
Logistic Regression classifier 37
Naïve Bayes classifier 42
Confusion matrix 46
Support Vector Machines 49
Classifying income data using Support Vector Machines 51

[ii]

What is Regression? 54
Building a single variable regressor 55
Building a multivariable regressor 58
Estimating housing prices using a Support Vector Regressor 60
Summary 62

Chapter 3: Predictive Analytics with Ensemble Learning 63

What is Ensemble Learning? 63
Building learning models with Ensemble Learning 64

What are Decision Trees? 64
Building a Decision Tree classifier 65

What are Random Forests and Extremely Random Forests? 70
Building Random Forest and Extremely Random Forest classifiers 70
Estimating the confidence measure of the predictions 76

Dealing with class imbalance 80
Finding optimal training parameters using grid search 87
Computing relative feature importance 90
Predicting traffic using Extremely Random Forest regressor 93
Summary 96

Chapter 4: Detecting Patterns with Unsupervised Learning 97

What is unsupervised learning? 97
Clustering data with K-Means algorithm 98
Estimating the number of clusters with Mean Shift algorithm 104
Estimating the quality of clustering with silhouette scores 107
What are Gaussian Mixture Models? 112
Building a classifier based on Gaussian Mixture Models 113
Finding subgroups in stock market using Affinity Propagation model 118
Segmenting the market based on shopping patterns 120
Summary 124

Chapter 5: Building Recommender Systems 125

Creating a training pipeline 125
Extracting the nearest neighbors 128
Building a K-Nearest Neighbors classifier 132
Computing similarity scores 139
Finding similar users using collaborative filtering 143
Building a movie recommendation system 146
Summary 149

Chapter 6: Logic Programming 150

[iii]

What is logic programming? 150
Understanding the building blocks of logic programming 153
Solving problems using logic programming 153
Installing Python packages 154
Matching mathematical expressions 154
Validating primes 156
Parsing a family tree 158
Analyzing geography 164
Building a puzzle solver 167
Summary 171

Chapter 7: Heuristic Search Techniques 172

What is heuristic search? 172
Uninformed versus Informed search 173

Constraint Satisfaction Problems 174
Local search techniques 174

Simulated Annealing 175
Constructing a string using greedy search 176
Solving a problem with constraints 180
Solving the region-coloring problem 183
Building an 8-puzzle solver 186
Building a maze solver 191
Summary 196

Chapter 8: Genetic Algorithms 197

Understanding evolutionary and genetic algorithms 197
Fundamental concepts in genetic algorithms 198
Generating a bit pattern with predefined parameters 199
Visualizing the evolution 206
Solving the symbol regression problem 215
Building an intelligent robot controller 220
Summary 227

Chapter 9: Building Games With Artificial Intelligence 228

Using search algorithms in games 229
Combinatorial search 229
Minimax algorithm 230
Alpha-Beta pruning 230
Negamax algorithm 231
Installing easyAI library 231
Building a bot to play Last Coin Standing 232

[iv]

Building a bot to play Tic-Tac-Toe 236
Building two bots to play Connect Four™ against each other 239
Building two bots to play Hexapawn against each other 243
Summary 247

Chapter 10: Natural Language Processing 248

Introduction and installation of packages 248
Tokenizing text data 250
Converting words to their base forms using stemming 251
Converting words to their base forms using lemmatization 253
Dividing text data into chunks 255
Extracting the frequency of terms using a Bag of Words model 257
Building a category predictor 260
Constructing a gender identifier 263
Building a sentiment analyzer 266
Topic modeling using Latent Dirichlet Allocation 270
Summary 273

Chapter 11: Probabilistic Reasoning for Sequential Data 274

Understanding sequential data 274
Handling time-series data with Pandas 275
Slicing time-series data 278
Operating on time-series data 280
Extracting statistics from time-series data 283
Generating data using Hidden Markov Models 287
Identifying alphabet sequences with Conditional Random Fields 290
Stock market analysis 295
Summary 298

Chapter 12: Building A Speech Recognizer 299

Working with speech signals 299
Visualizing audio signals 300
Transforming audio signals to the frequency domain 303
Generating audio signals 305
Synthesizing tones to generate music 308
Extracting speech features 310
Recognizing spoken words 314
Summary 320

Chapter 13: Object Detection and Tracking 321

Installing OpenCV 322

[v]

Frame differencing 322
Tracking objects using colorspaces 325
Object tracking using background subtraction 329
Building an interactive object tracker using the CAMShift algorithm 333
Optical flow based tracking 341
Face detection and tracking 348

Using Haar cascades for object detection 348
Using integral images for feature extraction 349

Eye detection and tracking 352
Summary 355

Chapter 14: Artificial Neural Networks 356

Introduction to artificial neural networks 356
Building a neural network 357
Training a neural network 357

Building a Perceptron based classifier 358
Constructing a single layer neural network 362
Constructing a multilayer neural network 366
Building a vector quantizer 371
Analyzing sequential data using recurrent neural networks 374
Visualizing characters in an Optical Character Recognition database 378
Building an Optical Character Recognition engine 381
Summary 384

Chapter 15: Reinforcement Learning 385

Understanding the premise 385
Reinforcement learning versus supervised learning 386
Real world examples of reinforcement learning 387
Building blocks of reinforcement learning 388
Creating an environment 389
Building a learning agent 394
Summary 398

Chapter 16: Deep Learning with Convolutional Neural Networks 399

What are Convolutional Neural Networks? 399
Architecture of CNNs 400
Types of layers in a CNN 401
Building a perceptron-based linear regressor 402
Building an image classifier using a single layer neural network 408
Building an image classifier using a Convolutional Neural Network 410
Summary 416

[vi]

Index 417

Preface
Artificial intelligence is becoming increasingly relevant in the modern world where
everything is driven by data and automation. It is used extensively across many fields such
as image recognition, robotics, search engines, and self-driving cars. In this book, we will
explore various real-world scenarios. We will understand what algorithms to use in a given
context and write functional code using this exciting book.

We will start by talking about various realms of artificial intelligence. We’ll then move on to
discuss more complex algorithms, such as Extremely Random Forests, Hidden Markov
Models, Genetic Algorithms, Artificial Neural Networks, and Convolutional Neural
Networks, and so on. This book is for Python programmers looking to use artificial
intelligence algorithms to create real-world applications. This book is friendly to Python
beginners, but familiarity with Python programming would certainly be helpful so you can
play around with the code. It is also useful to experienced Python programmers who are
looking to implement artificial intelligence techniques.

You will learn how to make informed decisions about the type of algorithms you need to
use and how to implement those algorithms to get the best possible results. If you want to
build versatile applications that can make sense of images, text, speech, or some other form
of data, this book on artificial intelligence will definitely come to your rescue!

What this book covers
Chapter 1, Introduction to Artificial Intelligence, teaches you various introductory concepts in
artificial intelligence. It talks about applications, branches, and modeling of Artificial
Intelligence. It walks the reader through the installation of necessary Python packages.

Chapter 2, Classification and Regression Using Supervised Learning, covers various supervised
learning techniques for classification and regression. You will learn how to analyze income
data and predict housing prices.

Chapter 3, Predictive Analytics with Ensemble Learning, explains predictive modeling
techniques using Ensemble Learning, particularly focused on Random Forests. We will
learn how to apply these techniques to predict traffic on the roads near sports stadiums.

Chapter 4, Detecting Patterns with Unsupervised Learning, covers unsupervised learning
algorithms including K-means and Mean Shift Clustering. We will learn how to apply these
algorithms to stock market data and customer segmentation.

Preface

[2]

Chapter 5, Building Recommender Systems, illustrates algorithms used to build
recommendation engines. You will learn how to apply these algorithms to collaborative
filtering and movie recommendations.

Chapter 6, Logic Programming, covers the building blocks of logic programming. We will
see various applications, including expression matching, parsing family trees, and solving
puzzles.

Chapter 7, Heuristic Search Techniques, shows heuristic search techniques that are used to
search the solution space. We will learn about various applications such as simulated
annealing, region coloring, and maze solving.

Chapter 8, Genetic Algorithms, covers evolutionary algorithms and genetic programming.
We will learn about various concepts such as crossover, mutation, and fitness functions. We
will then use these concepts to solve the symbol regression problem and build an intelligent
robot controller.

Chapter 9, Building Games with Artificial Intelligence, teaches you how to build games with
artificial intelligence. We will learn how to build various games including Tic Tac Toe,
Connect Four, and Hexapawn.

Chapter 10, Natural Language Processing, covers techniques used to analyze text data
including tokenization, stemming, bag of words, and so on. We will learn how to use these
techniques to do sentiment analysis and topic modeling.

Chapter 11, Probabilistic Reasoning for Sequential Data, shows you techniques used to analyze
time series and sequential data including Hidden Markov models and Conditional Random
Fields. We will learn how to apply these techniques to text sequence analysis and stock
market predictions.

Chapter 12, Building A Speech Recognizer, demonstrates algorithms used to analyze speech
data. We will learn how to build speech recognition systems.

Chapter 13, Object Detection and Tracking, It covers algorithms related to object detection
and tracking in live video. We will learn about various techniques including optical flow,
face tracking, and eye tracking.

Chapter 14, Artificial Neural Networks, covers algorithms used to build neural networks. We
will learn how to build an Optical Character Recognition system using neural networks.

Chapter 15, Reinforcement Learning, teaches the techniques used to build reinforcement
learning systems. We will learn how to build learning agents that can learn from interacting
with the environment.

Preface

[3]

Chapter 16, Deep Learning with Convolutional Neural Networks, covers algorithms used to
build deep learning systems using Convolutional Neural Networks. We will learn how to
use TensorFlow to build neural networks. We will then use it to build an image classifier
using convolutional neural networks.

What you need for this book
This book is focused on artificial intelligence in Python as opposed to the Python itself. We
have used Python 3 to build various applications. We focus on how to utilize various
Python libraries in the best possible way to build real world applications. In that spirit, we
have tried to keep all of the code as friendly and readable as possible. We feel that this will
enable our readers to easily understand the code and readily use it in different scenarios.

Who this book is for
This book is for Python developers who want to build real-world artificial intelligence
applications. This book is friendly to Python beginners, but being familiar with Python
would be useful to play around with the code. It will also be useful for experienced Python
programmers who are looking to use artificial intelligence techniques in their existing
technology stacks.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The shortcuts in this book
are based on the Mac OS X 10.5+ scheme."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /A r t i f i c i a l - I n t e l l i g e n c e - w i t h - P y t h o n . We also have other code bundles from
our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /A r t i f i c i a l I n t e l l i g e n c e w i t h P y t h o n _ C o l o r I m a g e s . p d f .

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/Artificial-Intelligence-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligencewithPython_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Introduction to Artificial

Intelligence
In this chapter, we are going to discuss the concept of Artificial Intelligence (AI) and how
it's applied in the real world. We spend a significant portion of our everyday life interacting
with smart systems. It can be in the form of searching for something on the internet,
Biometric face recognition, or converting spoken words to text. Artificial Intelligence is at
the heart of all this and it's becoming an important part of our modern lifestyle. All these
system are complex real-world applications and Artificial Intelligence solves these problems
with mathematics and algorithms. During the course of this book, we will learn the
fundamental principles that are used to build such applications and then implement them
as well. Our overarching goal is to enable you to take up new and challenging Artificial
Intelligence problems that you might encounter in your everyday life.

By the end of this chapter, you will know:

What is AI and why do we need to study it?
Applications of AI
Branches of AI
Turing test
Rational agents

Introduction to Artificial Intelligence

[8]

General Problem Solvers
Building an intelligent agent
Installing Python 3 on various operating systems
Installing the necessary Python packages

What is Artificial Intelligence?
Artificial Intelligence (AI) is a way to make machines think and behave intelligently. These
machines are controlled by software inside them, so AI has a lot to do with intelligent
software programs that control these machines. It is a science of finding theories and
methodologies that can help machines understand the world and accordingly react to
situations in the same way that humans do.

If we look closely at how the field of AI has emerged over the last couple of decades, you
will see that different researchers tend to focus on different concepts to define AI. In the
modern world, AI is used across many verticals in many different forms. We want the
machines to sense, reason, think, and act. We want our machines to be rational too.

AI is closely related to the study of human brain. Researchers believe that AI can be
accomplished by understanding how the human brain works. By mimicking the way the
human brain learns, thinks, and takes action, we can build a machine that can do the same.
This can be used as a platform to develop intelligent systems that are capable of learning.

Why do we need to study AI?
AI has the ability to impact every aspect of our lives. The field of AI tries to understand
patterns and behaviors of entities. With AI, we want to build smart systems and understand
the concept of intelligence as well. The intelligent systems that we construct are very useful
in understanding how an intelligent system like our brain goes about constructing another
intelligent system.

Introduction to Artificial Intelligence

[9]

Let's take a look at how our brain processes information:

Compared to some other fields such as Mathematics or Physics that have been around for
centuries, AI is relatively in its infancy. Over the last couple of decades, AI has produced
some spectacular products such as self-driving cars and intelligent robots that can walk.
Based on the direction in which we are heading, it's pretty obvious that achieving
intelligence will have a great impact on our lives in the coming years.

Introduction to Artificial Intelligence

[10]

We can't help but wonder how the human brain manages to do so much with such
effortless ease. We can recognize objects, understand languages, learn new things, and
perform many more sophisticated tasks with our brain. How does the human brain do this?
When you try to do this with a machine, you will see that it falls way behind! For example,
when we try to look for things such as extraterrestrial life or time travel, we don't know if
those things exist. The good thing about the holy grail of AI is that we know it exists. Our
brain is the holy grail! It is a spectacular example of an intelligent system. All we have to do
is to mimic its functionality to create an intelligent system that can do something similar,
possibly even more.

Let's see how raw data gets converted to wisdom through various levels of processing:

Introduction to Artificial Intelligence

[11]

One of the main reasons we want to study AI is to automate many things. We live in a
world where:

We deal with huge and insurmountable amounts of data. The human brain can't
keep track of so much data.
Data originates from multiple sources simultaneously.
The data is unorganized and chaotic.
Knowledge derived from this data has to be updated constantly because the data
itself keeps changing.
The sensing and actuation has to happen in real time with high precision.

Even though the human brain is great at analyzing things around us, it cannot keep up with
the preceding conditions. Hence, we need to design and develop intelligent machines that
can do this. We need AI systems that can:

Handle large amounts of data in an efficient way. With the advent of Cloud
Computing, we are now able to store huge amounts of data.
Ingest data simultaneously from multiple sources without any lag.
Index and organize data in a way that allows us to derive insights.
Learn from new data and update constantly using the right learning algorithms.
Think and respond to situations based on the conditions in real time.

AI techniques are actively being used to make existing machines smarter, so that they can
execute faster and more efficiently.

Introduction to Artificial Intelligence

[12]

Applications of AI
Now that we know how information gets processed, let's see where AI appears in the real
world. AI manifests itself in various different forms across multiple fields, so it's important
to understand how it's useful in various domains. AI has been used across many industries
and it continues to expand rapidly. Some of the most popular areas include:

Computer Vision: These are the systems that deal with visual data such as
images and videos. These systems understand the content and extract insights
based on the use case. For example, Google uses reverse image search to search
for visually similar images across the Web.

Introduction to Artificial Intelligence

[13]

Natural Language Processing: This field deals with understanding text. We can
interact with a machine by typing natural language sentences. Search engines use
this extensively to deliver the right search results.
Speech Recognition: These systems are capable of hearing and understanding
spoken words. For example, there are intelligent personal assistants on our
smartphones that can understand what we are saying and give relevant
information or perform an action based on that.
Expert Systems: These systems use AI techniques to provide advice or make
decisions. They usually use databases of expert knowledge areas such as finance,
medicine, marketing, and so on to give advice about what to do next. Let's see
what an expert system looks like and how it interacts with the user:

Games: AI is used extensively in the gaming industry. It is used to design
intelligent agents that can compete with humans. For example, AlphaGo is a
computer program that can play the strategy game Go. It is also used in
designing many other types of games where we expect the computer to behave
intelligently.

Introduction to Artificial Intelligence

[14]

Robotics: Robotic systems actually combine many concepts in AI. These systems
are able to perform many different tasks. Depending on the situation, robots have
sensors and actuators that can do different things. These sensors can see things in
front of them and measure the temperature, heat, movements, and so on. They
have processors on board that compute various things in real time. They are also
capable of adapting to the new environments.

Branches of AI
It is important to understand the various fields of study within AI so that we can choose the
right framework to solve a given real-world problem. Here's a list of topics that are
dominant:

Machine learning and pattern recognition: This is perhaps the most popular
form of AI out there. We design and develop software that can learn from data.
Based on these learning models, we perform predictions on unknown data. One
of the main constraints here is that these programs are limited to the power of the
data. If the dataset is small, then the learning models would be limited as well.
Let's see what a typical machine learning system looks like:

Introduction to Artificial Intelligence

[15]

When a system makes an observation, it is trained to compare it with what it has
already seen in the form of a pattern. For example, in a face recognition system,
the software will try to match the pattern of eyes, nose, lips, eyebrows, and so on
in order to find a face in the existing database of users.

Logic-based AI: Mathematical logic is used to execute computer programs in
logic-based AI. A program written in logic-based AI is basically a set of
statements in logical form that express facts and rules about a particular problem
domain. This is used extensively in pattern matching, language parsing, semantic
analysis, and so on.
Search: The Search techniques are used extensively in AI programs. These
programs examine a large number of possibilities and then pick the most optimal
path. For example, this is used a lot in strategy games such as Chess, networking,
resource allocation, scheduling, and so on.
Knowledge representation: The facts about the world around us need to be
represented in some way for a system to make sense of them. The languages of
mathematical logic are frequently used here. If knowledge is represented
efficiently, systems can be smarter and more intelligent. Ontology is a closely
related field of study that deals with the kinds of objects that exist. It is a formal
definition of the properties and relationships of the entities that exist in a
particular domain. This is usually done with a particular taxonomy or a
hierarchical structure of some kind. The following diagram shows the difference
between information and knowledge:

Introduction to Artificial Intelligence

[16]

Planning: This field deals with optimal planning that gives us maximum returns
with minimal costs. These software programs start with facts about the particular
situation and a statement of a goal. These programs are also aware of the facts of
the world, so that they know what the rules are. From this information, they
generate the most optimal plan to achieve the goal.
Heuristics: A heuristic is a technique used to solve a given problem that's
practical and useful in solving the problem in the short term, but not guaranteed
to be optimal. This is more like an educated guess on what approach we should
take to solve a problem. In AI, we frequently encounter situations where we
cannot check every single possibility to pick the best option. So we need to use
heuristics to achieve the goal. They are used extensively in AI in fields such as
robotics, search engines, and so on.
Genetic programming: Genetic programming is a way to get programs to solve a
task, by mating programs and selecting the fittest. The programs are encoded as a
set of genes, using an algorithm to get a program that is able to perform the given
task really well.

Defining intelligence using Turing Test
The legendary computer scientist and mathematician, Alan Turing, proposed the Turing
Test to provide a definition of intelligence. It is a test to see if a computer can learn to mimic
human behavior. He defined intelligent behavior as the ability to achieve human-level
intelligence during a conversation. This performance should be sufficient to trick an
interrogator into thinking that the answers are coming from a human.

To see if a machine can do this, he proposed a test setup: he proposed that a human should
interrogate the machine through a text interface. Another constraint is that the human
cannot know who's on the other side of the interrogation, which means it can either be a
machine or a human. To enable this setup, a human will be interacting with two entities
through a text interface. These two entities are called respondents. One of them will be a
human and the other one will be the machine.

Introduction to Artificial Intelligence

[17]

The respondent machine passes the test if the interrogator is unable to tell whether the
answers are coming from a machine or a human. The following diagram shows the setup of
a Turing Test:

As you can imagine, this is quite a difficult task for the respondent machine. There are a lot
of things going on during a conversation. At the very minimum, the machine needs to be
well versed with the following things:

Natural Language Processing: The machine needs this to communicate with the
interrogator. The machine needs to parse the sentence, extract the context, and
give an appropriate answer.
Knowledge Representation: The machine needs to store the information
provided before the interrogation. It also needs to keep track of the information
being provided during the conversation so that it can respond appropriately if it
comes up again.

Introduction to Artificial Intelligence

[18]

Reasoning: It's important for the machine to understand how to interpret the
information that gets stored. Humans tend to do this automatically to draw
conclusions in real time.
Machine Learning: This is needed so that the machine can adapt to new
conditions in real time. The machine needs to analyze and detect patterns so that
it can draw inferences.

You must be wondering why the human is communicating with a text interface. According
to Turing, physical simulation of a person is unnecessary for intelligence. That's the reason
the Turing Test avoids direct physical interaction between the human and the machine.
There is another thing called the Total Turing Test that deals with vision and movement. To
pass this test, the machine needs to see objects using computer vision and move around
using Robotics.

Making machines think like humans
For decades, we have been trying to get the machine to think like a human. In order to
make this happen, we need to understand how humans think in the first place. How do we
understand the nature of human thinking? One way to do this would be to note down how
we respond to things. But this quickly becomes intractable, because there are too many
things to note down. Another way to do this is to conduct an experiment based on a
predefined format. We develop a certain number of questions to encompass a wide variety
of human topics, and then see how people respond to it.

Once we gather enough data, we can create a model to simulate the human process. This
model can be used to create software that can think like humans. Of course this is easier
said than done! All we care about is the output of the program given a particular input. If
the program behaves in a way that matches human behavior, then we can say that humans
have a similar thinking mechanism.

Introduction to Artificial Intelligence

[19]

The following diagram shows different levels of thinking and how our brain prioritizes
things:

Within computer science, there is a field of study called Cognitive Modeling that deals
with simulating the human thinking process. It tries to understand how humans solve
problems. It takes the mental processes that go into this problem solving process and turns
it into a software model. This model can then be used to simulate human behavior.
Cognitive modeling is used in a variety of AI applications such as deep learning, expert
systems, Natural Language Processing, robotics, and so on.

Introduction to Artificial Intelligence

[20]

Building rational agents
A lot of research in AI is focused on building rational agents. What exactly is a rational
agent? Before that, let us define the word rationality. Rationality refers to doing the right
thing in a given circumstance. This needs to be performed in such a way that there is
maximum benefit to the entity performing the action. An agent is said to act rationally if,
given a set of rules, it takes actions to achieve its goals. It just perceives and acts according
to the information that's available. This system is used a lot in AI to design robots when
they are sent to navigate unknown terrains.

How do we define the right thing? The answer is that it depends on the objectives of the
agent. The agent is supposed to be intelligent and independent. We want to impart the
ability to adapt to new situations. It should understand its environment and then act
accordingly to achieve an outcome that is in its best interests. The best interests are dictated
by the overall goal it wants to achieve. Let's see how an input gets converted to action:

Introduction to Artificial Intelligence

[21]

How do we define the performance measure for a rational agent? One might say that it is
directly proportional to the degree of success. The agent is set up to achieve a particular
task, so the performance measure depends on what percentage of that task is complete. But
we must think as to what constitutes rationality in its entirety. If it's just about results, can
the agent take any action to get there?

Making the right inferences is definitely a part of being rational, because the agent has to act
rationally to achieve its goals. This will help it draw conclusions that can be used
successively. What about situations where there are no provably right things to do? There
are situations where the agent doesn't know what to do, but it still has to do something. In
this situation, we cannot include the concept of inference to define rational behavior.

General Problem Solver
The General Problem Solver (GPS) was an AI program proposed by Herbert Simon, J.C.
Shaw, and Allen Newell. It was the first useful computer program that came into existence in
the AI world. The goal was to make it work as a universal problem-solving machine. Of
course there were many software programs that existed before, but these programs
performed specific tasks. GPS was the first program that was intended to solve any general
problem. GPS was supposed to solve all the problems using the same base algorithm for
every problem.

As you must have realized, this is quite an uphill battle! To program the GPS, the authors
created a new language called Information Processing Language (IPL). The basic premise
is to express any problem with a set of well-formed formulas. These formulas would be a
part of a directed graph with multiple sources and sinks. In a graph, the source refers to the
starting node and the sink refers to the ending node. In the case of GPS, the source refers to
axioms and the sink refers to the conclusions.

Even though GPS was intended to be a general purpose, it could only solve well-defined
problems, such as proving mathematical theorems in geometry and logic. It could also solve
word puzzles and play chess. The reason was that these problems could be formalized to a
reasonable extent. But in the real world, this quickly becomes intractable because of the
number of possible paths you can take. If it tries to brute force a problem by counting the
number of walks in a graph, it becomes computationally infeasible.

Introduction to Artificial Intelligence

[22]

Solving a problem with GPS
Let's see how to structure a given problem to solve it using GPS:

The first step is to define the goals. Let's say our goal is to get some milk from the1.
grocery store.
The next step is to define the preconditions. These preconditions are in reference2.
to the goals. To get milk from the grocery store, we need to have a mode of
transportation and the grocery store should have milk available.
After this, we need to define the operators. If my mode of transportation is a car3.
and if the car is low on fuel, then we need to ensure that we can pay the fueling
station. We need to ensure that you can pay for the milk at the store.

An operator takes care of the conditions and everything that affects them. It consists of
actions, preconditions, and the changes resulting from taking actions. In this case, the action
is giving money to the grocery store. Of course, this is contingent upon you having the
money in the first place, which is the precondition. By giving them the money, you are
changing your money condition, which will result in you getting the milk.

GPS will work as long as you can frame the problem like we did just now. The constraint is
that it uses the search process to perform its job, which is way too computationally complex
and time consuming for any meaningful real-world application.

Building an intelligent agent
There are many ways to impart intelligence to an agent. The most commonly used
techniques include machine learning, stored knowledge, rules, and so on. In this section, we
will focus on machine learning. In this method, the way we impart intelligence to an agent
is through data and training.

Introduction to Artificial Intelligence

[23]

Let's see how an intelligent agent interacts with the environment:

With machine learning, we want to program our machines to use labeled data to solve a
given problem. By going through the data and the associated labels, the machine learns
how to extract patterns and relationships.

In the preceding example, the intelligent agent depends on the learning model to run the
inference engine. Once the sensor perceives the input, it sends it to the feature extraction
block. Once the relevant features are extracted, the trained inference engine performs a
prediction based on the learning model. This learning model is built using machine
learning. The inference engine then takes a decision and sends it to the actuator, which then
takes the required action in the real world.

There are many applications of machine learning that exist today. It is used in image
recognition, robotics, speech recognition, predicting stock market behavior, and so on. In
order to understand machine learning and build a complete solution, you will have to be
familiar with many techniques from different fields such as pattern recognition, artificial
neural networks, data mining, statistics, and so on.

Introduction to Artificial Intelligence

[24]

Types of models
There are two types of models in the AI world: Analytical models and Learned models.
Before we had machines that could compute, people used to rely on analytical models.
These models were derived using a mathematical formulation, which is basically a
sequence of steps followed to arrive at a final equation. The problem with this approach is
that it was based on human judgment. Hence these models were simplistic and inaccurate
with just a few parameters.

We then entered the world of computers. These computers were good at analyzing data. So,
people increasingly started using learned models. These models are obtained through the
process of training. During training, the machines look at many examples of inputs and
outputs to arrive at the equation. These learned models are usually complex and accurate,
with thousands of parameters. This gives rise to a very complex mathematical equation that
governs the data.

Machine Learning allows us to obtain these learned models that can be used in an inference
engine. One of the best things about this is the fact that we don't need to derive the
underlying mathematical formula. You don't need to know complex mathematics, because
the machine derives the formula based on data. All we need to do is create the list of inputs
and the corresponding outputs. The learned model that we get is just the relationship
between labeled inputs and the desired outputs.

Installing Python 3
We will be using Python 3 throughout this book. Make sure you have installed the latest
version of Python 3 on your machine. Type the following command on your Terminal to
check:

 $ python3 --version

If you see something like Python 3.x.x (where x.x are version numbers) printed on your
terminal, you are good to go. If not, installing it is pretty straightforward.

Introduction to Artificial Intelligence

[25]

Installing on Ubuntu
Python 3 is already installed by default on Ubuntu 14.xx and above. If not, you can install it
using the following command:

 $ sudo apt-get install python3

Run the check command like we did earlier:

 $ python3 --version

You should see the version number printed on your Terminal.

Installing on Mac OS X
If you are on Mac OS X, it is recommended that you use Homebrew to install Python 3. It is
a great package installer for Mac OS X and it is really easy to use. If you don't have
Homebrew, you can install it using the following command:

 $ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Let's update the package manager:

 $ brew update

Let's install Python 3:

 $ brew install python3

Run the check command like we did earlier:

 $ python3 --version

You should see the version number printed on your Terminal.

Introduction to Artificial Intelligence

[26]

Installing on Windows
If you use Windows, it is recommended that you use a SciPy-stack compatible
distribution of Python 3. Anaconda is pretty popular and easy to use. You can find the
installation instructions at: https://www.continuum.io/downloads.

If you want to check out other SciPy-stack compatible distributions of Python 3, you can
find them at http://www.scipy.org/install.html. The good part about these distributions
is that they come with all the necessary packages preinstalled. If you use one of these
versions, you don't need to install the packages separately.

Once you install it, run the check command like we did earlier:

$ python3 --version

You should see the version number printed on your Terminal.

Installing packages
During the course of this book, we will use various packages such as NumPy, SciPy, scikit-
learn, and matplotlib. Make sure you install these packages before you proceed.

If you use Ubuntu or Mac OS X, installing these packages is pretty straightforward. All
these packages can be installed using a one-line command on the terminal. Here are the
relevant links for installation:

NumPy: http://docs.scipy.org/doc/numpy-1.10.1/user/install.html
SciPy: http://www.scipy.org/install.html
scikit-learn: http://scikit-learn.org/stable/install.html
matplotlib: http://matplotlib.org/1.4.2/users/installing.html

If you are on Windows, you should have installed a SciPy-stack compatible version of
Python 3.

https://www.continuum.io/downloads
http://www.scipy.org/install.html
http://docs.scipy.org/doc/numpy-1.10.1/user/install.html
http://docs.scipy.org/doc/numpy-1.10.1/user/install.html
http://www.scipy.org/install.html
http://scikit-learn.org/stable/install.html
http://matplotlib.org/1.4.2/users/installing.html

Introduction to Artificial Intelligence

[27]

Loading data
In order to build a learning model, we need data that's representative of the world. Now
that we have installed the necessary Python packages, let's see how to use the packages to
interact with data. Go into the Python terminal by typing the following command:

 $ python3

Let's import the package containing all the datasets:

 >>> from sklearn import datasets

Let's load the house prices dataset:

 >>> house_prices = datasets.load_boston()

Print the data:

 >>> print(house_prices.data)

You will see an output like this printed on your Terminal:

Introduction to Artificial Intelligence

[28]

Let's check out the labels:

You will see the following printed on your Terminal:

The actual array is larger, so the image represents the first few values in that array.

There are also image datasets available in the scikit-learn package. Each image is of shape
8×8. Let's load it:

 >>> digits = datasets.load_digits()

Print the fifth image:

 >>> print(digits.images[4])

Introduction to Artificial Intelligence

[29]

You will see the following on your Terminal:

As you can see, it has eight rows and eight columns.

Summary
In this chapter, we learned what AI is all about and why we need to study it. We discussed
various applications and branches of AI. We understood what the Turing test is and how
it's conducted. We learned how to make machines think like humans. We discussed the
concept of rational agents and how they should be designed. We learned about General
Problem Solver (GPS) and how to solve a problem using GPS. We discussed how to develop
an intelligent agent using machine learning. We covered different types of models as well.

We discussed how to install Python 3 on various operating systems. We learned how to
install the necessary packages required to build AI applications. We discussed how to use
the packages to load data that's available in scikit-learn. In the next chapter, we will learn
about supervised learning and how to build models for classification and regression.

2
Classification and Regression

Using Supervised Learning
In this chapter, we are going to learn about classification and regression of data using
supervised learning techniques. By the end of this chapter, you will know about these
topics:

What is the difference between supervised and unsupervised learning?
What is classification?
How to preprocess data using various methods
What is label encoding?
How to build a logistic regression classifier
What is Naïve Bayes classifier?
What is a confusion matrix?
What are Support Vector Machines and how to build a classifier based on that?
What is linear and polynomial regression?
How to build a linear regressor for single variable and multivariable data
How to estimate housing prices using Support Vector Regressor

Supervised versus unsupervised learning
One of the most common ways to impart artificial intelligence into a machine is through
machine learning. The world of machine learning is broadly divided into supervised and
unsupervised learning. There are other divisions too, but we'll discuss those later.

Classification and Regression Using Supervised Learning

[31]

Supervised learning refers to the process of building a machine learning model that is
based on labeled training data. For example, let's say that we want to build a system to
automatically predict the income of a person, based on various parameters such as age,
education, location, and so on. To do this, we need to create a database of people with all
the necessary details and label it. By doing this, we are telling our algorithm what
parameters correspond to what income. Based on this mapping, the algorithm will learn
how to calculate the income of a person using the parameters provided to it.

Unsupervised learning refers to the process of building a machine learning model without
relying on labeled training data. In some sense, it is the opposite of what we just discussed
in the previous paragraph. Since there are no labels available, you need to extract insights
based on just the data given to you. For example, let's say that we want to build a system
where we have to separate a set of data points into multiple groups. The tricky thing here is
that we don't know exactly what the criteria of separation should be. Hence, an
unsupervised learning algorithm needs to separate the given dataset into a number of
groups in the best way possible.

What is classification?
In this chapter, we will discuss supervised classification techniques. The process of
classification is one such technique where we classify data into a given number of classes.
During classification, we arrange data into a fixed number of categories so that it can be
used most effectively and efficiently.

In machine learning, classification solves the problem of identifying the category to which a
new data point belongs. We build the classification model based on the training dataset
containing data points and the corresponding labels. For example, let's say that we want to
check whether the given image contains a person's face or not. We would build a training
dataset containing classes corresponding to these two classes: face and no-face. We then
train the model based on the training samples we have. This trained model is then used for
inference.

A good classification system makes it easy to find and retrieve data. This is used extensively
in face recognition, spam identification, recommendation engines, and so on. The
algorithms for data classification will come up with the right criteria to separate the given
data into the given number of classes.

Classification and Regression Using Supervised Learning

[32]

We need to provide a sufficiently large number of samples so that it can generalize those
criteria. If there is an insufficient number of samples, then the algorithm will overfit to the
training data. This means that it won't perform well on unknown data because it fine-tuned
the model too much to fit into the patterns observed in training data. This is actually a very
common problem that occurs in the world of machine learning. It's good to consider this
factor when you build various machine learning models.

Preprocessing data
We deal with a lot of raw data in the real world. Machine learning algorithms expect data to
be formatted in a certain way before they start the training process. In order to prepare the
data for ingestion by machine learning algorithms, we have to preprocess it and convert it
into the right format. Let's see how to do it.

Create a new Python file and import the following packages:

import numpy as np
from sklearn import preprocessing

Let's define some sample data:

input_data = np.array([[5.1, -2.9, 3.3],
 [-1.2, 7.8, -6.1],
 [3.9, 0.4, 2.1],
 [7.3, -9.9, -4.5]])

We will be talking about several different preprocessing techniques. Let's start with
binarization:

Binarization
Mean removal
Scaling
Normalization

Let's take a look at each technique, starting with the first.

Binarization
This process is used when we want to convert our numerical values into boolean values.
Let's use an inbuilt method to binarize input data using 2.1 as the threshold value.

Classification and Regression Using Supervised Learning

[33]

Add the following lines to the same Python file:

Binarize data
data_binarized =
preprocessing.Binarizer(threshold=2.1).transform(input_data)
print("\nBinarized data:\n", data_binarized)

If you run the code, you will see the following output:

Binarized data:
 [[1. 0. 1.]
 [0. 1. 0.]
 [1. 0. 0.]
 [1. 0. 0.]]

As we can see here, all the values above 2.1 become 1. The remaining values become 0.

Mean removal
Removing the mean is a common preprocessing technique used in machine learning. It's
usually useful to remove the mean from our feature vector, so that each feature is centered
on zero. We do this in order to remove bias from the features in our feature vector.

Add the following lines to the same Python file as in the previous section:

Print mean and standard deviation
print("\nBEFORE:")
print("Mean =", input_data.mean(axis=0))
print("Std deviation =", input_data.std(axis=0))

The preceding line displays the mean and standard deviation of the input data. Let's
remove the mean:

Remove mean
data_scaled = preprocessing.scale(input_data)
print("\nAFTER:")
print("Mean =", data_scaled.mean(axis=0))
print("Std deviation =", data_scaled.std(axis=0))

Classification and Regression Using Supervised Learning

[34]

If you run the code, you will see the following printed on your Terminal:

 BEFORE:
 Mean = [3.775 -1.15 -1.3]
 Std deviation = [3.12039661 6.36651396 4.0620192]
 AFTER:
 Mean = [1.11022302e-16 0.00000000e+00 2.77555756e-17]
 Std deviation = [1. 1. 1.]

As seen from the values obtained, the mean value is very close to 0 and standard deviation
is 1.

Scaling
In our feature vector, the value of each feature can vary between many random values. So it
becomes important to scale those features so that it is a level playing field for the machine
learning algorithm to train on. We don't want any feature to be artificially large or small just
because of the nature of the measurements.

Add the following line to the same Python file:

Min max scaling
data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0, 1))
data_scaled_minmax = data_scaler_minmax.fit_transform(input_data)
print("\nMin max scaled data:\n", data_scaled_minmax)

If you run the code, you will see the following printed on your Terminal:

 Min max scaled data:
 [[0.74117647 0.39548023 1.]
 [0. 1. 0.]
 [0.6 0.5819209 0.87234043]
 [1. 0. 0.17021277]]

Each row is scaled so that the maximum value is 1 and all the other values are relative to
this value.

Classification and Regression Using Supervised Learning

[35]

Normalization
We use the process of normalization to modify the values in the feature vector so that we
can measure them on a common scale. In machine learning, we use many different forms of
normalization. Some of the most common forms of normalization aim to modify the values
so that they sum up to 1. L1 normalization, which refers to Least Absolute Deviations,
works by making sure that the sum of absolute values is 1 in each row. L2 normalization,
which refers to least squares, works by making sure that the sum of squares is 1.

In general, L1 normalization technique is considered more robust than L2 normalization
technique. L1 normalization technique is robust because it is resistant to outliers in the data.
A lot of times, data tends to contain outliers and we cannot do anything about it. We want
to use techniques that can safely and effectively ignore them during the calculations. If we
are solving a problem where outliers are important, then maybe L2 normalization becomes
a better choice.

Add the following lines to the same Python file:

Normalize data
data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')
data_normalized_l2 = preprocessing.normalize(input_data, norm='l2')
print("\nL1 normalized data:\n", data_normalized_l1)
print("\nL2 normalized data:\n", data_normalized_l2)

If you run the code, you will see the following printed on your Terminal:

 L1 normalized data:
 [[0.45132743 -0.25663717 0.2920354]
 [-0.0794702 0.51655629 -0.40397351]
 [0.609375 0.0625 0.328125]
 [0.33640553 -0.4562212 -0.20737327]]
 L2 normalized data:
 [[0.75765788 -0.43082507 0.49024922]
 [-0.12030718 0.78199664 -0.61156148]
 [0.87690281 0.08993875 0.47217844]
 [0.55734935 -0.75585734 -0.34357152]]

The code for this entire section is given in the preprocessing.py file.

Classification and Regression Using Supervised Learning

[36]

Label encoding
When we perform classification, we usually deal with a lot of labels. These labels can be in
the form of words, numbers, or something else. The machine learning functions in sklearn
expect them to be numbers. So if they are already numbers, then we can use them directly
to start training. But this is not usually the case.

In the real world, labels are in the form of words, because words are human readable. We
label our training data with words so that the mapping can be tracked. To convert word
labels into numbers, we need to use a label encoder. Label encoding refers to the process of
transforming the word labels into numerical form. This enables the algorithms to operate on
our data.

Create a new Python file and import the following packages:

import numpy as np
from sklearn import preprocessing

Define some sample labels:

Sample input labels
input_labels = ['red', 'black', 'red', 'green', 'black', 'yellow', 'white']

Create the label encoder object and train it:

Create label encoder and fit the labels
encoder = preprocessing.LabelEncoder()
encoder.fit(input_labels)

Print the mapping between words and numbers:

Print the mapping
print("\nLabel mapping:")
for i, item in enumerate(encoder.classes_):
 print(item, '-->', i)

Let's encode a set of randomly ordered labels to see how it performs:

Encode a set of labels using the encoder
test_labels = ['green', 'red', 'black']
encoded_values = encoder.transform(test_labels)
print("\nLabels =", test_labels)
print("Encoded values =", list(encoded_values))

Classification and Regression Using Supervised Learning

[37]

Let's decode a random set of numbers:

Decode a set of values using the encoder
encoded_values = [3, 0, 4, 1]
decoded_list = encoder.inverse_transform(encoded_values)
print("\nEncoded values =", encoded_values)
print("Decoded labels =", list(decoded_list))

If you run the code, you will see the following output:

You can check the mapping to see that the encoding and decoding steps are correct. The
code for this section is given in the label_encoder.py file.

Logistic Regression classifier
Logistic regression is a technique that is used to explain the relationship between input
variables and output variables. The input variables are assumed to be independent and the
output variable is referred to as the dependent variable. The dependent variable can take
only a fixed set of values. These values correspond to the classes of the classification
problem.

Our goal is to identify the relationship between the independent variables and the
dependent variables by estimating the probabilities using a logistic function. This logistic
function is a sigmoid curve that's used to build the function with various parameters. It is
very closely related to generalized linear model analysis, where we try to fit a line to a
bunch of points to minimize the error. Instead of using linear regression, we use logistic
regression. Logistic regression by itself is actually not a classification technique, but we use
it in this way so as to facilitate classification. It is used very commonly in machine learning
because of its simplicity. Let's see how to build a classifier using logistic regression. Make
sure you have Tkinter package installed on your system before you proceed. If you don't,
you can find it at: h t t p s ://d o c s . p y t h o n . o r g /2/l i b r a r y /t k i n t e r . h t m l .

https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html

Classification and Regression Using Supervised Learning

[38]

Create a new Python file and import the following packages. We will be importing a
function from the file utilities.py. We will be looking into that function very soon. But
for now, let's import it:

import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt

from utilities import visualize_classifier

Define sample input data with two-dimensional vectors and corresponding labels:

Define sample input data
X = np.array([[3.1, 7.2], [4, 6.7], [2.9, 8], [5.1, 4.5], [6, 5], [5.6, 5],
[3.3, 0.4], [3.9, 0.9], [2.8, 1], [0.5, 3.4], [1, 4], [0.6, 4.9]])
y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3])

We will train the classifier using this labeled data. Now create the logistic regression
classifier object:

Create the logistic regression classifier
classifier = linear_model.LogisticRegression(solver='liblinear', C=1)

Train the classifier using the data that we defined earlier:

Train the classifier
classifier.fit(X, y)

Visualize the performance of the classifier by looking at the boundaries of the classes:

Visualize the performance of the classifier
visualize_classifier(classifier, X, y)

We need to define this function before we can use it. We will be using this multiple times in
this chapter, so it's better to define it in a separate file and import the function. This function
is given in the utilities.py file provided to you.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt

Classification and Regression Using Supervised Learning

[39]

Create the function definition by taking the classifier object, input data, and labels as input
parameters:

def visualize_classifier(classifier, X, y):
 # Define the minimum and maximum values for X and Y
 # that will be used in the mesh grid
 min_x, max_x = X[:, 0].min() - 1.0, X[:, 0].max() + 1.0
 min_y, max_y = X[:, 1].min() - 1.0, X[:, 1].max() + 1.0

We also defined the minimum and maximum values of X and Y directions that will be used
in our mesh grid. This grid is basically a set of values that is used to evaluate the function,
so that we can visualize the boundaries of the classes. Define the step size for the grid and
create it using the minimum and maximum values:

 # Define the step size to use in plotting the mesh grid
 mesh_step_size = 0.01

 # Define the mesh grid of X and Y values
 x_vals, y_vals = np.meshgrid(np.arange(min_x, max_x, mesh_step_size),
np.arange(min_y, max_y, mesh_step_size))

Run the classifier on all the points on the grid:

 # Run the classifier on the mesh grid
 output = classifier.predict(np.c_[x_vals.ravel(), y_vals.ravel()])

 # Reshape the output array
 output = output.reshape(x_vals.shape)

Create the figure, pick a color scheme, and overlay all the points:

 # Create a plot
 plt.figure()

 # Choose a color scheme for the plot
 plt.pcolormesh(x_vals, y_vals, output, cmap=plt.cm.gray)

 # Overlay the training points on the plot
 plt.scatter(X[:, 0], X[:, 1], c=y, s=75, edgecolors='black',
linewidth=1, cmap=plt.cm.Paired)

Classification and Regression Using Supervised Learning

[40]

Specify the boundaries of the plots using the minimum and maximum values, add the tick
marks, and display the figure:

 # Specify the boundaries of the plot
 plt.xlim(x_vals.min(), x_vals.max())
 plt.ylim(y_vals.min(), y_vals.max())

 # Specify the ticks on the X and Y axes
 plt.xticks((np.arange(int(X[:, 0].min() - 1), int(X[:, 0].max() + 1),
1.0)))
 plt.yticks((np.arange(int(X[:, 1].min() - 1), int(X[:, 1].max() + 1),
1.0)))

 plt.show()

If you run the code, you will see the following screenshot:

Classification and Regression Using Supervised Learning

[41]

If you change the value of C to 100 in the following line, you will see that the boundaries
become more accurate:

classifier = linear_model.LogisticRegression(solver='liblinear', C=100)

The reason is that C imposes a certain penalty on misclassification, so the algorithm
customizes more to the training data. You should be careful with this parameter, because if
you increase it by a lot, it will overfit to the training data and it won't generalize well.

If you run the code with C set to 100, you will see the following screenshot:

If you compare with the earlier figure, you will see that the boundaries are now better. The
code for this section is given in the logistic_regression.py file.

Classification and Regression Using Supervised Learning

[42]

Naïve Bayes classifier
Naïve Bayes is a technique used to build classifiers using Bayes theorem. Bayes theorem
describes the probability of an event occurring based on different conditions that are related
to this event. We build a Naïve Bayes classifier by assigning class labels to problem
instances. These problem instances are represented as vectors of feature values. The
assumption here is that the value of any given feature is independent of the value of any
other feature. This is called the independence assumption, which is the naïve part of a Naïve
Bayes classifier.

Given the class variable, we can just see how a given feature affects, it regardless of its affect
on other features. For example, an animal may be considered a cheetah if it is spotted, has
four legs, has a tail, and runs at about 70 MPH. A Naïve Bayes classifier considers that each
of these features contributes independently to the outcome. The outcome refers to the
probability that this animal is a cheetah. We don't concern ourselves with the correlations
that may exist between skin patterns, number of legs, presence of a tail, and movement
speed. Let's see how to build a Naïve Bayes classifier.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.Naïve_bayes import GaussianNB
from sklearn import cross_validation

from utilities import visualize_classifier

We will be using the file data_multivar_nb.txt as the source of data. This file contains
comma separated values in each line:

Input file containing data
input_file = 'data_multivar_nb.txt'

Let's load the data from this file:

Load data from input file
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

Create an instance of the Naïve Bayes classifier. We will be using the Gaussian Naïve Bayes
classifier here. In this type of classifier, we assume that the values associated in each class
follow a Gaussian distribution:

Create Naïve Bayes classifier
classifier = GaussianNB()

Classification and Regression Using Supervised Learning

[43]

Train the classifier using the training data:

Train the classifier
classifier.fit(X, y)

Run the classifier on the training data and predict the output:

Predict the values for training data
y_pred = classifier.predict(X)

Let's compute the accuracy of the classifier by comparing the predicted values with the true
labels, and then visualize the performance:

Compute accuracy
accuracy = 100.0 * (y == y_pred).sum() / X.shape[0]
print("Accuracy of Naïve Bayes classifier =", round(accuracy, 2), "%")

Visualize the performance of the classifier
visualize_classifier(classifier, X, y)

The preceding method to compute the accuracy of the classifier is not very robust. We need
to perform cross validation, so that we don't use the same training data when we are testing
it.

Split the data into training and testing subsets. As specified by the test_size parameter in
the line below, we will allocate 80% for training and the remaining 20% for testing. We'll
then train a Naïve Bayes classifier on this data:

Split data into training and test data
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y,
test_size=0.2, random_state=3)
classifier_new = GaussianNB()
classifier_new.fit(X_train, y_train)
y_test_pred = classifier_new.predict(X_test)

Compute the accuracy of the classifier and visualize the performance:

compute accuracy of the classifier
accuracy = 100.0 * (y_test == y_test_pred).sum() / X_test.shape[0]
print("Accuracy of the new classifier =", round(accuracy, 2), "%")

Visualize the performance of the classifier
visualize_classifier(classifier_new, X_test, y_test)

Classification and Regression Using Supervised Learning

[44]

Let's use the inbuilt functions to calculate the accuracy, precision, and recall values based on
threefold cross validation:

num_folds = 3
accuracy_values = cross_validation.cross_val_score(classifier,
 X, y, scoring='accuracy', cv=num_folds)
print("Accuracy: " + str(round(100*accuracy_values.mean(), 2)) + "%")

precision_values = cross_validation.cross_val_score(classifier,
 X, y, scoring='precision_weighted', cv=num_folds)
print("Precision: " + str(round(100*precision_values.mean(), 2)) + "%")

recall_values = cross_validation.cross_val_score(classifier,
 X, y, scoring='recall_weighted', cv=num_folds)
print("Recall: " + str(round(100*recall_values.mean(), 2)) + "%")

f1_values = cross_validation.cross_val_score(classifier,
 X, y, scoring='f1_weighted', cv=num_folds)
print("F1: " + str(round(100*f1_values.mean(), 2)) + "%")

If you run the code, you will see this for the first training run:

Classification and Regression Using Supervised Learning

[45]

The preceding screenshot shows the boundaries obtained from the classifier. We can see
that they separate the 4 clusters well and create regions with boundaries based on the
distribution of the input datapoints. You will see in the following screenshot the second
training run with cross validation:

Classification and Regression Using Supervised Learning

[46]

You will see the following printed on your Terminal:

 Accuracy of Naïve Bayes classifier = 99.75 %
 Accuracy of the new classifier = 100.0 %
 Accuracy: 99.75%
 Precision: 99.76%
 Recall: 99.75%
 F1: 99.75%

The code for this section is given in the file naive_bayes.py.

Confusion matrix
A Confusion matrix is a figure or a table that is used to describe the performance of a
classifier. It is usually extracted from a test dataset for which the ground truth is known. We
compare each class with every other class and see how many samples are misclassified.
During the construction of this table, we actually come across several key metrics that are
very important in the field of machine learning. Let's consider a binary classification case
where the output is either 0 or 1:

True positives: These are the samples for which we predicted 1 as the output and
the ground truth is 1 too.
True negatives: These are the samples for which we predicted 0 as the output
and the ground truth is 0 too.
False positives: These are the samples for which we predicted 1 as the output but
the ground truth is 0. This is also known as a Type I error.
False negatives: These are the samples for which we predicted 0 as the output
but the ground truth is 1. This is also known as a Type II error.

Depending on the problem at hand, we may have to optimize our algorithm to reduce the
false positive or the false negative rate. For example, in a biometric identification system, it
is very important to avoid false positives, because the wrong people might get access to
sensitive information. Let's see how to create a confusion matrix.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

Classification and Regression Using Supervised Learning

[47]

Define some samples labels for the ground truth and the predicted output:

Define sample labels
true_labels = [2, 0, 0, 2, 4, 4, 1, 0, 3, 3, 3]
pred_labels = [2, 1, 0, 2, 4, 3, 1, 0, 1, 3, 3]

Create the confusion matrix using the labels we just defined:

Create confusion matrix
confusion_mat = confusion_matrix(true_labels, pred_labels)

Visualize the confusion matrix:

Visualize confusion matrix
plt.imshow(confusion_mat, interpolation='nearest', cmap=plt.cm.gray)
plt.title('Confusion matrix')
plt.colorbar()
ticks = np.arange(5)
plt.xticks(ticks, ticks)
plt.yticks(ticks, ticks)
plt.ylabel('True labels')
plt.xlabel('Predicted labels')
plt.show()

In the above visualization code, the ticks variable refers to the number of distinct classes.
In our case, we have five distinct labels.

Let's print the classification report:

Classification report
targets = ['Class-0', 'Class-1', 'Class-2', 'Class-3', 'Class-4']
print('\n', classification_report(true_labels, pred_labels,
target_names=targets))

Classification and Regression Using Supervised Learning

[48]

The classification report prints the performance for each class. If you run the code, you will
see the following screenshot:

Classification and Regression Using Supervised Learning

[49]

White indicates higher values, whereas black indicates lower values as seen on the color
map slider. In an ideal scenario, the diagonal squares will be all white and everything else
will be black. This indicates 100% accuracy.

You will see the following printed on your Terminal:

The code for this section is given in the file confusion_matrix.py.

Support Vector Machines
A Support Vector Machine (SVM) is a classifier that is defined using a separating
hyperplane between the classes. This hyperplane is the N-dimensional version of a line.
Given labeled training data and a binary classification problem, the SVM finds the optimal
hyperplane that separates the training data into two classes. This can easily be extended to
the problem with N classes.

Let's consider a two-dimensional case with two classes of points. Given that it's 2D, we only
have to deal with points and lines in a 2D plane. This is easier to visualize than vectors and
hyperplanes in a high-dimensional space. Of course, this is a simplified version of the SVM
problem, but it is important to understand it and visualize it before we can apply it to high-
dimensional data.

Classification and Regression Using Supervised Learning

[50]

Consider the following figure:

There are two classes of points and we want to find the optimal hyperplane to separate the
two classes. But how do we define optimal? In this picture, the solid line represents the best
hyperplane. You can draw many different lines to separate the two classes of points, but
this line is the best separator, because it maximizes the distance of each point from the
separating line. The points on the dotted lines are called Support Vectors. The
perpendicular distance between the two dotted lines is called maximum margin.

Classification and Regression Using Supervised Learning

[51]

Classifying income data using Support
Vector Machines
We will build a Support Vector Machine classifier to predict the income bracket of a given
person based on 14 attributes. Our goal is to see where the income is higher or lower than
$50,000 per year. Hence this is a binary classification problem. We will be using the census
income dataset available at https://archive.ics.uci.edu/ml/datasets/Census+Income.
One thing to note in this dataset is that each datapoint is a mixture of words and numbers.
We cannot use the data in its raw format, because the algorithms don't know how to deal
with words. We cannot convert everything using label encoder because numerical data is
valuable. Hence we need to use a combination of label encoders and raw numerical data to
build an effective classifier.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.svm import LinearSVC
from sklearn.multiclass import OneVsOneClassifier
from sklearn import cross_validation

We will be using the file income_data.txt to load the data. This file contains the income
details:

Input file containing data
input_file = 'income_data.txt'

In order to load the data from the file, we need to preprocess it so that we can prepare it for
classification. We will use at most 25,000 data points for each class:

Read the data
X = []
y = []
count_class1 = 0
count_class2 = 0
max_datapoints = 25000

https://archive.ics.uci.edu/ml/datasets/Census+Income

Classification and Regression Using Supervised Learning

[52]

Open the file and start reading the lines:

with open(input_file, 'r') as f:
 for line in f.readlines():
 if count_class1 >= max_datapoints and count_class2 >=
max_datapoints:
 break

 if '?' in line:
 continue

Each line is comma separated, so we need to split it accordingly. The last element in each
line represents the label. Depending on that label, we will assign it to a class:

 data = line[:-1].split(', ')

 if data[-1] == '<=50K' and count_class1 < max_datapoints:
 X.append(data)
 count_class1 += 1

 if data[-1] == '>50K' and count_class2 < max_datapoints:
 X.append(data)
 count_class2 += 1

Convert the list into a numpy array so that we can give it as an input to the sklearn
function:

Convert to numpy array
X = np.array(X)

If any attribute is a string, then we need to encode it. If it is a number, we can keep it as it is.
Note that we will end up with multiple label encoders and we need to keep track of all of
them:

Convert string data to numerical data
label_encoder = []
X_encoded = np.empty(X.shape)
for i,item in enumerate(X[0]):
 if item.isdigit():
 X_encoded[:, i] = X[:, i]
 else:
 label_encoder.append(preprocessing.LabelEncoder())
 X_encoded[:, i] = label_encoder[-1].fit_transform(X[:, i])

X = X_encoded[:, :-1].astype(int)
y = X_encoded[:, -1].astype(int)

Classification and Regression Using Supervised Learning

[53]

Create the SVM classifier with a linear kernel:

Create SVM classifier
classifier = OneVsOneClassifier(LinearSVC(random_state=0))

Train the classifier:

Train the classifier
classifier.fit(X, y)

Perform cross validation using an 80/20 split for training and testing, and then predict the
output for training data:

Cross validation
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y,
test_size=0.2, random_state=5)
classifier = OneVsOneClassifier(LinearSVC(random_state=0))
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)

Compute the F1 score for the classifier:

Compute the F1 score of the SVM classifier
f1 = cross_validation.cross_val_score(classifier, X, y,
scoring='f1_weighted', cv=3)
print("F1 score: " + str(round(100*f1.mean(), 2)) + "%")

Now that the classifier is ready, let's see how to take a random input data point and predict
the output. Let's define one such data point:

Predict output for a test datapoint
input_data = ['37', 'Private', '215646', 'HS-grad', '9', 'Never-married',
'Handlers-cleaners', 'Not-in-family', 'White', 'Male', '0', '0', '40',
'United-States']

Before we can perform prediction, we need to encode this data point using the label
encoders we created earlier:

Encode test datapoint
input_data_encoded = [-1] * len(input_data)
count = 0
for i, item in enumerate(input_data):
 if item.isdigit():
 input_data_encoded[i] = int(input_data[i])
 else:
 input_data_encoded[i] =
int(label_encoder[count].transform(input_data[i]))
 count += 1

Classification and Regression Using Supervised Learning

[54]

input_data_encoded = np.array(input_data_encoded)

We are now ready to predict the output using the classifier:

Run classifier on encoded datapoint and print output
predicted_class = classifier.predict(input_data_encoded)
print(label_encoder[-1].inverse_transform(predicted_class)[0])

If you run the code, it will take a few seconds to train the classifier. Once it's done, you will
see the following printed on your Terminal:

 F1 score: 66.82%

You will also see the output for the test data point:

 <=50K

If you check the values in that data point, you will see that it closely corresponds to the data
points in the less than 50K class. You can change the performance of the classifier (F1 score,
precision, or recall) by using various different kernels and trying out multiple combinations
of the parameters.

The code for this section is given in the file income_classifier.py.

What is Regression?
Regression is the process of estimating the relationship between input and output
variables. One thing to note is that the output variables are continuous-valued real
numbers. Hence there are an infinite number of possibilities. This is in contrast with
classification, where the number of output classes is fixed. The classes belong to a finite set
of possibilities.

In regression, it is assumed that the output variables depend on the input variables, so we
want to see how they are related. Consequently, the input variables are called independent
variables, also known as predictors, and output variables are called dependent variables,
also known as criterion variables. It is not necessary that the input variables are
independent of each other. There are a lot of situations where there are correlations between
input variables.

Regression analysis helps us in understanding how the value of the output variable changes
when we vary some input variables while keeping other input variables fixed. In linear
regression, we assume that the relationship between input and output is linear. This puts a
constraint on our modeling procedure, but it's fast and efficient.

Classification and Regression Using Supervised Learning

[55]

Sometimes, linear regression is not sufficient to explain the relationship between input and
output. Hence we use polynomial regression, where we use a polynomial to explain the
relationship between input and output. This is more computationally complex, but gives
higher accuracy. Depending on the problem at hand, we use different forms of regression to
extract the relationship. Regression is frequently used for prediction of prices, economics,
variations, and so on.

Building a single variable regressor
Let's see how to build a single variable regression model. Create a new Python file and
import the following packages:

import pickle

import numpy as np
from sklearn import linear_model
import sklearn.metrics as sm
import matplotlib.pyplot as plt

We will use the file data_singlevar_regr.txt provided to you. This is our source of
data:

Input file containing data
input_file = 'data_singlevar_regr.txt'

It's a comma-separated file, so we can easily load it using a one-line function call:

Read data
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

Split it into training and testing:

Train and test split
num_training = int(0.8 * len(X))
num_test = len(X) - num_training

Training data
X_train, y_train = X[:num_training], y[:num_training]

Test data
X_test, y_test = X[num_training:], y[num_training:]

Classification and Regression Using Supervised Learning

[56]

Create a linear regressor object and train it using the training data:

Create linear regressor object
regressor = linear_model.LinearRegression()

Train the model using the training sets
regressor.fit(X_train, y_train)

Predict the output for the testing dataset using the training model:

Predict the output
y_test_pred = regressor.predict(X_test)

Plot the output:

Plot outputs
plt.scatter(X_test, y_test, color='green')
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.xticks(())
plt.yticks(())
plt.show()

Compute the performance metrics for the regressor by comparing the ground truth, which
refers to the actual outputs, with the predicted outputs:

Compute performance metrics
print("Linear regressor performance:")
print("Mean absolute error =", round(sm.mean_absolute_error(y_test,
y_test_pred), 2))
print("Mean squared error =", round(sm.mean_squared_error(y_test,
y_test_pred), 2))
print("Median absolute error =", round(sm.median_absolute_error(y_test,
y_test_pred), 2))
print("Explain variance score =", round(sm.explained_variance_score(y_test,
y_test_pred), 2))
print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))

Once the model has been created, we can save it into a file so that we can use it later. Python
provides a nice module called pickle that enables us to do this:

Model persistence
output_model_file = 'model.pkl'

Save the model
with open(output_model_file, 'wb') as f:
 pickle.dump(regressor, f)

Classification and Regression Using Supervised Learning

[57]

Let's load the model from the file on the disk and perform prediction:

Load the model
with open(output_model_file, 'rb') as f:
 regressor_model = pickle.load(f)

Perform prediction on test data
y_test_pred_new = regressor_model.predict(X_test)
print("\nNew mean absolute error =", round(sm.mean_absolute_error(y_test,
y_test_pred_new), 2))

If you run the code, you will see the following screenshot:

Classification and Regression Using Supervised Learning

[58]

You will see the following printed on your Terminal:

 Linear regressor performance:
 Mean absolute error = 0.59
 Mean squared error = 0.49
 Median absolute error = 0.51
 Explain variance score = 0.86
 R2 score = 0.86
 New mean absolute error = 0.59

The code for this section is given in the file regressor_singlevar.py.

Building a multivariable regressor
In the previous section, we discussed how to build a regression model for a single variable.
In this section, we will deal with multidimensional data. Create a new Python file and
import the following packages:

import numpy as np
from sklearn import linear_model
import sklearn.metrics as sm
from sklearn.preprocessing import PolynomialFeatures

We will use the file data_multivar_regr.txt provided to you.

Input file containing data
input_file = 'data_multivar_regr.txt'

This is a comma-separated file, so we can load it easily with a one-line function call:

Load the data from the input file
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

Split the data into training and testing:

Split data into training and testing
num_training = int(0.8 * len(X))
num_test = len(X) - num_training

Training data
X_train, y_train = X[:num_training], y[:num_training]

Test data
X_test, y_test = X[num_training:], y[num_training:]

Classification and Regression Using Supervised Learning

[59]

Create and train the linear regressor model:

Create the linear regressor model
linear_regressor = linear_model.LinearRegression()

Train the model using the training sets
linear_regressor.fit(X_train, y_train)

Predict the output for the test dataset:

Predict the output
y_test_pred = linear_regressor.predict(X_test)

Print the performance metrics:

Measure performance
print("Linear Regressor performance:")
print("Mean absolute error =", round(sm.mean_absolute_error(y_test,
y_test_pred), 2))
print("Mean squared error =", round(sm.mean_squared_error(y_test,
y_test_pred), 2))
print("Median absolute error =", round(sm.median_absolute_error(y_test,
y_test_pred), 2))
print("Explained variance score =",
round(sm.explained_variance_score(y_test, y_test_pred), 2))
print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))

Create a polynomial regressor of degree 10. Train the regressor on the training dataset. Let's
take a sample data point and see how to perform prediction. The first step is to transform it
into a polynomial:

Polynomial regression
polynomial = PolynomialFeatures(degree=10)
X_train_transformed = polynomial.fit_transform(X_train)
datapoint = [[7.75, 6.35, 5.56]]
poly_datapoint = polynomial.fit_transform(datapoint)

If you look closely, this data point is very close to the data point on line 11 in our data file,
which is [7.66, 6.29, 5.66]. So, a good regressor should predict an output that's close to 41.35.
Create a linear regressor object and perform the polynomial fit. Perform the prediction
using both linear and polynomial regressors to see the difference:

poly_linear_model = linear_model.LinearRegression()
poly_linear_model.fit(X_train_transformed, y_train)
print("\nLinear regression:\n", linear_regressor.predict(datapoint))
print("\nPolynomial regression:\n",
poly_linear_model.predict(poly_datapoint))

Classification and Regression Using Supervised Learning

[60]

If you run the code, you will see the following printed on your Terminal:

 Linear Regressor performance:
 Mean absolute error = 3.58
 Mean squared error = 20.31
 Median absolute error = 2.99
 Explained variance score = 0.86
 R2 score = 0.86

You will see the following as well:

 Linear regression:
 [36.05286276]
 Polynomial regression:
 [41.46961676]

As you can see, the polynomial regressor is closer to 41.35. The code for this section is given
in the file regressor_multivar.py.

Estimating housing prices using a Support
Vector Regressor
Let's see how to use the SVM concept to build a regressor to estimate the housing prices. We
will use the dataset available in sklearn where each data point is define, by 13 attributes.
Our goal is to estimate the housing prices based on these attributes.

Create a new Python file and import the following packages:

import numpy as np
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, explained_variance_score
from sklearn.utils import shuffle

Load the housing dataset:

Load housing data
data = datasets.load_boston()

Let's shuffle the data so that we don't bias our analysis:

Shuffle the data
X, y = shuffle(data.data, data.target, random_state=7)

Classification and Regression Using Supervised Learning

[61]

Split the dataset into training and testing in an 80/20 format:

Split the data into training and testing datasets
num_training = int(0.8 * len(X))
X_train, y_train = X[:num_training], y[:num_training]
X_test, y_test = X[num_training:], y[num_training:]

Create and train the Support Vector Regressor using a linear kernel. The C parameter
represents the penalty for training error. If you increase the value of C, the model will fine-
tune it more to fit the training data. But this might lead to overfitting and cause it to lose its
generality. The epsilon parameter specifies a threshold; there is no penalty for training error
if the predicted value is within this distance from the actual value:

Create Support Vector Regression model
sv_regressor = SVR(kernel='linear', C=1.0, epsilon=0.1)

Train Support Vector Regressor
sv_regressor.fit(X_train, y_train)

Evaluate the performance of the regressor and print the metrics:

Evaluate performance of Support Vector Regressor
y_test_pred = sv_regressor.predict(X_test)
mse = mean_squared_error(y_test, y_test_pred)
evs = explained_variance_score(y_test, y_test_pred)
print("\n#### Performance ####")
print("Mean squared error =", round(mse, 2))
print("Explained variance score =", round(evs, 2))

Let's take a test data point and perform prediction:

Test the regressor on test datapoint
test_data = [3.7, 0, 18.4, 1, 0.87, 5.95, 91, 2.5052, 26, 666, 20.2,
351.34, 15.27]
print("\nPredicted price:", sv_regressor.predict([test_data])[0])

If you run the code, you will see the following printed on the Terminal:

 #### Performance ####
 Mean squared error = 15.41
 Explained variance score = 0.82
 Predicted price: 18.5217801073

The code for this section is given in the file house_prices.py.

Classification and Regression Using Supervised Learning

[62]

Summary
In this chapter, we learned the difference between supervised and unsupervised learning.
We discussed the data classification problem and how to solve it. We understood how to
preprocess data using various methods. We also learned about label encoding and how to
build a label encoder. We discussed logistic regression and built a logistic regression
classifier. We understood what Naïve Bayes classifier is and learned how to build it. We
also learned how to build a confusion matrix.

We discussed Support Vector Machines and understood how to build a classifier based on
that. We learned about regression and understood how to use linear and polynomial
regression for single and multivariable data. We then used Support Vector Regressor to
estimate the housing prices using input attributes.

In the next chapter, we will learn about predictive analytics and how to build a predictive
engine using ensemble learning.

3
Predictive Analytics with

Ensemble Learning
In this chapter, we are going to learn about Ensemble Learning and how to use it for
predictive analytics. By the end of this chapter, you will know these topics:

Building learning models with Ensemble Learning
What are Decision Trees and how to build a Decision Trees classifier
What are Random Forests and Extremely Random Forests, and how to build
classifiers based on them
Estimating the confidence measure of the predictions
Dealing with class imbalance
Finding optimal training parameters using grid search
Computing relative feature importance
Predicting traffic using Extremely Random Forests regressor

What is Ensemble Learning?
Ensemble Learning refers to the process of building multiple models and then combining
them in a way that can produce better results than individual models. These individual
models can be classifiers, regressors, or anything else that models data in some way.
Ensemble learning is used extensively across multiple fields including data classification,
predictive modeling, anomaly detection, and so on.

Predictive Analytics with Ensemble Learning

[64]

Why do we need ensemble learning in the first place? In order to understand this, let's take
a real-life example. You want to buy a new TV, but you don't know what the latest models
are. Your goal is to get the best value for your money, but you don't have enough
knowledge on this topic to make an informed decision. When you have to make a decision
about something like this, you go around and try to get the opinions of multiple experts in
the domain. This will help you make the best decision. More often than not, instead of just
relying on a single opinion, you tend to make a final decision by combining the individual
decisions of those experts. The reason we do that is because we want to minimize the
possibility of a wrong or suboptimal decision.

Building learning models with Ensemble Learning
When we select a model, the most commonly used procedure is to choose the one with the
smallest error on the training dataset. The problem with this approach is that it will not
always work. The model might get biased or overfit the training data. Even when we
compute the model using cross validation, it can perform poorly on unknown data.

One of the main reasons ensemble learning is so effective is because it reduces the overall
risk of making a poor model selection. This enables it to train in a diverse manner and then
perform well on unknown data. When we build a model using ensemble learning, the
individual models need to exhibit some diversity. This would allow them to capture
various nuances in our data; hence the overall model becomes more accurate.

The diversity is achieved by using different training parameters for each individual model.
This allows individual models to generate different decision boundaries for training data.
This means that each model will use different rules to make an inference, which is a
powerful way of validating the final result. If there is agreement among the models, then
we know that the output is correct.

What are Decision Trees?
A Decision Tree is a structure that allows us to split the dataset into branches and then
make simple decisions at each level. This will allow us to arrive at the final decision by
walking down the tree. Decision Trees are produced by training algorithms, which identify
how we can split the data in the best possible way.

Predictive Analytics with Ensemble Learning

[65]

Any decision process starts at the root node at the top of the tree. Each node in the tree is
basically a decision rule. Algorithms construct these rules based on the relationship
between the input data and the target labels in the training data. The values in the input
data are utilized to estimate the value for the output.

Now that we understand basic concept of Decision Trees, the next thing is to understand
how the trees are automatically constructed. We need algorithms that can construct the
optimal tree based on our data. In order to understand it, we need to understand the
concept of entropy. In this context, entropy refers to information entropy and not
thermodynamic entropy. Entropy is basically a measure of uncertainty. One of the main
goals of a decision tree is to reduce uncertainty as we move from the root node towards the
leaf nodes. When we see an unknown data point, we are completely uncertain about the
output. By the time we reach the leaf node, we are certain about the output. This means that
we need to construct the decision tree in a way that will reduce the uncertainty at each
level. This implies that we need to reduce the entropy as we progress down the tree.

You can learn more about this at: h t t p s ://p r a t e e k v j o s h i . c o m
/2016/03/22/h o w - a r e - d e c i s i o n - t r e e s - c o n s t r u c t e d - i n - m a c h i n e - l e a r

n i n g .

Building a Decision Tree classifier
Let's see how to build a classifier using Decision Trees in Python. Create a new Python file
and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn import cross_validation
from sklearn.tree import DecisionTreeClassifier

from utilities import visualize_classifier

We will be using the data in the data_decision_trees.txt file that's provided to you. In
this file, each line contains comma-separated values. The first two values correspond to the
input data and the last value corresponds to the target label. Let's load the data from that
file:

Load input data
input_file = 'data_decision_trees.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning
https://prateekvjoshi.com/2016/03/22/how-are-decision-trees-constructed-in-machine-learning

Predictive Analytics with Ensemble Learning

[66]

Separate the input data into two separate classes based on the labels:

Separate input data into two classes based on labels
class_0 = np.array(X[y==0])
class_1 = np.array(X[y==1])

Let's visualize the input data using a scatter plot:

Visualize input data
plt.figure()
plt.scatter(class_0[:, 0], class_0[:, 1], s=75, facecolors='black',
 edgecolors='black', linewidth=1, marker='x')
plt.scatter(class_1[:, 0], class_1[:, 1], s=75, facecolors='white',
 edgecolors='black', linewidth=1, marker='o')
plt.title('Input data')

We need to split the data into training and testing datasets:

Split data into training and testing datasets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(
 X, y, test_size=0.25, random_state=5)

Create, build, and visualize a decision tree classifier based on the training dataset. The
random_state parameter refers to the seed used by the random number generator
required for the initialization of the decision tree classification algorithm. The max_depth
parameter refers to the maximum depth of the tree that we want to construct:

Decision Trees classifier
params = {'random_state': 0, 'max_depth': 4}
classifier = DecisionTreeClassifier(**params)
classifier.fit(X_train, y_train)
visualize_classifier(classifier, X_train, y_train, 'Training dataset')

Compute the output of the classifier on the test dataset and visualize it:

y_test_pred = classifier.predict(X_test)
visualize_classifier(classifier, X_test, y_test, 'Test dataset')

Evaluate the performance of the classifier by printing the classification report:

Evaluate classifier performance
class_names = ['Class-0', 'Class-1']
print("\n" + "#"*40)
print("\nClassifier performance on training dataset\n")
print(classification_report(y_train, classifier.predict(X_train),
target_names=class_names))
print("#"*40 + "\n")

Predictive Analytics with Ensemble Learning

[67]

print("#"*40)
print("\nClassifier performance on test dataset\n")
print(classification_report(y_test, y_test_pred, target_names=class_names))
print("#"*40 + "\n")

plt.show()

The full code is given in the decision_trees.py file. If you run the code, you will see a
few figures. The first screenshot is the visualization of input data:

Predictive Analytics with Ensemble Learning

[68]

The second screenshot shows the classifier boundaries on the test dataset:

Predictive Analytics with Ensemble Learning

[69]

You will see the following printed on your Terminal:

The performance of a classifier is characterized by precision, recall, and f1-scores.
Precision refers to the accuracy of the classification and recall refers to the number of items
that were retrieved as a percentage of the overall number of items that were supposed to be
retrieved. A good classifier will have high precision and high recall, but it is usually a trade-
off between the two. Hence we have f1-score to characterize that. F1 score is the harmonic
mean of precision and recall, which gives it a good balance between precision and recall
values.

Predictive Analytics with Ensemble Learning

[70]

What are Random Forests and Extremely
Random Forests?
A Random Forest is a particular instance of ensemble learning where individual models are
constructed using Decision Trees. This ensemble of Decision Trees is then used to predict
the output value. We use a random subset of training data to construct each Decision Tree.
This will ensure diversity among various decision trees. In the first section, we discussed
that one of the most important things in ensemble learning is to ensure that there's diversity
among individual models.

One of the best things about Random Forests is that they do not overfit. As we know,
overfitting is a problem that we encounter frequently in machine learning. By constructing a
diverse set of Decision Trees using various random subsets, we ensure that the model does
not overfit the training data. During the construction of the tree, the nodes are split
successively and the best thresholds are chosen to reduce the entropy at each level. This
split doesn't consider all the features in the input dataset. Instead, it chooses the best split
among the random subset of the features that is under consideration. Adding this
randomness tends to increase the bias of the random forest, but the variance decreases
because of averaging. Hence, we end up with a robust model.

Extremely Random Forests take randomness to the next level. Along with taking a random
subset of features, the thresholds are chosen at random too. These randomly generated
thresholds are chosen as the splitting rules, which reduce the variance of the model even
further. Hence the decision boundaries obtained using Extremely Random Forests tend to
be smoother than the ones obtained using Random Forests.

Building Random Forest and Extremely Random
Forest classifiers
Let's see how to build a classifier based on Random Forests and Extremely Random Forests.
The way to construct both classifiers is very similar, so we will use an input flag to specify
which classifier needs to be built.

Predictive Analytics with Ensemble Learning

[71]

Create a new Python file and import the following packages:

import argparse

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn import cross_validation
from sklearn.metrics import classification_report

from utilities import visualize_classifier

Define an argument parser for Python so that we can take the classifier type as an input
parameter. Depending on this parameter, we can construct a Random Forest classifier or an
Extremely Random forest classifier:

Argument parser
def build_arg_parser():
 parser = argparse.ArgumentParser(description='Classify data using \
 Ensemble Learning techniques')
 parser.add_argument('--classifier-type', dest='classifier_type',
 required=True, choices=['rf', 'erf'], help="Type of
classifier
 \to use; can be either 'rf' or 'erf'")
 return parser

Define the main function and parse the input arguments:

if __name__=='__main__':
 # Parse the input arguments
 args = build_arg_parser().parse_args()
 classifier_type = args.classifier_type

We will be using the data from the data_random_forests.txt file that is provided to
you. Each line in this file contains comma-separated values. The first two values correspond
to the input data and the last value corresponds to the target label. We have three distinct
classes in this dataset. Let's load the data from that file:

 # Load input data
 input_file = 'data_random_forests.txt'
 data = np.loadtxt(input_file, delimiter=',')
 X, y = data[:, :-1], data[:, -1]

Predictive Analytics with Ensemble Learning

[72]

Separate the input data into three classes:

 # Separate input data into three classes based on labels
 class_0 = np.array(X[y==0])
 class_1 = np.array(X[y==1])
 class_2 = np.array(X[y==2])

Let's visualize the input data:

 # Visualize input data
 plt.figure()
 plt.scatter(class_0[:, 0], class_0[:, 1], s=75, facecolors='white',
 edgecolors='black', linewidth=1, marker='s')
 plt.scatter(class_1[:, 0], class_1[:, 1], s=75, facecolors='white',
 edgecolors='black', linewidth=1, marker='o')
 plt.scatter(class_2[:, 0], class_2[:, 1], s=75, facecolors='white',
 edgecolors='black', linewidth=1, marker='^')
 plt.title('Input data')

Split the data into training and testing datasets:

 # Split data into training and testing datasets
 X_train, X_test, y_train, y_test = cross_validation.train_test_split(
 X, y, test_size=0.25, random_state=5)

Define the parameters to be used when we construct the classifier. The n_estimators
parameter refers to the number of trees that will be constructed. The max_depth parameter
refers to the maximum number of levels in each tree. The random_state parameter refers
to the seed value of the random number generator needed to initialize the random forest
classifier algorithm:

 # Ensemble Learning classifier
 params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}

Depending on the input parameter, we either construct a random forest classifier or an
extremely random forest classifier:

 if classifier_type == 'rf':
 classifier = RandomForestClassifier(**params)
 else:
 classifier = ExtraTreesClassifier(**params)

Train and visualize the classifier:

 classifier.fit(X_train, y_train)
 visualize_classifier(classifier, X_train, y_train, 'Training
dataset')

Predictive Analytics with Ensemble Learning

[73]

Compute the output based on the test dataset and visualize it:

 y_test_pred = classifier.predict(X_test)
 visualize_classifier(classifier, X_test, y_test, 'Test dataset')

Evaluate the performance of the classifier by printing the classification report:

 # Evaluate classifier performance
 class_names = ['Class-0', 'Class-1', 'Class-2']
 print("\n" + "#"*40)
 print("\nClassifier performance on training dataset\n")
 print(classification_report(y_train, classifier.predict(X_train),
target_names=class_names))
 print("#"*40 + "\n")

 print("#"*40)
 print("\nClassifier performance on test dataset\n")
 print(classification_report(y_test, y_test_pred,
target_names=class_names))
 print("#"*40 + "\n")

The full code is given in the random_forests.py file. Let's run the code with the Random
Forest classifier using the rf flag in the input argument. Run the following command on
your Terminal:

 $ python3 random_forests.py --classifier-type rf

You will see a few figures pop up. The first screenshot is the input data:

Predictive Analytics with Ensemble Learning

[74]

In the preceding screenshot, the three classes are being represented by squares, circles, and
triangles. We see that there is a lot of overlap between classes, but that should be fine for
now. The second screenshot shows the classifier boundaries:

Now let's run the code with the Extremely Random Forest classifier by using the erf flag in
the input argument. Run the following command on your Terminal:

 $ python3 random_forests.py --classifier-type erf

Predictive Analytics with Ensemble Learning

[75]

You will see a few figures pop up. We already know what the input data looks like. The
second screenshot shows the classifier boundaries:

Predictive Analytics with Ensemble Learning

[76]

If you compare the preceding screenshot with the boundaries obtained from Random Forest
classifier, you will see that these boundaries are smoother. The reason is that Extremely
Random Forests have more freedom during the training process to come up with good
Decision Trees, hence they usually produce better boundaries.

Estimating the confidence measure of the
predictions
If you observe the outputs obtained on the terminal, you will see that the probabilities are
printed for each data point. These probabilities are used to measure the confidence values
for each class. Estimating the confidence values is an important task in machine learning. In
the same python file, add the following line to define an array of test data points:

 # Compute confidence
 test_datapoints = np.array([[5, 5], [3, 6], [6, 4], [7, 2], [4, 4],
[5, 2]])

The classifier object has an inbuilt method to compute the confidence measure. Let's classify
each point and compute the confidence values:

 print("\nConfidence measure:")
 for datapoint in test_datapoints:
 probabilities = classifier.predict_proba([datapoint])[0]
 predicted_class = 'Class-' + str(np.argmax(probabilities))
 print('\nDatapoint:', datapoint)
 print('Predicted class:', predicted_class)

Visualize the test data points based on classifier boundaries:

 # Visualize the datapoints
 visualize_classifier(classifier, test_datapoints,
 [0]*len(test_datapoints),
 'Test datapoints')
 plt.show()

Predictive Analytics with Ensemble Learning

[77]

If you run the code with the rf flag, you will get the following output:

Predictive Analytics with Ensemble Learning

[78]

You will get the following output on your Terminal:

Predictive Analytics with Ensemble Learning

[79]

For each data point, it computes the probability of that point belonging to our three classes.
We pick the one with the highest confidence. If you run the code with the erf flag, you will
get the following output:

Predictive Analytics with Ensemble Learning

[80]

You will get the following output on your Terminal:

As we can see, the outputs are consistent with our observations.

Dealing with class imbalance
A classifier is only as good as the data that's used for training. One of the most common
problems we face in the real world is the quality of data. For a classifier to perform well, it
needs to see equal number of points for each class. But when we collect data in the real
world, it's not always possible to ensure that each class has the exact same number of data
points. If one class has 10 times the number of data points of the other class, then the
classifier tends to get biased towards the first class. Hence we need to make sure that we
account for this imbalance algorithmically. Let's see how to do that.

Predictive Analytics with Ensemble Learning

[81]

Create a new Python file and import the following packages:

import sys

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import cross_validation
from sklearn.metrics import classification_report

from utilities import visualize_classifier

We will use the data in the file data_imbalance.txt for our analysis. Let's load the data.
Each line in this file contains comma-separated values. The first two values correspond to
the input data and the last value corresponds to the target label. We have two classes in this
dataset. Let's load the data from that file:

Load input data
input_file = 'data_imbalance.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

Separate the input data into two classes:

Separate input data into two classes based on labels
class_0 = np.array(X[y==0])
class_1 = np.array(X[y==1])

Visualize the input data using scatter plot:

Visualize input data
plt.figure()
plt.scatter(class_0[:, 0], class_0[:, 1], s=75, facecolors='black',
 edgecolors='black', linewidth=1, marker='x')
plt.scatter(class_1[:, 0], class_1[:, 1], s=75, facecolors='white',
 edgecolors='black', linewidth=1, marker='o')
plt.title('Input data')

Split the data into training and testing datasets:

Split data into training and testing datasets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(
 X, y, test_size=0.25, random_state=5)

Predictive Analytics with Ensemble Learning

[82]

Next, we define the parameters for the Extremely Random Forest classifier. Note that there
is an input parameter called balance that controls whether or not we want to
algorithmically account for class imbalance. If so, then we need to add another parameter
called class_weight that tells the classifier that it should balance the weight, so that it's
proportional to the number of data points in each class:

Extremely Random Forests classifier
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
if len(sys.argv) > 1:
 if sys.argv[1] == 'balance':
 params = {'n_estimators': 100, 'max_depth': 4, 'random_state':
0, 'class_weight': 'balanced'}
 else:
 raise TypeError("Invalid input argument; should be 'balance'")

Build, train, and visualize the classifier using training data:

classifier = ExtraTreesClassifier(**params)
classifier.fit(X_train, y_train)
visualize_classifier(classifier, X_train, y_train, 'Training dataset')

Predict the output for test dataset and visualize the output:

y_test_pred = classifier.predict(X_test)
visualize_classifier(classifier, X_test, y_test, 'Test dataset')

Compute the performance of the classifier and print the classification report:

Evaluate classifier performance
class_names = ['Class-0', 'Class-1']
print("\n" + "#"*40)
print("\nClassifier performance on training dataset\n")
print(classification_report(y_train, classifier.predict(X_train),
target_names=class_names))
print("#"*40 + "\n")

print("#"*40)
print("\nClassifier performance on test dataset\n")
print(classification_report(y_test, y_test_pred, target_names=class_names))
print("#"*40 + "\n")

plt.show()

Predictive Analytics with Ensemble Learning

[83]

The full code is given in the file class_imbalance.py. If you run the code, you will see a
few screenshots. The first screenshot shows the input data:

Predictive Analytics with Ensemble Learning

[84]

The second screenshot shows the classifier boundary for the test dataset:

Predictive Analytics with Ensemble Learning

[85]

The preceding screenshot indicates that the boundary was not able to capture the actual
boundary between the two classes. The black patch near the top represents the boundary.
You should see the following output on your Terminal:

You see a warning because the values are 0 in the first row, which leads to a divide-by-zero
error (ZeroDivisionError exception) when we compute the f1-score. Run the code on
the terminal using the ignore flag so that you do not see the divide-by-zero warning:

 $ python3 --W ignore class_imbalance.py

Now if you want to account for class imbalance, run it with the balance flag:

 $ python3 class_imbalance.py balance

Predictive Analytics with Ensemble Learning

[86]

The classifier output looks like this:

Predictive Analytics with Ensemble Learning

[87]

You should see the following output on your Terminal:

By accounting for the class imbalance, we were able to classify the data points in class-0
with non-zero accuracy.

Finding optimal training parameters using
grid search
When you are working with classifiers, you do not always know what the best parameters
are. You cannot brute-force it by checking for all possible combinations manually. This is
where grid search becomes useful. Grid search allows us to specify a range of values and
the classifier will automatically run various configurations to figure out the best
combination of parameters. Let's see how to do it.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn import cross_validation, grid_search
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import cross_validation
from sklearn.metrics import classification_report

from utilities import visualize_classifier

We will use the data available in data_random_forests.txt for analysis:

Load input data
input_file = 'data_random_forests.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

Predictive Analytics with Ensemble Learning

[88]

Separate the data into three classes:

Separate input data into three classes based on labels
class_0 = np.array(X[y==0])
class_1 = np.array(X[y==1])
class_2 = np.array(X[y==2])

Split the data into training and testing datasets:

Split the data into training and testing datasets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(
 X, y, test_size=0.25, random_state=5)

Specify the grid of parameters that you want the classifier to test. Usually we keep one
parameter constant and vary the other parameter. We then do it vice versa to figure out the
best combination. In this case, we want to find the best values for n_estimators and
max_depth. Let's specify the parameter grid:

Define the parameter grid
parameter_grid = [{'n_estimators': [100], 'max_depth': [2, 4, 7, 12, 16]},
 {'max_depth': [4], 'n_estimators': [25, 50, 100,
250]}
]

Let's define the metrics that the classifier should use to find the best combination of
parameters:

metrics = ['precision_weighted', 'recall_weighted']

For each metric, we need to run the grid search, where we train the classifier for a particular
combination of parameters:

for metric in metrics:
 print("\n##### Searching optimal parameters for", metric)

 classifier = grid_search.GridSearchCV(
 ExtraTreesClassifier(random_state=0),
 parameter_grid, cv=5, scoring=metric)
 classifier.fit(X_train, y_train)

Predictive Analytics with Ensemble Learning

[89]

Print the score for each parameter combination:

 print("\nGrid scores for the parameter grid:")
 for params, avg_score, _ in classifier.grid_scores_:
 print(params, '-->', round(avg_score, 3))

 print("\nBest parameters:", classifier.best_params_)

Print the performance report:

 y_pred = classifier.predict(X_test)
 print("\nPerformance report:\n")
 print(classification_report(y_test, y_pred))

The full code is given in the file run_grid_search.py. If you run the code, you will get
this output on the Terminal for the precision metric:

Predictive Analytics with Ensemble Learning

[90]

Based on the combinations in the grid search, it will print out the best combination for the
precision metric. If we want to know the best combination for recall, we need to check the
following output on the Terminal:

It is a different combination for recall, which makes sense because precision and recall are
different metrics that demand different parameter combinations.

Computing relative feature importance
When we are working with a dataset that contains N-dimensional data points, we have to
understand that not all features are equally important. Some are more discriminative than
others. If we have this information, we can use it to reduce the dimensional. This is very
useful in reducing the complexity and increasing the speed of the algorithm. Sometimes, a
few features are completely redundant. Hence they can be easily removed from the dataset.

Predictive Analytics with Ensemble Learning

[91]

We will be using the AdaBoost regressor to compute feature importance. AdaBoost, short
for Adaptive Boosting, is an algorithm that's frequently used in conjunction with other
machine learning algorithms to improve their performance. In AdaBoost, the training data
points are drawn from a distribution to train the current classifier. This distribution is
updated iteratively so that the subsequent classifiers get to focus on the more difficult data
points. The difficult data points are the ones that are misclassified. This is done by updating
the distribution at each step. This will make the data points that were previously
misclassified more likely to come up in the next sample dataset that's used for training.
These classifiers are then cascaded and the decision is taken through weighted majority
voting.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn import datasets
from sklearn.metrics import mean_squared_error, explained_variance_score
from sklearn import cross_validation
from sklearn.utils import shuffle

We will use the inbuilt housing dataset available in scikit-learn:

Load housing data
housing_data = datasets.load_boston()

Shuffle the data so that we don't bias our analysis:

Shuffle the data
X, y = shuffle(housing_data.data, housing_data.target, random_state=7)

Split the dataset into training and testing:

Split data into training and testing datasets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(
 X, y, test_size=0.2, random_state=7)

Define and train an AdaBoostregressor using the Decision Tree regressor as the
individual model:

AdaBoost Regressor model
regressor = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
 n_estimators=400, random_state=7)
regressor.fit(X_train, y_train)

Predictive Analytics with Ensemble Learning

[92]

Estimate the performance of the regressor:

Evaluate performance of AdaBoost regressor
y_pred = regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
evs = explained_variance_score(y_test, y_pred)
print("\nADABOOST REGRESSOR")
print("Mean squared error =", round(mse, 2))
print("Explained variance score =", round(evs, 2))

This regressor has an inbuilt method that can be called to compute the relative feature
importance:

Extract feature importances
feature_importances = regressor.feature_importances_
feature_names = housing_data.feature_names

Normalize the values of the relative feature importance:

Normalize the importance values
feature_importances = 100.0 * (feature_importances /
max(feature_importances))

Sort them so that they can be plotted:

Sort the values and flip them
index_sorted = np.flipud(np.argsort(feature_importances))

Arrange the ticks on the X axis for the bar graph:

Arrange the X ticks
pos = np.arange(index_sorted.shape[0]) + 0.5

Plot the bar graph:

Plot the bar graph
plt.figure()
plt.bar(pos, feature_importances[index_sorted], align='center')
plt.xticks(pos, feature_names[index_sorted])
plt.ylabel('Relative Importance')
plt.title('Feature importance using AdaBoost regressor')
plt.show()

Predictive Analytics with Ensemble Learning

[93]

The full code is given in the file feature_importance.py. If you run the code, you should
see the following output:

According to this analysis, the feature LSTAT is the most important feature in that dataset.

Predicting traffic using Extremely Random
Forest regressor
Let's apply the concepts we learned in the previous sections to a real world problem. We
will be using the dataset available at:
https://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor. This dataset consists
of data that counts the number of vehicles passing by on the road during baseball games
played at Los Angeles Dodgers stadium. In order to make the data readily available for
analysis, we need to pre-process it. The pre-processed data is in the file
traffic_data.txt. In this file, each line contains comma-separated strings. Let's take the
first line as an example:

Tuesday,00:00,San Francisco,no,3

https://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor

Predictive Analytics with Ensemble Learning

[94]

With reference to the preceding line, it is formatted as follows:

Day of the week, time of the day, opponent team, binary value indicating whether or not a
baseball game is currently going on (yes/no), number of vehicles passing by.

Our goal is to predict the number of vehicles going by using the given information. Since
the output variable is continuous valued, we need to build a regressor that can predict the
output. We will be using Extremely Random Forests to build this regressor. Let's go ahead
and see how to do that.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, mean_absolute_error
from sklearn import cross_validation, preprocessing
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.metrics import classification_report

Load the data in the file traffic_data.txt:

Load input data
input_file = 'traffic_data.txt'
data = []
with open(input_file, 'r') as f:
 for line in f.readlines():
 items = line[:-1].split(',')
 data.append(items)

data = np.array(data)

We need to encode the non-numerical features in the data. We also need to ensure that we
don't encode numerical features. Each feature that needs to be encoded needs to have a
separate label encoder. We need to keep track of these encoders because we will need them
when we want to compute the output for an unknown data point. Let's create those label
encoders:

Convert string data to numerical data
label_encoder = []
X_encoded = np.empty(data.shape)
for i, item in enumerate(data[0]):
 if item.isdigit():
 X_encoded[:, i] = data[:, i]
 else:
 label_encoder.append(preprocessing.LabelEncoder())
 X_encoded[:, i] = label_encoder[-1].fit_transform(data[:, i])

Predictive Analytics with Ensemble Learning

[95]

X = X_encoded[:, :-1].astype(int)
y = X_encoded[:, -1].astype(int)

Split the data into training and testing datasets:

Split data into training and testing datasets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(
 X, y, test_size=0.25, random_state=5)

Train an extremely Random Forests regressor:

Extremely Random Forests regressor
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
regressor = ExtraTreesRegressor(**params)
regressor.fit(X_train, y_train)

Compute the performance of the regressor on testing data:

Compute the regressor performance on test data
y_pred = regressor.predict(X_test)
print("Mean absolute error:", round(mean_absolute_error(y_test, y_pred),
2))

Let's see how to compute the output for an unknown data point. We will be using those
label encoders to convert non-numerical features into numerical values:

Testing encoding on single data instance
test_datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test_datapoint_encoded = [-1] * len(test_datapoint)
count = 0
for i, item in enumerate(test_datapoint):
 if item.isdigit():
 test_datapoint_encoded[i] = int(test_datapoint[i])
 else:
 test_datapoint_encoded[i] =
int(label_encoder[count].transform(test_datapoint[i]))
 count = count + 1

test_datapoint_encoded = np.array(test_datapoint_encoded)

Predictive Analytics with Ensemble Learning

[96]

Predict the output:

Predict the output for the test datapoint
print("Predicted traffic:",
int(regressor.predict([test_datapoint_encoded])[0]))

The full code is given in the file traffic_prediction.py. If you run the code, you will
get 26 as the output, which is pretty close to the actual value. You can confirm this from the
data file.

Summary
In this chapter, we learned about Ensemble Learning and how it can be used in the real
world. We discussed Decision Trees and how to build a classifier based on it.

We learned about Random Forests and Extremely Random Forests. We discussed how to
build classifiers based on them. We understood how to estimate the confidence measure of
the predictions. We also learned how to deal with the class imbalance problem.

We discussed how to find the most optimal training parameters to build the models using
grid search. We learned how to compute relative feature importance. We then applied
ensemble learning techniques to a real-world problem, where we predicted traffic using
Extremely Random Forest regressor.

In the next chapter, we will discuss unsupervised learning and how to detect patterns in
stock market data.

4
Detecting Patterns with
Unsupervised Learning

In this chapter, we are going to learn about unsupervised learning and how to use it in the
real world. By the end of this chapter, you will know these things:

What is unsupervised learning?
Clustering data with K-Means algorithm
Estimating the number of clusters with Mean Shift algorithm
Estimating the quality of clustering with silhouette scores
What are Gaussian Mixture Models?
Building a classifier based on Gaussian Mixture Models
Finding subgroups in stock market using Affinity Propagation model
Segmenting the market based on shopping patterns

What is unsupervised learning?
Unsupervised learning refers to the process of building machine learning models without
using labeled training data. Unsupervised learning finds applications in diverse fields of
study, including market segmentation, stock markets, natural language processing,
computer vision, and so on.

Detecting Patterns with Unsupervised Learning

[98]

In the previous chapters, we were dealing with data that had labels associated with it.
When we have labeled training data, the algorithms learn to classify data based on those
labels. In the real world, we might not always have access to labeled data. Sometimes, we
just have a lot of data and we need to categorize it in some way. This is where unsupervised
learning comes into picture. Unsupervised learning algorithms attempt to build learning
models that can find subgroups within the given dataset using some similarity metric.

Let's see how we formulate the learning problem in unsupervised learning. When we have
a dataset without any labels, we assume that the data is generated because of latent
variables that govern the distribution in some way. The process of learning can then
proceed in a hierarchical manner, starting from the individual data points. We can build
deeper levels of representation for the data.

Clustering data with K-Means algorithm
Clustering is one of the most popular unsupervised learning techniques. This technique is
used to analyze data and find clusters within that data. In order to find these clusters, we
use some kind of similarity measure such as Euclidean distance, to find the subgroups. This
similarity measure can estimate the tightness of a cluster. We can say that clustering is the
process of organizing our data into subgroups whose elements are similar to each other.

Our goal is to identify the intrinsic properties of data points that make them belong to the
same subgroup. There is no universal similarity metric that works for all the cases. It
depends on the problem at hand. For example, we might be interested in finding the
representative data point for each subgroup or we might be interested in finding the
outliers in our data. Depending on the situation, we will end up choosing the appropriate
metric.

K-Means algorithm is a well-known algorithm for clustering data. In order to use this
algorithm, we need to assume that the number of clusters is known beforehand. We then
segment data into K subgroups using various data attributes. We start by fixing the number
of clusters and classify our data based on that. The central idea here is that we need to
update the locations of these K centroids with each iteration. We continue iterating until we
have placed the centroids at their optimal locations.

Detecting Patterns with Unsupervised Learning

[99]

We can see that the initial placement of centroids plays an important role in the algorithm.
These centroids should be placed in a clever manner, because this directly impacts the
results. A good strategy is to place them as far away from each other as possible. The basic
K-Means algorithm places these centroids randomly where K-Means++ chooses these
points algorithmically from the input list of data points. It tries to place the initial centroids
far from each other so that it converges quickly. We then go through our training dataset
and assign each data point to the closest centroid.

Once we go through the entire dataset, we say that the first iteration is over. We have
grouped the points based on the initialized centroids. We now need to recalculate the
location of the centroids based on the new clusters that we obtain at the end of the first
iteration. Once we obtain the new set of K centroids, we repeat the process again, where we
iterate through the dataset and assign each point to the closest centroid.

As we keep repeating these steps, the centroids keep moving to their equilibrium position.
After a certain number of iterations, the centroids do not change their locations anymore.
This means that we have arrived at the final locations of the centroids. These K centroids are
the final K Means that will be used for inference.

Let's apply K-Means clustering on two-dimensional data to see how it works. We will be
using the data in the data_clustering.txt file provided to you. Each line contains two
comma-separated numbers.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics

Load the input data from the file:

Load input data
X = np.loadtxt('data_clustering.txt', delimiter=',')

We need to define the number of clusters before we can apply K-Means algorithm:

num_clusters = 5

Visualize the input data to see what the spread looks like:

Plot input data
plt.figure()
plt.scatter(X[:,0], X[:,1], marker='o', facecolors='none',
 edgecolors='black', s=80)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

Detecting Patterns with Unsupervised Learning

[100]

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
plt.title('Input data')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

We can visually see that there are five groups within this data. Create the KMeans object
using the initialization parameters. The init parameter represents the method of
initialization to select the initial centers of clusters. Instead of selecting them randomly, we
use k-means++ to select these centers in a smarter way. This ensures that the algorithm
converges quickly. The n_clusters parameter refers to the number of clusters. The
n_init parameter refers to the number of times the algorithm should run before deciding
upon the best outcome:

Create KMeans object
kmeans = KMeans(init='k-means++', n_clusters=num_clusters, n_init=10)

Train the K-Means model with the input data:

Train the KMeans clustering model
kmeans.fit(X)

To visualize the boundaries, we need to create a grid of points and evaluate the model on
all those points. Let's define the step size of this grid:

Step size of the mesh
step_size = 0.01

We define the grid of points and ensure that we are covering all the values in our input
data:

Define the grid of points to plot the boundaries
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
x_vals, y_vals = np.meshgrid(np.arange(x_min, x_max, step_size),
 np.arange(y_min, y_max, step_size))

Predict the outputs for all the points on the grid using the trained K-Means model:

Predict output labels for all the points on the grid
output = kmeans.predict(np.c_[x_vals.ravel(), y_vals.ravel()])

Detecting Patterns with Unsupervised Learning

[101]

Plot all output values and color each region:

Plot different regions and color them
output = output.reshape(x_vals.shape)
plt.figure()
plt.clf()
plt.imshow(output, interpolation='nearest',
 extent=(x_vals.min(), x_vals.max(),
 y_vals.min(), y_vals.max()),
 cmap=plt.cm.Paired,
 aspect='auto',
 origin='lower')

Overlay input data points on top of these colored regions:

Overlay input points
plt.scatter(X[:,0], X[:,1], marker='o', facecolors='none',
 edgecolors='black', s=80)

Plot the centers of the clusters obtained using the K-Means algorithm:

Plot the centers of clusters
cluster_centers = kmeans.cluster_centers_
plt.scatter(cluster_centers[:,0], cluster_centers[:,1],
 marker='o', s=210, linewidths=4, color='black',
 zorder=12, facecolors='black')

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
plt.title('Boundaries of clusters')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()

Detecting Patterns with Unsupervised Learning

[102]

The full code is given in the kmeans.py file. If you run the code, you will see two
screenshot. The first screenshot is the input data:

Detecting Patterns with Unsupervised Learning

[103]

The second screenshot represents the boundaries obtained using K-Means:

The black filled circle at the center of each cluster represents the centroid of that cluster.

Detecting Patterns with Unsupervised Learning

[104]

Estimating the number of clusters with Mean
Shift algorithm
Mean Shift is a powerful algorithm used in unsupervised learning. It is a non-parametric
algorithm used frequently for clustering. It is non-parametric because it does not make any
assumptions about the underlying distributions. This is in contrast to parametric
techniques, where we assume that the underlying data follows a standard probability
distribution. Mean Shift finds a lot of applications in fields like object tracking and real-time
data analysis.

In the Mean Shift algorithm, we consider the whole feature space as a probability density
function. We start with the training dataset and assume that they have been sampled from a
probability density function. In this framework, the clusters correspond to the local maxima
of the underlying distribution. If there are K clusters, then there are K peaks in the
underlying data distribution and Mean Shift will identify those peaks.

The goal of Mean Shift is to identify the location of centroids. For each data point in the
training dataset, it defines a window around it. It then computes the centroid for this
window and updates the location to this new centroid. It then repeats the process for this
new location by defining a window around it. As we keep doing this, we move closer to the
peak of the cluster. Each data point will move towards the cluster it belongs to. The
movement is towards a region of higher density.

We keep shifting the centroids, also called means, towards the peaks of each cluster. Since
we keep shifting the means, it is called Mean Shift! We keep doing this until the algorithm
converges, at which stage the centroids don't move anymore.

Let's see how to use MeanShift to estimate the optimal number of clusters in the given
dataset. We will be using data in the data_clustering.txt file for analysis. It is the same
file we used in the KMeans section.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
from itertools import cycle

Load input data:

Load data from input file
X = np.loadtxt('data_clustering.txt', delimiter=',')

Detecting Patterns with Unsupervised Learning

[105]

Estimate the bandwidth of the input data. Bandwidth is a parameter of the underlying
kernel density estimation process used in Mean Shift algorithm. The bandwidth affects the
overall convergence rate of the algorithm and the number of clusters that we will end up
with in the end. Hence this is a crucial parameter. If the bandwidth is small, it might results
in too many clusters, where as if the value is large, then it will merge distinct clusters.

The quantile parameter impacts how the bandwidth is estimated. A higher value for
quantile will increase the estimated bandwidth, resulting in a lesser number of clusters:

Estimate the bandwidth of X
bandwidth_X = estimate_bandwidth(X, quantile=0.1, n_samples=len(X))

Let's train the Mean Shift clustering model using the estimated bandwidth:

Cluster data with MeanShift
meanshift_model = MeanShift(bandwidth=bandwidth_X, bin_seeding=True)
meanshift_model.fit(X)

Extract the centers of all the clusters:

Extract the centers of clusters
cluster_centers = meanshift_model.cluster_centers_
print('\nCenters of clusters:\n', cluster_centers)

Extract the number of clusters:

Estimate the number of clusters
labels = meanshift_model.labels_
num_clusters = len(np.unique(labels))
print("\nNumber of clusters in input data =", num_clusters)

Visualize the data points:

Plot the points and cluster centers
plt.figure()
markers = 'o*xvs'
for i, marker in zip(range(num_clusters), markers):
 # Plot points that belong to the current cluster
 plt.scatter(X[labels==i, 0], X[labels==i, 1], marker=marker,
color='black')

Detecting Patterns with Unsupervised Learning

[106]

Plot the center of the current cluster:

 # Plot the cluster center
 cluster_center = cluster_centers[i]
 plt.plot(cluster_center[0], cluster_center[1], marker='o',
 markerfacecolor='black', markeredgecolor='black',
 markersize=15)

plt.title('Clusters')
plt.show()

The full code is given in the mean_shift.py file. If you run the code, you will see the
following screenshot representing the clusters and their centers:

Detecting Patterns with Unsupervised Learning

[107]

You will see the following on your Terminal:

Estimating the quality of clustering with
silhouette scores
If the data is naturally organized into a number of distinct clusters, then it is easy to visually
examine it and draw some inferences. But this is rarely the case in the real world. The data
in the real world is huge and messy. So we need a way to quantify the quality of the
clustering.

Silhouette refers to a method used to check the consistency of clusters in our data. It gives
an estimate of how well each data point fits with its cluster. The silhouette score is a metric
that measures how similar a data point is to its own cluster, as compared to other clusters.
The silhouette score works with any similarity metric.

For each data point, the silhouette score is computed using the following formula:

silhouette score = (p – q) / max(p, q)

Here, p is the mean distance to the points in the nearest cluster that the data point is not a
part of, and q is the mean intra-cluster distance to all the points in its own cluster.

Detecting Patterns with Unsupervised Learning

[108]

The value of the silhouette score range lies between -1 to 1. A score closer to 1 indicates that
the data point is very similar to other data points in the cluster, whereas a score closer to -1
indicates that the data point is not similar to the data points in its cluster. One way to think
about it is if you get too many points with negative silhouette scores, then we may have too
few or too many clusters in our data. We need to run the clustering algorithm again to find
the optimal number of clusters.

Let's see how to estimate the clustering performance using silhouette scores. Create a new
Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.cluster import KMeans

We will be using the data in the data_quality.txt file provided to you. Each line
contains two comma-separated numbers:

Load data from input file
X = np.loadtxt('data_quality.txt', delimiter=',')

Initialize the variables. The values array will contain a list of values we want to iterate on
and find the optimal number of clusters:

Initialize variables
scores = []
values = np.arange(2, 10)

Iterate through all the values and build a K-Means model during each iteration:

Iterate through the defined range
for num_clusters in values:
 # Train the KMeans clustering model
 kmeans = KMeans(init='k-means++', n_clusters=num_clusters, n_init=10)
 kmeans.fit(X)

Detecting Patterns with Unsupervised Learning

[109]

Estimate the silhouette score for the current clustering model using Euclidean distance
metric:

 score = metrics.silhouette_score(X, kmeans.labels_,
 metric='euclidean', sample_size=len(X))

Print the silhouette score for the current value:

 print("\nNumber of clusters =", num_clusters)
 print("Silhouette score =", score)
 scores.append(score)

Visualize the silhouette scores for various values:

Plot silhouette scores
plt.figure()
plt.bar(values, scores, width=0.7, color='black', align='center')
plt.title('Silhouette score vs number of clusters')

Extract the best score and the corresponding value for the number of clusters:

Extract best score and optimal number of clusters
num_clusters = np.argmax(scores) + values[0]
print('\nOptimal number of clusters =', num_clusters)

Visualize input data:

Plot data
plt.figure()
plt.scatter(X[:,0], X[:,1], color='black', s=80, marker='o',
facecolors='none')
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
plt.title('Input data')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

plt.show()

Detecting Patterns with Unsupervised Learning

[110]

The full code is given in the file clustering_quality.py. If you run the code, you will
see two screenshot. The first screenshot is the input data:

Detecting Patterns with Unsupervised Learning

[111]

We can see that there are six clusters in our data. The second screenshot represents the
scores for various values of number of clusters:

Detecting Patterns with Unsupervised Learning

[112]

We can verify that the silhouette score is peaking at the value of 6, which is consistent with
our data. You will see the following on your Terminal:

What are Gaussian Mixture Models?
Before we discuss Gaussian Mixture Models (GMMs), let's understand what Mixture
Models are. A Mixture Model is a type of probability density model where we assume that
the data is governed by a number of component distributions. If these distributions are
Gaussian, then the model becomes a Gaussian Mixture Model. These component
distributions are combined in order to provide a multi-modal density function, which
becomes a mixture model.

Let's look at an example to understand how Mixture Models work. We want to model the
shopping habits of all the people in South America. One way to do it would be model the
whole continent and fit everything into a single model. But we know that people in
different countries shop differently. We need to understand how people in individual
countries shop and how they behave.

Detecting Patterns with Unsupervised Learning

[113]

If we want to get a good representative model, we need to account for all the variations
within the continent. In this case, we can use mixture models to model the shopping habits
of individual countries and then combine all of them into a Mixture Model. This way, we
are not missing the nuances of the underlying behavior of individual countries. By not
enforcing a single model on all the countries, we are able to extract a more accurate model.

An interesting thing to note is that mixture models are semi-parametric, which means that
they are partially dependent on a set of predefined functions. They are able to provide
greater precision and flexibility in modeling the underlying distributions of our data. They
can smooth the gaps that result from having sparse data.

If we define the function, then the mixture model goes from being semi-parametric to
parametric. Hence a GMM is a parametric model represented as a weighted summation of
component Gaussian functions. We assume that the data is being generated by a set of
Gaussian models that are combined in some way. GMMs are very powerful and are used
across many fields. The parameters of the GMM are estimated from training data using
algorithms like Expectation–Maximization (EM) or Maximum A-Posteriori (MAP)
estimation. Some of the popular applications of GMM include image database retrieval,
modeling stock market fluctuations, biometric verification, and so on.

Building a classifier based on Gaussian
Mixture Models
Let's build a classifier based on a Gaussian Mixture Model. Create a new Python file and
import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches

from sklearn import datasets
from sklearn.mixture import GMM
from sklearn.cross_validation import StratifiedKFold

Let's use the iris dataset available in scikit-learn for analysis:

Load the iris dataset
iris = datasets.load_iris()

Detecting Patterns with Unsupervised Learning

[114]

Split the dataset into training and testing using an 80/20 split. The n_folds parameter
specifies the number of subsets you'll obtain. We are using a value of 5, which means the
dataset will be split into five parts. We will use four parts for training and one part for
testing, which gives a split of 80/20:

Split dataset into training and testing (80/20 split)
indices = StratifiedKFold(iris.target, n_folds=5)

Extract the training data:

Take the first fold
train_index, test_index = next(iter(indices))

Extract training data and labels
X_train = iris.data[train_index]
y_train = iris.target[train_index]

Extract testing data and labels
X_test = iris.data[test_index]
y_test = iris.target[test_index]

Extract the number of classes in the training data:

Extract the number of classes
num_classes = len(np.unique(y_train))

Build a GMM-based classifier using the relevant parameters. The n_components parameter
specifies the number of components in the underlying distribution. In this case, it will be
the number of distinct classes in our data. We need to specify the type of covariance to use.
In this case, we will be using full covariance. The init_params parameter controls the
parameters that need to be updated during the training process. We have used wc, which
means weights and covariance parameters will be updated during training. The n_iter
parameter refers to the number of Expectation-Maximization iterations that will be
performed during training:

Build GMM
classifier = GMM(n_components=num_classes, covariance_type='full',
 init_params='wc', n_iter=20)

Detecting Patterns with Unsupervised Learning

[115]

Initialize the means of the classifier:

Initialize the GMM means
classifier.means_ = np.array([X_train[y_train == i].mean(axis=0)
 for i in range(num_classes)])

Train the Gaussian mixture model classifier using the training data:

Train the GMM classifier
classifier.fit(X_train)

Visualize the boundaries of the classifier. We will extract the eigenvalues and eigenvectors
to estimate how to draw the elliptical boundaries around the clusters. If you need a quick
refresher on eigenvalues and eigenvectors, please refer to:
https://www.math.hmc.edu/calculus/tutorials/eigenstuff. Let's go ahead and plot:

Draw boundaries
plt.figure()
colors = 'bgr'
for i, color in enumerate(colors):
 # Extract eigenvalues and eigenvectors
 eigenvalues, eigenvectors = np.linalg.eigh(
 classifier._get_covars()[i][:2, :2])

Normalize the first eigenvector:

 # Normalize the first eigenvector
 norm_vec = eigenvectors[0] / np.linalg.norm(eigenvectors[0])

The ellipses need to be rotated to accurately show the distribution. Estimate the angle:

 # Extract the angle of tilt
 angle = np.arctan2(norm_vec[1], norm_vec[0])
 angle = 180 * angle / np.pi

Magnify the ellipses for visualization. The eigenvalues control the size of the ellipses:

 # Scaling factor to magnify the ellipses
 # (random value chosen to suit our needs)
 scaling_factor = 8
 eigenvalues *= scaling_factor

https://www.math.hmc.edu/calculus/tutorials/eigenstuff

Detecting Patterns with Unsupervised Learning

[116]

Draw the ellipses:

 # Draw the ellipse
 ellipse = patches.Ellipse(classifier.means_[i, :2],
 eigenvalues[0], eigenvalues[1], 180 + angle,
 color=color)
 axis_handle = plt.subplot(1, 1, 1)
 ellipse.set_clip_box(axis_handle.bbox)
 ellipse.set_alpha(0.6)
 axis_handle.add_artist(ellipse)

Overlay input data on the figure:

Plot the data
colors = 'bgr'
for i, color in enumerate(colors):
 cur_data = iris.data[iris.target == i]
 plt.scatter(cur_data[:,0], cur_data[:,1], marker='o',
 facecolors='none', edgecolors='black', s=40,
 label=iris.target_names[i])

Overlay test data on this figure:

 test_data = X_test[y_test == i]
 plt.scatter(test_data[:,0], test_data[:,1], marker='s',
 facecolors='black', edgecolors='black', s=40,
 label=iris.target_names[i])

Compute the predicted output for training and testing data:

Compute predictions for training and testing data
y_train_pred = classifier.predict(X_train)
accuracy_training = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
print('Accuracy on training data =', accuracy_training)

y_test_pred = classifier.predict(X_test)
accuracy_testing = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
print('Accuracy on testing data =', accuracy_testing)

plt.title('GMM classifier')
plt.xticks(())
plt.yticks(())

plt.show()

Detecting Patterns with Unsupervised Learning

[117]

The full code is given in the file gmm_classifier.py. If you run the code, you will see the
following output:

The input data consists of three distributions. The three ellipses of various sizes and angles
represent the underlying distributions in the input data. You will see the following printed
on your Terminal:

 Accuracy on training data = 87.5
 Accuracy on testing data = 86.6666666667

Detecting Patterns with Unsupervised Learning

[118]

Finding subgroups in stock market using
Affinity Propagation model
Affinity Propagation is a clustering algorithm that doesn't require us to specify the number
of clusters beforehand. Because of its generic nature and simplicity of implementation, it
has found a lot of applications across many fields. It finds out representatives of clusters,
called exemplars, using a technique called message passing. We start by specifying the
measures of similarity that we want it to consider. It simultaneously considers all training
data points as potential exemplars. It then passes messages between the data points until it
finds a set of exemplars.

The message passing happens in two alternate steps, called responsibility and availability.
Responsibility refers to the message sent from members of the cluster to candidate
exemplars, indicating how well suited the data point would be as a member of this
exemplar's cluster. Availability refers to the message sent from candidate exemplars to
potential members of the cluster, indicating how well suited it would be as an exemplar. It
keeps doing this until the algorithm converges on an optimal set of exemplars.

There is also a parameter called preference that controls the number of exemplars that will
be found. If you choose a high value, then it will cause the algorithm to find too many
clusters. If you choose a low value, then it will lead to a small number of clusters. A good
value to choose would be the median similarity between the points.

Let's use Affinity Propagation model to find subgroups in the stock market. We will be
using the stock quote variation between opening and closing as the governing feature.
Create a new Python file and import the following packages:

import datetime
import json

import numpy as np
import matplotlib.pyplot as plt
from sklearn import covariance, cluster
from matplotlib.finance import quotes_historical_yahoo_ochl as quotes_yahoo

We will be using the stock market data available in matplotlib. The company symbols are
mapped to their full names in the file company_symbol_mapping.json:

Input file containing company symbols
input_file = 'company_symbol_mapping.json'

Detecting Patterns with Unsupervised Learning

[119]

Load the company symbol map from the file:

Load the company symbol map
with open(input_file, 'r') as f:
 company_symbols_map = json.loads(f.read())

symbols, names = np.array(list(company_symbols_map.items())).T

Load the stock quotes from matplotlib:

Load the historical stock quotes
start_date = datetime.datetime(2003, 7, 3)
end_date = datetime.datetime(2007, 5, 4)
quotes = [quotes_yahoo(symbol, start_date, end_date, asobject=True)
 for symbol in symbols]

Compute the difference between opening and closing quotes:

Extract opening and closing quotes
opening_quotes = np.array([quote.open for quote in
quotes]).astype(np.float)
closing_quotes = np.array([quote.close for quote in
quotes]).astype(np.float)

Compute differences between opening and closing quotes
quotes_diff = closing_quotes - opening_quotes

Normalize the data:

Normalize the data
X = quotes_diff.copy().T
X /= X.std(axis=0)

Create a graph model:

Create a graph model
edge_model = covariance.GraphLassoCV()

Train the model:

Train the model
with np.errstate(invalid='ignore'):
 edge_model.fit(X)

Detecting Patterns with Unsupervised Learning

[120]

Build the affinity propagation clustering model using the edge model we just trained:

Build clustering model using Affinity Propagation model
_, labels = cluster.affinity_propagation(edge_model.covariance_)
num_labels = labels.max()

Print the output:

Print the results of clustering
for i in range(num_labels + 1):
 print("Cluster", i+1, "==>", ', '.join(names[labels == i]))

The full code is given in the file stocks.py. If you run the code, you will see the following
output on your Terminal:

This output represents the various subgroups in the stock market during that time period.
Please note that the clusters might appear in a different order when you run the code.

Segmenting the market based on shopping
patterns
Let's see how to apply unsupervised learning techniques to segment the market based on
customer shopping habits. You have been provided with a file named sales.csv. This file
contains the sales details of a variety of tops from a number of retail clothing stores. Our
goal is to identify the patterns and segment the market based on the number of units sold in
these stores.

Detecting Patterns with Unsupervised Learning

[121]

Create a new Python file and import the following packages:

import csv

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth

Load the data from the input file. Since it's a csv file, we can use the csv reader in python to
read the data from this file and convert it into a NumPy array:

Load data from input file
input_file = 'sales.csv'
file_reader = csv.reader(open(input_file, 'r'), delimiter=',')

X = []
for count, row in enumerate(file_reader):
 if not count:
 names = row[1:]
 continue

 X.append([float(x) for x in row[1:]])

Convert to numpy array
X = np.array(X)

Let's estimate the bandwidth of the input data:

Estimating the bandwidth of input data
bandwidth = estimate_bandwidth(X, quantile=0.8, n_samples=len(X))

Train a mean shift model based on the estimated bandwidth:

Compute clustering with MeanShift
meanshift_model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
meanshift_model.fit(X)

Extract the labels and the centers of each cluster:

labels = meanshift_model.labels_
cluster_centers = meanshift_model.cluster_centers_
num_clusters = len(np.unique(labels))

Detecting Patterns with Unsupervised Learning

[122]

Print the number of clusters and the cluster centers:

print("\nNumber of clusters in input data =", num_clusters)

print("\nCenters of clusters:")
print('\t'.join([name[:3] for name in names]))
for cluster_center in cluster_centers:
 print('\t'.join([str(int(x)) for x in cluster_center]))

We are dealing with six-dimensional data. In order to visualize the data, let's take two-
dimensional data formed using second and third dimensions:

Extract two features for visualization
cluster_centers_2d = cluster_centers[:, 1:3]

Plot the centers of clusters:

Plot the cluster centers
plt.figure()
plt.scatter(cluster_centers_2d[:,0], cluster_centers_2d[:,1],
 s=120, edgecolors='black', facecolors='none')

offset = 0.25
plt.xlim(cluster_centers_2d[:,0].min() - offset *
cluster_centers_2d[:,0].ptp(),
 cluster_centers_2d[:,0].max() + offset *
cluster_centers_2d[:,0].ptp(),)
plt.ylim(cluster_centers_2d[:,1].min() - offset *
cluster_centers_2d[:,1].ptp(),
 cluster_centers_2d[:,1].max() + offset *
cluster_centers_2d[:,1].ptp())

plt.title('Centers of 2D clusters')
plt.show()

Detecting Patterns with Unsupervised Learning

[123]

The full code is given in the file market_segmentation.py. If you run the code, you will
see the following output:

Detecting Patterns with Unsupervised Learning

[124]

You will see the following on your Terminal:

Summary
In this chapter, we started by discussing unsupervised learning and its applications. We
then learned about clustering and how to cluster data using the K-Means algorithm. We
discussed how to estimate the number of clusters with Mean Shift algorithm. We talked
about silhouette scores and how to estimate the quality of clustering. We learned about
Gaussian Mixture Models and how to build a classifier based on that. We also discussed
Affinity Propagation model and used it to find subgroups within the stock market. We then
applied the Mean Shift algorithm to segment the market based on shopping patterns. In the
next chapter, we will learn how to build a recommendation engine.

5
Building Recommender

Systems
In this chapter, we are going to learn how to build a movie recommendation system. We
will discuss how to create a training pipeline that can be trained with custom parameters.
We will then learn about the Nearest Neighbors classifier and see how to implement it. We
use these concepts to discuss collaborative filtering and then use it to build a recommender
system.

By the end of this chapter, you will learn about the following:

Creating a training pipeline
Extracting the nearest neighbors
Building a K Nearest Neighbors classifier
Computing similarity scores
Finding similar users using collaborative filtering
Building a movie recommendation system

Creating a training pipeline
Machine-learning systems are usually built using different modules. These modules are
combined in a particular way to achieve an end goal. The scikit-learn library has
functions that enable us to build these pipelines by concatenating various modules together.
We just need to specify the modules along with the corresponding parameters. It will then
build a pipeline using these modules that processes the data and trains the system.

Building Recommender Systems

[126]

The pipeline can include modules that perform various functions like feature selection,
preprocessing, random forests, clustering, and so on. In this section, we will see how to
build a pipeline to select the top K features from an input data point and then classify them
using an Extremely Random Forest classifier.

Create a new Python file and import the following packages:

from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import Pipeline
from sklearn.ensemble import ExtraTreesClassifier

Let's generate some labeled sample data for training and testing. The scikit-learn
package has a built-in function that handles it. In the line to follow, we create 150 data
points, where each data point is a 25-dimensional feature vector. The numbers in each
feature vector will be generated using a random sample generator. Each data point has six
informative features and no redundant features. Use the following code:

Generate data
X, y = samples_generator.make_classification(n_samples=150,
 n_features=25, n_classes=3, n_informative=6,
 n_redundant=0, random_state=7)

The first block in the pipeline is the feature selector. This block selects the K best features.
Let's set the value of K to 9, as follows:

Select top K features
k_best_selector = SelectKBest(f_regression, k=9)

The next block in the pipeline is an Extremely Random Forests classifier with 60 estimators
and a maximum depth of four. Use the following code:

Initialize Extremely Random Forests classifier
classifier = ExtraTreesClassifier(n_estimators=60, max_depth=4)

Let's construct the pipeline by joining the individual blocks that we've constructed. We can
name each block so that it's easier to track:

Construct the pipeline
processor_pipeline = Pipeline([('selector', k_best_selector), ('erf',
classifier)])

Building Recommender Systems

[127]

We can change the parameters of the individual blocks. Let's change the value of K in the
first block to 7 and the number of estimators in the second block to 30. We will use the
names we assigned in the previous line to define the scope:

Set the parameters
processor_pipeline.set_params(selector__k=7, erf__n_estimators=30)

Train the pipeline using the sample data that we generated earlier:

Training the pipeline
processor_pipeline.fit(X, y)

Predict the output for all the input values and print it:

Predict outputs for the input data
output = processor_pipeline.predict(X)
print("\nPredicted output:\n", output)

Compute the score using the labeled training data:

Print scores
print("\nScore:", processor_pipeline.score(X, y))

Extract the features chosen by the selector block. We specified that we wanted to choose 7
features out of 25. Use the following code:

Print the features chosen by the pipeline selector
status = processor_pipeline.named_steps['selector'].get_support()

Extract and print indices of selected features
selected = [i for i, x in enumerate(status) if x]
print("\nIndices of selected features:", ', '.join([str(x) for x in
selected]))

Building Recommender Systems

[128]

The full code is given in the file pipeline_trainer.py. If you run the code, you will see
the following output on your Terminal:

The predicted output list in the preceding screenshot shows the output labels predicted
using the processor. The score represents the effectiveness of the processor. The last line
indicates the indices of the chosen features.

Extracting the nearest neighbors
Recommender systems employ the concept of nearest neighbors to find good
recommendations. Nearest neighbors refers to the process of finding the closest points to
the input point from the given dataset. This is frequently used to build classification
systems that classify a datapoint based on the proximity of the input data point to various
classes. Let's see how to find the nearest neighbors of a given data point.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors

Define sample 2D datapoints:

Input data
X = np.array([[2.1, 1.3], [1.3, 3.2], [2.9, 2.5], [2.7, 5.4], [3.8, 0.9],
 [7.3, 2.1], [4.2, 6.5], [3.8, 3.7], [2.5, 4.1], [3.4, 1.9],
 [5.7, 3.5], [6.1, 4.3], [5.1, 2.2], [6.2, 1.1]])

Building Recommender Systems

[129]

Define the number of nearest neighbors you want to extract:

Number of nearest neighbors
k = 5

Define a test datapoint that will be used to extract the K nearest neighbors:

Test datapoint
test_datapoint = [4.3, 2.7]

Plot the input data using circular shaped black markers:

Plot input data
plt.figure()
plt.title('Input data')
plt.scatter(X[:,0], X[:,1], marker='o', s=75, color='black')

Create and train a K Nearest Neighbors model using the input data. Use this model to
extract the nearest neighbors to our test data point:

Build K Nearest Neighbors model
knn_model = NearestNeighbors(n_neighbors=k, algorithm='ball_tree').fit(X)
distances, indices = knn_model.kneighbors(test_datapoint)

Print the nearest neighbors extracted from the model:

Print the 'k' nearest neighbors
print("\nK Nearest Neighbors:")
for rank, index in enumerate(indices[0][:k], start=1):
 print(str(rank) + " ==>", X[index])

Visualize the nearest neighbors:

Visualize the nearest neighbors along with the test datapoint
plt.figure()
plt.title('Nearest neighbors')
plt.scatter(X[:, 0], X[:, 1], marker='o', s=75, color='k')
plt.scatter(X[indices][0][:][:, 0], X[indices][0][:][:, 1],
 marker='o', s=250, color='k', facecolors='none')
plt.scatter(test_datapoint[0], test_datapoint[1],
 marker='x', s=75, color='k')

plt.show()

Building Recommender Systems

[130]

The full code is given in the file k_nearest_neighbors.py. If you run the code, you will
see two screenshot. The first screenshot represents the input data:

Building Recommender Systems

[131]

The second screenshot represents the five nearest neighbors. The test data point is shown
using a cross and the nearest neighbor points have been circled:

Building Recommender Systems

[132]

You will see the following output on your Terminal:

The preceding figure shows the five points that are closest to the test data point.

Building a K-Nearest Neighbors classifier
A K-Nearest Neighbors classifier is a classification model that uses the nearest neighbors
algorithm to classify a given data point. The algorithm finds the K closest data points in the
training dataset to identify the category of the input data point. It will then assign a class to
this data point based on a majority vote. From the list of those K data points, we look at the
corresponding classes and pick the one with the highest number of votes. Let's see how to
build a classifier using this model. The value of K depends on the problem at hand.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import neighbors, datasets

Load the input data from data.txt. Each line contains comma-separated values and the
data contains four classes:

Load input data
input_file = 'data.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1].astype(np.int)

Visualize the input data using four different marker shapes. We need to map the labels to
corresponding markers, which is where the mapper variable comes into the picture:

Plot input data
plt.figure()
plt.title('Input data')

Building Recommender Systems

[133]

marker_shapes = 'v^os'
mapper = [marker_shapes[i] for i in y]
for i in range(X.shape[0]):
 plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
 s=75, edgecolors='black', facecolors='none')

Define the number of nearest neighbors we want to use:

Number of nearest neighbors
num_neighbors = 12

Define the step size of the grid that will be used to visualize the boundaries of the classifier
model:

Step size of the visualization grid
step_size = 0.01

Create the K Nearest Neighbors classifier model:

Create a K Nearest Neighbors classifier model
classifier = neighbors.KNeighborsClassifier(num_neighbors,
weights='distance')

Train the model using training data:

Train the K Nearest Neighbours model
classifier.fit(X, y)

Create the mesh grid of values that will be used to visualize the grid:

Create the mesh to plot the boundaries
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
x_values, y_values = np.meshgrid(np.arange(x_min, x_max, step_size),
 np.arange(y_min, y_max, step_size))

Evaluate the classifier on all the points on the grid to create a visualization of the
boundaries:

Evaluate the classifier on all the points on the grid
output = classifier.predict(np.c_[x_values.ravel(), y_values.ravel()])

Create a color mesh to visualize the output:

Visualize the predicted output
output = output.reshape(x_values.shape)
plt.figure()
plt.pcolormesh(x_values, y_values, output, cmap=cm.Paired)

Building Recommender Systems

[134]

Overlay training data on top of this color mesh to visualize the data relative to the
boundaries:

Overlay the training points on the map
for i in range(X.shape[0]):
 plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
 s=50, edgecolors='black', facecolors='none')

Set the X and Y limits along with the title:

plt.xlim(x_values.min(), x_values.max())
plt.ylim(y_values.min(), y_values.max())
plt.title('K Nearest Neighbors classifier model boundaries')

Define a test datapoint to see how the classifier performs. Create a figure with training data
points and a test data point to see where it lies:

Test input datapoint
test_datapoint = [5.1, 3.6]
plt.figure()
plt.title('Test datapoint')
for i in range(X.shape[0]):
 plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
 s=75, edgecolors='black', facecolors='none')

plt.scatter(test_datapoint[0], test_datapoint[1], marker='x',
 linewidth=6, s=200, facecolors='black')

Extract the K Nearest Neighbors to the test data point, based on the classifier model:

Extract the K nearest neighbors
_, indices = classifier.kneighbors([test_datapoint])
indices = indices.astype(np.int)[0]

Plot the K nearest neighbors obtained in the previous step:

Plot k nearest neighbors
plt.figure()
plt.title('K Nearest Neighbors')

for i in indices:
 plt.scatter(X[i, 0], X[i, 1], marker=mapper[y[i]],
 linewidth=3, s=100, facecolors='black')

Building Recommender Systems

[135]

Overlay the test data point:

plt.scatter(test_datapoint[0], test_datapoint[1], marker='x',
 linewidth=6, s=200, facecolors='black')

Overlay the input data:

for i in range(X.shape[0]):
 plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
 s=75, edgecolors='black', facecolors='none')

Print the predicted output:

print("Predicted output:", classifier.predict([test_datapoint])[0])

plt.show()

The full code is given in the file nearest_neighbors_classifier.py. If you run the
code, you will see four screenshot. The first screenshot represents the input data:

Building Recommender Systems

[136]

The second screenshot represents the classifier boundaries:

Building Recommender Systems

[137]

The third screenshot shows the test data point relative to the input dataset. The test data
point is shown using a cross:

Building Recommender Systems

[138]

The fourth screenshot shows the 12 nearest neighbors to the test data point:

You will see the following output on the Terminal, indicating that the test data point
belongs to class 1:

 Predicted output: 1

Building Recommender Systems

[139]

Computing similarity scores
In order to build a recommendation system, it is important to understand how to compare
various objects in our dataset. Let's say our dataset consists of people and their various
movie preferences. In order to recommend something, we need to understand how to
compare any two people with each other. This is where the similarity score becomes very
important. The similarity score gives us an idea of how similar two objects are.

There are two scores that are used frequently in this domain — Euclidean score and Pearson
score. Euclidean score uses the Euclidean distance between two data points to compute the
score. If you need a quick refresher on how Euclidean distance is computed, you can go
to https://en.wikipedia.org/wiki/Euclidean_distance. The value of the Euclidean
distance can be unbounded. Hence we take this value and convert it in a way that the
Euclidean score ranges from 0 to 1. If the Euclidean distance between two objects is large,
then the Euclidean score should be low because a low score indicates that the objects are not
similar. Hence Euclidean distance is inversely proportional to Euclidean score.

Pearson score is a measure of correlation between two objects. It uses the covariance
between the two objects along with their individual standard deviations to compute the
score. The score can range from -1 to +1. A score of +1 indicates that the objects are very
similar where a score of -1 would indicate that the objects are very dissimilar. A score of 0
would indicate that there is no correlation between the two objects. Let's see how to
compute these scores.

Create a new Python file and import the following packages:

import argparse
import json
import numpy as np

Build an argument parser to process the input arguments. It will accept two users and the
type of score that it needs to use to compute the similarity score:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Compute similarity
score')
 parser.add_argument('--user1', dest='user1', required=True,
 help='First user')
 parser.add_argument('--user2', dest='user2', required=True,
 help='Second user')
 parser.add_argument("--score-type", dest="score_type", required=True,
 choices=['Euclidean', 'Pearson'], help='Similarity metric to be
used')
 return parser

https://en.wikipedia.org/wiki/Euclidean_distance

Building Recommender Systems

[140]

Define a function to compute the Euclidean score between the input users. If the users are
not in the dataset, raise an error:

Compute the Euclidean distance score between user1 and user2
def euclidean_score(dataset, user1, user2):
 if user1 not in dataset:
 raise TypeError('Cannot find ' + user1 + ' in the dataset')

 if user2 not in dataset:
 raise TypeError('Cannot find ' + user2 + ' in the dataset')

Define a variable to track the movies that have been rated by both the users:

 # Movies rated by both user1 and user2
 common_movies = {}

Extract the movies rated by both users:

 for item in dataset[user1]:
 if item in dataset[user2]:
 common_movies[item] = 1

If there are no common movies, then we cannot compute the similarity score:

 # If there are no common movies between the users,
 # then the score is 0
 if len(common_movies) == 0:
 return 0

Compute the squared differences between the ratings and use it to compute the Euclidean
score:

 squared_diff = []

 for item in dataset[user1]:
 if item in dataset[user2]:
 squared_diff.append(np.square(dataset[user1][item] -
dataset[user2][item]))
 return 1 / (1 + np.sqrt(np.sum(squared_diff)))

Define a function to compute the Pearson score between the input users in the given
dataset. If the users are not found in the dataset, raise an error:

Compute the Pearson correlation score between user1 and user2
def pearson_score(dataset, user1, user2):
 if user1 not in dataset:
 raise TypeError('Cannot find ' + user1 + ' in the dataset')

Building Recommender Systems

[141]

 if user2 not in dataset:
 raise TypeError('Cannot find ' + user2 + ' in the dataset')

Define a variable to track the movies that have been rated by both the users:

 # Movies rated by both user1 and user2
 common_movies = {}

Extract the movies rated by both users:

 for item in dataset[user1]:
 if item in dataset[user2]:
 common_movies[item] = 1

If there are no common movies, then we cannot compute the similarity score:

 num_ratings = len(common_movies)

 # If there are no common movies between user1 and user2, then the score
is 0
 if num_ratings == 0:
 return 0

Calculate the sum of ratings of all the movies that have been rated by both the users:

 # Calculate the sum of ratings of all the common movies
 user1_sum = np.sum([dataset[user1][item] for item in common_movies])
 user2_sum = np.sum([dataset[user2][item] for item in common_movies])

Calculate the sum of squares of the ratings all the movies that have been rated by both the
users:

 # Calculate the sum of squares of ratings of all the common movies
 user1_squared_sum = np.sum([np.square(dataset[user1][item]) for item in
common_movies])
 user2_squared_sum = np.sum([np.square(dataset[user2][item]) for item in
common_movies])

Calculate the sum of products of the ratings of all the movies rated by both the input users:

 # Calculate the sum of products of the ratings of the common movies
 sum_of_products = np.sum([dataset[user1][item] * dataset[user2][item]
for item in common_movies])

Building Recommender Systems

[142]

Calculate the various parameters required to compute the Pearson score using the
preceding computations:

 # Calculate the Pearson correlation score
 Sxy = sum_of_products - (user1_sum * user2_sum / num_ratings)
 Sxx = user1_squared_sum - np.square(user1_sum) / num_ratings
 Syy = user2_squared_sum - np.square(user2_sum) / num_ratings

If there is no deviation, then the score is 0:

 if Sxx * Syy == 0:
 return 0

Return the Pearson score:

 return Sxy / np.sqrt(Sxx * Syy)

Define the main function and parse the input arguments:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 user1 = args.user1
 user2 = args.user2
 score_type = args.score_type

Load the ratings from the file ratings.json into a dictionary:

 ratings_file = 'ratings.json'

 with open(ratings_file, 'r') as f:
 data = json.loads(f.read())

Compute the similarity score based on the input arguments:

 if score_type == 'Euclidean':
 print("\nEuclidean score:")
 print(euclidean_score(data, user1, user2))
 else:
 print("\nPearson score:")
 print(pearson_score(data, user1, user2))

The full code is given in the file compute_scores.py. Let's run the code with a few
combinations. Let's say we want to compute the Euclidean score between David Smith
and Bill Duffy:

 $ python3 compute_scores.py --user1 "David Smith" --user2 "Bill Duffy"
--score-type Euclidean

Building Recommender Systems

[143]

If you run the above command, you will get the following output on your Terminal:

 Euclidean score:
 0.585786437627

If you want to compute the Pearson score between the same pair, run the following
command on your Terminal:

 $ python3 compute_scores.py --user1 "David Smith" --user2 "Bill Duffy"
--score-type Pearson

You will see the following on your Terminal:

 Pearson score:
 0.99099243041

You can run it using other combinations of parameters as well.

Finding similar users using collaborative
filtering
Collaborative filtering refers to the process of identifying patterns among the objects in a
dataset in order to make a decision about a new object. In the context of recommendation
engines, we use collaborative filtering to provide recommendations by looking at similar
users in the dataset.

By collecting the preferences of different users in the dataset, we
collaborate that information to filter the users. Hence the name
collaborative filtering.

The assumption here is that if two people have similar ratings for a particular set of movies,
then their choices in a set of new unknown movies would be similar too. By identifying
patterns in those common movies, we make predictions about new movies. In the previous
section, we learned how to compare different users in the dataset. We will use these scoring
techniques to find similar users in our dataset. Collaborative filtering is typically used when
we have huge datasets. These methods can be used for various verticals like finance, online
shopping, marketing, customer studies, and so on.

Building Recommender Systems

[144]

Create a new Python file and import the following packages:

import argparse
import json
import numpy as np

from compute_scores import pearson_score

Define a function to parse the input arguments. The only input argument would be the
name of the user:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Find users who are
similar to the input user ')
 parser.add_argument('--user', dest='user', required=True,
 help='Input user')
 return parser

Define a function to find the users in the dataset that are similar to the given user. If the user
is not in the dataset, raise an error:

Finds users in the dataset that are similar to the input user
def find_similar_users(dataset, user, num_users):
 if user not in dataset:
 raise TypeError('Cannot find ' + user + ' in the dataset')

We have already imported the function to compute the Pearson score. Let's use that
function to compute the Pearson score between the input user and all the other users in the
dataset:

 # Compute Pearson score between input user
 # and all the users in the dataset
 scores = np.array([[x, pearson_score(dataset, user,
 x)] for x in dataset if x != user])

Sort the scores in descending order:

 # Sort the scores in decreasing order
 scores_sorted = np.argsort(scores[:, 1])[::-1]

Extract the top num_users number of users as specified by the input argument and return
the array:

 # Extract the top 'num_users' scores
 top_users = scores_sorted[:num_users]
 return scores[top_users]

Building Recommender Systems

[145]

Define the main function and parse the input arguments to extract the name of the user:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 user = args.user

Load the data from the movie ratings file ratings.json. This file contains the names of
people and their ratings for various movies:

 ratings_file = 'ratings.json'

 with open(ratings_file, 'r') as f:
 data = json.loads(f.read())

Find the top three users who are similar to the user specified by the input argument. You
can change it to any number of users depending on your choice. Print the output along with
the scores:

 print('\nUsers similar to ' + user + ':\n')
 similar_users = find_similar_users(data, user, 3)
 print('User\t\t\tSimilarity score')
 print('-'*41)
 for item in similar_users:
 print(item[0], '\t\t', round(float(item[1]), 2))

The full code is given in the file collaborative_filtering.py. Let's run the code and
find out the users who are similar to Bill Duffy:

 $ python3 collaborative_filtering.py --user "Bill Duffy"

You will get the following output on your Terminal:

Let's run the code and find out the users who are similar to Clarissa Jackson:

 $ python3 collaborative_filtering.py --user "Clarissa Jackson"

Building Recommender Systems

[146]

You will get the following output on your Terminal:

Building a movie recommendation system
Now that we have all the building blocks in place, it's time to build a movie
recommendation system. We learned all the underlying concepts that are needed to build a
recommendation system. In this section, we will build a movie recommendation system
based on the data provided in the file ratings.json. This file contains a set of people and
their ratings for various movies. When we want to find movie recommendations for a given
user, we will need to find similar users in the dataset and then come up with
recommendations for this person.

Create a new Python file and import the following packages:

import argparse
import json
import numpy as np

from compute_scores import pearson_score
from collaborative_filtering import find_similar_users

Define a function to parse the input arguments. The only input argument would be the
name of the user:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Find the movie
recommendations for the given user')
 parser.add_argument('--user', dest='user', required=True,
 help='Input user')
 return parser

Building Recommender Systems

[147]

Define a function to get the movie recommendations for a given user. If the user doesn't
exist in the dataset, raise an error:

Get movie recommendations for the input user
def get_recommendations(dataset, input_user):
 if input_user not in dataset:
 raise TypeError('Cannot find ' + input_user + ' in the dataset')

Define the variables to track the scores:

 overall_scores = {}
 similarity_scores = {}

Compute a similarity score between the input user and all the other users in the dataset:

 for user in [x for x in dataset if x != input_user]:
 similarity_score = pearson_score(dataset, input_user, user)

If the similarity score is less than 0, you can continue with the next user in the dataset:

 if similarity_score <= 0:
 continue

Extract a list of movies that have been rated by the current user but haven't been rated by
the input user:

 filtered_list = [x for x in dataset[user] if x not in \
 dataset[input_user] or dataset[input_user][x] == 0]

For each item in the filtered list, keep a track of the weighted rating based on the similarity
score. Also keep a track of the similarity scores:

 for item in filtered_list:
 overall_scores.update({item: dataset[user][item] *
similarity_score})
 similarity_scores.update({item: similarity_score})

If there are no such movies, then we cannot recommend anything:

 if len(overall_scores) == 0:
 return ['No recommendations possible']

Normalize the scores based on the weighted scores:

 # Generate movie ranks by normalization
 movie_scores = np.array([[score/similarity_scores[item], item]
 for item, score in overall_scores.items()])

Building Recommender Systems

[148]

Sort the scores and extract the movie recommendations:

 # Sort in decreasing order
 movie_scores = movie_scores[np.argsort(movie_scores[:, 0])[::-1]]

 # Extract the movie recommendations
 movie_recommendations = [movie for _, movie in movie_scores]

 return movie_recommendations

Define the main function and parse the input arguments to extract the name of the input
user:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 user = args.user

Load the movie ratings data from the file ratings.json:

 ratings_file = 'ratings.json'

 with open(ratings_file, 'r') as f:
 data = json.loads(f.read())

Extract the movie recommendations and print the output:

 print("\nMovie recommendations for " + user + ":")
 movies = get_recommendations(data, user)
 for i, movie in enumerate(movies):
 print(str(i+1) + '. ' + movie)

The full code is given in the file movie_recommender.py. Let's find out the movie
recommendations for Chris Duncan:

 $ python3 movie_recommender.py --user "Chris Duncan"

You will see the following output on your Terminal:

Building Recommender Systems

[149]

Let's find out the movie recommendations for Julie Hammel:

 $ python3 movie_recommender.py --user "Julie Hammel"

You will see the following output on your Terminal:

Summary
In this chapter, we learned how to create a data processor pipeline that can be used to train
a machine-learning system. We learned how to extract K nearest neighbors to any given
data point from a given dataset. We then used this concept to build the K Nearest
Neighbors classifier. We discussed how to compute similarity scores such as the Euclidean
and Pearson scores. We learned how to use collaborative filtering to find similar users from
a given dataset and used it to build a movie recommendation system.

In the next chapter, we will learn about logic programming and see how to build an
inference engine that can solve a real world problem.

6
Logic Programming

In this chapter, we are going to learn how to write programs using logic programming. We
will discuss various programming paradigms and see how programs are constructed with
logic programming. We will learn about the building blocks of logic programming and see
how to solve problems in this domain. We will implement Python programs to build
various solvers that solve a variety of problems.

By the end of this chapter, you will know about the following:

What is logic programming?
Understanding the building blocks of logic programming
Solving problems using logic programming
Installing Python packages
Matching mathematical expressions
Validating primes
Parsing a family tree
Analyzing geography
Building a puzzle solver

What is logic programming?
Logic programming is a programming paradigm, which basically means it is a particular
way to approach programming. Before we talk about what it constitutes and how it is
relevant in Artificial Intelligence, let's talk a bit about programming paradigms.

Logic Programming

[151]

The concept of programming paradigms arises owing to the need to classify programming
languages. It refers to the way computer programs solve problems through code. Some
programming paradigms are primarily concerned with implications or the sequence of
operations used to achieve the result. Other programming paradigms are concerned about
how we organize the code.

Here are some of the more popular programming paradigms:

Imperative: This uses statements to change a program's state, thus allowing for
side effects.
Functional: This treats computation as an evaluation of mathematical functions
and does not allow changing states or mutable data.
Declarative: This is a way of programming where you write your programs by
describing what you want to do and not how you want to do it. You express the
logic of the underlying computation without explicitly describing the control
flow.
Object Oriented: This groups the code within the program in such a way that
each object is responsible for itself. The objects contain data and methods that
specify how the changes happen.
Procedural: This groups the code into functions and each function is responsible
for a particular series of steps.
Symbolic: This uses a particular style of syntax and grammar through which the
program can modify its own components by treating them as plain data.
Logic: This views computation as automatic reasoning over a database of
knowledge consisting of facts and rules.

In order to understand logic programming, let's understand the concepts of computation
and deduction. To compute something, we start with an expression and a set of rules. This
set of rules is basically the program.

Logic Programming

[152]

We use these expressions and rules to generate the output. For example, let's say we want to
compute the sum of 23, 12, and 49:

The procedure would be as follows:

23 + 12 + 49 => (2 + 1 + 4 + 1)4 => 84

On the other hand, if we want to deduce something, we need to start from a conjecture. We
then need to construct a proof according to a set of rules. In essence, the process
computation is mechanical, whereas the process of deduction is more creative.

When we write a program in the logic programming paradigm, we specify a set of
statements based on facts and rules about the problem domain and the solver solves it using
this information.

Logic Programming

[153]

Understanding the building blocks of logic
programming
In programming object-oriented or imperative paradigms, we always have to specify how a
variable is defined. In logic programming, things work a bit differently. We can pass an
uninstantiated argument to a function and the interpreter will instantiate these variables for
us by looking at the facts defined by the user. This is a powerful way of approaching the
variable matching problem. The process of matching variables with different items is called
unification. This is one of the places logic programming really stands apart. We need to
specify something called relations in logic programming. These relations are defined by
means of clauses called facts and rules.

Facts are just statements that are truths about our program and the data that it's operating
on. The syntax is pretty straightforward. For example, Donald is Allan's son, can be a fact
whereas, Who is Allan's son? cannot be a fact. Every logic program needs facts to work
with, so that it can achieve the given goal based on them.

Rules are the things we have learned about how to express various facts and how to query
them. They are the constraints that we have to work with and they allow us to make
conclusions about the problem domain. For example, let's say you are working on building
a chess engine. You need to specify all the rules about how each piece can move on the
chessboard. In essence, the final conclusion is valid only if all the relations are true.

Solving problems using logic programming
Logic programming looks for solutions by using facts and rules. We need to specify a goal
for each program. In the case where a logic program and a goal don't contain any variables,
the solver comes up with a tree that constitutes the search space for solving the problem
and getting to the goal.

One of the most important things about logic programming is how we treat the rules. Rules
can be viewed as logical statements. Let's consider the following:

Kathy likes chocolate => Alexander loves Kathy

Logic Programming

[154]

This can be read as an implication that says, If Kathy likes chocolate, then Alexander loves Kathy.
It can also be construed as Kathy likes chocolate implies Alexander loves Kathy. Similarly, let's
consider the following rule:

Crime movies, English => Martin Scorsese

It can be read as the implication If you like crime movies in English, then you would like movies
made by Martin Scorsese.

This construction is used in various forms throughout logic programming to solve various
types of problems. Let's go ahead and see how to solve these problems in Python.

Installing Python packages
Before we start logic programming in Python, we need to install a couple of packages. The
package logpy is a Python package that enables logic programming in Python. We will also
be using SymPy for some of the problems. So let's go ahead and install logpy and sympy
using pip:

 $ pip3 install logpy
 $ pip3 install sympy

If you get an error during the installation process for logpy, you can install from source
at https://github.com/logpy/logpy. Once you have successfully installed these packages,
you can proceed to the next section.

Matching mathematical expressions
We encounter mathematical operations all the time. Logic programming is a very efficient
way of comparing expressions and finding out unknown values. Let's see how to do that.

Create a new Python file and import the following packages:

from logpy import run, var, fact
import logpy.assoccomm as la

Define a couple of mathematical operations:

Define mathematical operations
add = 'addition'
mul = 'multiplication'

https://github.com/logpy/logpy

Logic Programming

[155]

Both addition and multiplication are commutative operations. Let's specify that:

Declare that these operations are commutative
using the facts system
fact(la.commutative, mul)
fact(la.commutative, add)
fact(la.associative, mul)
fact(la.associative, add)

Let's define some variables:

Define some variables
a, b, c = var('a'), var('b'), var('c')

Consider the following expression:

expression_orig = 3 x (-2) + (1 + 2 x 3) x (-1)

Let's generate this expression with masked variables. The first expression would be:

expression1 = (1 + 2 x a) x b + 3 x c

The second expression would be:

expression2 = c x 3 + b x (2 x a + 1)

The third expression would be:

expression3 = (((2 x a) x b) + b) + 3 x c

If you observe carefully, all three expressions represent the same basic expression. Our goal
is to match these expressions with the original expression to extract the unknown values:

Generate expressions
expression_orig = (add, (mul, 3, -2), (mul, (add, 1, (mul, 2, 3)), -1))
expression1 = (add, (mul, (add, 1, (mul, 2, a)), b), (mul, 3, c))
expression2 = (add, (mul, c, 3), (mul, b, (add, (mul, 2, a), 1)))
expression3 = (add, (add, (mul, (mul, 2, a), b), b), (mul, 3, c))

Logic Programming

[156]

Compare the expressions with the original expression. The method run is commonly used
in logpy. This method takes the input arguments and runs the expression. The first
argument is the number of values, the second argument is a variable, and the third
argument is a function:

Compare expressions
print(run(0, (a, b, c), la.eq_assoccomm(expression1, expression_orig)))
print(run(0, (a, b, c), la.eq_assoccomm(expression2, expression_orig)))
print(run(0, (a, b, c), la.eq_assoccomm(expression3, expression_orig)))

The full code is given in expression_matcher.py. If you run the code, you will see the
following output on your Terminal:

 ((3, -1, -2),)
 ((3, -1, -2),)
 ()

The three values in the first two lines represent the values for a, b, and c. The first two
expressions matched with the original expression, whereas the third one returned nothing.
This is because even though the third expression is mathematically the same, it is
structurally different. Pattern comparison works by comparing the structure of the
expressions.

Validating primes
Let's see how to use logic programming to check for prime numbers. We will use the
constructs available in logpy to determine which numbers in the given list are prime, as
well as finding out if a given number is a prime or not.

Create a new Python file and import the following packages:

import itertools as it
import logpy.core as lc
from sympy.ntheory.generate import prime, isprime

Logic Programming

[157]

Next, define a function that checks if the given number is prime depending on the type of
data. If it's a number, then it's pretty straightforward. If it's a variable, then we have to run
the sequential operation. To give a bit of background, the method conde is a goal
constructor that provides logical AND and OR operations. The method condeseq is like
conde, but it supports generic iterator of goals:

Check if the elements of x are prime
def check_prime(x):
 if lc.isvar(x):
 return lc.condeseq([(lc.eq, x, p)] for p in map(prime,
it.count(1)))
 else:
 return lc.success if isprime(x) else lc.fail

Declare the variable x that will be used:

Declate the variable
x = lc.var()

Define a set of numbers and check which numbers are prime. The method membero checks
if a given number is a member of the list of numbers specified in the input argument:

Check if an element in the list is a prime number
list_nums = (23, 4, 27, 17, 13, 10, 21, 29, 3, 32, 11, 19)
print('\nList of primes in the list:')
print(set(lc.run(0, x, (lc.membero, x, list_nums), (check_prime, x))))

Let's use the function in a slightly different way now by printing the first 7 prime numbers:

Print first 7 prime numbers
print('\nList of first 7 prime numbers:')
print(lc.run(7, x, check_prime(x)))

The full code is given in prime.py. If you run the code, you will see the following output:

 List of primes in the list:
 {3, 11, 13, 17, 19, 23, 29}
 List of first 7 prime numbers:
 (2, 3, 5, 7, 11, 13, 17)

You can confirm that the output values are correct.

Logic Programming

[158]

Parsing a family tree
Now that we are more familiar with logic programming, let's use it to solve an interesting
problem. Consider the following family tree:

John and Megan have three sons – William, David, and Adam. The wives of William,
David, and Adam are Emma, Olivia, and Lily respectively. William and Emma have two
children – Chris and Stephanie. David and Olivia have five children – Wayne, Tiffany, Julie,
Neil, and Peter. Adam and Lily have one child – Sophia. Based on these facts, we can create
a program that can tell us the name of Wayne's grandfather or Sophia's uncles are. Even
though we have not explicitly specified anything about the grandparent or uncle
relationships, logic programming can infer them.

These relationships are specified in a file called relationships.json provided for you.
The file looks like the following:

{
 "father":
 [
 {"John": "William"},
 {"John": "David"},
 {"John": "Adam"},
 {"William": "Chris"},
 {"William": "Stephanie"},
 {"David": "Wayne"},
 {"David": "Tiffany"},
 {"David": "Julie"},
 {"David": "Neil"},
 {"David": "Peter"},
 {"Adam": "Sophia"}

Logic Programming

[159]

],
 "mother":
 [
 {"Megan": "William"},
 {"Megan": "David"},
 {"Megan": "Adam"},
 {"Emma": "Stephanie"},
 {"Emma": "Chris"},
 {"Olivia": "Tiffany"},
 {"Olivia": "Julie"},
 {"Olivia": "Neil"},
 {"Olivia": "Peter"},
 {"Lily": "Sophia"}
]
}

It is a simple json file that specifies only the father and mother relationships. Note that we
haven't specified anything about husband and wife, grandparents, or uncles.

Create a new Python file and import the following packages:

import json
from logpy import Relation, facts, run, conde, var, eq

Define a function to check if x is the parent of y. We will use the logic that if x is the parent
of y, then x is either the father or the mother. We have already defined “father” and
“mother” in our fact base:

Check if 'x' is the parent of 'y'
def parent(x, y):
 return conde([father(x, y)], [mother(x, y)])

Define a function to check if x is the grandparent of y. We will use the logic that if x is the
grandparent of y, then the offspring of x will be the parent of y:

Check if 'x' is the grandparent of 'y'
def grandparent(x, y):
 temp = var()
 return conde((parent(x, temp), parent(temp, y)))

Logic Programming

[160]

Define a function to check if x is the sibling of y. We will use the logic that if x is the sibling
of y, then x and y will have the same parents. Notice that there is a slight modification
needed here because when we list out all the siblings of x, x will be listed as well because x
satisfies these conditions. So when we print the output, we will have to remove x from the
list. We will discuss this in the main function:

Check for sibling relationship between 'a' and 'b'
def sibling(x, y):
 temp = var()
 return conde((parent(temp, x), parent(temp, y)))

Define a function to check if x is y's uncle. We will use the logic that if x is y's uncle, then x
grandparents will be the same as y's parents. Notice that there is a slight modification
needed here because when we list out all the uncles of x, x's father will be listed as well
because x's father satisfies these conditions. So when we print the output, we will have to
remove x's father from the list. We will discuss this in the main function:

Check if x is y's uncle
def uncle(x, y):
 temp = var()
 return conde((father(temp, x), grandparent(temp, y)))

Define the main function and initialize the relations father and mother:

if __name__=='__main__':
 father = Relation()
 mother = Relation()

Load the data from the relationships.json file:

 with open('relationships.json') as f:
 d = json.loads(f.read())

Read the data and add them to our fact base:

 for item in d['father']:
 facts(father, (list(item.keys())[0], list(item.values())[0]))

 for item in d['mother']:
 facts(mother, (list(item.keys())[0], list(item.values())[0]))

Logic Programming

[161]

Define the variable x:

 x = var()

We are now ready to ask some questions and see if our solver can come up with the right
answers. Let's ask who John's children are:

 # John's children
 name = 'John'
 output = run(0, x, father(name, x))
 print("\nList of " + name + "'s children:")
 for item in output:
 print(item)

Who is William's mother?

 # William's mother
 name = 'William'
 output = run(0, x, mother(x, name))[0]
 print("\n" + name + "'s mother:\n" + output)

Who are Adam's parents?

 # Adam's parents
 name = 'Adam'
 output = run(0, x, parent(x, name))
 print("\nList of " + name + "'s parents:")
 for item in output:
 print(item)

Who are Wayne's grandparents?

 # Wayne's grandparents
 name = 'Wayne'
 output = run(0, x, grandparent(x, name))
 print("\nList of " + name + "'s grandparents:")
 for item in output:
 print(item)

Logic Programming

[162]

Who are Megan's grandchildren?

 # Megan's grandchildren
 name = 'Megan'
 output = run(0, x, grandparent(name, x))
 print("\nList of " + name + "'s grandchildren:")
 for item in output:
 print(item)

Who are David's siblings?

 # David's siblings
 name = 'David'
 output = run(0, x, sibling(x, name))
 siblings = [x for x in output if x != name]
 print("\nList of " + name + "'s siblings:")
 for item in siblings:
 print(item)

Who are Tiffany's uncles?

 # Tiffany's uncles
 name = 'Tiffany'
 name_father = run(0, x, father(x, name))[0]
 output = run(0, x, uncle(x, name))
 output = [x for x in output if x != name_father]
 print("\nList of " + name + "'s uncles:")
 for item in output:
 print(item)

List out all the spouses in the family:

 # All spouses
 a, b, c = var(), var(), var()
 output = run(0, (a, b), (father, a, c), (mother, b, c))
 print("\nList of all spouses:")
 for item in output:
 print('Husband:', item[0], '<==> Wife:', item[1])

Logic Programming

[163]

The full code is given in family.py. If you run the code, you will see many things on your
Terminal. The first half looks like the following:

The second half looks like the following:

Logic Programming

[164]

You can compare the outputs with the family tree to ensure that the answers are indeed
correct.

Analyzing geography
Let's use logic programming to build a solver to analyze geography. In this problem, we
will specify information about the location of various states in the US and then query our
program to answer various questions based on those facts and rules. The following is a map
of the US:

You have been provided with two text files named adjacent_states.txt and
coastal_states.txt. These files contain the details about which states are adjacent to
each other and which states are coastal. Based on this, we can get interesting information
like What states are adjacent to both Oklahoma and Texas? or Which coastal state is
adjacent to both New Mexico and Louisiana?

Logic Programming

[165]

Create a new Python file and import the following:

from logpy import run, fact, eq, Relation, var

Initialize the relations:

adjacent = Relation()
coastal = Relation()

Define the input files to load the data from:

file_coastal = 'coastal_states.txt'
file_adjacent = 'adjacent_states.txt'

Load the data:

Read the file containing the coastal states
with open(file_coastal, 'r') as f:
 line = f.read()
 coastal_states = line.split(',')

Add the information to the fact base:

Add the info to the fact base
for state in coastal_states:
 fact(coastal, state)

Read the adjacency data:

Read the file containing the coastal states
with open(file_adjacent, 'r') as f:
 adjlist = [line.strip().split(',') for line in f if line and
line[0].isalpha()]

Add the adjacency information to the fact base:

Add the info to the fact base
for L in adjlist:
 head, tail = L[0], L[1:]
 for state in tail:
 fact(adjacent, head, state)

Initialize the variables x and y:

Initialize the variables
x = var()
y = var()

Logic Programming

[166]

We are now ready to ask some questions. Check if Nevada is adjacent to Louisiana:

Is Nevada adjacent to Louisiana?
output = run(0, x, adjacent('Nevada', 'Louisiana'))
print('\nIs Nevada adjacent to Louisiana?:')
print('Yes' if len(output) else 'No')

Print out all the states that are adjacent to Oregon:

States adjacent to Oregon
output = run(0, x, adjacent('Oregon', x))
print('\nList of states adjacent to Oregon:')
for item in output:
 print(item)

List all the coastal states that are adjacent to Mississippi:

States adjacent to Mississippi that are coastal
output = run(0, x, adjacent('Mississippi', x), coastal(x))
print('\nList of coastal states adjacent to Mississippi:')
for item in output:
 print(item)

List seven states that border a coastal state:

List of 'n' states that border a coastal state
n = 7
output = run(n, x, coastal(y), adjacent(x, y))
print('\nList of ' + str(n) + ' states that border a coastal state:')
for item in output:
 print(item)

List states that are adjacent to both Arkansas and Kentucky:

List of states that adjacent to the two given states
output = run(0, x, adjacent('Arkansas', x), adjacent('Kentucky', x))
print('\nList of states that are adjacent to Arkansas and Kentucky:')
for item in output:
 print(item)

Logic Programming

[167]

The full code is given in states.py. If you run the code, you will see the following output:

You can cross-check the output with the US map to verify if the answers are right. You can
also add more questions to the program to see if it can answer them.

Building a puzzle solver
Another interesting application of logic programming is in solving puzzles. We can specify
the conditions of a puzzle and the program will come up with a solution. In this section, we
will specify various bits and pieces of information about four people and ask for the missing
piece of information.

In the logic program, we specify the puzzle as follows:

Steve has a blue car
The person who owns the cat lives in Canada
Matthew lives in USA
The person with the black car lives in Australia
Jack has a cat
Alfred lives in Australia
The person who has a dog lives in France
Who has a rabbit?

Logic Programming

[168]

The goal is the find the person who has a rabbit. Here are the full details about the four
people:

Create a new Python file and import the following packages:

from logpy import *
from logpy.core import lall

Declare the variable people:

Declare the variable
people = var()

Define all the rules using lall. The first rule is that there are four people:

Define the rules
rules = lall(
 # There are 4 people
 (eq, (var(), var(), var(), var()), people),

The person named Steve has a blue car:

 # Steve's car is blue
 (membero, ('Steve', var(), 'blue', var()), people),

Logic Programming

[169]

The person who has a cat lives in Canada:

 # Person who has a cat lives in Canada
 (membero, (var(), 'cat', var(), 'Canada'), people),

The person named Matthew lives in USA:

 # Matthew lives in USA
 (membero, ('Matthew', var(), var(), 'USA'), people),

The person who has a black car lives in Australia:

 # The person who has a black car lives in Australia
 (membero, (var(), var(), 'black', 'Australia'), people),

The person named Jack has a cat:

 # Jack has a cat
 (membero, ('Jack', 'cat', var(), var()), people),

The person named Alfred lives in Australia:

 # Alfred lives in Australia
 (membero, ('Alfred', var(), var(), 'Australia'), people),

The person who has a dog lives in France:

 # Person who owns the dog lives in France
 (membero, (var(), 'dog', var(), 'France'), people),

One of the people in this group has a rabbit. Who is that person?

 # Who has a rabbit?
 (membero, (var(), 'rabbit', var(), var()), people)
)

Run the solver with the preceding constraints:

Run the solver
solutions = run(0, people, rules)

Extract the output from the solution:

Extract the output
output = [house for house in solutions[0] if 'rabbit' in house][0][0]

Logic Programming

[170]

Print the full matrix obtained from the solver:

Print the output
print('\n' + output + ' is the owner of the rabbit')
print('\nHere are all the details:')
attribs = ['Name', 'Pet', 'Color', 'Country']
print('\n' + '\t\t'.join(attribs))
print('=' * 57)
for item in solutions[0]:
 print('')
 print('\t\t'.join([str(x) for x in item]))

The full code is given in puzzle.py. If you run the code, you will see the following output:

The preceding figure shows all the values obtained using the solver. Some of them are still
unknown as indicated by numbered names. Even though the information was incomplete,
our solver was able to answer our question. But in order to answer every single question,
you may need to add more rules. This program was to demonstrate how to solve a puzzle
with incomplete information. You can play around with it and see how you can build
puzzle solvers for various scenarios.

Logic Programming

[171]

Summary
In this chapter, we learned how to write Python programs using logic programming. We
discussed how various programming paradigms deal with building programs. We
understood how programs are built in logic programming. We learned about various
building blocks of logic programming and discussed how to solve problems in this domain.

We implemented various Python programs to solve interesting problems and puzzles. In
the next chapter, we will learn about heuristic search techniques and use those algorithms
to solve real world problems.

7
Heuristic Search Techniques

In this chapter, we are going to learn about heuristic search techniques. Heuristic search
techniques are used to search through the solution space to come up with answers. The
search is conducted using heuristics that guide the search algorithm. This heuristic allows
the algorithm to speed up the process, which would otherwise take a really long time to
arrive at the solution.

By the end of this chapter, you will know about the following:

What is heuristic search?
Uninformed vs. informed search
Constraint Satisfaction Problems
Local search techniques
Simulated annealing
Constructing a string using greedy search
Solving a problem with constraints
Solving the region coloring problem
Building an 8-puzzle solver
Building a maze solver

What is heuristic search?
Searching and organizing data is an important topic within Artificial Intelligence. There are
many problems that require searching for an answer within the solution domain. There are
many possible solutions to a given problem and we do not know which ones are correct. By
efficiently organizing the data, we can search for solutions quickly and effectively.

Heuristic Search Techniques

[173]

More often, there are so many possible options to solve a given problem that no algorithm
can be developed to find a right solution. Also, going through every single solution is not
possible because it is prohibitively expensive. In such cases, we rely on a rule of thumb that
helps us narrow down the search by eliminating the options that are obviously wrong. This
rule of thumb is called a heuristic. The method of using heuristics to guide our search is
called heuristic search.

Heuristic techniques are very handy because they help us speed up the process. Even if the
heuristic is not able to completely eliminate some options, it will help us to order those
options so that we are more likely to get to the better solutions first.

Uninformed versus Informed search
If you are familiar with computer science, you should have heard about search techniques
like Depth First Search (DFS), Breadth First Search (BFS), and Uniform Cost Search
(UCS). These are search techniques that are commonly used on graphs to get to the
solution. These are examples of uninformed search. They do not use any prior information
or rules to eliminate some paths. They check all the plausible paths and pick the optimal
one.

Heuristic search, on the other hand, is called Informed search because it uses prior
information or rules to eliminate unnecessary paths. Uninformed search techniques do not
take the goal into account. These techniques don't really know where they are trying to go
unless they just stumble upon the goal in the process.

In the graph problem, we can use heuristics to guide the search. For example, at each node,
we can define a heuristic function that returns a score that represents the estimate of the
cost of the path from the current node to the goal. By defining this heuristic function, we are
informing the search technique about the right direction to reach the goal. This will allow
the algorithm to identify which neighbor will lead to the goal.

We need to note that heuristic search might not always find the most optimal solution. This
is because we are not exploring every single possibility and we are relying on a heuristic.
But it is guaranteed to find a good solution in a reasonable time, which is what we expect
from a practical solution. In real-world scenarios, we need solutions that are fast and
effective. Heuristic searches provide an efficient solution by arriving at a reasonable
solution quickly. They are used in cases where the problems cannot be solved in any other
way or would take a really long time to solve.

Heuristic Search Techniques

[174]

Constraint Satisfaction Problems
There are many problems that have to be solved under constraints. These constraints are
basically conditions that cannot be violated during the process of solving the problem.
These problems are referred to as Constraint Satisfaction Problems (CSPs).

CSPs are basically mathematical problems that are defined as a set of variables that must
satisfy a number of constraints. When we arrive at the final solution, the states of the
variables must obey all the constraints. This technique represents the entities involved in a
given problem as a collection of a fixed number of constraints over variables. These
variables need to be solved by constraint satisfaction methods.

These problems require a combination of heuristics and other search techniques to be
solved in a reasonable amount of time. In this case, we will use constraint satisfaction
techniques to solve problems on finite domains. A finite domain consists of a finite number
of elements. Since we are dealing with finite domains, we can use search techniques to
arrive at the solution.

Local search techniques
Local search is a particular way of solving a CSP. It keeps improving the values until all the
constraints are satisfied. It iteratively keeps updating the variables until we arrive at the
destination. These algorithms modify the value during each step of the process that gets us
closer to the goal. In the solution space, the updated value is closer to the goal than the
previous value. Hence it is known as a local search.

Local search algorithm is a heuristic search algorithm. These algorithms use a function that
calculates the quality of each update. For example, it can count the number of constraints
that are being violated by the current update or it can see how the update affects the
distance to the goal. This is referred to as the cost of the assignment. The overall goal of
local search is to find the minimal cost update at each step.

Hill climbing is a popular local search technique. It uses a heuristic function that measures
the difference between the current state and the goal. When we start, it checks if the state is
the final goal. If it is, then it stops. If not, then it selects an update and generates a new state.
If it's closer to the goal than the current state, then it makes that the current state. If not, it
ignores it and continues the process until it checks all possible updates. It basically climbs
the hill until it reaches the summit.

Heuristic Search Techniques

[175]

Simulated Annealing
Simulated Annealing is a type of local search as well as a stochastic search technique.
Stochastic search techniques are used extensively in various fields such as robotics,
chemistry, manufacturing, medicine, economics, and so on. We can perform things like
optimizing the design of a robot, determining the timing strategies for automated control in
factories, and planning traffic. Stochastic algorithms are used to solve many real-world
problems.

Simulated Annealing is a variation of the hill climbing technique. One of the main problems
of hill climbing is that it ends up climbing false foothills. This means that it gets stuck in
local maxima. So it is better to check out the whole space before we make any climbing
decisions. In order to achieve this, the whole space is initially explored to see what it is like.
This helps us avoid getting stuck in a plateau or local maxima.

In Simulated Annealing, we reformulate the problem and solve it for minimization, as
opposed to maximization. So, we are now descending into valleys as opposed to climbing
hills. We are pretty much doing the same thing, but in a different way. We use an objective
function to guide the search. This objective function serves as our heuristic.

The reason it is called Simulated Annealing is because it is derived from
the metallurgical process. We first heat metals up and then let them cool
until they reach the optimal energy state.

The rate at which we cool the system is called the annealing schedule. The rate of cooling is
important because it directly impacts the final result. In the real world case of metals, if the
rate of cooling is too fast, it ends up settling for the local maximum. For example, if we take
the heated metal and put it in cold water, it ends up quickly settling for the sub-optimal
local maximum.

If the rate of cooling is slow and controlled, we give the metal a chance to arrive at the
globally optimum state. The chances of taking big steps quickly towards any particular hill
are lower in this case. Since the rate of cooling is slow, it will take its time to choose the best
state. We do something similar with data in our case.

Heuristic Search Techniques

[176]

We first evaluate the current state and see if it is the goal. If it is, then we stop. If not, then
we set the best state variable to the current state. We then define our annealing schedule
that controls how quickly it descends into a valley. We compute the difference between the
current state and the new state. If the new state is not better, then we make it the current
state with a certain predefined probability. We do this using a random number generator
and making a decision based on a threshold. If it is above the threshold, then we set the best
state to this state. Based on this, we update the annealing schedule depending on the
number of nodes. We keep doing this until we arrive at the goal.

Constructing a string using greedy search
Greedy search is an algorithmic paradigm that makes the locally optimal choice at each
stage in order to find the global optimum. But in many problems, greedy algorithms do not
produce globally optimum solutions. An advantage of using greedy algorithms is that they
produce an approximate solution in a reasonable time. The hope is that this approximate
solution is reasonably close to the global optimal solution.

Greedy algorithms do not refine their solutions based on new information during the
search. For example, let's say you are planning on a road trip and you want to take the best
route possible. If you use a greedy algorithm to plan the route, it would ask you to take
routes that are shorter but might end up taking more time. It can also lead you to paths that
may seem faster in the short term, but might lead to traffic jams later. This happens because
greedy algorithms only think about the next step and not the globally optimal final solution.

Let's see how to solve a problem using a greedy search. In this problem, we will try to
recreate the input string based on the alphabets. We will ask the algorithm to search the
solution space and construct a path to the solution.

We will be using a package called simpleai throughout this chapter. It contains various
routines that are useful in building solutions using heuristic search techniques. It's
available at https://github.com/simpleai-team/simpleai. We need to make a few
changes to the source code in order to make it work in Python3. A file called
simpleai.zip has been provided along with the code for the book. Unzip this file into a
folder called simpleai. This folder contains all the necessary changes to the original library
necessary to make it work in Python3. Place the simpleai folder in the same folder as your
code and you'll be able to run your code smoothly.

https://github.com/simpleai-team/simpleai

Heuristic Search Techniques

[177]

Create a new Python file and import the following packages:

import argparse
import simpleai.search as ss

Define a function to parse the input arguments:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Creates the input string
\
 using the greedy algorithm')
 parser.add_argument("--input-string", dest="input_string",
required=True,
 help="Input string")
 parser.add_argument("--initial-state", dest="initial_state",
required=False,
 default='', help="Starting point for the search")
 return parser

Create a class that contains the methods needed to solve the problem. This class inherits the
SearchProblem class available in the library. We just need to override a couple of methods
to suit our needs. The first method set_target is a custom method that we define to set
the target string:

class CustomProblem(ss.SearchProblem):
 def set_target(self, target_string):
 self.target_string = target_string

The actions is a method that comes with a SearchProblem and we need to override it. It's
responsible for taking the right steps towards the goal. If the length of the current string is
less than the length of the target string, it will return the list of possible alphabets to choose
from. If not, it will return an empty string:

 # Check the current state and take the right action
 def actions(self, cur_state):
 if len(cur_state) < len(self.target_string):
 alphabets = 'abcdefghijklmnopqrstuvwxyz'
 return list(alphabets + ' ' + alphabets.upper())
 else:
 return []

 a method to compute the result by concatenating the current string and the action that
needs to be taken. This method comes with a SearchProblem and we are overriding it:

 # Concatenate state and action to get the result
 def result(self, cur_state, action):
 return cur_state + action

Heuristic Search Techniques

[178]

The method is_goal is a part of the SearchProblem and it's used to check if we have
arrived at the goal:

 # Check if goal has been achieved
 def is_goal(self, cur_state):
 return cur_state == self.target_string

The method heuristic is also a part of the SearchProblem and we need to override it.
We will define our own heuristic that will be used to solve the problem. We will calculate
how far we are from the goal and use that as the heuristic to guide it towards the goal:

Define the heuristic that will be used
 def heuristic(self, cur_state):
 # Compare current string with target string
 dist = sum([1 if cur_state[i] != self.target_string[i] else 0
 for i in range(len(cur_state))])

 # Difference between the lengths
 diff = len(self.target_string) - len(cur_state)

 return dist + diff

e input arguments:

if __name__=='__main__':
 args = build_arg_parser().parse_args()

Initialize the CustomProblem object:

 # Initialize the object
 problem = CustomProblem()

Set the starting point as well as the goal we want to achieve:

 # Set target string and initial state
 problem.set_target(args.input_string)
 problem.initial_state = args.initial_state

Run the solver:

 # Solve the problem
 output = ss.greedy(problem)

Heuristic Search Techniques

[179]

Print the path to the solution:

 print('\nTarget string:', args.input_string)
 print('\nPath to the solution:')
 for item in output.path():
 print(item)

The full code is given in the file greedy_search.py. If you run the code with an empty
initial state:

 $ python3 greedy_search.py --input-string 'Artificial Intelligence' --
initial-state ''

You will get the following output:

If you run the code with a non-empty starting point:

 $ python3 greedy_search.py --input-string 'Artificial Intelligence with
Python' --initial-state 'Artificial Inte'

Heuristic Search Techniques

[180]

You will get the following output:

Solving a problem with constraints
We have already discussed how Constraint Satisfaction Problems are formulated. Let's
apply them to a real-world problem. In this problem, we have a list of names and each
name can only take a fixed set of values. We also have a set of constraints between these
people that needs to be satisfied. Let's see how to do it.

Create a new Python file and import the following packages:

from simpleai.search import CspProblem, backtrack, \
 min_conflicts, MOST_CONSTRAINED_VARIABLE, \
 HIGHEST_DEGREE_VARIABLE, LEAST_CONSTRAINING_VALUE

Heuristic Search Techniques

[181]

Define the constraint that specifies that all the variables in the input list should have unique
values:

Constraint that expects all the different variables
to have different values
def constraint_unique(variables, values):
 # Check if all the values are unique
 return len(values) == len(set(values))

Define the constraint that specifies that the first variable should be bigger than the second
variable:

Constraint that specifies that one variable
should be bigger than other
def constraint_bigger(variables, values):
 return values[0] > values[1]

Define the constraint that specifies that if the first variable is odd, then the second variable
should be even and vice versa:

Constraint that specifies that there should be
one odd and one even variables in the two variables
def constraint_odd_even(variables, values):
 # If first variable is even, then second should
 # be odd and vice versa
 if values[0] % 2 == 0:
 return values[1] % 2 == 1
 else:
 return values[1] % 2 == 0

Define the main function and define the variables:

if __name__=='__main__':
 variables = ('John', 'Anna', 'Tom', 'Patricia')

Define the list of values that each variable can take:

 domains = {
 'John': [1, 2, 3],
 'Anna': [1, 3],
 'Tom': [2, 4],
 'Patricia': [2, 3, 4],
 }

Heuristic Search Techniques

[182]

Define the constraints for various scenarios. In this case, we specify three constraints as
follows:

John, Anna, and Tom should have different values
Tom's value should be bigger than Anna's value
If John's value is odd, then Patricia's value should be even and vice versa

Use the following code:

 constraints = [
 (('John', 'Anna', 'Tom'), constraint_unique),
 (('Tom', 'Anna'), constraint_bigger),
 (('John', 'Patricia'), constraint_odd_even),
]

Use the preceding variables and the constraints to initialize the CspProblem object:

 problem = CspProblem(variables, domains, constraints)

Compute the solution and print it:

 print('\nSolutions:\n\nNormal:', backtrack(problem))

Compute the solution using the MOST_CONSTRAINED_VARIABLE heuristic:

 print('\nMost constrained variable:', backtrack(problem,
 variable_heuristic=MOST_CONSTRAINED_VARIABLE))

Compute the solution using the HIGHEST_DEGREE_VARIABLE heuristic:

 print('\nHighest degree variable:', backtrack(problem,
 variable_heuristic=HIGHEST_DEGREE_VARIABLE))

Compute the solution using the LEAST_CONSTRAINING_VALUE heuristic:

 print('\nLeast constraining value:', backtrack(problem,
 value_heuristic=LEAST_CONSTRAINING_VALUE))

Compute the solution using the MOST_CONSTRAINED_VARIABLE variable heuristic and
LEAST_CONSTRAINING_VALUE value heuristic:

 print('\nMost constrained variable and least constraining value:',
 backtrack(problem,
variable_heuristic=MOST_CONSTRAINED_VARIABLE,
 value_heuristic=LEAST_CONSTRAINING_VALUE))

Heuristic Search Techniques

[183]

Compute the solution using the HIGHEST_DEGREE_VARIABLE variable heuristic and
LEAST_CONSTRAINING_VALUE value heuristic:

 print('\nHighest degree and least constraining value:',
 backtrack(problem, variable_heuristic=HIGHEST_DEGREE_VARIABLE,
 value_heuristic=LEAST_CONSTRAINING_VALUE))

Compute the solution using the minimum conflicts heuristic:

 print('\nMinimum conflicts:', min_conflicts(problem))

The full code is given in the file constrained_problem.py. If you run the code, you will
get the following output:

You can check the constraints to see if the solutions satisfy all those constraints.

Solving the region-coloring problem
Let's use the Constraint Satisfaction framework to solve the region-coloring problem.
Consider the following screenshot:

Heuristic Search Techniques

[184]

We have a few regions in the preceding figure that are labeled with names. Our goal is to
color with four colors so that no adjacent regions have the same color.

Create a new Python file and import the following packages:

from simpleai.search import CspProblem, backtrack

Define the constraint that specifies that the values should be different:

Define the function that imposes the constraint
that neighbors should be different
def constraint_func(names, values):
 return values[0] != values[1]

Define the main function and specify the list of names:

if __name__=='__main__':
 # Specify the variables
 names = ('Mark', 'Julia', 'Steve', 'Amanda', 'Brian',
 'Joanne', 'Derek', 'Allan', 'Michelle', 'Kelly')

Define the list of possible colors:

 # Define the possible colors
 colors = dict((name, ['red', 'green', 'blue', 'gray']) for name in
names)

Heuristic Search Techniques

[185]

We need to convert the map information into something that the algorithm can understand.
Let's define the constraints by specifying the list of people who are adjacent to each other:

 # Define the constraints
 constraints = [
 (('Mark', 'Julia'), constraint_func),
 (('Mark', 'Steve'), constraint_func),
 (('Julia', 'Steve'), constraint_func),
 (('Julia', 'Amanda'), constraint_func),
 (('Julia', 'Derek'), constraint_func),
 (('Julia', 'Brian'), constraint_func),
 (('Steve', 'Amanda'), constraint_func),
 (('Steve', 'Allan'), constraint_func),
 (('Steve', 'Michelle'), constraint_func),
 (('Amanda', 'Michelle'), constraint_func),
 (('Amanda', 'Joanne'), constraint_func),
 (('Amanda', 'Derek'), constraint_func),
 (('Brian', 'Derek'), constraint_func),
 (('Brian', 'Kelly'), constraint_func),
 (('Joanne', 'Michelle'), constraint_func),
 (('Joanne', 'Amanda'), constraint_func),
 (('Joanne', 'Derek'), constraint_func),
 (('Joanne', 'Kelly'), constraint_func),
 (('Derek', 'Kelly'), constraint_func),
]

Use the variables and constraints to initialize the object:

 # Solve the problem
 problem = CspProblem(names, colors, constraints)

Solve the problem and print the solution:

 # Print the solution
 output = backtrack(problem)
 print('\nColor mapping:\n')
 for k, v in output.items():
 print(k, '==>', v)

Heuristic Search Techniques

[186]

The full code is given in the file coloring.py. If you run the code, you will get the
following output on your Terminal:

If you color the regions based on this output, you will get the following:

You can check that no two adjacent regions have the same color.

Building an 8-puzzle solver
8-puzzle is a variant of the 15-puzzle. You can check it out
at https://en.wikipedia.org/wiki/15_puzzle. You will be presented with a randomized
grid and your goal is to get it back to the original ordered configuration. You can play the
game to get familiar with it at http://mypuzzle.org/sliding.

https://en.wikipedia.org/wiki/15_puzzle.
https://en.wikipedia.org/wiki/15_puzzle.
http://mypuzzle.org/sliding

Heuristic Search Techniques

[187]

We will use an A* algorithm to solve this problem. It is an algorithm that's used to find
paths to the solution in a graph. This algorithm is a combination of Dijkstra's algorithm
and a greedy best-first search. Instead of blindly guessing where to go next, the A*
algorithm picks the one that looks the most promising. At each node, we generate the list of
all possibilities and then pick the one with the minimal cost required to reach the goal.

Let's see how to define the cost function. At each node, we need to compute the cost. This
cost is basically the sum of two costs – the first cost is the cost of getting to the current node
and the second cost is the cost of reaching the goal from the current node.

We use this summation as our heuristic. As we can see, the second cost is basically an
estimate that's not perfect. If this is perfect, then the A* algorithm arrives at the solution
quickly. But it's not usually the case. It takes some time to find the best path to the solution.
But A* is very effective in finding the optimal paths and is one of the most popular
techniques out there.

Let's use the A* algorithm to build an 8-puzzle solver. This is a variant of the solution given
in the simpleai library. Create a new Python file and import the following packages:

from simpleai.search import astar, SearchProblem

Define a class that contains the methods to solve the 8-puzzle:

Class containing methods to solve the puzzle
class PuzzleSolver(SearchProblem):

Override the actions method to align it with our problem:

 # Action method to get the list of the possible
 # numbers that can be moved in to the empty space
 def actions(self, cur_state):
 rows = string_to_list(cur_state)
 row_empty, col_empty = get_location(rows, 'e')

Check the location of the empty space and create the new action:

 actions = []
 if row_empty > 0:
 actions.append(rows[row_empty - 1][col_empty])
 if row_empty < 2:
 actions.append(rows[row_empty + 1][col_empty])
 if col_empty > 0:
 actions.append(rows[row_empty][col_empty - 1])
 if col_empty < 2:
 actions.append(rows[row_empty][col_empty + 1])

 return actions

Heuristic Search Techniques

[188]

Override the result method. Convert the string to a list and extract the location of the
empty space. Generate the result by updating the locations:

 # Return the resulting state after moving a piece to the empty space
 def result(self, state, action):
 rows = string_to_list(state)
 row_empty, col_empty = get_location(rows, 'e')
 row_new, col_new = get_location(rows, action)

 rows[row_empty][col_empty], rows[row_new][col_new] = \
 rows[row_new][col_new], rows[row_empty][col_empty]

 return list_to_string(rows)

Check if the goal has been reached:

 # Returns true if a state is the goal state
 def is_goal(self, state):
 return state == GOAL

Define the heuristic method. We will use the heuristic that computes the distance
between the current state and goal state using Manhattan distance:

 # Returns an estimate of the distance from a state to
 # the goal using the manhattan distance
 def heuristic(self, state):
 rows = string_to_list(state)

 distance = 0

Compute the distance:

 for number in '12345678e':
 row_new, col_new = get_location(rows, number)
 row_new_goal, col_new_goal = goal_positions[number]

 distance += abs(row_new - row_new_goal) + abs(col_new -
col_new_goal)

 return distance

Define a function to convert a list to string:

Convert list to string
def list_to_string(input_list):
 return '\n'.join(['-'.join(x) for x in input_list])

Define a function to convert a string to a list:

Heuristic Search Techniques

[189]

Convert string to list
def string_to_list(input_string):
 return [x.split('-') for x in
 input_string.split('\n')]

Define a function to get the location of a given element in the grid:

Find the 2D location of the input element
def get_location(rows, input_element):
 for i, row in enumerate(rows):
 for j, item in enumerate(row):
 if item == input_element:
 return i, j

Define the initial state and the final goal we want to achieve:

Final result that we want to achieve
GOAL = '''1-2-3
4-5-6
7-8-e'''

Starting point
INITIAL = '''1-e-2
6-3-4
7-5-8'''

Track the goal positions for each piece by creating a variable:

Create a cache for the goal position of each piece
goal_positions = {}
rows_goal = string_to_list(GOAL)
for number in '12345678e':
 goal_positions[number] = get_location(rows_goal, number)

Create the A* solver object using the initial state we defined earlier and extract the result:

Create the solver object
result = astar(PuzzleSolver(INITIAL))

Heuristic Search Techniques

[190]

Print the solution:

Print the results
for i, (action, state) in enumerate(result.path()):
 print()
 if action == None:
 print('Initial configuration')
 elif i == len(result.path()) - 1:
 print('After moving', action, 'into the empty space. Goal
achieved!')
 else:
 print('After moving', action, 'into the empty space')

 print(state)

The full code is given in the file puzzle.py. If you run the code, you will get a long output
on your Terminal. It will start as follows:

Heuristic Search Techniques

[191]

If you scroll down, you will see the steps taken to arrive at the solution. At the end, you will
see the following on your Terminal:

Building a maze solver
Let's use the A* algorithm to solve a maze. Consider the following figure:

Heuristic Search Techniques

[192]

The # symbols indicate obstacles. The symbol o represents the starting point and x
represents the goal. Our goal is to find the shortest path from the start to the end point. Let's
see how to do it in Python. The following solution is a variant of the solution provided in
the simpleai library. Create a new Python file and import the following packages:

import math
from simpleai.search import SearchProblem, astar

Create a class that contains the methods needed to solve the problem:

Class containing the methods to solve the maze
class MazeSolver(SearchProblem):

Define the initializer method:

 # Initialize the class
 def __init__(self, board):
 self.board = board
 self.goal = (0, 0)

Extract the initial and final positions:

 for y in range(len(self.board)):
 for x in range(len(self.board[y])):
 if self.board[y][x].lower() == "o":
 self.initial = (x, y)
 elif self.board[y][x].lower() == "x":
 self.goal = (x, y)

 super(MazeSolver, self).__init__(initial_state=self.initial)

Override the actions method. At each position, we need to check the cost of going to the
neighboring cells and then append all the possible actions. If the neighboring cell is blocked,
then that action is not considered:

 # Define the method that takes actions
 # to arrive at the solution
 def actions(self, state):
 actions = []
 for action in COSTS.keys():
 newx, newy = self.result(state, action)
 if self.board[newy][newx] != "#":
 actions.append(action)

 return actions

Heuristic Search Techniques

[193]

Override the result method. Depending on the current state and the input action, update
the x and y coordinates:

 # Update the state based on the action
 def result(self, state, action):
 x, y = state

 if action.count("up"):
 y -= 1
 if action.count("down"):
 y += 1
 if action.count("left"):
 x -= 1
 if action.count("right"):
 x += 1

 new_state = (x, y)

 return new_state

Check if we have arrived at the goal:

 # Check if we have reached the goal
 def is_goal(self, state):
 return state == self.goal

We need to define the cost function. This is the cost of moving to a neighboring cell, and
it's different for vertical/horizontal and diagonal moves. We will define these later:

 # Compute the cost of taking an action
 def cost(self, state, action, state2):
 return COSTS[action]

Define the heuristic that will be used. In this case, we will use the Euclidean distance:

 # Heuristic that we use to arrive at the solution
 def heuristic(self, state):
 x, y = state
 gx, gy = self.goal

 return math.sqrt((x - gx) ** 2 + (y - gy) ** 2)

Heuristic Search Techniques

[194]

Define the main function and also define the map we discussed earlier:

if __name__ == "__main__":
 # Define the map
 MAP = """
 ##############################
 # # # #
 # #### ######## # #
 # o # # # #
 # ### ##### ###### #
 # # ### # #
 # # # # # # ###
 # ##### # # # x #
 # # # #
 ##############################
 """

Convert the map information into a list:

 # Convert map to a list
 print(MAP)
 MAP = [list(x) for x in MAP.split("\n") if x]

Define the cost of moving around the map. The diagonal move is more expensive than
horizontal or vertical moves:

 # Define cost of moving around the map
 cost_regular = 1.0
 cost_diagonal = 1.7

Assign the costs to the corresponding moves:

 # Create the cost dictionary
 COSTS = {
 "up": cost_regular,
 "down": cost_regular,
 "left": cost_regular,
 "right": cost_regular,
 "up left": cost_diagonal,
 "up right": cost_diagonal,
 "down left": cost_diagonal,
 "down right": cost_diagonal,
 }

Heuristic Search Techniques

[195]

Create a solver object using the custom class we defined earlier:

 # Create maze solver object
 problem = MazeSolver(MAP)

Run the solver on the map and extract the result:

 # Run the solver
 result = astar(problem, graph_search=True)

Extract the path from the result:

 # Extract the path
 path = [x[1] for x in result.path()]

Print the output:

 # Print the result
 print()
 for y in range(len(MAP)):
 for x in range(len(MAP[y])):
 if (x, y) == problem.initial:
 print('o', end='')
 elif (x, y) == problem.goal:
 print('x', end='')
 elif (x, y) in path:
 print(' ', end='')
 else:
 print(MAP[y][x], end='')

 print()

The full code is given in the file maze.py. If you run the code, you will get the following
output:

Heuristic Search Techniques

[196]

Summary
In this chapter, we learned how heuristic search techniques work. We discussed the
difference between uninformed and informed search. We learned about constraint
satisfaction problems and how we can solve problems using this paradigm. We discussed
how local search techniques work and why simulated annealing is used in practice. We
implemented greedy search for a string problem. We solved a problem using the CSP
formulation.

We used this approach to solve the region-coloring problem. We then discussed the A*
algorithm and how it can used to find the optimal paths to the solution. We used it to build
an 8-puzzle solver as well as a maze solver. In the next chapter, we will discuss genetic
algorithms and how they can used to solve real-world problems.

8
Genetic Algorithms

In this chapter, we are going to learn about genetic algorithms. We will discuss the concepts
of evolutionary algorithms and genetic programming, and see how they are related to
genetic algorithms. We will learn about the fundamental building blocks of genetic
algorithms including crossover, mutation, and fitness functions. We will then use these
concepts to build various systems.

By the end of this chapter, you will know about the following:

Understanding evolutionary and genetic algorithms
Fundamental concepts in genetic algorithms
Generating a bit pattern with predefined parameters
Visualizing the progress of the evolution
Solving the symbol regression problem
Building an intelligent robot controller

Understanding evolutionary and genetic
algorithms
A genetic algorithm is a type of evolutionary algorithm. So, in order to understand genetic
algorithms, we need to discuss evolutionary algorithms. An evolutionary algorithm is a
meta heuristic optimization algorithm that applies the principles of evolution to solve
problems. The concept of evolution is similar to the one we find in nature. We directly use
the problem's functions and variables to arrive at the solution. But in a genetic algorithm,
any given problem is encoded in bit patterns that are manipulated by the algorithm.

Genetic Algorithms

[198]

The underlying idea in all evolutionary algorithms is that we take a population of
individuals and apply the natural selection process. We start with a set of randomly
selected individuals and then identify the strongest among them. The strength of each
individual is determined using a fitness function that's predefined. In a way, we use the
survival of the fittest approach.

We then take these selected individuals and create the next generation of individuals by
recombination and mutation. We will discuss the concepts of recombination and mutation
in the next section. For now, let's think of these techniques as mechanisms to create the next
generation by treating the selected individuals as parents.

Once we execute recombination and mutation, we create a new set of individuals who will
compete with the old ones for a place in the next generation. By discarding the weakest
individuals and replacing them with offspring, we are increasing the overall fitness level of
the population. We continue to iterate until the desired overall fitness is achieved.

A genetic algorithm is an evolutionary algorithm where we use a heuristic to find a string of
bits that solves a problem. We continuously iterate on a population to arrive at a solution.
We do this by generating new populations containing stronger individuals. We apply
probabilistic operators such as selection, crossover, and mutation in order to generate the
next generation of individuals. The individuals are basically strings, where every string is
the encoded version of a potential solution.

A fitness function is used that evaluates the fitness measure of each string telling us how
well suited it is to solve this problem. This fitness function is also referred to as an
evaluation function. Genetic algorithms apply operators that are inspired from nature,
which is why the nomenclature is closely related to the terms found in biology.

Fundamental concepts in genetic algorithms
In order to build a genetic algorithm, we need to understand several key concepts and
terminology. These concepts are used extensively throughout the field of genetic algorithms
to build solutions to various problems. One of the most important aspects of genetic
algorithms is the randomness. In order to iterate, it relies on the random sampling of
individuals. This means that the process is non-deterministic. So, if you run the same
algorithm multiple times, you might end up with different solutions.

Genetic Algorithms

[199]

Let's talk about population. A population is a set of individuals that are possible candidate
solutions. In a genetic algorithm, we do not maintain a single best solution at any given
stage. It maintains a set of potential solutions, one of which is the best. But the other
solutions play an important role during the search. Since we have a population of solutions,
it is less likely that will get stuck in a local optimum. Getting stuck in the local optimum is a
classic problem faced by other optimization techniques.

Now that we know about population and the stochastic nature of genetic algorithms, let's
talk about the operators. In order to create the next generation of individuals, we need to
make sure that they come from the strongest individuals in the current generation.
Mutation is one of the ways to do it. A genetic algorithm makes random changes to one or
more individuals of the current generation to yield a new candidate solution. This change is
called mutation. Now this change might make that individual better or worse than existing
individuals.

The next concept here is recombination, which is also called crossover. This is directly
related to the role of reproduction in the evolution process. A genetic algorithm tries to
combine individuals from the current generation to create a new solution. It combines some
of the features of each parent individual to create this offspring. This process is called
crossover. The goal is to replace the weaker individuals in the current generation with
offspring generated from stronger individuals in the population.

In order to apply crossover and mutation, we need to have selection criteria. The concept of
selection is inspired by the theory of natural selection. During each iteration, the genetic
algorithm performs a selection process. The strongest individuals are chosen using this
selection process and the weaker individuals are terminated. This is where the survival of
the fittest concept comes into play. The selection process is carried out using a fitness
function that computes the strength of each individual.

Generating a bit pattern with predefined
parameters
Now that we know how a genetic algorithm works, let's see how to use it to solve some
problems. We will be using a Python package called DEAP. You can find all the details about
it at http://deap.readthedocs.io/en/master. Let's go ahead and install it by running the
following command on your Terminal:

 $ pip3 install deap

http://deap.readthedocs.io/en/master

Genetic Algorithms

[200]

Now that the package is installed, let's quickly test it. Go into the Python shell by typing the
following on your Terminal:

 $ python3

Once you are inside, type the following:

 >>> import deap

If you do not see an error message, we are good to go.

In this section, we will solve a variant of the One Max problem. The One Max problem is
about generating a bit string that contains the maximum number of ones. It is a simple
problem, but it's very helpful in getting familiar with the library as well as understanding
how to implement solutions using genetic algorithms. In our case, we will try to generate a
bit string that contains a predefined number of ones. You will see that the underlying
structure and part of the code is similar to the example used in the DEAP library.

Create a new Python file and import the following:

import random

from deap import base, creator, tools

Let's say we want to generate a bit pattern of length 75, and we want it to contain 45 ones.
We need to define an evaluation function that can be used to target this objective:

Evaluation function
def eval_func(individual):
 target_sum = 45
 return len(individual) - abs(sum(individual) - target_sum),

If you look at the formula used in the preceding function, you can see that it reaches its
maximum value when the number of ones is equal to 45. The length of each individual is
75. When the number of ones is equal to 45, the return value would be 75.

We now need to define a function to create the toolbox. Let's define a creator object for the
fitness function and to keep track of the individuals. The Fitness class used here is an
abstract class and it needs the weights attribute to be defined. We are building a
maximizing fitness using positive weights:

Create the toolbox with the right parameters
def create_toolbox(num_bits):
 creator.create("FitnessMax", base.Fitness, weights=(1.0,))
 creator.create("Individual", list, fitness=creator.FitnessMax)

Genetic Algorithms

[201]

The first line creates a single objective maximizing fitness named FitnessMax. The second
line deals with producing the individual. In a given process, the first individual that is
created is a list of floats. In order to produce this individual, we must create an Individual
class using the creator. The fitness attribute will use FitnessMax defined earlier.

A toolbox is an object that is commonly used in DEAP It is used to store various functions
along with their arguments. Let's create this object:

 # Initialize the toolbox
 toolbox = base.Toolbox()

We will now start registering various functions to this toolbox. Let's start with the random
number generator that generates a random integer between 0 and 1. This is basically to
generate the bit strings:

 # Generate attributes
 toolbox.register("attr_bool", random.randint, 0, 1)

Let's register the individual function. The method initRepeat takes three arguments – a
container class for the individual, a function used to fill the container, and the number of
times we want the function to repeat itself:

 # Initialize structures
 toolbox.register("individual", tools.initRepeat, creator.Individual,
 toolbox.attr_bool, num_bits)

We need to register the population function. We want the population to be a list of
individuals:

 # Define the population to be a list of individuals
 toolbox.register("population", tools.initRepeat, list,
toolbox.individual)

We now need to register the genetic operators. Register the evaluation function that we
defined earlier, which will act as our fitness function. We want the individual, which is a bit
pattern, to have 45 ones:

 # Register the evaluation operator
 toolbox.register("evaluate", eval_func)

Register the crossover operator named mate using the cxTwoPoint method:

 # Register the crossover operator
 toolbox.register("mate", tools.cxTwoPoint)

Genetic Algorithms

[202]

Register the mutation operator named mutate using mutFlipBit. We need to specify the
probability of each attribute to be mutated using indpb:

 # Register a mutation operator
 toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)

Register the selection operator using selTournament. It specifies which individuals will be
selected for breeding:

 # Operator for selecting individuals for breeding
 toolbox.register("select", tools.selTournament, tournsize=3)
 return toolbox

This is basically the implementation of all the concepts we discussed in the preceding
section. A toolbox generator function is very common in DEAP and we will use it
throughout this chapter. So it's important to spend some time to understand how we
generated this toolbox.

Define the main function by starting with the length of the bit pattern:

if __name__ == "__main__":
 # Define the number of bits
 num_bits = 75

Create a toolbox using the function we defined earlier:

 # Create a toolbox using the above parameter
 toolbox = create_toolbox(num_bits)

We need to seed the random number generator so that we get repeatable results:

 # Seed the random number generator
 random.seed(7)

Create an initial population of, say, 500 individuals using the method available in the
toolbox object. Feel free to change this number and experiment with it:

 # Create an initial population of 500 individuals
 population = toolbox.population(n=500)

Define the probabilities of crossing and mutating. Again, these are parameters that are
defined by the user. So you can change these parameters and see how they affect the result:

 # Define probabilities of crossing and mutating
 probab_crossing, probab_mutating = 0.5, 0.2

Genetic Algorithms

[203]

Define the number of generations that we need to iterate until the process is terminated. If
you increase the number of generations, you are giving it more freedom to improve the
strength of the population:

 # Define the number of generations
 num_generations = 60

Evaluate all the individuals in the population using the fitness functions:

 print('\nStarting the evolution process')
 # Evaluate the entire population
 fitnesses = list(map(toolbox.evaluate, population))
 for ind, fit in zip(population, fitnesses):
 ind.fitness.values = fit

Start iterating through the generations:

 print('\nEvaluated', len(population), 'individuals')
 # Iterate through generations
 for g in range(num_generations):
 print("\n===== Generation", g)

In each generation, select the next generation individuals using the selection operator that
we registered to the toolbox earlier:

 # Select the next generation individuals
 offspring = toolbox.select(population, len(population))

Clone the selected individuals:

 # Clone the selected individuals
 offspring = list(map(toolbox.clone, offspring))

Apply crossover and mutation on the next generation individuals using the probability
values defined earlier. Once it's done, we need to reset the fitness values:

 # Apply crossover and mutation on the offspring
 for child1, child2 in zip(offspring[::2], offspring[1::2]):
 # Cross two individuals
 if random.random() < probab_crossing:
 toolbox.mate(child1, child2)

 # "Forget" the fitness values of the children
 del child1.fitness.values
 del child2.fitness.values

Genetic Algorithms

[204]

Apply mutation to the next generation individuals using the corresponding probability
value that we defined earlier. Once it's done, reset the fitness value:

 # Apply mutation
 for mutant in offspring:
 # Mutate an individual
 if random.random() < probab_mutating:
 toolbox.mutate(mutant)
 del mutant.fitness.values

Evaluate the individuals with invalid fitness values:

 # Evaluate the individuals with an invalid fitness
 invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
 fitnesses = map(toolbox.evaluate, invalid_ind)
 for ind, fit in zip(invalid_ind, fitnesses):
 ind.fitness.values = fit
 print('Evaluated', len(invalid_ind), 'individuals')

Replace the population with the next generation individuals:

 # The population is entirely replaced by the offspring
 population[:] = offspring

Print the stats for the current generation to see how it's progressing:

 # Gather all the fitnesses in one list and print the stats
 fits = [ind.fitness.values[0] for ind in population]

 length = len(population)
 mean = sum(fits) / length
 sum2 = sum(x*x for x in fits)
 std = abs(sum2 / length - mean**2)**0.5

 print('Min =', min(fits), ', Max =', max(fits))
 print('Average =', round(mean, 2), ', Standard deviation =',
 round(std, 2))
 print("\n==== End of evolution")

Print the final output:

 best_ind = tools.selBest(population, 1)[0]
 print('\nBest individual:\n', best_ind)
 print('\nNumber of ones:', sum(best_ind))

Genetic Algorithms

[205]

The full code is given in the file bit_counter.py. If you run the code, you will see
iterations printed to your Terminal. At the start, you will see something like the following:

At the end, you will see something like the following that indicates the end of the evolution:

Genetic Algorithms

[206]

As seen in the preceding figure, the evolution process ends after 60 generations (zero-
indexed). Once it's done, the best individual is picked and printed on the output. It has 45
ones in the best individual, which is like a confirmation for us because the target sum is 45
in our evaluation function.

Visualizing the evolution
Let's see how we can visualize the evolution process. In DEAP, they have used a method
called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to visualize the
evolution. It is an evolutionary algorithm that's used to solve non-linear problems in the
continuous domain. CMA-ES technique is robust, well studied, and is considered as state of
the art in evolutionary algorithms. Let's see how it works by delving into the code provided
in their source code. The following code is a slight variation of the example shown in the
DEAP library.

Create a new Python file and import the following:

import numpy as np
import matplotlib.pyplot as plt
from deap import algorithms, base, benchmarks, \
 cma, creator, tools

Define a function to create the toolbox. We will define a FitnessMin function using
negative weights:

Function to create a toolbox
def create_toolbox(strategy):
 creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
 creator.create("Individual", list, fitness=creator.FitnessMin)

Create the toolbox and register the evaluation function, as follows:

 toolbox = base.Toolbox()
 toolbox.register("evaluate", benchmarks.rastrigin)

 # Seed the random number generator
 np.random.seed(7)

Genetic Algorithms

[207]

Register the generate and update methods. This is related to the generate-update
paradigm where we generate a population from a strategy and this strategy is updated
based on the population:

 toolbox.register("generate", strategy.generate, creator.Individual)
 toolbox.register("update", strategy.update)

 return toolbox

Define the main function. Start by defining the number of individuals and the number of
generations:

if __name__ == "__main__":
 # Problem size
 num_individuals = 10
 num_generations = 125

We need to define a strategy before we start the process:

 # Create a strategy using CMA-ES algorithm
 strategy = cma.Strategy(centroid=[5.0]*num_individuals, sigma=5.0,
 lambda_=20*num_individuals)

Create the toolbox based on the strategy:

 # Create toolbox based on the above strategy
 toolbox = create_toolbox(strategy)

Create a HallOfFame object. The HallOfFame object contains the best individual that ever
existed in the population. This object is kept in a sorted format at all times. This way, the
first element in this object is the individual that has the best fitness value ever seen during
the evolution process:

 # Create hall of fame object
 hall_of_fame = tools.HallOfFame(1)

Register the stats using the Statistics method:

 # Register the relevant stats
 stats = tools.Statistics(lambda x: x.fitness.values)
 stats.register("avg", np.mean)
 stats.register("std", np.std)
 stats.register("min", np.min)
 stats.register("max", np.max)

Genetic Algorithms

[208]

Define the logbook to keep track of the evolution records. It is basically a chronological list
of dictionaries:

 logbook = tools.Logbook()
 logbook.header = "gen", "evals", "std", "min", "avg", "max"

Define objects to compile all the data:

 # Objects that will compile the data
 sigma = np.ndarray((num_generations, 1))
 axis_ratio = np.ndarray((num_generations, 1))
 diagD = np.ndarray((num_generations, num_individuals))
 fbest = np.ndarray((num_generations,1))
 best = np.ndarray((num_generations, num_individuals))
 std = np.ndarray((num_generations, num_individuals))

Iterate through the generations:

 for gen in range(num_generations):
 # Generate a new population
 population = toolbox.generate()

Evaluate individuals using the fitness function:

 # Evaluate the individuals
 fitnesses = toolbox.map(toolbox.evaluate, population)
 for ind, fit in zip(population, fitnesses):
 ind.fitness.values = fit

Update the strategy based on the population:

 # Update the strategy with the evaluated individuals
 toolbox.update(population)

Update the hall of fame and statistics with the current generation of individuals:

 # Update the hall of fame and the statistics with the
 # currently evaluated population
 hall_of_fame.update(population)
 record = stats.compile(population)
 logbook.record(evals=len(population), gen=gen, **record)
 print(logbook.stream)

Genetic Algorithms

[209]

Save the data for plotting:

 # Save more data along the evolution for plotting
 sigma[gen] = strategy.sigma
 axis_ratio[gen] = max(strategy.diagD)**2/min(strategy.diagD)**2
 diagD[gen, :num_individuals] = strategy.diagD**2
 fbest[gen] = hall_of_fame[0].fitness.values
 best[gen, :num_individuals] = hall_of_fame[0]
 std[gen, :num_individuals] = np.std(population, axis=0)

Define the x axis and plot the stats:

 # The x-axis will be the number of evaluations
 x = list(range(0, strategy.lambda_ * num_generations,
strategy.lambda_))
 avg, max_, min_ = logbook.select("avg", "max", "min")
 plt.figure()
 plt.semilogy(x, avg, "--b")
 plt.semilogy(x, max_, "--b")
 plt.semilogy(x, min_, "-b")
 plt.semilogy(x, fbest, "-c")
 plt.semilogy(x, sigma, "-g")
 plt.semilogy(x, axis_ratio, "-r")
 plt.grid(True)
 plt.title("blue: f-values, green: sigma, red: axis ratio")

Plot the progress:

 plt.figure()
 plt.plot(x, best)
 plt.grid(True)
 plt.title("Object Variables")

 plt.figure()
 plt.semilogy(x, diagD)
 plt.grid(True)
 plt.title("Scaling (All Main Axes)")

 plt.figure()
 plt.semilogy(x, std)
 plt.grid(True)
 plt.title("Standard Deviations in All Coordinates")
 plt.show()

Genetic Algorithms

[210]

The full code is given in the file visualization.py. If you run the code, you will see four
screenshots. The first screenshot shows various parameters:

Genetic Algorithms

[211]

The second screenshot shows object variables:

Genetic Algorithms

[212]

The third screenshot shows scaling:

Genetic Algorithms

[213]

The fourth screenshot shows standard deviations:

Genetic Algorithms

[214]

You will see the progress printed on the Terminal. At the start, you will see something like
the following:

Genetic Algorithms

[215]

At the end, you will see the following:

As seen from the preceding figure, the values keep decreasing as we progress. This
indicates that it's converging.

Solving the symbol regression problem
Let's see how to use genetic programming to solve the symbol regression problem. It is
important to understand that genetic programming is not the same as genetic algorithms.
Genetic programming is a type of evolutionary algorithm in which the solutions occur in
the form of computer programs. Basically, the individuals in each generation would be
computer programs and their fitness level corresponds to their ability to solve problems.
These programs are modified, at each iteration, using a genetic algorithm. In essence,
genetic programming is the application of a genetic algorithm.

Genetic Algorithms

[216]

Coming to the symbol regression problem, we have a polynomial expression that needs to
be approximated here. It's a classic regression problem where we try to estimate the
underlying function. In this example, we will use the expression: f(x) = 2x^3 – 3x^2 + 4x – 1

The code discussed here is a variant of the symbol regression problem given in the DEAP
library. Create a new Python file and import the following:

import operator
import math
import random

import numpy as np
from deap import algorithms, base, creator, tools, gp

Create a division operator that can handle divide-by-zero error gracefully:

Define new functions
def division_operator(numerator, denominator):
 if denominator == 0:
 return 1

 return numerator / denominator

Define the evaluation function that will be used for fitness calculation. We need to define a
callable function to run computations on the input individual:

Define the evaluation function
def eval_func(individual, points):
 # Transform the tree expression in a callable function
 func = toolbox.compile(expr=individual)

Compute the mean squared error (MSE) between the function defined earlier and the
original expression:

 # Evaluate the mean squared error
 mse = ((func(x) - (2 * x**3 - 3 * x**2 - 4 * x + 1))**2 for x in
points)

 return math.fsum(mse) / len(points),

Genetic Algorithms

[217]

Define a function to create the toolbox. In order to create the toolbox here, we need to create
a set of primitives. These primitives are basically operators that will be used during the
evolution. They serve as building blocks for the individuals. We are going to use basic
arithmetic functions as our primitives here:

Function to create the toolbox
def create_toolbox():
 pset = gp.PrimitiveSet("MAIN", 1)
 pset.addPrimitive(operator.add, 2)
 pset.addPrimitive(operator.sub, 2)
 pset.addPrimitive(operator.mul, 2)
 pset.addPrimitive(division_operator, 2)
 pset.addPrimitive(operator.neg, 1)
 pset.addPrimitive(math.cos, 1)
 pset.addPrimitive(math.sin, 1)

We now need to declare an ephemeral constant. It is a special terminal type that does not
have a fixed value. When a given program appends such an ephemeral constant to the tree,
the function gets executed. The result is then inserted into the tree as a constant terminal.
These constant terminals can take the values -1, 0 or 1:

 pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))

The default name for the arguments is ARGx. Let's rename it x. It's not exactly necessary, but
it's a useful feature that comes in handy:

 pset.renameArguments(ARG0='x')

We need to define two object types – fitness and an individual. Let's do it using the
creator:

 creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
 creator.create("Individual", gp.PrimitiveTree,
fitness=creator.FitnessMin)

Create the toolbox and register the functions. The registration process is similar to
previous sections:

 toolbox = base.Toolbox()

 toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
 toolbox.register("individual", tools.initIterate, creator.Individual,
toolbox.expr)
 toolbox.register("population", tools.initRepeat, list,
toolbox.individual)
 toolbox.register("compile", gp.compile, pset=pset)
 toolbox.register("evaluate", eval_func, points=[x/10. for x in

Genetic Algorithms

[218]

range(-10,10)])
 toolbox.register("select", tools.selTournament, tournsize=3)
 toolbox.register("mate", gp.cxOnePoint)
 toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
 toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut,
pset=pset)

 toolbox.decorate("mate",
gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
 toolbox.decorate("mutate",
gp.staticLimit(key=operator.attrgetter("height"), max_value=17))

 return toolbox

Define the main function and start by seeding the random number generator:

if __name__ == "__main__":
 random.seed(7)

Create the toolbox object:

 toolbox = create_toolbox()

Define the initial population using the method available in the toolbox object. We will use
450 individuals. The user defines this number, so you should feel free to experiment with it.
Also define the hall_of_fame object:

 population = toolbox.population(n=450)
 hall_of_fame = tools.HallOfFame(1)

Statistics are useful when we build genetic algorithms. Define the stats objects:

 stats_fit = tools.Statistics(lambda x: x.fitness.values)
 stats_size = tools.Statistics(len)

Register the stats using the objects defined previously:

 mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
 mstats.register("avg", np.mean)
 mstats.register("std", np.std)
 mstats.register("min", np.min)
 mstats.register("max", np.max)

Define the crossover probability, mutation probability, and the number of generations:

 probab_crossover = 0.4
 probab_mutate = 0.2
 num_generations = 60

Genetic Algorithms

[219]

Run the evolutionary algorithm using the above parameters:

 population, log = algorithms.eaSimple(population, toolbox,
 probab_crossover, probab_mutate, num_generations,
 stats=mstats, halloffame=hall_of_fame, verbose=True)

The full code is given in the file symbol_regression.py. If you run the code, you will see
the following on your Terminal at the start of the evolution:

At the end, you will see the following:

Genetic Algorithms

[220]

Building an intelligent robot controller
Let's see how to build a robot controller using a genetic algorithm. We are given a map with
the targets sprinkled all over it. The map looks like this:

Genetic Algorithms

[221]

There are 124 targets in the preceding map. The goal of the robot controller is to
automatically traverse the map and consume all those targets. This program is a variant of
the artificial ant program given in the deap library.

Create a new Python file and import the following:

import copy
import random
from functools import partial

import numpy as np
from deap import algorithms, base, creator, tools, gp

Create the class to control the robot:

class RobotController(object):
 def __init__(self, max_moves):
 self.max_moves = max_moves
 self.moves = 0
 self.consumed = 0
 self.routine = None

Define the directions and movements:

 self.direction = ["north", "east", "south", "west"]
 self.direction_row = [1, 0, -1, 0]
 self.direction_col = [0, 1, 0, -1]

Define the reset functionality:

 def _reset(self):
 self.row = self.row_start
 self.col = self.col_start
 self.direction = 1
 self.moves = 0
 self.consumed = 0
 self.matrix_exc = copy.deepcopy(self.matrix)

Define the conditional operator:

 def _conditional(self, condition, out1, out2):
 out1() if condition() else out2()

Genetic Algorithms

[222]

Define the left turning operator:

 def turn_left(self):
 if self.moves < self.max_moves:
 self.moves += 1
 self.direction = (self.direction - 1) % 4

Define the right turning operator:

 def turn_right(self):
 if self.moves < self.max_moves:
 self.moves += 1
 self.direction = (self.direction + 1) % 4

Define the method to control how the robot moves forward:

 def move_forward(self):
 if self.moves < self.max_moves:
 self.moves += 1
 self.row = (self.row + self.direction_row[self.direction]) %
 self.matrix_row
 self.col = (self.col + self.direction_col[self.direction]) %
 self.matrix_col

 if self.matrix_exc[self.row][self.col] == "target":
 self.consumed += 1

 self.matrix_exc[self.row][self.col] = "passed"

Define a method to sense the target. If you see the target ahead, then update the matrix
accordingly:

 def sense_target(self):
 ahead_row = (self.row + self.direction_row[self.direction]) %
self.matrix_row
 ahead_col = (self.col + self.direction_col[self.direction]) %
self.matrix_col
 return self.matrix_exc[ahead_row][ahead_col] == "target"

If you see the target ahead, then create the relevant function and return it:

 def if_target_ahead(self, out1, out2):
 return partial(self._conditional, self.sense_target, out1, out2)

Genetic Algorithms

[223]

Define the method to run it:

 def run(self,routine):
 self._reset()
 while self.moves < self.max_moves:
 routine()

Define a function to traverse the input map. The symbol # indicates all the targets on the
map and the symbol S indicates the starting point. The symbol . denotes empty cells:

 def traverse_map(self, matrix):
 self.matrix = list()
 for i, line in enumerate(matrix):
 self.matrix.append(list())

 for j, col in enumerate(line):
 if col == "#":
 self.matrix[-1].append("target")

 elif col == ".":
 self.matrix[-1].append("empty")

 elif col == "S":
 self.matrix[-1].append("empty")
 self.row_start = self.row = i
 self.col_start = self.col = j
 self.direction = 1

 self.matrix_row = len(self.matrix)
 self.matrix_col = len(self.matrix[0])
 self.matrix_exc = copy.deepcopy(self.matrix)

Define a class to generate functions depending on the number of input arguments:

class Prog(object):
 def _progn(self, *args):
 for arg in args:
 arg()

 def prog2(self, out1, out2):
 return partial(self._progn, out1, out2)

 def prog3(self, out1, out2, out3):
 return partial(self._progn, out1, out2, out3)

Genetic Algorithms

[224]

Define an evaluation function for each individual:

def eval_func(individual):
 global robot, pset

 # Transform the tree expression to functional Python code
 routine = gp.compile(individual, pset)

Run the current program:

 # Run the generated routine
 robot.run(routine)
 return robot.consumed,

Define a function to create the toolbox and add primitives:

def create_toolbox():
 global robot, pset

 pset = gp.PrimitiveSet("MAIN", 0)
 pset.addPrimitive(robot.if_target_ahead, 2)
 pset.addPrimitive(Prog().prog2, 2)
 pset.addPrimitive(Prog().prog3, 3)
 pset.addTerminal(robot.move_forward)
 pset.addTerminal(robot.turn_left)
 pset.addTerminal(robot.turn_right)

Create the object types using the fitness function:

 creator.create("FitnessMax", base.Fitness, weights=(1.0,))
 creator.create("Individual", gp.PrimitiveTree,
fitness=creator.FitnessMax)

Create the toolbox and register all the operators:

 toolbox = base.Toolbox()

 # Attribute generator
 toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)

 # Structure initializers
 toolbox.register("individual", tools.initIterate, creator.Individual,
toolbox.expr_init)
 toolbox.register("population", tools.initRepeat, list,
toolbox.individual)

 toolbox.register("evaluate", eval_func)
 toolbox.register("select", tools.selTournament, tournsize=7)
 toolbox.register("mate", gp.cxOnePoint)

Genetic Algorithms

[225]

 toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
 toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut,
pset=pset)

 return toolbox

Define the main function and start by seeding the random number generator:

if __name__ == "__main__":
 global robot

 # Seed the random number generator
 random.seed(7)

Create the robot controller object using the initialization parameter:

 # Define the maximum number of moves
 max_moves = 750

 # Create the robot object
 robot = RobotController(max_moves)

Create the toolbox using the function we defined earlier:

 # Create the toolbox
 toolbox = create_toolbox()

Read the map data from the input file:

 # Read the map data
 with open('target_map.txt', 'r') as f:
 robot.traverse_map(f)

Define the population with 400 individuals and define the hall_of_fame object:

 # Define population and hall of fame variables
 population = toolbox.population(n=400)
 hall_of_fame = tools.HallOfFame(1)

Register the stats:

 # Register the stats
 stats = tools.Statistics(lambda x: x.fitness.values)
 stats.register("avg", np.mean)
 stats.register("std", np.std)
 stats.register("min", np.min)
 stats.register("max", np.max)

Genetic Algorithms

[226]

Define the crossover probability, mutation probability, and the number of generations:

 # Define parameters
 probab_crossover = 0.4
 probab_mutate = 0.3
 num_generations = 50

Run the evolutionary algorithm using the parameters defined earlier:

 # Run the algorithm to solve the problem
 algorithms.eaSimple(population, toolbox, probab_crossover,
 probab_mutate, num_generations, stats,
 halloffame=hall_of_fame)

The full code is given in the file robot.py. If you run the code, you will get the following
on your Terminal:

Genetic Algorithms

[227]

Towards the end, you will see the following:

Summary
In this chapter, we learned about genetic algorithms and their underlying concepts. We
discussed evolutionary algorithms and genetic programming. We understood how they are
related to genetic algorithms. We discussed the fundamental building blocks of genetic
algorithms including the concepts of population, crossover, mutation, selection, and fitness
function. We learned how to generate a bit pattern with predefined parameters. We
discussed how to visualize the evolution process using CMA-ES. We learnt how to solve the
symbol regression problem in this paradigm. We then used these concepts to build a robot
controller to traverse a map and consume all the targets. In the next chapter, we will learn
about reinforcement learning and see how to build a smart agent.

9
Building Games With Artificial

Intelligence
In this chapter, we are going to learn how to build games with Artificial Intelligence. We
will learn how to use search algorithms to effectively come up with strategies to win the
games. We will then use these algorithms to build intelligent bots for different games.

By the end of this chapter, you will understand the following concepts:

Using search algorithms in games
Combinatorial search
Minimax algorithm
Alpha-Beta pruning
Negamax algorithm
Building a bot to play Last Coin Standing
Building a bot to play Tic Tac Toe
Building two bots to play Connect Four against each other
Building two bots to play Hexapawn against each other

Building Games With Artificial Intelligence

[229]

Using search algorithms in games
Search algorithms are used in games to figure out a strategy. The algorithms search through
the possibilities and pick the best move. There are various parameters to think about –
speed, accuracy, complexity, and so on. These algorithms consider all possible actions
available at this time and then evaluate their future moves based on these options. The goal
of these algorithms is to find the optimal set of moves that will help them arrive at the final
condition. Every game has a different set of winning conditions. These algorithms use those
conditions to find the set of moves.

The description given in the previous paragraph is ideal if there is no opposing player.
Things are not as straightforward with games that have multiple players. Let's consider a
two-player game. For every move made by a player, the opposing player will make a move
to prevent the player from achieving the goal. So when a search algorithm finds the optimal
set of moves from the current state, it cannot just go ahead and make those moves because
the opposing player will stop it. This basically means that search algorithms need to
constantly re-evaluate after each move.

Let's discuss how a computer perceives any given game. We can think of a game as a search
tree. Each node in this tree represents a future state. For example, if you are playing
Tic–Tac–Toe (Noughts and Crosses), you can construct this tree to represent all possible
moves. We start from the root of the tree, which is the starting point of the game. This node
will have several children that represent various possible moves. Those children, in turn,
will have more children that represent game states after more moves by the opponent. The
terminal nodes of the tree represent the final results of the game after making various
moves. The game would either end in a draw or one of the players would win it. The search
algorithms search through this tree to make decisions at each step of the game.

Combinatorial search
Search algorithms appear to solve the problem of adding intelligence to games, but there's a
drawback. These algorithms employ a type of search called exhaustive search, which is also
known as brute force search. It basically explores the entire search space and tests every
possible solution. It means that, in the worst case, we will have to explore all the possible
solutions before we get the right solution.

Building Games With Artificial Intelligence

[230]

As the games get more complex, we cannot rely on brute force search because the number
of possibilities gets enormous. This quickly becomes computationally intractable. In order
to solve this problem, we use combinatorial search to solve problems. It refers to a field of
study where search algorithms efficiently explore the solution space using heuristics or by
reducing the size of the search space. This is very useful in games like Chess or Go.
Combinatorial search works efficiently by using pruning strategies. These strategies help it
avoid testing all possible solutions by eliminating the ones that are obviously wrong. This
helps save time and effort.

Minimax algorithm
Now that we have briefly discussed combinatorial search, let's talk about the heuristics that
are employed by combinatorial search algorithms. These heuristics are used to speed up the
search strategy and the Minimax algorithm is one such strategy used by combinatorial
search. When two players are playing against each other, they are basically working
towards opposite goals. So each side needs to predict what the opposing player is going to
do in order to win the game. Keeping this in mind, Minimax tries to achieve this through
strategy. It will try to minimize the function that the opponent is trying to maximize.

As we know, brute forcing the solution is not an option. The computer cannot go through
all the possible states and then get the best possible set of moves to win the game. The
computer can only optimize the moves based on the current state using a heuristic. The
computer constructs a tree and it starts from the bottom. It evaluates which moves would
benefit its opponent. Basically, it knows which moves the opponent is going to make based
on the premise that the opponent will make the moves that would benefit them the most,
and thereby be of the least benefit to the computer. This outcome is one of the terminal
nodes of the tree and the computer uses this position to work backwards. Each option that's
available to the computer can be assigned a value and it can then pick the highest value to
take an action.

Alpha-Beta pruning
Minimax search is an efficient strategy, but it still ends up exploring parts of the tree that
are irrelevant. Let's consider a tree where we are supposed to search for solutions. Once we
find an indicator on a node that tells us that the solution does not exist in that sub-tree,
there is no need to evaluate that sub-tree. But Minimax search is a bit too conservative, so it
ends up exploring that sub-tree.

Building Games With Artificial Intelligence

[231]

We need to be smart about it and avoid searching a part of a tree that is not necessary. This
process is called pruning and Alpha-Beta pruning is a type of avoidance strategy that is
used to avoid searching parts of the tree that do not contain the solution.

The Alpha and Beta parameters in alpha-beta pruning refer to the two bounds that are used
during the calculation. These parameters refer to the values that restrict the set of possible
solutions. This is based on the section of the tree that has already been explored. Alpha is
the maximum lower bound of the number of possible solutions and Beta is the minimum
upper bound on the number of possible solutions.

As we discussed earlier, each node can be assigned a value based on the current state. When
the algorithm considers any new node as a potential path to the solution, it can work out if
the current estimate of the value of the node lies between alpha and beta. This is how it
prunes the search.

Negamax algorithm
The Negamax algorithm is a variant of Minimax that's frequently used in real world
implementations. A two-player game is usually a zero-sum game, which means that one
player's loss is equal to another player's gain and vice versa. Negamax uses this property
extensively to come up with a strategy to increases its chances of winning the game.

In terms of the game, the value of a given position to the first player is the negation of the
value to the second player. Each player looks for a move that will maximize the damage to
the opponent. The value resulting from the move should be such that the opponent gets the
least value. This works both ways seamlessly, which means that a single method can be
used to value the positions. This is where it has an advantage over Minimax in terms of
simplicity. Minimax requires that the first player select the move with the maximum value,
whereas the second player must select a move with the minimum value. Alpha-beta
pruning is used here as well.

Installing easyAI library
We will be using a library called easyAI in this chapter. It is an artificial intelligence
framework and it provides all the functionality necessary to build two-player games. You
can learn about it at http://zulko.github.io/easyAI.

http://zulko.github.io/easyAI

Building Games With Artificial Intelligence

[232]

Install it by running the following command on your Terminal:

 $ pip3 install easyAI

We need some of the files to be accessible in order to use some of the pre-built routines. For
ease of use, the code provided with this book contains a folder called easyAI. Make sure
you place this folder in the same folder as your code files. This folder is basically a subset of
the easyAI GitHub repository available at https://github.com/Zulko/easyAI. You can go
through the source code to make yourself more familiar with it.

Building a bot to play Last Coin Standing
This is a game where we have a pile of coins and each player takes turns to take a number
of coins from the pile. There is a lower and an upper bound on the number of coins that can
be taken from the pile. The goal of the game is to avoid taking the last coin in the pile. This
recipe is a variant of the Game of Bones recipe given in the easyAI library. Let's see how to
build a game where the computer can play against the user.

Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player
from easyAI.AI import TT

Create a class to handle all the operations of the game. We will be inheriting from the base
class TwoPlayersGame available in the easyAI library. There are a couple of parameters
that have been to defined in order for it to function properly. The first one is the players
variable. We will talk about the player object later. Create the class using the following
code:

class LastCoinStanding(TwoPlayersGame):
 def __init__(self, players):
 # Define the players. Necessary parameter.
 self.players = players

Define who is going to start the game. The players are numbered from one. So in this case,
player one starts the game:

 # Define who starts the game. Necessary parameter.
 self.nplayer = 1

https://github.com/Zulko/easyAI

Building Games With Artificial Intelligence

[233]

Define the number of coins in the pile. You are free to choose any number here. In this case,
let's choose 25:

 # Overall number of coins in the pile
 self.num_coins = 25

Define the maximum number of coins that can be taken out in any move. You are free to
choose any number for this parameter as well. Let's choose 4 in our case:

 # Define max number of coins per move
 self.max_coins = 4

Define all the possible movies. In this case, players can take either 1, 2, 3, or 4 coins in each
move:

 # Define possible moves
 def possible_moves(self):
 return [str(x) for x in range(1, self.max_coins + 1)]

Define a method to remove the coins and keep track of the number of coins remaining in
the pile:

 # Remove coins
 def make_move(self, move):
 self.num_coins -= int(move)

Check if somebody won the game by checking the number of coins remaining:

 # Did the opponent take the last coin?
 def win(self):
 return self.num_coins <= 0

Stop the game after somebody wins it:

 # Stop the game when somebody wins
 def is_over(self):
 return self.win()

Compute the score based on the win method. It's necessary to define this method:

 # Compute score
 def scoring(self):
 return 100 if self.win() else 0

Building Games With Artificial Intelligence

[234]

Define a method to show the current status of the pile:

 # Show number of coins remaining in the pile
 def show(self):
 print(self.num_coins, 'coins left in the pile')

Define the main function and start by defining the transposition table. Transposition tables
are used in games to store the positions and movements so as to speed up the algorithm.
Type in the following code:

if __name__ == "__main__":
 # Define the transposition table
 tt = TT()

Define the method ttentry to get the number of coins. It's an optional method that's used
to create a string to describe the game:

 # Define the method
 LastCoinStanding.ttentry = lambda self: self.num_coins

Let's solve the game using AI. The function id_solve is used to solve a given game using
iterative deepening. It basically determines who can win a game using all the paths. It looks
to answer questions such as, Can the first player force a win by playing perfectly? Will the
computer always lose against a perfect opponent?

The method id_solve explores various options in the game's Negamax algorithm several
times. It always starts at the initial state of the game and takes increasing depth to keep
going. It will do it until the score indicates that somebody will win or lose. The second
argument in the method takes a list of depths that it will try out. In this case, it will try all
the values from 2 to 20:

 # Solve the game
 result, depth, move = id_solve(LastCoinStanding,
 range(2, 20), win_score=100, tt=tt)
 print(result, depth, move)

Start the game against the computer:

 # Start the game
 game = LastCoinStanding([AI_Player(tt), Human_Player()])
 game.play()

Building Games With Artificial Intelligence

[235]

The full code is given in the file coins.py. It's an interactive program, so it will expect
input from the user. If you run the code, you will basically be playing against the computer.
Your goal is to force the computer to take the last coin, so that you win the game. If you run
the code, you will get the following output on your Terminal at the beginning:

If you scroll down, you will see the following towards the end:

As we can see, the computer wins the game because the user picked up the last coin.

Building Games With Artificial Intelligence

[236]

Building a bot to play Tic-Tac-Toe
Tic-Tac-Toe (Noughts and Crosses) is probably one of the most famous games. Let's see
how to build a game where the computer can play against the user. This is a minor variant
of the Tic-Tac-Toe recipe given in the easyAI library.

Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, AI_Player, Negamax
from easyAI.Player import Human_Player

Define a class that contains all the methods to play the game. Start by defining the players
and who starts the game:

class GameController(TwoPlayersGame):
 def __init__(self, players):
 # Define the players
 self.players = players

 # Define who starts the game
 self.nplayer = 1

We will be using a 3×3 board numbered from one to nine row-wise:

 # Define the board
 self.board = [0] * 9

Define a method to compute all the possible moves:

 # Define possible moves
 def possible_moves(self):
 return [a + 1 for a, b in enumerate(self.board) if b == 0]

Define a method to update the board after making a move:

 # Make a move
 def make_move(self, move):
 self.board[int(move) - 1] = self.nplayer

Building Games With Artificial Intelligence

[237]

Define a method to see if somebody has lost the game. We will be checking if somebody has
three in a row:

 # Does the opponent have three in a line?
 def loss_condition(self):
 possible_combinations = [[1,2,3], [4,5,6], [7,8,9],
 [1,4,7], [2,5,8], [3,6,9], [1,5,9], [3,5,7]]
 return any([all([(self.board[i-1] == self.nopponent)
 for i in combination]) for combination in
possible_combinations])

Check if the game is over using the loss_condition method:

 # Check if the game is over
 def is_over(self):
 return (self.possible_moves() == []) or self.loss_condition()

Define a method to show the current progress:

 # Show current position
 def show(self):
 print('\n'+'\n'.join([' '.join([['. ', 'O', 'X'][self.board[3*j +
i]]
 for i in range(3)]) for j in range(3)]))

Compute the score using the loss_condition method:

 # Compute the score
 def scoring(self):
 return -100 if self.loss_condition() else 0

Define the main function and start by defining the algorithm. We will be using Negamax as
the AI algorithm for this game. We can specify the number of steps in advance that the
algorithm should think. In this case, let's choose 7:

if __name__ == "__main__":
 # Define the algorithm
 algorithm = Negamax(7)

Start the game:

 # Start the game
 GameController([Human_Player(), AI_Player(algorithm)]).play()

Building Games With Artificial Intelligence

[238]

The full code is given in the file tic_tac_toe.py. It's an interactive game where you play
against the computer. If you run the code, you will get the following output on your
Terminal at the beginning:

If you scroll down, you will see the following printed on your Terminal once it finishes
executing the code:

As we can see, the game ends in a draw.

Building Games With Artificial Intelligence

[239]

Building two bots to play Connect Four™
against each other
Connect Four™ is a popular two-player game sold under the Milton Bradley trademark. It is
also known by other names such as Four in a Row or Four Up. In this game, the players
take turns dropping discs into a vertical grid consisting of six rows and seven columns. The
goal is to get four discs in a line. This is a variant of the Connect Four recipe given in the
easyAI library. Let's see how to build it. In this recipe, instead of playing against the
computer, we will create two bots that will play against each other. We will use a different
algorithm for each to see which one wins.
Create a new Python file and import the following packages:

import numpy as np
from easyAI import TwoPlayersGame, Human_Player, AI_Player, \
 Negamax, SSS

Define a class that contains all the methods needed to play the game:

class GameController(TwoPlayersGame):
 def __init__(self, players, board = None):
 # Define the players
 self.players = players

Define the board with six rows and seven columns:

 # Define the configuration of the board
 self.board = board if (board != None) else (
 np.array([[0 for i in range(7)] for j in range(6)]))

Define who's going to start the game. In this case, let's have player one start the game:

 # Define who starts the game
 self.nplayer = 1

Define the positions:

 # Define the positions
 self.pos_dir = np.array([[[i, 0], [0, 1]] for i in range(6)] +
 [[[0, i], [1, 0]] for i in range(7)] +
 [[[i, 0], [1, 1]] for i in range(1, 3)] +
 [[[0, i], [1, 1]] for i in range(4)] +
 [[[i, 6], [1, -1]] for i in range(1, 3)] +
 [[[0, i], [1, -1]] for i in range(3, 7)])

Building Games With Artificial Intelligence

[240]

Define a method to get all the possible moves:

 # Define possible moves
 def possible_moves(self):
 return [i for i in range(7) if (self.board[:, i].min() == 0)]

Define a method to control how to make a move:

 # Define how to make the move
 def make_move(self, column):
 line = np.argmin(self.board[:, column] != 0)
 self.board[line, column] = self.nplayer

Define a method to show the current status:

 # Show the current status
 def show(self):
 print('\n' + '\n'.join(
 ['0 1 2 3 4 5 6', 13 * '-'] +
 [' '.join([['.', 'O', 'X'][self.board[5 - j][i]]
 for i in range(7)]) for j in range(6)]))

Define a method to compute what a loss looks like. Whenever somebody gets four in a line,
that player wins the game:

 # Define what a loss_condition looks like
 def loss_condition(self):
 for pos, direction in self.pos_dir:
 streak = 0
 while (0 <= pos[0] <= 5) and (0 <= pos[1] <= 6):
 if self.board[pos[0], pos[1]] == self.nopponent:
 streak += 1
 if streak == 4:
 return True
 else:
 streak = 0

 pos = pos + direction

 return False

Check if the game is over by using the loss_condition method:

 # Check if the game is over
 def is_over(self):
 return (self.board.min() > 0) or self.loss_condition()

Building Games With Artificial Intelligence

[241]

Compute the score:

 # Compute the score
 def scoring(self):
 return -100 if self.loss_condition() else 0

Define the main function and start by defining the algorithms. We will let two algorithms
play against each other. We will use Negamax for the first computer player and SSS*
algorithm for the second computer player. SSS* is basically a search algorithm that conducts
a state space search by traversing the tree in a best-first style. Both methods take, as an
input argument, the number of turns in advance to think about. In this case, let's use five for
both:

if __name__ == '__main__':
 # Define the algorithms that will be used
 algo_neg = Negamax(5)
 algo_sss = SSS(5)

Start playing the game:

 # Start the game
 game = GameController([AI_Player(algo_neg), AI_Player(algo_sss)])
 game.play()

Print the result:

 # Print the result
 if game.loss_condition():
 print('\nPlayer', game.nopponent, 'wins. ')
 else:
 print("\nIt's a draw.")

The full code is given in the file connect_four.py. This is not an interactive game. We are
just pitting one algorithm against another. Negamax algorithm is player one and SSS*
algorithm is player two.

Building Games With Artificial Intelligence

[242]

If you run the code, you will get the following output on your Terminal at the beginning:

If you scroll down, you will see the following towards the end:

As we can see, player two wins the game.

Building Games With Artificial Intelligence

[243]

Building two bots to play Hexapawn against
each other
Hexapawn is a two-player game where we start with a chessboard of size NxM. We have
pawns on each side of the board and the goal is to advance a pawn all the way to the other
end of the board. The standard pawn rules of chess are applicable here. This is a variant of
the Hexapawn recipe given in the easyAI library. We will create two bots and pit an
algorithm against itself to see what happens.

Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, AI_Player, \
 Human_Player, Negamax

Define a class that contains all the methods necessary to control the game. Start by defining
the number of pawns on each side and the length of the board. Create a list of tuples
containing the positions:

class GameController(TwoPlayersGame):
 def __init__(self, players, size = (4, 4)):
 self.size = size
 num_pawns, len_board = size
 p = [[(i, j) for j in range(len_board)] \
 for i in [0, num_pawns - 1]]

Assign the direction, goals, and pawns to each player:

 for i, d, goal, pawns in [(0, 1, num_pawns - 1,
 p[0]), (1, -1, 0, p[1])]:
 players[i].direction = d
 players[i].goal_line = goal
 players[i].pawns = pawns

Define the players and specify who starts first:

 # Define the players
 self.players = players

 # Define who starts first
 self.nplayer = 1

Define the alphabets that will be used to identify positions like B6 or C7 on a chessboard:

 # Define the alphabets
 self.alphabets = 'ABCDEFGHIJ'

Building Games With Artificial Intelligence

[244]

Define a lambda function to convert strings to tuples:

 # Convert B4 to (1, 3)
 self.to_tuple = lambda s: (self.alphabets.index(s[0]),
 int(s[1:]) - 1)

Define a lambda function to convert tuples to strings:

 # Convert (1, 3) to B4
 self.to_string = lambda move: ' '.join([self.alphabets[
 move[i][0]] + str(move[i][1] + 1)
 for i in (0, 1)])

Define a method to compute the possible moves:

 # Define the possible moves
 def possible_moves(self):
 moves = []
 opponent_pawns = self.opponent.pawns
 d = self.player.direction

If you don't find an opponent pawn in a position, then that's a valid move:

 for i, j in self.player.pawns:
 if (i + d, j) not in opponent_pawns:
 moves.append(((i, j), (i + d, j)))

 if (i + d, j + 1) in opponent_pawns:
 moves.append(((i, j), (i + d, j + 1)))

 if (i + d, j - 1) in opponent_pawns:
 moves.append(((i, j), (i + d, j - 1)))

 return list(map(self.to_string, [(i, j) for i, j in moves]))

Define how to make a move and update the pawns based on that:

 # Define how to make a move
 def make_move(self, move):
 move = list(map(self.to_tuple, move.split(' ')))
 ind = self.player.pawns.index(move[0])
 self.player.pawns[ind] = move[1]

 if move[1] in self.opponent.pawns:
 self.opponent.pawns.remove(move[1])

Define the conditions for a loss. If a player gets 4 in a line, then the opponent loses:

 # Define what a loss looks like

Building Games With Artificial Intelligence

[245]

 def loss_condition(self):
 return (any([i == self.opponent.goal_line
 for i, j in self.opponent.pawns])
 or (self.possible_moves() == []))

Check if the game is over using the loss_condition method:

 # Check if the game is over
 def is_over(self):
 return self.loss_condition()

Print the current status:

 # Show the current status
 def show(self):
 f = lambda x: '1' if x in self.players[0].pawns else (
 '2' if x in self.players[1].pawns else '.')

 print("\n".join([" ".join([f((i, j))
 for j in range(self.size[1])])
 for i in range(self.size[0])]))

Define the main function and start by defining the scoring lambda function:

if __name__=='__main__':
 # Compute the score
 scoring = lambda game: -100 if game.loss_condition() else 0

Define the algorithm to be used. In this case, we will use Negamax that can calculate 12
moves in advance and uses a scoring lambda function for strategy:

 # Define the algorithm
 algorithm = Negamax(12, scoring)

Start playing the game:

 # Start the game
 game = GameController([AI_Player(algorithm),
 AI_Player(algorithm)])
 game.play()
 print('\nPlayer', game.nopponent, 'wins after', game.nmove, 'turns')

Building Games With Artificial Intelligence

[246]

The full code is given in the file hexapawn.py. It's not an interactive game. We are pitting
an AI algorithm against itself. If you run the code, you will get the following output on your
Terminal at the beginning:

Building Games With Artificial Intelligence

[247]

If you scroll down, you will see the following towards the end:

As we can see, player one wins the game.

Summary
In this chapter, we discussed how to build games with artificial intelligence, and how to use
search algorithms to effectively come up with strategies to win the games. We talked about
combinatorial search and how it can be used to speed up the search process. We learned
about Minimax and Alpha-Beta pruning. We learned how the Negamax algorithm is used
in practice. We then used these algorithms to build bots to play Last Coin Standing and Tic-
Tac-Toe.

We learned how to build two bots to play against each other in Connect Four and
Hexapawn. In the next chapter, we will discuss natural language processing and how to use
it to analyze text data by modeling and classifying it.

10
Natural Language Processing

In this chapter, we are going to learn about natural language processing. We will discuss
various concepts such as tokenization, stemming, and lemmatization to process text. We
will then discuss how to build a Bag of Words model and use it to classify text. We will see
how to use machine learning to analyze the sentiment of a given sentence. We will then
discuss topic modeling and implement a system to identify topics in a given document.

By the end of this chapter, you will know:

How to install relevant packages
Tokenizing text data
Converting words to their base forms using stemming
Converting words to their base forms using lemmatization
Dividing text data into chunks
Extracting document term matrix using the Bag of Words model
Building a category predictor
Constructing a gender identifier
Building a sentiment analyzer
Topic modeling using Latent Dirichlet Allocation

Introduction and installation of packages
Natural Language Processing (NLP) has become an important part of modern systems. It is
used extensively in search engines, conversational interfaces, document processors, and so
on. Machines can handle structured data well. But when it comes to working with free-form
text, they have a hard time. The goal of NLP is to develop algorithms that enable computers
to understand freeform text and help them understand language.

Natural Language Processing

[249]

One of the most challenging things about processing freeform natural language is the sheer
number of variations. The context plays a very important role in how a particular sentence
is understood. Humans are great at these things because we have been trained for many
years. We immediately use our past knowledge to understand the context and know what
the other person is talking about.

To address this issue, NLP researchers started developing various applications using
machine learning approaches. To build such applications, we need to collect a large corpus
of text and then train the algorithm to perform various tasks like categorizing text,
analyzing sentiments, or modeling topics. These algorithms are trained to detect patterns in
input text data and derive insights from it.

In this chapter, we will discuss various underlying concepts that are used to analyze text
and build NLP applications. This will enable us to understand how to extract meaningful
information from the given text data. We will use a Python package called Natural
Language Toolkit (NLTK) to build these applications. Make sure that you install this before
you proceed. You can install it by running the following command on your Terminal:

 $ pip3 install nltk

You can find more information about NLTK at http://www.nltk.org.

In order to access all the datasets provided by NLTK, we need to download it. Open up a
Python shell by typing the following on your Terminal:

 $ python3

We are now inside the Python shell. Type the following to download the data:

 >>> import nltk
 >>> nltk.download()

We will also use a package called gensim in this chapter. It's a robust semantic modeling
library that's useful for many applications. You can install it by running the following
command on your Terminal:

 $ pip3 install gensim

You might need another package called pattern for gensim to function properly. You can
install it by running the following command on your Terminal:

 $ pip3 install pattern

http://www.nltk.org

Natural Language Processing

[250]

You can find more information about gensim at https://radimrehurek.com/gensim. Now
that you have installed the NLTK and gensim, let's proceed with the discussion.

Tokenizing text data
When we deal with text, we need to break it down into smaller pieces for analysis. This is
where tokenization comes into the picture. It is the process of dividing the input text into a
set of pieces like words or sentences. These pieces are called tokens. Depending on what we
want to do, we can define our own methods to divide the text into many tokens. Let's take a
look at how to tokenize the input text using NLTK.

Create a new Python file and import the following packages:

from nltk.tokenize import sent_tokenize, \
 word_tokenize, WordPunctTokenizer

Define some input text that will be used for tokenization:

Define input text
input_text = "Do you know how tokenization works? It's actually quite
interesting! Let's analyze a couple of sentences and figure it out."

Divide the input text into sentence tokens:

Sentence tokenizer
print("\nSentence tokenizer:")
print(sent_tokenize(input_text))

Divide the input text into word tokens:

Word tokenizer
print("\nWord tokenizer:")
print(word_tokenize(input_text))

Divide the input text into word tokens using word punct tokenizer:

WordPunct tokenizer
print("\nWord punct tokenizer:")
print(WordPunctTokenizer().tokenize(input_text))

https://radimrehurek.com/gensim

Natural Language Processing

[251]

The full code is given in the file tokenizer.py. If you run the code, you will get the
following output on your Terminal:

We can see that the sentence tokenizer divides the input text into sentences. The two word
tokenizers behave differently when it comes to punctuation. For example, the word “It's” is
divided differently in the punct tokenizer as compared to the regular tokenizer.

Converting words to their base forms using
stemming
Working with text has a lot of variations included in it. We have to deal with different
forms of the same word and enable the computer to understand that these different words
have the same base form. For example, the word sing can appear in many forms such as
sang, singer, singing, singer, and so on. We just saw a set of words with similar meanings.
Humans can easily identify these base forms and derive context.

When we analyze text, it's useful to extract these base forms. It will enable us to extract
useful statistics to analyze the input text. Stemming is one way to achieve this. The goal of a
stemmer is to reduce words in their different forms into a common base form. It is basically
a heuristic process that cuts off the ends of words to extract their base forms. Let's see how
to do it using NLTK.

Create a new python file and import the following packages:

from nltk.stem.porter import PorterStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.stem.snowball import SnowballStemmer

Natural Language Processing

[252]

Define some input words:

input_words = ['writing', 'calves', 'be', 'branded', 'horse', 'randomize',
 'possibly', 'provision', 'hospital', 'kept', 'scratchy', 'code']

Create objects for Porter, Lancaster, and Snowball stemmers:

Create various stemmer objects
porter = PorterStemmer()
lancaster = LancasterStemmer()
snowball = SnowballStemmer('english')

Create a list of names for table display and format the output text accordingly:

#Create a list of stemmer names for display
stemmer_names = ['PORTER', 'LANCASTER', 'SNOWBALL']
formatted_text = '{:>16}' * (len(stemmer_names) + 1)
print('\n', formatted_text.format('INPUT WORD', *stemmer_names),
 '\n', '='*68)

Iterate through the words and stem them using the three stemmers:

Stem each word and display the output
for word in input_words:
 output = [word, porter.stem(word),
 lancaster.stem(word), snowball.stem(word)]
 print(formatted_text.format(*output))

The full code is given in the file stemmer.py. If you run the code, you will get the following
output on your Terminal:

Natural Language Processing

[253]

Let's talk a bit about the three stemming algorithms that are being used here. All of them
basically try to achieve the same goal. The difference between them is the level of strictness
that's used to arrive at the base form.

The Porter stemmer is the least in terms of strictness and Lancaster is the strictest. If you
closely observe the outputs, you will notice the differences. Stemmers behave differently
when it comes to words like possibly or provision. The stemmed outputs that are
obtained from the Lancaster stemmer are a bit obfuscated because it reduces the words a
lot. At the same time, the algorithm is really fast. A good rule of thumb is to use the
Snowball stemmer because it's a good trade off between speed and strictness.

Converting words to their base forms using
lemmatization
Lemmatization is another way of reducing words to their base forms. In the previous
section, we saw that the base forms that were obtained from those stemmers didn't make
sense. For example, all the three stemmers said that the base form of calves is calv, which is
not a real word. Lemmatization takes a more structured approach to solve this problem.

The lemmatization process uses a vocabulary and morphological analysis of words. It
obtains the base forms by removing the inflectional word endings such as ing or ed. This
base form of any word is known as the lemma. If you lemmatize the word calves, you
should get calf as the output. One thing to note is that the output depends on whether the
word is a verb or a noun. Let's take a look at how to do this using NLTK.

Create a new python file and import the following packages:

from nltk.stem import WordNetLemmatizer

Define some input words. We will be using the same set of words that we used in the
previous section so that we can compare the outputs.

input_words = ['writing', 'calves', 'be', 'branded', 'horse', 'randomize',
 'possibly', 'provision', 'hospital', 'kept', 'scratchy', 'code']

Create a lemmatizer object:

Create lemmatizer object
lemmatizer = WordNetLemmatizer()

Natural Language Processing

[254]

Create a list of lemmatizer names for table display and format the text accordingly:

Create a list of lemmatizer names for display
lemmatizer_names = ['NOUN LEMMATIZER', 'VERB LEMMATIZER']
formatted_text = '{:>24}' * (len(lemmatizer_names) + 1)
print('\n', formatted_text.format('INPUT WORD', *lemmatizer_names),
 '\n', '='*75)

Iterate through the words and lemmatize the words using Noun and Verb lemmatizers:

Lemmatize each word and display the output
for word in input_words:
 output = [word, lemmatizer.lemmatize(word, pos='n'),
 lemmatizer.lemmatize(word, pos='v')]
 print(formatted_text.format(*output))

The full code is given in the file lemmatizer.py. If you run the code, you will get the
following output on your Terminal:

We can see that the noun lemmatizer works differently than the verb lemmatizer when it
comes to words like writing or calves. If you compare these outputs to stemmer outputs, you
will see that there are differences too. The lemmatizer outputs are all meaningful whereas
stemmer outputs may or may not be meaningful.

Natural Language Processing

[255]

Dividing text data into chunks
Text data usually needs to be divided into pieces for further analysis. This process is known
as chunking. This is used frequently in text analysis. The conditions that are used to divide
the text into chunks can vary based on the problem at hand. This is not the same as
tokenization where we also divide text into pieces. During chunking, we do not adhere to
any constraints and the output chunks need to be meaningful.

When we deal with large text documents, it becomes important to divide the text into
chunks to extract meaningful information. In this section, we will see how to divide the
input text into a number of pieces.

Create a new python file and import the following packages:

import numpy as np
from nltk.corpus import brown

Define a function to divide the input text into chunks. The first parameter is the text and the
second parameter is the number of words in each chunk:

Split the input text into chunks, where
each chunk contains N words
def chunker(input_data, N):
 input_words = input_data.split(' ')
 output = []

Iterate through the words and divide them into chunks using the input parameter. The
function returns a list:

 cur_chunk = []
 count = 0
 for word in input_words:
 cur_chunk.append(word)
 count += 1
 if count == N:
 output.append(' '.join(cur_chunk))
 count, cur_chunk = 0, []

 output.append(' '.join(cur_chunk))

 return output

Natural Language Processing

[256]

Define the main function and read the input data using the Brown corpus. We will read
12,000 words in this case. You are free to read as many words as you want.

if __name__=='__main__':
 # Read the first 12000 words from the Brown corpus
 input_data = ' '.join(brown.words()[:12000])

Define the number of words in each chunk:

 # Define the number of words in each chunk
 chunk_size = 700

Divide the input text into chunks and display the output:

 chunks = chunker(input_data, chunk_size)
 print('\nNumber of text chunks =', len(chunks), '\n')
 for i, chunk in enumerate(chunks):
 print('Chunk', i+1, '==>', chunk[:50])

The full code is given in the file text_chunker.py. If you run the code, you will get the
following output on your Terminal:

The preceding screenshot shows the first 50 characters of each chunk.

Natural Language Processing

[257]

Extracting the frequency of terms using a
Bag of Words model
One of the main goals of text analysis is to convert text into numeric form so that we can use
machine learning on it. Let's consider text documents that contain many millions of words.
In order to analyze these documents, we need to extract the text and convert it into a form
of numeric representation.

Machine learning algorithms need numeric data to work with so that they can analyze the
data and extract meaningful information. This is where the Bag of Words model comes into
picture. This model extracts a vocabulary from all the words in the documents and builds a
model using a document term matrix. This allows us to represent every document as a bag
of words. We just keep track of word counts and disregard the grammatical details and the
word order.

Let's see what a document-term matrix is all about. A document term matrix is basically a
table that gives us counts of various words that occur in the document. So a text document
can be represented as a weighted combination of various words. We can set thresholds and
choose words that are more meaningful. In a way, we are building a histogram of all the
words in the document that will be used as a feature vector. This feature vector is used for
text classification.

Consider the following sentences:

Sentence 1: The children are playing in the hall
Sentence 2: The hall has a lot of space
Sentence 3: Lots of children like playing in an open space

If you consider all the three sentences, we have the following nine unique words:

the
children
are
playing
in
hall
has

Natural Language Processing

[258]

a
lot
of
space
like
an
open

There are 14 distinct words here. Let's construct a histogram for each sentence by using the
word count in each sentence. Each feature vector will be 14-dimensional because we have
14 distinct words overall:

Sentence 1: [2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Sentence 2: [1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0]
Sentence 3: [0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1]

Now that we have extracted these feature vectors, we can use machine learning algorithms
to analyze this data.

Let's see how to build a Bag of Words model in NLTK. Create a new python file and import
the following packages:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from nltk.corpus import brown
from text_chunker import chunker

Read the input data from Brown corpus. We will read 5,400 words. You are free to read as
many number of words as you want.

Read the data from the Brown corpus
input_data = ' '.join(brown.words()[:5400])

Define the number of words in each chunk:

Number of words in each chunk
chunk_size = 800

Divide the input text into chunks:

text_chunks = chunker(input_data, chunk_size)

Natural Language Processing

[259]

Convert the chunks into dictionary items:

Convert to dict items
chunks = []
for count, chunk in enumerate(text_chunks):
 d = {'index': count, 'text': chunk}
 chunks.append(d)

Extract the document term matrix where we get the count of each word. We will achieve
this using the CountVectorizer method that takes two input parameters. The first
parameter is the minimum document frequency and the second parameter is the maximum
document frequency. The frequency refers to the number of occurrences of a word in the
text.

Extract the document term matrix
count_vectorizer = CountVectorizer(min_df=7, max_df=20)
document_term_matrix = count_vectorizer.fit_transform([chunk['text'] for
chunk in chunks])

Extract the vocabulary and display it. The vocabulary refers to the list of distinct words that
were extracted in the previous step.

Extract the vocabulary and display it
vocabulary = np.array(count_vectorizer.get_feature_names())
print("\nVocabulary:\n", vocabulary)

Generate the names for display:

Generate names for chunks
chunk_names = []
for i in range(len(text_chunks)):
 chunk_names.append('Chunk-' + str(i+1))

Print the document term matrix:

Print the document term matrix
print("\nDocument term matrix:")
formatted_text = '{:>12}' * (len(chunk_names) + 1)
print('\n', formatted_text.format('Word', *chunk_names), '\n')
for word, item in zip(vocabulary, document_term_matrix.T):
 # 'item' is a 'csr_matrix' data structure
 output = [word] + [str(freq) for freq in item.data]
 print(formatted_text.format(*output))

Natural Language Processing

[260]

The full code is given in the file bag_of_words.py. If you run the code, you will get the
following output on your Terminal:

We can see all the words in the document term matrix and the corresponding counts in each
chunk.

Building a category predictor
A category predictor is used to predict the category to which a given piece of text belongs.
This is frequently used in text classification to categorize text documents. Search engines
frequently use this tool to order the search results by relevance. For example, let's say that
we want to predict whether a given sentence belongs to sports, politics, or science. To do
this, we build a corpus of data and train an algorithm. This algorithm can then be used for
inference on unknown data.

In order to build this predictor, we will use a statistic called TermFrequency – Inverse
Document Frequency (tf-idf). In a set of documents, we need to understand the importance
of each word. The tf-idf statistic helps us understand how important a given word is to a
document in a set of documents.

Natural Language Processing

[261]

Let's consider the first part of this statistic. The Term Frequency (tf) is basically a measure
of how frequently each word appears in a given document. Since different documents have
a different number of words, the exact numbers in the histogram will vary. In order to have
a level playing field, we need to normalize the histograms. So we divide the count of each
word by the total number of words in a given document to obtain the term frequency.

The second part of the statistic is the Inverse Document Frequency (idf), which is a
measure of how unique a word is to this document in the given set of documents. When we
compute the term frequency, the assumption is that all the words are equally important. But
we cannot just rely on the frequency of each word because words like and and the appear a
lot. To balance the frequencies of these commonly occurring words, we need to reduce their
weights and weigh up the rare words. This helps us identify words that are unique to each
document as well, which in turn helps us formulate a distinctive feature vector.

To compute this statistic, we need to compute the ratio of the number of documents with
the given word and divide it by the total number of documents. This ratio is essentially the
fraction of the documents that contain the given word. Inverse document frequency is then
calculated by taking the negative algorithm of this ratio.

We then combine term frequency and inverse document frequency to formulate a feature
vector to categorize documents. Let's see how to build a category predictor.

Create a new python file and import the following packages:

from sklearn.datasets import fetch_20newsgroups
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer

Define the map of categories that will be used for training. We will be using five categories
in this case. The keys in this dictionary object refer to the names in the scikit-learn
dataset.

Define the category map
category_map = {'talk.politics.misc': 'Politics', 'rec.autos': 'Autos',
 'rec.sport.hockey': 'Hockey', 'sci.electronics': 'Electronics',
 'sci.med': 'Medicine'}

Get the training dataset using fetch_20newsgroups:

Get the training dataset
training_data = fetch_20newsgroups(subset='train',
 categories=category_map.keys(), shuffle=True, random_state=5)

Natural Language Processing

[262]

Extract the term counts using the CountVectorizer object:

Build a count vectorizer and extract term counts
count_vectorizer = CountVectorizer()
train_tc = count_vectorizer.fit_transform(training_data.data)
print("\nDimensions of training data:", train_tc.shape)

Create Term Frequency – Inverse Document Frequency (tf-idf) transformer and train it
using the data:

Create the tf-idf transformer
tfidf = TfidfTransformer()
train_tfidf = tfidf.fit_transform(train_tc)

Define some sample input sentences that will be used for testing:

Define test data
input_data = [
 'You need to be careful with cars when you are driving on slippery
roads',
 'A lot of devices can be operated wirelessly',
 'Players need to be careful when they are close to goal posts',
 'Political debates help us understand the perspectives of both sides'
]

Train a Multinomial Bayes classifier using the training data:

Train a Multinomial Naive Bayes classifier
classifier = MultinomialNB().fit(train_tfidf, training_data.target)

Transform the input data using the count vectorizer:

Transform input data using count vectorizer
input_tc = count_vectorizer.transform(input_data)

Transform the vectorized data using the tf-idf transformer so that it can be run through
the inference model:

Transform vectorized data using tfidf transformer
input_tfidf = tfidf.transform(input_tc)

Predict the output using the tf-idf transformed vector:

Predict the output categories
predictions = classifier.predict(input_tfidf)

Natural Language Processing

[263]

Print the output category for each sample in the input test data:

Print the outputs
for sent, category in zip(input_data, predictions):
 print('\nInput:', sent, '\nPredicted category:', \
 category_map[training_data.target_names[category]])

The full code is given in the file category_predictor.py. If you run the code, you will
get the following output on your Terminal:

We can see intuitively that the predicted categories are correct.

Constructing a gender identifier
Gender identification is an interesting problem. In this case, we will use the heuristic to
construct a feature vector and use it to train a classifier. The heuristic that will be used here
is the last N letters of a given name. For example, if the name ends with ia, it's most likely a
female name, such as Amelia or Genelia. On the other hand, if the name ends with rk, it's
likely a male name such as Mark or Clark. Since we are not sure of the exact number of
letters to use, we will play around with this parameter and find out what the best answer is.
Let's see how to do it.

Create a new python file and import the following packages:

import random

from nltk import NaiveBayesClassifier
from nltk.classify import accuracy as nltk_accuracy
from nltk.corpus import names

Natural Language Processing

[264]

Define a function to extract the last N letters from the input word:

Extract last N letters from the input word
and that will act as our "feature"
def extract_features(word, N=2):
 last_n_letters = word[-N:]
 return {'feature': last_n_letters.lower()}

Define the main function and extract training data from the scikit-learn package. This
data contains labeled male and female names:

if __name__=='__main__':
 # Create training data using labeled names available in NLTK
 male_list = [(name, 'male') for name in names.words('male.txt')]
 female_list = [(name, 'female') for name in names.words('female.txt')]
 data = (male_list + female_list)

Seed the random number generator and shuffle the data:

 # Seed the random number generator
 random.seed(5)

 # Shuffle the data
 random.shuffle(data)

Create some sample names that will be used for testing:

 # Create test data
 input_names = ['Alexander', 'Danielle', 'David', 'Cheryl']

Define the percentage of data that will be used for training and testing:

 # Define the number of samples used for train and test
 num_train = int(0.8 * len(data))

We will be using the last N characters as the feature vector to predict the gender. We will
vary this parameter to see how the performance varies. In this case, we will go from 1 to 6:

 # Iterate through different lengths to compare the accuracy
 for i in range(1, 6):
 print('\nNumber of end letters:', i)
 features = [(extract_features(n, i), gender) for (n, gender) in data]

Separate the data into training and testing:

 train_data, test_data = features[:num_train], features[num_train:]

Natural Language Processing

[265]

Build a NaiveBayes Classifier using the training data:

 classifier = NaiveBayesClassifier.train(train_data)

Compute the accuracy of the classifier using the inbuilt method available in NLTK:

 # Compute the accuracy of the classifier
 accuracy = round(100 * nltk_accuracy(classifier, test_data), 2)
 print('Accuracy = ' + str(accuracy) + '%')

Predict the output for each name in the input test list:

 # Predict outputs for input names using the trained classifier model
 for name in input_names:
 print(name, '==>', classifier.classify(extract_features(name,
i)))

The full code is given in the file gender_identifier.py. If you run the code, you will get
the following output on your Terminal:

Natural Language Processing

[266]

The preceding screenshot shows the accuracy as well as the predicted outputs for the test
data. Let's go further and see what happens:

We can see that the accuracy peaked at two letters and then started decreasing after that.

Building a sentiment analyzer
Sentiment analysis is the process of determining the sentiment of a given piece of text. For
example, it can used to determine whether a movie review is positive or negative. This is
one of the most popular applications of natural language processing. We can add more
categories as well depending on the problem at hand. This technique is generally used to
get a sense of how people feel about a particular product, brand, or topic. It is frequently
used to analyze marketing campaigns, opinion polls, social media presence, product
reviews on e-commerce sites, and so on. Let's see how to determine the sentiment of a
movie review.

We will use a Naive Bayes classifier to build this classifier. We first need to extract all the
unique words from the text. The NLTK classifier needs this data to be arranged in the form
of a dictionary so that it can ingest it. Once we divide the text data into training and testing
datasets, we will train the Naive Bayes classifier to classify the reviews into positive and
negative. We will also print out the top informative words to indicate positive and negative
reviews. This information is interesting because it tells us what words are being used to
denote various reactions.

Natural Language Processing

[267]

Create a new python file and import the following packages:

from nltk.corpus import movie_reviews
from nltk.classify import NaiveBayesClassifier
from nltk.classify.util import accuracy as nltk_accuracy

Define a function to construct a dictionary object based on the input words and return it:

Extract features from the input list of words
def extract_features(words):
 return dict([(word, True) for word in words])

Define the main function and load the labeled movie reviews:

if __name__=='__main__':
 # Load the reviews from the corpus
 fileids_pos = movie_reviews.fileids('pos')
 fileids_neg = movie_reviews.fileids('neg')

Extract the features from the movie reviews and label it accordingly:

 # Extract the features from the reviews
 features_pos = [(extract_features(movie_reviews.words(
 fileids=[f])), 'Positive') for f in fileids_pos]
 features_neg = [(extract_features(movie_reviews.words(
 fileids=[f])), 'Negative') for f in fileids_neg]

Define the split between training and testing. In this case, we will allocate 80% for training
and 20% for testing:

 # Define the train and test split (80% and 20%)
 threshold = 0.8
 num_pos = int(threshold * len(features_pos))
 num_neg = int(threshold * len(features_neg))

Separate the feature vectors for training and testing:

 # Create training and training datasets
 features_train = features_pos[:num_pos] + features_neg[:num_neg]
 features_test = features_pos[num_pos:] + features_neg[num_neg:]

Print the number of datapoints used for training and testing:

 # Print the number of datapoints used
 print('\nNumber of training datapoints:', len(features_train))
 print('Number of test datapoints:', len(features_test))

Natural Language Processing

[268]

Train a Naive Bayes classifier using the training data and compute the accuracy using the
inbuilt method available in NLTK:

 # Train a Naive Bayes classifier
 classifier = NaiveBayesClassifier.train(features_train)
 print('\nAccuracy of the classifier:', nltk_accuracy(
 classifier, features_test))

Print the top N most informative words:

 N = 15
 print('\nTop ' + str(N) + ' most informative words:')
 for i, item in enumerate(classifier.most_informative_features()):
 print(str(i+1) + '. ' + item[0])
 if i == N - 1:
 break

Define sample sentences to be used for testing:

 # Test input movie reviews
 input_reviews = [
 'The costumes in this movie were great',
 'I think the story was terrible and the characters were very weak',
 'People say that the director of the movie is amazing',
 'This is such an idiotic movie. I will not recommend it to anyone.'
]

Iterate through the sample data and predict the output:

 print("\nMovie review predictions:")
 for review in input_reviews:
 print("\nReview:", review)

Compute the probabilities for each class:

 # Compute the probabilities
 probabilities =
classifier.prob_classify(extract_features(review.split()))

Pick the maximum value among the probabilities:

 # Pick the maximum value
 predicted_sentiment = probabilities.max()

Natural Language Processing

[269]

Print the predicted output class (positive or negative sentiment):

 # Print outputs
 print("Predicted sentiment:", predicted_sentiment)
 print("Probability:",
round(probabilities.prob(predicted_sentiment), 2))

The full code is given in the file sentiment_analyzer.py. If you run the code, you will
get the following output on your Terminal:

The preceding screenshot shows the top 15 most informative words. If you scroll down
your Terminal, you will see this:

Natural Language Processing

[270]

We can see and verify intuitively that the predictions are correct.

Topic modeling using Latent Dirichlet
Allocation
Topic modeling is the process of identifying patterns in text data that correspond to a topic.
If the text contains multiple topics, then this technique can be used to identify and separate
those themes within the input text. We do this to uncover hidden thematic structure in the
given set of documents.

Topic modeling helps us to organize our documents in an optimal way, which can then be
used for analysis. One thing to note about topic modeling algorithms is that we don't need
any labeled data. It is like unsupervised learning where it will identify the patterns on its
own. Given the enormous volumes of text data generated on the Internet, topic modeling
becomes very important because it enables us to summarize all this data, which would
otherwise not be possible.

Latent Dirichlet Allocation is a topic modeling technique where the underlying intuition is
that a given piece of text is a combination of multiple topics. Let's consider the following
sentence – Data visualization is an important tool in financial analysis. This sentence has
multiple topics like data, visualization, finance, and so on. This particular combination
helps us identify this text in a large document. In essence, it is a statistical model that tries to
capture this idea and create a model based on it. The model assumes that documents are
generated from a random process based on these topics. A topic is basically a distribution
over a fixed vocabulary of words. Let's see how to do topic modeling in Python.

We will use a library called gensim in this section. We have already installed this library in
the first section of this chapter. Make sure that you have it before you proceed. Create a new
python file and import the following packages:

from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
from gensim import models, corpora

Natural Language Processing

[271]

Define a function to load the input data. The input file contains 10 line-separated sentences:

Load input data
def load_data(input_file):
 data = []
 with open(input_file, 'r') as f:
 for line in f.readlines():
 data.append(line[:-1])

 return data

Define a function to process the input text. The first step is to tokenize it:

Processor function for tokenizing, removing stop
words, and stemming
def process(input_text):
 # Create a regular expression tokenizer
 tokenizer = RegexpTokenizer(r'\w+')

We then need to stem the tokenized text:

 # Create a Snowball stemmer
 stemmer = SnowballStemmer('english')

We need to remove the stop words from the input text because they don't add information.
Let's get the list of stop-words:

 # Get the list of stop words
 stop_words = stopwords.words('english')

Tokenize the input string:

 # Tokenize the input string
 tokens = tokenizer.tokenize(input_text.lower())

Remove the stop-words:

 # Remove the stop words
 tokens = [x for x in tokens if not x in stop_words]

Stem the tokenized words and return the list:

 # Perform stemming on the tokenized words
 tokens_stemmed = [stemmer.stem(x) for x in tokens]

 return tokens_stemmed

Natural Language Processing

[272]

Define the main function and load the input data from the file data.txt provided to you:

if __name__=='__main__':
 # Load input data
 data = load_data('data.txt')

Tokenize the text:

 # Create a list for sentence tokens
 tokens = [process(x) for x in data]

Create a dictionary based on the tokenized sentences:

 # Create a dictionary based on the sentence tokens
 dict_tokens = corpora.Dictionary(tokens)

Create a document term matrix using the sentence tokens:

 # Create a document-term matrix
 doc_term_mat = [dict_tokens.doc2bow(token) for token in tokens]

We need to provide the number of topics as the input parameter. In this case, we know that
the input text has two distinct topics. Let's specify that.

 # Define the number of topics for the LDA model
 num_topics = 2

Generate the LatentDirichlet Model:

 # Generate the LDA model
 ldamodel = models.ldamodel.LdaModel(doc_term_mat,
 num_topics=num_topics, id2word=dict_tokens, passes=25)

Print the top 5 contributing words for each topic:

 num_words = 5
 print('\nTop ' + str(num_words) + ' contributing words to each topic:')
 for item in ldamodel.print_topics(num_topics=num_topics,
num_words=num_words):
 print('\nTopic', item[0])

 # Print the contributing words along with their relative
contributions
 list_of_strings = item[1].split(' + ')
 for text in list_of_strings:
 weight = text.split('*')[0]
 word = text.split('*')[1]
 print(word, '==>', str(round(float(weight) * 100, 2)) + '%')

Natural Language Processing

[273]

The full code is given in the file topic_modeler.py. If you run the code, you will get the
following output on your Terminal:

We can see that it does a reasonably good job of separating the two topics – mathematics
and history. If you look into the text, you can verify that each sentence is either about
mathematics or history.

Summary
In this chapter, we learned about the various underlying concepts in natural language
processing. We discussed tokenization and how to separate input text into multiple tokens.
We learned how to reduce words to their base forms using stemming and lemmatization.
We implemented a text chunker to divide input text into chunks based on predefined
conditions.

We discussed the Bag of Words model and built a document term matrix for input text. We
then learnt how to categorize text using machine learning. We constructed a gender
identifier using a heuristic. We used machine learning to analyze the sentiments of movie
reviews. We discussed topic modeling and implemented a system to identify topics in a
given document.

In the next chapter, we will learn how to model sequential data using Hidden Markov
Models and then use it to analyze stock market data.

11
Probabilistic Reasoning for

Sequential Data
In this chapter, we are going to learn how to build sequence learning models. We will learn
how to handle time-series data in Pandas. We will understand how to slice time-series data
and perform various operations on it. We will discuss how to extract various stats from
time-series data on a rolling basis. We will learn about Hidden Markov Models and then
implement a system to build those models. We will understand how to use Conditional
Random Fields to analyze sequences of alphabets. We will discuss how to analyze stock
market data using the techniques learnt so far.

By the end of this chapter, you will learn about:

Handling time-series data with Pandas
Slicing time-series data
Operating on time-series data
Extracting statistics from time-series data
Generating data using Hidden Markov Models
Identifying alphabet sequences with Conditional Random Fields
Stock market analysis

Understanding sequential data
In the world of machine learning, we encounter many types of data, such as images, text,
video, sensor readings, and so on. Different types of data require different types of
modeling techniques. Sequential data refers to data where the ordering is important. Time-
series data is a particular manifestation of sequential data.

Probabilistic Reasoning for Sequential Data

[275]

It is basically time-stamped values obtained from any data source such as sensors,
microphones, stock markets, and so on. Time-series data has a lot of important
characteristics that need to be modeled in order to effectively analyze the data.

The measurements that we encounter in time-series data are taken at regular time intervals
and correspond to predetermined parameters. These measurements are arranged on a
timeline for storage, and the order of their appearance is very important. We use this order
to extract patterns from the data.

In this chapter, we will see how to build models that describe the given time-series data or
any sequence in general. These models are used to understand the behavior of the time
series variable. We then use these models to predict the future based on past behavior.

Time-series data analysis is used extensively in financial analysis, sensor data analysis,
speech recognition, economics, weather forecasting, manufacturing, and many more. We
will explore a variety of scenarios where we encounter time-series data and see how we can
build a solution. We will be using a library called Pandas to handle all the time-series
related operations. We will also use a couple of other useful packages like hmmlearn and
pystruct during this chapter. Make sure you install them before you proceed.

You can install them by running the following commands on your Terminal:

 $ pip3 install pandas
 $ pip3 install hmmlearn
 $ pip3 install pystruct
 $ pip3 install cvxopt

If you get an error when installing cvxopt, you will find further instructions at
http://cvxopt.org/install. Now that you have successfully installed the packages, let's
go ahead to the next section.

Handling time-series data with Pandas
Let's get started by learning how to handle time-series data in Pandas. In this section, we
will convert a sequence of numbers into time series data and visualize it. Pandas provides
options to add timestamps, organize data, and then efficiently operate on it.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

http://cvxopt.org/install

Probabilistic Reasoning for Sequential Data

[276]

Define a function to read the data from the input file. The parameter index indicates the
column number that contains the relevant data:

def read_data(input_file, index):
 # Read the data from the input file
 input_data = np.loadtxt(input_file, delimiter=',')

Define a lambda function to convert strings to Pandas date format:

 # Lambda function to convert strings to Pandas date format
 to_date = lambda x, y: str(int(x)) + '-' + str(int(y))

Use this lambda function to get the start date from the first line in the input file:

 # Extract the start date
 start = to_date(input_data[0, 0], input_data[0, 1])

Pandas library needs the end date to be exclusive when we perform operations, so we need
to increase the date field in the last line by one month:

 # Extract the end date
 if input_data[-1, 1] == 12:
 year = input_data[-1, 0] + 1
 month = 1
 else:
 year = input_data[-1, 0]
 month = input_data[-1, 1] + 1

 end = to_date(year, month)

Create a list of indices with dates using the start and end dates with a monthly frequency:

 # Create a date list with a monthly frequency
 date_indices = pd.date_range(start, end, freq='M')

Create pandas data series using the timestamps:

 # Add timestamps to the input data to create time-series data
 output = pd.Series(input_data[:, index], index=date_indices)

 return output

Define the main function and specify the input file:

if __name__=='__main__':
 # Input filename
 input_file = 'data_2D.txt'

Probabilistic Reasoning for Sequential Data

[277]

Specify the columns that contain the data:

 # Specify the columns that need to be converted
 # into time-series data
 indices = [2, 3]

Iterate through the columns and read the data in each column:

 # Iterate through the columns and plot the data
 for index in indices:
 # Convert the column to timeseries format
 timeseries = read_data(input_file, index)

Plot the time-series data:

 # Plot the data
 plt.figure()
 timeseries.plot()
 plt.title('Dimension ' + str(index - 1))

 plt.show()

The full code is given in the file timeseries.py. If you run the code, you will see two
screenshots.

The following screenshot indicates the data in the first dimension:

Probabilistic Reasoning for Sequential Data

[278]

The second screenshot indicates the data in the second dimension:

Slicing time-series data
Now that we know how to handle time-series data, let's see how we can slice it. The process
of slicing refers to dividing the data into various sub-intervals and extracting relevant
information. This is very useful when you are working with time-series datasets. Instead of
using indices, we will use timestamp to slice our data.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from timeseries import read_data

Load the third column (zero-indexed) from the input data file:

Load input data
index = 2
data = read_data('data_2D.txt', index)

Probabilistic Reasoning for Sequential Data

[279]

Define the start and end years, and then plot the data with year-level granularity:

Plot data with year-level granularity
start = '2003'
end = '2011'
plt.figure()
data[start:end].plot()
plt.title('Input data from ' + start + ' to ' + end)

Define the start and end months, and then plot the data with month-level granularity:

Plot data with month-level granularity
start = '1998-2'
end = '2006-7'
plt.figure()
data[start:end].plot()
plt.title('Input data from ' + start + ' to ' + end)

plt.show()

The full code is given in the file slicer.py. If you run the code, you will see two figures.
The first screenshot shows the data from 2003 to 2011:

Probabilistic Reasoning for Sequential Data

[280]

The second screenshot shows the data from February 1998 to July 2006:

Operating on time-series data
Pandas allows us to operate on time-series data efficiently and perform various operations
like filtering and addition. You can simply set some conditions and Pandas will filter the
dataset and return the right subset. You can add two time-series variables as well. This
allows us to build various applications quickly without having to reinvent the wheel.

Create a new Python file and import the following packages:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from timeseries import read_data

Define the input filename:

Input filename
input_file = 'data_2D.txt'

Probabilistic Reasoning for Sequential Data

[281]

Load the third and fourth columns into separate variables:

Load data
x1 = read_data(input_file, 2)
x2 = read_data(input_file, 3)

Create a Pandas dataframe object by naming the two dimensions:

Create pandas dataframe for slicing
data = pd.DataFrame({'dim1': x1, 'dim2': x2})

Plot the data by specifying the start and end years:

Plot data
start = '1968'
end = '1975'
data[start:end].plot()
plt.title('Data overlapped on top of each other')

Filter the data using conditions and then display it. In this case, we will take all the
datapoints in dim1 that are less than 45 and all the values in dim2 that are greater than 30:

Filtering using conditions
- 'dim1' is smaller than a certain threshold
- 'dim2' is greater than a certain threshold
data[(data['dim1'] < 45) & (data['dim2'] > 30)].plot()
plt.title('dim1 < 45 and dim2 > 30')

We can also add two series in Pandas. Let's add dim1 and dim2 between the given start
and end dates:

Adding two dataframes
plt.figure()
diff = data[start:end]['dim1'] + data[start:end]['dim2']
diff.plot()
plt.title('Summation (dim1 + dim2)')

plt.show()

The full code is given in the file operator.py. If you run the code, you will see three
screenshots. The first screenshot shows the data from 1968 to 1975:

Probabilistic Reasoning for Sequential Data

[282]

The second screenshot shows the filtered data:

Probabilistic Reasoning for Sequential Data

[283]

The third screenshot shows the summation result:

Extracting statistics from time-series data
In order to extract meaningful insights from time-series data, we have to extract statistics
from it. These stats can be things like mean, variance, correlation, maximum value, and so
on. These stats have to be computed on a rolling basis using a window. We use a
predetermined window size and keep computing these stats. When we visualize the stats
over time, we will see interesting patterns. Let's see how to extract these stats from time-
series data.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from timeseries import read_data

Define the input filename:

Input filename
input_file = 'data_2D.txt'

Probabilistic Reasoning for Sequential Data

[284]

Load the third and fourth columns into separate variables:

Load input data in time series format
x1 = read_data(input_file, 2)
x2 = read_data(input_file, 3)

Create a pandas dataframe by naming the two dimensions:

Create pandas dataframe for slicing
data = pd.DataFrame({'dim1': x1, 'dim2': x2})

Extract maximum and minimum values along each dimension:

Extract max and min values
print('\nMaximum values for each dimension:')
print(data.max())
print('\nMinimum values for each dimension:')
print(data.min())

Extract the overall mean and the row-wise mean for the first 12 rows:

Extract overall mean and row-wise mean values
print('\nOverall mean:')
print(data.mean())
print('\nRow-wise mean:')
print(data.mean(1)[:12])

Plot the rolling mean using a window size of 24:

Plot the rolling mean using a window size of 24
data.rolling(center=False, window=24).mean().plot()
plt.title('Rolling mean')

Print the correlation coefficients:

Extract correlation coefficients
print('\nCorrelation coefficients:\n', data.corr())

Plot the rolling correlation using a window size of 60:

Plot rolling correlation using a window size of 60
plt.figure()
plt.title('Rolling correlation')
data['dim1'].rolling(window=60).corr(other=data['dim2']).plot()

plt.show()

Probabilistic Reasoning for Sequential Data

[285]

The full code is given in the file stats_extractor.py. If you run the code, you will see
two screenshots. The first screenshot shows the rolling mean:

The second screenshot shows the rolling correlation:

Probabilistic Reasoning for Sequential Data

[286]

You will see the following on your Terminal:

If you scroll down, you will see row-wise mean values and the correlation coefficients
printed on your Terminal:

The correlation coefficients in the preceding figures indicate the level of correlation of each
dimension with all the other dimensions. A correlation of 1.0 indicates perfect correlation,
whereas a correlation of 0.0 indicates that they the variables are not related to each other.

Probabilistic Reasoning for Sequential Data

[287]

Generating data using Hidden Markov
Models
A Hidden Markov Model (HMM) is a powerful analysis technique for analyzing
sequential data. It assumes that the system being modeled is a Markov process with hidden
states. This means that the underlying system can be one among a set of possible states. It
goes through a sequence of state transitions, thereby producing a sequence of outputs. We
can only observe the outputs but not the states. Hence these states are hidden from us. Our
goal is to model the data so that we can infer the state transitions of unknown data.

In order to understand HMMs, let's consider the example of a salesman who has to travel
between the following three cities for his job — London, Barcelona, and New York. His goal
is to minimize the traveling time so that he can be more efficient. Considering his work
commitments and schedule, we have a set of probabilities that dictate the chances of going
from city X to city Y. In the information given below, P(X -> Y) indicates the probability of
going from city X to city Y:

P(London -> London) = 0.10

P(London -> Barcelona) = 0.70

P(London -> NY) = 0.20

P(Barcelona -> Barcelona) = 0.15

P(Barcelona -> London) = 0.75

P(Barcelona -> NY) = 0.10

P(NY -> NY) = 0.05

P(NY -> London) = 0.60

P(NY -> Barcelona) = 0.35

Let's represent this information with a transition matrix:

London Barcelona NY

London 0.10 0.70 0.20

Barcelona 0.75 0.15 0.10

NY 0.60 0.35 0.05

Probabilistic Reasoning for Sequential Data

[288]

Now that we have all the information, let's go ahead and set the problem statement. The
salesman starts his journey on Tuesday from London and he has to plan something on
Friday. But that will depend on where he is. What is the probability that he will be in
Barcelona on Friday? This table will help us figure it out.

If we do not have a Markov Chain to model this problem, then we will not know what his
travel schedule looks like. Our goal is to say with a good amount of certainty that he will be
in a particular city on a given day. If we denote the transition matrix by T and the current
day by X(i), then:

X(i+1) = X(i).T

In our case, Friday is 3 days away from Tuesday. This means we have to compute X(i+3).
The computations will looks like this:

X(i+1) = X(i).T

X(i+2) = X(i+1).T

X(i+3) = X(i+2).T

So in essence:

X(i+3) = X(i).T^3

We need to set X(i) as given here:

X(i) = [0.10 0.70 0.20]

The next step is to compute the cube of the matrix. There are many tools available online to
perform matrix operations such as http://matrix.reshish.com/multiplication.php. If
you do all the matrix calculations, then you will see that you will get the following
probabilities for Thursday:

P(London) = 0.31

P(Barcelona) = 0.53

P(NY) = 0.16

We can see that there is a higher chance of him being in Barcelona than in any other city.
This makes geographical sense as well because Barcelona is closer to London compared to
New York. Let's see how to model HMMs in Python.

http://matrix.reshish.com/multiplication.php

Probabilistic Reasoning for Sequential Data

[289]

Create a new Python file and import the following packages:

import datetime

import numpy as np
import matplotlib.pyplot as plt
from hmmlearn.hmm import GaussianHMM

from timeseries import read_data

Load data from the input file:

Load input data
data = np.loadtxt('data_1D.txt', delimiter=',')

Extract the third column for training:

Extract the data column (third column) for training
X = np.column_stack([data[:, 2]])

Create a Gaussian HMM with 5 components and diagonal covariance:

Create a Gaussian HMM
num_components = 5
hmm = GaussianHMM(n_components=num_components,
 covariance_type='diag', n_iter=1000)

Train the HMM:

Train the HMM
print('\nTraining the Hidden Markov Model...')
hmm.fit(X)

Print the mean and variance values for each component of the HMM:

Print HMM stats
print('\nMeans and variances:')
for i in range(hmm.n_components):
 print('\nHidden state', i+1)
 print('Mean =', round(hmm.means_[i][0], 2))
 print('Variance =', round(np.diag(hmm.covars_[i])[0], 2))

Generate 1200 samples using the trained HMM model and plot them:

Generate data using the HMM model
num_samples = 1200
generated_data, _ = hmm.sample(num_samples)
plt.plot(np.arange(num_samples), generated_data[:, 0], c='black')
plt.title('Generated data')

Probabilistic Reasoning for Sequential Data

[290]

plt.show()

The full code is given in the file hmm.py. If you run the code, you will see the following
screenshot that shows the 1200 generated samples:

You will see the following printed on your Terminal:

Probabilistic Reasoning for Sequential Data

[291]

Identifying alphabet sequences with
Conditional Random Fields
Conditional Random Fields (CRFs) are probabilistic models that are frequently used to
analyze structured data. We use them to label and segment sequential data in various
forms. One thing to note about CRFs is that they are discriminative models. This is in
contrast to HMMs, which are generative models.

We can define a conditional probability distribution over a labeled sequence of
measurements. We use this framework to build a CRF model. In HMMs, we have to define
a joint distribution over the observation sequence and the labels.

One of the main advantages of CRFs is that they are conditional by nature. This is not the
case with HMMs. CRFs do not assume any independence between output observations.
HMMs assume that the output at any given time is statistically independent of the previous
outputs. HMMs need this assumption to ensure that the inference process works in a robust
way. But this assumption is not always true! Real world data is filled with temporal
dependencies.

CRFs tend to outperform HMMs in a variety of applications such as natural language
processing, speech recognition, biotechnology, and so on. In this section, we will discuss
how to use CRFs to analyze sequences of alphabets. Create a new python file and import
the following packages:

import os
import argparse
import string
import pickle

import numpy as np
import matplotlib.pyplot as plt
from pystruct.datasets import load_letters
from pystruct.models import ChainCRF
from pystruct.learners import FrankWolfeSSVM

Define a function to parse the input arguments. We can pass the C value as the input
parameter. The C parameter controls how much we want to penalize misclassification. A
higher value of C would mean that we are imposing a higher penalty for misclassification
during training, but we might end up overfitting the model. On the other hand, if we
choose a lower value for C, we are allowing the model to generalize well. But this also
means that we are imposing a lower penalty for misclassification during training data
points.

Probabilistic Reasoning for Sequential Data

[292]

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Trains a Conditional\
 Random Field classifier')
 parser.add_argument("--C", dest="c_val", required=False, type=float,
 default=1.0, help='C value to be used for training')
 return parser

Define a class to handle all the functionality of building the CRF model. We will use a chain
CRF model with FrankWolfeSSVM:

Class to model the CRF
class CRFModel(object):
 def __init__(self, c_val=1.0):
 self.clf = FrankWolfeSSVM(model=ChainCRF(),
 C=c_val, max_iter=50)

Define a function to load the training data:

 # Load the training data
 def load_data(self):
 alphabets = load_letters()
 X = np.array(alphabets['data'])
 y = np.array(alphabets['labels'])
 folds = alphabets['folds']

 return X, y, folds

Define a function to train the CRF model:

 # Train the CRF
 def train(self, X_train, y_train):
 self.clf.fit(X_train, y_train)

Define a function to evaluate the accuracy of the CRF model:

 # Evaluate the accuracy of the CRF
 def evaluate(self, X_test, y_test):
 return self.clf.score(X_test, y_test)

Define a function to run the trained CRF model on an unknown datapoint:

 # Run the CRF on unknown data
 def classify(self, input_data):
 return self.clf.predict(input_data)[0]

Define a function to extract a substring from the alphabets based on a list of indices:

Convert indices to alphabets
def convert_to_letters(indices):

Probabilistic Reasoning for Sequential Data

[293]

 # Create a numpy array of all alphabets
 alphabets = np.array(list(string.ascii_lowercase))

Extract the letters:

 # Extract the letters based on input indices
 output = np.take(alphabets, indices)
 output = ''.join(output)

 return output

Define the main function and parse the input arguments:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 c_val = args.c_val

Create the CRF model object:

 # Create the CRF model
 crf = CRFModel(c_val)

Load the input data and separate it into train and test sets:

 # Load the train and test data
 X, y, folds = crf.load_data()
 X_train, X_test = X[folds == 1], X[folds != 1]
 y_train, y_test = y[folds == 1], y[folds != 1]

Train the CRF model:

 # Train the CRF model
 print('\nTraining the CRF model...')
 crf.train(X_train, y_train)

Evaluate the accuracy of the CRF model and print it:

 # Evaluate the accuracy
 score = crf.evaluate(X_test, y_test)
 print('\nAccuracy score =', str(round(score*100, 2)) + '%')

Run it on some test datapoints and print the output:

 indices = range(3000, len(y_test), 200)
 for index in indices:
 print("\nOriginal =", convert_to_letters(y_test[index]))
 predicted = crf.classify([X_test[index]])
 print("Predicted =", convert_to_letters(predicted))

Probabilistic Reasoning for Sequential Data

[294]

The full code is given in the file crf.py. If you run the code, you will see the following
output on your Terminal:

If you scroll to the end, you will see the following on your Terminal:

Probabilistic Reasoning for Sequential Data

[295]

As we can see, it predicts most of the words correctly.

Stock market analysis
We will analyze stock market data in this section using Hidden Markov Models. This is an
example where the data is already organized timestamped. We will use the dataset
available in the matplotlib package. The dataset contains the stock values of various
companies over the years. Hidden Markov models are generative models that can analyze
such time series data and extract the underlying structure. We will use this model to
analyze stock price variations and generate the outputs.

Create a new python file and import the following packages:

import datetime
import warnings

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl\
 as quotes_yahoo
from hmmlearn.hmm import GaussianHMM

Load historical stock market quotes from September 4, 1970 to May 17, 2016. You are free to
choose any date range you wish.

Load historical stock quotes from matplotlib package
start = datetime.date(1970, 9, 4)
end = datetime.date(2016, 5, 17)
stock_quotes = quotes_yahoo('INTC', start, end)

Extract the closing quote each day and the volume of shares traded that day:

Extract the closing quotes everyday
closing_quotes = np.array([quote[2] for quote in stock_quotes])

Extract the volume of shares traded everyday
volumes = np.array([quote[5] for quote in stock_quotes])[1:]

Take the percentage difference of closing quotes each day:

Take the percentage difference of closing stock prices
diff_percentages = 100.0 * np.diff(closing_quotes) / closing_quotes[:-1]

Probabilistic Reasoning for Sequential Data

[296]

Since the differencing reduces the length of the array by 1, you need to adjust the date array
too:

Take the list of dates starting from the second value
dates = np.array([quote[0] for quote in stock_quotes], dtype=np.int)[1:]

Stack the two data columns to create the training dataset:

Stack the differences and volume values column-wise for training
training_data = np.column_stack([diff_percentages, volumes])

Create and train the Gaussian HMM with 7 components and diagonal covariance:

Create and train Gaussian HMM
hmm = GaussianHMM(n_components=7, covariance_type='diag', n_iter=1000)
with warnings.catch_warnings():
 warnings.simplefilter('ignore')
 hmm.fit(training_data)

Use the trained HMM model to generate 300 samples. You can choose to generate any
number of samples you want.

Generate data using the HMM model
num_samples = 300
samples, _ = hmm.sample(num_samples)

Plot the generated values for difference percentages:

Plot the difference percentages
plt.figure()
plt.title('Difference percentages')
plt.plot(np.arange(num_samples), samples[:, 0], c='black')

Plot the generated values for volume of shares traded:

Plot the volume of shares traded
plt.figure()
plt.title('Volume of shares')
plt.plot(np.arange(num_samples), samples[:, 1], c='black')
plt.ylim(ymin=0)

plt.show()

Probabilistic Reasoning for Sequential Data

[297]

The full code is given in the file stock_market.py. If you run the code, you will see the
following two screenshots. The first screenshot shows the difference percentages generated
by the HMM:

The second screenshot shows the values generated by the HMM for volume of shares
traded:

Probabilistic Reasoning for Sequential Data

[298]

Summary
In this chapter, we learned how to build sequence learning models. We understood how to
handle time-series data in Pandas. We discussed how to slice time-series data and perform
various operations on it. We learned how to extract various stats from time-series data in a
rolling manner. We understood Hidden Markov Models and then implemented a system to
build that model.

We discussed how to use Conditional Random Fields to analyze sequences of alphabets. We
learned how to analyze stock market data using various techniques. In the next chapter, we
will learn about speech recognition and build a system to automatically recognize spoken
words.

12
Building A Speech Recognizer

In this chapter, we are going to learn about speech recognition. We will discuss how to
work with speech signals and understand how to visualize various audio signals. By
utilizing various techniques to process speech signals, we will learn how to build a speech
recognition system.

By the end of this chapter, you will know about:

Working with speech signals
Visualizing audio signals
Transforming audio signals to frequency domain
Generating audio signals
Synthesizing tones
Extracting speech features
Recognizing spoken words

Working with speech signals
Speech recognition is the process of understanding the words that are spoken by humans.
The speech signals are captured using a microphone and the system tries to understand the
words that are being captured. Speech recognition is used extensively in human computer
interaction, smartphones, speech transcription, biometric systems, security, and so on.

Building A Speech Recognizer

[300]

It is important to understand the nature of speech signals before we analyze them. These
signals happen to be complex mixtures of various signals. There are many different aspects
of speech that contribute to its complexity. These things include emotion, accent, language,
noise, and so on.

Hence it becomes difficult to robustly define a set of rules to analyze speech signals. But
humans are really good at understanding speech even though it has so many variations. We
seem to do it with relative ease. If we want our machines to do the same, we need to help
them understand speech the same way we do.

Researchers work on various aspects and applications of speech, such as understanding
spoken words, identifying who the speaker is, recognizing emotions, identifying accents,
and so on. In this chapter, we will focus on understanding spoken words. Speech
recognition represents an important step in the field of human computer interaction. If we
want to build cognitive robots that can interact with humans, they need to talk to us in
natural language. This is the reason that automatic speech recognition has been the center of
attention for many researchers in recent years. Let's go ahead and see how to deal with
speech signals and build a speech recognizer.

Visualizing audio signals
Let's see how to visualize an audio signal. We will learn how to read an audio signal from a
file and work with it. This will help us understand how an audio signal is structured. When
audio files are recorded using a microphone, they are sampling the actual audio signals and
storing the digitized versions. The real audio signals are continuous valued waves, which
means we cannot store them as they are. We need to sample the signal at a certain
frequency and convert it into discrete numerical form.

Most commonly, speech signals are sampled at 44,100 Hz. This means that each second of
the speech signal is broken down into 44,100 parts and the values at each of these
timestamps is stored in an output file. We save the value of the audio signal every 1/44,100
seconds. In this case, we say that the sampling frequency of the audio signal is 44,100 Hz.
By choosing a high sampling frequency, it will appear like the audio signal is continuous
when humans listen to it. Let's go ahead and visualize an audio signal.

Building A Speech Recognizer

[301]

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile

Read the input audio file using the wavefile.read method. It returns two values –
sampling frequency and the audio signal:

Read the audio file
sampling_freq, signal = wavfile.read('random_sound.wav')

Print the shape of the signal, datatype, and the duration of the audio signal:

Display the params
print('\nSignal shape:', signal.shape)
print('Datatype:', signal.dtype)
print('Signal duration:', round(signal.shape[0] / float(sampling_freq), 2),
'seconds')

Normalize the signal:

Normalize the signal
signal = signal / np.power(2, 15)

Extract the first 50 values from the numpy array for plotting:

Extract the first 50 values
signal = signal[:50]

Construct the time axis in seconds for plotting:

Construct the time axis in milliseconds
time_axis = 1000 * np.arange(0, len(signal), 1) / float(sampling_freq)

Plot the audio signal:

Plot the audio signal
plt.plot(time_axis, signal, color='black')
plt.xlabel('Time (milliseconds)')
plt.ylabel('Amplitude')
plt.title('Input audio signal')
plt.show()

Building A Speech Recognizer

[302]

The full code is given in the file audio_plotter.py. If you run the code, you will see the
following screenshot:

The preceding screenshot shows the first 50 samples of the input audio signal. You will see
the following output on your Terminal:

The output printed in the preceding figure shows the information that we extracted from
the signal.

Building A Speech Recognizer

[303]

Transforming audio signals to the frequency
domain
In order to analyze audio signals, we need to understand the underlying frequency
components. This gives us insights into how to extract meaningful information from this
signal. Audio signals are composed of a mixture of sine waves of varying frequencies,
phases, and amplitudes.

If we dissect the frequency components, we can identify a lot of characteristics. Any given
audio signal is characterized by its distribution in the frequency spectrum. In order to
convert a time domain signal into the frequency domain, we need to use a mathematical
tool like Fourier Transform. If you need a quick refresher on Fourier Transform, you can
check out this link: http://www.thefouriertransform.com. Let's see how to transform an
audio signal from the time domain to the frequency domain.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile

Read the input audio file using the wavefile.read method. It returns two values –
sampling frequency and the audio signal:

Read the audio file
sampling_freq, signal = wavfile.read('spoken_word.wav')

Normalize the audio signal:

Normalize the values
signal = signal / np.power(2, 15)

Extract the length and half-length of the signal:

Extract the length of the audio signal
len_signal = len(signal)

Extract the half length
len_half = np.ceil((len_signal + 1) / 2.0).astype(np.int)

http://www.thefouriertransform.com

Building A Speech Recognizer

[304]

Apply Fourier transform to the signal:

Apply Fourier transform
freq_signal = np.fft.fft(signal)

Normalize the frequency domain signal and take the square:

Normalization
freq_signal = abs(freq_signal[0:len_half]) / len_signal

Take the square
freq_signal **= 2

Adjust the Fourier transformed signal for even and odd cases:

Extract the length of the frequency transformed signal
len_fts = len(freq_signal)

Adjust the signal for even and odd cases
if len_signal % 2:
 freq_signal[1:len_fts] *= 2
else:
 freq_signal[1:len_fts-1] *= 2

Extract the power signal in dB:

Extract the power value in dB
signal_power = 10 * np.log10(freq_signal)

Build the X axis, which is frequency measured in kHz in this case:

Build the X axis
x_axis = np.arange(0, len_half, 1) * (sampling_freq / len_signal) / 1000.0

Plot the figure:

Plot the figure
plt.figure()
plt.plot(x_axis, signal_power, color='black')
plt.xlabel('Frequency (kHz)')
plt.ylabel('Signal power (dB)')
plt.show()

Building A Speech Recognizer

[305]

The full code is given in the file frequency_transformer.py. If you run the code, you
will see the following screenshot:

The preceding screenshot shows the power of the signal across the frequency spectrum.

Generating audio signals
Now that we know how audio signals work, let's see how we can generate one such signal.
We can use the NumPy package to generate various audio signals. Since audio signals are
mixtures of sinusoids, we can use this to generate an audio signal with some predefined
parameters.

Building A Speech Recognizer

[306]

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.io.wavfile import write

Define the output audio filename:

Output file where the audio will be saved
output_file = 'generated_audio.wav'

Specify the audio parameters such as duration, sampling frequency, tone frequency,
minimum value, and maximum value:

Specify audio parameters
duration = 4 # in seconds
sampling_freq = 44100 # in Hz
tone_freq = 784
min_val = -4 * np.pi
max_val = 4 * np.pi

Generate the audio signal using the defined parameters:

Generate the audio signal
t = np.linspace(min_val, max_val, duration * sampling_freq)
signal = np.sin(2 * np.pi * tone_freq * t)

Add some noise to the signal:

Add some noise to the signal
noise = 0.5 * np.random.rand(duration * sampling_freq)
signal += noise

Normalize and scale the signal:

Scale it to 16-bit integer values
scaling_factor = np.power(2, 15) - 1
signal_normalized = signal / np.max(np.abs(signal))
signal_scaled = np.int16(signal_normalized * scaling_factor)

Save the generated audio signal in the output file:

Save the audio signal in the output file
write(output_file, sampling_freq, signal_scaled)

Extract the first 200 values for plotting:

Extract the first 200 values from the audio signal
signal = signal[:200]

Building A Speech Recognizer

[307]

Construct the time axis in milliseconds:

Construct the time axis in milliseconds
time_axis = 1000 * np.arange(0, len(signal), 1) / float(sampling_freq)

Plot the audio signal:

Plot the audio signal
plt.plot(time_axis, signal, color='black')
plt.xlabel('Time (milliseconds)')
plt.ylabel('Amplitude')
plt.title('Generated audio signal')
plt.show()

The full code is given in the file audio_generator.py. If you run the code, you will see the
following screenshot:

Building A Speech Recognizer

[308]

Play the file generated_audio.wav using your media player to see what it sounds like. It
will be a signal that's a mixture of a 784 Hz signal and the noise signal.

Synthesizing tones to generate music
The previous section described how to generate a simple monotone, but it's not all that
meaningful. It was just a single frequency through the signal. Let's use that principle to
synthesize music by stitching different tones together. We will be using standard tones like
A, C, G, F, and so on to generate music. In order to see the frequency mapping for these
standard tones, you can check out this link:
http://www.phy.mtu.edu/~suits/notefreqs.html. Let's use this information to generate a
musical signal.

Create a new Python file and import the following packages:

import json

import numpy as np
import matplotlib.pyplot as plt
from scipy.io.wavfile import write

Define a function to generate a tone based on the input parameters:

Synthesize the tone based on the input parameters
def tone_synthesizer(freq, duration, amplitude=1.0, sampling_freq=44100):
 # Construct the time axis
 time_axis = np.linspace(0, duration, duration * sampling_freq)

Construct the audio signal using the parameters specified and return it:

 # Construct the audio signal
 signal = amplitude * np.sin(2 * np.pi * freq * time_axis)

 return signal.astype(np.int16)

Define the main function. Let's define the output audio filenames:

if __name__=='__main__':
 # Names of output files
 file_tone_single = 'generated_tone_single.wav'
 file_tone_sequence = 'generated_tone_sequence.wav'

http://www.phy.mtu.edu/~suits/notefreqs.html

Building A Speech Recognizer

[309]

We will be using a tone mapping file that contains the mapping from tone names (such as
A, C, G, and so on) to the corresponding frequencies:

 # Source: h t t p ://w w w . p h y . m t u . e d u /~s u i t s /n o t e f r e q s . h t m l
 mapping_file = 'tone_mapping.json'
 # Load the tone to frequency map from the mapping file
 with open(mapping_file, 'r') as f:
 tone_map = json.loads(f.read())

Let's generate the F tone with a duration of 3 seconds:

 # Set input parameters to generate 'F' tone
 tone_name = 'F'
 duration = 3 # seconds
 amplitude = 12000
 sampling_freq = 44100 # Hz

Extract the corresponding tone frequency:

 # Extract the tone frequency
 tone_freq = tone_map[tone_name]

Generate the tone using the tone synthesizer function that was defined earlier:

 # Generate the tone using the above parameters
 synthesized_tone = tone_synthesizer(tone_freq, duration, amplitude,
sampling_freq)

Write the generated audio signal to the output file:

 # Write the audio signal to the output file
 write(file_tone_single, sampling_freq, synthesized_tone)

Let's generate a tone sequence to make it sound like music. Let's define a tone sequence
with corresponding durations in seconds:

 # Define the tone sequence along with corresponding durations in
seconds
 tone_sequence = [('G', 0.4), ('D', 0.5), ('F', 0.3), ('C', 0.6), ('A',
0.4)]

Construct the audio signal based on the tone sequence:

 # Construct the audio signal based on the above sequence
 signal = np.array([])
 for item in tone_sequence:
 # Get the name of the tone
 tone_name = item[0]

http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html
http://www.phy.mtu.edu/~suits/notefreqs.html

Building A Speech Recognizer

[310]

For each tone, extract the corresponding frequency:

 # Extract the corresponding frequency of the tone
 freq = tone_map[tone_name]

Extract the corresponding duration:

 # Extract the duration
 duration = item[1]

Synthesize the tone using the tone synthesizer function:

 # Synthesize the tone
 synthesized_tone = tone_synthesizer(freq, duration, amplitude,
sampling_freq)

Append it to the main output signal:

 # Append the output signal
 signal = np.append(signal, synthesized_tone, axis=0)

Save the main output signal to the output file:

 # Save the audio in the output file
 write(file_tone_sequence, sampling_freq, signal)

The full code is given in the file synthesizer.py. If you run the code, it will generate two
output files — generated_tone_single.wav and generated_tone_sequence.wav.
Play the audio files using a media player to hear what they sound like.

Extracting speech features
We learnt how to convert a time domain signal into the frequency domain. Frequency
domain features are used extensively in all the speech recognition systems. The concept we
discussed earlier is an introduction to the idea, but real world frequency domain features
are a bit more complex. Once we convert a signal into the frequency domain, we need to
ensure that it's usable in the form of a feature vector. This is where the concept of Mel
Frequency Cepstral Coefficients (MFCCs) becomes relevant. MFCC is a tool that's used to
extract frequency domain features from a given audio signal.

Building A Speech Recognizer

[311]

In order to extract the frequency features from an audio signal, MFCC first extracts the
power spectrum. It then uses filter banks and a discrete cosine transform (DCT) to extract
the features. If you are interested in exploring MFCC further, you can check out this link:
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequ

ency-cepstral-coefficients-mfccs.

We will be using a package called python_speech_features to extract the MFCC
features. The package is available here:
http://python-speech-features.readthedocs.org/en/latest. For ease of use, the
relevant folder has been included with the code bundle. You will see a folder called
features in the code bundle that contains the relevant files needed to use this package.
Let's see how to extract MFCC features.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from features import mfcc, logfbank

Read the input audio file and extract the first 10,000 samples for analysis:

Read the input audio file
sampling_freq, signal = wavfile.read('random_sound.wav')

Take the first 10,000 samples for analysis
signal = signal[:10000]

Extract the MFCC:

Extract the MFCC features
features_mfcc = mfcc(signal, sampling_freq)

Print the MFCC parameters:

Print the parameters for MFCC
print('\nMFCC:\nNumber of windows =', features_mfcc.shape[0])
print('Length of each feature =', features_mfcc.shape[1])

Plot the MFCC features:

Plot the features
features_mfcc = features_mfcc.T
plt.matshow(features_mfcc)
plt.title('MFCC')

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs
http://python-speech-features.readthedocs.org/en/latest

Building A Speech Recognizer

[312]

Extract the filter bank features:

Extract the Filter Bank features
features_fb = logfbank(signal, sampling_freq)

Print the parameters for the filter bank:

Print the parameters for Filter Bank
print('\nFilter bank:\nNumber of windows =', features_fb.shape[0])
print('Length of each feature =', features_fb.shape[1])

Plot the features:

Plot the features
features_fb = features_fb.T
plt.matshow(features_fb)
plt.title('Filter bank')

plt.show()

The full code is given in the file feature_extractor.py. If you run the code, you will see
two screenshots. The first screenshot shows the MFCC features:

Building A Speech Recognizer

[313]

The second screenshot shows the filter bank features:

You will see the following printed on your Terminal:

Building A Speech Recognizer

[314]

Recognizing spoken words
Now that we have learnt all the techniques to analyze speech signals, let's go ahead and see
how to recognize spoken words. Speech recognition systems take audio signals as input
and recognize the words being spoken. We will use Hidden Markov Models (HMMs) for
this task.

As we discussed in the previous chapter, HMMs are great at analyzing sequential data. An
audio signal is a time series signal, which is a manifestation of sequential data. The
assumption is that the outputs are being generated by the system going through a series of
hidden states. Our goal is to find out what these hidden states are so that we can identify
the words in our signal. If you are interesting in digging deeper, you can check out this link:
https://www.robots.ox.ac.uk/~vgg/rg/slides/hmm.pdf.

We will be using a package called hmmlearn to build our speech recognition system. You
can learn more about it here: http://hmmlearn.readthedocs.org/en/latest. You can
install the package by running the following command on your Terminal:

 $ pip3 install hmmlearn

In order to train our speech recognition system, we need a dataset of audio files for each
word. We will use the database available at
https://code.google.com/archive/p/hmm-speech-recognition/downloads. For ease of
use, you have been provided with a folder called data in your code bundle that contains all
these files. This dataset contains seven different words. Each word has a folder associated
with it and each folder has 15 audio files. We will use 14 for training and one for testing in
each folder. Note that this is actually a very small dataset. In the real world, you will be
using much larger datasets to build speech recognition systems. We are using this dataset to
get familiar with speech recognition and see how we can build a system to recognize
spoken words.

We will go ahead and build an HMM model for each word. We will store all these models
for reference. When we want to recognize the word in an unknown audio file, we will run it
through all these models and pick the one with the highest score. Let's see how to build this
system.

https://www.robots.ox.ac.uk/~vgg/rg/slides/hmm.pdf
http://hmmlearn.readthedocs.org/en/latest
https://code.google.com/archive/p/hmm-speech-recognition/downloads

Building A Speech Recognizer

[315]

Create a new Python file and import the following packages:

import os
import argparse
import warnings

import numpy as np
from scipy.io import wavfile

from hmmlearn import hmm
from features import mfcc

Define a function to parse the input arguments. We need to specify the input folder
containing the audio files required to train our speech recognition system:

Define a function to parse the input arguments
def build_arg_parser():
 parser = argparse.ArgumentParser(description='Trains the HMM-based
 speech \ recognition system')
 parser.add_argument("--input-folder", dest="input_folder",
 required=True, help="Input folder containing the audio files
 for training")
 return parser

Define a class to train the HMMs:

Define a class to train the HMM
class ModelHMM(object):
 def __init__(self, num_components=4, num_iter=1000):
 self.n_components = num_components
 self.n_iter = num_iter

Define the covariance type and the type of HMM:

 self.cov_type = 'diag'
 self.model_name = 'GaussianHMM'

Initialize the variable in which we will store the models for each word:

 self.models = []

Define the model using the specified parameters:

 self.model = hmm.GaussianHMM(n_components=self.n_components,
 covariance_type=self.cov_type, n_iter=self.n_iter)

Building A Speech Recognizer

[316]

Define a method to train the model:

 # 'training_data' is a 2D numpy array where each row is 13-dimensional
 def train(self, training_data):
 np.seterr(all='ignore')
 cur_model = self.model.fit(training_data)
 self.models.append(cur_model)

Define a method to compute the score for input data:

 # Run the HMM model for inference on input data
 def compute_score(self, input_data):
 return self.model.score(input_data)

Define a function to build a model for each word in the training dataset:

Define a function to build a model for each word
def build_models(input_folder):
 # Initialize the variable to store all the models
 speech_models = []

Parse the input directory:

 # Parse the input directory
 for dirname in os.listdir(input_folder):
 # Get the name of the subfolder
 subfolder = os.path.join(input_folder, dirname)

 if not os.path.isdir(subfolder):
 continue

Extract the label:

 # Extract the label
 label = subfolder[subfolder.rfind('/') + 1:]

Initialize the variable to store the training data:

 # Initialize the variables
 X = np.array([])

Create a list of files to be used for training:

 # Create a list of files to be used for training
 # We will leave one file per folder for testing
 training_files = [x for x in os.listdir(subfolder) if
x.endswith('.wav')][:-1]

 # Iterate through the training files and build the models

Building A Speech Recognizer

[317]

 for filename in training_files:
 # Extract the current filepath
 filepath = os.path.join(subfolder, filename)

Read the audio signal from the current file:

 # Read the audio signal from the input file
 sampling_freq, signal = wavfile.read(filepath)

Extract the MFCC features:

 # Extract the MFCC features
 with warnings.catch_warnings():
 warnings.simplefilter('ignore')
 features_mfcc = mfcc(signal, sampling_freq)

Append the data point to the variable X:

 # Append to the variable X
 if len(X) == 0:
 X = features_mfcc
 else:
 X = np.append(X, features_mfcc, axis=0)

Initialize the HMM model:

 # Create the HMM model
 model = ModelHMM()

Train the model using the training data:

 # Train the HMM
 model.train(X)

Save the model for the current word:

 # Save the model for the current word
 speech_models.append((model, label))

 # Reset the variable
 model = None

 return speech_models

Building A Speech Recognizer

[318]

Define a function to run the tests on the test dataset:

Define a function to run tests on input files
def run_tests(test_files):
 # Classify input data
 for test_file in test_files:
 # Read input file
 sampling_freq, signal = wavfile.read(test_file)

Extract the MFCC features:

 # Extract MFCC features
 with warnings.catch_warnings():
 warnings.simplefilter('ignore')
 features_mfcc = mfcc(signal, sampling_freq)

Define the variables to store the maximum score and the output label:

 # Define variables
 max_score = -float('inf')
 output_label = None

Iterate through each model to pick the best one:

 # Run the current feature vector through all the HMM
 # models and pick the one with the highest score
 for item in speech_models:
 model, label = item

Evaluate the score and compare against the maximum score:

 score = model.compute_score(features_mfcc)
 if score > max_score:
 max_score = score
 predicted_label = label

Print the output:

 # Print the predicted output
 start_index = test_file.find('/') + 1
 end_index = test_file.rfind('/')
 original_label = test_file[start_index:end_index]
 print('\nOriginal: ', original_label)
 print('Predicted:', predicted_label)

Building A Speech Recognizer

[319]

Define the main function and get the input folder from the input parameter:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 input_folder = args.input_folder

Build an HMM model for each word in the input folder:

 # Build an HMM model for each word
 speech_models = build_models(input_folder)

We left one file for testing in each folder. Use that file to see how accurate the model is:

 # Test files -- the 15th file in each subfolder
 test_files = []
 for root, dirs, files in os.walk(input_folder):
 for filename in (x for x in files if '15' in x):
 filepath = os.path.join(root, filename)
 test_files.append(filepath)

 run_tests(test_files)

The full code is given in the file speech_recognizer.py. Make sure that the data folder is
placed in the same folder as the code file. Run the code as given below:

 $ python3 speech_recognizer.py --input-folder data

If you run the code, you will see the following output:

Building A Speech Recognizer

[320]

As we can see in the preceding screenshot, our speech recognition system identifies all the
words correctly.

Summary
In this chapter, we learnt about speech recognition. We discussed how to work with speech
signals and the associated concepts. We learnt how to visualize audio signals. We talked
about how to transform time domain audio signals into the frequency domain using Fourier
Transforms. We discussed how to generate audio signals using predefined parameters.

We then used this concept to synthesize music by stitching tones together. We talked about
MFCCs and how they are used in the real world. We understood how to extract frequency
features from speech. We learnt how to use all these techniques to build a speech
recognition system. In the next chapter, we will learn about object detection and tracking.
We will use those concepts to build an engine that can track objects in a live video.

13
Object Detection and Tracking

In this chapter, we are going to learn about object detection and tracking. We will start by
installing OpenCV, a very popular library for computer vision. We will discuss frame
differencing to see how we can detect the moving parts in a video. We will learn how to
track objects using color spaces. We will understand how to use background subtraction to
track objects. We will build an interactive object tracker using the CAMShift algorithm. We
will learn how to build an optical flow based tracker. We will discuss face detection and
associated concepts such as Haar cascades and integral images. We will then use this
technique to build an eye detector and tracker.

By the end of this chapter, you will know about:

Installing OpenCV
Frame differencing
Tracking objects using colorspaces
Object tracking using background subtraction
Building an interactive object tracker using the CAMShift algorithm
Optical flow based tracking
Face detection and tracking
Using Haar cascades for object detection
Using integral images for feature extraction
Eye detection and tracking

Object Detection and Tracking

[322]

Installing OpenCV
We will be using a package called OpenCV in this chapter. You can learn more about it
here: http://opencv.org. Make sure to install it before you proceed. Here are the links to
install OpenCV 3 with Python 3 on various operating systems:

Windows:
https://solarianprogrammer.com/2016/09/17/install-opencv-3-with-python
-3-on-windows

Ubuntu:
http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-
3-4-on-ubuntu

Mac:
http://www.pyimagesearch.com/2015/06/29/install-opencv-3-0-and-python-
3-4-on-osx

Now that you have installed it, let's go to the next section.

Frame differencing
Frame differencing is one of the simplest techniques that can be used to identify the moving
parts in a video. When we are looking at a live video stream, the differences between
consecutive frames captured from the stream gives us a lot of information. Let's see how we
can take the differences between consecutive frames and display the differences. The code
in this section requires an attached camera, so make sure you have a camera on your
machine.

Create a new Python file and import the following package:

import cv2

Define a function to compute the frame differences. Start by computing the difference
between the current frame and the next frame:

Compute the frame differences
def frame_diff(prev_frame, cur_frame, next_frame):
 # Difference between the current frame and the next frame
 diff_frames_1 = cv2.absdiff(next_frame, cur_frame)

https://solarianprogrammer.com/2016/09/17/install-opencv-3-with-python-3-on-windows
https://solarianprogrammer.com/2016/09/17/install-opencv-3-with-python-3-on-windows
http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-3-4-on-ubuntu
http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-3-4-on-ubuntu
http://www.pyimagesearch.com/2015/06/29/install-opencv-3-0-and-python-3-4-on-osx
http://www.pyimagesearch.com/2015/06/29/install-opencv-3-0-and-python-3-4-on-osx

Object Detection and Tracking

[323]

Compute the difference between the current frame and the previous frame:

 # Difference between the current frame and the previous frame
 diff_frames_2 = cv2.absdiff(cur_frame, prev_frame)

Compute the bitwise-AND between the two difference frames and return it:

 return cv2.bitwise_and(diff_frames_1, diff_frames_2)

Define a function to grab the current frame from the webcam. Start by reading it from the
video capture object:

Define a function to get the current frame from the webcam
def get_frame(cap, scaling_factor):
 # Read the current frame from the video capture object
 _, frame = cap.read()

Resize the frame based on the scaling factor and return it:

 # Resize the image
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

Convert the image to grayscale and return it:

 # Convert to grayscale
 gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)

 return gray

Define the main function and initialize the video capture object:

if __name__=='__main__':
 # Define the video capture object
 cap = cv2.VideoCapture(0)

Define the scaling factor to resize the images:

 # Define the scaling factor for the images
 scaling_factor = 0.5

Object Detection and Tracking

[324]

Grab the current frame, the next frame, and the frame after that:

 # Grab the current frame
 prev_frame = get_frame(cap, scaling_factor)
 # Grab the next frame
 cur_frame = get_frame(cap, scaling_factor)
 # Grab the frame after that
 next_frame = get_frame(cap, scaling_factor)

Iterate indefinitely until the user presses the Esc key. Start by computing the frame
differences:

 # Keep reading the frames from the webcam
 # until the user hits the 'Esc' key
 while True:
 # Display the frame difference
 cv2.imshow('Object Movement', frame_diff(prev_frame,
 cur_frame, next_frame))

Update the frame variables:

 # Update the variables
 prev_frame = cur_frame
 cur_frame = next_frame

Grab the next frame from the webcam:

 # Grab the next frame
 next_frame = get_frame(cap, scaling_factor)

Check if the user pressed the Esc key. If so, exit the loop:

 # Check if the user hit the 'Esc' key
 key = cv2.waitKey(10)
 if key == 27:
 break

Once you exit the loop, make sure that all the windows are closed properly:

 # Close all the windows
 cv2.destroyAllWindows()

Object Detection and Tracking

[325]

The full code is given in the file frame_diff.py provided to you. If you run the code, you
will see an output window showing a live output. If you move around, you will see your
silhouette as shown here:

The white lines in the preceding screenshot represent the silhouette.

Tracking objects using colorspaces
The information obtained by frame differencing is useful, but we will not be able to build a
robust tracker with it. It is very sensitive to noise and it does not really track an object
completely. To build a robust object tracker, we need to know what characteristics of the
object can be used to track it accurately. This is where color spaces become relevant.

Object Detection and Tracking

[326]

An image can be represented using various color spaces. The RGB color space is probably
the most popular color space, but it does not lend itself nicely to applications like object
tracking. So we will be using the HSV color space instead. It is an intuitive color space
model that is closer to how humans perceive color. You can learn more about it here:
http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html. We can convert
the captured frame from RGB to HSV colorspace, and then use color thresholding to track
any given object. We should note that we need to know the color distribution of the object
so that we can select the appropriate ranges for thresholding.

Create a new Python file and import the following packages:

import cv2
import numpy as np

Define a function to grab the current frame from the webcam. Start by reading it from the
video capture object:

Define a function to get the current frame from the webcam
def get_frame(cap, scaling_factor):
 # Read the current frame from the video capture object
 _, frame = cap.read()

Resize the frame based on the scaling factor and return it:

 # Resize the image
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 return frame

Define the main function. Start by initializing the video capture object:

if __name__=='__main__':
 # Define the video capture object
 cap = cv2.VideoCapture(0)

Define the scaling factor to be used to resize the captured frames:

 # Define the scaling factor for the images
 scaling_factor = 0.5

http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html

Object Detection and Tracking

[327]

Iterate indefinitely until the user hits the Esc key. Grab the current frame to start:

 # Keep reading the frames from the webcam
 # until the user hits the 'Esc' key
 while True:
 # Grab the current frame
 frame = get_frame(cap, scaling_factor)

Convert the image to HSV color space using the inbuilt function available in OpenCV:

 # Convert the image to HSV colorspace
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Define the approximate HSV color range for the color of human skin:

 # Define range of skin color in HSV
 lower = np.array([0, 70, 60])
 upper = np.array([50, 150, 255])

Threshold the HSV image to create the mask:

 # Threshold the HSV image to get only skin color
 mask = cv2.inRange(hsv, lower, upper)

Compute bitwise-AND between the mask and the original image:

 # Bitwise-AND between the mask and original image
 img_bitwise_and = cv2.bitwise_and(frame, frame, mask=mask)

Run median blurring to smoothen the image:

 # Run median blurring
 img_median_blurred = cv2.medianBlur(img_bitwise_and, 5)

Display the input and output frames:

 # Display the input and output
 cv2.imshow('Input', frame)
 cv2.imshow('Output', img_median_blurred)

Object Detection and Tracking

[328]

Check if the user pressed the Esc key. If so, then exit the loop:

 # Check if the user hit the 'Esc' key
 c = cv2.waitKey(5)
 if c == 27:
 break

Once you exit the loop, make sure that all the windows are properly closed:

 # Close all the windows
 cv2.destroyAllWindows()

The full code is given in the file colorspaces.py provided to you. If you run the code, you
will get two screenshot. The window titled Input is the captured frame:

Object Detection and Tracking

[329]

The second window titled Output shows the skin mask:

Object tracking using background
subtraction
Background subtraction is a technique that models the background in a given video, and
then uses that model to detect moving objects. This technique is used a lot in video
compression as well as video surveillance. It performs really well where we have to detect
moving objects within a static scene. The algorithm basically works by detecting the
background, building a model for it, and then subtracting it from the current frame to
obtain the foreground. This foreground corresponds to moving objects.

One of the main steps here it to build a model of the background. It is not the same as frame
differencing because we are not differencing successive frames. We are actually modeling
the background and updating it in real time, which makes it an adaptive algorithm that can
adjust to a moving baseline. This is why it performs much better than frame differencing.

Object Detection and Tracking

[330]

Create a new Python file and import the following packages:

import cv2
import numpy as np

Define a function to grab the current frame:

Define a function to get the current frame from the webcam
def get_frame(cap, scaling_factor):
 # Read the current frame from the video capture object
 _, frame = cap.read()

Resize the frame and return it:

 # Resize the image
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 return frame

Define the main function and initialize the video capture object:

if __name__=='__main__':
 # Define the video capture object
 cap = cv2.VideoCapture(0)

Define the background subtractor object:

 # Define the background subtractor object
 bg_subtractor = cv2.createBackgroundSubtractorMOG2()

Define the history and the learning rate. The comment below is pretty self explanatory as to
what “history” is all about:

 # Define the number of previous frames to use to learn.
 # This factor controls the learning rate of the algorithm.
 # The learning rate refers to the rate at which your model
 # will learn about the background. Higher value for
 # 'history' indicates a slower learning rate. You can
 # play with this parameter to see how it affects the output.
 history = 100

 # Define the learning rate
 learning_rate = 1.0/history

Object Detection and Tracking

[331]

Iterate indefinitely until the user presses the Esc key. Start by grabbing the current frame:

 # Keep reading the frames from the webcam
 # until the user hits the 'Esc' key
 while True:
 # Grab the current frame
 frame = get_frame(cap, 0.5)

Compute the mask using the background subtractor object defined earlier:

 # Compute the mask
 mask = bg_subtractor.apply(frame, learningRate=learning_rate)

Convert the mask from grayscale to RGB:

 # Convert grayscale image to RGB color image
 mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

Display the input and output images:

 # Display the images
 cv2.imshow('Input', frame)
 cv2.imshow('Output', mask & frame)

Check if the user pressed the Esc key. If so, exit the loop:

 # Check if the user hit the 'Esc' key
 c = cv2.waitKey(10)
 if c == 27:
 break

Once you exit the loop, make sure you release the video capture object and close all the
windows properly:

 # Release the video capture object
 cap.release()
 # Close all the windows
 cv2.destroyAllWindows()

Object Detection and Tracking

[332]

The full code is given in the file background_subtraction.py provided to you. If you
run the code, you will see a window displaying the live output. If you move around, you
will partially see yourself as shown here:

Once you stop moving around, it will start fading because you are now part of the
background. The algorithm will consider you a part of the background and start updating
the model accordingly:

Object Detection and Tracking

[333]

As you remain still, it will continue to fade as shown here:

The process of fading indicates that the current scene is becoming part of the background
model.

Building an interactive object tracker using
the CAMShift algorithm
Color space based tracking allows us to track colored objects, but we have to define the
color first. This seems restrictive! Let us see how we can select an object in a live video and
then have a tracker that can track it. This is where the CAMShift algorithm, which stands
for Continuously Adaptive Mean Shift, becomes relevant. This is basically an adaptive
version of the Mean Shift algorithm.

In order to understand CAMShift, let's see how Mean Shift works. Consider a region of
interest in a given frame. We have selected this region because it contains the object of
interest. We want to track this object, so we have drawn a rough boundary around it, which
is what “region of interest” refers to. We want our object tracker to track this object as it
moves around in the video.

Object Detection and Tracking

[334]

To do this, we select a set of points based on the color histogram of that region and then
compute the centroid. If the location of this centroid is at the geometric center of this region,
then we know that the object hasn't moved. But if the location of the centroid is not at the
geometric center of this region, then we know that the object has moved. This means that
we need to move the enclosing boundary as well. The movement of the centroid is directly
indicative of the direction of movement of the object. We need to move our bounding box so
that the new centroid becomes the geometric center of this bounding box. We keep doing
this for every frame, and track the object in real time. Hence, this algorithm is called Mean
Shift because the mean (i.e. the centroid) keeps shifting and we track the object using this.

Let us see how this is related to CAMShift. One of the problems with Mean Shift is that the
size of the object is not allowed to change over time. Once we draw a bounding box, it will
stay constant regardless of how close or far away the object is from the camera. This is why
we need to use CAMShift because it can adapt the size of the bounding box to the size of the
object. If you want to explore it further, you can check out this link:
http://docs.opencv.org/3.1.0/db/df8/tutorial_py_meanshift.html. Let us see how to
build a tracker.

Create a new python file and import the following packages:

import cv2
import numpy as np

Define a class to handle all the functionality related to object tracking:

Define a class to handle object tracking related functionality
class ObjectTracker(object):
 def __init__(self, scaling_factor=0.5):
 # Initialize the video capture object
 self.cap = cv2.VideoCapture(0)

Capture the current frame:

 # Capture the frame from the webcam
 _, self.frame = self.cap.read()

Set the scaling factor:

 # Scaling factor for the captured frame
 self.scaling_factor = scaling_factor

http://docs.opencv.org/3.1.0/db/df8/tutorial_py_meanshift.html

Object Detection and Tracking

[335]

Resize the frame:

 # Resize the frame
 self.frame = cv2.resize(self.frame, None,
 fx=self.scaling_factor, fy=self.scaling_factor,
 interpolation=cv2.INTER_AREA)

Create a window to display the output:

 # Create a window to display the frame
 cv2.namedWindow('Object Tracker')

Set the mouse callback function to take input from the mouse:

 # Set the mouse callback function to track the mouse
 cv2.setMouseCallback('Object Tracker', self.mouse_event)

Initialize variables to track the rectangular selection:

 # Initialize variable related to rectangular region selection
 self.selection = None
 # Initialize variable related to starting position
 self.drag_start = None
 # Initialize variable related to the state of tracking
 self.tracking_state = 0

Define a function to track the mouse events:

 # Define a method to track the mouse events
 def mouse_event(self, event, x, y, flags, param):
 # Convert x and y coordinates into 16-bit numpy integers
 x, y = np.int16([x, y])

When the left button on the mouse is down, it indicates that the user has started drawing a
rectangle:

 # Check if a mouse button down event has occurred
 if event == cv2.EVENT_LBUTTONDOWN:
 self.drag_start = (x, y)
 self.tracking_state = 0

If the user is currently dragging the mouse to set the size of the rectangular selection, track
the width and height:

 # Check if the user has started selecting the region
 if self.drag_start:
 if flags & cv2.EVENT_FLAG_LBUTTON:
 # Extract the dimensions of the frame
 h, w = self.frame.shape[:2]

Object Detection and Tracking

[336]

Set the starting X and Y coordinates of the rectangle:

 # Get the initial position
 xi, yi = self.drag_start

Get the maximum and minimum values of the coordinates to make it agnostic to the
direction in which you drag the mouse to draw the rectangle:

 # Get the max and min values
 x0, y0 = np.maximum(0, np.minimum([xi, yi], [x, y]))
 x1, y1 = np.minimum([w, h], np.maximum([xi, yi], [x, y]))

Reset the selection variable:

 # Reset the selection variable
 self.selection = None

Finalize the rectangular selection:

 # Finalize the rectangular selection
 if x1-x0 > 0 and y1-y0 > 0:
 self.selection = (x0, y0, x1, y1)

If the selection is done, set the flag that indicates that we should start tracking the object
within the rectangular region:

 else:
 # If the selection is done, start tracking
 self.drag_start = None
 if self.selection is not None:
 self.tracking_state = 1

Define a method to track the object:

 # Method to start tracking the object
 def start_tracking(self):
 # Iterate until the user presses the Esc key
 while True:
 # Capture the frame from webcam
 _, self.frame = self.cap.read()

Object Detection and Tracking

[337]

Resize the frame:

 # Resize the input frame
 self.frame = cv2.resize(self.frame, None,
 fx=self.scaling_factor, fy=self.scaling_factor,
 interpolation=cv2.INTER_AREA)

Create a copy of the frame. We will need it later:

 # Create a copy of the frame
 vis = self.frame.copy()

Convert the color space of the frame from RGB to HSV:

 # Convert the frame to HSV colorspace
 hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)

Create the mask based on predefined thresholds:

 # Create the mask based on predefined thresholds
 mask = cv2.inRange(hsv, np.array((0., 60., 32.)),
 np.array((180., 255., 255.)))

Check if the user has selected the region:

 # Check if the user has selected the region
 if self.selection:
 # Extract the coordinates of the selected rectangle
 x0, y0, x1, y1 = self.selection

 # Extract the tracking window
 self.track_window = (x0, y0, x1-x0, y1-y0)

Extract the regions of interest from the HSV image as well as the mask. Compute the
histogram of the region of interest based on these:

 # Extract the regions of interest
 hsv_roi = hsv[y0:y1, x0:x1]
 mask_roi = mask[y0:y1, x0:x1]

 # Compute the histogram of the region of
 # interest in the HSV image using the mask
 hist = cv2.calcHist([hsv_roi], [0], mask_roi,
 [16], [0, 180])

Object Detection and Tracking

[338]

Normalize the histogram:

 # Normalize and reshape the histogram
 cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);
 self.hist = hist.reshape(-1)

Extract the region of interest from the original frame:

 # Extract the region of interest from the frame
 vis_roi = vis[y0:y1, x0:x1]

Compute bitwise-NOT of the region of interest. This is for display purposes only:

 # Compute the image negative (for display only)
 cv2.bitwise_not(vis_roi, vis_roi)
 vis[mask == 0] = 0

Check if the system is in the tracking mode:

 # Check if the system in the "tracking" mode
 if self.tracking_state == 1:
 # Reset the selection variable
 self.selection = None

Compute the histogram backprojection:

 # Compute the histogram back projection
 hsv_backproj = cv2.calcBackProject([hsv], [0],
 self.hist, [0, 180], 1)

Compute bitwise-AND between the histogram and the mask:

 # Compute bitwise AND between histogram
 # backprojection and the mask
 hsv_backproj &= mask

Define termination criteria for the tracker:

 # Define termination criteria for the tracker
 term_crit = (cv2.TERM_CRITERIA_EPS |
 cv2.TERM_CRITERIA_COUNT, 10, 1)

Apply the CAMShift algorithm to the backprojected histogram:

 # Apply CAMShift on 'hsv_backproj'
 track_box, self.track_window = cv2.CamShift(hsv_backproj,
 self.track_window, term_crit)

Object Detection and Tracking

[339]

Draw an ellipse around the object and display it:

 # Draw an ellipse around the object
 cv2.ellipse(vis, track_box, (0, 255, 0), 2)
 # Show the output live video
 cv2.imshow('Object Tracker', vis)

If the user presses Esc, then exit the loop:

 # Stop if the user hits the 'Esc' key
 c = cv2.waitKey(5)
 if c == 27:
 break

Once you exit the loop, make sure that all the windows are closed properly:

 # Close all the windows
 cv2.destroyAllWindows()

Define the main function and start tracking:

if __name__ == '__main__':
 # Start the tracker
 ObjectTracker().start_tracking()

The full code is given in the file camshift.py provided to you. If you run the code, you
will see a window showing the live video from the webcam.

Take an object, hold it in your hand, and then draw a rectangle around it. Once you draw
the rectangle, make sure to move the mouse pointer away from the final position. The
image will look something like this:

Object Detection and Tracking

[340]

Once the selection is done, move the mouse pointer to a different position to lock the
rectangle. This event will start the tracking process as seen in the following image:

Let's move the object around to see if it's still being tracked:

Object Detection and Tracking

[341]

Looks like it's working well. You can move the object around to see how it's getting tracked
in real time.

Optical flow based tracking
Optical flow is a very popular technique used in computer vision. It uses image feature
points to track an object. Individual feature points are tracked across successive frames in
the live video. When we detect a set of feature points in a given frame, we compute the
displacement vectors to keep track of it. We show the motion of these feature points
between successive frames. These vectors are known as motion vectors. There are many
different ways to perform optical flow, but the Lucas-Kanade method is perhaps the most
popular. Here is the original paper that describes this technique:
http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf.

The first step is to extract the feature points from the current frame. For each feature point
that is extracted, a 3×3 patch (of pixels) is created with the feature point at the center. We are
assuming that all the points in each patch have a similar motion. The size of this window
can be adjusted depending on the situation.

For each patch, we look for a match in its neighborhood in the previous frame. We pick the
best match based on an error metric. The search area is bigger than 3×3 because we look for
a bunch of different 3×3 patches to get the one that is closest to the current patch. Once we
get that, the path from the center point of the current patch and the matched patch in the
previous frame will become the motion vector. We similarly compute the motion vectors for
all the other patches.

Create a new python file and import the following packages:

import cv2
import numpy as np

Define a function to start tracking using optical flow. Start by initializing the video capture
object and the scaling factor:

Define a function to track the object
def start_tracking():
 # Initialize the video capture object
 cap = cv2.VideoCapture(0)

 # Define the scaling factor for the frames
 scaling_factor = 0.5

http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf

Object Detection and Tracking

[342]

Define the number of frames to track and the number of frames to skip:

 # Number of frames to track
 num_frames_to_track = 5

 # Skipping factor
 num_frames_jump = 2

Initialize variables related to tracking paths and frame index:

 # Initialize variables
 tracking_paths = []
 frame_index = 0

Define the tracking parameters like the window size, maximum level, and the termination
criteria:

 # Define tracking parameters
 tracking_params = dict(winSize = (11, 11), maxLevel = 2,
 criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
 10, 0.03))

Iterate indefinitely until the user presses the Esc key. Start by capturing the current frame
and resizing it:

 # Iterate until the user hits the 'Esc' key
 while True:
 # Capture the current frame
 _, frame = cap.read()

 # Resize the frame
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

Convert the frame from RGB to grayscale:

 # Convert to grayscale
 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Create a copy of the frame:

 # Create a copy of the frame
 output_img = frame.copy()

Object Detection and Tracking

[343]

Check if the length of tracking paths is greater than zero:

 if len(tracking_paths) > 0:
 # Get images
 prev_img, current_img = prev_gray, frame_gray

Organize the feature points:

 # Organize the feature points
 feature_points_0 = np.float32([tp[-1] for tp in \
 tracking_paths]).reshape(-1, 1, 2)

Compute the optical flow based on the previous and current images by using the feature
points and the tracking parameters:

 # Compute optical flow
 feature_points_1, _, _ = cv2.calcOpticalFlowPyrLK(
 prev_img, current_img, feature_points_0,
 None, **tracking_params)
 # Compute reverse optical flow
 feature_points_0_rev, _, _ = cv2.calcOpticalFlowPyrLK(
 current_img, prev_img, feature_points_1,
 None, **tracking_params)

 # Compute the difference between forward and
 # reverse optical flow
 diff_feature_points = abs(feature_points_0 - \
 feature_points_0_rev).reshape(-1, 2).max(-1)

Extract the good feature points:

 # Extract the good points
 good_points = diff_feature_points < 1

Initialize the variable for the new tracking paths:

 # Initialize variable
 new_tracking_paths = []

Object Detection and Tracking

[344]

Iterate through all the good feature points and draw circles around them:

 # Iterate through all the good feature points
 for tp, (x, y), good_points_flag in zip(tracking_paths,
 feature_points_1.reshape(-1, 2), good_points):
 # If the flag is not true, then continue
 if not good_points_flag:
 continue

Append the X and Y coordinates and don't exceed the number of frames we are supposed
to track:

 # Append the X and Y coordinates and check if
 # its length greater than the threshold
 tp.append((x, y))
 if len(tp) > num_frames_to_track:
 del tp[0]

 new_tracking_paths.append(tp)

Draw a circle around the point. Update the tracking paths and draw lines using the new
tracking paths to show movement:

 # Draw a circle around the feature points
 cv2.circle(output_img, (x, y), 3, (0, 255, 0), -1)

 # Update the tracking paths
 tracking_paths = new_tracking_paths

 # Draw lines
 cv2.polylines(output_img, [np.int32(tp) for tp in \
 tracking_paths], False, (0, 150, 0))

Go into this if condition after skipping the number of frames specified earlier:

 # Go into this 'if' condition after skipping the
 # right number of frames
 if not frame_index % num_frames_jump:
 # Create a mask and draw the circles
 mask = np.zeros_like(frame_gray)
 mask[:] = 255
 for x, y in [np.int32(tp[-1]) for tp in tracking_paths]:
 cv2.circle(mask, (x, y), 6, 0, -1)

Object Detection and Tracking

[345]

Compute the good features to track using the inbuilt function along with parameters like
mask, maximum corners, quality level, minimum distance, and the block size:

 # Compute good features to track
 feature_points = cv2.goodFeaturesToTrack(frame_gray,
 mask = mask, maxCorners = 500, qualityLevel = 0.3,
 minDistance = 7, blockSize = 7)

If the feature points exist, append them to the tracking paths:

 # Check if feature points exist. If so, append them
 # to the tracking paths
 if feature_points is not None:
 for x, y in np.float32(feature_points).reshape(-1, 2):
 tracking_paths.append([(x, y)])

Update the variables related to frame index and the previous grayscale image:

 # Update variables
 frame_index += 1
 prev_gray = frame_gray

Display the output:

 # Display output
 cv2.imshow('Optical Flow', output_img)

Check if the user pressed the Esc key. If so, exit the loop:

 # Check if the user hit the 'Esc' key
 c = cv2.waitKey(1)
 if c == 27:
 break

Object Detection and Tracking

[346]

Define the main function and start tracking. Once you stop the tracker, make sure that all
the windows are closed properly:

if __name__ == '__main__':
 # Start the tracker
 start_tracking()

 # Close all the windows
 cv2.destroyAllWindows()

The full code is given in the file optical_flow.py provided to you. If you run the code,
you will see a window showing the live video. You will see feature points as shown in the
following screensot:

Object Detection and Tracking

[347]

If you move around, you will see lines showing the movement of those feature points:

If you then move in the opposite direction, the lines will also change their direction
accordingly:

Object Detection and Tracking

[348]

Face detection and tracking
Face detection refers to detecting the location of a face in a given image. This is often
confused with face recognition, which is the process of identifying who the person is. A
typical biometric system utilizes both face detection and face recognition to perform the
task. It uses face detection to locate the face and then uses face recognition to identify the
person. In this section, we will see how to automatically detect the location of a face in a live
video and track it.

Using Haar cascades for object detection
We will be using Haar cascades to detect faces in the video. Haar cascades, in this case, refer
to cascade classifiers based on Haar features. Paul Viola and Michael Jones first came up with
this object detection method in their landmark research paper in 2001. You can check it out
here: https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf. In
their paper, they describe an effective machine learning technique that can be used to detect
any object.

They use a boosted cascade of simple classifiers. This cascade is used to build an overall
classifier that performs with high accuracy. The reason this is relevant is because it helps us
circumvent the process of building a single-step classifier that performs with high accuracy.
Building one such robust single-step classifier is a computationally intensive process.

Consider an example where we have to detect an object like, say, a tennis ball. In order to
build a detector, we need a system that can learn what a tennis ball looks like. It should be
able to infer whether or not a given image contains a tennis ball. We need to train this
system using a lot of images of tennis balls. We also need a lot of images that don't contain
tennis balls as well. This helps the system learn how to differentiate between objects.

If we build an accurate model, it will be complex. Hence we won't be able to run it in real
time. If it's too simple, it might not be accurate. This trade off between speed and accuracy
is frequently encountered in the world of machine learning. The Viola-Jones method
overcomes this problem by building a set of simple classifiers. These classifiers are then
cascaded to form a unified classifier that's robust and accurate.

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf

Object Detection and Tracking

[349]

Let's see how to use this to do face detection. In order to build a machine learning system to
detect faces, we first need to build a feature extractor. The machine learning algorithms
will use these features to understand what a face looks like. This is where Haar features
become relevant. They are just simple summations and differences of patches across the
image. Haar features are really easy to compute. In order to make it robust to scale, we do
this at multiple image sizes. If you want to learn more about this in a tutorial format, you
can check out this link: http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf.

Once the features are extracted, we pass them through our boosted cascade of simple
classifiers. We check various rectangular sub-regions in the image and keep discarding the
ones that don't contain faces. This helps us arrive at the final answer quickly. In order to
compute these features quickly, they used a concept known as integral images.

Using integral images for feature extraction
In order to compute Haar features, we have to compute the summations and differences of
many sub-regions in the image. We need to compute these summations and differences at
multiple scales, which makes it a very computationally intensive process. In order to build a
real time system, we use integral images. Consider the following figure:

If we want to compute the sum of the rectangle ABCD in this image, we don't need to go
through each pixel in that rectangular area. Let's say OP indicates the area of the rectangle
formed by the top left corner O and the point P on the diagonally opposite corners of the
rectangle. To calculate the area of the rectangle ABCD, we can use the following formula:

Area of the rectangle ABCD = OC – (OB + OD – OA)

http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf

Object Detection and Tracking

[350]

What's so special about this formula? If you notice, we didn't have to iterate through
anything or recalculate any rectangle areas. All the values on the right hand side of the
equation are already available because they were computed during earlier cycles. We
directly used them to compute the area of this rectangle. Let's see how to build a face
detector.

Create a new python file and import the following packages:

import cv2
import numpy as np

Load the Haar cascade file corresponding to face detection:

Load the Haar cascade file
face_cascade = cv2.CascadeClassifier(
 'haar_cascade_files/haarcascade_frontalface_default.xml')

Check if the cascade file has been loaded correctly
if face_cascade.empty():
 raise IOError('Unable to load the face cascade classifier xml file')

Initialize the video capture object and define the scaling factor:

Initialize the video capture object
cap = cv2.VideoCapture(0)

Define the scaling factor
scaling_factor = 0.5

Iterate indefinitely until the user presses the Esc key. Capture the current frame:

Iterate until the user hits the 'Esc' key
while True:
 # Capture the current frame
 _, frame = cap.read()

Resize the frame:

 # Resize the frame
 frame = cv2.resize(frame, None,
 fx=scaling_factor, fy=scaling_factor,
 interpolation=cv2.INTER_AREA)

Object Detection and Tracking

[351]

Convert the image to grayscale:

 # Convert to grayscale
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Run the face detector on the grayscale image:

 # Run the face detector on the grayscale image
 face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)

Iterate through the detected faces and draw rectangles around them:

 # Draw a rectangle around the face
 for (x,y,w,h) in face_rects:
 cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)

Display the output:

 # Display the output
 cv2.imshow('Face Detector', frame)

Check if the user pressed the Esc key. If so, exit the loop:

 # Check if the user hit the 'Esc' key
 c = cv2.waitKey(1)
 if c == 27:
 break

Once you exit the loop, make sure to release the video capture object and close all the
windows properly:

Release the video capture object
cap.release()

Close all the windows
cv2.destroyAllWindows()

Object Detection and Tracking

[352]

The full code is given in the file face_detector.py provided to you. If you run the code,
you will see something like this:

Eye detection and tracking
Eye detection works very similarly to face detection. Instead of using a face cascade file, we
will use an eye cascade file. Create a new python file and import the following packages:

import cv2
import numpy as np

Load the Haar cascade files corresponding to face and eye detection:

Load the Haar cascade files for face and eye
face_cascade =
cv2.CascadeClassifier('haar_cascade_files/haarcascade_frontalface_default.x
ml')
eye_cascade =
cv2.CascadeClassifier('haar_cascade_files/haarcascade_eye.xml')

Object Detection and Tracking

[353]

Check if the face cascade file has been loaded correctly
if face_cascade.empty():
 raise IOError('Unable to load the face cascade classifier xml file')

Check if the eye cascade file has been loaded correctly
if eye_cascade.empty():
 raise IOError('Unable to load the eye cascade classifier xml file')

Initialize the video capture object and define the scaling factor:

Initialize the video capture object
cap = cv2.VideoCapture(0)
Define the scaling factor
ds_factor = 0.5

Iterate indefinitely until the user presses the Esc key:

Iterate until the user hits the 'Esc' key
while True:
 # Capture the current frame
 _, frame = cap.read()

Resize the frame:

 # Resize the frame
 frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,
interpolation=cv2.INTER_AREA)

Convert the frame from RGB to grayscale:

 # Convert to grayscale
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Run the face detector:

 # Run the face detector on the grayscale image
 faces = face_cascade.detectMultiScale(gray, 1.3, 5)

For each face detected, run the eye detector within that region:

 # For each face that's detected, run the eye detector
 for (x,y,w,h) in faces:
 # Extract the grayscale face ROI
 roi_gray = gray[y:y+h, x:x+w]

Object Detection and Tracking

[354]

Extract the region of interest and run the eye detector:

 # Extract the color face ROI
 roi_color = frame[y:y+h, x:x+w]

 # Run the eye detector on the grayscale ROI
 eyes = eye_cascade.detectMultiScale(roi_gray)

Draw circles around the eyes and display the output:

 # Draw circles around the eyes
 for (x_eye,y_eye,w_eye,h_eye) in eyes:
 center = (int(x_eye + 0.5*w_eye), int(y_eye + 0.5*h_eye))
 radius = int(0.3 * (w_eye + h_eye))
 color = (0, 255, 0)
 thickness = 3
 cv2.circle(roi_color, center, radius, color, thickness)
 # Display the output
 cv2.imshow('Eye Detector', frame)

If the user presses the Esc key, exit the loop:

 # Check if the user hit the 'Esc' key
 c = cv2.waitKey(1)
 if c == 27:
 break

Once you exit the loop, make sure to release the video capture object and close all the
windows:

Release the video capture object
cap.release()

Close all the windows
cv2.destroyAllWindows()

Object Detection and Tracking

[355]

The full code is given in the file eye_detector.py provided to you. If you run the code,
you will see something like this:

Summary
In this chapter, we learnt about object detection and tracking. We understood how to install
OpenCV with Python support on various operating systems. We learnt about frame
differencing and used it to detect the moving parts in a video. We discussed how to track
human skin using color spaces. We talked about background subtraction and how it can be
used to track objects in static scenes. We built an interactive object tracker using the
CAMShift algorithm.

We learnt how to build an optical flow based tracker. We discussed face detection
techniques and understood the concepts of Haar cascades and integral images. We used this
technique to build an eye detector and tracker. In the next chapter, we will discuss artificial
neural networks and use those techniques to build an optical character recognition engine.

14
Artificial Neural Networks

In this chapter, we are going to learn about artificial neural networks. We will start with an
introduction to artificial neural networks and the installation of the relevant library. We will
discuss perceptrons and how to build a classifier based on them. We will learn about single
layer neural networks and multilayer neural networks. We will see how to use neural
networks to build a vector quantizer. We will analyze sequential data using recurrent
neural networks. We will then use artificial neural networks to build an optical character
recognition engine.

By the end of this chapter, you will know about:

Introduction to artificial neural networks
Building a Perceptron based classifier
Constructing a single layer neural network
Constructing a multilayer neural network
Building a vector quantizer
Analyzing sequential data using recurrent neural networks
Visualizing characters in an Optical Character Recognition (OCR) database
Building an Optical Character Recognition (OCR) engine

Introduction to artificial neural networks
One of the fundamental premises of Artificial Intelligence is to build machines that can
perform tasks that require human intelligence. The human brain is amazing at learning new
things. Why not use the model of the human brain to build a machine? An artificial neural
network is a model designed to simulate the learning process of the human brain.

Artificial Neural Networks

[357]

Artificial neural networks are designed such that they can identify the underlying patterns
in data and learn from them. They can be used for various tasks such as classification,
regression, segmentation, and so on. We need to convert any given data into numerical
form before feeding it into the neural network. For example, we deal with many different
types of data including visual, textual, time-series, and so on. We need to figure out how to
represent problems in a way that can be understood by artificial neural networks.

Building a neural network
The human learning process is hierarchical. We have various stages in our brain's neural
network and each stage corresponds to a different granularity. Some stages learn simple
things and some stages learn more complex things. Let's consider an example of visually
recognizing an object. When we look at a box, the first stage identifies simple things like
corners and edges. The next stage identifies the generic shape and the stage after that
identifies what kind of object it is. This process differs for different tasks, but you get the
idea! By building this hierarchy, our human brain quickly separates the concepts and
identifies the given object.

To simulate the learning process of the human brain, an artificial neural network is built
using layers of neurons. These neurons are inspired by the biological neurons we discussed
in the previous paragraph. Each layer in an artificial neural network is a set of independent
neurons. Each neuron in a layer is connected to neurons in the adjacent layer.

Training a neural network
If we are dealing with N-dimensional input data, then the input layer will consist of N
neurons. If we have M distinct classes in our training data, then the output layer will consist
of M neurons. The layers between the input and output layers are called hidden layers. A
simple neural network will consist of a couple of layers and a deep neural network will
consist of many layers.

Consider the case where we want to use a neural network to classify the given data. The
first step is to collect the appropriate training data and label it. Each neuron acts as a simple
function and the neural network trains itself until the error goes below a certain value. The
error is basically the difference between the predicted output and the actual output. Based
on how big the error is, the neural network adjusts itself and retrains until it gets closer to
the solution. You can learn more about neural networks
at http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html.

http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html

Artificial Neural Networks

[358]

We will be using a library called NeuroLab in this chapter. You can find more about it
at https://pythonhosted.org/neurolab. You can install it by running the following
command on your Terminal:

 $ pip3 install neurolab

Once you have installed it, you can proceed to the next section.

Building a Perceptron based classifier
A Perceptron is the building block of an artificial neural network. It is a single neuron that
takes inputs, performs computation on them, and then produces an output. It uses a simple
linear function to make the decision. Let's say we are dealing with an N-dimension input
data point. A Perceptron computes the weighted summation of those N numbers and it
then adds a constant to produce the output. The constant is called the bias of the neuron. It
is remarkable to note that these simple Perceptrons are used to design very complex deep
neural networks. Let's see how to build a Perceptron based classifier using NeuroLab.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl

Load the input data from the text file data_perceptron.txt provided to you. Each line
contains space separated numbers where the first two numbers are the features and the last
number is the label:

Load input data
text = np.loadtxt('data_perceptron.txt')

Separate the text into datapoints and labels:

Separate datapoints and labels
data = text[:, :2]
labels = text[:, 2].reshape((text.shape[0], 1))

Plot the datapoints:

Plot input data
plt.figure()
plt.scatter(data[:,0], data[:,1])
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('Input data')

https://pythonhosted.org/neurolab

Artificial Neural Networks

[359]

Define the maximum and minimum values that each dimension can take:

Define minimum and maximum values for each dimension
dim1_min, dim1_max, dim2_min, dim2_max = 0, 1, 0, 1

Since the data is separated into two classes, we just need one bit to represent the output. So
the output layer will contain a single neuron.

Number of neurons in the output layer
num_output = labels.shape[1]

We have a dataset where the datapoints are two-dimensional. Let's define a Perceptron with
two input neurons, where we assign one neuron for each dimension.

Define a perceptron with 2 input neurons (because we
have 2 dimensions in the input data)
dim1 = [dim1_min, dim1_max]
dim2 = [dim2_min, dim2_max]
perceptron = nl.net.newp([dim1, dim2], num_output)

Train the perceptron with the training data:

Train the perceptron using the data
error_progress = perceptron.train(data, labels, epochs=100, show=20,
lr=0.03)

Plot the training progress using the error metric:

Plot the training progress
plt.figure()
plt.plot(error_progress)
plt.xlabel('Number of epochs')
plt.ylabel('Training error')
plt.title('Training error progress')
plt.grid()

plt.show()

Artificial Neural Networks

[360]

The full code is given in the file perceptron_classifier.py. If you run the code, you
will get two output screenshot. The first screenshot indicates the input data points:

Artificial Neural Networks

[361]

The second screenshot represents the training progress using the error metric:

We can observe from the preceding screenshot, the error goes down to 0 at the end of the
fourth epoch.

Artificial Neural Networks

[362]

Constructing a single layer neural network
A perceptron is a good start, but it cannot do much. The next step is to have a set of neurons
act as a unit to see what we can achieve. Let's create a single neural network that consists of
independent neurons acting on input data to produce the output.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl

We will use the input data from the file data_simple_nn.txt provided to you. Each line
in this file contains four numbers. The first two numbers form the datapoint and the last
two numbers are the labels. Why do we need to assign two numbers for labels? Because we
have four distinct classes in our dataset, so we need two bits to represent them. Let us go
ahead and load the data:

Load input data
text = np.loadtxt('data_simple_nn.txt')

Separate the data into datapoints and labels:

Separate it into datapoints and labels
data = text[:, 0:2]
labels = text[:, 2:]

Plot the input data:

Plot input data
plt.figure()
plt.scatter(data[:,0], data[:,1])
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('Input data')

Artificial Neural Networks

[363]

Extract the minimum and maximum values for each dimension (we don't need to hardcode
it like we did in the previous section):

Minimum and maximum values for each dimension
dim1_min, dim1_max = data[:,0].min(), data[:,0].max()
dim2_min, dim2_max = data[:,1].min(), data[:,1].max()

Define the number of neurons in the output layer:

Define the number of neurons in the output layer
num_output = labels.shape[1]

Define a single layer neural network using the above parameters:

Define a single-layer neural network
dim1 = [dim1_min, dim1_max]
dim2 = [dim2_min, dim2_max]
nn = nl.net.newp([dim1, dim2], num_output)

Train the neural network using training data:

Train the neural network
error_progress = nn.train(data, labels, epochs=100, show=20, lr=0.03)

Plot the training progress:

Plot the training progress
plt.figure()
plt.plot(error_progress)
plt.xlabel('Number of epochs')
plt.ylabel('Training error')
plt.title('Training error progress')
plt.grid()

plt.show()

Define some sample test datapoints and run the network on those points:

Run the classifier on test datapoints
print('\nTest results:')
data_test = [[0.4, 4.3], [4.4, 0.6], [4.7, 8.1]]
for item in data_test:
 print(item, '-->', nn.sim([item])[0])

Artificial Neural Networks

[364]

The full code is given in the file simple_neural_network.py. If you run the code, you
will get two screenshot. The first screenshot represents the input datapoints:

Artificial Neural Networks

[365]

The second screenshot shows the training progress:

Artificial Neural Networks

[366]

Once you close the graphs, you will see the following printed on your Terminal:

If you locate these test data points on a 2D graph, you can visually verify that the predicted
outputs are correct.

Constructing a multilayer neural network
In order to enable higher accuracy, we need to give more freedom to the neural network.
This means that a neural network needs more than one layer to extract the underlying
patterns in the training data. Let's create a multilayer neural network to achieve that.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl

In the previous two sections, we saw how to use a neural network as a classifier. In this
section, we will see how to use a multilayer neural network as a regressor. Generate some
sample data points based on the equation y = 3x^2 + 5 and then normalize the points:

Generate some training data
min_val = -15
max_val = 15
num_points = 130
x = np.linspace(min_val, max_val, num_points)
y = 3 * np.square(x) + 5
y /= np.linalg.norm(y)

Reshape the above variables to create a training dataset:

Create data and labels
data = x.reshape(num_points, 1)
labels = y.reshape(num_points, 1)

Artificial Neural Networks

[367]

Plot the input data:

Plot input data
plt.figure()
plt.scatter(data, labels)
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('Input data')

Define a multilayer neural network with two hidden layers. You are free to design a neural
network any way you want. For this case, let's have 10 neurons in the first layer and 6
neurons in the second layer. Our task is to predict the value, so the output layer will contain
a single neuron:

Define a multilayer neural network with 2 hidden layers;
First hidden layer consists of 10 neurons
Second hidden layer consists of 6 neurons
Output layer consists of 1 neuron
nn = nl.net.newff([[min_val, max_val]], [10, 6, 1])

Set the training algorithm to gradient descent:

Set the training algorithm to gradient descent
nn.trainf = nl.train.train_gd

Train the neural network using the training data that was generated:

Train the neural network
error_progress = nn.train(data, labels, epochs=2000, show=100, goal=0.01)

Run the neural network on the training datapoints:

Run the neural network on training datapoints
output = nn.sim(data)
y_pred = output.reshape(num_points)

Plot the training progress:

Plot training error
plt.figure()
plt.plot(error_progress)
plt.xlabel('Number of epochs')
plt.ylabel('Error')
plt.title('Training error progress')

Artificial Neural Networks

[368]

Plot the predicted output:

Plot the output
x_dense = np.linspace(min_val, max_val, num_points * 2)
y_dense_pred =
nn.sim(x_dense.reshape(x_dense.size,1)).reshape(x_dense.size)

plt.figure()
plt.plot(x_dense, y_dense_pred, '-', x, y, '.', x, y_pred, 'p')
plt.title('Actual vs predicted')

plt.show()

The full code is given in the file multilayer_neural_network.py. If you run the code,
you will get three screenshot. The first screenshot shows the input data:

Artificial Neural Networks

[369]

The second screenshot shows the training progress:

Artificial Neural Networks

[370]

The third screenshot shows the predicted output overlaid on top of input data:

The predicted output seems to follow the general trend. If you continue to train the network
and reduce the error, you will see that the predicted output will match the input curve even
more accurately.

Artificial Neural Networks

[371]

You will see the following printed on your Terminal:

Building a vector quantizer
Vector Quantization is a quantization technique where the input data is represented by a
fixed number of representative points. It is the N-dimensional equivalent of rounding off a
number. This technique is commonly used in multiple fields such as image recognition,
semantic analysis, and data science. Let's see how to use artificial neural networks to build a
vector quantizer.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl

Load the input data from the file data_vector_quantization.txt. Each line in this file
contains six numbers. The first two numbers form the datapoint and the last four numbers
form a one-hot encoded label. There are four classes overall.

Load input data
text = np.loadtxt('data_vector_quantization.txt')

Separate the text into data and labels:

Separate it into data and labels
data = text[:, 0:2]
labels = text[:, 2:]

Artificial Neural Networks

[372]

Define a neural network with two layers where we have 10 neurons in the input layer and 4
neurons in the output layer:

Define a neural network with 2 layers:
10 neurons in input layer and 4 neurons in output layer
num_input_neurons = 10
num_output_neurons = 4
weights = [1/num_output_neurons] * num_output_neurons
nn = nl.net.newlvq(nl.tool.minmax(data), num_input_neurons, weights)

Train the neural network using the training data:

Train the neural network
_ = nn.train(data, labels, epochs=500, goal=-1)

In order to visualize the output clusters, let's create a grid of points:

Create the input grid
xx, yy = np.meshgrid(np.arange(0, 10, 0.2), np.arange(0, 10, 0.2))
xx.shape = xx.size, 1
yy.shape = yy.size, 1
grid_xy = np.concatenate((xx, yy), axis=1)

Evaluate the grid of points using the neural network:

Evaluate the input grid of points
grid_eval = nn.sim(grid_xy)

Extract the four classes:

Define the 4 classes
class_1 = data[labels[:,0] == 1]
class_2 = data[labels[:,1] == 1]
class_3 = data[labels[:,2] == 1]
class_4 = data[labels[:,3] == 1]

Extract the grids corresponding to those four classes:

Define X-Y grids for all the 4 classes
grid_1 = grid_xy[grid_eval[:,0] == 1]
grid_2 = grid_xy[grid_eval[:,1] == 1]
grid_3 = grid_xy[grid_eval[:,2] == 1]
grid_4 = grid_xy[grid_eval[:,3] == 1]

Plot the outputs:

Plot the outputs
plt.plot(class_1[:,0], class_1[:,1], 'ko',
 class_2[:,0], class_2[:,1], 'ko',

Artificial Neural Networks

[373]

 class_3[:,0], class_3[:,1], 'ko',
 class_4[:,0], class_4[:,1], 'ko')
plt.plot(grid_1[:,0], grid_1[:,1], 'm.',
 grid_2[:,0], grid_2[:,1], 'bx',
 grid_3[:,0], grid_3[:,1], 'c^',
 grid_4[:,0], grid_4[:,1], 'y+')
plt.axis([0, 10, 0, 10])
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('Vector quantization')

plt.show()

The full code is given in the file vector_quantizer.py. If you run the code, you will get
the following sccreenshot that shows the input data points and the boundaries between
clusters:

Artificial Neural Networks

[374]

You will see the following printed on your Terminal:

Analyzing sequential data using recurrent
neural networks
We have been dealing with static data so far. Artificial neural networks are good at building
models for sequential data too. In particular, recurrent neural networks are great at
modeling sequential data. Perhaps time-series data is the most commonly occurring form of
sequential data in our world. You can learn more about recurrent neural networks at
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introdu

ction-to-rnns. When we are working with time-series data, we cannot just use generic
learning models. We need to characterize the temporal dependencies in our data so that we
can build a robust model. Let's see how to build it.

Create a new python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl

Define a function to generate the waveforms. Start by defining four sine waves:

def get_data(num_points):
 # Create sine waveforms
 wave_1 = 0.5 * np.sin(np.arange(0, num_points))
 wave_2 = 3.6 * np.sin(np.arange(0, num_points))
 wave_3 = 1.1 * np.sin(np.arange(0, num_points))
 wave_4 = 4.7 * np.sin(np.arange(0, num_points))

Create varying amplitudes for the overall waveform:

 # Create varying amplitudes
 amp_1 = np.ones(num_points)
 amp_2 = 2.1 + np.zeros(num_points)
 amp_3 = 3.2 * np.ones(num_points)
 amp_4 = 0.8 + np.zeros(num_points)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns

Artificial Neural Networks

[375]

Create the overall waveform:

 wave = np.array([wave_1, wave_2, wave_3, wave_4]).reshape(num_points *
4, 1)
 amp = np.array([[amp_1, amp_2, amp_3, amp_4]]).reshape(num_points * 4,
1)

 return wave, amp

Define a function to visualize the output of the neural network:

Visualize the output
def visualize_output(nn, num_points_test):
 wave, amp = get_data(num_points_test)
 output = nn.sim(wave)
 plt.plot(amp.reshape(num_points_test * 4))
 plt.plot(output.reshape(num_points_test * 4))

Define the main function and create a waveform:

if __name__=='__main__':
 # Create some sample data
 num_points = 40
 wave, amp = get_data(num_points)

Create a recurrent neural network with two layers:

 # Create a recurrent neural network with 2 layers
 nn = nl.net.newelm([[-2, 2]], [10, 1], [nl.trans.TanSig(),
nl.trans.PureLin()])

Set the initializer functions for each layer:

 # Set the init functions for each layer
 nn.layers[0].initf = nl.init.InitRand([-0.1, 0.1], 'wb')
 nn.layers[1].initf = nl.init.InitRand([-0.1, 0.1], 'wb')
 nn.init()

Artificial Neural Networks

[376]

Train the neural network:

 # Train the recurrent neural network
 error_progress = nn.train(wave, amp, epochs=1200, show=100, goal=0.01)

Run the data through the network:

 # Run the training data through the network
 output = nn.sim(wave)

Plot the output:

 # Plot the results
 plt.subplot(211)
 plt.plot(error_progress)
 plt.xlabel('Number of epochs')
 plt.ylabel('Error (MSE)')

 plt.subplot(212)
 plt.plot(amp.reshape(num_points * 4))
 plt.plot(output.reshape(num_points * 4))
 plt.legend(['Original', 'Predicted'])

Test the performance of the neural network on unknown test data:

 # Testing the network performance on unknown data
 plt.figure()

 plt.subplot(211)
 visualize_output(nn, 82)
 plt.xlim([0, 300])

 plt.subplot(212)
 visualize_output(nn, 49)
 plt.xlim([0, 300])

 plt.show()

Artificial Neural Networks

[377]

The full code is given in the file recurrent_neural_network.py. If you run the code,
you will see two output figures. The upper half of the first screenshot shows the training
progress and the lower half shows the predicted output overlaid on top of the input
waveform:

Artificial Neural Networks

[378]

The upper half of the second screenshot shows how the neural network simulates the
waveform even though we increase the length of the waveform. The lower half of the
screenshot shows the same for decreased length.

You will see the following printed on your Terminal:

Artificial Neural Networks

[379]

Visualizing characters in an Optical
Character Recognition database
Artificial neural networks can use optical character recognition. It is perhaps one of the
most commonly sited examples. Optical Character Recognition (OCR) is the process of
recognizing handwritten characters in images. Before we jump into building that model, we
need to familiarize ourselves with the dataset. We will be using the dataset available
at http://ai.stanford.edu/~btaskar/ocr. You will be downloading a file called
letter.data. For convenience, this file has been provided to you in the code bundle. Let's
see how to load that data and visualize the characters.

Create a new python file and import the following packages:

import os
import sys

import cv2
import numpy as np

Define the input file containing the OCR data:

Define the input file
input_file = 'letter.data'

Define the visualization and other parameters required to load the data from that file:

Define the visualization parameters
img_resize_factor = 12
start = 6
end = -1
height, width = 16, 8

Iterate through the lines of that file until the user presses the Esc key. Each line in that file is
tab separated. Read each line and scale it up to 255:

Iterate until the user presses the Esc key
with open(input_file, 'r') as f:
 for line in f.readlines():
 # Read the data
 data = np.array([255 * float(x) for x in
line.split('\t')[start:end]])

Reshape the 1D array into a 2D image:

 # Reshape the data into a 2D image
 img = np.reshape(data, (height, width))

http://ai.stanford.edu/~btaskar/ocr

Artificial Neural Networks

[380]

Scale the image for visualization:

 # Scale the image
 img_scaled = cv2.resize(img, None, fx=img_resize_factor,
fy=img_resize_factor)

Display the image:

 # Display the image
 cv2.imshow('Image', img_scaled)

Check if the user has pressed the Esc key. If so, exit the loop:

 # Check if the user pressed the Esc key
 c = cv2.waitKey()
 if c == 27:
 break

The full code is given in the file character_visualizer.py. If you run the code, you will
get an output screenshot displaying a character. You can keep pressing the space bar to see
more characters. An o looks like this:

An i looks like this:

Artificial Neural Networks

[381]

Building an Optical Character Recognition
engine
Now that we have learned how to work with this data, let's build an optical character
recognition system using artificial neural networks.

Create a new python file and import the following packages:

import numpy as np
import neurolab as nl

Define the input file:

Define the input file
input_file = 'letter.data'

Define the number of datapoints that will be loaded:

Define the number of datapoints to
be loaded from the input file
num_datapoints = 50

Define the string containing all the distinct characters:

String containing all the distinct characters
orig_labels = 'omandig'

Extract the number of distinct classes:

Compute the number of distinct characters
num_orig_labels = len(orig_labels)

Define the train and test split. We will use 90% for training and 10% for testing:

Define the training and testing parameters
num_train = int(0.9 * num_datapoints)
num_test = num_datapoints - num_train

Define the dataset extraction parameters:

Define the dataset extraction parameters
start = 6
end = -1

Artificial Neural Networks

[382]

Create the dataset:

Creating the dataset
data = []
labels = []
with open(input_file, 'r') as f:
 for line in f.readlines():
 # Split the current line tabwise
 list_vals = line.split('\t')

If the label is not in our list of labels, we should skip it:

 # Check if the label is in our ground truth
 # labels. If not, we should skip it.
 if list_vals[1] not in orig_labels:
 continue

Extract the current label and append it to the main list:

 # Extract the current label and append it
 # to the main list
 label = np.zeros((num_orig_labels, 1))
 label[orig_labels.index(list_vals[1])] = 1
 labels.append(label)

Extract the character vector and append it to the main list:

 # Extract the character vector and append it to the main list
 cur_char = np.array([float(x) for x in list_vals[start:end]])
 data.append(cur_char)

Exit the loop once we have created the dataset:

 # Exit the loop once the required dataset has been created
 if len(data) >= num_datapoints:
 break

Convert the lists into numpy arrays:

Convert the data and labels to numpy arrays
data = np.asfarray(data)
labels = np.array(labels).reshape(num_datapoints, num_orig_labels)

Extract the number of dimensions:

Extract the number of dimensions
num_dims = len(data[0])

Artificial Neural Networks

[383]

Create a feedforward neural network and set the training algorithm to gradient descent:

Create a feedforward neural network
nn = nl.net.newff([[0, 1] for _ in range(len(data[0]))],
 [128, 16, num_orig_labels])

Set the training algorithm to gradient descent
nn.trainf = nl.train.train_gd

Train the neural network:

Train the network
error_progress = nn.train(data[:num_train,:], labels[:num_train,:],
 epochs=10000, show=100, goal=0.01)

Predict the output for test data:

Predict the output for test inputs
print('\nTesting on unknown data:')
predicted_test = nn.sim(data[num_train:, :])
for i in range(num_test):
 print('\nOriginal:', orig_labels[np.argmax(labels[i])])
 print('Predicted:', orig_labels[np.argmax(predicted_test[i])])

The full code is given in the file ocr.py. If you run the code, you will see the following on
your Terminal:

Artificial Neural Networks

[384]

It will keep going until 10,000 epochs. Once it's done, you will see the following on your
Terminal:

As we can see in the preceding screenshot, it gets three of them right. If you use a bigger
dataset and train longer, then you will get higher accuracy.

Summary
In this chapter, we learned about artificial neural networks. We discussed how to build and
train neural networks. We talked about perceptrons and built a classifier based on that. We
learned about single layer neural networks as well as multilayer neural networks. We
discussed how neural networks could be used to build a vector quantizer. We analyzed
sequential data using recurrent neural networks. We then built an optical character
recognition engine using artificial neural networks. In the next chapter, we will learn about
reinforcement learning and see how to build smart learning agents.

15
Reinforcement Learning

In this chapter, we are going to learn about reinforcement learning. We will discuss the
premise of reinforcement learning. We will talk about the differences between
reinforcement learning and supervised learning. We will go through some real world
examples of reinforcement learning and see how it manifests itself in various forms. We will
learn about the building blocks of reinforcement learning and the various concepts
involved. We will then create an environment in python to see how it works in practice. We
will then use these concepts to build a learning agent.

By the end of this chapter, you will know:

Understanding the premise
Reinforcement learning vs. supervised learning
Real world examples of reinforcement learning
Building blocks of reinforcement learning
Creating an environment
Building a learning agent

Understanding the premise
The concept of learning is fundamental to Artificial Intelligence. We want the machines to
understand the process of learning so that they can do it on their own. Humans learn by
observing and interacting with their surroundings. When you go to a new place, you
quickly scan and see what's happening around you. Nobody is teaching you what to do
here. You are observing and interacting with the environment around you. By building this
connection with the environment, we tend to gather a lot of information about what's
causing different things. We learn about cause and effect, what actions lead to what results,
and what we need to do in order to achieve something.

Reinforcement Learning

[386]

We use this premise everywhere in our lives. We gather all this knowledge about our
surroundings and, in turn, learn how we respond to that. Let's consider another example of
an orator. Whenever good orators are giving speeches in public, they are aware of how the
crowd is reacting to what they are saying. If the crowd is not responding to it, then the
orator changes the speech in real time to ensure that the crowd is engaged. As we can see,
the orator is trying to influence the environment through his/her behavior. We can say that
the orator learned from interaction with the crowd in order to take action to achieve a certain
goal. This is one of the most fundamental ideas in Artificial Intelligence on which many
topics are based. Let's talk about reinforcement learning by keeping this in mind.

Reinforcement learning refers to the process of learning what to do and mapping situations
to certain actions in order to maximize the reward. In most paradigms of machine learning,
a learning agent is told what actions to take in order to achieve certain results. In the case of
reinforcement leaning, the learning agent is not told what actions to take. Instead, it must
discover what actions yield the highest reward by trying them out. These actions tend to
affect the immediate reward as well as the next situation. This means that all the subsequent
rewards will be affected too.

A good way to think about reinforcement learning is by understanding that we are defining
a learning problem and not a learning method. So we can say that any method that can
solve our problem can be considered as a reinforcement learning method. Reinforcement
learning is characterized by two distinguishing features — trial and error learning, and
delayed reward. A reinforcement learning agent uses these two features to learn from the
consequences of its actions.

Reinforcement learning versus supervised
learning
A lot of current research is focused on supervised learning. Reinforcement learning might
seem a bit similar to supervised learning, but it is not. The process of supervised learning
refers to learning from labeled samples provided by us. While this is a very useful
technique, it is not sufficient to start learning from interactions. When we want to design a
machine to navigate unknown terrains, this kind of learning is not going to help us. We
don't have training samples available beforehand. We need an agent that can learn from its
own experience by interacting with the unknown terrain. This is where reinforcement
learning really shines.

Reinforcement Learning

[387]

Let's consider the exploration part where the agent has to interact with the new
environment in order to learn. How much can it possibly explore? We do not even know
how big the environment is, and in most cases, it is not possible to explore all the
possibilities. So what should the agent do? Should it learn from its limited experience or
wait until it explores further before taking action? This is one of the main challenges of
reinforcement learning. In order to get a higher reward, an agent must favor the actions that
have been tried and tested. But in order to discover such actions, it has to keep trying newer
actions that have not been selected before. Researchers have studied this trade off between
exploration and exploitation extensively over the years and it's still an active topic.

Real world examples of reinforcement
learning
Let's see where reinforcement learning occurs in the real world. This will help us
understand how it works and what possible applications can be built using this concept:

Game playing: Let's consider a board game like Go or Chess. In order to
determine the best move, the players need to think about various factors. The
number of possibilities is so large that it is not possible to perform a brute-force
search. If we were to build a machine to play such a game using traditional
techniques, we need to specify a large number of rules to cover all these
possibilities. Reinforcement learning completely bypasses this problem. We do
not need to manually specify any rules. The learning agent simply learns by
actually playing the game.
Robotics: Let's consider a robot whose job is to explore a new building. It has to
make sure it has enough power left to come back to the base station. This robot
has to decide if it should make decisions by considering the trade off between the
amount of information collected and the ability to reach back to base station
safely.
Industrial controllers: Consider the case of scheduling elevators. A good
scheduler will spend the least amount of power and service the highest number
of people. For problems like these, reinforcement learning agents can learn how
to do this in a simulated environment. They can then take that knowledge to
come up with optimal scheduling.
Babies: Newborns struggle to walk in the first few months. They learn by trying
it over and over again until they learn how to balance.

Reinforcement Learning

[388]

If you observe these examples closely, you will see there are some common traits. All of
them involve interacting with the environment. The learning agent aims to achieve a certain
goal even though there's uncertainty about the environment. The actions of an agent will
change the future state of that environment. This impacts the opportunities available at later
times as the agent continues to interact with the environment.

Building blocks of reinforcement learning
Now that we have seen a few examples, let's dig into the building blocks of a reinforcement
learning system. Apart from the interaction between the agent and the environment, there
are other factors at play here:

Reinforcement Learning

[389]

A typical reinforcement learning agent goes through the following steps:

There is a set of states related to the agent and the environment. At a given point
of time, the agent observes an input state to sense the environment.
There are policies that govern what action needs to be taken. These policies act as
decision making functions. The action is determined based on the input state
using these policies.
The agent takes the action based on the previous step.
The environment reacts in a particular way in response to that action. The agent
receives reinforcement, also known as reward, from the environment.
The agent records the information about this reward. It's important to note that
this reward is for this particular pair of state and action.

Reinforcement learning systems can do multiple things simultaneously — learn by
performing a trial and error search, learn the model of the environment it is in, and then use
that model to plan the next steps.

Creating an environment
We will be using a package called OpenAI Gym to build reinforcement learning agents. You
can learn more about it here: https://gym.openai.com. We can install it using pip by
running the following command on the Terminal:

 $ pip3 install gym

You can find various tips and tricks related to its installation here:
https://github.com/openai/gym#installation. Now that you have installed it, let's go
ahead and write some code.

Create a new python file and import the following package:

import argparse

import gym

https://gym.openai.com
https://gym.openai.com
https://github.com/openai/gym#installation

Reinforcement Learning

[390]

Define a function to parse the input arguments. We will be able to specify the type of
environment we want to run:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Run an environment')
 parser.add_argument('--input-env', dest='input_env', required=True,
 choices=['cartpole', 'mountaincar', 'pendulum', 'taxi',
'lake'],
 help='Specify the name of the environment')
 return parser

Define the main function and parse the input arguments:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 input_env = args.input_env

Create a mapping from input argument string to the names of the environments as specified
in the OpenAI Gym package:

 name_map = {'cartpole': 'CartPole-v0',
 'mountaincar': 'MountainCar-v0',
 'pendulum': 'Pendulum-v0',
 'taxi': 'Taxi-v1',
 'lake': 'FrozenLake-v0'}

Create the environment based on the input argument and reset it:

 # Create the environment and reset it
 env = gym.make(name_map[input_env])
 env.reset()

Iterate 1000 times and take action during each step:

 # Iterate 1000 times
 for _ in range(1000):
 # Render the environment
 env.render()

 # take a random action
 env.step(env.action_space.sample())

Reinforcement Learning

[391]

The full code is given in the file run_environment.py. If you want to know how to run the
code, run it with the help argument as shown in the following figure:

Let's run it with the cartpole environment. Run the following command on your Terminal:

 $ python3 run_environment.py --input-env cartpole

If you run it, you will see a window showing a cartpole moving to your right. The
following screenshot shows the initial position:

Reinforcement Learning

[392]

In the next second or so, you will see it moving as shown in the following screenshot:

Towards the end, you will see it going out of the window as shown in the following
screenshot:

Reinforcement Learning

[393]

Let's run it with the mountain car argument. Run the following command on your
Terminal:

 $ python3 run_environment.py --input-env mountaincar

If you run the code, you will see the following figure initially:

If you let it run for a few seconds, you will see that the car oscillates more in order to reach
the flag:

Reinforcement Learning

[394]

It will keep taking longer strides as shown in the following figure:

Building a learning agent
Let's see how to build a learning agent that can achieve a goal. The learning agent will learn
how to achieve a goal. Create a new python file and import the following package:

import argparse

import gym

Define a function to parse the input arguments:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Run an environment')
 parser.add_argument('--input-env', dest='input_env', required=True,
 choices=['cartpole', 'mountaincar', 'pendulum'],
 help='Specify the name of the environment')
 return parser

Parse the input arguments:

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 input_env = args.input_env

Reinforcement Learning

[395]

Build a mapping from the input arguments to the names of the environments in the OpenAI
Gym package:

 name_map = {'cartpole': 'CartPole-v0',
 'mountaincar': 'MountainCar-v0',
 'pendulum': 'Pendulum-v0'}

Create the environment based on the input argument:

 # Create the environment
 env = gym.make(name_map[input_env])

Start iterating by resetting the environment:

 # Start iterating
 for _ in range(20):
 # Reset the environment
 observation = env.reset()

For each reset, iterate 100 times. Start by rendering the environment:

 # Iterate 100 times
 for i in range(100):
 # Render the environment
 env.render()

Print the current observation and take action based on the available action space:

 # Print the current observation
 print(observation)

 # Take action
 action = env.action_space.sample()

Extract the consequences of taking the current action:

 # Extract the observation, reward, status and
 # other info based on the action taken
 observation, reward, done, info = env.step(action)

Check if we have achieved our goal:

 # Check if it's done
 if done:
 print('Episode finished after {} timesteps'.format(i+1))
 break

Reinforcement Learning

[396]

The full code is given in the file balancer.py. If you want to know how to run the code,
run it with the help argument as shown in the following screenshot:

Let's run the code with the cartpole environment. Run the following command on your
Terminal:

 $ python3 balancer.py --input-env cartpole

If you run the code, you will see that the cartpole balances itself:

Reinforcement Learning

[397]

If you let it run for a few seconds, you will see that the cartpole is still standing as shown in
the following screenshot:

You will see a lot of information printed on your Terminal. If you look at one of the
episodes, it will look something like this:

Reinforcement Learning

[398]

Different episodes take a different number of steps to finish. If you scroll through the
information printed on your Terminal, you will be able to see that.

Summary
In this chapter, we learnt about reinforcement learning systems. We discussed the premise
of reinforcement learning and how we can set it up. We talked about the differences
between reinforcement learning and supervised learning. We went through some real
world examples of reinforcement learning and saw how various systems use it in different
forms.

We discussed the building blocks of reinforcement learning and concepts such as agent,
environment, policy, reward, and so on. We then created an environment in python to see it
in action. We used these concepts to build a reinforcement learning agent.

16
Deep Learning with

Convolutional Neural Networks
In this chapter, we are going to learn about Deep Learning and Convolutional Neural
Networks (CNNs). CNNs have gained a lot of momentum over the last few years,
especially in the field of image recognition. We will talk about the architecture of CNNs and
the type of layers used inside. We are going to see how to use a package called
TensorFlow. We will build a perceptron based linear regressor. We are going to learn how
to build an image classifier using a single layer neural network. We will then build an
image classifier using a CNN.

By the end of this chapter, you will know:

What are Convolutional Neural Networks (CNNs)?
The architecture of CNNs
The types of layers in a CNN
Building a perceptron based linear regressor
Building an image classifier using a single layer neural network
Building an image classifier using a Convolutional Neural Network

What are Convolutional Neural Networks?
We saw how neural networks work in the last two chapters. Neural networks consist of
neurons that have weights and biases. These weights and biases are tuned during the
training process to come up with a good learning model. Each neuron receives a set of
inputs, processes it in some way, and then outputs a value.

Deep Learning with Convolutional Neural Networks

[400]

If we build a neural network with many layers, it's called a deep neural network. The
branch of Artificial Intelligence dealing with these deep neural networks is referred to as
deep learning.

One of the main disadvantages of ordinary neural networks is that they ignore the structure
of input data. All data is converted to a single dimensional array before feeding it into the
network. This works well for regular data, but things get difficult when we deal with
images.

Let's consider grayscale images. These images are 2D structures and we know that the
spatial arrangement of pixels has a lot of hidden information. If we ignore this information,
we will be losing a lot of underlying patterns. This is where Convolutional Neural
Networks (CNNs) come into the picture. CNNs take the 2D structure of the images into
account when they process them.

CNNs are also made up of neurons consisting of weights and biases. These neurons accept
input data, process it, and then output something. The goal of the network is to go from the
raw image data in the input layer to the correct class in the output layer. The difference
between ordinary neural networks and CNNs is in the type of layers we use and how we
treat the input data. CNNs assume that the inputs are images, which allows them to extract
properties specific to images. This makes CNNs way more efficient in dealing with images.
Let's see how CNNs are built.

Architecture of CNNs
When we are working with ordinary neural networks, we need to convert the input data
into a single vector. This vector acts as the input to the neural network, which then passes
through the layers of the neural network. In these layers, each neuron is connected to all the
neurons in the previous layer. It is also worth noting that the neurons within each layer are
not connected to each other. They are only connected to the neurons in the adjacent layers.
The last layer in the network is the output layer and it represents the final output.

If we use this structure for images, it will quickly become unmanageable. For example, let's
consider an image dataset consisting of 256×256 RGB images. Since these are 3 channel
images, there would be 256 * 256 * 3 = 196,608 weights. Note that this is just for a single
neuron! Each layer will have multiple neurons, so the number of weights tends to increase
rapidly. This means that the model will now have an enormous number of parameters to
tune during the training process. This is why it becomes very complex and time-consuming.
Connecting each neuron to every neuron in the previous layer, called full connectivity, is
clearly not going to work for us.

Deep Learning with Convolutional Neural Networks

[401]

CNNs explicitly consider the structure of images when processing the data. The neurons in
CNNs are arranged in 3 dimensions — width, height, and depth. Each neuron in the current
layer is connected to a small patch of the output from the previous layer. It's like overlaying
an NxN filter on the input image. This is in contrast to a fully connected layer where each
neuron is connected to all the neurons of the previous layer.

Since a single filter cannot capture all the nuances of the image, we do this M number of
times to make sure we capture all the details. These M filters act as feature extractors. If you
look at the outputs of these filters, we can see that they extract features like edges, corners,
and so on. This is true for the initial layers in the CNN. As we progress through layers of
the network, we will see that the later layers extract higher level features.

Types of layers in a CNN
Now that we know about the architecture of a CNN, let's see what type of layers are used to
construct it. CNNs typically use the following types of layers:

Input layer: This layer takes the raw image data as it is.
Convolutional layer: This layer computes the convolutions between the neurons
and the various patches in the input. If you need a quick refresher on image
convolutions, you can check out this link:
http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_Im

ageConvolution.pdf. The convolutional layer basically computes the dot product
between the weights and a small patch in the output of the previous layer.
Rectified Linear Unit layer: This layer applies an activation function to the
output of the previous layer. This function is usually something like max(0, x).
This layer is needed to add non-linearity to the network so that it can generalize
well to any type of function.
Pooling layer: This layer samples the output of the previous layer resulting in a
structure with smaller dimensions. Pooling helps us to keep only the prominent
parts as we progress in the network. Max pooling is frequently used in the
pooling layer where we pick the maximum value in a given KxK window.
Fully Connected layer: This layer computes the output scores in the last layer.
The resulting output is of the size 1x1xL, where L is the number of classes in the
training dataset.

http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_ImageConvolution.pdf
http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_ImageConvolution.pdf

Deep Learning with Convolutional Neural Networks

[402]

As we go from the input layer to the output layer in the network, the input image gets
transformed from pixel values to the final class scores. Many different architectures for
CNNs have been proposed and it's an active area of research. The accuracy and robustness
of a model depends on many factors — the type of layers, depth of the network, the
arrangement of various types of layers within the network, the functions chosen for each
layer, training data, and so on.

Building a perceptron-based linear regressor
We will see how to build a linear regression model using perceptrons. We have already
seen linear regression in previous chapters, but this section is about building a linear
regression model using a neural network approach.

We will be using TensorFlow in this chapter. It is a popular deep learning package that's
widely used to build various real world systems. In this section, we will get familiar with
how it works. Make sure to install it before you proceed. The installation instructions are
given here: https://www.tensorflow.org/get_started/os_setup. Once you verify that it's
installed, create a new python and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

We will be generating some datapoints and see how we can fit a model to it. Define the
number of datapoints to be generated:

Define the number of points to generate
num_points = 1200

Define the parameters that will be used to generate the data. We will be using the model of
a line: y = mx + c:

Generate the data based on equation y = mx + c
data = []
m = 0.2
c = 0.5
for i in range(num_points):
 # Generate 'x'
 x = np.random.normal(0.0, 0.8)

https://www.tensorflow.org/get_started/os_setup

Deep Learning with Convolutional Neural Networks

[403]

Generate some noise to add some variation in the data:

 # Generate some noise
 noise = np.random.normal(0.0, 0.04)

Compute the value of y using the equation:

 # Compute 'y'
 y = m*x + c + noise

 data.append([x, y])

Once you finish iterating, separate the data into input and output variables:

Separate x and y
x_data = [d[0] for d in data]
y_data = [d[1] for d in data]

Plot the data:

Plot the generated data
plt.plot(x_data, y_data, 'ro')
plt.title('Input data')
plt.show()

Generate weights and biases for the perceptron. For weights, we will use a uniform random
number generator and set the biases to zero:

Generate weights and biases
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))

Define the equation using TensorFlow variables:

Define equation for 'y'
y = W * x_data + b

Define the loss function that can be used during the training process. The optimizer will try
to minimize this value as much as possible.

Define how to compute the loss
loss = tf.reduce_mean(tf.square(y - y_data))

Define the gradient descent optimizer and specify the loss function:

Define the gradient descent optimizer
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

Deep Learning with Convolutional Neural Networks

[404]

All the variables are in place, but they haven't been initialized yet. Let's do that:

Initialize all the variables
init = tf.initialize_all_variables()

Start the TensorFlow session and run it using the initializer:

Start the tensorflow session and run it
sess = tf.Session()
sess.run(init)

Start the training process:

Start iterating
num_iterations = 10
for step in range(num_iterations):
 # Run the session
 sess.run(train)

Print the progress of the training process. The loss parameter will continue to decrease as
we go through iterations:

 # Print the progress
 print('\nITERATION', step+1)
 print('W =', sess.run(W)[0])
 print('b =', sess.run(b)[0])
 print('loss =', sess.run(loss))

Plot the generated data and overlay the predicted model on top. In this case, the model is a
line:

 # Plot the input data
 plt.plot(x_data, y_data, 'ro')

 # Plot the predicted output line
 plt.plot(x_data, sess.run(W) * x_data + sess.run(b))

Set the parameters for the plot:

 # Set plotting parameters
 plt.xlabel('Dimension 0')
 plt.ylabel('Dimension 1')
 plt.title('Iteration ' + str(step+1) + ' of ' + str(num_iterations))
 plt.show()

Deep Learning with Convolutional Neural Networks

[405]

The full code is given in the file linear_regression.py. If you run the code, you will see
following screenshot showing input data:

If close you this window, you will see the training process. The first iteration looks like this:

Deep Learning with Convolutional Neural Networks

[406]

As we can see, the line is completely off. Close this window to go to the next iteration:

The line seems better, but it's still off. Let's close this window and continue iterating:

Deep Learning with Convolutional Neural Networks

[407]

It looks like the line is getting closer to the real model. If you continue iterating like this, the
model gets better. The eighth iteration looks like this:

The line seems to fit the data pretty well. You will see the following printed on your
Terminal in the beginning:

Deep Learning with Convolutional Neural Networks

[408]

Once it finishes training, you will see the following on your Terminal:

Building an image classifier using a single
layer neural network
Let's see how to create a single layer neural network using TensorFlow and use it to build
an image classifier. We will be using MNIST image dataset to build our system. It is dataset
containing handwritten images of digits. Our goal is to build a classifier that can correctly
identify the digit in each image.

Create a new python and import the following packages:

import argparse

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

Define a function to parse the input arguments:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Build a classifier using
 \MNIST data')
 parser.add_argument('--input-dir', dest='input_dir', type=str,
 default='./mnist_data', help='Directory for storing data')
 return parser

Deep Learning with Convolutional Neural Networks

[409]

Define the main function and parse the input arguments:

if __name__ == '__main__':
 args = build_arg_parser().parse_args()

Extract the MNIST image data. The one_hot flag specifies that we will be using one-hot
encoding in our labels. It means that if we have n classes, then the label for a given
datapoint will be an array of length n. Each element in this array corresponds to a particular
class. To specify a class, the value at the corresponding index will be set to 1 and everything
else will be 0:

 # Get the MNIST data
 mnist = input_data.read_data_sets(args.input_dir, one_hot=True)

The images in the database are 28 x 28. We need to convert it to a single dimensional array
to create the input layer:

 # The images are 28x28, so create the input layer
 # with 784 neurons (28x28=784)
 x = tf.placeholder(tf.float32, [None, 784])

Create a single layer neural network with weights and biases. There are 10 distinct digits in
the database. The number of neurons in the input layer is 784 and the number of neurons in
the output layer is 10:

 # Create a layer with weights and biases. There are 10 distinct
 # digits, so the output layer should have 10 classes
 W = tf.Variable(tf.zeros([784, 10]))
 b = tf.Variable(tf.zeros([10]))

Create the equation to be used for training:

 # Create the equation for 'y' using y = W*x + b
 y = tf.matmul(x, W) + b

Define the loss function and the gradient descent optimizer:

 # Define the entropy loss and the gradient descent optimizer
 y_loss = tf.placeholder(tf.float32, [None, 10])
 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y,
y_loss))
 optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

Initialize all the variables:

 # Initialize all the variables
 init = tf.initialize_all_variables()

Deep Learning with Convolutional Neural Networks

[410]

Create a TensorFlow session and run it:

 # Create a session
 session = tf.Session()
 session.run(init)

Start the training process. We will train using batches where we run the optimizer on the
current batch and then continue with the next batch for the next iteration. The first step in
each iteration is to get the next batch of images to train on:

 # Start training
 num_iterations = 1200
 batch_size = 90
 for _ in range(num_iterations):
 # Get the next batch of images
 x_batch, y_batch = mnist.train.next_batch(batch_size)

Run the optimizer on this batch of images:

 # Train on this batch of images
 session.run(optimizer, feed_dict = {x: x_batch, y_loss: y_batch})

Once the training process is over, compute the accuracy using the test dataset:

 # Compute the accuracy using test data
 predicted = tf.equal(tf.argmax(y, 1), tf.argmax(y_loss, 1))
 accuracy = tf.reduce_mean(tf.cast(predicted, tf.float32))
 print('\nAccuracy =', session.run(accuracy, feed_dict = {
 x: mnist.test.images,
 y_loss: mnist.test.labels}))

The full code is given in the file single_layer.py. If you run the code, it will download
the data to a folder called mnist_data in the current folder. This is the default option. If
you want to change it, you can do so using the input argument. Once you run the code, you
will get the following output on your Terminal:

As printed on your Terminal, the accuracy of the model is 92.1%.

Deep Learning with Convolutional Neural Networks

[411]

Building an image classifier using a
Convolutional Neural Network
The image classifier in the previous section didn't perform well. Getting 92.1% on MNIST
dataset is relatively easy. Let's see how we can use Convolutional Neural Networks (CNNs)
to achieve a much higher accuracy. We will build an image classifier using the same dataset,
but with a CNN instead of a single layer neural network.

Create a new python and import the following packages:

import argparse

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

Define a function to parse the input arguments:

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Build a CNN classifier \
 using MNIST data')
 parser.add_argument('--input-dir', dest='input_dir', type=str,
 default='./mnist_data', help='Directory for storing data')
 return parser

Define a function to create values for weights in each layer:

def get_weights(shape):
 data = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(data)

Define a function to create values for biases in each layer:

def get_biases(shape):
 data = tf.constant(0.1, shape=shape)
 return tf.Variable(data)

Define a function to create a layer based on the input shape:

def create_layer(shape):
 # Get the weights and biases
 W = get_weights(shape)
 b = get_biases([shape[-1]])

 return W, b

Deep Learning with Convolutional Neural Networks

[412]

Define a function to perform 2D-convolution:

def convolution_2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],
 padding='SAME')

Define a function to perform a 2×2 max pooling operation:

def max_pooling(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
 strides=[1, 2, 2, 1], padding='SAME')

Define the main function and parse the input arguments:

if __name__ == '__main__':
 args = build_arg_parser().parse_args()

Extract the MNIST image data:

 # Get the MNIST data
 mnist = input_data.read_data_sets(args.input_dir, one_hot=True)

Create the input layer with 784 neurons:

 # The images are 28x28, so create the input layer
 # with 784 neurons (28x28=784)
 x = tf.placeholder(tf.float32, [None, 784])

We will be using convolutional neural networks that take advantage of the 2D structure of
images. So let's reshape x into a 4D tensor where the second and third dimensions specify
the image dimensions:

 # Reshape 'x' into a 4D tensor
 x_image = tf.reshape(x, [-1, 28, 28, 1])

Create the first convolutional layer that will extract 32 features for each 5×5 patch in the
image:

 # Define the first convolutional layer
 W_conv1, b_conv1 = create_layer([5, 5, 1, 32])

Convolve the image with weight tensor computed in the previous step, and then add the
bias tensor to it. We then need to apply the Rectified Linear Unit (ReLU) function to the
output:

 # Convolve the image with weight tensor, add the
 # bias, and then apply the ReLU function
 h_conv1 = tf.nn.relu(convolution_2d(x_image, W_conv1) + b_conv1)

Deep Learning with Convolutional Neural Networks

[413]

Apply the 2×2 max pooling operator to the output of the previous step:

 # Apply the max pooling operator
 h_pool1 = max_pooling(h_conv1)

Create the second convolutional layer to compute 64 features for each 5×5 patch:

 # Define the second convolutional layer
 W_conv2, b_conv2 = create_layer([5, 5, 32, 64])

Convolve the output of the previous layer with weight tensor computed in the previous
step, and then add the bias tensor to it. We then need to apply the Rectified Linear Unit
(ReLU) function to the output:

 # Convolve the output of previous layer with the
 # weight tensor, add the bias, and then apply
 # the ReLU function
 h_conv2 = tf.nn.relu(convolution_2d(h_pool1, W_conv2) + b_conv2)

Apply the 2×2 max pooling operator to the output of the previous step:

 # Apply the max pooling operator
 h_pool2 = max_pooling(h_conv2)

The image size is now reduced to 7×7. Create a fully connected layer with 1024 neurons.

 # Define the fully connected layer
 W_fc1, b_fc1 = create_layer([7 * 7 * 64, 1024])

Reshape the output of the previous layer:

 # Reshape the output of the previous layer
 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

Multiply the output of the previous layer with the weight tensor of the fully connected
layer, and then add the bias tensor to it. We then apply the Rectified Linear Unit (ReLU)
function to the output:

 # Multiply the output of previous layer by the
 # weight tensor, add the bias, and then apply
 # the ReLU function
 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Deep Learning with Convolutional Neural Networks

[414]

In order to reduce overfitting, we need to create a dropout layer. Let's create a TensorFlow
placeholder for the probability values that specify the probability of a neuron's output being
kept during dropout:

 # Define the dropout layer using a probability placeholder
 # for all the neurons
 keep_prob = tf.placeholder(tf.float32)
 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

Define the readout layer with 10 output neurons corresponding to 10 classes in our dataset.
Compute the output:

 # Define the readout layer (output layer)
 W_fc2, b_fc2 = create_layer([1024, 10])
 y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

Define the loss function and optimizer function:

 # Define the entropy loss and the optimizer
 y_loss = tf.placeholder(tf.float32, [None, 10])
 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv,
y_loss))
 optimizer = tf.train.AdamOptimizer(1e-4).minimize(loss)

Define how the accuracy should be computed:

 # Define the accuracy computation
 predicted = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_loss, 1))
 accuracy = tf.reduce_mean(tf.cast(predicted, tf.float32))

Create and run a session after initializing the variables:

 # Create and run a session
 sess = tf.InteractiveSession()
 init = tf.initialize_all_variables()
 sess.run(init)

Start the training process:

 # Start training
 num_iterations = 21000
 batch_size = 75
 print('\nTraining the model....')
 for i in range(num_iterations):
 # Get the next batch of images
 batch = mnist.train.next_batch(batch_size)

Deep Learning with Convolutional Neural Networks

[415]

Print the accuracy progress every 50 iterations:

 # Print progress
 if i % 50 == 0:
 cur_accuracy = accuracy.eval(feed_dict = {
 x: batch[0], y_loss: batch[1], keep_prob: 1.0})
 print('Iteration', i, ', Accuracy =', cur_accuracy)

Run the optimizer on the current batch:

 # Train on the current batch
 optimizer.run(feed_dict = {x: batch[0], y_loss: batch[1],
keep_prob: 0.5})

Once the training process is over, compute the accuracy using the test dataset:

 # Compute accuracy using test data
 print('Test accuracy =', accuracy.eval(feed_dict = {
 x: mnist.test.images, y_loss: mnist.test.labels,
 keep_prob: 1.0}))

The full code is given in the file cnn.py. If you run the code, you will get the following
output on your Terminal:

Deep Learning with Convolutional Neural Networks

[416]

As you continue iterating, the accuracy keeps increasing as shown in the following
screenshot:

Now that we have the output, we can see that the accuracy of a convolutional neural
network is much higher than a simple neural network.

Summary
In this chapter, we learnt about Deep Learning and CNNs. We discussed what CNNs are
and why we need them. We talked about the architecture of CNNs. We learnt about the
various type of layers used within a CNN. We discussed how to use TensorFlow. We used
it to build a perceptron-based linear regressor. We learnt how to build an image classifier
using a single layer neural network. We then built an image classifier using a CNN.

Index

1
15-puzzle
 URL 186

8
8-puzzle solver
 building 186, 188

A
A* algorithm 187
Affinity Propagation model
 about 118
 used, for obtaining subgroups in stock market

118, 119, 120
Alpha-Beta pruning 230, 231
alphabet sequences
 identifying, with Conditional Random Fields

(CRFs) 291, 294
AlphaGo 13
analytical models 24
annealing schedule 175
Artificial Intelligence (AI), applications
 Computer Vision 12
 Expert Systems 13
 Games 13
 Natural Language Processing 13
 Robotics 14
 Speech Recognition 13
Artificial Intelligence (AI), branches
 genetic programming 16
 heuristic 16
 knowledge representation 15
 logic-based AI 15
 machine learning 14
 pattern recognition 14
 planning 16

 search techniques 15
Artificial Intelligence (AI)
 about 7, 8
 need for 8, 11
artificial neural networks
 about 356, 357
 building 357
 training 357
audio file dataset
 URL 314
audio signals
 generating 305
 transforming, to frequency domain 303, 305
 visualizing 300, 301, 302

B
background subtraction
 used, for object tracking 329
Bag of Words model
 used, for extracting frequency of terms 257, 258,

260

binarization 32
binary classification, output
 false negatives 46
 false positives 46
 true negatives 46
 true positives 46
bit pattern
 generating, with predefined parameters 199
bot
 building, for Last Coin Standing 232
 building, for Tic-Tac-Toe 236, 238
Breadth First Search (BFS) 173

C
CAMShift algorithm
 about 333

[418]

 reference link 334
 used, for building object tracker 333
category predictor
 about 260
 building 260, 261, 262, 263
census income dataset
 URL 51
characters
 visualizing, in OCR database 379
class imbalance
 dealing with 80, 81, 83, 84, 85, 87
classification 31
Cognitive Modeling 19
collaborative filtering
 about 143
 used, for obtaining similar users 143, 144, 146
colorspaces
 used, for tracking objects 325, 326, 327, 328,

329

combinatorial search 229, 230
Conditional Random Fields (CRFs)
 about 291
 used, for identifying alphabet sequences 291,

294

confusion matrix 46, 47, 49
Constraint Satisfaction Problems (CSPs) 174
constraints
 problem, solving 180
Convolutional Neural Networks (CNNs)
 about 399, 400
 architecture 400
 convolutional layer 401
 fully connected layer 401
 input layer 401
 pooling layer 401
 rectified linear unit layer 401
 used, for building image classifier 411, 412
Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) 206
cvxopt
 URL 275

D
data clustering
 with K-Means algorithm 98, 99, 100, 102, 103

data preprocessing
 about 32
 binarization 32
 mean, removing 33
 normalization 35
 scaling 34
data
 generating, with Hidden Markov Model (HMM)

287, 289
 loading 27, 28, 29
DEAP package
 URL 199
decision tree
 about 64
 classifier, building 65, 66, 68, 69
 URL 65
Depth First Search (DFS) 173
Dijkstra's algorithm 187
discrete cosine transform (DCT) 311

E
easyAI library
 installing 231, 232
 URL 231, 232
eigenvalues
 reference link 115
eigenvectors
 reference link 115
ensemble learning
 about 63
 learning models, building 64
Euclidean distance
 URL 139
Euclidean score 139
evolution
 visualizing 206, 212, 213, 214
evolutionary algorithm 197, 198
Expectation-Maximization (EM) 113
Extremely Random Forests
 about 70
 classifier, building 70, 71, 73, 74, 76
 regressor, building for traffic prediction 93, 94,

96

eye detection 352

[419]

F
face detection
 about 348
 Haar cascade, used for object detection 348
 integral images, using for feature extraction 349
family tree
 parsing 158, 162
fitness function 198
Fourier Transform
 about 303
 URL 303
frame differencing 322
frequency domain
 audio signals, transforming 303, 305

G
Gaussian Mixture Models (GMMs)
 about 112
 classifier, building 113, 115, 117
gender identifier
 constructing 263, 264, 265, 266
General Problem Solver (GPS)
 about 21
 used, for solving problem 22
genetic algorithm
 about 197, 198
 concepts 198, 199
geography
 analyzing 164, 165
greedy search
 about 176
 used, for constructing string 176, 177
grid search
 used, for obtaining optimal training parameters

87, 88, 89, 90

H
Haar cascades
 used, for object detection 348
heuristic 173
heuristic search
 about 172, 173
 uninformed, versus informed search 173
Hexapawn

 about 243
 multiple bots, building for 243
Hidden Markov Model (HMM)
 about 287
 reference link 314
 used, for generating data 287
hmmlearn package
 URL 314
housing prices
 estimating, with Support Vector Regressor 60,

61

hyperplane 49

I
image classifier
 building, with Convolutional Neural Networks

(CNNs) 411, 412
 building, with single layer neural network 408,

409, 410
image convolution
 URL 401
income data
 classifying, with Support Vector Machine (SVM)

51, 52, 54
Information Processing Language (IPL) 21
informed search
 about 173
 versus uninformed search 173
integral images
 using, for feature extraction 349
intelligence
 defining, with Turing Test 16
intelligent agent
 building 22, 23
 models 24
interactive object tracker
 building, with CAMShift algorithm 333, 334

K
K-Means algorithm
 used, for data clustering 98, 99, 100, 102, 103
K-Nearest Neighbors classifier
 building 132, 133, 134, 138

[420]

L
L1 normalization 35
L2 normalization 35
label encoding 36, 37
Last Coin Standing
 bot, building for 232
Latent Dirichlet Allocation
 about 270
 used, for topic modeling 270, 273
learned models 24
learning agent
 building 394, 396
learning models
 building, with ensemble learning 64
least absolute deviations 35
lemmatization
 about 253
 used, for converting word to base forms 253,

254

local search techniques
 about 174
 simulated annealing 175, 176
logic programming
 about 150, 151, 152
 building blocks 153
 used, for problem solving 153, 154
logistic regression classifier 37, 38, 40, 41
logpy package
 URL 154
Lucas-Kanade method
 URL 341

M
Mac OS X
 Python 3, installing 25
machines
 with human thinking capability 18, 19
mathematical expressions
 matching 154
matplotlib
 URL 26
matrix operations
 reference link 288
Maximum A-Posteriori (MAP) 113

maximum margin 50
maze solver
 building 191
mean removal 33
Mean Shift algorithm
 about 104
 used, for estimating number of clusters 104,

105, 106, 107
 used, for segmenting market based on shopping

patterns 120, 122, 124
mean squared error (MSE) 216
Mel Frequency Cepstral Coefficients (MFCCs)
 about 310
 reference link 311
Minimax algorithm 230
models
 analytical models 24
 learned models 24
movie recommendation system
 building 146, 147, 148, 149
multilayer neural network
 constructing 366
multiple bots
 building, for Hexapawn 243
multivariable regressor
 building 58, 59, 60
music
 generating, via synthesizing tones 308, 310

N
Natural Language Processing (NLP)
 about 248
 packages, installing 248
Natural Language Toolkit (NLTK)
 about 249
 URL 249
Naïve Bayes classifier 42, 44, 46
nearest neighbors
 extracting 128, 129, 131, 132
Negamax algorithm 231
neural networks
 reference link 357
NeuroLab
 URL 358
normalization 35

[421]

NumPy
 URL 26

O
object detection
 Haar cascades, using 348
 URL 348
objects
 tracking, with background subtraction 329
 tracking, with colorspaces 325, 326, 327, 328,

329

OCR database
 characters, visualizing 379
 URL 379
One Max problem 200
OpenAI Gym package
 URL 389
OpenCV 3
 URL, for installation on various OS 322
OpenCV
 about 322
 installing 322
 URL 322
Optical Character Recognition (OCR)
 about 379
 engine, building 381
optical flow
 used, for tracking 341

P
packages
 installing 26
Pandas
 time-series data, handling 275, 278
Pearson score 139
Perceptron 358
Perceptron based classifier
 building 358, 359
perceptron-based linear regressor
 building 402, 404, 407
prime numbers
 validating 156, 157
programming paradigms
 declarative 151
 functional 151

 imperative 151
 logic 151
 object oriented 151
 procedural 151
 symbolic 151
pruning 231
puzzle solver
 building 167
Python 3
 installing 24
 installing, on Mac OS X 25
 installing, on Ubuntu 25
 installing, on Windows 26
 URL, for installation 26
Python
 packages, installing 154
python_speech_features package
 URL 311

R
Random Forest
 about 70
 classifier, building 70, 71, 73, 74, 76
 confidence measure, estimating of predictions

76, 78, 80
rational agents
 building 20, 21
Rectified Linear Unit (ReLU) 412
recurrent neural networks
 URL 374
 used, for analyzing sequential data 374
region-coloring problem
 solving 183
regression 54
reinforcement learning, examples
 babies 387
 game playing 387
 industrial controllers 387
 robotics 387
reinforcement learning
 about 386
 building blocks 388
 environment, creating 389, 391, 392, 393
 examples 387
 versus supervised learning 386

[422]

relative feature
 importance, computing 90, 92, 93
respondent machine, Turing Test
 Knowledge Representation 17
 Machine Learning 18
 Natural Language Processing 17
 Reasoning 18
robot controller
 building 220, 221, 227

S
scaling 34
scikit-learn
 URL 26
SciPy-stack compatible distribution
 URL 26
SciPy
 URL 26
search algorithms
 using, in games 229
sentiment analyzer
 building 266, 267, 268, 269
sequential data
 about 274, 275
 analyzing, with recurrent neural networks 374,

376

sigmoid curve 37
silhouette scores
 used, for estimating quality of clustering 107,

108, 110, 111, 112
similarity scores
 computing 139, 140, 143
simple AI
 URL 176
Simulated Annealing 175, 176
single layer neural network
 constructing 362
 used, for building image classifier 408, 409, 410
single variable regressor
 building 55, 56, 58
sinusoids 305
speech features
 extracting 310, 311, 312, 313
speech recognition 299
speech signals 299, 300

spoken words
 recognizing 314, 315, 316, 320
stemming
 used, for converting words to base forms 251,

252, 253
stock market data
 analyzing 295, 296, 297
supervised learning
 about 31
 versus reinforcement learning 386
 versus unsupervised learning 31
Support Vector Machine (SVM)
 about 49, 50
 used, for classifying income data 51, 52, 54
Support Vector Regressor
 housing prices, estimating 60, 61
Support Vectors 50
survival of the fittest approach 198
symbol regression problem
 solving 215

T
TensorFlow
 URL 402
term frequency
 extracting, with Bag of Words model 257, 258,

260

TermFrequency - Inverse Document Frequency (tf-
idf) 260

text data
 dividing, into chunks 255
 tokenizing 250, 251
Tic-Tac-Toe
 about 229
 bot, building for 236, 238
time-series data
 handling, with Pandas 275, 278
 operating on 280, 281, 282
 slicing 278
 statistics, extracting 283, 284, 285, 286
Tkinter package
 URL 37
tokenization 250
tones
 reference link 308

 synthesizing, for music generation 308, 309,
310

topic modeling
 about 270
 with Latent Dirichlet Allocation 270, 272, 273
traffic dataset
 URL 93
training pipeline
 creating 125, 128
Turing Test
 used, for defining intelligence 16, 18

U
Ubuntu
 Python 3, installing 25
Uniform Cost Search (UCS) 173
uninformed search
 versus informed search 173

unsupervised learning
 about 31, 97
 versus supervised learning 31

V
Vector Quantization 371
vector quantizer
 building 371

W
Windows
 Python 3, installing 26
words
 converting, to base forms with lemmatization

253, 254
 converting, to base forms with stemming 251,

252, 253

	Cover

	Copyright

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Artificial Intelligence

	What is Artificial Intelligence?
	Why do we need to study AI?
	Applications of AI
	Branches of AI
	Defining intelligence using Turing Test
	Making machines think like humans
	Building rational agents
	General Problem Solver
	Solving a problem with GPS

	Building an intelligent agent
	Types of models

	Installing Python 3
	Installing on Ubuntu
	Installing on Mac OS X
	Installing on Windows

	Installing packages
	Loading data
	Summary

	Chapter 2
: Classification and Regression Using Supervised Learning
	Supervised versus unsupervised learning
	What is classification?
	Preprocessing data
	Binarization
	Mean removal
	Scaling
	Normalization

	Label encoding
	Logistic Regression classifier
	Naïve Bayes classifier
	Confusion matrix
	Support Vector Machines
	Classifying income data using Support Vector Machines
	What is Regression?
	Building a single variable regressor
	Building a multivariable regressor
	Estimating housing prices using a Support Vector Regressor
	Summary

	Chapter 3:Predictive Analytics with Ensemble Learning

	What is Ensemble Learning?
	Building learning models with Ensemble Learning

	What are Decision Trees?
	Building a Decision Tree classifier

	What are Random Forests and Extremely Random Forests?
	Building Random Forest and Extremely Random Forest classifiers
	Estimating the confidence measure of the predictions

	Dealing with class imbalance
	Finding optimal training parameters using grid search
	Computing relative feature importance
	Predicting traffic using Extremely Random Forest regressor
	Summary

	Chapter 4:Detecting Patterns with Unsupervised Learning

	What is unsupervised learning?
	Clustering data with K-Means algorithm
	Estimating the number of clusters with Mean Shift algorithm
	Estimating the quality of clustering with silhouette scores
	What are Gaussian Mixture Models?
	Building a classifier based on Gaussian Mixture Models
	Finding subgroups in stock market using Affinity Propagation model
	Segmenting the market based on shopping patterns
	Summary

	Chapter 5: Building Recommender Systems

	Creating a training pipeline
	Extracting the nearest neighbors
	Building a K-Nearest Neighbors classifier
	Computing similarity scores
	Finding similar users using collaborative filtering
	Building a movie recommendation system
	Summary

	Chapter 6: Logic Programming

	What is logic programming?
	Understanding the building blocks of logic programming
	Solving problems using logic programming
	Installing Python packages
	Matching mathematical expressions
	Validating primes
	Parsing a family tree
	Analyzing geography
	Building a puzzle solver
	Summary

	Chapter 7: Heuristic Search Techniques

	What is heuristic search?
	Uninformed versus Informed search

	Constraint Satisfaction Problems
	Local search techniques
	Simulated Annealing

	Constructing a string using greedy search
	Solving a problem with constraints
	Solving the region-coloring problem
	Building an 8-puzzle solver
	Building a maze solver
	Summary

	Chapter 8: Genetic Algorithms

	Understanding evolutionary and genetic algorithms
	Fundamental concepts in genetic algorithms
	Generating a bit pattern with predefined parameters
	Visualizing the evolution
	Solving the symbol regression problem
	Building an intelligent robot controller
	Summary

	Chapter 9: Building Games With Artificial Intelligence

	Using search algorithms in games
	Combinatorial search
	Minimax algorithm
	Alpha-Beta pruning
	Negamax algorithm
	Installing easyAI library
	Building a bot to play Last Coin Standing
	Building a bot to play Tic-Tac-Toe
	Building two bots to play Connect Four™ against each other
	Building two bots to play Hexapawn against each other
	Summary

	Chapter 10: Natural Language Processing

	Introduction and installation of packages
	Tokenizing text data
	Converting words to their base forms using stemming
	Converting words to their base forms using lemmatization
	Dividing text data into chunks
	Extracting the frequency of terms using a Bag of Words model
	Building a category predictor
	Constructing a gender identifier
	Building a sentiment analyzer
	Topic modeling using Latent Dirichlet Allocation
	Summary

	Chapter 11: Probabilistic Reasoning for Sequential Data

	Understanding sequential data
	Handling time-series data with Pandas
	Slicing time-series data
	Operating on time-series data
	Extracting statistics from time-series data
	Generating data using Hidden Markov Models
	Identifying alphabet sequences with Conditional Random Fields
	Stock market analysis
	Summary

	Chapter 12: Building A Speech Recognizer

	Working with speech signals
	Visualizing audio signals
	Transforming audio signals to the frequency domain
	Generating audio signals
	Synthesizing tones to generate music
	Extracting speech features
	Recognizing spoken words
	Summary

	Chapter 13: Object Detection and Tracking

	Installing OpenCV
	Frame differencing
	Tracking objects using colorspaces
	Object tracking using background subtraction
	Building an interactive object tracker using the CAMShift algorithm
	Optical flow based tracking
	Face detection and tracking
	Using Haar cascades for object detection
	Using integral images for feature extraction

	Eye detection and tracking
	Summary

	Chapter 14: Artificial Neural Networks

	Introduction to artificial neural networks
	Building a neural network
	Training a neural network

	Building a Perceptron based classifier
	Constructing a single layer neural network
	Constructing a multilayer neural network
	Building a vector quantizer
	Analyzing sequential data using recurrent neural networks
	Visualizing characters in an Optical Character Recognition database
	Building an Optical Character Recognition engine
	Summary

	Chapter 15: Reinforcement Learning

	Understanding the premise
	Reinforcement learning versus supervised learning
	Real world examples of reinforcement learning
	Building blocks of reinforcement learning
	Creating an environment
	Building a learning agent
	Summary

	Chapter 16: Deep Learning with Convolutional Neural Networks

	What are Convolutional Neural Networks?
	Architecture of CNNs
	Types of layers in a CNN
	Building a perceptron-based linear regressor
	Building an image classifier using a single layer neural network
	Building an image classifier using a Convolutional Neural Network
	Summary

	Index

