

Building Microservices with Go

Build seamless, efficient, and robust microservices with Go

Nic Jackson

BIRMINGHAM - MUMBAI

Building Microservices with Go
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1250717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-866-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Nic Jackson

Copy Editor
Karuna Narayan

Reviewers
Magnus Larsson
Erik Lupander

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Kunal Parikh

Proofreader
Safis Editing

Acquisition Editor
Karan Sadawana

Indexer
Francy Puthiry

Content Development Editor
Zeeyan Pinheiro

Graphics
Jason Monteiro

Technical Editor
Vivek Pala

Production Coordinator
Nilesh Mohite

About the Author
Nic Jackson is a developer advocate working for HashiCorp.com; he has over 20 years,
experience in software development and leading software development teams. A huge fan
of mobile application and microservice architecture, he is constantly looking out for the
most efficient way to reuse code and improve development flow.

In his spare time, Nic coaches and mentors at Coder Dojo teaches at Women Who Go and
GoBridge, speaks and evangelizes good coding practice, process, and technique.

About the Reviewers
Magnus Larsson has been in the IT business since 1986. He is an experienced architect in
areas such as distributed systems, systems integration, and SOA. He is currently engaged in
exploring the benefits of modern technologies such as microservices, container technologies,
reactive frameworks, and mobile solutions.

Magnus has a special dedication to the open source community for Java and has been active
in various projects over the years. He enjoys exploring other languages and currently finds
the Go language very interesting for building microservices. He is also a frequent speaker at
conferences such as Cadec, Spring I/O, Jfokus, and jDays.

Magnus lives outside Gothenburg, Sweden, with his family. When time permits, he enjoys
cross-country skiing, which must be done either on roller skis or indoors, in the Gothenburg
area for most of the year.

He has worked for large corporations such as Digital Equipment Corporation, AstraZeneca,
and Ericsson Hewlett Packard Telecom over the years. In 2000, Magnus co-founded Callista
Enterprise AB, a Swedish-based consultancy company specialized in software architecture.

Erik Lupander is a software architect and developer with over 15 years of professional
experience. A lifelong computer and software enthusiast, he wrote his first GW-BASIC
programs at the age of 7 back in the mid-80s.

Erik holds an M.Sc. in applied informatics from the University of Gothenburg and has
worked in a variety of roles in the software industry ever since. While JVM-based languages
and architecture has been his bread and butter, he is a polyglot software craftsman at heart
who, among other technologies, has embraced the Go programming language and
microservice architecture.

Erik has spoken at software conferences such as Scandev (2012), dev:mobile (2014), and
Cadec (2016, 2017) about topics ranging from OpenGL ES to Golang and microservices.

He lives just outside Gothenburg, Sweden, with his wife and two children. Aside from
family, computers, and software, he enjoys alpine skiing, golf, and running, and he is an
avid supporter of IFK Gothenburg.

Erik is currently employed by Callista Enterprise AB, a Swedish-based consultancy
specialized in software architecture. His previous employers include Siemens Medical
Solutions, Epsilon IT, University of Gothenburg, and Squeed AB.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468662.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468662
https://www.amazon.com/dp/1786468662

Table of Contents
Preface 1

Chapter 1: Introduction to Microservices 7

Building a simple web server with net/http 7
Reading and writing JSON 10

Marshalling Go structs to JSON 10
Unmarshalling JSON to Go structs 15

Routing in net/http 18
Paths 19
Convenience handlers 20
FileServer 21
NotFoundHandler 21
RedirectHandler 21
StripPrefix 21
TimeoutHandler 22
Static file handler 22
Creating handlers 23

Context 25
Background 25
WithCancel 25
WithDeadline 25
WithTimeout 26
WithValue 26
Using contexts 26

RPC in the Go standard library 29
Simple RPC example 29
RPC over HTTP 33
JSON-RPC over HTTP 34

Summary 36

Chapter 2: Designing a Great API 37

RESTful APIs 37
URIs 38
URI format 38
URI path design for REST services 39

Collections 39

[ii]

Documents 40
Controller 40
Store 40
CRUD function names 41

HTTP verbs 41
GET 41
POST 42
PUT 42
PATCH 43
DELETE 43
HEAD 44
OPTIONS 44

URI query design 45
Response codes 45

2xx Success 48
200 OK 48
201 Created 48
204 No Content 48

3xx Redirection 48
301 Moved Permanently 49
304 Not Modified 49

4xx Client Error 49
400 Bad Request 49
401 Unauthorized 49
403 Forbidden 50
404 Not Found 50
405 Method Not Allowed 50
408 Request Timeout 50

5xx Server Error 50
500 Internal Server Error 51
503 Service Unavailable 51

HTTP headers 51
Standard request headers 51

Authorization - string 52
Date 52
Accept - content type 52
Accept-Encoding - gzip, deflate 53

Standard response headers 55
Returning errors 55

Accessing APIs from JavaScript 57
JSONP 57
CORS 59

RPC APIs 60
RPC API design 61

RPC message frameworks 62
Gob 62
Thrift 62

[iii]

Protocol Buffers 63
JSON-RPC 64

Filtering 65
Versioning APIs 65

Semantic versioning 66
Versioning formats for REST APIs 67
Versioning formats for RPC APIs 67

Naming for RPC 67
Object type standardization 68

Dates 69
Durations 70
Intervals 70

Documenting APIs 71
REST based-based APIs 71

Swagger 71
API Blueprint 72
RAML 73

RPC based-based APIs 73
Summary 74

Chapter 3: Introducing Docker 75

Introducing Containers with Docker 75
Installing Docker 76
Running our first container 77
Docker volumes 81

Union filesystem 81
Mounting volumes 81

Docker ports 82
Removing a container starting with an explicit name 84
Docker networking 84

Bridge networking 84
Host networking 85
No network 85
Overlay network 86
Custom network drivers 86

Weaveworks 86
Project Calico 87

Creating custom bridge networks 87
Creating a bridge network 87

Connecting containers to a custom network 88
Writing Dockerfiles 89

Building application code for Docker 89

[iv]

FROM 90
MAINTAINER 90
EXPOSE 90
COPY 91
ENTRYPOINT 91
CMD 92
Good practice for creating Dockerfiles 92

Building images from Dockerfiles 93
Docker build context 94
Docker Ignore files 94

Running Daemons in containers 95
Docker Compose 95

Installing Docker Compose on Linux 95
Service startup 97
Specifying the location of a compose file 98
Specifying a project name 98

Summary 99

Chapter 4: Testing 100

The testing pyramid 101
Outside-in development 102

Unit tests 103
httptest.NewRequest 105
httptest.NewRecorder 105

Dependency injection and mocking 108
Code coverage 111
Behavioral Driven Development 113
Testing with Docker Compose 118

Benchmarking and profiling 121
Benchmarks 121
Profiling 123

Summary 129

Chapter 5: Common Patterns 130

Design for failure 131
Patterns 133

Event processing 133
Event processing with at least once delivery 134

Handling Errors 135
Dead Letter Queue 136

Idempotent transactions and message order 137
Atomic transactions 138

Timeouts 139

[v]

Back off 140
Circuit breaking 142
Health checks 145
Throttling 149
Service discovery 152

Server-side service discovery 153
Client-side service discovery 154

Load balancing 156
Caching 157

Premature optimization 159
Stale cache in times of database or downstream service failure 160

Summary 160

Chapter 6: Microservice Frameworks 161

What makes a good microservice framework? 161
Micro 167

Setup 168
Code generation 168
Tooling (CI/CD, cross platform) 170
Maintainable 171
Format (REST/RPC) 171
Patterns 172
Language independence 172
Ability to interface with other frameworks 173
Efficiency 174
Quality 175
Open source 175
Security 175
Support 175
Extensibility 175
What we learned about Micro 176

Kite 176
Setup 177
Code generation 179
Tooling 179
Maintainable 179
Format 180
Patterns 180
Language independence 181
Efficiency 181

[vi]

Quality 182
Open source 182
Security 182
Support 183
Extensibility 183
Summing up Kite 183

gRPC 184
Setup 184
Code generation 185
Tooling 187
Maintainable 187
Format 188
Patterns 188
Language independence 188
Efficiency 189
Quality 190
Open source 191
Security 191
Support 191
Extensibility 191
A few lines about gRPC 191

Summary 192

Chapter 7: Logging and Monitoring 193

Logging best practices 194
Metrics 195

Types of data best represented by metrics 196
Naming conventions 196
Storage and querying 199

Software as a service 199
Self-hosted 200

Grafana 201
Logging 206

Distributed tracing with Correlation IDs 206
Elasticsearch, Logstash, and Kibana (ELK) 207
Kibana 209

Exceptions 214
Panic and recover 214

Panic 214
Recover 214

[vii]

Summary 216

Chapter 8: Security 217

Encryption and signing 217
Symmetric-key encryption 218
Public-key cryptography 218

Digital signatures 218
X.509 digital certificates 219
TLS/SSL 219

External security 220
Layer 2 or 3 firewalls 221
Web application firewall 223
API Gateway 224
DDoS protection 225

Types of DDoS attack 225
UDP fragment attack 226
UDP flood 226
DNS 226
NTP 227
CHARGEN 227
SYN flood 227
SSDP 227
ACK 228

Application security 228
Prevention 229
Detection 229
Response 230
Recovery 230
Confused deputy 230
How an attacker could bypass the firewall 231

Scenario 231
Attack 231

Input validation 232
Fuzzing 233

TLS 234
Generating private keys 234
Generating X.509 certificates 237

Securing data at rest 242
Physical machine access 243

OWASP 244
Never storing session tokens in a URL 244
Cross-site scripting (XSS) and cross-site request forgery (CRSF) 244
Insecure direct object references 245

[viii]

Authentication and authorization 245
Password hashing 246

Adding a little seasoning 246
Dictionary attacks 248
Adding a pepper 248
bcrypt 249
Benchmarks 249

JWTs 250
Format of a JWT 250

Secure messages 254
Shared secrets 256
Asymmetric encryption with large messages 258

Maintenance 259
Patching containers 259
Software updates 260
Patching application code 260
Logging 260

Summary 261

Chapter 9: Event-Driven Architecture 262

Differences between synchronous and asynchronous processing 262
Synchronous processing 264
Asynchronous processing 265

Types of asynchronous messages 266
Pull/queue messaging 266
Push messaging 272

Command Query Responsibility Segregation (CQRS) 276
Domain-Driven Design 280

What is DDD? 281
Technical debt 282
Anatomy of DDD 282

Strategic design 282
Tactical design 283
Ubiquitous language 283
Bounded Contexts 284
Context Mapping 284

Software 285
Kafka 285
NATS.io 285
AWS SNS/SQS 286
Google Cloud Pub/Sub 287

Summary 287

[ix]

Chapter 10: Continuous Delivery 288

What is Continuous Delivery? 288
Manual deployment 289
The benefits of continuous delivery 291
Aspects of continuous delivery 291

Reproducibility and consistency 292
Artifact storage 293
Automation of tests 293
Automation of integration tests 293
Infrastructure as code 293
Security scanning 294
Static code analysis 294
Smoke tests 294
End-to-end tests 295
Monitoring 295

Continuous delivery process 295
Overview 296

What is container orchestration? 297
Options for container orchestration 297

What is immutable infrastructure? 298
Terraform 298

Providers 300
Terraform config entry point 302
VPC module 303
Output variables 309
Creating the infrastructure 311

Example application 312
Continuous delivery workflow 313

Build 317
Testing 318
Benchmarking 319
Static code analysis 320
Integration tests 321
Deployment 322
Smoke tests 323
Monitoring/alerting 324
Complete workflow 325

Summary 326

Index 327

Preface
Microservice architecture is sweeping the world as the de facto pattern for building web-
based applications. Golang is a language particularly well suited to building them. Its
strong community, encouragement of idiomatic style, and statically-linked binary artifacts
make integrating it with other technologies and managing microservices at scale consistent
and intuitive. This book will teach you the common patterns and practices, and show you
how to apply these using the Go programming language.

It will teach you the fundamental concepts of architectural design and RESTful
communication, and introduce you to the patterns that provide manageable code that is
supportable in development and at scale in production. We will provide you with examples
of how to put these concepts and patterns into practice with Go.

Whether you are planning a new application or working in an existing monolith, this book
will explain and illustrate with practical examples how teams of all sizes can start solving
problems with microservices. It will help you understand Docker and Docker Compose,
and how they can be used to isolate microservice dependencies and build environments.
We will conclude by showing you various techniques to monitor, test, and secure your
microservices.

By the end, you will know the benefits of the system resilience of a microservice and the
advantages of the Go stack.

What this book covers
Chapter 1, Introduction to Microservices, looks at what makes the Go language suitable for
building microservices and takes a look at the standard library that has all the components
required to build a basic microservice. Looking at the standard elements first will give you a
grounding and make you appreciate how some of the frameworks that we will discuss later
can be incredibly useful.

Chapter 2, Designing a Great API, looks at what makes a good API. We will introduce both
REST and RPC, explaining the differences between them. We will also examine the best
practices for writing and versioning APIs.

Preface

[2]

Chapter 3, Introducing Docker, explains how you can wrap your application into a Docker
image and how you can use Docker and Docker Compose as part of your development
workflow. We will see how it is possible to build a small lightweight image for your
application and some good practices for using Docker and writing Dockerfiles.

Chapter 4, Testing, will introduce the various techniques to ensure that your microservices
are of the highest quality. We will look at unit testing, behavioral testing, and performance
testing, providing you with practical advice and knowledge of the core testing frameworks.

Chapter 5, Common Patterns, introduces some of the standard patterns often employed in
microservice architecture. We will take an in-depth look at load balancing, circuit breaking,
service discovery, and the autopilot pattern to see what a Go-specific implementation for
this would look like.

Chapter 6, Microservice Frameworks, builds on frameworks that implement many of the
common features needed for a microservice. We will compare and contrast these through
examples of their usage.

Chapter 7, Logging and Monitoring, examines essential techniques to ensure that your
service is behaving correctly, and when it does not, ensures you have all the information at
your disposal for successful diagnostics and debugging. We will look at using StatsD for
simple metrics and timings, how to handle log file information, and approaches to logging
more detailed data and platforms such as NewRelic, which provides a holistic overview of
your service.

Chapter 8, Security, takes a look at authentication, authorization, and security for your
microservice. We will look at JWT and how you can implement middleware for validating
your requests and keeping things secure. We will also look at the bigger picture, looking at
why you should implement TLS encryption and a principle of no trust between your
services.

Chapter 9, Event-Driven Architecture, discusses that a common pattern to allow your
microservices to collaborate using Events; you will learn about two of the most common
eventing patterns and see how you can implement them in Go. We will also look at the
introduction of Domain-Driven Design and how the use of a ubiquitous language can help
your software development process.

Chapter 10, Continuous Delivery, discusses the concepts behind continuous delivery. We
will then examine in detail a continuous delivery setup for one of the simple applications
we created earlier in the book.

Preface

[3]

What you need for this book
Go compiler for running your Go codes successfully. You can find it on h t t p s ://g o l a n g . o r

g .
You also need Docker for container applications. Dockers are available on h t t p s ://w w w . d o c

k e r . c o m /.

Who this book is for
If you are looking to apply techniques to your own projects by taking your first steps into
microservice architecture, this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The @SpringBootApplication annotation replaces the different annotation required in
the Spring framework."

A block of code is set as follows:

@SpringBootApplication
@EnableZuulProxy
public class ApiGatewayExampleInSpring
{
 public static void main(String[] args)
 {
 SpringApplication.run(ApiGatewayExampleInSpring.class, args);
 }
}

https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/

Preface

[4]

Any command-line input or output is written as follows:

mvn spring-boot:run

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /B u i l d i n g - M i c r o s e r v i c e s - w i t h - G o . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k

s /c o n t e n t /s u p p o r t and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/Building-Microservices-with-Go
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Introduction to Microservices

First, we are going to look at how easy it is to create a simple web server with a single
endpoint using the net/http package. Then, we will move on to examine the
encoding/json package to see just how easy Go makes it for us to use JSON objects for
our requests and our responses. Finally, we will look at how routing and handlers work
and how we can manage context between these handlers.

Building a simple web server with net/http
The net/http package provides all the features we need to write HTTP clients and servers.
It gives us the capability to send requests to other servers communicating using the HTTP
protocol as well as the ability to run a HTTP server that can route requests to separate Go
funcs, serve static files, and much more.

To begin we should ask the question, what technical book would be complete without a simple
hello world example? I say none and this is exactly where we will begin.

In this example, we are going to create an HTTP server with a single endpoint that returns
static text represented by the JSON standard, this will introduce the basic functions of the
HTTP server and handlers. We will then modify this endpoint to accept a request that is
encoded in JSON and using the encoding/json package return a response to the client.
We will also examine how the routing works by adding a second endpoint that returns a
simple image.

By the end of this chapter, you will have a fundamental grasp of the basic packages and
how you can use them to quickly and efficiently build a simple microservice.

Building a web server in Go is incredibly easy thanks to the HTTP package, which is
distributed as part of the standard library.

Introduction to Microservices

[8]

It has everything you need to manage routing, dealing with Transport Layer Security
(TLS), which we will cover in Chapter 8, Security, support for HTTP/2 out of the box, and
the capability to run an incredibly efficient server that can deal with a huge number of
requests.

The source code for this chapter can be found on GitHub at h t t p ://g i t h u b . c o m /b u i l d i n g -

m i c r o s e r v i c e s - w i t h - g o /c h a p t e r 1. g i t , all the examples in this and subsequent chapters
will reference the source extensively so if you have not already done so, go and clone this
repo before continuing.

Let's look at the syntax for creating a basic server then we can walk through the packages in
more depth:

Example 1.0 basic_http_example/basic_http_example.go

09 func main() {
10 port := 8080
11
12 http.HandleFunc("/helloworld", helloWorldHandler)
13
14 log.Printf("Server starting on port %v\n", 8080)
15 log.Fatal(http.ListenAndServe(fmt.Sprintf(":%v", port), nil))
16 }
17
18 func helloWorldHandler(w http.ResponseWriter, r *http.Request) {
19 fmt.Fprint(w, "Hello World\n")
20 }

The first thing we are doing is calling the HandleFunc method on the http package. The
HandleFunc method creates a Handler type on the DefaultServeMux handler, mapping
the path passed in the first parameter to the function in the second parameter:

func HandleFunc(pattern string, handler func(ResponseWriter, *Request))

In line 15 we start the HTTP server, ListenAndServe takes two parameters, the TCP
network address to bind the server to and the handler that will be used to route requests:

func ListenAndServe(addr string, handler Handler) error

In our example, we are passing the network address :8080" this means we would like to
bind the server to all available IP addresses on port 8080.

http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git
http://github.com/building-microservices-with-go/chapter1.git

Introduction to Microservices

[9]

The second parameter we are passing is nil, this is because we are using the
DefaultServeMux handler, which we are setting up with our call to http.HandleFunc. In
Chapter 3, Introducing Docker, you will see the use of this second parameter when we
introduce more sophisticated routers, but for now we can ignore it.

If the ListenAndServe function fails to start a server it will return an error, the most
common reason for this is that you may be trying to bind to a port that is already in use on
the server. In our example, we are passing the output of ListenAndServe straight to
log.Fatal(error), which is a convenience function equivalent to calling fmt.Print(a
...interface{}) followed by a call to os.Exit(1). Since ListenAndServe blocks if the
server starts correctly we will never exit on a successful start.

Let's quickly run and test our new server:

$ go run ./basic_http_example.go

You should now see the application output:

2016/07/30 01:08:21 Server starting on port 8080

What if you do not see the preceding output and instead see something like the following?

2016/07/19 03:51:11 listen tcp :8080: bind: address already in use exit
status 1

Take another look at the signature of ListenAndServe and the way we are calling it.
Remember what we were saying about why we were using log.Fatal?

If you do get this error message it means that you are already running an application on
your computer that is using port 8080, this could be another instance of your program or it
could be another application. You can check that you do not have another instance running
by checking the running processes:

$ ps -aux | grep 'go run'

If you do see another go run ./basic_http_example.go then you can simply kill it and
retry. If you do not have another instance running, then you probably have some other
software that is bound to this port. Try changing the port on line 10 and restart your
program.

Introduction to Microservices

[10]

To test the server, open a new browser and type in the URI
http://127.0.0.1:8080/helloworld and if things are working correctly you should
see the following response from the server:

Hello World

Congratulations, that's the first step into microservice mastery. Now that we have our first
program running, let's take a closer look at how we can return and accept JSON.

Reading and writing JSON
Thanks to the encoding /json package, which is built into the standard library encoding
and decoding JSON to and from Go types is both fast and easy. It implements the simplistic
Marshal and Unmarshal functions; however, if we need them, the package also provides
Encoder and Decoder types that allow us greater control when reading and writing
streams of JSON data. In this section, we are going to examine both of these approaches, but
first let's take a look at how simple it is to convert a standard Go struct into its
corresponding JSON string.

Marshalling Go structs to JSON
To encode JSON data, the encoding/json package provides the Marshal function, which
has the following signature:

func Marshal(v interface{}) ([]byte, error)

This function takes one parameter, which is of type interface, so pretty much any object
you can think of since interface represents any type in Go. It returns a tuple of ([]byte,
error), you will see this return style quite frequently in Go, some languages implement a
try catch approach that encourages an error to be thrown when an operation cannot be
performed, Go suggests the pattern (return type, error), where the error is nil when
an operation succeeds.

Introduction to Microservices

[11]

In Go, unhandled errors are a bad thing, and whilst the language does implement Panic
and Recover, which resemble exception handling in other languages, the situations where
you should use these are quite different (see The Go Programming Language, Kernaghan). In
Go, the panic function causes normal execution to stop and all deferred function calls in
the Go routine are executed, the program will then crash with a log message. It is generally
used for unexpected errors that indicate a bug in the code and good robust Go code will
attempt to handle these runtime exceptions and return a detailed error object back to the
calling function.

This pattern is exactly what is implemented with the Marshal function. In the instance that
Marshal cannot create a JSON encoded byte array from the given object, which could be
due to a runtime panic, then this is captured and an error object detailing the problem is
returned to the caller.

Let's try this out, expanding on our existing example, instead of simply printing a string
from our handler, let's create a simple struct for the response and return this instead.

Example 1.1 reading_writing_json_1/reading_writing_json_1.go

10 type helloWorldResponse struct {
11 Message string
12 }

In our handler, we will create an instance of this object, set the message, then use the
Marshal function to encode it to a string before returning.

Let's see what that will look like:

23 func helloWorldHandler(w http.ResponseWriter, r *http.Request) {
24 response := helloWorldResponse{Message: "HelloWorld"}
25 data, err := json.Marshal(response)
26 if err != nil {
27 panic("Ooops")
28 }
29
30 fmt.Fprint(w, string(data))
31 }

Now, when we run our program again and refresh our browser, we see the following
output rendered in valid JSON:

{"Message":"Hello World"}

Introduction to Microservices

[12]

This is awesome; however, the default behavior of Marshal is to take the literal name of the
field and use this as the field in the JSON output. What if I prefer to use camel case and
would rather see "message", could we just rename the field in the helloWorldResponse
struct?

Unfortunately we can't, as in Go, lowercase properties are not exported, Marshal will
ignore these and will not include them in the output.

All is not lost as the encoding/json package implements struct field attributes that
allow us to change the output for the property to anything we choose.

Example 1.2 reading_writing_json_2/reading_writing_json_2.go

10 type helloWorldResponse struct {
11 Message string `json:"message"`
12 }

Using the struct field's tags, we can have greater control of how the output will look. In
the preceding example, when we marshal this struct the output from our server would be:

{"message":"Hello World"}

This is exactly what we want, but we can use field tags to control the output even further.
We can convert object types and even ignore a field altogether if we need to:

type helloWorldResponse struct {
// change the output field to be "message"
 Message string `json:"message"`
 // do not output this field
 Author string `json:"-"`
 // do not output the field if the value is empty
 Date string `json:",omitempty"`
 // convert output to a string and rename "id"
 Id int `json:"id, string"`
}

Channel, complex types, and functions cannot be encoded in JSON; attempting to encode
these types will result in an UnsupportedTypeError being returned by the Marshal
function.

It also can't represent cyclic data structures; if your stuct contains a circular reference then
Marshal will result in an infinite recursion, which is never a good thing for a web request.

Introduction to Microservices

[13]

If we want to export our JSON prettily formatted with indentation, we can use the
MarshallIndent function, this allows you to pass an additional parameter of string to
specify what you would like the indent to be. Two spaces right, not a tab?

func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error)

The astute reader might have noticed that we are decoding our struct into a byte array
and then writing that to the response stream, this does not seem to be particularly efficient
and in fact it is not. Go provides Encoders and Decoders, which can write directly to a
stream, since we already have a stream with the ResponseWriter then let's do just that.

Before we do, I think we need to look at the ResponseWriter a little to see what is going
on there.

The ResponseWriter is an interface that defines three methods:

// Returns the map of headers which will be sent by the
// WriteHeader method.
Header()

// Writes the data to the connection. If WriteHeader has not
// already been called then Write will call
// WriteHeader(http.StatusOK).
Write([]byte) (int, error)

// Sends an HTTP response header with the status code.
WriteHeader(int)

If we have a ResponseWriter interface, how can we use this with fmt.Fprint(w
io.Writer, a ...interface{})? This method requires a Writer interface as a
parameter and we have a ResponseWriter interface. If we look at the signature for Writer
we can see that it is:

Write(p []byte) (n int, err error)

Because the ResponseWriter interface implements this method, it also satisfies the
interface Writer and therefore any object that implements ResponseWriter can be passed
to any function that expects Writer.

Amazing, Go rocks, but we have not answered our question, Is there any better way to send
our data to the output stream without marshalling to a temporary object before we return it?

Introduction to Microservices

[14]

The encoding/json package has a function called NewEncoder this returns us an Encoder
object that can be used to write JSON straight to an open writer and guess what; we have
one of those:

func NewEncoder(w io.Writer) *Encoder

So instead of storing the output of Marshal into a byte array, we can write it straight to the
HTTP response.

Example 1.3 reading_writing_json_3/reading_writing_json_3.go:

func helloWorldHandler(w http.ResponseWriter, r *http.Request) {
 response := HelloWorldResponse{Message: "HelloWorld"}
 encoder := json.NewEncoder(w)
 encoder.Encode(&response)
}

We will look at benchmarking in a later chapter, but to see why this is important we have
created a simple benchmark to check the two methods against each other, have a look at the
output.

Example 1.4 reading_writing_json_2/reading_writing_json_2.go:

$go test -v -run="none" -bench=. -benchtime="5s" -benchmem

BenchmarkHelloHandlerVariable-8 20000000 511 ns/op 248 B/op 5 allocs/op
BenchmarkHelloHandlerEncoder-8 20000000 328 ns/op 24 B/op 2 allocs/op
BenchmarkHelloHandlerEncoderReference-8 20000000 304 ns/op 8 B/op 1
allocs/op
PASS
ok github.com/building-microservices-with-
go/chapter1/reading_writing_json_2 24.109s

Using Encoder rather than marshalling to a byte array is nearly 50% faster. We are dealing
with nanoseconds here so that time may seem irrelevant, but it isn't; this was two lines of
code. If you have that level of inefficiency throughout the rest of your code then your
application will run slower, you will need more hardware to satisfy the load and that will
cost you money. There is nothing clever in the differences between the two methods all we
have done is understood how the standard packages work and chosen the correct option for
our requirements, that is not performance tuning, that is understanding the framework.

Introduction to Microservices

[15]

Unmarshalling JSON to Go structs
Now we have learned how we can send JSON back to the client, what if we need to read
input before returning the output? We could use URL parameters and we will see what that
is all about in the next chapter, but commonly you will need more complex data structures
that involve the service to accept JSON as part of an HTTP POST request.

Applying similar techniques that we learned in the previous section to write JSON, reading
JSON is just as easy. To decode JSON into a stuct field the encoding/json package
provides us with the Unmarshal function:

func Unmarshal(data []byte, v interface{}) error

The Unmarshal function works in the opposite way to Marshal; it allocates maps, slices,
and pointers as required. Incoming object keys are matched using either the struct field
name or its tag and will work with a case-insensitive match; however, an exact match is
preferred. Like Marshal, Unmarshal will only set exported struct fields, those that start
with an upper-case letter.

We start by adding a new struct field to represent the request, whilst Unmarshal can
decode the JSON into an interface{}, which would be of map[string]interface{} //
for JSON objects type or: []interface{} // for JSON arrays, depending if our
JSON is an object or an array.

In my opinion it is much clearer to the readers of our code if we explicitly state what we are
expecting as a request. We can also save ourselves work by not having to manually cast the
data when we come to use it.

Remember two things:

You do not write code for the compiler, you write code for humans to understand
You will spend more time reading code than you do writing it

Taking these two points into account we create a simple struct to represent our request,
which will look like this:

Example 1.5 reading_writing_json_4/reading_writing_json_4.go:

14 type helloWorldRequest struct {
15 Name string `json:"name"`
16 }

Introduction to Microservices

[16]

Again, we are going to use struct field tags as whilst we could let Unmarshal do case-
insensitive matching so {"name": "World} would correctly unmarshal into the struct
the same as {"Name": "World"}, when we specify a tag we are being explicit about the
request form and that is a good thing. In terms of speed and performance it is also about
10% faster, and remember, performance matters.

To access the JSON sent with the request we need to take a look at the http.Request
object passed to our handler. The following listing does not show all the methods on the
request, just the ones we are going to be immediately dealing with, for full documentation I
recommend checking out the documentation at https://godoc.org/net/http#Request:

type Requests struct {
...
 // Method specifies the HTTP method (GET, POST, PUT, etc.).
 Method string

// Header contains the request header fields received by the server. The
type Header is a link to map[string] []string.
Header Header

// Body is the request's body.
Body io.ReadCloser
...
}

The JSON that has been sent with the request is accessible in the Body field. Body
implements the interface io.ReadCloser as a stream and does not return a []byte or a
string. If we need the data contained in the body, we can simply read it into a byte array,
as shown in the following example:

30 body, err := ioutil.ReadAll(r.Body)
31 if err != nil {
32 http.Error(w, "Bad request", http.StatusBadRequest)
33 return
34 }

Here is something we'll need to remember. We are not calling Body.Close(), if we were
making a call with a client we would need to do this as it is not automatically closed,
however, when used in a ServeHTTP handler, the server automatically closes the request
stream.

To see how this all works inside our handler, we can look at the following handler:

28 func helloWorldHandler(w http.ResponseWriter, r *http.Request) {
29
30 body, err := ioutil.ReadAll(r.Body)

https://godoc.org/net/http#Request

Introduction to Microservices

[17]

31 if err != nil {
32 http.Error(w, "Bad request", http.StatusBadRequest)
33 return
34 }
35
36 var request helloWorldRequest
37 err = json.Unmarshal(body, &request)
38 if err != nil {
39 http.Error(w, "Bad request", http.StatusBadRequest)
40 return
41 }
42
43 response := helloWorldResponse{Message: "Hello " + request.Name}
44
45 encoder := json.NewEncoder(w)
46 encoder.Encode(response)
47 }

Let's run this example and see how it works. To test, we can simply use the curl command
to send a request to the running server. If you feel more comfortable using a GUI tool than
Postman (which is available for the Google Chrome browser), they will work just fine or
feel free to use your preferred tool:

$ curl localhost:8080/helloworld -d '{"name":"Nic"}'

You should see the following response:

{"message":"Hello Nic"}

What do you think will happen if you do not include a body with your request?

$ curl localhost:8080/helloworld

If you guessed correctly, that you would get a HTTP status 400 Bad Request, then you
win a prize:

func Error(w ResponseWriter, error string, code int)

Errors reply to the request with the given message and status code. Once we have sent this,
we need to return stopping further execution of the function as this does not close the
ResponseWriter interface and return flow to the calling function automatically.

Just before you think you are done, have a go and see if you can improve the performance
of the handler. Think about the things we were talking about when marshaling JSON.

Got it?

Introduction to Microservices

[18]

Well if not here is the answer, again all we are doing is using the Decoder, which is the
opposite of the Encoder that we used in writing JSON. It has an instant 33% performance
increase and less code too.

Example 1.6 reading_writing_json_5/reading_writing_json_5.go:

27 func helloWorldHandler(w http.ResponseWriter, r *http.Request) {
28
29 var request HelloWorldRequest
30 decoder := json.NewDecoder(r.Body)
31
32 err := decoder.Decode(&request)
33 if err != nil {
34 http.Error(w, "Bad request", http.StatusBadRequest)
35 return
36 }
37
38 response := HelloWorldResponse{Message: "Hello " + request.Name}
39
40 encoder := json.NewEncoder(w)
41 encoder.Encode(response)
42 }

Now we can see just how easy it is to encode and decode JSON with Go, I would
recommend taking five minutes now to spend some time digging through the
documentation for the encoding/json package (h t t p s ://g o l a n g . o r g /p k g /e n c o d i n g /j s o

n /) as there is a whole lot more that you can do with this.

Routing in net/http
Even a simple microservice will need the capability to route requests to different handlers
dependent on the requested path or method. In Go this is handled by the
DefaultServeMux method which is an instance of ServerMux. Earlier in this chapter, we
briefly covered that when nil is passed to the handler parameter for the ListenAndServe
function then the DefaultServeMux method is used. When we call the
http.HandleFunc("/helloworld", helloWorldHandler) package function we are
actually just indirectly calling http.DefaultServerMux.HandleFunc(…).

https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/

Introduction to Microservices

[19]

The Go HTTP server does not have a specific router instead any object which implements
the http.Handler interface is passed as a top level function to the Listen() function,
when a request comes into the server the ServeHTTP method of this handler is called and it
is responsible for performing or delegating any work. To facilitate the handling of multiple
routes the HTTP package has a special object called ServerMux, which implements the
http.Handler interface.

There are two functions to adding handlers to a ServerMux handler:

func HandlerFunc(pattern string, handler func(ResponseWriter, *Request))
func Handle(pattern string, handler Handler)

The HandleFunc function is a convenience function that creates a handler who's
ServeHTTP method calls an ordinary function with the func(ResponseWriter,
*Request) signature that you pass as a parameter.

The Handle function requires that you pass two parameters, the pattern that you would
like to register the handler and an object that implements the Handler interface:

type Handler interface {
 ServeHTTP(ResponseWriter, *Request)
}

Paths
We already explained how ServeMux is responsible for routing inbound requests to the
registered handlers, however the way that the routes are matched can be quite confusing.
The ServeMux handler has a very simple routing model it does not support wildcards or
regular expressions, with ServeMux you must be explicit about the registered paths.

You can register both fixed rooted paths, such as /images/cat.jpg, or rooted subtrees
such as /images/. The trailing slash in the rooted subtree is important as any request that
starts with /images/, for example /images/happy_cat.jpg, would be routed to the
handler associated with /images/.

If we register a path /images/ to the handler foo, and the user makes a request to our
service at /images (note no trailing slash), then ServerMux will forward the request to the
/images/ handler, appending a trailing slash.

Introduction to Microservices

[20]

If we also register the path /images (note no trailing slash) to the handler bar and the user
requests /images then this request will be directed to bar; however, /images/ or
/images/cat.jpg will be directed to foo:

http.Handle("/images/", newFooHandler())
http.Handle("/images/persian/", newBarHandler())
http.Handle("/images", newBuzzHandler())
/images => Buzz
/images/ => Foo
/images/cat => Foo
/images/cat.jpg => Foo
/images/persian/cat.jpg => Bar

Longer paths will always take precedence over shorter ones so it is possible to have an
explicit route that points to a different handler to a catch all route.

We can also specify the hostname, we could register a path such as search.google.com/
and /ServerMux would forward any requests to http://search.google.com and
http://www.google.com to their respective handlers.

If you are used to a framework based application development approach such as using
Ruby on Rails or ExpressJS you may find this router incredibly simple and it is, remember
that we are not using a framework but the standard packages of Go, the intention is always
to provide a basis that can be built upon. In very simple cases the ServeMux approach more
than good enough and in fact I personally don't use anything else. Everyone's needs are
different however and the beauty and simplicity of the standard packages makes it
incredibly simple to build your own route as all is needed is an object which implements
the Handler interface. A quick trawl through google will surface some very good third
party routers but my recommendation for you is to learn the limitations of ServeMux first
before deciding to choose a third-party package it will greatly help with your decision
process as you will know the problem you are trying to solve.

Convenience handlers
The net/http package implements several methods that create different types of
convenience handlers, let's examine these.

Introduction to Microservices

[21]

FileServer
A FileServer function returns a handler that serves HTTP requests with the contents of
the filesystem. This can be used to serve static files such as images or other content that is
stored on the file system:

func FileServer(root FileSystem) Handler

Take a look at the following code:

http.Handle("/images", http.FileServer(http.Dir("./images")))

This allows us to map the contents of the file system path ./images to the server route
/images, Dir implements a file system which is restricted to a specific directory tree, the
FileServer method uses this to be able to serve the assets.

NotFoundHandler
The NotFoundHandler function returns a simple request handler that replies to each
request with a 404 page not found reply:

func NotFoundHandler() Handler

RedirectHandler
The RedirectHandler function returns a request handler that redirects each request it
receives to the given URI using the given status code. The provided code should be in the
3xx range and is usually StatusMovedPermanently, StatusFound, or StatusSeeOther:

func RedirectHandler(url string, code int) Handler

StripPrefix
The StripPrefix function returns a handler that serves HTTP requests by removing the
given prefix from the request URL's path and then invoking h handler. If a path does not
exist, then StripPrefix will reply with an HTTP 404 not found error:

func StripPrefix(prefix string, h Handler) Handler

Introduction to Microservices

[22]

TimeoutHandler
The TimeoutHandler function returns a Handler interface that runs h with the given time
limit. When we investigate common patterns in Chapter 6, Microservice Frameworks, we will
see just how useful this can be for avoiding cascading failures in your service:

func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler

The new handler calls h.ServeHTTP to handle each request, but if a call runs for longer
than its time limit, the handler responds with a 503 Service Unavailable response with
the given message (msg) in its body.

The last two handlers are especially interesting as they are, in effect, chaining handlers. This
is a technique that we will go into more in-depth in a later chapter as it allows you to both
practice clean code and also allows you to keep your code DRY.

I may have lifted most of the descriptions for these handlers straight from the Go
documentation and you probably have already read these because you have read the
documentation right? With Go, the documentation is excellent and writing documentation
for your own packages is heavily encouraged, even enforced, if you use the golint
command that comes with the standard package then this will report areas of your code
which do not conform to the standards. I really recommend spending a little time browsing
the standard docs when you are using one of the packages, not only will you learn the
correct usage, you may learn that there is a better approach. You will certainly be exposed
to good practice and style and you may even be able to keep working on the sad day that
Stack Overflow stops working and the entire industry grinds to a halt.

Static file handler
Whilst we are mostly going to be dealing with APIs in this book, it is a useful illustration to
see how the default router and paths work by adding a secondary endpoint.

As a little exercise, try to modify the code in
reading_writing_json_5/reading_writing_json_5.go to add an endpoint /cat,
which returns the cat picture specified in the URI. To give you a little hint, you are going to
need to use the FileServer function on the net/http package and your URI will look
something like http://localhost:8080/cat/cat.jpg.

Did it work the first time or did you forget to add the StripPrefix handler?

Introduction to Microservices

[23]

Example 1.7 reading_writing_json_6/reading_writing_json_6.go:

21 cathandler := http.FileServer(http.Dir("./images"))
22 http.Handle("/cat/", http.StripPrefix("/cat/", cathandler))

In the preceding example, we are registering a StripPrefix handler with our path /cat/.
If we did not do this, then the FileServer handler would be looking for our image in the
images/cat directory. It is also worth reminding ourselves about the difference with /cat
and /cat/ as paths. If we registered our path as /cat then we would not match
/cat/cat.jpg. If we register our path as /cat/, we will match both /cat and
/cat/whatever.

Creating handlers
We will now finish off our examples here by showing how you can create a Handler rather
than just using HandleFunc. We are going to split the code that performs the request
validation for our helloworld endpoint and the code that returns the response out into
separate handlers to illustrate how it is possible to chain handlers.

Example 1.8 chapter1/reading_writing_json_7.go:

31 type validationHandler struct {
32 next http.Handler
33 }
34
35 func newValidationHandler(next http.Handler) http.Handler {
36 return validationHandler{next: next}
37 }

The first thing we need to do when creating our own Handler is to define a struct field
that will implement the methods in the Handlers interface. Since in this example, we are
going to be chaining handlers together, the first handler, which is our validation handler,
needs to have a reference to the next in the chain as it has the responsibility for calling
ServeHTTP or returning a response.

For convenience, we have added a function that returns us a new handler; however, we
could have just set the next field. This method, however, is better form as it makes our code
a little easier to read and when we need to pass complex dependencies to the handler using
a function to create, it keeps things a little neater:

37 func (h validationHandler) ServeHTTP(rw http.ResponseWriter, r
*http.Request) {
38 var request helloWorldRequest

Introduction to Microservices

[24]

39 decoder := json.NewDecoder(r.Body)
40
41 err := decoder.Decode(&request)
42 if err != nil {
43 http.Error(rw, "Bad request", http.StatusBadRequest)
44 return
45 }
46
47 h.next.ServeHTTP(rw, r)
48 }

The previous code block illustrates how we would implement the ServeHTTP method. The
only interesting thing to note here is the statement that begins at line 44. If an error is
returned from decoding the request, we write a 500 error to the response, the handler chain
would stop here. Only when no error is returned do we call the next handler in the chain
and we do this simply by invoking its ServeHTTP method. To pass the name decoded from
the request, we are simply setting a variable:

53 type helloWorldHandler struct{}
54
55 func newHelloWorldHandler() http.Handler {
56 return helloWorldHandler{}
57 }
58
59 func (h helloWorldHandler) ServeHTTP(rw http.ResponseWriter, r
*http.Request) {
60 response := helloWorldResponse{Message: "Hello " + name}
61
62 encoder := json.NewEncoder(rw)
63 encoder.Encode(response)
64 }

The helloWorldHandler type that writes the response does not look too different from
when we were using a simple function. If you compare this to example 1.6, you will see that
all we really have done is remove the request decoding.

Now the first thing I want to mention about this code is that it is purely to illustrate how
you can do something, not that you should do something. In this simple case, splitting the
request validation and response sending into two handlers adds a lot of needless
complexity and it is not really making our code DRYer. The technique, however, is useful.
When we examine authentication in a later chapter, you will see this pattern as it allows us
to centralize our authentication logic and share it among handlers.

Introduction to Microservices

[25]

Context
The problem with the previous pattern is that there is no way that you can pass the
validated request from one handler to the next without breaking the http.Handler
interface, but guess what Go has us covered. The context package was listed as
experimental for several years before finally making it in to the standard package with Go
1.7. The Context type implements a safe method for accessing request-scoped data that is
safe to use simultaneously by multiple Go routines. Let’s take a quick look at this package
and then update our example to see it in use.

Background
The Background method returns an empty context that has no values; it is typically used
by the main function and as the top-level Context:

func Background() Context

WithCancel
The WithCancel method returns a copy of the parent context with a cancel function, calling
the cancel function releases resources associated with the context and should be called as
soon as operations running in the Context type are complete:

func WithCancel(parent Context) (ctx Context, cancel CancelFunc)

WithDeadline
The WithDeadline method returns a copy of the parent context that expires after the
current time is greater than deadline. At this point, the context's Done channel is closed and
the resources associated are released. It also passes back a CancelFunc method that allows
manual cancellation of the context:

func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)

Introduction to Microservices

[26]

WithTimeout
The WithTimeout method is similar to WithDeadline except you pass it a duration for
which the Context type should exist. Once this duration has elapsed, the Done channel is
closed and the resources associated with the context are released:

func WithTimeout(parent Context, timeout time.Duration) (Context,
CancelFunc)

WithValue
The WithValue method returns a copy of the parent Context in which the val value is
associated with the key. The Context values are perfect to be used for request-scoped data:

func WithValue(parent Context, key interface{}, val interface{}) Context

Why not attempt to modify example 1.7 to implement a request scoped context. The key
could be in the previous sentence; every request needs its own context.

Using contexts
You probably found that rather painful, especially if you come from a background in a
framework such as Rails or Spring. Writing this kind of code is not really something you
want to be spending your time on, building application features is far more important. One
thing to note however is that neither Ruby or Java have anything more advanced in their
base packages. Thankfully for us, over the seven years that Go has been in existence, many
excellent people have done just that, and when looking at frameworks in Chapter 3,
Introducing Docker, we will find that all of this complexity has been taken care of by some
awesome open source authors.

In addition to the adoption of context into the main Go release version 1.7 implements an
important update on the http.Request structure, we have the following additions:

func (r *Request) Context() context.Context

Introduction to Microservices

[27]

The Context() method gives us access to a context.Context structure which is always
non nil as it is populated when the request is originally created. For inbound requests the
http.Server manages the lifecycle of the context automatically cancelling it when the
client connection closes. For outbound requests, Context controls cancellation, by this we
mean that if we cancel the Context() method we can cancel the outgoing request. This
concept is illustrated in the following example:

70 func fetchGoogle(t *testing.T) {
71 r, _ := http.NewRequest("GET", "https://google.com", nil)
72
73 timeoutRequest, cancelFunc := context.WithTimeout(r.Context(),
1*time.Millisecond)
74 defer cancelFunc()
75
76 r = r.WithContext(timeoutRequest)
77
78 _, err := http.DefaultClient.Do(r)
79 if err != nil {
80 fmt.Println("Error:", err)
81 }
82 }

In line 74, we are creating a timeout context from the original in the request, and unlike an
inbound request where the context is automatically cancelled for you we must manually
perform this step in an outbound request.

Line 77 implements the second of the two new context methods which have been added to
the http.Request object:

func (r *Request) WithContext(ctx context.Context) *Request

The WithContext object returns a shallow copy of the original request which has the
context changed to the given ctx context.

When we execute this function we will find that after 1 millisecond the request will
complete with an error:

Error: Get https://google.com: context deadline exceeded

The context is timing out before the request has a change to complete and the do method
immediately returns. This is an excellent technique to use for outbound connections and
thanks to the changes in Go 1.7 is now incredibly easy to implement.

Introduction to Microservices

[28]

What about our inbound connection Let’s see how we can update our previous example.
Example 1.9 updates our example to show how we can leverage the context package to
implement Go routine safe access to objects. The full example can be found in
reading_writing_json_8/reading_writing_json_8.go but all of the modification we
need to make are in the two ServeHTTP methods for our handlers:

41 func (h validationHandler) ServeHTTP(rw http.ResponseWriter, r
*http.Request) {
42 var request helloWorldRequest
43 decoder := json.NewDecoder(r.Body)
44
45 err := decoder.Decode(&request)
46 if err != nil {
47 http.Error(rw, "Bad request", http.StatusBadRequest)
48 return
49 }
50
51 c := context.WithValue(r.Context(), validationContextKey("name"),
request.Name)
52 r = r.WithContext(c)
53
54 h.next.ServeHTTP(rw, r)
55 }

If we take a quick look at our validationHandler you will see that when we have a valid
request, we are creating a new context for this request and then setting the value of the
Name field in the request into the context. You might also wonder what is going on with line
51. When you add an item to a context such as with the WithValue call, the method returns
a copy of the previous context, to save a little time and add a little confusion, we are
holding a pointer to the context, so in order to pass this as a copy to WithValue, we must
dereference it. To update our pointer, we must also set the returned value to the value
referenced by the pointer hence again we need to dereference it. The other think we need to
look at with this method call is the key, we are using validationContextKey this is an
explicitly declared type of string:

13 type validationContextKey string

Introduction to Microservices

[29]

The reason we are not just using a simple string is that context often flows across packages
and if we just used string then we could end up with a key clash where one package within
your control is writing a name key and another package which is outside of your control is
also using the context and writing a key called name, in this instance the second package
would inadvertently overwrite your context value. By declaring a package level type
validationContextKey and using this we can ensure that we avoid these collisions:

64 func (h helloWorldHandler) ServeHTTP(rw http.ResponseWriter, r
*http.Request) {
65 name := r.Context().Value(validationContextKey("name")).(string)
66 response := helloWorldResponse{Message: "Hello " + name}
67
68 encoder := json.NewEncoder(rw)
69 encoder.Encode(response)
70 }

To retrieve the value, all we have to do is obtain the context and then call the Value method
casting it into a string.

RPC in the Go standard library
As expected, the Go standard library has fantastic support for RPC right out-of-the-box.
Let's look at a few examples of how we can use this.

Simple RPC example
In this simple example, we will see how we can use the standard RPC package to create a
client and server that use a shared interface to communicate over RPC. We will follow the
typical Hello World example that we ran through when learning the net/http package
and see just how easy it is to build an RPC-based API in go:

rpc/server/server.go:

34 type HelloWorldHandler struct{}
35
36 func (h *HelloWorldHandler) HelloWorld(args *contract.HelloWorldRequest,
reply *contract.HelloWorldResponse) error {
37 reply.Message = ""Hello "" + args.Name
38 return nil
39 }

Introduction to Microservices

[30]

Like our example on creating REST APIs using the standard library for RPC, we will also
define a handler. The difference between this handler and http.Handler is that it does not
need to conform to an interface; as long as we have a struct field with methods on it we
can register this with the RPC server:

func Register(rcvr interface{}) error

The Register function, which is in the rpc package, publishes the methods that are part of
the given interface to the default server and allows them to be called by clients connecting
to the service. The name of the method uses the name of the concrete type, so in our
instance if my client wanted to call the HelloWorld method, we would access it using
HelloWorldHandler.HelloWorld. If we do not wish to use the concrete types name, we
can register it with a different name using the RegisterName function, which uses the
provided name instead:

func RegisterName(name string, rcvr interface{}) error

This would enable me to keep the name of the struct field to whatever is meaningful to
my code; however, for my client contract I might decide to use something different such as
Greet:

19 func StartServer() {
20 helloWorld := &HelloWorldHandler{}
21 rpc.Register(helloWorld)
22
23 l, err := net.Listen("("tcp",", fmt.Sprintf(":%(":%v",", port))
24 if err != nil {
25 log.Fatal(fmt.Sprintf("("Unable to listen on given port: %s",",
err))
26 }
27
28 for {
29 conn, _ := l.Accept()
30 go rpc.ServeConn(conn)
31 }
32 }

In the StartServer function, we first create a new instance of our handler and then we
register this with the default RPC server.

Introduction to Microservices

[31]

Unlike the convenience of net/http where we can just create a server with
ListenAndServe, when we are using RPC we need to do a little more manual work. In line
23, we are creating a socket using the given protocol and binding it to the IP address and
port. This gives us the capability to specifically select the protocol we would like to use for
the server, tcp, tcp4, tcp6, unix, or unixpacket:

func Listen(net, laddr string) (Listener, error)

The Listen() function returns an instance that implements the Listener interface:

type Listener interface {
 // Accept waits for and returns the next connection to the listener.
 Accept() (Conn, error)

 // Close closes the listener.
 // Any blocked Accept operations will be unblocked and return errors.
 Close() error

 // Addr returns the listener's network address.
 Addr() Addr
}

To receive connections, we must call the Accept method on the listener. If you look at line
29, you will see that we have an endless for loop, this is because unlike ListenAndServe
which blocks for all connections, with an RPC server we handle each connection
individually and as soon as we deal with the first connection we need to continue to again
call Accept to handle subsequent connections or the application would exit. Accept is a
blocking method so if there are no clients currently attempting to connect to the service then
Accept will block until one does. Once we receive a connection then we need to call the
Accept method again to process the next connection. If you look at line 30 in our example
code, you will see we are calling the ServeConn method:

func ServeConn(conn io.ReadWriteCloser)

The ServeConn method runs the DefaultServer method on the given connection, and
will block until the client completes. In our example, we are using the go statement before
running the server so that we can immediately process the next waiting connection without
blocking for the first client to close its connection.

Introduction to Microservices

[32]

In terms of communication protocol, ServeConn uses the gob wire format
https://golang.org/pkg/encoding/gob/, we will see when we look at JSON-RPC how we
can use a different encoding.

The gob format was specifically designed to facilitate Go to Go-based communication and
was designed around the idea of something easier to use and possibly more efficient than
the likes of protocol buffers, this comes at a cost of cross language communication.

With gobs, the source and destination values and types do not need to correspond exactly,
when you send struct, if a field is in the source but not in the receiving struct, then the
decoder will ignore this field and the processing will continue without error. If a field is
present in the destination that is not in the source, then again the decoder will ignore this
field and will successfully process the rest of the message. Whilst this seems like a minor
benefit, it is a huge advancement over the RPC messages of old such as JMI where the exact
same interface must be present on both the client and server. This level of inflexibility with
JMI introduced tight coupling between the two code bases and caused no end of complexity
when it was required to deploy an update to our application.

To make a request to our client we can no longer simply use curl as we are no longer are
using the HTTP protocol and the message format is no longer JSON. If we look at the
example in rpc/client/client.go we can see how to implement a connecting client:

13 func CreateClient() *rpc.Client {
14 client, err := rpc.Dial("tcp", fmt.Sprintf("localhost:%v", port))
15 if err != nil {
16 log.Fatal("dialing:", err)
17 }
18
19 return client
20 }

The previous block shows how we need to setup rpc.Client, the first thing we need to do
on line 14 is to create the client itself using the Dial() function in the rpc package:

func Dial(network, address string) (*Client, error)

We then use this returned connection to make a request to the server:

22 func PerformRequest(client *rpc.Client)
contract.HelloWorldResponse {
23 args := &contract.HelloWorldRequest{Name: "World"}
24 var reply contract.HelloWorldResponse
25
26 err := client.Call("HelloWorldHandler.HelloWorld", args, &reply)
27 if err != nil {

https://golang.org/pkg/encoding/gob/

Introduction to Microservices

[33]

28 log.Fatal("error:", err)
29 }
30
31 return reply
32 }

In line 26, we are using the Call() method on the client to invoke the named function on
the server:

func (client *Client) Call(serviceMethod string, args interface{}, reply
interface{}) error

Call is a blocking function which waits until the server sends a reply writing the response
assuming there is no error to the reference of our HelloWorldResponse passed to the
method and if an error occurs when processing the request this is returned and can be
handled accordingly.

RPC over HTTP
In the instance that you need to use HTTP as your transport protocol then the rpc package
can facilitate this by calling the HandleHTTP method.

The HandleHTTP method sets up two endpoints in your application:

const (
 // Defaults used by HandleHTTP
 DefaultRPCPath = "/_"/_goRPC_"_"
 DefaultDebugPath = "/"/debug/rpc""
)

If you point your browser at the DefaultDebugPath you can see details for the registered
endpoints, there are two things to note:

This does not mean you can communicate easily with your API from a web
browser. The messages are still gob encoded so you would need to write a gob
encoder and decoder in JavaScript, which I am not actually sure is possible. It
was certainly never the intent of the package to support this capability and
therefore I would not advise this action, a JSON or JSON-RPC based message is
much better suited to this use case.
The debug endpoint is not going to provide you with auto-generated
documentation for your API. The output is fairly basic and the intention seems to
be so you can track the number of calls made to an endpoint.

Introduction to Microservices

[34]

All that said there may be a reason why you need to use HTTP, possibly your network does
not allow any other protocol or potentially you have a load balancer that is not capable of
dealing with pure TCP connections. We can also take advantage of HTTP headers and other
metadata which is not available using a pure TCP request.

rpc_http/server/server.go

22 func StartServer() {
23 helloWorld := &HelloWorldHandler{}
24 rpc.Register(helloWorld)
25 rpc.HandleHTTP()
26
27 l, err := net.Listen("("tcp",", fmt.Sprintf(":%(":%v",", port))
28 if err != nil {
29 log.Fatal(fmt.Sprintf("("Unable to listen on given port: %s",",
err))
30 }
31
32 log.Printf("("Server starting on port %v\n",", port)
33
34 http.Serve(l, nil)
35 }

If we look at line 25, in the preceding example, we can see we are calling the
rpc.HandleHTTP method, this is a requirement using HTTP with RPC as it will register the
HTTP handlers we mentioned earlier with the DefaultServer method. We then call the
http.Serve method and pass it the listener we are creating in line 27, we are setting the
second parameter to be nil as we wish to use the DefaultServer method. This is exactly
the same method that we looked at in the previous examples when we were looking at
RESTful endpoints.

JSON-RPC over HTTP
In this last example, we will look at the net/rpc/jsonrpc package that provides a built-in
codec for serializing and deserializing to the JSON-RPC standard. We will also look at how
we can send these responses over HTTP, whilst you may ask why not just use REST, and to
some extent I will agree with you, it is an interesting example to be able to see how we can
extend the standard framework.

Introduction to Microservices

[35]

The StartServer method contains nothing we have not seen before it is the standard rpc
server setup, the main difference is line 42 where instead of starting the RPC server we are
starting an http server and passing the listener to it along with a handler:

rpc_http_json/server/server.go

33 func StartServer() {
34 helloWorld := new(HelloWorldHandler)
35 rpc.Register(helloWorld)
36
37 l, err := net.Listen("("tcp",", fmt.Sprintf(":%(":%v",", port))
38 if err != nil {
39 log.Fatal(fmt.Sprintf("("Unable to listen on given port: %s",", err))
40 }
41
42 http.Serve(l, http.HandlerFunc(httpHandler))
43 }

The handler we are passing to the server is where the magic happens:

45 func httpHandler(w http.ResponseWriter, r *http.Request) {
46 serverCodec := jsonrpc.NewServerCodec(&HttpConn{in: r.Body, out: w})
47 err := rpc.ServeRequest(serverCodec)
48 if err != nil {
49 log.Printf("("Error while serving JSON request: %v",", err)
50 http.Error(w, ""Error while serving JSON request, details have been
logged.",.", 500)
51 return
52 }
53 }

In line 46, we are calling the jsonrpc.NewServerCodec function and passing to it a type
that implements io.ReadWriteCloser. The NewServerCodec method returns a type that
implements rpc.ClientCodec, which has the following methods:

type ClientCodec interface {
 // WriteRequest must be safe for concurrent use by multiple goroutines.
 WriteRequest(*Request, interface{}) error
 ReadResponseHeader(*Response) error
 ReadResponseBody(interface{}) error

 Close() error
}

Introduction to Microservices

[36]

A ClientCodec type implements the writing of RPC request and reading RPC responses.
To write a request to the connection a client calls the WriteRequest method. To read the
response, the client must call ReadResponseHeader and ReadResponseBody as a pair.
Once the body has been read, it is the client's responsibility to call the Close method to
close the connection. If a nil interface is passed to ReadResponseBody then the body of the
response should be read and then discarded:

17 type HttpConn struct {
18 in io.Reader
19 out io.Writer
20 }
21
22 func (c *HttpConn) Read(p []byte) (n int, err error) { return
c.in.Read(p) }
23 func (c *HttpConn) Write(d []byte) (n int, err error) { return
c.out.Write(d) }
24 func (c *HttpConn) Close() error { return nil }

The NewServerCodec method requires that we pass it a type that implements the
ReadWriteCloser interface. As we do not have such a type passed to us as parameters in
the httpHandler method we have defined our own type, HttpConn, which encapsulates
the http.Request body, which implements io.Reader, and the ResponseWriter
method, that implements io.Writer. We can then write our own methods that proxy the
calls to the reader and writer creating a type that has the correct interface.

And that is it for our short intro to RPC with the standard libraries; we will see when we
look at some frameworks more in depth in Chapter 3, Introducing Docker, how these can be
used to build a production microservice.

Summary
That's it for this chapter, we have just written our first microservice in Go and only using
the standard library, you should now have an appreciation of just how powerful the
standard library is providing us with many of the features we need to write RESTful and
RPC-based microservices. We have also looked at encoding and decoding data using the
encoding/json package and how we can create light weight messaging by using gobs.

As you progress through this book, you will see how the many, wonderful open source
packages build on these foundations to make Go such a fantastic language for microservice
development, and by the end of the book you will have all the knowledge required for
successfully building microservices in Go.

2
Designing a Great API

Regardless of whether you are experienced in building APIs and microservices and looking
for the techniques on how you can apply them with Go or you are completely new to the
world of microservices, it is worth spending the time to read this chapter.

Writing an API contract feels part art, part science and, when you discuss your design with
other engineers, you will most certainly agree to disagree, not to the level of tabs versus
spaces, but there is certainly something personal about API contracts.

In this chapter, we will look at the two most popular options, which are RESTful and RPC.
We will examine the semantics of each approach, which will equip you with the knowledge
to argue your case when the inevitable discussion (read argument) occurs. Choosing
between REST or RPC may be entirely down to your current environment. If you currently
have services running that implement a RESTful approach, then I suggest you stick with it,
likewise if you now use RPC. One thing I would suggest is that you read the entire chapter
to understand the semantics, pros, and cons of each approach.

RESTful APIs
The term REST was suggested by Roy Fielding in his Ph.D. dissertation in the year 2000. It
stands for Representational State Transfer and is described as:

"REST emphasizes scalability of component interactions, generality of interfaces,
independent deployment of components, and intermediary components to reduce
interaction latency, enforce security and encapsulate legacy systems."

Having an API that conforms to the REST principles is what makes it RESTful.

Designing a Great API

[38]

URIs
One of the main components in the HTTP protocol is a URI. URI stands for Uniform
Resource Identifiers and is the method by which you will access the API. You may be
asking what the difference between a URI and a URL (Uniform Resource Locator) is? When
I started to write this chapter, I wondered about this myself and did what any self-
respecting developer would do, which is to head over to Stack Overflow. Unfortunately, my
confusion only grew as there were lots of detailed answers, none of which I found
particularly enlightening. Time to head over to the inner circle of hell also known as W3C
standards to look up the RFC for the official answer.

In short, there is no difference, a URL is a URI that identifies a resource by its network
location, and it is acceptable to interchange the terms when describing a resource entirely.

The clarification document published back in 2001
(http://www.w3.org/TR/uri-clarification) goes on to explain that in the early to mid-90s
there was an assumption that an identifier is cast into one or two classes. An identifier
might specify the location of a resource (URL) or its name (Uniform Resource Name URN)
independent of location. A URI could either be a URL or a URN. Using this example,
http:// would be a URL scheme and isbn: a URN scheme. However, this changed over
time and the importance of the additional level of hierarchy lessened. The view changed
that an individual scheme does not need to be cast into one of a discrete set of types.

The conventional approach is that http: is a URI scheme and urn: is also a URI scheme.
URNs take the form urn:isbn:n-nn-nnnnnn-n, isbn: is a URN namespace identifier, not
a URN scheme or a URI scheme.

Following this view, the term URL does not refer to a formal partition of URI space rather,
URL is an informal concept; a URL is a type of URI that identifies a resource via its network
location.

For the rest of this book, we will use the term URI and when we do we will be talking about
a method to access a resource that is running on a remote server.

URI format
RFC 3986, which was published in 2005 https://www.ietf.org/rfc/rfc3986.txt, defines
the format that makes valid URIs:

URI = scheme "://" authority "/" path ["?" query] ["#" fragment"]
URI = http://myserver.com/mypath?query=1#document

http://www.w3.org/TR/uri-clarification
https://www.ietf.org/rfc/rfc3986.txt

Designing a Great API

[39]

We are will use the path element in order to locate an endpoint that is running on our
server. In a REST endpoint, this can contain parameters as well as a document location. The
query string is equally important, as you will use this to pass parameters such as page
number or ordering to control the data that is returned.

Some general rules for URI formatting:

A forward slash / is used to indicate a hierarchical relationship between
resources
A trailing forward slash / should not be included in URIs
Hyphens - should be used to improve readability
Underscores _ should not be used in URIs
Lowercase letters are preferred as case sensitivity is a differentiator in the path
part of a URI

The concept behind many of the rules is that a URI should be easy to read and to construct.
It should also be consistent in the way that it is built so you should follow the same
taxonomy for all the endpoints in your API.

URI path design for REST services
Paths are broken into documents, collections, stores, and controllers.

Collections
A collection is a directory of resources typically broken by parameters to access an
individual document. For example:

GET /cats -> All cats in the collection
GET /cats/1 -> Single document for a cat 1

When defining a collection, we should always use a plural noun such as cats or people for
the collection name.

Designing a Great API

[40]

Documents
A document is a resource pointing to a single object, similar to a row in a database. It has
the ability to have child resources that may be both sub-documents or collections. For
example:

GET /cats/1 -> Single document for cat 1
GET /cats/1/kittens -> All kittens belonging to cat 1
GET /cats/1/kittens/1 -> Kitten 1 for cat 1

Controller
A controller resource is like a procedure, this is typically used when a resource cannot be
mapped to standard CRUD (create, retrieve, update, and delete) functions.

The names for controllers appear as the last segment in a URI path with no child resources.
If the controller requires parameters, these would typically be included in the query string:

POST /cats/1/feed -> Feed cat 1
POST /cats/1/feed?food=fish ->Feed cat 1 a fish

When defining a controller name we should always use a verb. A verb is a word that
indicates an action or a state of being, such as feed or send.

Store
A store is a client-managed resource repository, it allows the client to add, retrieve, and
delete resources. Unlike a collection, a store will never generate a new URI it will use the
one specified by the client. Take a look at the following example that would add a new cat
to our store:

PUT /cats/2

This would add a new cat to the store with an ID of 2, if we had posted the new cat omitting
the ID to a collection the response would need to include a reference to the newly defined
document so we could later interact with it. Like controllers we should use a plural noun
for store names.

Designing a Great API

[41]

CRUD function names
When designing great REST URIs we never use a CRUD function name as part of the URI,
instead we use a HTTP verb. For example:

DELETE /cats/1234

We do not include the verb in the name of the method as this is specified by the HTTP verb,
the following URIs would be considered an anti-pattern:

GET /deleteCat/1234
DELETE /deleteCat/1234
POST /cats/1234/delete

When we look at HTTP verbs in the next section this will make more sense.

HTTP verbs
The commonly used HTTP verbs are:

GET

POST

PUT

PATCH

DELETE

HEAD

OPTIONS

Each of these methods has a well-defined semantic within the context of our REST API and
the correct implementation will help your user understand your intention.

GET
The GET method is used to retrieve a resource and should never be used to mutate an
operation, such as updating a record. Typically, a body is not passed with a GET request;
however, it is not an invalid HTTP request to do so.

Request:

GET /v1/cats HTTP/1.1

Designing a Great API

[42]

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: xxxx

{"name": "Fat Freddie's Cat", "weight": 15}

POST
The POST method is used to create a new resource in a collection or to execute a controller.
It is typically a non-idempotent action, in that multiple posts to create an element in a
collection that will create multiple elements not updated after the first call.

The POST method is always used when calling controllers as the actions of this is considered
non-idempotent.

Request:

POST /v1/cats HTTP/1.1
Content-Type: application/json
Content-Length: xxxx

{"name": "Felix", "weight": 5}

Response:

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 0
Location: /v1/cats/12343

PUT
The PUT method is used to update a mutable resource and must always include the
resource locator. The PUT method calls are also idempotent in that multiple requests will
not mutate the resource to a different state than the first call.

Request:

PUT /v1/cats HTTP/1.1
Content-Type: application/json
Content-Length: xxxx

{"name": "Thomas", "weight": 7 }

Designing a Great API

[43]

Response:

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 0

PATCH
The PATCH verb is used to perform a partial update, for example, if we only wanted to
update the name of our cat we could make a PATCH request only containing the details that
we would like to change.

Request:

PATCH /v1/cats/12343 HTTP/1.1
Content-Type: application/json
Content-Length: xxxx

{"weight": 9}

Response:

HTTP/1.1 204 No Body
Content-Type: application/json
Content-Length: 0

In my experience PATCH updates are rarely used, the general convention is to use a PUT
and to update the whole object, this not only makes the code easier to write but also makes
an API which is simpler to understand.

DELETE
The DELETE verb is used when we want to remove a resource, generally we would pass the
ID of the resource as part of the path rather than in the body of the request. This way, we
have a consistent method for updating, deleting, and retrieving a document.

Request:

DELETE /v1/cats/12343 HTTP/1.1
Content-Type: application/json
Content-Length: 0

Designing a Great API

[44]

Response:

HTTP/1.1 204 No Body
Content-Type: application/json
Content-Length: 0

HEAD
A client would use the HEAD verb when they would like to retrieve the headers for a
resource without the body. The HEAD verb is typically used in place of a GET verb when a
client only wants to check if a resource exists or to read the metadata.

Request:

HEAD /v1/cats/12343 HTTP/1.1
Content-Type: application/json
Content-Length: 0

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Last-Modified: Wed, 25 Feb 2004 22:37:23 GMT
Content-Length: 45

OPTIONS
The OPTIONS verb is used when a client would like to retrieve the possible interactions for a
resource. Typically, the server will return an Allow header, which will include the HTTP
verbs that can be used with this resource.

Request:

OPTIONS /v1/cats/12343 HTTP/1.1
Content-Length: 0

Response:

HTTP/1.1 200 OK
Content-Length: 0
Allow: GET, PUT, DELETE

Designing a Great API

[45]

URI query design
It is perfectly acceptable to use a query string as part of an API call; however, I would
refrain from using this to pass data to the service. Instead the query should be used to
perform actions such as:

Paging
Filtering
Sorting

If we need to make a call to a controller, we discussed earlier that we should use a POST
request as this is most likely a non-idempotent request. To pass data to the service, we
should include the data inside of the body. However, we could use a query string to filter
the action of the controller:

POST /sendStatusUpdateEmail?$group=admin
{
 ""message": "": "All services are now operational\nPlease accept our
 apologies for any inconvenience caused.\n
 The Kitten API team""
}

In the preceding example, we would send a status update email with the message included
in the body of the request, because we are using the group filter passed in the query string
we could restrict the action of this controller to only send to the admin group.

If we had added the message to the query string and not passed a message body, then we
would potentially be causing two problems for ourselves. The first is that the max length for
a URI is 2083 characters. The second is that generally a POST request would always include
a request body. Whilst this is not required by the HTTP specification, it would be expected
behavior by the majority of your users.

Response codes
When writing a great API, we should use HTTP status codes to indicate to the client the
success or failure of the request. In this chapter, we will not be taking a comprehensive look
at all the status codes available; there are many resources on the Internet that have this
information. We will provide some sources for further reading, what we will do is look at
the status codes that you as a software engineer will want your microservice to return.

Designing a Great API

[46]

Currently, it is a generally held consensus that this is good practice as it allows the client to
immediately determine the status of a request without having to dive into the request body
to gain further insight. In the instance of a failure and APIs that always return a 200 OK
response to the user with a message body containing further information is not good
practice as it requires the client to have to inspect the body to determine outcome. It also
means that the message body will contain additional information other than the object that
it should represent. Consider the following bad practice:

Bad request body:

POST /kittens
RESPONSE HTTP 200 OK
{
 ""status":": 401,
 ""statusMessage": "": "Bad Request""
}

Successful request:

POST /kittens
RESPONSE HTTP 201 CREATED
{
 ""status":": 201,
 ""statusMessage": "": "Created",",
 ""kitten":": {
 ""id": "": "1234334dffdf23",",
 ""name": "": "Fat Freddy'sFreddy's Cat""
 }
}

Imagine if you were writing a client for the preceding request, you need to add logic to your
application to check the status node in the response before you could read and process the
returned kitten.

Now consider something even worse:

And even worse failure:

POST /kittens
RESPONSE HTTP 200 OK
{
 ""status":": 400,
 ""statusMessage": "": "Bad Request""
}

Designing a Great API

[47]

And even worse success:

POST /kittens
RESPONSE HTTP 200 OK
{
 ""id": "": "123434jhjh3433",",
 ""name": "": "Fat Freddy'sFreddy's Cat""
}

If your API author had done something like the preceding example, you need to check to
see if the response that has been returned is an error or the kitten that you were expecting.
The number of WTFs per minute you would utter whilst coding a client for this API would
not endear you to its author. These might seem like extreme examples, but there are
instances like this out in the wild, at some point in my career I'm fairly sure I have been
guilty of such a crime, but then I had not read this book.

What the author in their best intention has done is try to take the HTTP status codes too
literally. W3C RFC2616 states that the HTTP status code relates to the attempt to
understand and satisfy the request
(https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1.1); however, this is
a little ambiguous when you look at some of the individual status codes. Modern consensus
is that it is OK to use HTTP status codes to indicate the processing state of an API request
not just the server's ability to process the request. Consider how we could make these
requests better by implementing this approach.

A good example of a failure:

POST /kittens
RESPONSE HTTP 400 BAD REQUEST
{
 ""errorMessage": "": "Name should be between 1 and 256 characters in
 length and only contain [A-Z] - ['-.]"'-.]"
}

A good example of a success:

POST /kittens
RESPONSE HTTP 201 CREATED
{
 ""id": "": "123hjhjh2322",",
 ""name": "": "Fat Freddy'sFreddy's cat""
}

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1.1

Designing a Great API

[48]

This is far more semantic; the user only ever needs to read the response in the instance of a
failure if they require further information. In addition to this we can provide a standard
error object that is used across all the endpoints of our API, which provides further but non-
required information to determine why a request failed. We will look at error objects in a
little while, but for now let's look at HTTP status codes more in depth.

2xx Success
2xx status codes indicate that the clients request has been successfully received and
understood.

200 OK
This is a generic response code indicating that the request has succeeded. The response
accompanying this code is generally:

GET: An, an entity corresponding to the requested resource
HEAD: The, the header fields corresponding to the requested resource without the
message body
POST: An, an entity describing or containing the result of the action

201 Created
The created response is sent when a request succeeds and the result is that a new entity has
been created. Along with the response it is common that the API will return a Location
header with the location of the newly created entity:

201 Created
Location: https://api.kittens.com/v1/kittens/123dfdf111

It is optional to return an object body with this response type.

204 No Content
This status informs the client that the request has been successfully processed; however,
there will be no message body with the response. For example, if the user makes a DELETE
request to the collection then the response may return a 204 status.

Designing a Great API

[49]

3xx Redirection
The 3xx indicate class of status codes indicates that the client must take additional action to
complete the request. Many of these status codes are used by CDNs and other content
redirection techniques, however, code 304 can exceptionally useful when designing our
APIs to provide semantic feedback to the client.

301 Moved Permanently
This tells the client that the resource they have requested has been permanently moved to a
different location. Whilst this is traditionally used to redirect a page or resource from a web
server it can also be useful to us when we are building our APIs. In the instance that we
rename a collection we could use a 301 redirect to send the client to the correct location.
This however should be used as an exception rather than the norm. Some clients do not
implicitly follow 301 redirect and implementing this capability adds additional complexity
for your consumers.

304 Not Modified
This response is generally used by a CDN or caching server and is set to indicate that the
response has not been modified since the last call to the API. This is designed to save
bandwidth and the request will not return a body, but will return a Content-Location
and Expires header.

4xx Client Error
In the instance of an error caused by a client, not the server, the server will return a 4xx
response and will always return an entity that gives further details on the error.

400 Bad Request
This response indicates that the request could not be understood by the client due to a
malformed request or due to a failure of domain validation (missing data, or an operation
that would cause invalid state).

401 Unauthorized
This indicates that the request requires user authentication and will include a WWW-
Authenticate header containing a challenge applicable to the requested resource. If the
user has included the required credentials in the WWW-Authenticate header, then the
response should include an error object that may contain relevant diagnostic information.

Designing a Great API

[50]

403 Forbidden
The server has understood the request, but is refusing to fulfill it. This could be due to
incorrect access level to a resource not that the user is not authenticated.

If the server does not wish to make the fact that a request is not able to access a resource due
to access level public, then it is permissible to return a 404 Not found status instead of
this response.

404 Not Found
This response indicates that the server has not found anything matching the requested URI.
No indication is given of whether the condition is temporary or permanent.

It is permissible for the client to make multiple requests to this endpoint as the state may
not be permanent.

405 Method Not Allowed
The method specified in the request is not allowed for the resource indicated by the URI.
This may be when the client attempts to mutate a collection by sending a POST, PUT, or
PATCH to a collection that only serves retrieval of documents.

408 Request Timeout
The client did not produce a request within the time that the server is prepared to wait. The
client may repeat the request without modification at a later time.

5xx Server Error
Response status codes within the 500 range indicate that something has gone "Bang", the
server knows this and is sorry for the situation.

The RFC advises that an error entity should be returned in the response explaining whether
this is permanent or temporary and containing an explanation of the error. When we look at
our chapter on security we will look at the recommendation about not giving too much
information away in error messages as this state may have been engineered by a user in the
attempt to compromise your system and by returning things such as a stack trace or other
internal information with a 5xx error can actually help to compromise your system. With
this in mind it is currently common that a 500 error will just return something very generic.

Designing a Great API

[51]

500 Internal Server Error
A generic error message indicating that something did not go quite as planned.

503 Service Unavailable
The server is currently unavailable due to temporary overloading or maintenance. There is
a rather useful pattern that you can implement to avoid cascading failure in the instance of
a malfunction in which the microservice will monitor its internal state and in the case of
failure or overloading will refuse to accept the request and immediately signal this to the
client. We will look at this pattern more in chapter xx; however, this instance is probably
where you will be wanting to return a 503 status code. This could also be used as part of
your health checks.

HTTP headers
Request headers are a really important part of the HTTP request and response process and
implementing a standard approach helps your users to transition from one API to another.
In this sub section, we will not cover all the possible headers that you can use in your API,
but we will look at the most common headers for full information on the HTTP protocol
please take a look at RFC 7231 https://tools.ietf.org/html/rfc7231. This document
contains a comprehensive overview of the current standard.

Standard request headers
Request headers provide additional information for the request and the response of your
API. Think of them like metadata for the operation. They can be used to augment other data
for the response that does not belong in the body itself such as the content encoding. They
can also be utilized by the client to provide information that can help the server process the
response. Where possible we should always use the standard headers as this gives
consistency to your user and provides them with a common standard across multiple
endpoints from many different vendors.

https://tools.ietf.org/html/rfc7231

Designing a Great API

[52]

Authorization - string
Authorization is one of the most commonly used request headers, even if you have a public
read only API I advise you to ask the user to authorize their requests. By requesting that the
user authorizes a request, you have the capability to perform operations such as user level
logging and rate limiting. Quite often you may see authorization conducted with a custom
request header such as "X-API-Authorization". I would recommend you do not use this
approach as the standard Authorization header as specified by the W3C RFC 2616
(https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html) has all the capability we
need. Many companies such as Twitter and PayPal use this header to authenticate requests
let's. Let's look at a simple example from Twitter's developer documentation to see how this
can be implemented:

Authorization:
 OAuth oauth_consumer_key="="xvz1evFS4wEEPTGEFPHBog",",
 oauth_nonce="="kYjzVBB8Y0ZFabxSWbWovY3uYSQ2pTgmZeNu2VS4cg",",
 oauth_signature="="tnnArxj06cWHq44gCs1OSKk%2FjLY%3D",",
 oauth_signature_method="="HMAC-SHA1",",
 oauth_timestamp="="1318622958",",
 oauth_token="="370773112-
GmHxMAgYyLbNEtIKZeRNFsMKPR9EyMZeS9weJAEb",",
 oauth_version="="1.0""

The header is in the form of [Authorization method] [Comma separated URL
encoded values]. This clearly informs the server that the authorization type is OAuth
and the various components of this authorization follow this in a comma delaminated
format. By following this standard approach you can enable your consumers to use a third-
party library that implements this standard and thus save them the work of having to build
a bespoke implementation.

Date
Timestamp of the request in RFC 3339 format.

Accept - content type
The requested content type for the response, such as:

application/xml

text/xml

application/json

text/javascript (for JSONP)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Designing a Great API

[53]

Accept-Encoding - gzip, deflate
REST endpoints should always support gzip and deflate encoding, when applicable.

Implementing gzip support in Go is relatively straightforward; we showed how it is
possible to implement middleware into your microservices in Chapter 1, Introduction to
Microservices. In the following example, we will use this technique to create a gzip response
writer.

The core of writing a response in a gzipped format is the compress/gzip package, which is
part of the standard library. It allows you to create a Writer interface that implements
ioWriteCloser wrapping an existing io.Writer, which writes to the given writer using
the gzip compression:

func NewWriter(w io.Writer) *Writer

To create our handler we are going to write the NewGzipHandler function, this returns a
new http.Handler that will wrap our standard output handler.

The first thing we need to do is create our own ResponseWriter that embeds
http.ResponseWriter.

Example 2.1 chapter2/gzip/gzip_deflate.go:

68 type GzipResponseWriter struct {
69 gw *gzip.Writer
70 http.ResponseWriter
71}

The core method for this is the implementation of the Write method:

73 func (w GzipResponseWriter) Write(b []byte) (int, error) {
74 if _, ok := w.Header()["()["Content-Type"];"]; !ok {
75 // If content type is not set, infer it from the uncompressed body.
76 w.Header().Set("("Content-Type",", http.DetectContentType(b))
77 }
78 return w.gw.Write(b)
79 }

If you look at the implementation for Write in the standard http.Response struct there is
a whole load of stuff going on in there that we neither want to lose or re-implement because
the gzip.Writer object is created with a writer when we call Write on it, it then in turn
calls write on http.Response and we lose none of the complexity.

Designing a Great API

[54]

Internally in our NewGzipHandler our handler checks to see if the client has sent the
Accept-Encoding header and if so we will write the response using the
GzipResponseWriter method if the client has requested uncompressed content then we
only call ServeHttp with the standard ResponseWriter:

40 type GZipHandler struct {
41 next http.Handler
42 }
43
44 func (h *GZipHandler) ServeHTTP(w http.ResponseWriter, r *http.Request)
{
45 encodings := r.Header.Get("("Accept-Encoding")")
46
47 if strings.Contains(encodings, ""gzip")") {
48 h.serveGzipped(w, r)
49 } else if strings.Contains(encodings, ""deflate")") {
50 panic("("Deflate not implemented")")
51 } else {
52 h.servePlain(w, r)
53 }
54 }
55
56 func (h *GZipHandler) serveGzipped(w http.ResponseWriter, r
*http.Request) {
57 gzw := gzip.NewWriter(w)
58 defer gzw.Close()
59
60 w.Header().Set("("Content-Encoding", "", "gzip")")
61 h.next.ServeHTTP(GzipResponseWriter{gzw, w}, r)
62 }

63 func (h *GZipHandler) servePlain(w http.ResponseWriter, r *http.Request)
64 {
65 h.next.ServeHTTP(w, r)
66 }

This is by no means a comprehensive example and there are many open source packages
like the one from the team at the NY Times (https://github.com/NYTimes/gziphandler),
which manages this for you.

As a little programming test, why not try and modify this example to implement DEFLATE.

https://github.com/NYTimes/gziphandler

Designing a Great API

[55]

Standard response headers
All services should return the following headers.

Date: The date that the request was processed in RFC 3339 format.
Content-Type: The content type of the response.
Content-Encoding: gzip or deflate.
X-Request-ID/X-Correlation-ID: Whilst you may not directly request your
clients to implement this header it may be something that you add to requests
when you call downstream services. When you are trying to debug a service that
is running in production it can be incredibly useful to be able to group all the
requests by a single transaction ID. A common practice that we will see when we
look at logging and monitoring is to store all logs in a common database such as
Elastic Search. By setting the standard way of working when building many
connected microservices that they pass the correlation ID with each downstream
call you will be able to query your logs in Kibana or another log query tool and
group them into a single transaction:

 X-Request-ID: f058ebd6-02f7-4d3f-942e-904344e8cde

Returning errors
In the instance of failure, users of your API should be able to write one piece of code that
handles errors across different endpoints. A standard error entity will help your consumers
by enabling them to write DRY code whenever an error caused by client or server occurs.

The Microsoft API guidelines recommend the following format for these entities:

{
 ""error":": {
 ""code": "": "BadArgument",",
 ""message": "": "Previous passwords may not be reused",",
 ""target": "": "password",",
 ""innererror":": a {
 ""code": "": "PasswordError",",
 ""innererror":": {
 ""code": "": "PasswordDoesNotMeetPolicy",",
 ""minLength": "": "6",",
 ""maxLength": "": "64",",
 ""characterTypes": ["":
["lowerCase","","upperCase","","number","","symbol"],"],
 ""minDistinctCharacterTypes": "": "2",",
 ""innererror":": {

Designing a Great API

[56]

 ""code": "": "PasswordReuseNotAllowed""
 }
 }
 }
 }
}

ErrorResponse: Object

The ErrorResponse is the top level object which will be returned by our response and
contains the following fields:

Property Type Required Description

error Error The error object.

Error: Object

The Error object is the detail for our error response; it provides full detail for the reason
that the error occurred:

Property Type Required Description

Code String

(enumerated)
One of a server-defined set of error codes.

message String A human-readable representation of the
error.

Target String - The target of the error.

Details Error[] - An array of details about specific errors that
led to this reported error.

innererror InnerError - An object containing more specific
information than the current object about the
error.

Designing a Great API

[57]

InnerError: Object

Property Type Required Description

Code String - A more specific error code than was provided by the
containing error.

innererror InnerError - An object containing more specific information than the
current object about the error.

Microsoft has provided an excellent API guidelines resource, you can read more about
returning errors by looking at the following link:

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#51-errors

Accessing APIs from JavaScript
Web browsers implement a sandbox mechanism that restricts resources in one domain from
accessing resources in another. For example, you may have an API that allows the
modification and retrieval of user data and a website that provides an interface for this API.
If the browser did not implement the "same-origin policy" and assuming the user did not
log out of their session then it would be possible for a malicious page to send a request to
the API and modify it without you knowing.

To get around this, there are two methods that can be implemented by your microservice to
allow this access, JSONP which stands for (JSON with Padding) and CORS (Cross-Origin
Resource Sharing).

JSONP
JSONP is pretty much a hack, and it is implemented by most browsers that do not
implement the later CORS standard. It is restricted to GET requests only and works by
getting round the issue that while XMLHTTPRequest is blocked from making requests to
third-party servers, there are no restrictions on HTML script elements.

A JSONP request inserts a <script src="..."> element into the browsers DOM with the
API's URI as the src target. This component returns a function call with the JSON data as a
parameter, and when this loads, the function executes passing the data to the callback.

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#51-errors

Designing a Great API

[58]

JavaScript callback is defined in the code:

function success(data) {
 alert(data.message);
}

This is the response from the API call:

success({"({"message":"":"Hello World"})"})

To denote a request for data to be returned as JSONP, generally the
callback=functionName parameter is added to the URI, in our example this would be
/helloworld?callback=success. Implementing this is particularly straightforward let's
take a look at our simple Go helloworld example and see how we can modify this to
implement JSONP.

One thing to note is the Content-Type header that we are returning. We are no longer
returning application/json as we are not returning JSON we are actually returning
JavaScript so we must set the Content-Type header accordingly:

Content-Type: application/javascript

Example chapter2/jsonp/jsonp.go:

Let's take a quick look at an example of how we can send JSONP with Go, our response
object is going to be exactly the same as the ones in Chapter 1, Introduction to Microservices:

18 type helloWorldResponse struct {
19 Message string `json:":"message"`"`
20 }

The difference is all in the handler, if we look at line 30 we are checking to see if there is a
callback parameter in the query string. This would be provided by the client and indicates
the function they expect to be called when the response is returned:

23 func helloWorldHandler(w http.ResponseWriter, r *http.Request) {
24 response := helloWorldResponse{Message: ""HelloWorld"}"}
25 data, err := json.Marshal(response)
26 if err != nil {
27 panic("("Ooops")")
28 }
29
30 callback := r.URL.Query().Get("("callback")")
31 if callback != """" {
32 r.Headers().Add("("Content-Type", "", "application/javascript")")
33 fmt.Fprintf(w, "%"%s(%s)",)", callback, string(data))
34 } else {

Designing a Great API

[59]

35 fmt.Fprint(w, string(data))
36 }
37 }

To return our response in JSONP format all we need to do is wrap the standard response to
a JavaScript function call. In line 33, we are taking the callback function name that was
passed by the client and encapsulating the response we would normally send. The resultant
output would look something like this:

Request:

GET /helloworld?callback=hello

Response:

hello({"message":"Hello World"})

CORS
Assuming your users are using a desktop browser that has been released in the last five
years, or a mobile browser such as iOS 9 or Android 4.2+, then implementing CORS will be
more than enough. http://caniuse.com/#feat=cors says that it is over 92% of all Internet
users. I was looking forward to bashing IE for the lack of full adoption; however, since this
has been supported since IE8 I will have to complain about mobile users.

CORS is a W3C proposal to standardize cross-origin requests from the browser. It works by
the browsers built in HTTP client making an OPTIONS request to a URI before the real
request.

If the server at the other end returns a header that contains the origin of the domain from
which the script is being loaded, then the browser will trust the server and will allow a
cross-site request to be made:

Access-Control-Allow-Origin: origin.com

Implementing this in Go is quite straightforward and we could create a middleware to
globally manage this for us. For simplicity, in our example we have hard coded this into the
handler:

http://caniuse.com/#feat=cors

Designing a Great API

[60]

Example 2.2 chapter2/cors/cors.go

25 if r.Method == ""OPTIONS"" {
26 w.Header().Add("("Access-Control-Allow-Origin", "*")", "*")
27 w.Header().Add("("Access-Control-Allow-Methods", "", "GET")")
28 w.WriteHeader(http.StatusNoContent)
29 return
30 }

In line 25, we detect if the request method is OPTIONS and instead of returning the response
we return the Access-Control-Allow-Origin header that the client is expecting. In our
example, we are simply returning *, which means all domains are allowed to interact with
this API. This is not the safest implementation and quite often you will request your API
users to register the domains that will be interacting with the API and restrict the Allow-
Origin to only include those domains. In addition to the Allow-Origin header we are
also returning the following:

Access-Control-Allow-Methods: GET

This tells the browser that it can only make GET requests to this URI and that it is forbidden
to make POST, PUT, and so on. This is an optional header, but it can be used to enhance your
user's security when interacting with the API. One thing to note is that we are not sending
back a 200 OK response we are using 204 No Content since it is invalid to return a body
with an OPTIONS request.

RPC APIs
RPC stands for remote procedure call; it is a method of executing a function or method on a
remote machine. RPC has been around since the dawn of time and there are many different
types of RPC technology some of which relies on there being an interface definition (SOAP,
Thrift Protocol Buffers). This interface definition can make it easier to generate client and
server stubs for different technology stacks. Generally, the interface is defined using a DSL
(domain specific language) and a generator program will use this to create application
clients and servers.

Where REST needs to use HTTP as a transport layer, RPC is not bound by this constraint,
and while it is possible to send RPC calls over HTTP, you can use the lightness of TCP or
even UDP sockets if you choose to.

Designing a Great API

[61]

RPC has seen a resurgence in use lately with many large-scale systems built by the likes of
Uber, Google, Netflix, and so on are using RPC. Due to the speed and performance that you
can get from the lower latency from not using HTTP and the smaller message size attained
by implementing a binary message format rather than JSON or XML.

The detractors of RPC mention the tight coupling that can occur between the client and the
server in that if you update the contract on the server then all the clients need to be updated
too. With many modern RPC implementations this is less of a problem and in fact is no less
a problem than you can have with RESTful APIs. Whilst old technology such as JMI was
tightly bound, requiring the client and the server to share the same interface, modern
implementations such as Protocol Buffers marshal the object sensibly and will not throw an
error should there be minor differences. Thus by following the standard guidelines in the
Versioning APIs section you have no less a problem than if you were implementing a
RESTful API.

One of the benefits of RPC is that you can quickly generate a client for your users, this
allows an abstraction from both the transport and the message type and allows them to
depend upon an interface. As the creator you can change the underlying implementation of
your application such as a move from Thrift to Proto buffers, without requiring the client to
do anything other than use the latest version of your provided client. Versioning also allows
you to retain the same backward compatibility that you can achieve with REST.

RPC API design
Some of the principles we have just discussed for creating a good RESTful API can also
apply to RPC. However; one of the main differences is that you may not be using HTTP as
your transport; therefore you are not always going to be able to use HTTP status codes as an
indicator of success or failure. RPC stands for Remote Procedure Call and dates way back
before the Internet. It was originally conceived as a way to execute a procedure that could
be running in a separate application on the same machine or even potentially on the
network. While we take this for granted now, back in the 90s this was cutting edge.
Unfortunately, frameworks such as CORBA and Java RMI gave RPC a bad name and even
now if you speak to an opponent of RPC they will most likely bring these two frameworks
up. The benefits, however, were performance, using binary serialization is incredibly
efficient on the network and we no longer have the tight coupling that RMI and CORBA
enforced. We are also not trying to do anything too clever; we are no longer attempting to
share an object across two processes we are taking a more functional approach, that is,
methods that return immutable objects. This gives us the best of both worlds; the simplicity
of interoperation and the speed and small payload of binary messages.

Designing a Great API

[62]

RPC message frameworks
These days we are no longer coupled to having the same interface implementation on both
the client and the server, this would not adhere to our mantra of independently versionable
and deployable. Thankfully frameworks are more flexible we can take the same approach as
we do with REST, it is OK to add, however, removing elements or changing the signatures
of a method must trigger a version update.

Gob
We have already looked at gob in the previous chapter but as a quick re-cap, the gob format
was specifically designed to facilitate Go to Go-based communication and was structured
around the idea of something easier to use and possibly more efficient than the likes of
protocol buffers, this comes at a cost of cross-language communication.

gob object definition:

type HelloWorldRequest struct {
 Name string
}

More information about gob can be found in the Go documentation at h t t p s ://g o l a n g . o r g
/p k g /e n c o d i n g /g o b /

Thrift
The Thrift framework was created by Facebook and was open sourced in 2007. It is
currently maintained by the Apache Software Foundation. The main aims of Thrift are:

Simplicity: Thrift code is straightforward and approachable, free of unnecessary
dependencies
Transparency: Thrift conforms to the most common idioms in all languages
Consistency: Niche, language-specific features belong in extensions, not in the
core library
Performance: Strive for performance first, elegance second

This is a thrift service definition:

struct User {
 1: string name,
 2: i32 id,
 3: string email
}

https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/encoding/gob/

Designing a Great API

[63]

struct Error {
 1: i32 code,
 2: string detail
}

service Users {
 Error createUser(1: User user)
}

Find more information on Apache Thrift at https://thrift.apache.org.

Protocol Buffers
Protocol Buffers are a Google product, and they have just entered their third revision.
Protocol Buffers take the approach of providing a DSL that the generator (written in C)
reads and can generate client and server stubs for over ten languages, the primary ten are
maintained by Google and encompass: Go, Java, C, JavaScript for NodeJS.

Protocol Buffers is a pluggable architecture, so it is possible to write your own plugins to
generate all kinds of endpoints not just RPC; however, RPC is the main use case as they are
coupled to the gRPC framework.

gRPC was designed by Google to be a fast and language agnostic RPC framework, which
originated from an internal project where latency and speed were of the utmost importance
in Google's architecture. By default, gRPC uses protocol buffers as the method for
serializing and de-serializing structured data. An example of this DSL is shown in the
following example.

Protocol buffer service definition:

service Users {
 rpc CreateUser (User) returns (Error) {}
}

message User {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
}

message Error {
 optional code int32 = 1
 optional detail string = 2
}

https://thrift.apache.org

Designing a Great API

[64]

Find more information on Protocol Buffers at
https://developers.google.com/protocol-buffers/.

JSON-RPC
JSON-RPC is an attempt at a standard way of representing objects for RPC using JSON. This
removes the need to decode any proprietary binary protocol at the expense of transfer
speed. There is no requirement for any particular client or server to serve this data format,
TCP sockets, and the ability to write strings that pretty much most all programming
languages can manage are all you require.

Unlike Thrift and Protocol Buffers, JSON-RPC sets the standard for the message
serialization.

JSON-RPC implements some nice features that allow the batching of requests; every request
contains an id parameter, which is established by the client. When the server responds it
will return the same identifier allowing the client to understand to which request a response
relates.

This is a JSON-RPC serialized request:

{
 "jsonrpc": "2.0",
 "method": "": "Users.v1.CreateUser",
 "params": {
 "name": "Nic Jackson",
 "id": 12335432434
 },
 "id": 1
}

This is a JSON-RPC serialized response:

{
 "jsonrpc": "2.0",
 "result": {...},
 "id":": 1
}

Find more information on JSON-RPC 2.0 at http://www.jsonrpc.org/specification.

https://developers.google.com/protocol-buffers/
http://www.jsonrpc.org/specification

Designing a Great API

[65]

Filtering
When we looked at RESTful APIs we discussed the concept of using the query string to
perform filtering actions such as:

Paging
Filtering
Sorting

Obviously, if we are writing an RPC API, we do not have the luxury of a query string;
however, implementing these concepts is incredibly useful. As long as we are consistent
there is no reason at all that we cannot define a parameter on our request object for the filter
condition:

{
 "jsonrpc": "2.0",
 "method": "": "Users.v1.GetUserLog",
 "params": {
 "name": "Nic Jackson",
 "id": 12335432434,
 "filter": {
 "page_start":": 1, //optional
 "page_size"" : 10, //optional
 "sort": "name DESC" //optional
 },
 "id": 1
}

This is just an example and you will probably choose to implement something specific to
your own needs, however, the key is consistency. If we use this same object for every
method, we can be reasonably sure that our users will be cool with this.

Versioning APIs
API versioning is something you should think about from the very beginning and avoid as
long as you can. In general, you will need to make changes to your API, however, having to
maintain n different versions can be a royal pain in the backside, so doing the upfront
design thinking at the beginning can save you a whole load of trouble.

Before we look at how you can version your API, which is quite straightforward let's look at
when you should version.

Designing a Great API

[66]

You would increment your API version number when you introduce a breaking change.

Breaking changes include:

Removing or renaming APIs or API parameters
Changing the type of an API parameter, for example, from integer to string
Changes to response codes, error codes, or fault contracts
Changes to the behavior of an existing API

Things that do not involve a breaking change include:

Adding parameters to a returned entity
Adding additional endpoints or functionality
Bug fixes or other maintenance that does not include items in the breaking
changes list

Semantic versioning
Microservices should implement the Major versioning scheme. Quite often, designers will
elect to only implement a Major version number and imply .0 for the minor version as
according to the semantic versioning principles http://semver.org a Minor version would
generally indicate the addition of functionality that has been implemented in a backwards
compatible way. This could be adding additional endpoints to your API. It can be argued
that since this would not affect the client's ability to interact with your API you should not
worry about Minor versions and only concentrate on major as the client will not need to
request a particular version without these additions in order to function.

When versioning APIs I think it is cleaner to drop the minor version and only concentrate
on major version. We would take this approach for two reasons:

The URI becomes more readable, and dots are only used as network location
separators. When using an RPC API dots are only used to separate
API.VERSION.METHOD and make everything easier to read.
We should be inferring through our API versioning that change is a big thing and
has an impact on the function of the client. Internally we can still use
Major.Minor; however, this does not need to be something to the client as they
will not have the capability to elect to use minor versions of the API.

http://semver.org

Designing a Great API

[67]

Versioning formats for REST APIs
To allow the client to request a particular API version, there are three common ways you
can do this.

It can be done as part of the URI:

https://myserver.com/v1/helloworld

It can also be done as a query string parameter:

https://myserver.com/helloworld?api-version=1

Finally, It can be done by using a custom HTTP header:

GET https://myserver.com/helloworld
api-version: 2

Whichever way you implement versioning is up to you and your team, but it should play a
big part in your upfront design thinking. Once you have decided on an option stick, to it as
providing a consistent and great experience for your consumers should be one of your
primary goals.

Versioning formats for RPC APIs
Versioning RPC can be a little more difficult as most likely you are not using HTTP as your
transport. However, this is still possible. The best way to deal with this is the namespace of
your handlers.

In the go base packages, you have the capability to give your handler a name,
Greet.v1.HelloWorld.

Naming for RPC
With RPC you do not have the luxury of using HTTP verbs to confer the intent of the API,
for example, you have the collection users. With an HTTP API you would be able to split up
the various actions using GET, POST, DELETE, and so on. This is not possible with an RPC
API and you need to think in the same way as if you were writing methods inside your Go
code, so for example:

GET /v1/users

Designing a Great API

[68]

The preceding code might be written as an RPC method as follows:

Users.v1.Users
GET /v1/users/123434

Alternatively, it might be written as an RPC method as follows:

Users.v1.User

Sub collections become a little less semantic, whereas in a RESTful API you would be able
to do the following:

GET /v1/users/12343/permissions/1232

You cannot do this with an RPC API and you must explicitly specify the method as a
separate entity:

Permissions.v1.Permission

The method name also needs to infer the action that the API is going to perform; you cannot
rely on the use of HTTP verbs, so in the instance that you have a method that can delete a
user you would have to add the delete verb into the method call, for example:

DELETE /v1/users/123123

The preceding code would become:

Users.v1.DeleteUser

Object type standardization
Whether you are using custom binary serialization, JSON, or JSON-RPC you need to think
about how your user is going to handle the object at the other side of the transaction. Many
of the serialization packages Protocol Buffers such as protocol buffers and Thrift that use
stubs to generate client code will happily deal with serialization of simple types such as
Dates into native types that enable your consumer to easily use and manipulate these
objects. However, if you are using JSON or JSON-RPC there is no concept of a Date as a
native type therefore it can be useful to fall back to ISO standards which the user of the
client can easily deserialize. The Microsoft API design guidelines provide some good advice
on how to handle Dates and Durations.

Designing a Great API

[69]

Dates
When returning a date, you should always use the DateLiteral format and preferably the
Iso8601Literal. If you do need to send back a date in a format other than
Iso8601Literal, then you can use a StructuredDateLiteral format, which allows you
to specify the kind as part of the returned entity.

The informal Iso8601Literal format is the simplest method to use and should be
understandable by almost any client consuming your API:

{"date": "2016-07-14T16:00Z"}

The more formal StucturedDateLiteral does not return a string, but an entity that
contains two properties, kind and value:

{"date": {"kind": "U", "value": 1471186826}}

The permissible kinds are:

C: CLR; number of milliseconds since midnight January 1 00
E: ECMAScript; number of milliseconds since midnight, January 1, 1970
I: ISO 8601; a string limited to the ECMAScript subset
O: OLE Date; integral part is the number of days since midnight, December 31,
1899, and fractional part is the time within the day (0.5 = midday)
T: Ticks; number of ticks (100-nanosecond intervals) since midnight January 1,
1601
U: UNIX; number of seconds since midnight, January 1, 1970
W: Windows; number of milliseconds since midnight January 1, 1601
X: Excel; as for O, but the year 1900 is incorrectly treated as a leap year, and day 0
is "January 0 (zero)"

Designing a Great API

[70]

Durations
Durations are serialized to conform with ISO 8601 and are represented by the following
format:

P[n]Y[n]M[n]DT[n]H[n]M[n]S

P: This is the duration designator (historically called "period") placed at the start
of the duration representation
Y: This is the year designator that follows the value for the number of years
M: This is the month designator that follows the value for the number of months
W: This is the week designator that follows the value for the number of weeks
D: This is the day designator that follows the value for the number of days
T: This is the time designator that precedes the time components of the
representation
H: This is the hour designator that follows the value for the number of hours
M: This is the minute designator that follows the value for the number of minutes
S: This is the second designator that follows the value for the number of seconds

For example, P3Y6M4DT12H30M5S represents a duration of "three years, six months, four
days, twelve hours, thirty minutes, and five seconds".

Intervals
Again part of the ISO 8601 specification is if you need to receive or send an interval you can
use the following format:

Start and end, such as 2007-03-01T13:00:00Z/2008-05-11T15:30:00Z
Start and duration, such as 2007-03-01T13:00:00Z/P1Y2M10DT2H30M
Duration and end, such as P1Y2M10DT2H30M/2008-05-11T15:30:00Z
Duration only, such as P1Y2M10DT2H30M, with additional context information

Find more information on JSON serialization of dates and times at
https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#113-json-

serialization-of-dates-and-times.

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#113-json-serialization-of-dates-and-times
https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#113-json-serialization-of-dates-and-times

Designing a Great API

[71]

Documenting APIs
Documenting APIs is incredibly useful whether you intend the API to be consumed
internally by other teams in your company, external users, or even only yourself. You will
thank yourself for spending the time to document the operations of the API and keep this
up to date. Keeping documentation up to date should not be an arduous task. There are
many applications that can generate documentation automatically from your source code,
so all you need to do is run this application as part of your build workflow.

REST based-based APIs
Currently three primary standards are fighting it out to become the queen of REST API
documentation:

Swagger
API Blueprint
RAML

Swagger
Swagger was designed by SmartBear and has been chosen to be part of the Open API
Initiative; this potentially gives it the greatest chance of adoption as a standard for
documenting RESTful APIs. The Open API Initiative (https://openapis.org) however is
an industry body and whether it gains the recognition that the W3C has around web
standards is probably dependent on more big names joining.

Documentation is written in YAML, and various code generation tools can both write
Swagger documentation from source code as well as being able to generate client SDKs. The
standard is comprehensive in its feature list and is also relatively simple to write as well as
being well understood by the developer community.

The code example of Swagger is shown as follows:

/pets:
 get:
 description: Returns all pets from the system that the user has access
to
 produces:
 - application/json
 responses:
 '200''200':

https://openapis.org

Designing a Great API

[72]

 description: A list of pets.
 schema:
 type: array
 items:
 $ref: ''#/definitions/Pet'Pet'

definitions:
 Pet:
 type: object
 properties:
 name:
 type: string
 description: name of the pet

Find more information on Swagger at http://swagger.io.

API Blueprint
API Blueprint is an open standard designed by Apiary and released under the MIT license.
It ties closely into Apiary's products. However, it can be used on its own, and there are a
variety of open source tools that read and write the format.

Documentation is written in Markdown, which can make authoring the documentation feel
a little more natural rather than dealing with nested layers of objects.

The code example for API Blueprint is shown as follows:

FORMAT: 1A

Data Structures

Pet (object)
+ name: Jason (string) - Name of the pet.

Pets [/pets]

Returns all pets from the system that the user has access to'to'

Retrieve all pets [GET]
+ Response 200 (application/json)
+ Attributes (array[Pet])

Find more information on API Blueprint at https://apiblueprint.org.

http://swagger.io
https://apiblueprint.org

Designing a Great API

[73]

RAML
RAML stands for RESTful API Modelling Language and is written in YAML format. It aims
to allow the definition of a human-readable format that describes resources, methods,
parameters, responses, media types, and other HTTP constructs that form the basis of your
API.

The code example for RAML is shown as follows:

#%RAML 1.0
title: Pets API
mediaType: [application/json]
types:
 Pet:
 type: object
 properties:
 name:
 type: string
 description: name of the pet
/pets:
 description: Returns all pets from the system that the user has access to
 get:
 responses:
 200:
 body: Pet[]

Find more information on RAML at http://raml.org.

RPC based-based APIs
With RPC APIs there is an argument that your contract is your documentation, in the
following example we define the interface using the protocol buffers DSL and would make
any necessary comments to assist the consumer as required. The predominant theory to
follow is one of self-documenting code that your methods and parameter names should
infer intent and enough description to negate the use of comments.

Protocol buffer example:

// The greeting service definition.
service Users {
 // Create user creates a user in the system with the given User details,
 // it returns an Error message which will be nil on a successful
operation
 rpc CreateUser (User) returns (Error) {}
}

http://raml.org

Designing a Great API

[74]

// Person describes a user entity
message User {
 // name is a required field and represents the name of
 required string name = 1;
 // id is the unique identifier for the user in the sytem
 required int32 id = 2;
 // email is the users email address and is an optional field
 optional string email = 3;
}

message Error {
 optional code int32 = 1
 optional detail string = 2
}

Which standard you choose is entirely dependent on you, your workflow, your team
standards, and your users. It will vary from case to case, however, once you choose an
approach in the same way as you do with naming conventions you should stick to a
consistent style across all of your APIs.

Summary
In this chapter, we did not spend much time looking at code; however, we have looked at
some essential concepts around writing a great API, which is as important as being able to
write the code.

The bulk of this chapter has been concerned with RESTful APIs as unlike RPC we need to
be a little more descriptive in their use. We also have the capability to leverage the
principles of HATEOAS, which we do not have when using RPC.

In the next chapter, we will start to look at some of the fantastic frameworks that exist in the
Go community, so we can start applying these principles and furthering our advancement
to microservice mastery.

3
Introducing Docker

Before we go any further with this book, we need to look at a little thing called Docker,
before we begin don't forget to clone the example code repository h t t p s ://g i t h u b . c o m /b u

i l d i n g - m i c r o s e r v i c e s - w i t h - g o /c h a p t e r 3. g i t .

Introducing Containers with Docker
Docker is a platform that has risen to prominence in the last three years; it was born out of
the desire to simplify the process of building, shipping, and running applications. Docker is
not the inventor of the container, Jacques Gélinas created the VServer project back in 2001,
and since then the other main projects have been LXC from IBM and rkt from CoreOS.

If you would like to read more about the history, then I recommend this excellent blog post
by Redhat: h t t p ://r h e l b l o g . r e d h a t . c o m /2015/08/28/t h e - h i s t o r y - o f - c o n t a i n e r s , this
section is going to concentrate on Docker which is by far the most popular current
technology.

The concept of a container is process isolation and application packaging. To quote Docker:

A container image is a lightweight, stand-alone, executable package of a piece of software
that includes everything needed to run it: code, runtime, system tools, system libraries,
settings.
...
Containers isolate software from its surroundings, for example, differences between
development and staging environments and help reduce conflicts between teams running
different software on the same infrastructure.

https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
https://github.com/building-microservices-with-go/chapter3.git
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers

Introducing Docker

[76]

Where they benefit application development is that we can take advantage of this when
deploying these applications as it allows us to pack them closer together, saving on
hardware resources.

From a development and test lifecycle, containers give us the capability to run production
code on our development machines with no complicated setup; it also allows us to create
that Clean Room environment without having different instances of the same database
installed to trial new software.

Containers have become the primary choice for packaging microservices, and as we
progress through the examples in this book, you will learn how invaluable it is to your
workflow.

Containers work by isolating processes and filesystems from each other. Unless explicitly
specified, containers cannot access each other's file systems. They also cannot interact with
one another via TCP or UDP sockets unless again specified.

Docker is made up of many parts; however, at its core is the Docker Engine, a lightweight
application runtime with features for orchestration, scheduling networking, and security.
Docker Engine can be installed anywhere on a physical or virtual host, and it supports both
Windows and Linux. Containers allow developers to package large or small amounts of
code and their dependencies together into an isolated package.

We can also draw from a huge array of pre-created images, just about all software vendors
from MySQL to IBM's WebSphere have an official image that is available for us to use.

Docker also uses Go, in fact nearly all of the code that goes into the Docker Engine and
other applications are written in Go.

Rather than write an essay on how Docker works, let's examine each of the features by
example. By the end of this chapter, we will take one of the simple examples that we created
in Chapter 1, Introduction to Microservices, and create a Docker image for it.

Installing Docker
Head over to https://docs.docker.com/engine/installation/ and install the correct
version of Docker on your machine. You will find versions for Mac, Windows, and Linux.

https://docs.docker.com/engine/installation/

Introducing Docker

[77]

Running our first container
To validate Docker has been installed correctly, let's run our first container, hello-world is
actually an image, an image is an immutable snapshot of a container. Once we start these
with the following command they become containers, think of it like types and instances, a
type defines fields and methods making up behavior. An instance is a living instantiation of
this type, you can assign other types to the fields and call the methods to perform actions.

$ docker run --rm hello-world

The first thing you should see is:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
c04b14da8d14: Pull complete
Digest:
sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

When you execute a docker run the first thing the engine does is check to see if you have
the image installed locally. If it doesn't then it connects to the default registry, in this case, h
t t p s ://h u b . d o c k e r . c o m / to retrieve it.

Once the image has been downloaded, the daemon can create a container from the
downloaded image, all the output is streamed to the output on your terminal:

Hello from Docker!
This message shows that your installation appears to be working correctly.

The --rm flag tells the Docker engine to remove the container and delete any resources such
as volumes it was using on exit. Unless we would like to re-start a container at some point it
is good practice to use the --rm flag to keep our filesystem clean, otherwise, all of the
temporary volumes which are created will sit around and consume space.Let's try
something a little more complicated, this time, we will start a container and create a shell
inside of it to show how you can navigate to the internal file system. Execute the following
command in your terminal:

$ docker run -it --rm alpine:latest sh

Alpine is a lightweight version of Linux and is perfect for running Go applications. The -it
flags stand for interactive terminal it maps the standard in from your terminal to the input
of the running container. The sh statement after the name of the image we want to run is
the name of the command we would like to execute in the container when it starts.

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Introducing Docker

[78]

If all went well, you should now be inside a shell of the container. If you check the current
directory by executing the ls command, you will see the following, which hopefully is not
the directory you were in before running the command:

bin etc lib media proc run srv tmp var
dev home linuxrc mnt root sbin sys usr

This is the root folder of the newly started container, containers are immutable, so any
changes you make to the file system in a running container is disposed of when the
container is stopped. While this may seem to be a problem, there are solutions for persisting
data, which we will look at in a little bit, however, for now, the important concept to
remember is that:

"Containers are immutable instances of images, and the data volumes are by default non-
persistent"

You need to remember this when designing your services, to illustrate how this works take
a look at this simple example.

Open another terminal and execute the following command:

$ docker ps

You should see the following output:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
43a1bea0009e alpine:latest "sh" 6 minutes ago
Up 6 minutes tiny_galileo

The docker ps command queries the engine and returns a list of the containers, by default
this only shows the running containers, however, if we add the -a flag we can also see
stopped containers.

The Alpine Linux container that we started earlier is currently running, so jump back to
your previous terminal window and create a file in the root file system:

$ touch mytestfile.txt

If we list the directory structure again, we can see that a file has been created in the root of
the file system:

bin lib mytestfile.txt sbin usr
dev linuxrc proc srv var
etc media root sys
home mnt run tmp

Introducing Docker

[79]

Now exit the container using the exit command and run docker ps again, you should see
the following output:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

If we add the -a flag command to see stopped containers too, we should see the container
we started earlier:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
518c8ae7fc94 alpine:latest "sh" 5 seconds ago
Exited (0) 2 seconds ago pensive_perlman

Now, start another container again using the docker run command and list the directory
contents in the root folder.

No mytestfile.txt right? The reason this does not exist is because of the principle we
were discussing earlier, which I think is important to mention again as if this is the first time
you have used Docker it will catch you out:

"Containers are immutable instances of images, and the data volumes are by default non-
persistent."

There is something worth noting, however, unless you explicitly remove a container it will
persist in a stopped state on the Docker host.

Removing containers is important to remember for two reasons; the first is that if you do
not remember this, you will fill up the disk on your host quickly as every time you create a
container Docker will allocate space on the host for the container volumes. The second is
that the container can be restarted.

Restarted that sounds cool, in fact, it is a handy feature, not something you should use in
your production environment, for that you need to remember the golden rule and design
your application accordingly:

"Containers are immutable instances of images, and the data volumes are by default non-
persistent."

However, the use of Docker extends far beyond simply running applications for your
microservices. It is an awesome way to manage your development dependencies without
cluttering up your development machine. We will look at that a little later on, but for now,
we are interested in how we can restart a stopped container.

Introducing Docker

[80]

If we execute the docker ps -a command, we will see that we now have two stopped
containers. The oldest one is the first container we started to which we added our
mytestfile.txt. This is the one we want to restart, so grab the ID of the container and
execute the following command:

$ docker start -it [container_id] sh

Again, you should be in a shell at the root of the container if you check the directory
contents what do you think you will find?

That's right, mytestfile.txt; this is because when you restarted the container, the engine
remounted the volumes that were attached the first time you ran the command. These are
the same volumes you mutated to add the file as mentioned earlier.

So we can restart our container; however, I just want to repeat the golden rule one last time:

"Containers are immutable instances of images, and the data volumes are by default non-
persistent."

When running in a production environment, you cannot ensure that you can restart a
container. There are a million reasons for this, one of the main ones that we will look at
more in depth when we look at orchestration is that containers are generally run on a
cluster of hosts. Since there is no guarantee which host the container will be restarted on or
even that the host the container was previously running on actually exists. There are many
projects that attempt to solve this, but the best approach is to avoid the complexity
altogether. If you need to persist files, then store them in something that is designed for the
job such as Amazon S3 or Google Cloud Storage. Design your applications around this
principle and you will spend far less time panicking when the inevitable happens, and your
super sensitive data container disappears.

OK, before we look at Docker volumes in more depth let's clean up after ourselves.

Exit your container and get back to the shell on the Docker host. If we run docker ps -a
,we will see that there are two stopped containers. To remove these, we can use the docker
rm containerid command.

Run this now using the first containerid in your list, if this is successful, the container ID
you asked to be removed would be echoed back to you, and the container will is deleted.

If you want to remove all the stopped containers you can use the following command:

$ docker rm -v $(docker ps -a -q)

Introducing Docker

[81]

The docker ps -a -q the -a flag will list all the containers including the stopped ones, -q
will return a list of the container IDs rather than the full details. We are passing this as a
parameter list to docker rm, which will remove all the containers in the list.

To avoid having to remove a container we can use the --rm flag when starting a new
container. This flag tells Docker to remove the container when it stops.

Docker volumes
We have seen how Docker containers are immutable; however, there are some instances
when you may wish to write some files to a disk or when you want to read data from a disk
such as in a development setup. Docker has the concept of volumes, which can be mounted
either from the host running the Docker machine or from another Docker container.

Union filesystem
To keep our images efficient and compact Docker uses the concept of a Union File System.
The Union filesystem allows us to represent a logical file system by grouping different
directories and or files together. It uses a Copy on Write technique, which copies the layer
when we modify the file system, this way we only use about 1MB of space when creating a
new image. When data is written to the file system Docker copies the layer and puts it on
the top of the stack. When building images and extending existing images we are
leveraging this technique, also when starting an image and creating a container the only
difference is this writable layer, which means we do not need to copy all the layers every
time and fill up our disk.

Mounting volumes
The -v, or --volume parameter allows you to specify a pair of values corresponding to the
file system you wish to mount on the host and the path where you would like to mount the
volume inside the container.

Let's try our example from earlier, but this time mounting a volume on the local file system:

$ docker run -it -v $(pwd):/host alpine:latest /bin/sh

Introducing Docker

[82]

If you change into the host folder, you will see that there is access to the same folder from
where you ran the docker run command. The syntax for the values for -v is
hostfolder:destinationfolder, one thing I think is important to point out is that these
paths need to be absolute, and you cannot use a relative path like ./ or ../foldername.
The volume you have just mounted has read/write access, any changes you make will be
synchronized to the folder on the host so be careful to not go running rm -rf *. Creating
Volumes on a production environment should be used very sparingly, I would advise that
where possible you avoid doing it all together as in a production environment there is no
guarantee if a container dies and is re-created that it will be replaced on the same host
where it was previously. This means that any changes you have made to the volume will be
lost.

Docker ports
When running web applications inside a container, it is quite common that we will need to
expose some ports to the outside world. By default, a Docker container is completely
isolated, and if you start a server running on port 8080 inside your container unless you
explicitly specify that port is accessible from the outside, it will not be accessible.

Mapping ports is a good thing from a security perspective as we are operating on a
principle of no trust. It is also effortless to expose these ports. Using one of the examples we
created in Chapter 1, Introduction to Microservices, let's see just how easy this is.

Move to the folder where you checked out the sample code, and run the following Docker
command:

$ docker run -it --rm -v $(pwd):/src -p 8080:8080 -w /src golang:alpine
/bin/sh

The -w flag we are passing is to set the working directory that means that any command we
run in the container will be run inside this folder. When we start the shell, you will see that
rather than having to change into the folder we specify in the second part of the volume
mounting we are already in that folder and can run our application. We are also using a
slightly different image this time. We are not using alpine:latest, which is a lightweight
version of Linux, we are using golang:alpine, which is a version of Alpine with the most
recent Go tools installed.

Introducing Docker

[83]

If we start our application using the go run main.go command; we should see the
following output:

2016/09/02 05:53:13 Server starting on port 8080

Now change to another shell and try to curl the API endpoint:

$ curl -XPOST localhost:8080/helloworld -d '{"name":"Nic"}'

You should see something like the following message returned:

{"message":"Hello Nic"}

If we run the docker ps command to inspect the running containers, we will see that there
are no ports exposed. Go back to your previous terminal window and kill the command
and then exit the container.

This time, when we start it, we will add the -p argument to specify the port. Like volumes,
this takes a pair of values separated by a colon (:). The first is the destination port on the
host that we would like to bind to the second is the source port on the Docker container to
which our application is bound.

Because this binds to the port on the host machine, in the same way that you would not be
able to start the program locally twice because of the port binding, you cannot do this with
the host port mappings in Docker either. Of course, you can start multiple instances of your
code in separate containers and bind to different ports, and we will see how you can do that
in just a bit.

But first let's take a look at that port command, rather than starting a container and creating
a shell to run our application we can do this in one command by replacing the /bin/sh
command with our go run command. Give that a try and see if you can get your
application running.

Got it?

You should have typed something like the following:

$ docker run -it --rm -v $(pwd):/src -w /src -p 8080:8080 golang:alpine go
run reading_writing_json_8.go

Now try your curl to send some data to the API again, you should see the following
output:

{"message":"Hello Nic"}

Introducing Docker

[84]

Like volumes, you can specify multiple instances of the -p argument, which enables you to
set up the binding for multiple ports.

Removing a container starting with an
explicit name
Containers that start with a name parameter are not automatically removed even if you
specify the --rm argument. To remove a container started in this way, we must manually
use the docker rm command. If we append the -v option to the command, we can also
remove the volumes that are associated with it. We should really do this now, or when we
try to recreate the container later in the chapter, you might be left a little puzzled:

$ docker rm -v server

Docker networking
I never intended this chapter to be a full reproduction of the official Docker documentation;
I am just trying to explain some of the key concepts that will help you as you progress
through the rest of this book.

Docker networking is an interesting topic, and by default, Docker supports the following
network modes:

bridge
host
none
overlay

Bridge networking
The bridge network is the default network that your containers will connect to when you
launch them; this is how we were able to join our containers together in the last example. To
facilitate this, Docker uses some of the core Linux capabilities such as networking
namespaces and virtual Ethernet interfaces (or veth interfaces).

Introducing Docker

[85]

When the Docker engine starts, it creates the docker0 virtual interface on the host machine.
The docker0 interface is a virtual Ethernet bridge that automatically forwards packets
between any other network interfaces that are attached to it. When a container starts it
creates a veth pair, it gives one to the container, which becomes its eth0, and the other
connects to the docker0 bridge.

Host networking
The host network is essentially the same network that the Docker engine is running on.
When you connect a container to the host network all of the ports that are exposed by the
container are automatically mapped to the hosts, it also shares the IP address of the host.
While this may seem like a nice convenience, Docker was always designed to be capable of
running multiple instances of the same container on the engine, and since you can only bind
a socket to one port in Linux using the host network limits this feature.

The host network can also pose a security risk to your container as it is no longer protected
by the principle of no trust and you no longer have the ability to explicitly control if a port
is exposed or not. That being said, due to the efficiencies of host networking it may in some
instances be appropriate to connect a container to the host network if you anticipate that it
is going to heavily use the network. An API gateway might be one such example, this
container would still be possible to route requests to other API containers that are sitting on
the bridge network.

No network
Removing your container from any network might in some instances be something you
wish to do. Consider the situation where you have an application that only processes data
stored in a file. Utilizing the principle of no trust, we may determine that the securest thing
to do is to not connect it to any container and to only allow it to write to a volume that is
mounted on the host. Attaching your container to the none network provides exactly this
capability, and while the use case might be somewhat limited it is there, and it's nice to
know about it.

Introducing Docker

[86]

Overlay network
The Docker overlay network is a unique Docker network that is used to connect containers
running on separate hosts to one another. With the bridge network as we have already
learned, network communication is localized to the Docker host and this is generally fine
when you are developing software. When you run your code in production however, all
this changes, as you will typically be running multiple hosts, each running multiple
containers as part of your high availability setup. The containers still need to talk to one
another, and while we could route all traffic through an ESB (enterprise service bus), this is
a little bit of an anti-pattern in the microservice world. The recommended approach as we
will see in a later chapter, is for the service to be responsible for its own discovery and load
balancing client calls. The Docker overlay network solves this problem, it is in effect a
network tunnel between machines which passes the traffic unmodified over the physical
network. The problem with the overlay is that you can no longer rely on Docker to update
the etc/hosts file for you, and you must depend on a dynamic service registry.

Custom network drivers
Docker also supports plugins for networking, based around its open source libnetwork
project, you can write custom networking plugins that can replace the networking
subsystem of the Docker engine. They also give the capability for you to connect non-
Docker applications to your container network such as a physical database server.

Weaveworks
Weaveworks is one of the most popular plugins, it gives you the capability to securely link
your Docker hosts and also provides a whole host of additional tools such as service
discovery with weavedns and visualization with weavescope, so you can see how your
network is connected together.

https://www.weave.works

https://www.weave.works

Introducing Docker

[87]

Project Calico
Project Calico attempts to solve the speed and efficiency problems that using virtual LANs,
bridging, and tunneling can cause. It achieves this by connecting your containers to a
vRouter, which then routes traffic directly over the L3 network. This can give huge
advantages when you are sending data between multiple data centers as there is no reliance
on NAT and the smaller packet sizes reduce CPU utilization.

https://www.projectcalico.org

Creating custom bridge networks
Implementing a custom overlay network is beyond the scope of this book, however,
understanding how you can create custom bridge networks is something that we should
look at as Docker-Compose, which we are going to introduce later in this chapter, utilizes
these concepts.

Like many of the Docker tools, creating a bridge network is quite straightforward. To see
the currently running networks on your Docker engine, we can execute the following
command:

$ docker network ls

The output should be something like the following:

NETWORK ID NAME DRIVER SCOPE
8e8c0cc84f66 bridge bridge local
0c2ecf158a3e host host local
951b3fde8001 none null local

You will find that there are three networks created by default, which is three of the ones we
discussed earlier. Because these are default networks, we are unable to remove these,
Docker requires these networks to function correctly and allowing you to remove them
would be a bad thing indeed.

Creating a bridge network
To create a bridge network, we can use the following command:

$ docker network create testnetwork

https://www.projectcalico.org

Introducing Docker

[88]

Run this now in your terminal and list the networks again to see the results.

You will see that there is now a fourth network in your list that uses the bridge driver and
that has the name you specified as one of the arguments. By default, when you create a
network, it uses the bridge as a default driver, of course, it is possible to create a network
to a custom driver, and this can be easily facilitated by specifying the additional argument,
-d drivername.

Connecting containers to a custom network
To connect a container to a custom network, let's again use the example application that we
created in Chapter 1, Introduction to Microservices:

$ docker run -it --rm -v $(pwd):/src -w /src --name server --
network=testnetwork golang:alpine go run main.go

Did you get the error message that the name is already in use because you forgot to remove
the container in the earlier section? If so, it might be time to head back a few pages.

Assuming all went well, you should see the server starting message, now let's try to curl the
container using the same command we executed earlier:

$ docker run --rm appropriate/curl:latest curl -i -XPOST
server:8080/helloworld -d '{"name":"Nic"}'

You should have received the following error message:

curl: (6) Couldn't resolve host 'server'

This was expected, have a go to see if you can update the docker run command to make it
work with our API container.

Got it?

If not, here is the modified command with the added network argument:

$ docker run --rm --network=testnetwork appropriate/curl:latest curl -i -
XPOST server:8080/helloworld -d '{"name":"Nic"}'

This command should have worked just fine the second time, and you should see the
expected output. Now remove the server container, and we will take a look at how you can
write your own Docker files.

Introducing Docker

[89]

Writing Dockerfiles
Dockerfiles are the recipes for our images; the define the base image, software to be
installed and give us the capability to set the various structure that our application needs.

In this section, we are going to look at how we can create a Docker file for our example API.
Again, this is not going to be a comprehensive overview of how Dockerfiles work as there
are many books and online resources that exist for that explicit purpose. What we will do is
to look at the salient points that will give us the basics.

The first thing we are going to do is build our application code as when we package this
into a Docker file we will be executing a binary, not using the go run command. The image
we are going to create will have only the software installed that we need to run our
application. Limiting the software installed is a Docker best practice when creating images
as it reduces the attack surface by only including what is necessary.

Building application code for Docker
We are going to execute a slightly different command for creating our files from the usual
go build:

$ CGO_ENABLED=0 GOOS=linux GOARCH=386 go build -a -installsuffix cgo -
ldflags '-s' -o server

In the preceding command, we are passing the argument -ldflags '-s', this argument
passes the -s argument to the linker when we build the application and tells it to statically
link all dependencies. This is very useful when we use the popular Scratch container as a
base; Scratch is the lightest base you can get it has no application frameworks or
applications this is opposed to Ubuntu, which takes about 150MB. The difference between
Scratch and Ubuntu is that Scratch does not have access to the standard C library GLibC.

If we do not build a static binary, then it will not execute if we try to run it in a Scratch
container. The reason for this is that while you may think that your Go application is a static
binary it still has a dependency on GLibC, both the net and the os/user packages link to
GLibC so if we are to run our application with a Scratch base image we need to statically
link this. The benefit, however, is an incredibly small image, we end up with an image
which is roughly 4MB in size, exactly the size of our compile Go application.

Because the Docker engine is running on Linux, we also need to build our Go binary for the
Linux architecture. Even if you are using Docker for Mac or Docker for Windows, what is
happening under the hood is that the Docker engine is running a lightweight virtual
machine on either HyperV or the Mac's xhyve virtual machine.

Introducing Docker

[90]

If you are not using Linux to run your go build command and since Go has excellent
capability for cross-platform compilation, you don't need to do much. All you do need to do
is prefix the architecture variables GOOS=linux GOARCH=386 to your go build command as
we did in the earlier example.

Now that we have created a binary for our application, let's take a look at the Docker file:

1 FROM scratch
2 MAINTAINER jackson.nic@gmail.com
3
4 EXPOSE 8080
5
6 COPY ./server ./
7
8 ENTRYPOINT ./server

FROM
The FROM instruction set the base image for subsequent instructions. You can use any image
that is either stored in a remote registry or locally on your Docker Engine. When you
execute docker build, if you do not already have this image, then Docker will pull it from
the registry as the first step of the build process. The format for the FROM command is the
same as you would use when issuing a docker run command it is either:

FROM image // assuming latest
FROM image:tag // where you can specify a tag to use

In line 1, we are using the image name scratch, this is a particular kind of image, which is
basically a blank canvas. We could use Ubuntu or Debian or Alpine or pretty much
anything really, but since all we need to run our Go application is the application itself then
we can use scratch to produce the smallest possible image.

MAINTAINER
The MAINTAINER instruction allows you to set the author of the generated image. This is an
optional instruction; however, it can be good practice to include this even if you are not
planning on publishing your image to the public registry.

Introducing Docker

[91]

EXPOSE
The EXPOSE instruction informs Docker that the container listens on the specified networks
ports at runtime. Expose does not make the ports accessible to the host; this function still
needs to be performed with the -p mapping.

COPY
The COPY instruction copies files from the source in the first part of this instruction to the
destination specified in the second part:

COPY <src> <dest>

COPY ["<src">, "<dest>"] // useful when paths contain whitespace

The <src> in the COPY instruction may contain wildcards with the matching done using
Go's filepath.Match rules.

Note:

<src> must be part of the context for the build, you cannot specify relative
folders such as ../;
A root / specified in the <src> will be the root of the context
A root / specified in the <dest> will map to the containers root file system
Specifying a COPY instruction without a destination will copy the file or folder
into the WORKDIR with the same name as the original

ENTRYPOINT
An ENTRYPOINT allows you to configure the executable that you would like to run when
your container starts. Using ENTRYPOINT makes it possible to specify arguments as part of
the docker run command which is appended to the ENTRYPOINT.

ENTRYPOINT has two forms:

ENTRYPOINT ["executable", "param1", "param2"] // preferred form
ENTRYPOINT command param1 param2 //shell form

Introducing Docker

[92]

For example, in our Docker file, we are specifying the ENTRYPOINT ./server. This is our
Go binary that we would like to run. When we start our container with the following
docker run helloworld command, we do not need to explicitly tell the container to
execute the binary and launch the server. We can, however, pass additional arguments to
the application via the docker run command arguments; these would then be appended
to the ENTRYPOINT before the application is run. For example:

$ docker run --rm helloworld --config=/configfile.json

The preceding command would append the arguments to the executed statement defined in
the entry point, which would be the equivalent of executing the following shell command:

$./server --config=configfile.json

CMD
The CMD instruction has three forms:

CMD ["executable", "param1", "param2"] // exec form
CMD ["param1", "param2"] // append default parameters to ENTRYPOINT
CMD command param1 param2 // shell form

When CMD is used to provide default arguments for the ENTRYPOINT instruction then both
the CMD and ENTRYPOINT instructions should be specified using the JSON array format.

If we specify a default value for CMD, we can still override it by passing the command
arguments to the docker run command.

Only one CMD instruction is permitted in a Docker file.

Good practice for creating Dockerfiles
Taking all of this into account, we need to remember how the union file system works in
Docker and how we can leverage it to create small and compact images. Every time we
issue a command in the Dockerfile, Docker will create a new layer. When we mutate this
command, the layer must be completely recreated and potentially all the following layers
too, which can dramatically slow down your build. It is therefore recommended a good
practice that you should attempt to group your commands as tightly as possible to reduce
the possibility of this occurring.

Introducing Docker

[93]

Quite often, you will see Dockerfiles which instead of having a separate RUN command for
every command we would like to execute, we chain these using standard bash formatting.

For example, consider the following, which would install software from a package
manager.

Bad Practice:

RUN apt-get update
RUN apt-get install -y wget
RUN apt-get install -y curl
RUN apt-get install -y nginx

Good Practice:

RUN apt-get update && \
 apt-get install -y wget curl nginx

The second example would only create one layer, which in turn would create a much
smaller and more compact image, it is also good practice to organize your COPY statements
placing the statement which changes the least further up in the Dockerfile, this way you
avoid invalidation of subsequent layers even if there are no changes to these layers.

Building images from Dockerfiles
To build an image from our Dockerfile, we can execute a straightforward command:

$ docker build -t testserver .

Breaking this down the -t argument is the tag we wish to give the container, this takes the
form name:tag, If we omit the tag portion of the argument as we have in our example
command, then the tag latest will be automatically assigned.

If you run docker images, you will see that our testserver image has been given this
tag.

The final argument is the context we would like to send to the Docker Engine. When you
run a Docker build, the context is automatically forwarded to the server. This may seem
strange, but you have to remember that it is not uncommon that the Docker Engine will not
be running on your local machine, and therefore it will not have access to your local
filesystem. For this reason, we should be careful about where we are setting our context as it
can mean that potentially a large amount of data is being sent to the engine, which will slow
things down. Context then becomes the root for your COPY commands.

Introducing Docker

[94]

Now that we have our running container, let's test it out. Why not start a container from our
newly built image and check the API by curling the endpoint:

$ docker run --rm -p 8080:8080 testserver
$ curl -XPOST localhost:8080/helloworld -d '{"name":"Nic"}'

Docker build context
When we run our Docker build command, we set the context path as the final argument.
What actually happens when the command executes is that the context is transferred to the
server. This can cause problems if you have a large source folder, so it is good practice to
only send the files you need to be packaged inside the container or the files you need when
building the container. There are two ways we can mitigate this problem. The first is to
ensure that our context only has the files on it we require. Since this is not always possible
we have a secondary option of using a .dockerignore file.

Docker Ignore files
The .dockerignore file is similar to a git ignore file before the CLI sends the context to the
Engine, it excludes files and directories that match patterns in the .dockerignore file. It
uses the patterns which are defined in Go's filepath.Match rules you can find more
information about them in the following Go documentation:
https://godoc.org/path/filepath#Match

Rule Behavior

comment Ignored.

/temp Exclude files and directories whose names start with temp in any immediate
subdirectory of the root. For example, the plain file
/somedir/temporary.txt is excluded, as is the directory /somedir/temp.

//temp* Exclude files and directories starting with temp from any subdirectory that is
two levels below the root. For example, /somedir/subdir/temporary.txt
is excluded.

temp? Exclude files and directories in the root directory whose names are a one-
character extension of temp. For example, /tempa and /tempb are excluded.

https://docs.docker.com/engine/reference/builder/#/dockerignore-file

https://godoc.org/path/filepath#Match
https://docs.docker.com/engine/reference/builder/#/dockerignore-file

Introducing Docker

[95]

Running Daemons in containers
One of the things you might be used to when deploying an application to a VM or physical
server is to use a Daemon runner such as initd or systemd to ensure that the application
is started in the background and continues to run even if it crashes. This is an anti-pattern
when you are using Docker containers, for Docker to successfully stop the application it will
attempt to kill the process running with PID 1. Daemons will generally start with PID 1 and
start your application with another process ID, which will mean they are not killed when
you stop the Docker container. This can cause containers to hang when the docker stop
command is executed.

In the instance that you need to ensure that your application keeps running even after a
crash then you delegate this responsibility to the orchestrator who is starting your Docker
container. We will learn more about this when we look at orchestration in a later chapter.

Docker Compose
That was all super easy-ish, let's now take a look at a compelling feature of Docker that
allows you to start multiple containers at once with your stack definition stored in a handy
YAML file.

Installing Docker Compose on Linux
If you have either Docker for Mac or Docker for Windows installed then it already comes
bundled with docker-compose, if however, you are using Linux, then you may need to
install this yourself as it does not come as part of the default Docker package.

To install Docker Compose on Linux, execute the following command in your terminal:

$ curl -L
https://github.com/docker/compose/releases/download/1.8.0/docker-compose-`u
name -s`-`uname -m` > /usr/local/bin/docker-compose && chmod +x
/usr/local/bin/docker-compose

Introducing Docker

[96]

Before we look at how we can run our application with docker-compose, let's take a look
at the file we are going to run and some of the important facets of it:

1 version: '2'
2 services:
3 testserver:
4 image: testserver
5 curl:
6 image: appropriate/curl
7 entrypoint: sh -c "sleep 3 && curl -XPOST testserver:8080/helloworld
-d '{\"name\":\"Nic\"}'"

Docker Compose files are written in YAML, inside this file you can define services that will
make up your application. In our simple example, we are only describing two services. The
first is our example code that we have just built and the second is a simple service that curls
this API. As a production example, this is not particularly useful I admit, but it is only
intended to show how to set up these files. As we progress through later chapters, we will
heavily rely on compose files to create our databases and other data stores that make up our
application.

Line 1 defines the version of the Docker compose file we are using, version 2 is the latest
version and is a breaking change from version 1 which along with the --link directive is
now deprecated and will be removed in a future release.

In line 2 we define the services. Services are the containers that you would like to start with
your stack. Each service has to have a unique name to the compose file, but not necessarily
to all the containers running on your Docker Engine. To avoid conflicts when starting a
stack, we can pass -p projectname to the docker-compose up command; this will prefix
the name of any of our containers with the specified project name.

The minimum information you need to specify for a service is the image, which is the image
you wish to start a container from. In the same way that docker run works, this can either
be a local image on the Docker Engine or it can be a reference to an image in a remote
registry. When you start a stack, compose will check to see if the image is available locally
and if not it will automatically pull it from the registry.

Line 6 defines our second service; this is simply going to execute a command to curl a
request to the API exposed by the first service.

In this service definition block, we are both specifying the image and an entry point.

Introducing Docker

[97]

Service startup
The previous command looks a little weird, but there is a gotcha with Docker compose,
which quite a few people fall foul too, there is no real way for compose to know when an
application is running. Even if we use the depends-on configuration, we are only
informing compose that there are dependencies and that it should control the start order of
the services.

sh -c "sleep 3 && curl -XPOST testserver:8080/helloworld -d
'{\"name\":\"Nic\"}'"

All compose will do is check that the container has been started. The general problem
occurs with a misunderstanding that a container being started equals it is ready to receive
requests. More often than not this is not the case, it can take time for your application to
start and be ready to accept requests. If you have a dependency like we have specified in
our entry point to curl the endpoint in another service, then we cannot assume that the
dependent service is ready for requests before we execute our command. We will cover a
pattern for dealing with this in Chapter 6, Microservice Frameworks, but for now we can be
aware that:

"Container started, and service ready is not the same thing."

In our simple example, we know that it roughly takes a second or so for the service to start,
so we will just sleep for three seconds to give it plenty of time to get ready before executing
our command. This method is not good practice, and it is only to illustrate how we can use
compose to link services. In reality, you would probably never start a single command like
we are here in your compose file.

When you use a Docker network, Docker automatically adds a mapping to the containers
resolve.conf pointing to the built in Docker DNS server, we can then contact other
containers connected to the same network by referencing them by name. Looking at our
curl command, this DNS capability is exactly what allows us to use the hostname testserver.

OK, time to test it out, run the following command from your terminal:

$ docker-compose up

All being well you should see the following message returned in the output:

{"message":"Hello Nic"}

Introducing Docker

[98]

Ctrl + C will exit compose, however, since we did run this with the docker run command
and passed the arguments --rm to remove the container, we need to ensure that we clean
up after ourselves. To remove any stopped container that you have started with docker-
compose, we can use the particular compose command rm and pass the -v argument to
remove any associated volumes:

$ docker-compose rm -v

Specifying the location of a compose file
Whenever you run docker-compose, it looks for a file named docker-compose.yml in
the current folder as a default file. To specify an alternate file, we can pass the -f argument
to compose with a path to the compose file we would like to load:

$ docker-compose -f ./docker-compose.yml up

Specifying a project name
As we discussed earlier when we start docker-compose, it will create services with the
given names in your Compose file appending the project name default to them. If we
need to run multiple instances of this compose file, then docker-compose will not start
another instance as it will check to see if any services are running with the given names
first. To override this, we can specify the project name replacing the default name of
default. To do this we just need to specify the -p projectname argument to our
command as follows:

$ docker-compose -p testproject up

This will then create two containers:

testproject_testserver

testproject_curl

Introducing Docker

[99]

Summary
In summary, we have learned how to work with Docker in this chapter, and while this is
only a brief overview, I suggest you head over to the documentation and read more in
depth on the concepts of Dockerfiles, Composefiles, the Docker Engine, and Docker
Compose. Docker is an invaluable tool for development, testing, and production and as we
progress through the following chapters, we will use these concepts extensively. In the next
chapter, we are going to look at testing, which builds on all of the things you have learned
so far.

4
Testing

When you try to define what testing is, you will come up with a multitude of answers, and
many of us will not understand the full benefits of testing until we've been burnt by buggy
software or we have tried to change a complex code base which has no tests.

When I tried to define testing, I came up with the following:

"The art of a good night's sleep is knowing you will not get woken by a support call and
the piece of mind from being able to confidently change your software in an always moving
market."

OK, so I am trying to be funny, but the concept is correct. Nobody enjoys debugging poorly
written code, and indeed, nobody enjoys the stress caused when a system fails. Starting out
with a mantra of quality first can alleviate many of these problems.

Over the last 20 years, techniques like TDD have become commonplace. In some instances,
it is not as common as I would like, but at least people are talking about testing now. In
some ways, we have the Agile Alliance to thank for this:

the principle of releasing little and often provides significant business benefits; the
downside (or the benefit, depending on your viewpoint) to releasing little and often is that
you can no longer spend three months running through a regression test suite before you
release to market.

In my office, context switching is one of the biggest complaints. Nobody enjoys having to
drop what they are doing to investigate a problem on work that they or even a colleague
may have carried out months or years ago. We want to be moving forward; and to ensure
we can do that, we have to make sure that what we have previously delivered meets the
specification and is of high enough quality to meet the client's requirement.

Testing

[101]

I also mentioned a change in my definition, and one of the biggest problems with change is
the concern that the change you are making may have an undesirable effect on another part
of the system. This effect applies to microservices as well as large monolithic systems.

What if I also told you that the side effect of code that is easy to test is probably well-written
code that is loosely coupled and has the right abstractions?

Testing, however, is not just about the developer: there is a definite need for manual testing
by people detached from the code base. This exploratory testing can bring out missing
requirements or incorrect assumptions. In itself, this is a specialized field and way beyond
the scope of this book, so we are going to concentrate on the kind of testing that you should
be doing.

The testing pyramid
Mike Cohn is credited with having created the concept of a testing pyramid in his book
Succeeding with Agile. The concept is that your cheapest (fastest) tests to run, which will be
your unit tests, go at the bottom of the pyramid; service level integration tests are on top of
this, and at the very top, you place full end-to-end tests, which are the costliest element.
Because this is a pyramid, the number of tests gets smaller as you move up the pyramid.

In the early days of automated testing, all the testing was completed at the top of the
pyramid. While this did work from a quality perspective, it meant the process of debugging
the area at fault would be incredibly complicated and time-consuming. If you were lucky,
there might be a complete failure which could be tracked down to a stack trace. If you were
unlucky, then the problem would be behavioral; and even if you knew the system inside
out, it would involve plowing through thousands of lines of code and manually repeating
the action to reproduce the failure.

Testing

[102]

Outside-in development
When writing tests, I like to follow a process called outside-in development. With outside-in
development, you start by writing your tests almost at the top of the pyramid, determine
what the functionality is going to be for the story you are working on, and then write some
failing test for this story. Then you work on implementing the unit tests and code which
starts to get the various steps in the behavioral tests to pass.

This initial specification also becomes the living documentation for your system. We will go
into more detail as to how you can create this later in this chapter, but more often than not it
is written in a language like Gherkin and is defined by working in a group with a domain
specialist like a product owner, a developer, and a testing expert. The intention behind
Gherkin is to create a universal language that everyone understands. This ubiquitous
language uses verbs and nouns that have special meaning to the team, and which is almost
always domain-specific, but should also be understandable to outsiders.

Feature: As a user when I call the search endpoint, I would like to receive
a list of kittens

Testing

[103]

The feature is the story which, in an agile environment is owned by the product owner. The
feature is then broken down into scenarios which explain in greater detail the qualities that
the code must have to be acceptable.

Scenario: Invalid query
 Given I have no search criteria
 When I call the search endpoint
 Then I should receive a bad request message

When we get to the section on BDD in a little while we will examine this in greater depth;
we will also look at a framework for Go for writing and executing Cucumber specifications.
Now, however, I am going to break the rules of outside in development by showing you
how to write great unit tests in Go. The concepts we are about to learn will be greatly
beneficial when we do start to look at BDD, so I think it is best we cover them first. Like the
previous chapters, it will be useful to you when reading through this chapter to have the
source code handy; you can clone the code from the following location: h t t p s ://g i t h u b . c o
m /b u i l d i n g - m i c r o s e r v i c e s - w i t h - g o /c h a p t e r 4. g i t

Unit tests
Our unit tests go right down to the bottom of the pyramid. This book was never intended to
be a lesson in TDD, there are plenty of better places to learn that. We will, however, take a
look at the testing framework which is built into Go. Before we do that, let's just remind
ourselves of the three laws of testing as defined by the awesome Uncle Bob Martin in his
book Clean Code:

First law: You may not write production code until you have written a failing
unit test
Second law: You may not write more of a unit test than is sufficient to fail, and
not compiling is failing
Third law: You may not write more production code than is sufficient to pass the
currently failing test

https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git
https://github.com/building-microservices-with-go/chapter4.git

Testing

[104]

One of the most effective ways to test a microservice in Go is not to fall into the trap of
trying to execute all the tests through the HTTP interface. We need to develop a pattern that
avoids creating a physical web server for testing our handlers, the code to create this kind of
test is slow to run and incredibly tedious to write. What need to be doing is to test our
handlers and the code within them as unit tests. These tests will run far quicker than testing
through the web server, and if we think about the coverage, we will be able to test the
wiring of the handlers in the Cucumber tests that execute a request to the running server
which overall gives us 100% coverage of our code.

main.go

 10 func main() {
 11 err := http.ListenAndServe(":2323", &handlers.SearchHandler{})
 12 if err != nil {
 13 log.Fatal(err)
 14 }
 15 }

You will see in the main function that we have split the handlers out into a separate
package. Breaking up the code in this way allows us to test these in isolation, so let's go
ahead and write some unit tests for our SearchHandler.

The convention is that we define our test files in the same folder as the package to which
they belong, and we name them the same as the file they are testing followed by _test. For
our example, we are going to write some tests for our SearchHandler which lives in the
handlers/search.go file; therefore our test file will be named
handlers/search_test.go.

The signature for a test method looks like this:

func TestXxx(*testing.T)

The name of the test must have a particular name beginning with Test and then
immediately following this an uppercase character or number. So we could not call our test
TestmyHandler, but we could name it Test1Handler or TestMyHandler.

Again, drawing on Uncle Bob's wisdom, we need to think about the names of our tests as
carefully as we would the names for our methods in our production code.

The first test we are going to write is the one who will validate that search criteria have been
sent with the request and the implementation is going to look like this:

 9 func TestSearchHandlerReturnsBadRequestWhenNoSearchCriteriaIsSent(t
*testing.T) {
 10 handler := SearchHandler{}

Testing

[105]

 11 request := httptest.NewRequest("GET", "/search", nil)
 12 response := httptest.NewRecorder()
 13
 14 handler.ServeHTTP(response, request)
 15
 16 if response.Code != http.StatusBadRequest {
 17 t.Errorf("Expected BadRequest got %v", response.Code)
 18 }
 19 }

The net/http/httptest package has two fantastic convenience methods for us
NewRequest and NewResponse, if you are familiar with unit testing concepts, then one of
the fundamentals isolate dependency. Often we replace the dependencies with Mocks or
Spies which allow us to test the behavior of our code without having to execute code in the
dependencies. These two functions enable us to do exactly this; they generate Mock
versions of the dependent objects http.Request and http.ResponseWriter.

httptest.NewRequest
The first line we need to pay attention to is line 11: the net/http/httptest package has
some nice convenience methods for us. The NewRequest method returns an incoming
server request which we can then pass to our http.Handler:

func NewRequest(method, target string, body io.Reader) *http.Request

We can pass parameters to the method and the target, which is either the path or an
absolute URL. If we only pass a path, then example.com will be used as our host setting.
Finally, we can give it an io.Reader file which will correspond to the body of the request;
if we do not pass a nil value then Request.ContentLength is set.

httptest.NewRecorder
In line 12 we are creating a ResponseRecorder type: this is going to be our instance of
ResponseWriter that we pass to the handler. Because a handler has no return function to
validate correct operation, we need to check what has been written to the output. The
ResponseRecorder type is an implementation of http.ResponseWriter which does just
that: it records all the mutations we make so that it is later possible to make our assertions
against it.

type ResponseRecorder struct {
 Code int // the HTTP response code from WriteHeader
 HeaderMap http.Header // the HTTP response headers
 Body *bytes.Buffer // if non-nil, the bytes.Buffer to append

Testing

[106]

written data to
 Flushed bool
 // contains filtered or unexported fields
 }

All we then need to do is to call the ServeHTTP method with our dummy request and
response and then assert that we have the correct outcome.

Go does not have an assertion library as you would find with RSpec or JUnit. We will look
at a third-party framework later in this chapter, but for now, let's concentrate on the
standard packages.

In line 16, we are checking to see if the response code returned from the handler is equal to
the expected code http.BadRequest. If it is not, then we call the Errorf method on the
testing framework.

ErrorF

func (c *T) Errorf(format string, args ...interface{})

The Errorf function takes the parameters of a format string and a variadic list of
parameters; internally this calls the Logf method before calling Fail.

If we run our tests by running the command go test -v -race ./... , we should see
the following output:

=== RUN TestSearchHandlerReturnsBadRequestWhenNoSearchCriteriaIsSent
--- FAIL: TestSearchHandlerReturnsBadRequestWhenNoSearchCriteriaIsSent
(0.00s)
 search_test.go:17: Expected BadRequest got 200
 FAIL
 exit status 1
 FAIL github.com/nicholasjackson/building-microservices-in-
 go/chapter5/handlers 0.016s

The -v flag will print the output in a verbose style, and it will also print all the text written
to the output by the application, even if the test succeeds.

The -race flag enables Go's race detector which holds discover bugs with concurrency
problems. A data race occurs when two Go routines access the same variable concurrently,
and at least one of the accesses is a write. The race flag adds a small overhead to your test
run, so I recommend you add it to all executions.

Using -./... as our final parameter allows us to run all our tests in the current folder as
well as the child folders, it saves us from manually having to construct a list of packages or
files to test.

Testing

[107]

Now we have a failing test we can go ahead and write the implementation to make the test
pass:

 18 decoder := json.NewDecoder(r.Body)
 19 defer r.Body.Close()
 20
 21 request := new(searchRequest)
 22 err := decoder.Decode(request)
 23 if err != nil {
 24 http.Error(rw, "Bad Request", http.StatusBadRequest)
 25 return
 26 }

When we rerun the tests, we can see that they have succeeded:

=== RUN TestSearchHandlerReturnsBadRequestWhenNoSearchCriteriaIsSent
--- PASS: TestSearchHandlerReturnsBadRequestWhenNoSearchCriteriaIsSent
(0.00s)
PASS
ok github.com/nicholasjackson/building-microservices-in-
go/chapter5/handlers 1.022s

This output is awesome; but what if passing a query to the request with a blank string
constitutes a failure? Time to write another test:

 23 func TestSearchHandlerReturnsBadRequestWhenBlankSearchCriteriaIsSent(t
*testing.T) {
 24 handler := SearchHandler{}
 25 data, _ := json.Marshal(searchRequest{})
 26 request := httptest.NewRequest("POST", "/search",
bytes.NewReader(data))
 27 response := httptest.NewRecorder()
 28
 29 handler.ServeHTTP(response, request)
 30
 31 if response.Code != http.StatusBadRequest {
 32 t.Errorf("Expected BadRequest got %v", response.Code)
 33 }
 34 }

This test is very similar to the last one; the only difference is that we are passing some JSON
in the request body. While this test will fail correctly, we should take the lead from Uncle
Bob and refactor this to make it more readable:

 21 func TestSearchHandlerReturnsBadRequestWhenBlankSearchCriteriaIsSent(t
*testing.T) {
 22 r, rw, handler := setupTest(&searchRequest{})
 23

Testing

[108]

 24 handler.ServeHTTP(rw, r)
 25
 26 if rw.Code != http.StatusBadRequest {
 27 t.Errorf("Expected BadRequest got %v", rw.Code)
 28 }
 29 }

We have refactored our test to add a setup method which is shared across the two tests, the
intention behind this is to keep our tests focused on three core areas:

Setup
Execute
Assert

Bad tests with duplicated code can be worse than bad code: your tests should be clear, easy
to understand and contain the same care that you would add to your production code.

Now, if the test fails, we can go ahead and update our code to implement the feature:

23 if err != nil || len(request.Query) < 1 {
24 http.Error(rw, "Bad Request", http.StatusBadRequest)
25 return
26 }

All we needed to do was make a simple modification to our if statement. As our system
grows in complexity and we find more cases for what constitutes an invalid search query,
we will refactor this into a separate method; but, for now, this is the minimum we need to
do to make the test pass.

Dependency injection and mocking
To get the tests that return items from the Search handler to pass, we are going to need a
data store. Whether we implement our data store in a database or a simple in-memory store
we do not want to run our tests against the actual data store as we will be checking both
data store and our handler. For this reason, we are going to need to manage the
dependencies on our handler so that we can replace them in our tests. To do this, we are
going to use a technique called dependency injection where we will pass our dependencies
into our handler rather than creating them internally.

This method allows us to replace these dependencies with stubs or mocks when we are
testing the handler, making it possible to control the behavior of the dependency and check
how the calling code responds to this.

Testing

[109]

Before we do anything, we need to create our dependency. In our simple example, we are
going to create an in-memory data store which has a single method:

Search(string) []Kitten

To replace the type with a mock, we need to change our handler to depend on an interface
which represents our data store. We can then interchange this with either an actual data
store or a mock instance of the store without needing to change the underlying code:

 type Store interface {
 Search(name string) []Kitten
 }

We can now go ahead and create the implementation for this. Since this is a simple
example, we are going to hardcode our list of kittens as a slice and the search method will
just select from this slice when the criteria given as a parameter matches the name of the
kitten.

OK, great; we now have our data store created, so let's see how we are going to modify our
handler to accept this dependency. It is quite simple: because we created a struct which
implements the ServeHTTP method, we can just add our dependencies onto this struct:

 Search {
 Store data.Store
 }

Note how we are using a reference to the interface rather than the concrete type, which
allows us to interchange this object with anything that implements the store interface.

Now, back to our unit tests: we would like to ensure that, when we call the ServeHTTP
method with a search string, we are querying the data store and returning the kittens from
it.

To do this, we are going to create a mock instance of our data store. We could create the
mock ourselves; however, there is an excellent package by Matt Ryer who incidentally is
also a Packt author. Testify (h t t p s ://g i t h u b . c o m /s t r e t c h r /t e s t i f y . g i t) has a fully
featured mocking framework with assertions. It also has an excellent package for testing the
equality of objects in our tests and removes quite a lot of the boilerplate code we have to
write.

In the data package, we are going to create a new file called mockstore.go. This structure
will be our mock implementation of the data store:

5 // MockStore is a mock implementation of a datastore for testing purposes
6 type MockStore struct {

https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git
https://github.com/stretchr/testify.git

Testing

[110]

7 mock.Mock
8 }
9
10 //Search returns the object which was passed to the mock on setup
11 func (m *MockStore) Search(name string) []Kitten {
12 args := m.Mock.Called(name)
13
14 return args.Get(0).([]Kitten)
15 }

In line 6, we are defining our MockStore object. There is nothing unusual about this, except
you will note that it is embedding the mock.Mock type. Embedding Mock will give us all of
the methods on the mock.Mock struct.

When we write the implementation for our search method, we are first calling the Called
method and passing it the arguments that are sent to Search. Internally, the mock package
is recording that this method was called and with what parameters so that we can later
write an assertion against it:

 args := m.Mock.Called(name)

Finally, we are returning args.Get(0).(Kitten). When we call the Called method, the
mock returns us a list of arguments that we provided in the setup. We are casting this to our
output type and returning to the caller. Let's take a quick look at the test method and see
how this works.

Line 57 is the start of our test setup. The first thing we are going to do is to create an
instance of our MockStore. We then set this as a dependency for our Search handler. If we
skip back up the file to line 38, you will see that we are calling the On method on our
mockStore. The On method is a setup method for the mock and has the signature:

func (c *Call) On(methodName string, arguments ...interface{}) *Call

If we do not call the On method with the parameter Search then when we call the Search
method in our code we will get an exception from the test saying that Search has been
called yet has not been setup. One of the reasons why I like to use mocking rather than a
simple Stub is this ability to assert that a method has been called and we can explicitly
dictate the behavior that the code under test is allowed to exhibit. This way we can ensure
that we are not doing work the output of which has not been tested.

Testing

[111]

In our instance, we are setting up the condition that, when the Search method is called
with the parameter Fat Freddy's Cat, we would like to return an array of kittens.

The assertion is that we are calling the Search method on the data store and passing it the
query that was sent in the HTTP response. Using assertions in this way is a handy
technique as it allows us to test the unhappy path such as when a data store may not be able
to return data due to an internal error or another reason. If we were trying to test this with
an integration test, it could be tough to persuade the database to fail on demand.

Why don't you spend five minutes as a little exercise and go ahead and write this code to
finish off?

Did it all work? Don't worry if not, you can just check out the example code to see where
you have gone wrong, but I hope that the process is useful. You can see how you can take a
measured approach through two layers of testing to produce a working application. These
tests are now your safety net: whenever you change the code to add a new feature, you can
be sure that you are not breaking something unintentionally.

Code coverage
Code coverage is an excellent metric to ensure that the code you are writing has adequate
coverage.

The most simplistic way of getting a readout of test coverage is to execute our tests with the
-cover option:

go test -cover ./...

If we run this against our example code in the root folder of our example code we will see
the following output:

$go test -cover ./...
? github.com/building-microservices-with-go/chapter4 [no test files]
ok github.com/building-microservices-with-go/chapter4/data 0.017s coverage:
20.0% of statements
ok github.com/building-microservices-with-go/chapter4/features 0.018s
coverage: 0.0% of statements [no tests to run]
ok github.com/building-microservices-with-go/chapter4/handlers 0.018s
coverage: 100.0% of statements

Testing

[112]

Now our handlers look beautiful: we have 100% coverage of this package. However, our
data package is only reporting 20% coverage. Before we get too alarmed at this, let's take a
look at what we are trying to test.

If we first examine the datastore.go file, this is only an interface and therefore does not
have any test files; however, the memorystore.go does. This file is well covered with 100%
test coverage for this file. The files that are letting us down are our mock class and our
MongoDB implementation.

Now the mock type I am not too bothered about, but the Mongo store is an interesting
problem.

This type would be incredibly difficult to test due to the dependency on the MongoDB. We
could create a mock implementation of the Mongo package to test our code, but this could
be more complicated than the implementation. There are however some critical areas where
we could make mistakes in this class. Consider line 26:

c := s.DB("kittenserver").C("kittens")

This line retrieves the collection kittens from the database kittenserver. If we make a
simple spelling mistake here, then our application will not work. We do not want to wait
until this code gets out into production to see that this is happening. We also do not want to
have to manually test this as, in a larger application, this could be considerably time-
consuming. Integration tests are really where our Cucumber tests shine. If you remember,
we are writing some very high-level end-to-end tests to make sure that the input into our
API results in the correct output. Because this is running against an actual database, if we
had made such an error, then it would be picked up. So, while the Go coverage report states
that we are not covered, it's because we have higher level tests that the Go test is not
looking at, so we are covered. The central area where we could run into problems would be
by omitting line 23.

If we do not close the connection to the database after we have opened it, we are going to be
leaking connections; after a while, we may find that we can no longer open another as the
pool is exhausted. There is no simple way to test this, but there is, however, a way to catch
the problem post-deploy. When we look at logging and monitoring in Chapter 7, Logging
and Monitoring, we will see how we can expose such information to help us ensure our
production system is functioning correctly.

Testing

[113]

Behavioral Driven Development
Behavioral Driven Development (BDD) and is a technique often executed by an
application framework called Cucumber. It was developed by Dan North and was designed
to create a common ground between developers and product owners. In theory, it should be
possible to test complete coverage of the system with BDD; however, since this would
create a significant number of slow running tests it is not the best approach. What we
should be doing is defining the boundaries of our system, and we can save the granularity
for our unit tests.

In our Three Amigos group, we discuss the facets of the feature and what the essential
qualities of it are and start to write scenarios.

Sad path

Scenario: User passes no search criteria
 Given I have no search criteria
 When I call the search endpoint
 Then I should receive a bad request message

Happy path

Scenario: User passes valid search criteria
 Given I have valid search criteria
 When I call the search endpoint
 Then I should receive a list of kittens

These scenarios are quite a simple example, but I think you can understand how, when
using this language with non-technical people, it would be quite straightforward to come
up with these descriptions. From an automation perspective what we then do is to write the
steps which correspond to each of these Given, When, and Then statements.

For this book, we are going to take a look at the GoDog framework which allows us to
implement the step definitions in Go. We will first need to install the application you can do
this by running the command: fgo get github.com/DATA-DOG/godog/cmd/godog

If we look at features/search.feature we can see that we have implemented this
feature and the scenarios.

Testing

[114]

If we run the godog ./ command to run these tests without first creating the features, we
should see the following error message:

Feature: As a user when I call the search endpoint, I would like to receive
a list of kittens

Scenario: Invalid query
features/search.feature:4
 Given I have no search criteria
 When I call the search endpoint
 Then I should receive a bad request message

Scenario: Valid query
features/search.feature:9
 Given I have valid search criteria
 When I call the search endpoint
 Then I should receive a list of kittens

2 scenarios (2 undefined)
6 steps (6 undefined)
321.121µs

You can implement step definitions for undefined steps with these snippets:

func iHaveNoSearchCriteria() error {
 return godog.ErrPending
}

func iCallTheSearchEndpoint() error {
 return godog.ErrPending
}

func iShouldReceiveABadRequestMessage() error {
 return godog.ErrPending
}

func iHaveAValidSearchCriteria() error {
 return godog.ErrPending
}

func iShouldReceiveAListOfKittens() error {
 return godog.ErrPending
}

func FeatureContext(s *godog.Suite) {
 s.Step(`^I have no search criteria$`, iHaveNoSearchCriteria)
 s.Step(`^I call the search endpoint$`, iCallTheSearchEndpoint)
 s.Step(`^I should receive a bad request message$`,

Testing

[115]

iShouldReceiveABadRequestMessage)
 s.Step(`^I have a valid search criteria$`, iHaveAValidSearchCriteria)
 s.Step(`^I should receive a list of kittens$`,
iShouldReceiveAListOfKittens)
}

Usefully, this gives us the boilerplate to perform our steps; once we implement this and
rerun the command we get a different message:

Feature: As a user when I call the search endpoint, I would like to receive
a list of kittens

 Scenario: Invalid query # search.feature:4
 Given I have no search criteria # search_test.go:6 ->
github.com/nicholasjackson/building-microservices-in-
go/chapter5/features.iHaveNoSearchCriteria
 TODO: write pending definition
 When I call the search endpoint
 Then I should receive a bad request message

 Scenario: Valid query # search.feature:9
 Given I have a valid search criteria # search_test.go:18 ->
github.com/nicholasjackson/building-microservices-in-
go/chapter5/features.iHaveAValidSearchCriteria
 TODO: write pending definition
 When I call the search endpoint
 Then I should receive a list of kittens

 2 scenarios (2 pending)
 6 steps (2 pending, 4 skipped)
 548.978µs

We can now start filling in the details for the steps which should fail as we have not yet
written our code.

We can implement our code using plain Go which gives us the capability to use any of the
interfaces and packages. Take a look at the example which corresponds to the method
iCallTheSearchEndpoint:

23 func iCallTheSearchEndpoint() error {
24 var request []byte
25
26 response, err = http.Post("http://localhost:2323", "application/json",
bytes.NewReader(request))
27 return err
28 }
29
30 func iShouldReceiveABadRequestMessage() error {

Testing

[116]

31 if response.StatusCode != http.StatusBadRequest {
32 return fmt.Errorf("Should have recieved a bad response")
33 }
34
35 return nil
36 }

Now we have some tests implemented we should run Cucumber tests as some of the steps
should be passing. To test the system, we need to start our main application; we could split
our main function out into a StartServer function, which could be called directly from
Cucumber. However, that is omitting the fact that we forgot to call StartServer in the
main function. For this reason, the best approach is to test the complete application in our
Cucumber test from the outside in.

To do this, we are going to add a couple of new functions to the
features/search_test.go file:

59 func FeatureContext(s *godog.Suite) {
60 s.Step(`^I have no search criteria$`, iHaveNoSearchCriteria)
61 s.Step(`^I call the search endpoint$`, iCallTheSearchEndpoint)
62 s.Step(`^I should receive a bad request message$`,
iShouldReceiveABadRequestMessage)
63 s.Step(`^I have a valid search criteria$`, iHaveAValidSearchCriteria)
64 s.Step(`^I should receive a list of kittens$`,
iShouldReceiveAListOfKittens)
65
66 s.BeforeScenario(func(interface{}) {
67 startServer()
68 fmt.Printf("Server running with pid: %v", server.Process.Pid)
69 })
70
71 s.AfterScenario(func(interface{}, error) {
72 server.Process.Kill()
73 })
74 }
75
76 var server *exec.Cmd
77
78 func startServer() {
79 server = exec.Command("go", "run", "../main.go")
80 go server.Run()
81 time.Sleep(3 * time.Second)
82 }

Testing

[117]

In line 66, we are using the BeforeScenario method on godog: this allows us to run a
function before our scenario starts. We would use this for clearing up any data in the data
store, but in our simple example, we are just going to start our application server. Later on
in this chapter, we will look at a more complex example, which uses Docker Compose to
start a stack of containers containing our server and a database.

The startServer function spawns a new process to run go run ../main.go. We have to
run this in gofunc as we do not want the test to block. Line 81 contains a small pause to see
if our server has started. In reality, we should be checking the health endpoint of the API,
but for now, this will suffice.

Line 71 will execute after the scenario has finished and tears down our server. If we don't do
this then the next time we try to start our server it will fail as the process will already be
running and bound to the port.

Let's go ahead and run our Cucumber tests, and the output should look something like this:

Feature: As a user when I call the search endpoint, I would like to receive
a list of kittens
 Server running with pid: 91535
 Scenario: Invalid query # search.feature:4
 Given I have no search criteria # search_test.go:17 ->
github.com/building-microservices-with-
go/chapter4/features.iHaveNoSearchCriteria
 When I call the search endpoint # search_test.go:25 ->
github.com/building-microservices-with-
go/chapter4/features.iCallTheSearchEndpoint
 Then I should receive a bad request message # search_test.go:32 ->
github.com/building-microservices-with-
go/chapter4/features.iShouldReceiveABadRequestMessage
 Server running with pid: 91615
 Scenario: Valid query # search.feature:9
 Given I have a valid search criteria # search_test.go:40 ->
github.com/building-microservices-with-
go/chapter4/features.iHaveAValidSearchCriteria
 Do not have a valid criteria
 When I call the search endpoint
 Then I should receive a list of kittens

 --- Failed scenarios:

 search.feature:10

 2 scenarios (1 passed, 1 failed)
 6 steps (3 passed, 1 failed, 2 skipped)
 6.010954682s

Testing

[118]

 make: *** [cucumber] Error 1

Perfect! We are getting there, some of the steps are passing now, and one of the features is
passing. We can now go ahead finish these tests off, but first, we need to look at how we can
use Docker Compose to test against a real database.

Testing with Docker Compose
So far this has been relatively simple implementation, but it is not particularly useful as a
real-world example. It is going to be pretty rare that you find yourself implementing an in-
memory data store with only three items in it. More often than not you are going to be
using a functioning database. Of course, the integration between a real database and our
code needs testing; we need to ensure that the connection to the data store is correct and
that the query we are sending to it is valid.

To do this, we need to spin up a real database and to do that we can use Docker-Compose
as it is a fantastic way of starting our dependencies.

In our sample file docker-compose.yml, we have the following:

version: '2'
services:
 mongodb:
 image: mongo
 ports:
 - 27017:27017

When we run docker-compose up command, we will download the image of MongoDB
and start an instance exposing these ports on our local host.

We now need to create a new struct in our project which is going to implement the store
interface. We can then execute commands against the real database as opposed to using a
mock or a simple in-memory store.

The implementation for MongoStore is quite straight forward. Looking at the file in
data/monogstore.go, you will see that we have two additional methods not defined in
our interface, namely:

DelleteAllKittens
InsertKittens

These are here because we need them for the setup of our functional tests.

Testing

[119]

If we look at our file features/search_test.go you will see that we have added a
couple of extra calls to the FeatureContext method in our setup.

The first thing we are doing is to call the waitForDB method: because we cannot control
when our Mongo instance is going to be ready to accept connections, we need to wait for it
before kicking off the tests. The process is that we will try to create an instance to our
MongoStore using the convenience method NewMongoStore, internally this is doing the
following work:

10 // NewMongoStore creates an instance of MongoStore with the given
connection string
11 func NewMongoStore(connection string) (*MongoStore, error) {
12 session, err := mgo.Dial(connection)
13 if err != nil {
14 return nil, err
15 }
16
17 return &MongoStore{session: session}, nil
18 }

The Dial method attempts to connect to the instance of MongoDB specified in the
connection string. If this connection fails, then an error is returned. In our code, if we
receive an error, we return this to the caller of NewMongoStore with a nil instance of our
struct. The waitForDB method works by repeatedly attempting to create this connection
until it no longer receives an error. To avoid spamming the database while it is trying to
start, we sleep for one second after every failed attempt, to a maximum time of 10 seconds.
This method will block the main Go routine, but this is by design as we do not want the
tests to execute until we are sure we have this connection:

 98 func waitForDB() {
 99 var err error
100
101 for i := 0; i < 10; i++ {
102 store, err = data.NewMongoStore("localhost")
103 if err == nil {
104 break
105 }
106 time.Sleep(1 * time.Second)
107 }
108 }

We have also added some code to the BeforeScenario setup: the first thing we are going
to do is wipe our database clearing down any previous test data. Clearing data is an
incredibly important step as, should we have had any methods which mutate the data; we
would not get predictable test results after each run.

Testing

[120]

Finally, we insert the setupData method into our test data, and then we will proceed to
execute the tests.

We now have quite a few things to do before we can test our code, we need to run docker-
compose, perform our tests and then stop docker-compose. An efficient way of scripting
this process is to use Makefiles, Makefiles have been around forever and are still the
primary software build mechanisms for many applications. They allow us to define
commands in a simple text file which we can then run by executing make [command].

If we look at the Cucumber command in the Makefile in the example repository, we can see
how we script the steps that need to be carried out to run our tests. We are starting our
Mongo instance with docker-compose, running our Cucumber tests and then tearing the
database down again:

cucumber:
 docker-compose up -d
 cd features && godog ./
 docker-compose stop

If you are wondering why we still need the waitForDB method when we are starting our
database before running the tests, remember that Docker only knows when the primary
process is executed. There can be a considerable lag between the commencement of the
process and it being ready to accept connections. To run this we run make cucumber from
the command line the result should be passing cucumber tests:

$make cucumber
docker-compose up -d
chapter4_mongodb_1 is up-to-date
cd features && godog ./
Feature: As a user when I call the search endpoint, I would like to receive
a list of kittens
Server running with pid: 88200
 Scenario: Invalid query # search.feature:4
 Given I have no search criteria # search_test.go:21 ->
github.com/building-microservices-with-
go/chapter4/features.iHaveNoSearchCriteria
 When I call the search endpoint # search_test.go:29 ->
github.com/building-microservices-with-
go/chapter4/features.iCallTheSearchEndpoint
 Then I should receive a bad request message # search_test.go:40 ->
github.com/building-microservices-with-
go/chapter4/features.iShouldReceiveABadRequestMessage
Server running with pid: 88468
 Scenario: Valid query # search.feature:9
 Given I have a valid search criteria # search_test.go:48 ->
github.com/building-microservices-with-

Testing

[121]

go/chapter4/features.iHaveAValidSearchCriteria
 When I call the search endpoint # search_test.go:29 ->
github.com/building-microservices-with-
go/chapter4/features.iCallTheSearchEndpoint
 Then I should receive a list of kittens # search_test.go:54 ->
github.com/building-microservices-with-
go/chapter4/features.iShouldReceiveAListOfKittens

2 scenarios (2 passed)
6 steps (6 passed)
7.028664s
docker-compose stop
Stopping chapter4_mongodb_1 ... done

That is all for this section, we have learned that, with a few well-placed patterns, it is easy to
write a robust test suite that will keep us safe and sound asleep instead of getting up in the
middle of the night to diagnose a broken system. In the next section, we are going to look at
some of the fantastic features of Go to ensure that our code is fast and optimized.

Benchmarking and profiling
Go has two excellent ways to analyze the performance of your code. We have benchmark
tests and the fantastic pprof.

Benchmarks
Benchmarking is a way of measuring the performance of your code by executing it multiple
times with a fixed workload. We took a look at this briefly in Chapter 1, Introduction to
Microservices, where we ascertained that the json.Marshal method was slower than the
json.Encode method. While this is a useful feature, I find it tough to work out what I
should benchmark. If I am writing an algorithm, then this is relatively straightforward.
However, when writing a microservice that is predominately interacting with a database, it
is far more challenging.

To demonstrate how easy it is to execute benchmarks in Go, take a look at
chandlers/search_bench_test.go:

 11 func BenchmarkSearchHandler(b *testing.B) {
 12 mockStore = &data.MockStore{}
 13 mockStore.On("Search", "Fat Freddy's Cat").Return([]data.Kitten{
 14 data.Kitten{
 15 Name: "Fat Freddy's Cat",

Testing

[122]

 16 },
 17 })
 18
 19 search := Search{DataStore: mockStore}
 20
 21 for i := 0; i < b.N; i++ {
 22 r := httptest.NewRequest("POST", "/search",
 bytes.NewReader([]byte(`{"query":"Fat Freddy's Cat"}`)))
 23 rr := httptest.NewRecorder()
 24 search.ServeHTTP(rr, r)
 25 }
 26 }

The most important part of this code is hidden away at line 21:

for n := 0; n < b.N; n++

When running a benchmark, Go needs to run it multiple times to get an accurate reason.
The number of times that the benchmark will run is the field N on the benchmark's struct.
Before setting this number, Go will execute a few iterations of your code to get an
approximate measurement of the execution time.

We would execute our benchmark using the go test-bench -benchmem command:

go test -bench=. -benchmem
BenchmarkSearchHandler-8 50000 43183 ns/op 49142
B/op 68 allocs/op
PASS
ok github.com/building-microservices-with-go/chapter4/handlers
2.495s

Here we are passing an additional flag to see the memory allocations for each execution. We
know that our handler when running with the mock takes 43,183 nanoseconds or 0.043183
milliseconds to execute and performs 68 memory allocations. It'd be good if the code would
run this fast when running in real life, but we might have to wait a few years before we see
this level of speed from an API connected to a database.

One of the other nice features of benchmark tests is that we can run them and it outputs
profiles which can be used with pprof:

go test -bench=. -cpuprofile=cpu.prof -blockprofile=block.prof -
memprofile=mem.prof

The output of this command will give us more information about where this time and
memory is being consumed and can help us to optimize our code correctly.

Testing

[123]

Profiling
When we wish to take a look at the speed of our program, the best technique we can
employ is profiling. Profiling automatically samples your running application while it is
executing; and then we can compute that data, such as the running time of a particular
function, into a statistical summary called a profile.

Go supports three different types of profiling:

CPU: Identifies the tasks which require the most CPU time
Heap: Identifies the statements responsible for allocating the most memory
Blocking: Identifies the operations responsible for blocking Go routines for the
longest time

If we would like to enable profiling on our application, we can do one of two things:

Add import "net/http/pprof" to your startup file
Manually start profiling

The first option is the most straightforward. You only add it to the beginning of your main
Go file and, if you are not already running an HTTP web server, start one:

import _ "net/http/pprof"

go func() {
 log.Println(http.ListenAndServe("localhost:6060", nil))
 }()

This method then exposes various paths on your HTTP server at /debug/pprof/ which
can then be accessed via a URL. The side effect of this, however, is that when this import
statement is in your go file, then you will be profiling, which not only could slow down
your application, but you also don't want to expose this information for public
consumption.

Another method of profiling is to start the profiler when you start your application by
passing some additional command line flags:

19 var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to
 file")
20 var memprofile = flag.String("memprofile", "", "write memory profile
 to file")
21 var store *data.MongoStore
22
23 func main() {
24 flag.Parse()

Testing

[124]

25
26 if *cpuprofile != "" {
27 fmt.Println("Running with CPU profile")
28 f, err := os.Create(*cpuprofile)
29 if err != nil {
30 log.Fatal(err)
31 }
32 pprof.StartCPUProfile(f)
33 }
34
35 sigs := make(chan os.Signal, 1)
36 signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM)
37
38 go func() {
39 <-sigs
40 fmt.Println("Finished")
41 if *memprofile != "" {
42 f, err := os.Create(*memprofile)
43 if err != nil {
44 log.Fatal(err)
45 }
46 runtime.GC()
47 pprof.Lookup("heap").WriteTo(f, 0)
48 defer f.Close()
49 }
50 if *cpuprofile != "" {
51 pprof.StopCPUProfile()
52 }
53
54 os.Exit(0)
55 }()

On line 26, we are checking whether we have specified an output file for CPU profiling, and
if so, we are creating the file and then starting the profiler with
pprof.StartCPUProfile(f), and passing it a reference to the file:

func StartCPUProfile(w io.Writer) error

Testing

[125]

The StartCPUProfile function enables the CPU profiling for the current process and
buffers the output to w. While running, the CPU profiler will stop your application roughly
100 times per second and record the data.

To profile heap allocations, we use a slightly different command:

pprof.Lookup("heap").WriteTo(f, 0)
func Lookup(name string) *Profile

The Lookup() function returns the profile with the given name, or if no such profile exists,
the predefined profiles available are:

goroutine - stack traces of all current goroutines
heap - a sampling of all heap allocations
threadcreate - stack traces that led to the creation of new OS threads
block - stack traces that led to blocking on synchronization
primitives

fuc (p *Profile) WriteTo(w io.Writer, debug int) error

WriteTo outputs the profile to the given write in the pprof format. If we set the debug flag
to 1, then WriteTo will add comments to function names and line numbers instead of just
hexadecimal addresses that pprof uses. These comments are so you can read the file
without needing any special tooling.

If you look at the example code in the folder benchmark, you will find an example profile
and the binary from which it was generated.

We can now run the pprof tool to examine what is going on. To do this, we need to run the
tool on the command line and provide a reference to the binary that the profile was
executed against, and also the profile:

go tool pprof ./kittenserver ./cpu.prof

Testing

[126]

The simplest command we can run is top. Top will show us the functions which consumed
the most CPU during the execution of our application:

Entering interactive mode (type "help" for commands)
 (pprof) top
 24460ms of 42630ms total (57.38%)
 Dropped 456 nodes (cum <= 213.15ms)
 Showing top 10 nodes out of 163 (cum >= 790ms)
 flat flat% sum% cum cum%
 16110ms 37.79% 37.79% 16790ms 39.39% syscall.Syscall
 2670ms 6.26% 44.05% 2670ms 6.26% runtime._ExternalCode
 1440ms 3.38% 47.43% 1560ms 3.66% syscall.Syscall6
 900ms 2.11% 49.54% 900ms 2.11% runtime.epollctl
 830ms 1.95% 51.49% 2370ms 5.56% runtime.mallocgc
 610ms 1.43% 52.92% 1470ms 3.45% runtime.pcvalue
 510ms 1.20% 54.12% 510ms 1.20% runtime.heapBitsSetType
 470ms 1.10% 55.22% 2810ms 6.59% runtime.gentraceback
 470ms 1.10% 56.32% 470ms 1.10% runtime.memmove
 450ms 1.06% 57.38% 790ms 1.85% runtime.deferreturn
 (pprof)

The main offender in this instance is syscall.Syscall. If we look this up in the
documentation, we find that package syscall contains an interface to the low-level operating
system primitives.

On its own this output is not particularly useful, so let's generate a call graph which will
show us more detail. We can do this again from the pprof tool. However, we do need to
install Graphviz first. If you are using macOS then you can install this with brew:

brew install graphviz

If you are using a Linux based system and have the apt package manager, you can use that:

apt-get install graphviz

Testing

[127]

The output for this looks like this benchmark/cpu.png:

Testing

[128]

That is quite something! However, we can see that syscall.Syscall is in the largest font
as it is responsible for consuming the most CPU. If we start here at the bottom and start
tracing backward, we can see that the root of this seems to be our data store's search
function.

To get a closer look at exactly where this is happening, we can use the list command and
then pass the name of an object or method we would like to investigate further:

Entering interactive mode (type "help" for commands)
(pprof) list Search
Total: 42.63s
ROUTINE ======================== github.com//building-microservices-with-
go/chapter4/data.(*MongoStore).Search in github.com/building-microservices-
with-go/chapter4/data/mongostore.go
 40ms 7.92s (flat, cum) 18.58% of Total
 . . 16:
 . . 17: return &MongoStore{session: session}, nil
 . . 18:}
 . . 19:
 . . 20:// Search returns Kittens from the MongoDB
 instance which have the name name
 40ms 40ms 21:func (m *MongoStore) Search(name string)
 []Kitten {
 . 270ms 22: s := m.session.Clone()
 . 10ms 23: defer s.Close()
 . . 24:
 . 20ms 25: var results []Kitten
 . 70ms 26: c := s.DB("kittenserver").C("kittens")
 . 7.30s 27: err := c.Find(Kitten{Name:
 name}).All(&results)
 . . 28: if err != nil {
 . . 29: return nil
 . . 30: }
 . . 31:
 . 210ms 32: return results
 . . 33:}
 . . 34:
 . . 35:// DeleteAllKittens deletes all the kittens
 from the datastore
 . . 36:func (m *MongoStore) DeleteAllKittens() {
 . . 37: s := m.session.Clone()

When we do this with the search method, we can see that a huge percentage of our CPU
cycles were spent executing queries to MongoDB. If we look at the other route from
syscall.Syscall, it shows that another large consumer is the http.ResponseWriter
interface.

Testing

[129]

This output all makes sense as we are not doing anything too clever in our API; it just
retrieves some data from a database. The nice thing about pprof is that we can use the same
commands to query the heap usage.

Summary
In this chapter, you have learned some best practice approaches to testing microservices in
Go. We have looked at the testing package, including some special features for dealing with
requests and responses. We have also looked at writing integration tests with Cucumber.

Ensuring that your code works without fault, however, is only part of the job, we also need
to make sure that our code is performant, and Go has some excellent tools for managing this
too.

I would always recommend that you test your code and that you do this religiously. As for
performance optimization, this is open for debate, no doubt you have heard comments that
premature optimization is the root of all evil. However, this quote from Donald Knuth is
much-misunderstood: he did not mean that you should never optimize until you have a
problem; he said that you should only optimize what matters. With pprof, we have an easy
way to figure out what, if anything, actually matters. Include the practice of profiling into
your development routine, and you will have faster and more efficient applications,
profiling is also an excellent technique to understand your application better when you are
trying to track down that tricky bug.

"Programmers waste enormous amounts of time thinking about, or worrying about, the
speed of noncritical parts of their programs, and these attempts at efficiency have a strong
negative impact when debugging and maintenance are considered. We should forget about
small efficiencies, say about 97% of the time: premature optimization is the root of all evil.
Yet we should not pass up our opportunities in that critical 3%."
- Donald Knuth

5
Common Patterns

Before we take a look at some frameworks which can help you build microservices in Go,
we should first look at some of the design patterns that will help you avoid failure.

I am not talking about software design patterns like factories or facades, but architectural
designs like load balancing and service discovery. If you have never worked with
microservice architecture before, then you may not understand why these are needed, but I
hope that by the end of the chapter you will have a solid understanding why these patterns
are important and how you can apply them correctly. If you have already successfully
deployed a microservice architecture, then this chapter will give you greater knowledge of
the underlying patterns which make your system function. If you have not had much
success with microservices, then possibly you did not understand that you need the
patterns I am going to describe.

In general, there is something for everyone, and we are going to look at not just the core
patterns but some of the fantastic open source software which can do most of the heavy
lifting for us.

The examples referenced in this chapter can be found at: h t t p s ://g i t h u b . c o m /b u i l d i n g - m
i c r o s e r v i c e s - w i t h - g o /c h a p t e r 5. g i t

https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git
https://github.com/building-microservices-with-go/chapter5.git

Common Patterns

[131]

Design for failure
Anything that can go wrong will go wrong.

When we are building microservices, we should always be prepared for failure. There are
many reasons for this, but the main one is that cloud computing networks can be flakey and
you lose the ability to tune switching and routing, which would have given you an
optimized system if you were running them in your data center. In addition to this, we tend
to build microservice architectures to scale automatically, and this scaling causes services to
start and stop in unpredictable ways.

What this means for our software is that we need to think about this failure up front while
discussing upcoming features. We then need to design this into the software from the
beginning, and as engineers, we need to understand these problems.

In his book Designing Data-Intensive Applications, Martin Kleppman makes the following
comment:

The bigger a system gets, the more likely it is that one of its components is broken. Over
time, broken things get fixed, and new things break, but in a system with thousands of
nodes, it is reasonable to assume that something is always broken. If the error handling
strategy consists of only giving up such a large system would never work.

While this applies to more major systems, I would argue that the situation where you need
to start considering failure due to connectivity and dependency begins once your estate
reaches the size of n+1. This might seem a frighteningly small number, but it is incredibly
relevant. Consider the following simplistic system:

You have a simple website which allows your users (who are all cat lovers) to register for
updates from other cat lovers. The update is in the form of a simple daily e-mail, and you
would like to send out a welcome e-mail once the form has been submitted by the user and
the data saved into the database. Because you are a good microservice practitioner you have
recognized that sending e-mails should not be the responsibility of the registration system,
and instead you would like to devolve this to an external system. In the meantime, the
service is growing in popularity; you have determined that you can save time and effort by
leveraging the e-mail as an API service from MailCo. This has a simple RESTful contract
and can support all your current needs, which allows you to get to market that little bit
sooner.

Common Patterns

[132]

The following diagram represents that simple microservice:

Being a good software architect, you define an interface for this mail functionality which
will serve as an abstraction for the actual implementation. This concept will allow you to
replace MailCo quickly at a later date. Sending e-mails is fast, so there is no need to do
anything clever. We can make the call to MailCo synchronously during the registration
request.

This application seems like a simple problem to solve, and you get the work done in record
time. The site is hosted on AWS and configured with ElasticScale so, no matter what load
you get, you will be sleeping peacefully with no worry that the site could go down.

One evening your CEO is out at an event for tech startups which is being covered by the
news network, CNN. She gets talking to the reporter who, also being a cat lover, decides he
would like to feature the service in a special report which will air tomorrow evening.

The excitement is unreal; this is the thing that will launch the service into the stratosphere.
You and the other engineers check the system just for peace of mind, make sure the auto
scale is configured correctly, then kick back with some pizza and beer to watch the
program.

Common Patterns

[133]

When the program airs and your product is shown to the nation, you can see the number of
users on the site in Google Analytics. It looks great: request times are small, the cloud
infrastructure is doing its job, and this has been a total success. Until of course, it isn't. After
a few minutes, the request queueing starts to climb, and the services are still scaling, but
now the alarms are going off due to a high number of errors and transaction processing
time. More and more users are entering the site and trying to register but very few are
successful, this is the worst kind of disaster you could have ever wished for.

I won't mention the look on the face of the CEO; you have all probably seen that look at
some point in your careers; and if not, when you do you will know what I am talking about.
It is a cross between, anger, hatred, and confusion as to how they hired such idiots.

You aren't an idiot; software is complex, and with complexity, it is easy to make mistakes.

So, you start to investigate the problem, quickly you see that while your service and
database have been operating correctly, the bottleneck is MailCo's e-mail API. This started
the blockage and, because you were executing a synchronous request, your service started
blocking too.

So, your moment of glory was taken down by a single bottleneck with a third-party API.
Now you understand why you need to plan for failure. Let's take a look at how you can
implement failure driven design patterns.

Patterns
The truth about microservices is that they are not hard you only need to understand the
core software architectural patterns which will help you succeed. In this section, we are
going to take a look at some of these patterns and how we can implement them in Go.

Event processing
In our case study, we failed due to a downstream synchronous process failing, and that
blocked the upstream. The first question we should ask ourselves is "Does this call need to
be synchronous?" In the case of sending an e-mail, the answer is almost always, No. The
best way to deal with this is to take a fire and forget approach; we would just add the
request with all the details of the mail onto a highly available queue which would guarantee
at least once delivery and move on. There would be a separate worker processing the queue
records and sending these on to the third-party API.

Common Patterns

[134]

In the instance that the third party starts to experience problems, we can happily stop
processing the queue without causing any problems for our registration service.

Regarding user experience, this potentially means that the when the user clicks the register
button they would not instantly receive their welcome e-mail. However, e-mail is not an
instantaneous system, so some delay is to be expected. You could enhance your user
experience further: what if adding an item to the queue returns the approximate queue
length back to the calling system. When you are designing for failure, you may take a call
that if the queue is over n items, you could present a friendly message to the user letting
them know you are busy now but rest assured your welcome e-mail is on its way.

We will look at the implementation of this pattern further in Chapter 9, Event-Driven
Architecture, but at the moment there are a few key concepts that we need to cover.

Event processing with at least once delivery
Event processing is a model which allows you to decouple your microservices by using a
message queue. Rather than connect directly to a service which may or may not be at a
known location, you broadcast and listen to events which exist on a queue, such as Redis,
Amazon SQS, NATS.io, Rabbit, Kafka, and a whole host of other sources.

To use our example of sending a welcome e-mail, instead of making a direct call to the
downstream service using its REST or RPC interface, we would add an event to a queue
containing all the details that the recipient would need to process this message.

Our message may look like:

{
 "id": "ABCDERE2342323SDSD",
 "queue" "registration.welcome_email",
 "dispatch_date": "2016-03-04 T12:23:12:232",
 "payload": {
 "name": "Nic Jackson",
 "email": "mail@nicholasjackson.io"
 }
}

We add the message to the queue and then wait for an ACK from the queue to let us know
that the message has been received. Of course, we would not know if the message has been
delivered but receiving the ACK should be enough for us to notify the user and proceed.

Common Patterns

[135]

The message queue is a highly distributed and scalable system, and it should be capable of
processing millions of messages so we do not need to worry about it not being available. At
the other end of the queue, there will be a worker who is listening for new messages
pertaining to it. When it receives such a message, it processes the message and then
removes it from the queue.

Of course, there is always the possibility that the receiving service can not process the
message which could be due to a direct failure or bug in the email service or it could be that
the message which was added to the queue is not in a format which can be read by the
email service. We need to deal with both of these issues independently, let us start with
handing errors.

Handling Errors
It is not uncommon for things to go wrong with distributed systems and we should factor
this into our software design, in the instance that a valid message can not be processed one
standard approach is to retry processing the message, normally with a delay. We can add
the message back onto the queue augmenting it with the error message which occurred at
the time as seen in the following example:

{
 "id": "ABCDERE2342323SDSD",
 "queue" "registration.welcome_email",

Common Patterns

[136]

 "dispatch_date": "2016-03-04 T12:23:12:232",
 "payload": {
 "name": "Nic Jackson",
 "email": "mail@nicholasjackson.io"
 },
 "error": [{
 "status_code": 3343234,
 "message": "Message rejected from mail API, quota exceeded",
 "stack_trace": "mail_handler.go line 32 ...",
 "date": "2016-03-04 T12:24:01:132"
 }]
}

It is important to append the error every time we fail to process a message as it gives us the
history of what went wrong, it also provides us with the capability to understand how
many times we have tried to process the message because after we exceed this threshold we
do not want to continue to retry we need to move this message to a second queue where we
can use it for diagnostic information.

Dead Letter Queue
This second queue is commonly called a dead letter queue, a dead letter queue is specific to
the queue from where the message originated, if we had a queue named
order_service_emails then we would create a second queue called
order_service_emails_deadletter. The purpose of this is so that we can examine the
failed messages on this queue to assist us with debugging the system, there is no point in
knowing an error has occurred if we do not know what that error is and because we have
been appending the error details direct to the message body we have this history right
where we need it.

We can see that the message has failed because we have exceeded our quota in the mail
API, we also have the date and time of when the error occurred. In this instance, because we
have exceeded our quota with the email provider once we remove the issue with the email
provider we can then move all of these messages from the dead letter queue back onto the
main queue and they should then process correctly. Having the error information in a
machine readable format allows us to handle the dead letter queue programmatically, we
can explicitly select messages which relate to quota problem within a particular time
window.

Common Patterns

[137]

In the instance that a message can not be processed by the email service due to a bad
message payload we typically do not retry processing of the message but add it directly to
the dead letter queue. Again having this information allows us to diagnose why this issue
might have occurred, it could be due to a contract change in the upstream service which has
not been reflected in the downstream service. If this is the reason behind the failure we have
the knowledge to correct the contract issue in the email service which is consuming the
messages and again move the message back into the main queue for processing.

Idempotent transactions and message order
While many message queues now offer At Most Once Delivery in addition to the At Least
Once, the latter option is still the best for large throughput of messages. To deal with the fact
that the downstream service may receive a message twice it needs to be able to handle this
in its own logic. One method for ensuring that the same message is not processed twice is to
log the message ID in a transactions table. When we receive a message, we will insert a row
which contains the message ID and then we can check when we receive a message to see if
it has already been processed and if it has to dispose of that message.

The other issue that can occur with messaging is receiving a message out of sequence if for
some reason two messages which supersede each other are received in an incorrect order
then you may end up with inconsistent data in the database. Consider this simple example,
the front end service allows the update of user information a subset of which is forwarded
to a second microservice. The user quickly updates their information twice which causes
two messages to be dispatched to the second service, providing both messages arrive in the
order by which they were dispatched then the second service will process both messages
and the data will be in a consistent state. However, if they do not arrive in the correct order
then the second service will be inconsistent to the first as it will save the older data as the
most recent. Once potential way to avoid this issue is to again leverage the transaction table
and to store the message dispatch_date in addition to the id. When the second service
receives a message then it can not only check if the current message has been processed it
can check that it is the most recent message and if not discard it.

Unfortunately, there is no one solution fits all with messaging we need to tailor the solution
which matches the operating conditions of the service. For you as a microservice
practitioner, you need to be aware that these conditions can exist and factor them into your
solution designs.

Common Patterns

[138]

Atomic transactions
While storing data, a database can be ATOMIC: that is, all operations occur or none do. We
cannot say the same with distributed transactions in microservices. When we used SOAP as
our message protocol a decade or so ago, there was a proposal for a standard called Web
Service-Transactions (WS-T). This aimed to provide the same functionality that you get
from a database transaction, but in a distributed system. Thankfully SOAP is long gone
unless you work in finance or another industry which deals with legacy systems, but the
problem remains. In our previous example, we looked at how we can decouple the saving
of the data and the sending of the e-mail by using a message queue with at least once
delivery. What if we could solve the problem of atomicity in the same way, consider this
example:

Common Patterns

[139]

We distribute both parts of our order process to the queue, a worker service persists the
data to the database, and a service that is responsible for sending the confirmation e-mail.
Both these services would subscribe to the same new_order message and take action when
this is received. Distributed transactions do not give us the same kind of transaction that is
found in a database. When part of a database transaction fails, we can roll back the other
parts of the transaction. Using this pattern we would only remove the message from the
queue if the process succeeded so when something fails, we keep retrying. This gives us a
kind of eventually consistent transaction. My opinion on distributed transactions is to avoid
them if possible; try to keep your behavior simple. However, when this is not possible then
this pattern may just be the right one to apply.

Timeouts
A timeout is an incredibly useful pattern while communicating with other services or data
stores. The idea is that you set a limit on the response of a server and, if you do not receive a
response in the given time, then you write a business logic to deal with this failure, such as
retrying or sending a failure message back to the upstream service.

A timeout could be the only way of detecting a fault with a downstream service. However,
no reply does not mean the server has not received and processed the message, or that it
might not exist. The key feature of a timeout is to fail fast and to notify the caller of this
failure.

There are many reasons why this is a good practice, not only from the perspective of
returning early to the client and not keeping them waiting indefinitely but also from the
point of view of load and capacity. Every connection that your service currently has active
is one which cannot serve an active customer. Also, the capacity of your system is not
infinite, it takes many resources to maintain a connection, and this also applies to the
upstream service which is making a call to you. Timeouts are an effective hygiene factor in
large distributed systems, where many small instances of a service are often clustered to
achieve high throughput and redundancy. If one of these instances is malfunctioning and
you, unfortunately, connect to it, then this can block an entirely functional service. The
correct approach is to wait for a response for a set time and then if there is no response in
this period, we should cancel the call, and try the next service in the list. The question of
what duration your timeouts are set to do not have a simple answer. We also need to
consider the different types of timeout which can occur in a network request, for example,
you have:

Connection Timeout - The time it takes to open a network connection to the
server
Request Timeout - The time it takes for a server to process a request

Common Patterns

[140]

The request timeout is almost always going to be the longest duration of the two and I
recommend the timeout is defined in the configuration of the service. While you might
initially set it to an arbitrary value of, say 10 seconds, you can modify this after the system
has been running in production, and you have a decent data set of transaction times to look
at.

We are going to use the deadline package from eapache
(https://github.com/eapache/go-resiliency/tree/master/deadline), recommended by
the go-kit toolkit (https://gokit.io).

The method we are going to run loops from 0-100 and sleeps after each loop. If we let the
function continue to the end, it would take 100 seconds.

Using the deadline package we can set our own timeout to cancel the long running
operation after two seconds:

timeout/main.go

 24 func makeTimeoutRequest() {
 25 dl := deadline.New(1 * time.Second)
 26 err := dl.Run(func(stopper <-chan struct{}) error {
 27 slowFunction()
 28 return nil
 29 })
 30
 31 switch err {
 32 case deadline.ErrTimedOut:
 33 fmt.Println("Timeout")
 34 default:
 35 fmt.Println(err)
 36 }
 37 }

Back off
Typically, once a connection has failed, you do not want to retry immediately to avoid
flooding the network or the server with requests. To allow this, it's necessary to implement
a back-off approach to your retry strategy. A back-off algorithm waits for a set period
before retrying after the first failure, this then increments with subsequent failures up to a
maximum duration.

https://github.com/eapache/go-resiliency/tree/master/deadline
https://gokit.io

Common Patterns

[141]

Using this strategy inside a client-called API might not be desirable as it contravenes the
requirement to fail fast. However, if we have a worker process that is only processing a
queue of messages, then this could be exactly the right strategy to add a little protection to
your system.

We will look at the go-resiliency package and the retrier package.

To create a new retrier, we use the New function which has the signature:

func New(backoff []time.Duration, class Classifier) *Retrier

The first parameter is an array of Duration. Rather than calculating this by hand, we can
use the two built-in methods which will generate this for us:

func ConstantBackoff(n int, amount time.Duration) []time.Duration

The ConstantBackoff function generates a simple back-off strategy of retrying n times
and waiting for the given amount of time between each retry:

func ExponentialBackoff(n int, initialAmount time.Duration) []time.Duration

The ExponentialBackoff function generates a simple back-off strategy of retrying n times
doubling the time between each retry.

The second parameter is a Classifier. This allows us a nice amount of control over what
error type is allowed to retry and what will fail immediately.

type DefaultClassifier struct{}

The DefaultClassifier type is the simplest form: if there is no error returned then we
succeed; if there is any error returned then the retrier enters the retry state.

type BlacklistClassifier []error

The BlacklistClassifier type classifies errors based on a blacklist. If the error is in the
given blacklist it immediately fails; otherwise, it will retry.

type WhitelistClassifier []error

The WhitelistClassifier type is the opposite of the blacklist, and it will only retry when
an error is in the given white list. Any other errors will fail.

The WhitelistClassifier might seem slightly complicated. However, every situation requires
a different implementation. The strategy that you implement is tightly coupled to your use
case.

Common Patterns

[142]

Circuit breaking
We have looked at some patterns like timeouts and back-offs, which help protect our
systems from cascading failure in the instance of an outage. However, now it's time to
introduce another pattern which is complementary to this duo. Circuit breaking is all about
failing fast, Michael Nygard in his book "Release It" says:

''Circuit breakers are a way to automatically degrade functionality when the system is
under stress."

One such example could be our frontend example web application. It is dependent on a
downstream service to provide recommendations for kitten memes that match the kitten
you are looking at currently. Because this call is synchronous with the main page load, the
web server will not return the data until it has successfully returned recommendations.
Now you have designed for failure and have introduced a timeout of five seconds for this
call. However, since there is an issue with the recommendations system, a call which would
ordinarily take 20 milliseconds is now taking 5,000 milliseconds to fail. Every user who
looks at a kitten profile is waiting five seconds longer than usual; your application is not
processing requests and releasing resources as quickly as normal, and its capacity is
significantly reduced. In addition to this, the number of concurrent connections to the main
website has increased due to the length of time it is taking to process a single page request;
this is adding load to the front end which is starting to slow down. The net effect is going to
be that, if the recommendations service does not start responding, then the whole site is
headed for an outage.

There is a simple solution to this: you should stop attempting to call the recommendations
service, return the website back to normal operating speeds, and slightly degrade the
functionality of the profile page. This has three effects:

You restore the browsing experience to other users on the site.
You slightly degrade the experience in one area.
You need to have a conversation with your stakeholders before you implement
this feature as it has a direct impact on the system's business.

Now in this instance, it should be a relatively simple sell. Let's assume that
recommendations increase conversion by 1%; however, slow page loads reduce it by 90%.
Then isn't it better to degrade by 1% instead of 90%? This example, is clear cut but what if
the downstream service was a stock checking system; should you accept an order if there is
a chance you do not have the stock to fulfill it?

Common Patterns

[143]

Error behaviour is not a question that software engineering can answer on its own; business
stakeholders need to be involved in this decision. In fact, I recommend that when you are
planning the design of your systems, you talk about failure as part of your non-functional
requirements and decide ahead of time what you will do when the downstream service
fails.

So how do they work?

Under normal operations, like a circuit breaker in your electricity switch box, the breaker is
closed and traffic flows normally. However, once the pre-determined error threshold has
been exceeded, the breaker enters the open state, and all requests immediately fail without
even being attempted. After a period, a further request would be allowed and the circuit
enters a half-open state, in this state a failure immediately returns to the open state
regardless of the errorThreshold. Once some requests have been processed without any
error, then the circuit again returns to the closed state, and only if the number of failures
exceeded the error threshold would the circuit open again.

That gives us a little more context to why we need circuit breakers, but how can we
implement them in Go?

Common Patterns

[144]

Again, we are going to turn to the go-resilience package. Creating a circuit breaker is
straight forward, the signature for the breaker is as follows:

func New(errorThreshold, successThreshold int, timeout time.Duration)
*Breaker

We construct our circuit breaker with three parameters:

The first errorThreshold, is the number of times a request can fail before the
circuit opens
The successThreshold, is the number of times that we need a successful
request in the half-open state before we move back to open
The timeout, is the time that the circuit will stay in the open state before
changing to half-open

Run the following code:

 11 b := breaker.New(3, 1, 5*time.Second)
 12
 13 for {
 14 result := b.Run(func() error {
 15 // Call some service
 16 time.Sleep(2 * time.Second)
 17 return fmt.Errorf("Timeout")
 18 })
 19
 20 switch result {
 21 case nil:
 22 // success!
 23 case breaker.ErrBreakerOpen:
 24 // our function wasn't run because the breaker was open
 25 fmt.Println("Breaker open")
 26 default:
 27 fmt.Println(result)
 28 }
 29
 30 time.Sleep(500 * time.Millisecond)
 31 }

If you run this code you should see the following output. After three failed requests the
breaker enters the open state, then after our five-second interval, we enter the half-open
state, and we are allowed to make another request. Unfortunately, this fails, and we again
enter the fully open state, and we no longer even attempt to make the call:

Timeout
Timeout

Common Patterns

[145]

Timeout
Breaker open
Breaker open
Breaker open
...
Breaker open
Breaker open
Timeout
Breaker open
Breaker open

One of the more modern implementations of circuit breaking and timeouts is the Hystix
library from Netflix; Netflix is certainly renowned for producing some quality microservice
architecture and the Hystrix client is something that has also been copied time and time
again.

Hystrix is described as "a latency and fault tolerance library designed to isolate points of
access to remote systems, services, and third-party libraries, stop cascading failure, and
enable resilience in complex distributed systems where failure is inevitable."

(https://github.com/Netflix/Hystrix)

For the implementation of this in Golang, check out the excellent package
https://github.com/afex/hystrix-go. This is a nice clean implementation, which is a little
cleaner than implementing go-resiliency. Another benefit of hystrix-go is that it will
automatically export metrics to either the Hystrix dashboard to via StatsD. In Chapter 7,
Logging and Monitoring, we will learn all about this just how important it is.

I hope you can see why this is an incredibly simple but useful pattern. However, there
should be questions raised as to what you are going to do when you fail. Well these are
microservices, and you will rarely only have a single instance of a service, so why not retry
the call, and for that we can use a load balancer pattern.

Health checks
Health checks should be an essential part of your microservices setup. Every service should
expose a health check endpoint which can be accessed by the consul or another server
monitor. Health checks are important as they allow the process responsible for running the
application to restart or kill it when it starts to misbehave or fail. Of course, you must be
incredibly careful with this and not set this too aggressively.

https://github.com/Netflix/Hystrix
https://github.com/afex/hystrix-go

Common Patterns

[146]

What you record in your health check is entirely your choice. However, I recommend you
look at implementing these features:

Data store connection status (general connection state, connection pool status)
Current response time (rolling average)
Current connections
Bad requests (running average)

How you determine what would cause an unhealthy state needs to be part of the discussion
you have when you are designing the service. For example, no connectivity to the database
means the service is completely inoperable, it would report unhealthy and would allow the
orchestrator to recycle the container. An exhausted connection pool could just mean that the
service is under high load, and while it is not completely inoperable it could be suffering
degraded performance and should just serve a warning.

The same goes for the current response time. This point I find interesting: when you load
test your service once it has been deployed to production, you can build up a picture of the
thresholds of operating health. These numbers can be stored in the config and used by the
health check. For example, if you know that your service will run an average service request
with a 50 milliseconds latency for 4,000 concurrent users; however at 5,000, this time grows
to 500 milliseconds as you have exhausted the connection pool. You could set your SLA
upper boundary to be 100 milliseconds; then you would start reporting degraded
performance from your health check. This should, however, be a rolling average based on
the normal distribution. It is always possible for one or two requests to greatly be outside
the standard deviation of normal operation, and you do not want to allow this to skew your
average which then causes the service to report unhealthy, when in fact the slow response
was actually due to the upstream service having slow network connectivity, not your
internal state.

When discussing health checks, Michael Nygard considers the pattern of a handshake,
where each client would send a handshake request to the downstream service before
connecting to check if it was capable of receiving its request. Under normal operating
conditions and most of the time, this adds an enormous amount of chatter into your
application, and I think this could be overkill. It also implies that you are using client-side
load-balancing, as with a server side approach you would have no guarantees that the
service you handshake is the one you connect to. That said Release It was written over 10
years ago and much has changed in technology. The concept however of the downstream
service making a decision that it can or can't handle a request is a valid one. Why not
instead call your internal health check as the first operation before processing a request?
This way you could immediately fail and give the client the opportunity to attempt another
endpoint in the cluster. This call would add almost no overhead to your processing time as
all you are doing is reading the state from the health endpoint, not processing any data.

Common Patterns

[147]

Let's look at how we could implement this by looking at the example code in
health/main.go :

18 func main() {
19 ma = ewma.NewMovingAverage()
20
21 http.HandleFunc("/", mainHandler)
22 http.HandleFunc("/health", healthHandler)
23
24 http.ListenAndServe(":8080", nil)
25 }

We are defining two handlers one which deals with our main request at the path / and one
used for checking the health at the path /health.

The handler implements a simple moving average which records the time it takes for the
handler to execute. Rather than just allow any request to be handled we are first checking
on line 30 if the service is currently healthy which is checking if the current moving average
is greater than a defined threshold if the service is not healthy we return the status code
StatusServiceUnavailableS.

 27 func mainHandler(rw http.ResponseWriter, r *http.Request) {
 28 startTime := time.Now()
 29
 30 if !isHealthy() {
 31 respondServiceUnhealthy(rw)
 32 return
 33 }
 34
 35 rw.WriteHeader(http.StatusOK)
 36 fmt.Fprintf(rw, "Average request time: %f (ms)\n",
ma.Value()/1000000)
 37
 38 duration := time.Now().Sub(startTime)
 39 ma.Add(float64(duration))
 40 }

Looking greater in depth to the respondServiceUnhealty function, we can see it is doing
more than just returning the HTTP status code.

55 func respondServiceUnhealthy(rw http.ResponseWriter) {
56 rw.WriteHeader(http.StatusServiceUnavailable)
57
58 resetMutex.RLock()
59 defer resetMutex.RUnlock()
60
61 if !resetting {

Common Patterns

[148]

62 go sleepAndResetAverage()
63 }
64 }

Lines 58 and 59 are obtaining a lock on the resetMutex, we need this lock as when the
service is unhealthy we need to sleep to give the service time to recover and then reset the
average. However, we do not want to call this every time the handler is called or once the
service is marked unhealthy it would potentially never recover. The check and variable on
line 61 ensures this does not happen however this variable is not safe unless marked with a
mutex because we have multiple go routines.

63 func sleepAndResetAverage() {
64 resetMutex.Lock()
65 resetting = true
66 resetMutex.Unlock()
67
68 time.Sleep(timeout)
69 ma = ewma.NewMovingAverage()
70
71 resetMutex.Lock()
72 resetting = false
73 resetMutex.Unlock()
74 }

The sleepAndResetAverage function waits for a predetermined length of time before
resetting the moving average, during this time no work will be performed by the service
which will hopefully give the overloaded service time to recover. Again we need to obtain a
lock on the resetMutex before interacting with the resetting variable to avoid any race
conditions when multiple go routines are trying to access this variable. Line 69 then resets
the moving average back to 0 which will mean work will again be able to be handled by the
service.

This example is just a simple implementation, as mentioned earlier we could add any metric
that the service has available to it such as CPU memory, database connection state should
we be using a database.

Common Patterns

[149]

Throttling
Throttling is a pattern where you restrict the number of connections that a service can
handle, returning an HTTP error code when this threshold has been exceeded. The full
source code for this example can be found in the file throttling/limit_handler.go.
The middleware pattern for Go is incredibly useful here: what we are going to do is to wrap
the handler we would like to call, but before we call the handler itself, we are going to check
to see if the server can honor the request. In this example, for simplicity, we are going only
to limit the number of concurrent requests that the handler can serve, and we can do this
with a simple buffered channel.

Our LimitHandler is quite a simple object:

 9 type LimitHandler struct {
 10 connections chan struct{}
 11 handler http.Handler
 12 }

We have two private fields: one holds the number of connections as a buffered channel, and
the second is the handler we are going to call after we have checked that the system is
healthy. To create an instance of this object we are going to use the NewLimitHandler
function. This takes the parameters connection, which is the number of connections we
allow to process at any one time and the handler which would be called if successful:

16 func NewLimitHandler(connections int, next http.Handler)
 *LimitHandler {
17 cons := make(chan struct{}, connections)
18 for i := 0; i < connections; i++ {
19 cons <- struct{}{}
20 }
21
22 return &LimitHandler{
23 connections: cons,
24 handler: next,
25 }
26 }

This is quite straightforward: we create a buffered channel with the size equal to the
number of concurrent connections, and then we fill that ready for use:

28 func (l *LimitHandler) ServeHTTP(rw http.ResponseWriter, r
 *http.Request) {
29 select {
30 case <-l.connections:
31 l.handler.ServeHTTP(rw, r)
32 l.connections <- struct{}{} // release the lock

Common Patterns

[150]

32 default:
33 http.Error(rw, "Busy", http.StatusTooManyRequests)
34 }
35 }

If we look at the ServeHTTP method starting at line 29, we have a select statement. The
beauty of channel is that we can write a statement like this: if we cannot retrieve an item
from the channel then we should return a busy error message to the client.

Another thing worth looking at in this example are the tests, in the test file which
corresponds to this example throttling/limit_handler_test.go, we have quite a
complicated test setup to check that multiple concurrent requests return an error when we
hit the limit:

 14 func newTestHandler(ctx context.Context) http.Handler {
 15 return http.HandlerFunc(func(rw http.ResponseWriter, r
 *http.Request) {
 16 rw.WriteHeader(http.StatusOK)
 17 <-r.Context().Done()
 18 })
 19 }

 84 func TestReturnsBusyWhenConnectionsExhausted(t *testing.T) {
 85 ctx, cancel := context.WithCancel(context.Background())
 86 ctx2, cancel2 := context.WithCancel(context.Background())
 87 handler := NewLimitHandler(1, newTestHandler(ctx))
 88 rw, r := setup(ctx)
 89 rw2, r2 := setup(ctx2)
 90
 91 time.AfterFunc(10*time.Millisecond, func() {
 92 cancel()
 93 cancel2()
 94 })
 95
 96 waitGroup := sync.WaitGroup{}
 97 waitGroup.Add(2)
 98
 99 go func() {
100 handler.ServeHTTP(rw, r)
101 waitGroup.Done()
102 }()
103
104 go func() {
105 handler.ServeHTTP(rw2, r2)
106 waitGroup.Done()
107 }()
108

Common Patterns

[151]

109 waitGroup.Wait()
110
111 if rw.Code == http.StatusOK && rw2.Code == http.StatusOK {
112 t.Fatalf("One request should have been busy, request 1: %v,
 request 2: %v", rw.Code, rw2.Code)
113 }
114 }

If we look at line 87, we can see that we are constructing our new LimitHandler and
passing it a mock handler which will be called if the server is capable of accepting the
request. You can see that, in line 17 of this handler, we will block until the done channel on
the context has an item and that this context is a WithCancel context. The reason we need
to do this is that, to test that one of our requests will be called and the other will not but
LimitHandler will return TooManyRequests, we need to block the first request. To ensure
that our test does eventually complete, we are calling the cancel methods for the contexts in
a timer block which will fire after ten milliseconds. Things start to get a little complex as we
need to call our handlers in a Go routine to ensure that they execute concurrently. However,
before we make our assertion we need to make sure that they have completed. This is why
we are setting up WaitGroup in line 96, and decrementing this group after each handler has
completed. Finally, we can just block on line 109 until everything is complete and then we
can make our assertion. Let's take a closer look at the flow through this test:

Block at line 109.1.
Call handler.ServeHTTP twice concurrently.2.
One ServeHTTP method returns immediately with http.TooManyRequests and3.
decrements the wait group.
Call cancel context allowing the one blocking ServeHTTP call to return and4.
decrement the wait group.
Perform assertion.5.

This flow is not the same as reading the code in a linear manner from top to bottom. Three
concurrent routines are executing, and the flow of execution is not the same as the order of
the statements in the code. Unfortunately, testing concurrent Go routines is always going to
be a complicated issue. However, by performing these steps we have 100% coverage for our
LimitHandler:

PASS
coverage: 100.0% of statements
ok github.com/nicholasjackson/building-microservices-in-
go/chapter5/health 0.033s

Common Patterns

[152]

Rather than just limiting the number of connections in this handler, we could implement
anything we like: it would be relatively trivial to implement something which records the
average execution time or CPU consumption and fail fast if the condition exceeds our
requirements. Determining exactly what these requirements are is a complex topic on its
own and your first guess will most likely be wrong. We need to run multiple load tests of
our system and spend time looking at logging and performance statistics for the end point
before we are in a situation to make an educated guess. However, this action could just save
you from a cascading failure, and that is an excellent thing indeed.

Service discovery
With monolithic applications, services invoke one another through language level methods
or procedure calls. This was relatively straightforward and predictable behavior. However,
once we realized that monolithic applications were not suitable for the scale and demand of
modern software, we moved towards SOA or service-oriented architecture. We broke down
this monolith into smaller chunks that typically served a particular purpose. To solve the
problem with inter-service calls, SOA services ran at well-known fixed locations as the
servers were large and quite often hosted in your data center or a leased rack in a data
center. This meant that they did not change location very often, the IP addresses were often
static, and even if a server did have to move, re-configuring of the IPs was always part of
the deployment process.

With microservices all this changes, the application typically runs in a virtualized or
containerized environment where the number of instances of a service and their locations
can change dynamically, minute by minute. This gives us the ability to scale our application
depending on the forces dynamically applied to it, but this flexibility does not come without
its own share of problems. One of the main ones knows where your services are to contact
them. A good friend of mine, a fantastic software architect and the author of the foreword
of this book made this statement in one of his presentations once:

"Microservices are easy; building microservice systems is hard."

Without the right patterns, it can almost be impossible, and one of the first ones you will
most likely stumble upon even before you get your service out into production is service
discovery.

Let's suppose you have a setup like this: you have three instances of the same service A, B,
and C. Instance A and B are running on the same hardware, but service C is running in an
entirely different data center. Because A and B are running on the same machine, they are
accessible from the same IP address. However, because of this, they both cannot be bound
to the same port. How is your client supposed to figure out all of this to make a simple call?

Common Patterns

[153]

The solution is service discovery and the use of a dynamic service registry, like Consul or
Etcd. These systems are highly scalable and have strongly consistent methods for storing
the location of your services. The services register with the dynamic service registry upon
startup, and in addition to the IP address and port they are running on, will also often
provide metadata, like service version or other environmental parameters that can be used
by a client when querying the registry. In addition to this, the consul has the capability to
perform health checks on the service to ensure its availability. If the service fails a health
check then it is marked as unavailable in the registry and will not be returned by any
queries.

There are two main patterns for service discovery:

Server-side discovery
Client-side discovery

Server-side service discovery
Server-side service discovery for inter-service calls within the same application, in my
opinion, is a microservice anti-pattern. This is the method we used to call services in an
SOA environment. Typically, there will be a reverse proxy which acts as a gateway to your
services. It contacts the dynamic service registry and forwards your request on to the
backend services. The client would access the backend services, implementing a known URI
using either a subdomain or a path as a differentiator.

The problem with this approach is that the reverse proxy starts to become a bottleneck. You
can scale your backend services quickly enough, but now you need to be monitoring and
watching these servers. Also, this pattern introduces latency, even though it may be only
one 20ms hop, this could quite easily cost you 10% of your capacity, which means you have
10% increase in cost in addition to the cost of running and maintaining these services. Then
what about consistency: you are potentially going to have two different failure patterns in
your code for downstream calls, one for internal services and one for external. This is only
going to add to the confusion.

The biggest problem for me, however, is that you have to centralize this failure logic. A little
later in this chapter, we are going to look at these patterns in depth, but we have already
stated that your services will go wrong at some point and you will want to handle this
failure. If you put this logic into a reverse proxy, then all services which want to access
service A will be treated the same, regardless of whether the call is essential to the success
or not.

Common Patterns

[154]

To my mind, the worst implementation of this pattern is the one that abstracts all this
knowledge from the client, retrying internally, and never letting the calling client know
what is happening until success or catastrophic failure.

Client-side service discovery
While server-side service discovery might be an acceptable choice for your public APIs for
any internal inter-service communication, I prefer the client-side pattern. This gives you
greater control over what happens when a failure occurs. You can implement the business
logic on a retry of a failure on a case-by-case basis, and this will also protect you against
cascading failure.

Common Patterns

[155]

In essence, the pattern is similar to its server-side partner. However, the client is responsible
for the service discovery and load balancing. You still hook into a dynamic service registry
to get the information for the services you are going to call. This logic is localized in each
client, so it is possible to handle the failure logic on a case-by-case basis.

Common Patterns

[156]

Load balancing
When we discussed service discovery, we examined the concepts of server-side and client-
side discovery. My personal preference is to look at client side for any internal calls as it
affords you greater control over the logic of retries on a case by case basis. Why do I like
client side load balancing? For many years server-side discovery was the only option, and
there was also a preference for doing SSL termination on the load balancer due to the
performance problems. This is not necessarily true anymore and as we will see when we
look at the chapter on security. It is a good idea to use TLS secured connections internally.
However, what about being able to do sophisticated traffic distribution? That can only be
achieved if you have a central source of knowledge. I am not sure this is necessary: a
random distribution will theoretically over time work out the same. However, there could
be a benefit to only sending a certain number of connections to a particular host; but then
how do you measure health? You can use layer 6 or 7, but as we have seen by using smart
health checks, if the service is too busy then it can just reject a connection.

From the example looking at circuit breaking, I hope you can now start to see the potential
this can give your system. So how do we implement load balancing in Go?

If we take a look at loadbalancing/main.go, I have created a simple implementation of a
load balancer. We create it by calling NewLoadBalancer which has the following signature:

func NewLoadBalancer(strategy Strategy, endpoints []url.URL) *LoadBalancer

This function takes two parameters: a strategy, an interface that contains the selection
logic for the endpoints, and a list of endpoints.

To be able to implement multiple strategies for the load balancer, such as round-robin,
random, or more sophisticated strategies like distributed statistics, across multiple instances
you can define your own strategy which has the following interface:

 10 // Strategy is an interface to be implemented by loadbalancing
 11 // strategies like round robin or random.
 12 type Strategy interface {
 13 NextEndpoint() url.URL
 14 SetEndpoints([]url.URL)
 15 }

NextEndpoint() url.URL

Common Patterns

[157]

This is the method which will return a particular endpoint for the strategy. It is not called
directly, but it is called internally by the LoadBalancer package when you call the
GetEndpoint method. This has to be a public method to allow for strategies to be included
in packages outside of the LoadBalancer package:

SetEndpoints([]url.URL)

This method will update the Strategy type with a list of the currently available endpoints.
Again, this is not called directly but is called internally by the LoadBalancer package
when you call the UpdateEndpoints method.

To use the LoadBalancer package, you just initialize it with your chosen strategy and a list
of endpoints, then by calling GetEndpoint, you will receive the next endpoint in the list:

 56 func main() {
 57 endpoints := []url.URL{
 58 url.URL{Host: "www.google.com"},
 59 url.URL{Host: "www.google.co.uk"},
 60 }
 61
 62 lb := NewLoadBalancer(&RandomStrategy{}, endpoints)
 63
 64 fmt.Println(lb.GetEndpoint())
 65 }

In the example code, we have implemented a simple RandomStrategy. Why not see if you
can build a strategy which applies a RoundRobinStrategy?

Caching
One way you can improve the performance of your service is by caching results from
databases and other downstream calls in an in-memory cache or a side cache like Redis,
rather than by hitting a database every time.

Caches are designed to deliver massive throughput by storing precompiled objects in a fast-
access data store, frequently based around a concept of a hash key. We know from looking
at algorithm performance that a hash table has the average performance of O(1); that is as
fast as it gets. Without going too in depth into Big O notation, this means it takes one
iteration to be able to find the item you want in the collection.

Common Patterns

[158]

What this means for you is that, not only can you reduce the load on your database, you can
also reduce your infrastructure costs. Typically, a database is limited by the amount of data
that can be read and written from the disk and the time it takes for the CPU to process this
information. With an in-memory cache, this limitation is removed by using pre-aggregated
data, which is stored in fast memory, not onto a state-full device like a disk. You also
eliminate the problem with locking that many: databases suffer where one write can block
many reads for a piece of information. This comes at the cost of consistency because you
cannot guarantee that all your clients will have the same information at the same time.
However, more often than not strong consistency is a vastly overvalued attribute of a
database:

Common Patterns

[159]

Consider our list of kittens. If we are receiving a high throughput of users retrieving a list of
kittens, and it has to make a call to the database every time just to ensure the list is always
up to date, then this will be costly and can fast overwhelm a database when it is already
experiencing high load. We first need to ask ourselves is it essential that all these clients
receive the updated information at the same time or is a one second delay quite acceptable.
More often than not it is acceptable, and the speed and cost benefits you gain are well worth
the potential cost that a connecting client does not get the up-to-date information exactly
after it has been written to the database.

Caching strategies can be calculated based on your requirements for this consistency. In
theory, the longer your cache expiry, the greater your cost saving, and the faster your
system is at the expense of reduced consistency. We have already talked about designing
for failure and how you can implement graceful degradation of a system. In the same way,
when you are planning a feature, you should be talking about consistency and the tradeoffs
with performance and cost, and documenting this decision, as these decisions will greatly
help create a more successful implementation.

Premature optimization
You have probably heard the phrase, so does that mean you should not implement caching
until you need it? No; it means you should be attempting to predict the initial load that
your system will be under at design time, and the growth in capacity over time, as you are
considering the application lifecycle. When creating this design, you will be putting
together this data, and you will not be able to reliably predict the speed at which a service
will run at. However, you do know that a cache will be cheaper to operate than a data store;
so, if possible, you should be designing to use the smallest and cheapest data store possible,
and making provision to be able to extend your service by introducing caching at a later
date. This way you only do the actual work necessary to get the service out of the door, but
you have done the design up front to be able to extend the service when it needs to scale.

Common Patterns

[160]

Stale cache in times of database or downstream service
failure
The cache will normally have an end date on it. However, if you implement the cache in a
way that the code decides to invalidate it, then you can potentially avoid problems if a
downstream service or database disappears. Again, this is back to thinking about failure
states and asking what is better: the user seeing slightly out-of-date information or an error
page? If your cache has expired, the call to the downstream service fails. However, you can
always decide to serve the stale cache back to the calling client. In some instances, this will
be better than returning a 50x error.

Summary
We have now seen how we can use some rather cool patterns to make our microservices
more resilient and to deal with the inevitable failure. We have also looked at how
introducing a weak link can save the entire system from a cascading failure. Where and
how you apply these patterns should start out with an educated guess, but you need to
constantly look at logging and monitoring to ensure that your opinion is still relevant. In
the next chapter, we are going to look at some fantastic frameworks for building
microservices in Go and then in, Chapter 7, Logging and Monitoring, we will look at some
options and best practice for logging and monitoring your service.

6
Microservice Frameworks

In this chapter, we are going to look at some of the most popular frameworks for building
microservices and look at an example project to see the implementation. We will examine
both RESTful and RPC based microservices and, to throw a curve ball in, we are also going
to look at a commercial framework which provides much of the glue needed when building
a highly distributed system.

The source code to accompany this chapter can be found at h t t p s ://g i t h u b . c o m /b u i l d i n g
- m i c r o s e r v i c e s - w i t h - g o /c h a p t e r 6

What makes a good microservice
framework?
What makes a microservice framework is an incredibly good question and one which is
open to a lot of opinions. In an attempt to remove the subjectivity, we will break down the
features of a good framework and try to allocate a score for each of these functions in a
consistent way. The following diagram is a hierarchical mind map of the features which I
deem necessary. When you are assessing the framework which is the best for you and your
project, you can use this framework, adding or removing any of the attributes which may
be relevant:

https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6
https://github.com/building-microservices-with-go/chapter6

Microservice Frameworks

[162]

Here are some of the features you need to keep in mind while choosing a good framework:

Ability to interface with other frameworks: It must be possible to interact with
any service built with the framework by clients who are not built using the same
framework.

Implement standards: A standard message protocol should be
used to maximize interaction, for example:

JSON-RPC
Thrift
Protocol Buffers
JSON

Open: The framework should be open in both the source code and
the roadmap.

Microservice Frameworks

[163]

Patterns: The framework must implement the standard patterns of microservice
architecture:

Circuit breaking: Client calls to downstream services must
implement circuit breaking.
Service discovery: It must be capable of registering with a dynamic
service registry and capable of querying the same registry to locate
connected services
Proprietary: Proprietary service registries must be open and usable
from other clients who do not implement the framework or its
SDKs.
Timeouts: Downstream client calls should be configurable with a
user determined timeout.
Health checks: The framework must create an automatic health
check endpoint.
Routing: The framework must support multiple routes with an
easy to use pattern based matching.
Middleware: The framework must support middleware to allow
the user to create shared code for handlers.
Load balancing: Downstream client connections should be capable
of load balancing.
Language independence: The framework needs to be language
independent to enable cross-team polyglot workflow. At a
minimum, it should be possible to create client SDKs in multiple
languages.

Communication Protocols: The service should support good standards in one of
the following communication protocols:

REST: If the framework implements REST, it must take full
advantage of semantic API design with appropriate use of HTTP
verbs and status codes.
RPC: If the framework is RPC-based, it must use a standard and
open messaging protocol.

Maintainable: The framework must be maintainable with the minimum effort:
Easy to update: It must be easy to update with the minimum
amount of code changes.
Well versioned: The framework must be well versioned with
breaking changes to the API mainly restricted to major version
updates.

Microservice Frameworks

[164]

Tooling: There must be adequate tooling to fit with modern development
practices:

CI/CD: It must integrate and work well with continuous
integration and continuous deployment pipelines; the tooling must
be scriptable.
Cross-platform: The tools must work cross-platform, with OSX,
and Linux as a bare minimum.

Code generation: It should support code generation templates to scaffold a
service and possibly extend the service.
Fast set up: The framework should be fast to set up and with the minimum
number of steps and dependencies.
Ease of use: Any good framework should be easy to use; you will not thank
yourself for choosing a framework which is a pain to work with. This category
has been broken down into the following subcategories:
Extensible: When required, the user should be able to extend the framework
through:

Plugins: A pluggable software architecture to be able to create
generators and templates.
Middleware: Extension through handler middleware.

Support: A good support network is incredibly important throughout the life
cycle of the service.

Maintained: The framework must be well maintained with:
Regular updates: The framework is regularly
updated and released.
Accepts pull requests: The author accepts pull
requests from community contributors.
Corporate sponsor: While this option is not essential,
a corporate sponsor can extend the life cycle of a
framework as there is less likelihood of a leftpad
situation. (h t t p ://w w w . t h e r e g i s t e r . c o . u k

/2016/03/23/n p m _ l e f t _ p a d _ c h a o s /).
Documentation: The framework should be well documented with
clear and concise examples and comprehensive API
documentation.

Easy to follow: Documentation should be accessible
and easy to read.
Code samples: Adequate code examples should be
provided to support a developer using the
framework.

http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

Microservice Frameworks

[165]

Tutorials: The framework will ideally have community contributed
tutorials in both blog and video formats.
Community: There should be a healthy community using and
supporting the framework with at least one of the following
channels of communication:

Slack
Gitter
Github
Mailing list
Stack Overflow

Secure: The framework should be secure and implement the latest industry
standards:

TLS: Securing the endpoints of the framework using TLS should be
possible.
OWASP: The framework should implement OWASP advisory.
Validation: Requests should be automatically validated based on
rules implemented by message annotation.
Well patched: Security vulnerabilities should be regularly assessed
and patched.
Authentication / Authorization: The framework should implement
a method of authentication and authorization such as the OAuth
standard.

Open source: The framework should be open sourced and released under a
license which allows forking and modification:

Community: There should be a good open source community
following and contribution for the project.
Popular: The framework should be popular and commercially
used.

Quality: The code quality of the framework should be visible and of a high
standard. Community contributions should follow a published process and
standard.

High test coverage: Test coverage should be high and monitored;
pull requests should ensure adherence to coding standards.

Unit tests: High fast running unit tests are essential.
Behavioral/functional: Ideally, the framework
should implement behavioral and functional tests
regarding the generated code and the build process:

Microservice Frameworks

[166]

Automated builds: Automated builds of the source code should be
present and visible. Pull requests should run an automated build,
and the state reported on the request.
Code quality: Automated code quality tools should be used and
the results visible, for example:

Coveralls (h t t p s ://c o v e r a l l s . i o /)
Code Climate (h t t p s ://c o d e c l i m a t e . c o m /)
Sonar (h t t p s ://w w w . s o n a r q u b e . o r g /)

Standard language patterns: A standard method of writing the
code taking account of the language level idioms is essential.
Efficient: The framework must produce code which is efficient
when run.
Fast: The code must execute quickly and be designed for
performance.
Low latency: Requests should be low latency.
Low memory: The service should be memory efficient.
Supports a large number of connections: It should support a
significant number of concurrent connections.

It's hard to compare the various frameworks on a like-for-like basis as each framework
provides a different set of features and all of these features will affect the performance. I
think it is useful, however, to try and run some performance tests against each of the
frameworks. To do this, we will be running our example service in Docker on a small
Digital Ocean host with two CPU cores and 2 GB of RAM. We will then use another server
of the same size to execute the benchmarking application.

Our strategy is to run a 5-minute test with 400 connections and a 5-second timeout. The
connections will be ramped up over a 90-second interval.

The process is not a scientific test, but it will give us an indication of the response time and
to identify if the server can cope with a reasonable number of concurrent connections.

As a benchmark, I have created a vanilla HTTP server using JSON as a message protocol.
The results can be seen for this service are outlined in following the sections and compared
to other frameworks to form a base line efficiency.

It should be noted, however, that some frameworks have advanced capabilities such as
request validation, circuit breaking out of the box. The number of these features present will
influence the latency of the service, so it will not be possible to do a true like for like
comparison.

https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/

Microservice Frameworks

[167]

Results:

Threads 400

Total Requests: 1546084

Avg. Request Time 51.50ms

Total Success 1546049

Total Timeouts 35

Total Failures 35

Requests over time:

Micro
The first framework we are going to look at is Micro by Asim Aslam. It has been under
active development over the last couple of years and has production credentials with its use
at the car rental firm, Sixt. Micro is a pluggable RPC microservices framework supporting
service discovery, load-balancing, synchronous and asynchronous communication and
multiple message encoding formats. For a more in-depth overview of Micro's features and
to check out the source code it is hosted on GitHub at the following location:
https://github.com/micro/go-micro

https://github.com/micro/go-micro

Microservice Frameworks

[168]

Setup
Installation for Micro is easy; well, it is Go so it would be. You do need to install protoc,
the application for generating source code which is part of Google's Protocol Buffers
package. As a messaging protocol, protobufs are taking off big time and you will find this
messaging protocol used in quite a few frameworks we are going to look at in this chapter.

Code generation
The protoc application is used for code generating our Go code from the proto file
definition. In fact, the beautiful thing about protoc is that it can generate code in about 10
different languages. Micro also has the capability to use a protoc plugin to generate your
clients and server code automatically. This is a nice feature and can indeed save a few
keystrokes.

Let's take a look at how we can generate our Go code, which defines our message protocol,
using protoc.

gomicro/proto/kittens.proto

 1 syntax = "proto3";
 2
 3 package bmigo.micro;
 4
 5 message RequestEnvelope {
 6 string service_method = 1;
 7 fixed64 seq = 2;
 8 }
 9
 10 message ResponseEnvelope {
 11 string service_method = 1;
 12 fixed64 seq = 2;
 13 string error = 3;
 14 }
 15
 16 message Request {
 17 string name = 1;
 18 }
 19
 20 message Response {
 21 string msg = 1;
 22 }
 23
 24 service Kittens {

Microservice Frameworks

[169]

 25 rpc Hello(Request) returns (Response) {}
 26 }

When you run the protoc command, it processes the proto DSL file and outputs native
language source files. In our example, a snippet of that code looks like the following:

gomicro/proto/kittens.pb.go

 32 type Request struct {
 33 Name string `protobuf:"bytes,1,opt,name=name"
 json:"name,omitempty"`
 34 }
 35
 36 func (m *Request) Reset() { *m = Request{} }
 37 func (m *Request) String() string { return
 proto.CompactTextString(m) }
 38 func (*Request) ProtoMessage() {}
 39 func (*Request) Descriptor() ([]byte, []int) { return
 fileDescriptor0, []int{0} }

We never edit this file by hand, so it does not matter what the code looks like. All this is
doing is allowing a struct to be serialized using the binary standard set out by Protocol
Buffers.

To use this with Micro, we do not have to do very much at all. Let's take a look at the main
function and see how easy it is to set up:

gomicro/server/main.go

 20 func main() {
 21 cmd.Init()
 22
 23 server.Init(
 24 server.Name("bmigo.micro.Kittens"),
 25 server.Version("1.0.0"),
 26 server.Address(":8091"),
 27)
 28
 29 // Register Handlers
 30 server.Handle(
 31 server.NewHandler(
 32 new(Kittens),
 33),
 34)
 35
 36 // Run server
 37 if err := server.Run(); err != nil {
 38 log.Fatal(err)

Microservice Frameworks

[170]

 39 }
 40 }

In line 24, we are initializing the micro server, passing it some options. In the same way that
we could pass our basic HTTP server an address to configure what the IP and port the
server would bind to, we are doing the same thing in line 27.

The handlers section from line 31 should look familiar to you too; Micro uses exactly the
same signature which is present in the net/rpc package. Creating a handler is as simple as
defining a struct and adding methods to it. Micro will automatically register these as
routes on your service:

 12 type Kittens struct{}
 13
 14 func (s *Kittens) Hello(ctx context.Context, req *kittens.Request,
 rsp *kittens.Response) error {
 15 rsp.Msg = server.DefaultId + ": Hello " + req.Name
 16
 17 return nil
 18 }

The form of the handler looks very similar to the one from the net/http package; we can
see the same context object we looked at in the first chapter. If you remember from that
chapter the Context is a safe method for accessing request scoped data which can be
accessed from multiple Goroutines. The request and the response objects are those which
we defined in our proto file. Instead of writing our response to a ResponseWriter in this
handler, we set the values we wish to return to the reference of the response which is
passed to the function. Regarding returning, we have the option to return an error if
something went wrong and we wish to notify the caller.

Tooling (CI/CD, cross platform)
Because Micro is written in pure Go, with the only external dependency being protoc, it
creates a very lightweight framework which would be possible to use on Linux, Mac, and
Windows with ease. It would also be easy to set up onto a CI server; the main complexity is
the installation of protoc, but this application is incredibly well supported by Google and
is available for all the main operating systems and architectures.

Microservice Frameworks

[171]

Maintainable
The way that Micro has been built is incredibly sympathetic towards modern enterprise
problems of updating and maintaining microservices. Versioning is incorporated into the
framework, and in our example, we are setting the version in the server.Init method. It
is possible for multiple services to co-exist differentiated by their version number. When
requesting the service, it is possible to filter by a version which allows new versions of a
service to be deployed without causing disruption to the rest of the estate.

Format (REST/RPC)
At its heart, Micro uses Google's Protocol Buffers as its core messaging protocol. This,
however, is not the only method by which you can communicate with the services. Micro
also implements the sidecar pattern which is an RPC proxy. This gives a really simple way
of integrating any application into the Micro ecosystem. The sidecar can be used as an API
gateway, which is a single point of entry for multiple downstream services. In Micro's case,
the gateway handles HTTP requests and converts them to RPC; it is also capable of
providing reverse-proxy functionality. This is a very versatile pattern, and the sidecar can
be scaled differently to the primary services, allowing you to expose this as a public facing
endpoint for non-Micro consumers.

More information on the architecture of Micro can be found on the Micro website at
https://blog.micro.mu/2016/03/20/micro.html and
https://blog.micro.mu/2016/04/18/micro-architecture.html. I thoroughly recommend
anyone who is thinking about using Micro to read these articles as they give an excellent
overview of just what it is capable of and the fantastic array of patterns that it uses.

Micro also implements a codec interface for encoding and decoding messages so while, by
default, this supports proto-rpc and json-rpc, it would be incredibly easy to apply the
messaging protocol of your choice.

https://blog.micro.mu/2016/03/20/micro.html
https://blog.micro.mu/2016/04/18/micro-architecture.html

Microservice Frameworks

[172]

Patterns
In general, Micro has been very well architected and built with production use in mind.
Asim, who created Micro and is the primary maintainer, has an incredible pedigree as a
software architect and software engineer. Most of the common patterns that we will discuss
in this chapter have been implemented in Micro and many more are available as
community plugins. Full PubSub support is included and again supports a vast array of
backend servers including Redis and NATS. Due to the architectural model, it is
comparatively easy to write your own plugins should your backend of choice not be
supported as part of the standard package.

Language independence
Thanks to two nice design choices with the use of Protocol Buffers as a messaging format
and the ability of the sidecar, it is possible to interface with microservices from just about
any language that can support an HTTP transport.

Let's take a quick look at how we could send and receive messages using Ruby. This
example is probably a little more complicated than just making a simple REST call, and
most people who use Micro would probably opt to use JSON-RPC from the sidecar.
However, it is interesting to see how we can interface using the RPC interface. While there
may seem to be far more boilerplate than what you would find if you were making a call
using the Go client for Micro, this could be wrapped up into a library and distributed as a
gem; this code is only to illustrate the possibilities:

gomicro/client/client.rb

 82 def main()
 83
 84 puts "Connecting to Kittenserver"
 85
 86 request = Bmigo::Micro::Request.new(name: 'Nic')
 87 body = send_request('kittenserver_kittenserver_1', '8091',
 'Kittens.Hello', request).body
 88 envelope, message = read_response(body, Bmigo::Micro::Response)
 89
 90 puts envelope.inspect
 91 puts message.inspect
 92 end

Microservice Frameworks

[173]

In the same way that we generated some native Go code from the proto file, we can do the
same for Ruby. This makes it possible to share these service definitions and save the
consumer the trouble of having to write them by hand. In line 86, we are creating our
request which is sent to the Micro service. Even though Micro is an RPC service, it still uses
HTTP as the transport which makes it easy to make a request using Ruby's standard
NET::HTTP library. Before we can do this, however, we need to understand how the
message protocol for Micro works. Following is the Micro message format:

Envelope Size
(4 bytes)

Envelope
(n bytes)

Message Size
(4 bytes)

Message
(n bytes)

The first 4 bytes in the body are the length of the envelope. The envelope itself is the
method by which Micro determines where the message is sent to; it is similar to the way
you would use a URI in a RESTful API. The envelope is written to the body using Protocol
Buffer's binary serialization using the encode method. Thankfully, all this work is done for
us by the protobuf package. We then write the message size again using exactly 4 bytes
and following that the message, which again is encoded into a binary representation using
the Protocol Buffers package.

The message can then be sent as an HTTP post. To let Micro know we are sending a binary
message and not JSON-RPC, we have to specify the Content-Type header and set this to
application/octet-stream.

The response which is returned by Micro will be in the same format as the request.

Ability to interface with other frameworks
Because of its language-agnostic interface, it is possible to integrate Micro with many
different frameworks. Theoretically, you could even write your Micro compatible service
which takes advantage of all the service discovery and registration in a language which is
not Go. Why would we want to do that though? After all, Go is fantastic.

Microservice Frameworks

[174]

Efficiency
Micro performs admirably, managing to hold 400 connections with roughly a 125 ms
response. The response time gives us nearly 3,000 requests per second. While this is not a
direct reflection on how your server will perform in production, we will be using the same
setup to test all the frameworks in this chapter. When load testing Micro, the memory
consumption was efficient, only consuming approximately 10% of the available memory on
the server. CPU loads, like all tests, were running at maximum but this is to be expected
when the system is handling so many concurrent requests for such a small setup.

Results:

Threads 400

Total Requests: 806011

Avg. Request Time 125.58ms

Total Success 806011

Total Timeouts 0

Total Failures 0

Requests over time:

Microservice Frameworks

[175]

Quality
The quality of the Micro framework is very high with automated builds, and decent code
coverage where needed, and it should be straightforward to navigate implementing many
of the standard Go idioms.

Open source
The framework is open source using the Apache license. Regarding popularity, Micro has
over 2,000 stars on GitHub and accepts contributions from the community.

Security
Out of the box, Micro does not have an explicit authentication or authorization layer, and I
believe this is a good thing. It would be relatively trivial to implement your authentication
into the service framework using JWT or if you really must, your proprietary format.
Request validation is handled in part by the Protocol Buffers. However, to do more complex
validation would possible using something like govalidator
(https://github.com/asaskevich/govalidator). However, since you cannot directly
modify the request objects to add the fields tags required, you may have to jump through a
few hoops here. The issue with validation, however, is more to do with the Protocol Buffers
framework, not Micro.

From a secure communication perspective, Micro uses net/http as the base transport, so it
will be a trivial matter to introduce TLS encryption, not just for the public facing services,
but also for private services. You will see why this is important when we take a more in-
depth look at security.

Support
Support for using the framework is pretty excellent; there are plenty of code examples, and
there is a Slack group which is well used, so any questions you may have can be answered
either by other users or by Asim himself, who is very active in the group in providing
support.

https://github.com/asaskevich/govalidator

Microservice Frameworks

[176]

Extensibility
One of the nice features of Micro is the way that it has been architected for extensibility. All
of the standard dependencies for service discovery, messaging, and transport follow an
interface-driven abstraction. Should you need to implement a particular use case or for
upgrades when a breaking change may be introduced by the likes of an etcd version
update, it will be no problem to write a plugin specific to this and use this within your
services. As expected of a framework of this quality, middleware is supported on both the
client and the server interfaces, which would enable a vast array of functionality from
authentication and authorization to request validation.

What we learned about Micro
In general, Micro is a nice framework which covers nearly all of your needs when building
a highly scalable distributed system. Asim has done an excellent job, both in creating this
and maintaining it, and his skill and experience shine through in the patterns he has
implemented.

Kite
Kite is a framework that is developed by the team responsible for Koding, the browser-
based IDE. The framework is used by the Koding team and was open sourced as they
believed that it would be useful for other microservice practitioners, having faced many of
the problems themselves.

The concept behind the framework is that everything is a Kite, both servers, and clients and
that they communicate in a bi-directional manner using web sockets and an RPC based
protocol. Web sockets make inter-service communication incredibly efficient as it removes
the overhead of constantly having to handshake a connection which can take as much time
as the message passing itself. Kite also has a built in service discovery feature which allows
you to make a call to a Kite without knowing the specific endpoint.

Microservice Frameworks

[177]

Setup
The installation of Kite is relatively simple; there are a few dependencies for service
discovery, such as etcd, but all the code you need to create a Kite is found in the Go
package. If we install this package using the go get command we can go ahead and start
writing our first Kite.

go get github.com/koding/kite

The way Kite works is that there is a service which runs along with your application Kites
called kontrol. This handles service discovery, and all of your application services register
with this service so that the clients can query the service catalog to obtain the service
endpoint. The kontrol Kite comes bundled within the main package, and for convenience, I
have created a Docker Compose file, which starts this along with etcd, which is used as the
service registry.

If we take a look at our server implementation, we can see the various steps we need to add
to register our new service:

kite/server/main.go

 13 func main() {
 14
 15 k := kite.New("math", "1.0.0")
 16 c := config.MustGet()
 17 k.Config = c
 18 k.Config.KontrolURL = "http://kontrol:6000/kite"
 19
 20 k.RegisterForever(&url.URL{Scheme: "http", Host: "127.0.0.1:8091",
Path: "/kite"})
 21
 22 // Add our handler method with the name "square"
 23 k.HandleFunc("Hello", func(r *kite.Request) (interface{}, error) {
 24 name, _ := r.Args.One().String()
 25
 26 return fmt.Sprintf("Hello %v", name), nil
 27 }).DisableAuthentication()
 28
 29 // Attach to a server with port8091 and run it
 30 k.Config.Port = 8091
 31 k.Run()
 32
 33 }

Microservice Frameworks

[178]

In line 15, we are creating our new Kite. We pass two arguments to the New method: the
name of our Kite and the service version. We then obtain a reference to the configuration
and set this to our Kite. To be able to register our kite with the service discovery, we have to
set the KontrolURL with the correct URI for our kontrol server:

k.Config.KontrolURL = "http://kontrol:6000/kite

If you look at the URL we are passing it; we are using the name that is supplied by Docker
when we link together some containers.

In the next line, we are registering our container with the kontrol server. We need to pass
the URL scheme we are using. In this instance, HTTP is the hostname; this needs to the
accessible name for the application. We are cheating a little bit with this host as we are
exposing the ports to the Docker host; we could have passed the internal name had our
client application had been linked to this one.

Now the interesting stuff starts, and we define the methods that our Kite will have available
to it. If we take a look at line 25, we will see a pattern that should look quite familiar:

HandleFunc(route string, function func(*kite.Request) (interface{}, error))

The signature for HandleFunc is very similar to that of the standard HTTP library; we set
up a route and pass a function which would be responsible for executing that request. You
will see that both the request and the response are not typed. Well, that is not exactly correct
for the Request method, but certainly, there is no explicitly defined contract.

To get the arguments which are passed with the Request method, we use the Args object,
which is a dnode message. Unlike the other frameworks we have looked at, a dnode
message does not have a contract which can be shared between consumers and producers
of this message, so each must implement their interpretation. The dnode message itself is a
newline terminated JSON message and is heavily abstracted by the kite framework, for the
curious, the protocol definition can be found in the following document: h t t p s ://g i t h u b . c
o m /s u b s t a c k /d n o d e - p r o t o c o l /b l o b /m a s t e r /d o c /p r o t o c o l . m a r k d o w n #t h e - p r o t o c o l

The output of our HandleFunc is the standard Go pattern of interface{} error, again
the interface{} which is the response we would like to send to the caller. This is not
strongly typed, and it is most likely just a struct which can be serialized down to a dnode
payload, the representation of which is just JSON.

https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol

Microservice Frameworks

[179]

One of the nice features of Kite is that authentication is built in and, in our instance, we are
disabling this. It is quite common to restrict the actions of a particular service call based
upon the permissions of the caller. Under the hood, Kite is using JWT to break down these
permissions into a set of claims. The principle is that a key is signed and therefore a
receiving service only has to validate the signature of the key to trust its payload rather than
having to call a downstream service. The final line we are calling is k.Run(); this starts our
Kite and blocks our main function.

Code generation
With Kite, there is no code generation or templates to help set up your servers and clients.
That said, the simplicity of creating a server does not warrant the need for this.

Tooling
Besides Go, there is little you need to set up Kite. etcd, which is used for your service
discovery, and Kite, are easily packaged into a Docker container, which allows a standard
testing and deployment workflow.

The cross-platform elements of the framework are limited to areas which can be compiled
with the Go framework, which, as I write this, is a rather impressive array.

Maintainable
Kite is a relatively mature framework with active development over a period of three years.
It is also actively used by the Koding service which was acquired by Amazon in 2016.

Due to the way that routing works by registering a handler, it would be possible to cleanly
separate your implementation from the main Kite packages, which would allow easy
updating of the main package when upstream changes are made.

I do have a slight reservation about the lack of contracts around the dnode messages. This
could cause maintenance problems if not properly managed, as the consumer has the
responsibility of discovering the protocol implementation and the supplier service must
document this protocol and ensure that it is correctly versioned to avoid breaking changes.
As far as I am aware, there is no capability to produce documentation from the code source
automatically. Since dnode uses JSON under the hood, it might be an idea to have a single
argument in the payload containing a JSON object, the type of which is known and could be
easily serialized to a struct using the standard package.

Microservice Frameworks

[180]

Format
Kite uses dnode as its messaging protocol. While this is not a concern if you are doing kite-
to-kite communication or if you are using the JavaScript framework for Kite, it might be an
issue if you would like to interface from another language in your stack. The protocol
definition is listed in the GitHub project at
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#th

e-protocol and it is JSON-based. Looking at the documentation for dnode, it seems that the
messaging protocol and the execution framework was never intended to be loosely coupled.
My personal recommendation when choosing a messaging protocol is that you should
ensure there are encoders and decoders already written for your chosen languages. If there
is no package, then you need to assess if the protocol has a large enough user base that the
actions of writing this would be warranted.

Patterns
Service discovery is built into Kite with the application kontrol. The backend store for
kontrol is not proprietary, but it uses a plugin architecture and supports etcd, consul, and so
on.

If we look at our client application, we can see how this works in action.

In line 19, we are calling the GetKites method and passing a KontrolQuery as a
parameter. The query contains the username, environment, and the name of the service we
would like to reference.

The return type of this call is a slice of Kites. In our simple example, we are just getting a
reference to the first item in the list. This process does mean that we have to implement load
balancing and circuit breaking ourselves; it would have been nice if we could have had this
feature built into kontrol.

To connect to Kite, we have two methods at our disposal:

Dial()
DialForever()

The Dial() method takes a timeout, which, when elapsed, the method will return
regardless of whether it has been possible to connect to the downstream service or not. The
DialForever() method, as the method name suggests, will not. In both instances, a
channel is returned which we use to pause execution until we have obtained our
connection.

https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol
https://github.com/substack/dnode-protocol/blob/master/doc/protocol.markdown#the-protocol

Microservice Frameworks

[181]

Calling the service is now as simple as executing Tell, and passing the method name, you
wish to run and the parameters as an interface for that method. In my humble opinion, Kite
loses points here. The contracts for the service calls are very loose and creating an
implementation for the consumers will not be without effort.

Language independence
Kite as a framework is predominately Go, and JavaScript based. The JavaScript package
https://github.com/koding/kite.js allows you to write a Kite in JavaScript which would
run on the server with NodeJS or you can also use the plugin direct from the browser,
which would enable you to build rich user interfaces.

Communicating with Kite from a language such as Ruby would require a degree of effort.
Custom code would need to be written to interact with kontrol and to execute queries to the
Kites. This would certainly be possible, and if you build this framework, please push it back
to the open source community.

Efficiency
Kite is fast. Thanks to the way it uses web sockets there seems to be little overhead once you
are connected. When I was testing the system, I did experience some problems with
creating multiple Kite connections; this was not on the server but the client. To be honest, I
have not dug too far into this, and the performance from using a shared Kite in the client is
pretty impressive. In terms of CPU and memory consumption, Kite consumes the most of
all the frameworks evaluated. For the 400 connection test, Kite was consuming 1.8 GB of the
2 GB of RAM available on the client; the server was consuming 1.6 GB. Both client and
server were heavy users of the CPU:

Results table:

Threads 400

Total Requests: 1649754

Avg. Request Time 33.55ms

Total Success 1649754

Total Timeouts 0

Total Failures 0

https://github.com/koding/kite.js

Microservice Frameworks

[182]

Requests over time:

Quality
The Kite framework uses Travis CI, and there are unit and integration tests executed for
each build. Code coverage is not huge; however, it seems to cover the complexities and
looking at the issues in GitHub, there is nothing outstanding.

Open source
The project is fairly popular with over 1,200 GitHub stars. However, there is no slack
community or forum. The authors are, however, excellent at answering questions when
they are posted to GitHub issues.

Security
Security wise, Kite has its own authentication layer using JWT and supports the standard Go
TLS configuration to connect two Kites securely. Request validation does not, however,
seem to be present, and I guess this is due to the dnode protocol being quite dynamic. It
should be relatively straightforward to implement this as the handlers could be chained in
the same way a middleware pattern could be built with net/http.

Microservice Frameworks

[183]

Support
Since Kite is used in a commercial context with Koding, it is very well maintained and
mature, receiving regular updates. Documentation, however, is somewhat lacking and
while I was working on the example code, I spent quite a lot of time figuring out the various
parts. The authors are aware of the problems with the documentation and do plan to
improve this facet. Google also has little to offer in the way of help for Kite. When searching
for an issue, generally you will end up back on the GitHub repository. This is not a massive
problem if you are a relatively experienced developer, as you can simply read through the
code and reverse engineer it. However, if you are just starting out this might be a problem
as you may not have a solid grasp of the underlying concepts.

There is code level documentation, and the code is self-descriptive; however, there are
elements which could do with further explanation.

Extensibility
There is no formal plugin or middleware format for Kite. However, due to the way it has
been engineered, it should be possible to extend the framework. You may run into
problems, however. For example, if you wish to add a different backend for kontrol storage,
the options are hardcoded into the kontrol application, so even though storage is derived
from an interface, a modification would need to be made to kontrol's main function to
enable this.

Summing up Kite
Kite is a nicely written framework, and if you are only building microservices in Go with a
requirement for access from the browser, then it could be a right choice. In my opinion, the
documentation and tutorials need more work; however, I suspect this is due to Kite being
an internal framework of a small company which has been open sourced rather than the
intention of producing a community open source framework. Kite loses quite a few points
due to a lack of standard patterns built into the framework. Cross-framework integration
also suffers due to the messaging protocol dnode and the documentation could be
dramatically improved.

Microservice Frameworks

[184]

gRPC
We have already taken a look at the Protocol Buffers messaging protocol from Google when
we looked at API design in Chapter 2, Designing a Great API. gRPC is a cross-platform
framework which uses HTTP/2 as the transport and Protocol Buffers as the messaging
protocol. Google developed it as a replacement for their Stubby framework which they had
used internally for many years.

The intention behind the project was to build a framework which promotes good
microservice design, concentrating on messages rather than distributed objects. gRPC is
also optimized for the many network problems we face in microservice architecture, such as
fragile networks, limited bandwidth, the cost of the transport, and so on. One of the other
lovely facets of gRPC is its ability to stream data between client and server. This can have a
huge benefit in certain application types and is built into the framework as a standard
component. Additionally, for microserivice to microservice communication, there is a pure
javascript implementation which is designed to enable browser clients to access a gRPC
server. At the time of writing, this has not yet been released, the expected shipping date is
quarter 3 in 2017.

Setup
The main problem with setting up a gRPC project is installing the protoc application and
the various plugins which are obtained from the following URL:

https://github.com/google/protobuf/releases

We then need to install the Go packages for gRPC and the code generation plugin for
protoc:

$ go get google.golang.org/grpc
$ go get -u github.com/golang/protobuf/{proto,protoc-gen-go}

For convenience, I have created a Docker container which has all these packages
(nicholasjackson/building-microservices-in-go). If you take a look at the
Makefile in the example code at chapter4/grpc/Makefile, you will see that we are using
the power of Docker to save the hassle of having to install any applications.

https://github.com/google/protobuf/releases

Microservice Frameworks

[185]

Code generation
The beauty of gRPC is the code generation. From the simple proto files that we looked at in
Chapter 2, Designing a Great API, we can generate all our client and server code. All we
then have to do is to wire up our handlers which will deal with the business logic.

If we take a look at the proto file in chapter4/grpc/proto/kittens.proto, we can see
that the file is somewhat similar to the one we reviewed in a previous chapter.

The main difference is the following block from line 13:

 13 service Kittens {
 14 rpc Hello(Request) returns (Response) {}
 15 }

This is our service definition, which contains the contract for our handlers. It is nicely
semantic and very readable even though it is written in the proto DSL.

To generate our Go code, all we need to do is to call the protoc command and tell it to use
the Go plugin:

protoc -I /proto /proto/kittens.proto --go_out=plugins=grpc:/proto

This will create our messages and our service definitions, and output them to the
kittens.pb.go file. It is relatively interesting to look at this file, even though the code is
auto-generated, to see some of the inner workings of the framework.

Now let's see just how easy it is to use the framework if we take a look at
grpc/server/main.go.

We can see that the first thing we are doing is setting up our handler code:

 15 type kittenServer struct{}
 16
 17 func (k *kittenServer) Hello(ctx context.Context, request
 *proto.Request) (*proto.Response, error) {
 18 response := &proto.Response{}
 19 response.Msg = fmt.Sprintf("Hello %v", request.Name)
 20
 21 return response, nil
 22 }

Microservice Frameworks

[186]

In line 15, we are creating a struct, the methods of which will correspond to the
KittenServer interface, which has been auto-generated for us by the protoc command:

type KittensServer interface {
 Hello(context.Context, *Request) (*Response, error)
}

Line 17 is where we are defining our handler, and again the pattern should look familiar to
the one we examined in Chapter 1, Introduction to Microservices. We have our context and
an object which corresponds to the request message we defined in our protos file and the
return tuple of response and error.

This method is where we will do the work for the request, and you can see on line 18 that
we are creating a response object and then setting the message which will be returned to the
client.

Wiring up the server is also really straightforward. We only need to create a listener and
then create a new instance of the server, which has been auto-generated for us by the
protoc command:

 24 func main() {
 25 lis, err := net.Listen("tcp", fmt.Sprintf(":%d", 9000))
 26 if err != nil {
 27 log.Fatalf("failed to listen: %v", err)
 28 }
 29 grpcServer := grpc.NewServer()
 30 proto.RegisterKittensServer(grpcServer, &kittenServer{})
 31 grpcServer.Serve(lis)
 32 }

The client code is similarly straightforward. If we take a look at grpc/client/client.go,
we can see that we are creating a connection to our server and then initiating the request:

 12 func main() {
 13 conn, err := grpc.Dial("127.0.0.1:9000", grpc.WithInsecure())
 14 if err != nil {
 15 log.Fatal("Unable to create connection to server: ", err)
 16 }
 17
 18 client := proto.NewKittensClient(conn)
 19 response, err := client.Hello(context.Background(),
 &proto.Request{Name: "Nic"})
 20
 21 if err != nil {
 22 log.Fatal("Error calling service: ", err)
 23 }
 24

Microservice Frameworks

[187]

 25 fmt.Println(response.Msg)
 26 }

The grpc.Dial method has the following signature:

func Dial(target string, opts ...DialOption) (*ClientConn, error)

The target is a string which corresponds to the server's network location and port and opts
is a variadic list of DialOptions. In our example, we are only using WithInsecure, which
disables transport security for the client; the default is that transport security is set so, in our
simple example, we need this option.

The list of choices is very comprehensive, and you can specify configuration such as
timeouts and using a load balancer. For the full list, please see the documentation which can
be found at https://godoc.org/google.golang.org/grpc#WithInsecure.

Line 18 is where we are creating our client. This is a type which is defined in our auto-
generated code file, not the base package. We pass it the connection we created earlier and
then we can call the methods on the server as shown in line 19.

Tooling
The tooling for gRPC is rather impressive. There are a huge number of platforms and
languages supported, and just with Go and the protoc application, it is relatively trivial to
set up an automated build. In our simple example, I have configured the build to run in a
Docker container which further limits the requirements for any software to be installed on
the continuous deployment machines. By doing this, we can limit the dependencies which
are used in all our builds. This is a technique we will learn more about in a later chapter.

Maintainable
Updating gRPC is also incredibly easy. Google has put a significant amount of work into
making the new v3 specification for Protocol Buffers backward compatible with v2 and,
according to the documentation, there is a desire to maintain this as gRPC and Protocol
Buffers move forward.

https://godoc.org/google.golang.org/grpc#WithInsecure

Microservice Frameworks

[188]

Format
While we may not have the semantic nature of REST, we do have a very clearly defined
messaging protocol with Protocol Buffers. The definitions are easy to understand, and the
ability for connecting clients to use the proto files we defined and reuse them to create their
clients is a very nice feature.

Patterns
The array of patterns that is also implemented into the framework is very comprehensive,
supporting health checks and timeouts. There is no explicit support for middleware;
however, many of the requirements for middleware, such as authentication and request
validation, we get for free built into the framework. We also do not have circuit breaking,
but the balancer can be configured to add this functionality. In the official documentation,
there is a statement that this is an experimental API and may be changed or extended in the
future. We can, therefore, expect many great updates from this feature.

The clients themselves have configuration to deal with a back off algorithm. This throttling
protects your servers in the instance of high load by not flooding a server which may be
under pressure with thousands of connections.

From a service discovery perspective there is no implicit handling of this inside the
framework; however, the extension points are there to perform this with your backend of
choice.

Language independence
The number of languages which are currently supported by gRPC is quite impressive, with
10 languages officially supported and there are many more by a growing community. The
ability to generate and distribute client SDKs in multiple languages using the protoc
command is fantastic. To see how this could work from a language other than Go, we have
created a simple example in Ruby which shows just how easy it is to make a connection to a
gRPC service.

Microservice Frameworks

[189]

In our example, grpc/client/client.rb, we can see that there are very few lines of code
need to initiate a connection and execute a request to a gRPC endpoint written in Go:

 6 require 'kittens_services_pb'
 7
 8 service =
 Bmigo::Grpc::Kittens::Stub.new('kittenserver_kittenserver_1:9000',
 :this_channel_is_insecure)
 9
 10 request = Bmigo::Grpc::Request.new
 11 request.name = 'Nic'
 12
 13 response = service.hello(request)
 14
 15 puts response.msg

For the non-Rubyists, in line 6, we are including our auto-generated code, which was
generated with the protoc command and using the Ruby gRPC plugin.

Line 8 then creates an instance to our server, again passing the option of an insecure
channel like we did in the Go client.

We then create a request object in line 10, set the parameters for this request, and execute it.
All of the objects for the request and response are defined for us and are incredibly easy to
use.

Google are currently working on a version of the framework which would enable
connections to a gRPC service from the web browser. When this arrives, it will be very easy
to create interactive web applications which are backed by gRPC microservices.

Efficiency
Thanks to the use of HTTP/2 and the binary messaging, gRPC is incredibly quick and
capable of supporting a massive throughput. The option for streaming data to the client is a
fantastic feature. From a mobile perspective, the client only needs to maintain a single
connection to the server which is efficient and the server can push data updates to this open
connection. For an example of how this could work, have a look at some code I created for a
talk at GoLang UK. This implements a simple server and Android client which receives
streaming updates. Rather than use native gRPC clients on Android, I geeked out using
GoMobile to compile a native framework which was written in Go and then used this in the
Android app:

https://github.com/gokitter

https://github.com/gokitter

Microservice Frameworks

[190]

Results:

Threads 400

Total Requests: 2949094

Avg. Request Time 23.81ms

Total Success 2949094

Total Timeouts 0

Total Failures 0

Requests over time:

Quality
As you may expect from Google, the quality of the project is incredibly high with some
awesome architectural patterns and standard language patterns implemented by the
framework. All the code is built using continuous integration, and the test coverage is
excellent.

Microservice Frameworks

[191]

Open source
The framework is growing in popularity and is under constant development by both
Google and community committers. Everything is open source, and if you want to dig into
the code, it is all available for you at the GitHub repository:

https://github.com/grpc

Security
From a security perspective, we have all the features we could need. gRPC supports TLS
encryption, authentication, and request validation. Because the underlying transport is
net/http, we can also be confident that we are receiving the highest quality in the server
layer.

Support
Documentation is again excellent with both great examples and source code documentation
provided on the gRPC website. There is a growing list of community resource with further
examples provided by bloggers and support can also be found on the Google group and
Stack overflow.

Extensibility
From an extensibility perspective, it is possible to write custom plugins for both protoc, like
the Micro framework does, and also the framework has been well written and is extensible.
As a new framework only just reaching version 1, the current options are very impressive,
and I can only see these growing in future releases.

A few lines about gRPC
I am very impressed with the gRPC framework and the array of options and community
support which seems to grow by the day. The Protocol Buffers messaging format also
appears to be growing with companies such as Apple contributing their implementation,
and I can see this becoming an unofficial standard for client-server communication
replacing JSON in the very near future.

https://github.com/grpc

Microservice Frameworks

[192]

Summary
Both Micro and gRPC came out top in the evaluation, but for slightly different reasons.
Micro is ready to use in a production system out of the box if the majority of your estate is
Go. The development on Micro is continuing, and the current focus is on that of
performance, which, to be honest, is already pretty impressive. That said, with some work
around the missing elements which are essential for microservice development, grpC is a
real contender. The polyglot nature and the throughput are excellent, and it is continuously
improving.

In this chapter, we have looked at a few different frameworks, and I hope they will have
given you a taster of some of the key features needed if you ever have to make a decision
yourself. In the next chapter, we are going to look at logging and metrics which are essential
techniques for running microservices in production.

7
Logging and Monitoring

Logging and monitoring are not advanced topics. However, they are one of those things
that you do not realize just how important they are until you do not have them. Useful data
about your service is essential to understanding the load and environment that your service
is operating in so that you can make sure that it is finely tuned to give the very best
performance.

Consider this example: when you first launch your service, you have an endpoint which
returns a list of kittens. Initially, this service is responding promptly with a 20 ms response
time; however, as people start to add items to the service, the speed slows to 200 ms. The
first part of this problem is that you need to know about this slowdown. If you work in e-
commerce, there is a direct correlation between the time it takes to process a request or a
page to load and the likelihood that your customers will buy something.

One of the traditional methods for determining speed has always been to look at things
from the edge; you use something such as Google Analytics, and you measure page load
speed as experienced by the end user.

The first problem with this is that you have no idea where the slowdown originates. When
we built monolithic applications, this was simple; the slowdown was either extra cruft
which had been added to the HTML or it was the monolithic app server. So the app server
may have some metrics output to a log file; however, due to the nature of the application
only having one attached data store you did not have to look at many places before you
found the source.

Logging and Monitoring

[194]

Everything changes with microservices; instead of one application, you may have 1,000,
instead of one data store, you may have 100, and dozens of other associated services such as
cloud storage queues and message routers. You could take the same approach to guess and
test, but you will end up with a deep-seated hatred for yourself and all your colleagues who
built the system.

Problem number 2: using Google Analytics will not easily tell you if the site is slowing
down when it is under load. How will you know when you experience an outage? If the
page is not loading because the back end server is not responding, then the JavaScript
which fires data to Google Analytics will not fire. Can you even set up an alert in Google
Analytics to fire an alarm when the average load time drops below a threshold?

Problem number 3: you don't have a website only an API; bye bye Google analytics.

Now, I am not saying you should not use Google Analytics; what I am saying is that it
should form part of a larger strategy.

Stack traces and other application output which helps you diagnose a problem can be
broken down into three categories::

Metrics: These are things such as time series data (for example, transaction or
individual component timings).
Text-based logs: Text-based records are your real old-fashioned logs which are
spat out by things such as Nginx or a text log from your application software.
Exceptions: Exceptions potentially could fall into the two previous categories;
however, I like to break these out into a separate category since exceptions should
be, well, exceptional.

As always the source code for this chapter is available on GitHub you can find it at h t t p s
://g i t h u b . c o m /b u i l d i n g - m i c r o s e r v i c e s - w i t h - g o /c h a p t e r 7

Logging best practices
In the free e-book, The pragmatic logging handbook, by Jon Gifford of Loggly
(www.loggly.com), Jon proposes the following eight best practices to apply when
determining your logging strategy:

Treat application logging as an ongoing iterative process. Log at a high level and
then add deeper instrumentation.
Always instrument anything that goes out of the process because distributed
system problems are not well behaved.

https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7
https://github.com/building-microservices-with-go/chapter7

Logging and Monitoring

[195]

Always log unacceptable performance. Log anything outside the range in which
you expect your system to perform.
If possible, always log enough context for a complete picture of what happened
from a single log event.
View machines as your end consumer, not humans. Create records that your log
management solution can interpret.
Trends tell the story better than data points.
Instrumentation is NOT a substitute for profiling and vice versa.
Flying more slowly is better than flying blind. So the debate is not whether to
instrument, just how much.

I think there is one of these points which need a little more explanation, that is
"Instrumentation is NOT a substitute for profiling and vice versa." What Jon is referring to
is that while your application may have high levels of logging and monitoring, you should
still run through a pre-release process of profiling the application code. We looked at tools
like Go's profiler, and we have also done some basic performance testing with the bench
tool. However for a production service a more thorough approach should be taken, it is
beyond the scope of this book to look at performance testing in depth, however, I would
encourage you to read "Performance Testing with JMeter 3" by Bayo Erinle published by
Packt for further information on this topic.

Metrics
In my opinion, metrics are the most useful form of logging for day-to-day operations.
Metrics are useful because we have simple numeric data. We can plot this onto a time series
dashboard and quite quickly set up alerting from the output as the data is incredibly cheap
to process and collect.

No matter what you are storing, the superior efficiency of metrics is that you are storing
numeric data in a time-series database using a unique key as an identifier. Numeric data
allows the computation and comparison of the data to be incredibly efficient. It also allows
the data store to reduce the resolution of the data as time progresses, enabling you to have
granular data when you need it most at the right time and retain historical reference data
without requiring petabytes of data storage.

Logging and Monitoring

[196]

Types of data best represented by metrics
This is quite simple: it is the data that is meaningful when expressed by simple numbers,
such as request timings and counts. How granular you want to be with your metrics
depends upon your requirements; generally, when I am building a microservice I start with
top line metrics such as request timings, success, and failure counts for handlers, and if I am
using a datastore, then I would include these too. As the service develops and I start
performance testing things, I will start to add new items that help me diagnose performance
problems with the service.

Naming conventions
Defining a naming convention is incredibly important, as once you start to collect data, a
point will come where you need to analyze it. The key thing for me is not to define a
convention for your service but a convention that is useful for your entire estate. When you
start to investigate issues with your service, more often than not, you will find that the
problem is not necessarily with your service but could be due to a multitude of things:

Exhausted CPU on host server
Exhausted memory
Network latency
Slow data store queries
Latency with downstream service caused by any of the preceding factors

I recommend you break up the name of your service using dot notation such as the
following:

environment.host.service.group.segment.outcome

environment: This is the working environment; for example: production,
staging
host: This is the hostname of the server running the application
service: The name of your service
group: This is the top level grouping; for an API, this might be handlers
segment: The child level information for the group; this will typically be the
name of the handler in the instance of an API
outcome: This is something which denotes the result of the operation, in an API
you may have called, success, or you may choose to use HTTP status codes

Logging and Monitoring

[197]

Here is an example of how to use the following dot notation:

prod.server1.kittenserver.handlers.list.ok
prod.server1.kittenserver.mysql.select_kittens.timing

If your monitoring solution supports tags in addition to the event name, then I recommend
you use tags for the environment and host, this will make querying the data store a little
easier. For example, if I have a handler which lists kittens which are running on my
production server then I may choose to add the following events to be emitted when the
handler is called:

func (h *list) ServeHTTP(rw http.ResponseWriter, r *http.Request) {
 event := startTimingEvent("kittens.handlers.list.timing", ["production",
"192.168.2.2"])
 defer event.Complete()

 dispatchIncrementEvent("kittens.handlers.list.called", ["production",
"192.168.2.2"])

...

 if err != nil {
 dispatchIncrementEvent("kittens.handlers.list.failed", ["production",
192.168.2.2"])
 return`
 }

 dispatchIncrementEvent("kittens.handlers.list.success", ["production",
192.168.2.2"])
}

This is a pseudo code, but you can see that we are dispatching three events from this
handler:

The first event is that we are going so send some timing information.1.
In the next, we are simply going to send an increment count which is simply2.
going to state that the handler has been called.
Finally, we are going to check if the operation has been successful. If not, we3.
increment our handler-failed metric; if successful, we increment our success
metric.

Logging and Monitoring

[198]

Naming our metrics in this way allows us to graph errors either on a granular level or
makes it possible to write a query which is at a higher level. For example, we may be
interested in the total number of failed requests for the entire service, not just this endpoint.
Using this naming convention, we can query using wildcards; so to query all failures for
this service, we could write a metric like the following code:

kittens.handlers.*.failed

If we were interested in all failed requests to handlers for all services, we could write the
following query:

.handlers..failed

Having a consistent naming convention for metrics is essential. Add this to your upfront
design when building a service and implement this as a company-wide standard, not just
on a team level. Let's take a look at some example code to see just how easy it is to
implement statsD. If we take a look at chapter7/main.go, we can see that on line 19, we
are initializing our statsD client:

statsd, err := createStatsDClient(os.Getenv("STATSD")
 if err != nil {
 log.Fatal("Unable to create statsD client")
 }
...

func createStatsDClient(address string) (*statsd.Client, error){
 return statsd.New(statsd.Address(address))
}

We are using an open source package by Alex Cesaro (h t t p s ://g i t h u b . c o m /a l e x c e s a r o /s

t a t s d). This has a very simple interface; to create our client, we call the new function and
pass it a list of options. In this instance, we are only passing through the address of the
statsD server, which has been set by an environment variable:

func New(opts ...Option) (*Client, error)

If we look at line 27 in the file cserver/handlers/helloworld.go, we are deferring the
sending of the timing data until the handler completes:

defer h.statsd.NewTiming().Send(helloworldTiming)

https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd
https://github.com/alexcesaro/statsd

Logging and Monitoring

[199]

The start time will be the time of execution of the defer statement so this should be the first
line of your file; the end time will be once the deferred statement executes. If this handler is
middleware and you are calling a downstream in a chain, then remember that the execution
time of all the downstream calls will also be included in this metric. To exclude this, we can
create a new Timing in line 27 and then call the send method manually just before we
execute the next middleware in the chain:

func (c *Client) NewTiming() Timing

If you take a look at line 35, you will see we are calling the increment method when the
request completes successfully:

h.statsd.Increment(helloworldSuccess)

The Increment function will increase the count for the given bucket by one, and these are
fascinating metrics to have in your application as they give you a really interesting picture
of the health and status:

func (c *Client) Increment(bucket string)

The statsD client does not work synchronously, sending each metric when you make a call
to the client; instead, it buffers all the calls, and there is an internal goroutine which sends
the data at a predetermined interval. This makes the operation highly efficient, and you
should not have to worry about any application slowdown.

Storage and querying
There are multiple options for storing and querying metric data; you have the possibility for
self-hosting, or you can utilize a software as a service. How you manage this is dependent
upon your company's scale and the security requirement for your data.

Software as a service
For software as a service (SaaS), I recommend looking at Datadog. To send metrics to
Datadog, you have two options: one is to communicate with the API directly; the other is to
run the Datadog collector as a container inside your cluster. The Datadog collector allows
you to use StatsD as your data format and it supports a couple of nice extensions which
standard StatsD does not, such as the ability to add additional tags or metadata to your
metrics. Tagging allows you to categorize your data by user-defined tags, this allows you to
keep your metric names specific to what they are monitoring without having to add
environmental information.

Logging and Monitoring

[200]

Self-hosted
While it may be desirable to use a SaaS service for your production data, it is always useful
to be able to run a server locally for local development. There are many options for backend
data stores such as Graphite, Prometheus, InfluxDB, and ElasticSearch; however, when it
comes to graphing, Grafana leads the way.

Let's spin up a Docker Compose stack for our list, kittenservice, so we can run through the
simple steps of setting up Prometheus with Grafana with Docker Compose.

If we look at the Docker compose file, we can see that we have three entries:

statsD

grafana

prometheus

StatsD is not a statsD server as such but a statsD exporter; this exposes an endpoint
which Prometheus can use to collect the statistics. Unlike Graphite, which you push metrics
to, Prometheus pulls stats.

Prometheus is the database server which is used for collecting the data.

Grafana is what we will use for graphing our data.

If we take a look at the Docker Compose file docker-compose.yml, which is located at the
root of our source repository, we will see that the Prometheus section requires some
particular configuration:

prometheus:
 image: prom/prometheus
 links:
 - statsd
 volumes:
 - ./prometheus.yml:/etc/prometheus/prometheus.yml
 ports:
 - 9090:9090

Logging and Monitoring

[201]

We are mounting a volume which contains the Prometheus configuration. Let's take a look
at it:

global:
 scrape_interval: 15s
 scrape_configs:
 - job_name: 'statsd'
 static_configs:
 - targets: ['statsd:9102']
 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

The first part of this configuration sets the intervals for fetching the data from our sources
and also the intervals upon which they will be evaluated. The default value for the scrape
interval is one minute. We have reduced this for our example, as we are impatient and we
would like to see our metrics update almost immediately after we have made a request to
the server. However, in practice, we are not really interested in real-time data. A lag of a
minute is OK. The next part is the scrape configs; these are the settings which define our
data which we would like to import into Prometheus. The first element is our statsD
collector; we point this to the collector defined in our docker-compose file. As we are
using a link between our two containers, we can use the link name in the config. The next
item is the configuration for Prometheus' performance metrics. We do not have to enable
this; however, metrics are critical so it would make sense to monitor the health of our
metrics database.

Grafana
To display these metrics, we are going to use Grafana. If we start our stack by using the
make runserver command and wait for a few moments for the server to start, we can then
execute a few curls to the endpoint to start populating the system with data:

curl [docker host ip]:8091/helloworld -d '{"name": "Nic"}'

Logging and Monitoring

[202]

Let's log into Grafana and have a look at some of the data we have collected. Point your
browser at [docker host ip]:3000 and you should be presented with a login screen.
The default username and password is admin:

Once you have logged in, the first thing we want to do is to configure our data source.
Unfortunately, there seems to be no way to set up this automatically with configuration
files. There is an API if you need to provision in an environment outside of your local
machine; it should be pretty trivial to write something which syncs data using this:

http://docs.grafana.org/http_api/data_source/

http://docs.grafana.org/http_api/data_source/

Logging and Monitoring

[203]

Configuring the data source is relatively straightforward. All we need to do is to select
Prometheus as our data type and then fill in the connection details. You need to ensure that
you select proxy as opposed to direct. Proxy makes the calls for data from the Grafana
server; direct will use your browser. Once we have done that, let's add the default
dashboard for the Prometheus server:

Logging and Monitoring

[204]

If you click the dashboards tab, you will see that you have the ability to import a pre-
created dashboard. This is useful but what we want to do is create our own dashboard from
our server. To do this, hit the dashboards link and then choose new dashboard. This will
take you to the dashboards creation page. We are going to add a graph of our requests. So
let's select the Graph option. In the bottom panel, we have the ability to add the metrics we
would like to show; if we already know the name of the dashboard, then all we need to do
is type the expression into the box:

The metrics lookup allows us to search for metrics based on part of the name. If we type
kitten into this box, then all the metrics from our simple API that have been tagged with
kitten will show up in the box. For now, let's select the validation success metric. By default,
this metric is a count of all the times that the metric was reported for the given time interval.
This is why you see the graph. While this may be useful in some instances, what we would
like to see is a nice bar chart showing the successes for a given period. To do this, we can
use one of the many expressions to group this data:

increase(kittenserver_helloworld_success_counter{}[30s])

Logging and Monitoring

[205]

This expression will group the data into buckets of 30 seconds and will return the difference
between the current and the previous bucket. In effect, what this gives us is a chart showing
the number of successes every 30 seconds. To present the information, a bar graph would
most likely be better, so we can change this option in the display tab. Changing the step
setting to the same interval as the duration we set in our increase expression, will make the
chart look a little more readable. Now add a second query for the timings of our hello world
handler. This time we do not need to aggregate the data into buckets, as we are fine
displaying it on the graph as it is. Timing metrics show three lines, the average (quartile,
0.5), the top 10% (quartile, 0.9), and the top 1% (quartile, 0.99). In general, we would like to
see these lines quite tightly grouped together, which indicates little variance in our service
calls. We do not see this in our graph, even though we are performing the same operation
time and time again, due to line 149 in the code:

time.Sleep(time.Duration(rand.Intn(200)) * time.Millisecond)

Our handler was running just too fast to measure < 1 ms so I added a little random wait to
make the graph more interesting:

That is the basics for simple metrics; for logging more detailed information, we need to fall
back to trusty log files. The days of pulling data from servers are long gone, and in our
highly distributed world this would be a nightmare. Thankfully, we have tools such as
Elasticsearch and Kibana.

Logging and Monitoring

[206]

Logging
When working with highly distributed containers, you may have 100 instances of your
application running rather than one or two. This means that if you need to grep your log
files, you will be doing this over hundreds of files instead of just a couple. In addition,
Docker-based applications should be stateless and the scheduler may be moving them
around on multiple hosts. This adds an extra layer of complexity to manage. To save the
trouble, the best way to solve this problem is not to write the logs to disk in the first place. A
distributed logging store, such as an ELK stack, or software as a service platform, such as
Logmatic or Loggly, solve this problem for us and give us a fantastic insight into the health
and operating condition of our system. Regarding the cost, you will most likely find that
one of the SasS providers is cheaper than running and maintaining your ELK stack.
However, your security needs may not always allow this. Retention is also an interesting
problem while looking at logging. My personal preference is to only store log data for short
periods of time, such as 30 days; this allows you to maintain diagnostic traces which could
be useful for troubleshooting without the cost of maintaining historical data. For historical
data, a metrics platform is best, as you can cheaply store this data over a period of years,
which can be useful to compare current performance with that of a historic event.

Distributed tracing with Correlation IDs
In Chapter 2, Designing a Great API, we looked at the header X-Request-ID which allows
us to mark all the service calls for an individual request with the same ID so that we can
later query them. This is an incredibly important concept when it comes to debugging a
request as it can dramatically help you understand why a service may be failing or
misbehaving by looking at the tree of requests and the parameters passed to them. If you
take a look at the file handlers/correlation.go, we can implement this quite simply:

func (c *correlationHandler) ServeHTTP(rw http.ResponseWriter, r
*http.Request) {
 if r.Header.Get("X-Request-ID") == "" {
 r.Header.Set("X-Request-ID", uuid.New().String())
 }

 c.next.ServeHTTP(rw, r)
}

The handler is implemented using the middleware pattern when we wish to use it all we
need to do is wrap the actual handler like so:

http.Handle("/helloworld", handlers.NewCorrelationHandler(validation))

Logging and Monitoring

[207]

Now every time a request is made to the /helloworld endpoint, the header X-Request-
ID will be appended to the request with a random UUID if it is not already present. This is a
very simple method of adding distributed tracing into your application, depending upon
your requirements you may like to check out Zipkin is a distributed tracing system
designed to trouble shoot latency, which is becoming incredibly popular h t t p ://z i p k i n . i o

. There are also tools from DataDog, NewRelic, and AWS X-Ray, it is too much to go into
depth into these applications, however, please spend an hour and familiarize yourself with
their capabilities as you never know when you are going to need them.

Elasticsearch, Logstash, and Kibana (ELK)
Elasticsearch, Logstash, and Kibana are pretty much the industry standard when it comes to
logging verbose data. All of the output which would traditionally be streamed to a log file is
stored in a central location which you can query with a graphical interface tool, Kibana.

If we look at our Docker Compose file, you will see three entries for our ELK stack:

elasticsearch:
 image: elasticsearch:2.4.2
 ports:
 - 9200:9200
 - 9300:9300
 environment:
 ES_JAVA_OPTS: "-Xms1g -Xmx1g"
 kibana:
 image: kibana:4.6.3
 ports:
 - 5601:5601
 environment:
 - ELASTICSEARCH_URL=http://elasticsearch:9200
 links:
 - elasticsearch
 logstash:
 image: logstash
 command: -f /etc/logstash/conf.d/
 ports:
 - 5000:5000
 volumes:
 - ./logstash.conf:/etc/logstash/conf.d/logstash.conf
 links:
 - elasticsearch

http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io
http://zipkin.io

Logging and Monitoring

[208]

Elasticsearch is our datastore for our logging data, Kibana is the application we will use for
querying this data, and Logstash is used for reading the data from your application logs
and storing it in Elasticsearch. The only configuration, besides a few environment variables,
is the logstash config:

input {
 tcp {
 port => 5000
 codec => "json"
 type => "json"
 }
 }
Add your filters / logstash plugins configuration here
output {
 elasticsearch {
 hosts => "elasticsearch:9200"
 }
}

The input configuration allows us to send our logs direct over TCP to the Logstash server.
This saves us the problem of writing to disk and then Logstash having to read these files. In
general, TCP is probably going to be faster, disk I/O is not free, and the contention caused
by writing a log file sequentially can slow down your application. Dependent upon your
appetite for risk, you may choose to use UDP as transport for your logs. This will be faster
than TCP; however, this speed comes at the expense that you will not get a confirmation
that the data has been received and you may lose some logs.

"I would tell you a joke about UDP, but you might not get it."

In general, this is not too much of a problem unless you need your logs for security
auditing. In this instance, you could always configure multiple inputs for different log
types. Logstash has the capability to grep many common output formats for logs and
transform these into JSON format which can be indexed by Elasticsearch. Since our logs in
our example application area are already in JSON format, we can set the type to JSON and
Logstash will not apply any transformation. In the output section, we are defining our
datastore; again, like the Prometheus configuration, we can use the link address provided
by Docker for our URI:

https://www.elastic.co/guide/en/logstash/current/configuration.html

https://www.elastic.co/guide/en/logstash/current/configuration.html

Logging and Monitoring

[209]

Kibana
Start your stack if it is not already running and send a little data to Elasticsearch:

curl $(docker-machine ip):8091/helloworld -d '{"name": "Nic"}'

Now point your browser at http://192.168.165.129:5601. The first screen you should
see if you are starting with a new setup is the one which prompts you to create a new index
in Elasticsearch. Go ahead and create this using the defaults; you will now see the list of
fields that Elasticsearch can index from your logs:

Logging and Monitoring

[210]

If need be, you can change these settings. However, generally you will be fine with the
defaults. The Kibana screen is relatively straightforward. If you switch to the Discover tab,
you will be able to see some of the logs that have been collected:

Logging and Monitoring

[211]

Expanding one of the entries will show the indexed fields in more detail:

To filter the logs by one of these fields, you can enter the filter in the search bar at the top of
the window. Search criteria must be written in Lucene format, so to filter our list by status
code, we can enter the following query:

status: 200

This filters the by status field containing the numeric value 200. Whilst searching indexed
fields is relatively straightforward, we have added the bulk of our data into the message
field where it is stored as a JSON string:

status:200 and message:/.*"Method":"POST"/

Logging and Monitoring

[212]

To filter our list to only show POST actions, we can use a query containing a REGEX search:

REGEX search terms will be slower than indexed queries, as each item has to be evaluated.
If we find that there is a particular field we are always referring to and would like to speed
up these filters, then we have two options. The first and the most awkward is to add a grok
section to our Logstash configuration:

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html#plug
ins-filters-grok-add_field

The other option is to specify these fields when we are preparing the data to log. If you look
at the example code, you can see that we are extracting the method out and while this is
also going into the message field, we are logging this using the WithFields method,
which will allow Logstash to index this. If you take a look at line 37 of the
chandlers/helloworld.go file, you can see this in action:

serializedRequest := serializeRequest(r)
message, _ := json.Marshal(serializedRequest)
h.logger.WithFields(logrus.Fields{
 "handler": "HelloWorld",
 "status": http.StatusOK,
 "method": serializedRequest.Method,
}).Info(string(message))

In our example, we are using the Logrus logger. Logrus is a structured logger for Go which
supports many different plugins. In our example, we are using the Logstash plugin which
allows you to send our logs direct to the Logstash endpoint rather than writing them to a
file and then having Logstash pick them up:

56 func createLogger(address string) (*logrus.Logger, error) {
57 retryCount := 0
58
59 l := logrus.New()
60 hostname, _ := os.Hostname()
61 var err error
62
63 // Retry connection to logstash incase the server has not yet come up
64 for ; retryCount < 10; retryCount++ {
65 hook, err := logstash.NewHookWithFields(
66 "tcp",

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html#plugins-filters-grok-add/_field
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html#plugins-filters-grok-add/_field

Logging and Monitoring

[213]

67 address,
68 "kittenserver",
69 logrus.Fields{"hostname": hostname},
70)
71
72 if err == nil {
73 l.Hooks.Add(hook)
74 return l, err
75 }
76
77 log.Println("Unable to connect to logstash, retrying")
78 time.Sleep(1 * time.Second)
79 }
80
81 return nil, err
82 }

Adding plugins to Logrus is very simple. We define the hook which is in a separate
package, specifying the connection protocol, address, application name, and a fields
collection which is always sent to the logger:

func NewHookWithFields(protocol, address, appName string, alwaysSentFields
logrus.Fields) (*Hook, error)

We then register the plugin with the logger using the hooks method:

func AddHook(hook Hook)

Logrus has many configurable options and the standard Log, Info, Debug, and Error
logging levels will enable you to log any object. It will, however, use Go's built in ToString
unless there is a particular implementation. To get around this and to be able to have more
parsable data in our logfiles, I have added a simple serialization method which converts the
relevant methods from the http.Request into a JSON object:

type SerialzableRequest struct {
 *http.Request
}

func (sr *SerialzableRequest) ToJSON() string

Full source code for this example can be found in the example code at
chapter7/httputil/request.go. This is only a simple implementation at the moment
but could be extended if required.

Logging and Monitoring

[214]

Exceptions
One of the great things about Go is that the standard patterns are that you should always
handle errors when they occur instead of bubbling them up to the top and presenting them
to the user. Having said that, there is always a case when the unexpected happens. The
secret to this is to know about it and to fix the problem when it occurs. There are many
exception logging platforms on the market. However, the two techniques we have
discussed are, in my opinion, more than sufficient for tracing the few errors that we
hopefully will find in our web application.

Panic and recover
Golang has two great methods for handling unexpected errors:

Panic
Recover

Panic
The built-in panic function stops the normal execution of the current goroutine. All the
deferred functions are run in the normal way then the program is terminated:

func panic(v interface{})

Recover
The recover function allows an application to manage the behavior of a panicking
goroutine. When called inside a deferred function, recover stops the execution of the panic
and returns the error passed to the call of panic:

func recover() interface{}

Logging and Monitoring

[215]

If our handler panics for some reason, the HTTP server will recover this panic and write the
output to the std error. While this is fine if we are running the application locally, it does
not allow us to manage the errors when we have our application distributed across many
remote servers. Since we have already logged into an ELK stack setup, we can write a
simple handler which will wrap our main handler and allow the capture of any panic and
forward it to the logger:

18 func (p *panicHandler) ServeHTTP(rw http.ResponseWriter, r
*http.Request) {
19 defer func() {
20 if err := recover(); err != nil {
21 p.logger.WithFields(
22 logrus.Fields{
23 "handler": "panic",
24 "status": http.StatusInternalServerError,
25 "method": r.Method,
26 "path": r.URL.Path,
27 "query": r.URL.RawQuery,
28 },
29).Error(fmt.Sprintf("Error: %v\n%s", err, debug.Stack()))
30
31 rw.WriteHeader(http.StatusInternalServerError)
32 }
33 }()
34
35 p.next.ServeHTTP(rw, r)
36 }

This is relatively straightforward. In line 19, we are deferring the call to recover. When this
runs, if we have an error message, that is, something has panicked, we want to log this. Like
in the previous examples, we are adding fields to the log entry so that Elasicsearch will
index these but instead of logging the request we are writing the error message. This
message most likely will not have enough context for us to be able to debug the application,
so to get the context, we make a call to debug.Stack():

func Stack() []byte

The stack is part of the runtime/debug package and returns a formatted stack trace of the
goroutine that calls it. You can test this by running the example code of this chapter, and
curl the bang endpoint:

curl -i [docker host ip]:8091/bang

Logging and Monitoring

[216]

We are writing this along with the error message to Elasticsearch when we query Kibana.
For this message, we will see the captured details which look something like the following:

Finally, we return the status code 500 to the client with no message body.

The message should give us enough context to understand where the problem area lies. The
input which caused the exception will, however, be missing so if we are unable to replicate
the error then it is probably time to add more instrumentation to our service and re-run.

As part of the application life cycle of your service, you should always endeavor to keep on
top of exceptions. This will greatly enhance your ability to react when something goes
wrong. More often than not, I see exception trackers which are so full of problems the teams
lose all hope of ever cleaning them up and stop trying. Don't let your new services get this
way when a new exception appears to fix it. This way you can set up alerting on your
exceptions as you will be pretty confident there is a problem.

Summary
That is it for this chapter. Logging and monitoring is a topic which you can tailor to your
particular use case and environment, but I hope you have learned how easy it is to set up.
Using software as a service, such as Datadog or Logmatic, is an excellent way to get up and
running very quickly, and alerts integration with OpsGenie or PagerDuty will allow you to
receive instant alerts whenever a problem may occur.

8
Security

Security in microservices can feel like a minefield, and in some ways it is. This chapter is
mainly intended to look at some of the things that you can do to improve the security of
your Go code; however, I feel it is important to discuss some of the wider issues. In-depth
discussion of topics such as firewall configuration is best left to specialist books; however,
we will introduce some of the concepts and problems that are faced so that you can best
prepare yourself for some further reading.

Encryption and signing
When we look at ways of securing data, either at rest or in transport, many of the methods
we discuss will be cryptographically securing data.

"Cryptography is the science of using mathematics to encrypt and decrypt data.
Cryptography enables you to store sensitive information or transmit it across insecure
networks (line like the internet) so that it cannot be read by anyone except the intended
recipient."
- An Introduction to Cryptography, Network Associates, Inc.

As a basis for the things we will discuss in this chapter, we must first understand how
cryptography works, not in the way that we need a mathematics degree, but to the extent of
the parts involved. Cryptography is only as good as the security of the keys involved and
we need the knowledge of which of these keys can be distributed freely and which ones
need to be guarded with our lives.

Security

[218]

Symmetric-key encryption
Symmetric-key encryption is also called secret-key or conventional cryptography: one key is
used for both the encryption and decryption of the data. For a remote end to be able to
decrypt this information, it must first have the key, and this key must be securely held as a
single compromise of one server will lead to the compromise of all servers who share this
key. It can also make key management more complicated, as when you need to change the
key, and you should change it often, you will need to roll this change out across your entire
estate.

Public-key cryptography
Public-key cryptography was introduced by Whitfield Diffie and Martin Hellman in 1975 to
get around the need for both sides requiring to know the secret. In fact, they were not the
first to invent this; it was developed by the British Secret Service some years earlier but was
kept a military secret.

Public-key cryptography uses a pair of keys for encryption; you will also hear it called
asymmetric encryption. The public key is used for encrypting information while the private
can only be used for decrypting. Because there is no way to determine the private key from
the public, it is common that public keys will be published to the world.

Digital signatures
Public-key cryptography also gives us the capability of using digital signatures. A digital
signature works by encrypting a message with a private key and then transferring the
signed message. If the message can be decrypted with the public key, then the message
must have originated from the holder of a private key. Due to the computation time of
encrypting messages and the increase in the size of the payload, a standard approach is to
create a one-way hash of the message and then use the private key to encrypt this. The
recipient will decrypt the hash with the public key and generate the same hash from the
message; then, the message can be deemed to be from a trustworthy source.

Security

[219]

X.509 digital certificates
One problem with public keys is that you must be careful that the key you think belongs to
a recipient is owned by the recipient. If keys are transferred across public networks, there is
always the possibility of a man-in-the-middle attack. An attacker could pose a fake public
key as what you believe to be your trusted recipient; however, they could replace this with
their keys. This would mean that the message you think has been transferred securely
could, in fact, be decrypted and read by a malicious third party.

To avoid these issues, digital certificates exist, simplifying the task of establishing whether a
public key belongs to the reported owner.

A digital certificate contains three things:

A public key
Certificate information such as the owner's name or ID
One or more digital signatures

The thing that makes a certificate trustworthy is the digital signatures. The certificate is
signed by a trusted third party or certificate authority (CA) which vouches for your identity
and that your public key belongs to you. Anyone can create a CA root certificate and sign
their certs, and for non-public access to systems such as inter-microservice communication,
this is quite a common practice. For public certificates, however, you pay a CA to sign your
certificate. The purpose of the pricing is that the CA will ensure that you are who indeed
you say you are; at present, the most popular CAs are Comodo, Symantec (previously
Verisign before acquisition), and GoDaddy. The reason you see the padlock in your browser
is not just because you are using secured communication but that your browser has
validated the signature of the certificate against one of the 100 or so trusted third parties
which come bundled with it.

TLS/SSL
SSL, which is the common term for secure transmission of data between two systems, is a
reference to a deprecated standard first developed by Mozilla back in 1995. It has since been
replaced by TLS 1.2, which was released in August 2008; while SSL 3.0 still technically
works, it was deprecated in June 2015 after a vulnerability to the POODLE (Paddling
Oracle On Downgraded Legacy Encryption) attack. The POODLE attack discovered by a
team of Google security researchers in 2014 works by the attackers making several requests
to a server; this data is then analyzed and used, which enables them to decrypt the data in
the transport. On average, only 256 SSL 3.0 calls need to be made to decrypt 1 byte of
information.

Security

[220]

This means that the vulnerability existed for 18 years before being publicly disclosed; you
might ask why people were still using SSL 3.0 15 years after the release of the stronger TLS
1.0? This came about due to a problem that some browsers and servers did not support TLS
1.0, so there was a fallback that which would allow fallback to a lower level of encryption.
Even though, at the time of discovery, there was pretty much nobody still using SSL 3.0, the
fallback was still in the protocol and was, therefore, exploitable by the hackers. The solution
for this was quite straightforward: disable anything lower than TLS 1.0 in the configuration
of your server. We have a little history of TLS and SSL but how does it keep your data
secure?

TLS works using symmetrical encryption, where the client and the server both have a key
which is used for encryption and decryption. If you remember the previous section, we
introduced symmetrical encryption and the problems of distributing keys. TLS gets around
this problem by using asymmetrical encryption in the first part of the handshake. The client
retrieves the certificate containing the public key from the server and generates a random
number; it uses the public key to encrypt this random number and sends it back to the
server. Now that both parties have the random number, they use this to generate
symmetrical keys which are used for encrypting and decrypting the data over the transport.

External security
This is your first line of defense to keep your systems safe, it is commonly comprised of
layer 2 or 3 firewalls, DDoS protection, web application firewalls, and other software and
hardware. Before an attacker can compromise your application, they must first pass
through these layers of hardware and software which is not part of your application code
but is a shared infrastructure layer that many components in the application may share. In
this section, we will look at some of this external security as well as some attacks that could
be used against you. Securing the perimeter of your services is often a task completed by
operations however as developers we need to understand the processes and risks as it
greatly enhances our ability to harden our application code. In this section, we will look at
the common methods of external security and also some of the ways hackers can exploit
your system.

Security

[221]

Layer 2 or 3 firewalls
Layer 2 is more commonly used for routing as it deals purely with MAC addresses and not
IP addresses whereas layer 3 is IP address aware. Traditionally, layer 2 was the only real
way to go without adding latency as it would perform at roughly the same speed as the
wire. With increases in processing power and memory, layer 3 now performs at wire speeds
and generally, when we are looking at edge firewalls, which are generally the first entry
point into your system, they will be layer 3 these days. So what does this give us? Firstly, it
stops unwanted traffic at the edge: we limit the ports which are accessible to the outside
world and traffic destined for something which is not allowed is stopped at the firewall and
does not get the chance to execute an attack on the origin. In addition to this, it also allows
us to restrict access to certain ports. For example, if you are running a server, you most
likely will want some form of remote access such as SSH. The Heartbleed exploit which
came out in 2015 took advantage of a vulnerability in OpenSSH, and SSH servers which
were directly exposed to the Internet would be prone to this attack. Using a firewall
effectively would mean that private ports such as SSH would be locked down to an IP
address or IP range, which could be your VPN, office IP, or public IP. This dramatically
reduces the attack vector so while you might be running a version of OpenSSH which is
vulnerable to Heartbleed, for an attacker to take advantage of this, they would need to be
inside of your protected zone.

The Heartbleed vulnerability exploited the ability to execute a buffer overrun attack. For
example, you ask the server for a 4-letter word but specify the length of 500; what you get
back is the 4-letter word, and the remaining 496 characters are the blocks of memory which
follow the memory address of the initial allocation. In practice, this allowed a hacker to
access chunks of memory in the server randomly; this may contain items, such as change
password requests, which give them credentials to access the server. If you are running a
globally available SSH server, then you may find you have a problem:

Security

[222]

Security

[223]

Web application firewall
A web application firewall (WAF) is configured as your second or third line of defense in a
system. To understand what a WAF is, let's look at the definition from the Open Web
Application Security Project (OWASP):

"A web application firewall (WAF) is an application firewall for HTTP applications. It
applies a set of rules to an HTTP conversation. These rules cover common attacks such as
cross-site scripting (XSS) and SQL injection.

While proxies protect clients, WAFs protect servers. A WAF is deployed to protect a
specific web application or set of web applications. A WAF can be considered a reverse
proxy.

WAFs may come in the form of an appliance, server plugin, or filter, and may be
customized to an application. The effort to perform this customization can be significant
and needs to be maintained as the application is modified."

OWASP is an incredibly useful resource and in fact has provided a core ruleset for
ModSecurity, which protects against attacks such as SQL Injection XSS, Shellshock. As a
bare minimum, setting up a WAF such as ModSecurity and the OWASP CRS should be
your minimum requirement. Hosting this inside a Docker container should be relatively
trivial, and this could form the second line of defense behind your layer 2 firewall.

There is also another option: some CDN companies such as Cloudflare offer a hosted WAF.
This is protection at the edge of your network and thanks to the expertise of businesses such
as Cloudflare, you do not need to worry about configuration. In fact, Cloudflare supports
the OWASP CRS (https://www.modsecurity.org/crs/).

https://www.modsecurity.org/crs/

Security

[224]

API Gateway
In addition to a WAF, an API Gateway can be a useful tool to have; this can serve a dual
purpose of routing your public APIs to their backend services and some additional features
such as token validation at the edge and input validation and transformation. When we
talked about the confused deputy problem, where an attacker who is behind your firewall
can execute commands which they are not privileged to do, we looked at the possibilities
for encrypting web tokens; the problem with this is that private keys for decrypting these
tokens would need to be distributed across multiple backend services. This makes
managing keys far more challenging than it should be. An API Gateway can simplify this
situation by being the only layer which can decrypt a message; the other services use the
public key to verify a signature. API Gateways often implement many other first-line
features such as but not limited to the following:

Request validation
Authorization
Rate limiting
Logging
Caching
Request and response transformations

There is an element of crossover between a WAF and an API Gateway; however, the two
should be treated as two distinctly separate parts of your infrastructure. Regarding
providers of an API Gateway, this seems to be a developing area; AWS has an advanced
API Gateway which can be used if you have bought into the AWS PaS environment. For
standalone deployments, Kong (https://getkong.org/), Tyk (https://tyk.io/), Apigee
(https://apigee.com/api-management/#/homepage), Mashery
(https://www.mashery.com/), and the Anypoint Platform from Mulesoft
(https://www.mulesoft.com/) are among the leaders in this field. It is, of course, possible to
build your own API Gateway backed with Nginx or HAProxy; however, I recommend, you
first check out one of the specific platforms before going ahead and building your own.

https://getkong.org/
https://tyk.io/
https://apigee.com/api-management/#/homepage
https://www.mashery.com/
https://www.mulesoft.com/

Security

[225]

DDoS protection
On October 21, 2016, a massive internet outage was caused by attackers targeting DYN's
DNS servers using a Mirai botnet. The Mirai exploit takes advantage of vulnerabilities in IP
cameras and DVRs made by the Chinese company called XionMai Technologies. Rather
than attacking a target, the attackers decided to take down a major part of the internet's
infrastructure, knocking out most of the east and west coast of America. The Mirai exploit
takes advantage of just 60 usernames and passwords to attempt to update the firmware of
the vulnerable devices. Once the malware had been installed, the device was then
controllable by the botnet. All that was left to do was tell the bots to start a DNS attack
against DYNs nameservers.

The code for Mirai has been published online; you can find it using Google without much
effort. The thing I hope you find surprising looking at this code is just how simple it is.
Now, I do not want to take anything away from the complexity of devising this attack; I am
merely talking about the implementation. Quite a significant portion of the code is written
in Go too, so is very readable. There is some excellent use of channels. If you do look at the
code, try and identify the area which could be improved with a semaphore.

A report published by Akamai stated that 98.34% of all attacks this year were infrastructure
oriented, with only 1.66% aiming for the application layer. Of that 98.34%, many could be
avoided with a little network hygiene. Let's look at the top threats and how they work.

Types of DDoS attack
The following are the types of DDos attack:

UDP fragment
DNS
NTP
Chargen
UDP
SYN
SSDP
ACK

Security

[226]

UDP fragment attack
A UDP fragment attack is where the attacker exploits the way that datagram fragmentation
works on networks. Every network has a limit called a maximum transmission unit (MTU).
If a datagram sent to the network is greater than the MTU, it is fragmented to be
transmitted successfully.

The UDP fragment attack works by creating datagrams which contain fake packets; when
the server attempts to reassemble these packets, it is unable to do so and the resources are
quickly overwhelmed.

UDP flood
A UDP flood attack works by sending a flood of UDP packets with a spoofed source
address to an IP address. The server will respond to these requests, sending a reply to the
spoofed addresses. Due to the high volume of the attack, a router will exceed its limit of
UDP datagrams per second and stop sending to all addresses in the same security zone for
a period.

This also often utilizes a technique called a reflected attack. When the IP address for the
source is spoofed, the return packets are not sent back to the real source but the spoofed IP
address. The reason this technique is used is that it allows the sender to amplify an attack
by only expending resources on the outbound packets.

DNS
A DNS attack utilizes a UDP flood to take out a DNS server; many requests are made to
query a DNS server. The requests are designed to return a very large reply from a tiny
request to maximize the efficiency of the attack since the response is often not received by
the sender.

The attack which we looked at earlier, which targeted Dyn's infrastructure, taking out many
websites on the east and west coast of America in October 2016, was in the form of this
attack. Unlike most DNS attacks, the Miraia net did not use Reflection, it allowed the
responses to be returned to the sender, which was possible due to the enormous number of
compromised devices.

Security

[227]

NTP
NTP is another amplification attack which takes advantage of a feature built into NTP
servers, which returns up to the last 600 machines that have interacted with it. This attack
takes advantage of open NTP servers which support the MONLIST command and have not
been patched. The project h t t p ://o p e n n t p p r o j e c t . o r g / aims to identify unpatched
servers to encourage the removal of this exploit. Unfortunately, research carried out in 2014
by NSFOCUS found that there were over 17,000 servers worldwide which were vulnerable
to the exploit. Assuming all these servers could be used and using payload sizes from an
NTP attack which hit CloudFlare in 2014, we have the capability of a DDoS attack of 1.4
Tbps. This traffic would be twice the biggest attack known today. NTP provides a platform
for one of the most powerful application attacks and only exists due to poorly patched
servers.

CHARGEN
A CHARGEN (Character Generation Protocol) attack is another reflected amplification
attack. The attack takes advantage of open CHARGEN servers which, running on port 19,
will return a random number of characters between 0 and 512 in length every time it
receives a datagram from the connecting host. CHARGEN is designed to be used as a
source of byte-stream for debugging TCP network code and bandwidth measurement.
CHARGEN attacks work by abusing CHARGEN servers which have been enabled on
network-connected printers.

SYN flood
A SYN flood is a classic DDoS attack that sends a lot of packets to a machine, attempting to
keep connections from being closed. The connections eventually time out on the server side;
however, the aim is to repeatedly hit the server, consuming all the available resources so
genuine connections cannot get through.

SSDP
SSDP is the Simple Service Discovery Protocol, often used for the discovery of Plug & Play
(UPnP) devices. This is exactly the protocol implemented by your home router, so next time
you complain that your favorite gaming network is offline, why not first check that you are
not inadvertently exposing SSDP to the internet?

http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/
http://openntpproject.org/

Security

[228]

ACK
An ACK flood takes advantage of the three-way handshake that exists when a client
connects to a server. The first step is the client sends an SYN packet to which an SYN-ACK
packet is replied from the server. The client then finally replies with an ACK packet and
then the connection is open for data. An ACK flood takes one of two forms:

The attacker sends a spoofed SYN packet to a server and then follows this with a
spoofed SYN-ACK packet. The server then opens and holds open a connection. If
enough connections are open, then the server will eventually run out of
resources.
The second method is only to send the ACK packet. Since the server does not
have an open connection, this packet will be dropped; however, it still consumes
resources having to process these packets.

The attack is similar to a SYN attack; however, it can be more efficient due to the way it
tricks DDoS filters to pass the packets to the server.

Avoiding these attacks is not so simple: you need to detect and filter this activity at the edge
of your network. You also require massive amounts of bandwidth to soak up the traffic
inbound to your system, and this is not, in my opinion, something that can or should be
tackled by an in-house solution.

The first line of defense to avoiding DDoS attacks is to make sure you are not enabling
them. Configuring a firewall to ensure you are not exposing vulnerable services and
patching your services will mean an attacker cannot use your network infrastructure to
attack others. The second line is to leverage the power of Cloudflare, Akamai, Imperva, or
the other experts who have the infrastructure and network scrubbing filters to ensure the
traffic never gets to your server.

Application security
We now, hopefully, understand some of the ways that encryption works and some of the
ways that our infrastructure is vulnerable, but what about our application? It is entirely
plausible that someone will want to break into your system. While a DDoS attack might
cause you some inconvenience for a day or so, a hacker who gets past your firewall and into
your application servers could cause serious financial or reputational damage. The first
thing we need to do is to operate on a principle of no trust. David Strauss, in his talk, Don't
build "Death Star" security (2016 O'Reilly software architecture conference) looked at the
WikiLeaks website and concluded that it was not the first line of defense which fell, but the
attackers were able to gain access to various backend systems.

Security

[229]

At the same conference, Sam Newman, who wrote the excellent Microservices book (which I
encourage everyone to read if they have not yet), was also giving a talk on the Application
Security and Microservices. Sam stated that Microservices give us the capability for multiple
perimeters; while this can be a benefit, it can also cause problems. He suggested a model for
microservices security which is used by ThoughtWorks; this advises that you follow the
following four steps:

Prevention
Detection
Response
Recovery

Prevention
Prevention is where you should spend the most of your effort, and the remainder of this
chapter will concentrate on just that. This is implementing techniques for secure
communication, authorization, and authentication.

Detection
Detection relates to your application logs and ModSecurity logs if you are using it. We
discussed in the previous chapter some methods for logging in your system, and I suggest
you think about the type of logging you will need to detect malicious intent, not just for
fault finding. This should form part of your non-functional requirements when you are
planning a feature.

Security

[230]

Response
The response is how you tackle the breach: if an incident occurs, you need to deal with it
immediately. This not only involves closing the attackers out of the system but also
identifying what has been taken and in the case of personal information or credit card loss,
contacting your customers and being open about the problem. Think about what your
company does about fire drills in case of fire. You practice so that, in the event there is a fire,
everyone knows what to do and how to react quickly. Game days are standard practice for
a few companies, where they will rehearse disaster recovery situations. If you intend to
practice your response process, you need to ensure that the whole business is involved;
while tech will be included in the diagnostic and rectification of the problem, there needs to
be involvement on a business level, legal, PR, and communications for this to be truly
useful.

Recovery
The recovery process should be the simplest step, assuming your infrastructure is well
backed up and automated. Sam suggests not taking any chances and burning it down,
rebuilding with new keys and passwords to avoid a further attack.

Confused deputy
The confused deputy problem is where one system can abuse the trust another system has
and will execute a command which it would not ordinarily be allowed to do. Consider a
system which issues refunds inside of your system; you think that the system is safe as it is
a private API sitting behind your firewall, but what if an attacker manages to compromise
your firewall? If they can detect that sending a POST request with a payload to a server will
refund money to a bank or PayPal account then they do not even need to attempt to attack
further into your infrastructure to get their payday. This scenario is all too common; when
building systems, we place too much trust on the external defenses and run a principle of
trust for anything that sits behind the firewall. You also may be assuming that the attacker
is actually outside your organization; what if they have access to the servers legitimately? In
the USA, internal fraud accounts for XXX of financial losses; we need to build systems
which make this situation difficult and we need to make sure that we have a full audit trail
of access and operation. It does not need to be a difficult challenge to solve; we will see two
very simple ways that we can counter this problem which when implemented will neither
cause you additional development time or operational time.

Security

[231]

How an attacker could bypass the firewall
You are probably a little confused as to why the internal security of services matters; after
all, you have a great firewall, and all of the ports which should be are locked down.

An attacker has multiple tools in their arsenal to bypass your security systems. We are not
talking about people attempting to leverage existing exploits using tooling found on the
internet. We are talking about sophisticated and intelligent hackers who, for whatever
reason, are intent on causing harm to your company.

Scenario
You are an e-commerce platform built utilizing the latest microservices architectural
patterns. Your application code is running in Docker containers and you are hosting
everything on AWS with Kubenetes. The front end of the system is a simple Node.js
application which talks to a variety of private APIs to provide many of the transactional
capabilities on the site. The application itself does not have a database and there are no
secrets stored in the container.

Attack
An attacker finds a remote code execution vulnerability in the templating engine used for
the front end presentation. They discover that the system is running on Kubenettes and that
the control API is available inside the compromised container. They use this API to be able
to launch a rogue container on your network which, running in privileged mode, starts a
reverse SSH tunnel to the attacker's remote server, which completely bypasses the firewall
and gives them root access to the container. From here, they sniff the traffic on the network
and determine that the payment gateway has POST endpoint v1/refunds; by sending a JSON
payload to this endpoint, it is possible to refund huge amounts of money to an offshore
bank account.

Even though the firewall was protecting inbound traffic and only ports 80 and 443 were
allowed inbound, the attacker leveraged a vulnerability inside the application to be able to
create a backdoor for themselves. The nonexistent security around launching applications
inside the production environment and open non-encrypted communication between the
services gave them all they needed to empty the company's bank account.

Security

[232]

This is a very real threat, but thankfully Go has many excellent tools to help us make it
tough for an attacker.

Input validation
In our scenario, the attacker used a remote code execution exploit to gain access to our
environment. The first line of defense after the WAF is input validation. All data should be
validated to set bounds; it does not take an enormous amount of time to implement and can
help you protect against such an attack. There is an excellent library in Go which is part of
the go-playground package (https://github.com/go-playground/validator).

Take a look at this simple code example to see just how easy it is to implement:

validation/main.go

3 // Request defines the input structure received by a http handler
4 type Request struct {
5 Name string `json:"name"`
6 Email string `json:"email" validate:"email"`
7 URL string `json:"url" validate:"url"`
8 }

The nice thing about the validator package is that it works with field tags, which is an
unobtrusive way of keeping your code clean. By adding the validate tag, we can specify one
of many different validation functions for the field, including email, URL, IP addresses,
minimum and maximum length, and event regular expressions. It is also possible to have
multiple validators on the same field. For example, should I wish to validate that my input
is an email and has a minimum length of three, I could add the following:

validate: "email,min=3"

The validators process in the listed order, so the validation function to check whether the
field contained an email would be validated before checking the length.

Using the package is also incredibly simple: if we take a look at the example from our tests,
we can see that validation is actually only one method call:

 9 func TestErrorWhenRequestEmailNotPresent(t *testing.T) {
10 validate := validator.New()
11 request := Request{
12 URL: "http://nicholasjackson.io",
13 }
14
15 if err := validate.Struct(&request); err == nil {
16 t.Error("Should have raised an error")

https://github.com/go-playground/validator

Security

[233]

17 }
18 }

In its simplest form, all we need to do to validate a request are two method calls. First, we
create a new validator like in line 10 using the New function:

func New() *Validate

The New function returns a new instance of validate with sane defaults.

Then we can call the validate method to check that our structure is valid:

func (v *Validate) Struct(s interface{}) (err error)

The Struct function validates a struct's exposed fields, and automatically validates nested
structs, unless otherwise specified.

It returns InvalidValidationError for bad values passed in and nil or
ValidationErrors as error otherwise. You will need to assert the error if it's not nil, for
example, err.(validator.ValidationErrors) to access the array of errors.

If the struct has validation errors, Struct will return an error; to get detailed messages for
the error, we can cast the error to a ValidationErrors object, which is a collection of
FieldError. To see all the available methods for the FieldError object, check out the
godoc (https://godoc.org/gopkg.in/go-playground/validator.v9#FieldError).

Fuzzing
Of course, we should also beef up our testing techniques. One highly effective way of
testing the bounds of input validation is to use a fuzzer inside our tests; this just broadens
the scope of what we are testing to make sure we have all the edge cases covered. A
potential attacker will most likely use this technique to test the boundary of your API so
why not get the edge on them and make sure all of your input is correctly handled?

One of the most popular implementations of a fuzzer in Go is the excellent package
github.com/dvyukov/go-fuzz/go-fuzz. The go-fuzz is a coverage guided fuzzer, it
uses an instrumented build of your application code exposing the code coverage which it
uses to ensure that the maximum code paths are covered. The fuzzer generates random
input the intent behind which is to either crash the application or to produce unexpected
output. Fuzzing is an advanced topic however in the code samples for this chapter at
validation/fuzzer you can find an example of how to fuzz the validation handler we
have just covered.

https://godoc.org/gopkg.in/go-playground/validator.v9#FieldError

Security

[234]

TLS
The other exploit that our attacker took advantage of was that all of the traffic behind the
firewall was not encrypted and by sniffing the traffic between services, they discovered a
method to fake a call to the payments gateway to send a refund to a remote bank account.
The other issue might be that you are passing sensitive information such as bank details or
credit card numbers between your frontend service and your payment service. Even if you
are not storing the credit card numbers on your system, if you are not careful, you could
expose this traffic to an attacker by assuming that everything behind your firewall is safe.
TLS or Transport Layer Security no longer adds any overhead due to the advances in
processing power available to servers these days. In addition to this, services inside a
firewall generally have a limited number of connections; so, to improve the time that is lost
by the TLS handshake, you can use persistent reusable connections in your service to
minimize this problem. Let's take a look at how we can implement TLS really quickly in Go.

Generating private keys
Before we do anything, we need to generate a key and a certificate. Go actually has a pretty
awesome utility which can generate keys and certificates for us only in Go but before we
look at that, let's take a look at how we would traditionally generate a certificate using
openssl:

openssl genrsa -aes256 -out key.pem 4096

This will generate us a key in PEM format, which uses the RSA algorithm with a 4096 bit
size; the key will be encrypted using the aes256 format and will prompt you for a password.
However, we also need an X.509 certificate which will be used with this key; to generate
this, we can again use openssl and execute the following command:

openssl req -new -x509 -sha256 -key key.pem -out certificate.pem -days 365

This command will use the key to generate the certificate again in PEM format with a
validity of one year. In practice, we should not generate certificates which have such a long
lifespan for our internal services. Since we control the deployment of the services, we
should try to rotate keys as often as possible. The other thing to note about this certificate is
that while it is valid and secure, it will not be trusted by clients automatically. This is
because the root is auto-generated instead of coming from a trusted authority. This is fine
for internal use; however, if we need the service to be public facing we would need to ask a
trusted source to generate our certificate.

Security

[235]

Now we know how to do this with the openssl command-line tool, let's see how we could
achieve the same thing using only the Go crypto libraries. The example application, which
can be found at https://golang.org/src/crypto/tls/generate_cert.go, gives us the
details for this. Let's now take a look at the process step by step.

If we take a look at the example in tls/generate_keys, we can see that we are using the
GenerateKey method from the crypto/edcsa package:

120 func generatePrivateKey() *rsa.PrivateKey {
121 key, _ := rsa.GenerateKey(rand.Reader, 4096)
122 return key
123 }

The signature for the GenerateKey method on line 120 is as follows:

func GenerateKey(rand io.Reader, bits int) (*PrivateKey, error)

The first parameter is an I/O reader which will return random numbers; for this, we are
using the rand.Reader method, which is a global shared instance of a cryptographically
strong pseudo-random generator. On Linux, this will use /dev/urandom and on Windows,
CryptGenRandomAPI. The second is the bit size to use: bigger is more secure but will result
in slower encryption and decryption operations.

In order to serialize the key to a file, we need to run through a few different operations:

191 func savePrivateKey(key *rsa.PrivateKey, path string, password []byte)
error {
192 b := x509.MarshalPKCS1PrivateKey(key)
193 var block *pem.Block
194 var err error
195
196 if len(password) > 3 {
197 block, err = x509.EncryptPEMBlock(rand.Reader, "RSA PRIVATE
KEY", b, password, x509.PEMCipherAES256)
198 if err != nil {
199 return fmt.Errorf("Unable to encrypt key: %s", err)
200 }
201 } else {
202 block = &pem.Block{Type: "RSA PRIVATE KEY", Bytes: b}
203 }
204
205 keyOut, err := os.OpenFile(path, os.O_WRONLY|os.O_CREATE|os.O_TRUNC,
0600)
206 if err != nil {
207 return fmt.Errorf("failed to open key.pem for writing: %v", err)
208 }
209

https://golang.org/src/crypto/tls/generate_cert.go

Security

[236]

210 pem.Encode(keyOut, block)
211 keyOut.Close()
212
213 return nil
214 }

On line 192, we are taking the PrivateKey reference that is returned from the
GenerateKey function and we need to convert it into a slice of bytes so that we can
serialize this to disk. The crypto/x509 package has many useful functions to enable
operations like this; the one that we need to use is MarshalPKCS1PrivateKey, which will
marshal our RSA-based private key into ASN.1, DER format:

func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) ([]byte, error)

Once we have the key in byte format, we are ready to be able to write it to the file; however,
just writing the bytes to a file is not enough; we need to be able to write it in PEM format,
which looks like the following example:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-256-CBC,c4e4be9d17fcd2f44ed4c7f0f6a9b7a8

cfsmkm4ejLN2hi99TgxXNBfxsSQz6Pz8plQ2HJ1XToo8uXGALFlA+5y9ZLzBLGRj
...
zVYQvWh5NytrP9wnNogRsXqAufxf4ZLehosx0eUK4R4PsMy/VTDvcNo9P3uq2T32

-----END RSA PRIVATE KEY-----

The format for this file is as shown in the following code, and while we could manually
create this file, the crypto library in Go has us covered:

-----BEGIN Type-----
Headers
base64-encoded Bytes
-----END Type-----

We also need to keep our private keys safe, so if a password is specified, we are going to
encrypt the key like we were doing with the command-line option. In line 196, we are
checking to see whether a password has been specified and, if so, we are calling the method:

func EncryptPEMBlock(rand io.Reader, blockType string, data, password
[]byte, alg PEMCipher) (*pem.Block, error)

Security

[237]

This method returns a PEM block for the given DER encoded data which is encrypted with
the given password. The algorithm we are using in our example is AES256; however, Go
also supports the following ciphers:

const (
 PEMCipherDES PEMCipher
 PEMCipher3DES
 PEMCipherAES128
 PEMCipherAES192
 PEMCipherAES256
)

If we do not want to encrypt the key with a password then we need to do something
slightly different. In line 202, we need to create the PEM block ourselves; the pem package
provides this capability for us with the following struct:

type Block struct {
 Type string // The type, taken from the preamble
(i.e. "RSA PRIVATE KEY").
 Headers map[string]string // Optional headers.
 Bytes []byte // The decoded bytes of the contents.
Typically a DER encoded ASN.1 structure.
}

Whether we are using an encrypted PEM block or unencrypted, we use this with the
Encode function on the same package which will convert our data into the correct format:

func Encode(out io.Writer, b *Block) error

Generating X.509 certificates
Now that we have a private key, we can go ahead and generate our certificate. We have
already seen how easy this is to create with openssl and it is just as easy in Go:

125 func generateX509Certificate(
126 key *rsa.PrivateKey,
127 template *x509.Certificate,
128 duration time.Duration,
129 parentKey *rsa.PrivateKey,
130 parentCert *x509.Certificate) []byte {
131
132 notBefore := time.Now()
133 notAfter := notBefore.Add(duration)
134
135 template.NotBefore = notBefore
136 template.NotAfter = notAfter

Security

[238]

137
138 serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
139 serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
140 if err != nil {
141 panic(fmt.Errorf("failed to generate serial number: %s", err))
142 }
143
144 template.SerialNumber = serialNumber
145
146 subjectKey, err := getSubjectKey(key)
147 if err != nil {
148 panic(fmt.Errorf("unable to get subject key: %s", err))
149 }
150
151 template.SubjectKeyId = subjectKey
152
153 if parentKey == nil {
154 parentKey = key
155 }
156
157 if parentCert == nil {
158 parentCert = template
159 }
160
161 cert, err := x509.CreateCertificate(rand.Reader, template, parentCert,
&key.PublicKey, parentKey)
162 if err != nil {
163 panic(err)
164 }
165
166 return cert
167 }

We are passing in a few parameters into this method. One of the first, which might be a
little strange, is the template. Because we need to generate different kinds of certificate, such
as those which can sign other certificates to create a chain of trust, we need to create a
template to use which has some of the defaults populated. If we look at the rootTemplate,
which is defined at line 22, we can examine some of these options:

22 var rootTemplate = x509.Certificate{
23 Subject: pkix.Name{
24 Country: []string{"UK"},
25 Organization: []string{"Acme Co"},
26 OrganizationalUnit: []string{"Tech"},
27 CommonName: "Root",
28 },
29

Security

[239]

30 KeyUsage: x509.KeyUsageKeyEncipherment |
31 x509.KeyUsageDigitalSignature |
32 x509.KeyUsageCertSign |
33 x509.KeyUsageCRLSign,
34 BasicConstraintsValid: true,
35 IsCA: true,
36 }

Subject, which is an instance of the pkix.Name struct, has the following fields:

type Name struct {
 Country, Organization, OrganizationalUnit []string
 Locality, Province []string
 StreetAddress, PostalCode []string
 SerialNumber, CommonName string

 Names []AttributeTypeAndValue
 ExtraNames []AttributeTypeAndValue
}

These are the common elements of the X.509 distinguished name; most of these elements
are straightforward and represent the details of the owner of the certificate. SerialNumber
is one of the most important. The serial number must be unique for a certificate chain;
however, it does not need to be sequential. If we look at our example in line 138, we are
generating a large random integer 128 bits in length but you can change this to be anything
you like.

The next interesting bit of our certificate generation is the SubjectKey; this is required for
the chain of trust to work correctly. If a certificate is signed by another then the Authority
Key Identifier will match the parent certificate's Subject Key Identifier:

X509v3 Subject Key Identifier:
 5E:18:F9:33:BB:7B:E0:73:70:A5:3B:13:A8:40:38:3E:C9:4C:B4:17
X509v3 Authority Key Identifier:
keyid:72:38:FD:0F:68:5C:66:77:C0:AF:CB:43:C7:91:4C:5A:DD:DC:4D:D8

To generate the subject keys, we need to serialize the public version of the key into DER
format, and then extract the bytes for just the key part:

174 func getSubjectKey(key *rsa.PrivateKey) ([]byte, error) {
175 publicKey, err := x509.MarshalPKIXPublicKey(&key.PublicKey)
176 if err != nil {
177 return nil, fmt.Errorf("failed to marshal public key: %s", err)
178 }
179
200 var subPKI subjectPublicKeyInfo
201 _, err = asn1.Unmarshal(publicKey, &subPKI)

Security

[240]

202 if err != nil {
203 return nil, fmt.Errorf("failed to unmarshal public key: %s", err)
204 }
205
206 h := sha1.New()
207 h.Write(subPKI.SubjectPublicKey.Bytes)
208 return h.Sum(nil), nil
209 }

In line 174, we are converting the public key into a byte array using the
MarshalPKIXPublicKey function on the x509 package:

func MarshalPKIXPublicKey(pub interface{}) ([]byte, error)
MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format.

This returns us a byte array which represents an ASN.1 data structure; to get access to the
underlying data for the key, we need to unmarshal it into the struct format which is defined
at line 169:

169 type subjectPublicKeyInfo struct {
170 Algorithm pkix.AlgorithmIdentifier
171 SubjectPublicKey asn1.BitString
172 }

To perform this conversion, we can use the Unmarshal function, which is on the package
encoding/asn1. This method attempts to convert the ASN.1 data format:

func Unmarshal(b []byte, val interface{}) (rest []byte, err error)
Unmarshal parses the DER-encoded ASN.1 data structure b and uses the
reflect package to fill in an arbitrary value pointed at by val. Because
Unmarshal uses the reflect package, the structs being written to must use
upper case field names.

Finally, in line 161, we can create the certificate, using the CreateCertificate method on
the crypto/x509 package. This method accepts a parent certificate, which will be used to
sign the child. For our root certificate, we want this to be self-signed so we set both the
parent certificate and the private key to the root certificate's private key and template. For
the intermediate and leaf certificates, we would use the parent's details for this:

func CreateCertificate(rand io.Reader, template, parent *Certificate, pub,
priv interface{}) (cert []byte, err error)

Security

[241]

The CreateCertificate function creates a new certificate based on a template. The
following members of the template are used: SerialNumber, Subject, NotBefore,
NotAfter, KeyUsage, ExtKeyUsage, UnknownExtKeyUsage, BasicConstraintsValid,
IsCA, MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical,
PermittedDNSDomains, and SignatureAlgorithm.

The certificate is signed by parent. If the parent is equal to template then the certificate is
self-signed. The parameter pub is the public key of the signee and priv is the private key of
the signer.

Now we have certificates, let's see how we can secure a web server using TLS. Back in
Chapter 1, Introduction to Microservices, you may remember being introduced to
http.ListenAndServe from the standard HTTP package, which started an HTTP web
server. Go, of course, has an equally amazing package for creating a web server which is
secured with TLS. In fact, it is only two more parameters than the standard
ListenAndServe:

func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler)
error

All we need to do is pass the paths to our certificate and the corresponding private key and
the server when started will serve traffic using TLS. If we are using self-signed certificates,
and in our example we are, then we need to write some additional code for our clients,
otherwise when we try to make a connection to the server, we will get an error message like
the following:

2017/03/19 14:29:03 Get https://localhost:8433: x509: certificate signed by
unknown authority
exit status 1

To avoid this, we need to create a new cert pool and pass this to the client's TLS settings. By
default, Go will use the host's root CA set, which will not include our self-signed
certificates:

13 roots := x509.NewCertPool()
14
15 rootCert, err := ioutil.ReadFile("../generate_keys/root_cert.pem")
16 if err != nil {
17 log.Fatal(err)
18 }
19
20 ok := roots.AppendCertsFromPEM(rootCert)
21 if !ok {
22 panic("failed to parse root certificate")
23 }

Security

[242]

24
25 applicationCert, err :=
ioutil.ReadFile("../generate_keys/application_cert.pem")
26 if err != nil {
27 log.Fatal(err)
28 }
29
30 ok = roots.AppendCertsFromPEM(applicationCert)
31 if !ok {
32 panic("failed to parse root certificate")
33 }
34
35 tlsConf := &tls.Config{RootCAs: roots}
36
37 tr := &http.Transport{TLSClientConfig: tlsConf}
38 client := &http.Client{Transport: tr}

In line 13, we are creating a new certificate pool and then we read the certifcates, which are
PEM encoded into a slice of bytes. In line 20, we can then add these certificates to the new
cert pool; for the certificate to be identified as valid, we need both the intermediate
certificate and the root certificate. We can then create a new TLS config and add the certs;
this is then added to the transport and ultimately, in line 38, the client.

When we now run the client, it connects without any problem and we will see the Hello
World response correctly returned from the server.

Securing data at rest
Assuming our system had been attached to a database for storing things such as user
accounts, the attacker would have been able to get access to the complete database of
passwords. One of the things that we should think about when are storing data in a
database is the encryption of our data. There is no doubt that encrypting data is more
expensive than not encrypting it and that it can sometimes be difficult to figure out which
fields or tables we should encrypt and which we should leave plain.

Security

[243]

One of the many benefits microservices give us is that we separate function and data
between our systems. This can make deciding what data to encrypt easier as rather than
attempting to understand which data to encrypt within a datastore, you make a simpler
decision: is there any data which needs to be encrypted inside this datastore? If so, then
simply encrypt all of it. It may be beneficial to perform this encryption in the application
layer rather than the datastore as applications tend to scale better than datastores and you
must consider the edge cases that caching may introduce. If, to reduce the pressure on a
datastore, you add an intermediary caching layer using Elasticache or another technology,
you need to think about the security of your data. If the data is encrypted in the database
then you need to ensure that the same level of encryption is applied to the cache.

Physical machine access
When I say "physically", I mean access by humans; the code could be running on a VM.
However, the problem is the same: all too often, I find that companies give developers
access to databases and other sources of information running in a production environment.
Even if they do not have access to the database password, they may have access to the
config store or the ability to SSH into an application server and read the configuration from
the application that way. There is a security principle called the least privilege; this
recommends that accounts and services have the least amount of privilege to perform their
business function. Even if you have ensured that the machine-to-machine communication is
secured and there are appropriate safeguards with your firewall, there is always an
opportunity for an attacker to access your systems by the back door. Consider the following
scenario. A nontechnical employee in your company opens an email or downloads some
software which installs some malware on their laptop. The attacker uses this to get access to
their machine and, from there, manages to travel horizontally through the network and
eventually ends up on your laptop. Now, since you are logged in and busy working and
connected to the VPN into production, they manage to manage to install a key logger on
your machine which gives them access to your passwords, they retrieve your SSH keys
from your disk and because you have pretty much full access to production, now so do
they. While this may seem like science fiction, it is very possible. You can, of course, secure
your internal network but the best way to avoid such an attack is to restrict access to
production environments and data severely. You should not ever need this level of access;
with robust tests in my code, I often find that when a service misbehaves, it is not
something that production access helps me with. I should be able to reproduce almost any
error in a staging environment and the logging and metrics data that the service is emitting
should be enough for me to diagnose any issues. I am not saying I have never debugged
live on production but thankfully not in the last decade. Tooling and practice are such these
days that we should never need to return to those acts.

Security

[244]

OWASP
Whenever you are looking for practical web security advice on security, OWASP should
almost always be your first port of call.

For help with APIs, OWASP can also help: they have published the REST Security Cheat
Sheet (https://www.owasp.org/index.php/REST_Security_Cheat_Sheet).

Of course, as we have already discussed in this book, there are many different standards for
building APIs and REST is but one of them; there are, however, some useful generic tips
that we can leverage from this guide.

Never storing session tokens in a URL
JWT, which is probably the most common session token you will find used with APIs,
encodes into a format which is URL-safe. Storing or passing the token in a URL, however, is
not recommended, and it should always be stored in either a cookie or as a POST variable.
The reason for this is that if you pass session tokens in a URL, these can leak into your
server logs and, depending upon how you manage the duration of the token, if an attacker
gets access to your log files, they may also be able to obtain full access to execute commands
for your users.

Cross-site scripting (XSS) and cross-site request
forgery (CRSF)
XSS and CRSF only apply when your API is going to be used from a web browser, such as
in a single page app or a direct JavaScript call. However, to protect against an attacker
injecting malicious JavaScript which can retrieve your session token, you should make sure
that it is stored in a cookie which is marked as HTTP-only and that you only ever send them
over HTTPS to stop them being captured in transit. In addition to this, we can add a layer of
security which checks the HTTP referrer sent by the browser against the expected domain.
While it is possible to fake the HTTP referrer using something like cURL, it is not possible
or incredibly difficult to do this from JavaScript in the browser.

https://www.owasp.org/index.php/REST/_Security/_Cheat/_Sheet

Security

[245]

Insecure direct object references
When you are building an API, you need to ensure that you are checking the authenticated
users can modify the object in the request. This would be performed server side; we do not
want to give our attacker the capability to create a genuine login and then be able to
manipulate the request to perform an action on behalf of another user.

The OWASP documents are regularly updated as new attacks and vulnerabilities are found;
check the site often and keep yourself up to date.

Authentication and authorization
Authentication is the process or action of checking something to be true, such as: does this
username pair with this password? Authorization is the function of specifying access rights
or policy regarding a user.

Authentication is a well-understood concept; however, there are a few concepts we need to
understand to ensure that this action cannot be compromised, such as never storing
passwords in plain text in a datastore and preventing the hijack of a login session by
transferring an active token to a third party. Authorization, however, is equally important;
we discussed earlier the confused deputy problem: even when a user is authenticated, we
must still control the actions that they can perform on a system. Services which operate on a
principle of trust between themselves and do not independently validate a user's rights are
wide open to abuse should an attacker compromise your firewall. In this section, we will
look at just how easy it is to solve both of these problems, providing you with the patterns
so that your services never need to be exposed.

Security

[246]

Password hashing
A hash is one-way cryptography: you take a series of letters and numbers and by running
them through the hashing algorithm, you get a sequence which while reproducible with the
same original input cannot be reversed mathematically. So why would you use a hash
instead of just encrypting the data? Firstly, hashes do not require any keys, and therefore
they are not vulnerable to the loss of private keys, and they are perfect for storing data
which does not need to be reversed. Consider passwords: your system never needs to know
what the user's password is, and it only needs to know that the value passed to you by the
user matches the stored value. Hashing a password is the perfect approach to security: you
hash the input from the user and compare this hash with the value you have in your data
store. If the database is compromised then the attacker will not be able to decode the
passwords. The attacker could, of course, attempt to brute force the password, but
currently, there is not enough computing power on the planet to be able to decode a decent
hash. Does that mean that hashes are invulnerable? No. In fact, many thought that MD5
hashes were irreversible; however, this algorithm had been compromised. It is possible to
find collisions within a matter of seconds. There was a case back in 2011 where attackers
used this vulnerability to create fake SSL certificates which allowed them to exploit users'
trust. Thankfully, we no longer use MD5 or SHA-1 for cryptographic purposes. You will
still find it used for signatures such as in git commits where the possibilities of collision are
offset by the speed of calculation but for security, we need to use a more modern algorithm.

Adding a little seasoning
While a hash on its own provides a decent level of security, we can add a salt and a pepper.
The salt is stored in the database along with the encrypted data. The intention behind this is
to make brute forcing data more computationally expensive. It stops the attacker from using
Rainbow tables to attack your data. Rainbow tables are precomputed tables of hashes, so
instead of having to compute the hash with every attempt, you can simply look up the
encrypted string in the table and return the original value. To counter this, we added a salt
which is randomly generated for each value and appended to it before hashing. Even
though we store this in the database along with the hashed value as we need to use it later
to check the value, it stops the use of Rainbow tables as each table would have to be
computed for every salt, and this is computationally very expensive. To further enhance
security, we often also add a pepper, which is a precomputed value which is stored
separately from the salt and hashed value.

Security

[247]

Common practice is to pre-generate a list of peppers and store them in a configuration
store. When you are first hashing a password or other value, you would select one of the
peppers at random and append it to the value in the same way as you do for the salt. Then
when checking a supplied value matches the hash, you would loop through the list of
peppers and generate a hash to compare with each one. This adds a little computation time
to checking a password in your service; however, not nearly as much effort as it will add to
the attacker who is attempting to brute force your values. Let's take a look at how we can
hash a value in using a salt and a pepper.

If we take a look at the source code in hashing/hash.go, we can create a hash from an
input string using the following GenerateHash method. The GenerateHash method has
the following signature and given an input string, it returns a random salt and the hashed
string using the sha512 algorithm:

func GenerateHash(input string) (hash string, salt string)

To use this, we can simply call the method with our string to hash and we would get some
output as follows:

h:= New(peppers)
hash, salt := h.GenerateHash("HelloWorld1")

fmt.Println("Salt: ", salt)
fmt.Println("Hash: ", hash)

---Output
Salt: 15f42f8b4f1c71dc6183c822fcf28b3c34564c32339509c2c02fa3c4dda0ed4f
Hash:
b16a89d3c41c9fe045a7c1b892d5aa15aee805d64b753e003f7050851ef4d374e3e16ce2350
0020746174f7b7d8aeaffebf52939f33c4fda505a5c4e38cdd0e1

Let's look more in depth at what this function is doing:

22 // GenerateHash hashes the input string using sha512 with a salt and
pepper.
23 // returns the hash and the salt
24 func (h *Hash) GenerateHash(input string) (hash string, salt string) {
25 pepper := h.getRandomPepper()
26 salt = h.generateRandomSalt()
27 hash = h.createHash(input, salt, pepper)
28
29 return
30 }

Security

[248]

The first thing we are doing, on line 25, is retrieving a random pepper from the slice of
peppers which is passed to the struct when we initialize it with New(peppers). The pepper
does not need to be stored in the database; this is purely to slow down a potential attacker
by requiring them to increase their brute force attempts by a factor of five in our example.
We can increase the number of peppers and as you can see from the benchmark below, even
at 1,000 peppers, we are still able to compare a hash in 1 ms but for the additional security
this will give you is probably not worth it. It takes 4,634 ns to generate one hash and due to
the length of the string, we would need to generate a maximum of 6.2e19 or 62 quintillion
permutations. This is assuming 63 allowable characters and a password 11 characters in
length. That is a pretty big number, and to generate that many hashes would take roughly 9
million years to brute force for a single CPU.

Dictionary attacks
However, not all passwords are complex and many are susceptible to an attack known as a
dictionary attack. Instead of attempting all 62 quintillion permutations, the dictionary attack
concentrates on those which are most likely to succeed. The dictionaries themselves are
often derived from password databases which have previously been exploited and since
humans are somewhat predictable, we often use the same passwords. Because our
password HelloWorld1 is already in the dictionary which contains 14 million other
passwords, when I attempted to break the salted hash using John the Ripper, it only
took 2.4 seconds to retrieve the password.

Adding a pepper
There is a fine line as to what we can do to stop our users using simple passwords. We
should always have a policy of what constitutes a good password--minimum length, the
mixture of case, an addition of symbols, and so on--but usability can be compromised the
more complex the password gets. Adding a pepper, however, can help to slow the attacker
down: the pepper or peppers are known to the system but not stored with the password
and salt. They can be hard coded into the application code, stored as launch configuration
or stored in a secure vault which is accessed at runtime. In the same way, we appended the
salt to the user's password, we do the same thing with the pepper. Should the database
tables become compromised due to a SQL injection attack then unless the attacker can
retrieve the peppers, the database is useless. Of course, it is possible for the attacker to get
hold of your peppers; however, almost everything in security is about making it difficult
and slowing someone down.

Security

[249]

bcrypt
bcrypt is another popular method of hashing passwords, it uses a variable number of
rounds to generate the hash which both slows down the ability to brute force the attack and
the time it takes to generate the hash. Go has an implementation of bcrypt which is
provided by the experimental packages at h t t p s ://g o d o c . o r g /g o l a n g . o r g /x /c r y p t o /b c r

y p t . To hash a password with bcrypt we use the GenerateFromPassword method:

func GenerateFromPassword(password []byte, cost int) ([]byte, error)

The GenerateFromPassword method returns the bcrypt hash of the password at the given
cost. The cost is a variable which allows you to increase the security of the returned hash at
the expense of more processing time to generate it.

To check the equality of a bcrypt hash we can not call GenerateFromPassword again with
the given password and compare the output to the hash we have stored as
GenerateFromPassword will create a different hash every time it is run. To compare
equality we need to use the CompareHashAndPassword method:

func CompareHashAndPassword(hashedPassword, password []byte) error

The CompareHashAndPassword method compares a bcrypt hashed password with its
possible plain text equivalent. bcrypt is a secure method of protecting passwords but it is
slow, let's take a look in a little more depth at the cost of generating hashes.

Benchmarks
The following table illustrates the approximate time it takes to generate and compare a
hashed string using the methods we have discussed so far. Even with 1,000 peppers, we
would be looking at a processing time of approximately 1.5 ms to run the comparison. This
might not seem a huge amount of time; however, we need to take these benchmarks with a
pinch of salt as they are running a single operation where your server will be dealing with
multiple requests concurrently. What we do know is that comparing a hash with a list of
1,000 peppers takes 10x longer than comparing a list of 100 and this is 10x longer than a list
of 10:

Even with 1,000 peppers, we would be looking at a processing time of approximately 1.5 ms
to run the comparison. This might not seem a huge amount of time; however, we need to
take these benchmarks with a pinch of salt as they are running a single operation where
your server will be dealing with multiple requests concurrently. What we do know is that
comparing a hash with a list of 1,000 peppers takes 10x longer than comparing a list of 100
and this is 10x longer than a list of 10:

https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt

Security

[250]

BenchmarkGeneratePlainHash-8 30000000 1069 ns/op
BenchmarkGenerateHashWithSaltAndPepper-8 5000000 5223 ns/op
BenchmarkGenerateBcrypt-8 500 68126630 ns/op
BenchmarkCompareSaltedHash-8 20000000 1276 ns/op
BenchmarkComparePlainHash-8 20000000 1174 ns/op
BenchmarkCompareHash5Peppers-8 20000000 4980 ns/op
BenchmarkCompareHash10Peppers-8 10000000 4669 ns/op
BenchmarkCompareHash100Peppers-8 1000000 22150 ns/op
BenchmarkCompareHash1000Peppers-8 20000 1492037 ns/op
BenchmarkCompareBCrypt-8 500 70942742 ns/op

Given this information, we can balance our service for speed against security; however, we
should always lean on the more secure. To learn how Facebook manages hashing I
recommend you take a look at Alec Muffett's talk Facebook: Password hashing and
Authentication (h t t p s ://w w w . y o u t u b e . c o m /w a t c h ?v =N Q D o 2e 3g j 1A).

JWTs
A JSON Web Token (JWT) is a standard for safely passing claims or data attributed to a
user within an environment. It is an incredibly popular standard and is available for just
about every major language and framework, certainly for Go. There are two main strengths
of JWT. One is a standard format for the claims, which makes the availability of reliable
frameworks possible. The other is the use of asymmetric encryption, which means that
because a token is signed, the receiver only needs the public key of the signer to validate
that the token has indeed come from a trusted source and this allows us to lock down access
to the private keys to an authorization server.

Format of a JWT
A JWT is broken into three different parts, which are encoded as Base64-URL. Like standard
Base64, Base64-URL substitutes characters such as + and / for - and _ and removes all the
padding. This allows the token to be safely transferred in a URL.

https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A
https://www.youtube.com/watch?v=NQDo2e3gj1A

Security

[251]

The result is a token which looks like the following example:

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3NMZXZlbCI6InVzZXIiLCJleHAiOj
E4MDc3MDEyNDYsInVzZXJJRCI6ImFiY3NkMjMyamZqZiJ9.iQxUbQuEy4Jh4oTkkz0OPGvS86xO
WJjdzxHHDBeAolv0982pXKPBMWskSJDF3F8zd8a8nMIlQ5m9tzePoJWe_E5B9PRJEvYAUuSp6bG
m7-
IQEum8EzHq2tMvYtPl9uzXgOU4C_pIjZh5CjFUeZLk5tWKwOOo8pW4NUSxsV2ZRQ_CGfIrBqEQg
KRodeLTcQ4wJkLBILBzmAqTVl-5sLgBEoZ76C_gcvS6l5HAwEAhmiCqtDMX46o8pA72Oa6NiVRs
gxrhrKX9rDUBdJAxNwFAwCjTv6su0jTZvkYD80Li9aXiMuM9NX7q5gncbEhfko_byTYryLsmmaU
SXNBlnvC_nQ

The three distinct parts of the token are the header, the payload, and the signature. The
header declares the type of the encoded object and the algorithm for the cryptographic
signature:

{
 "alg": "RS256",
 "typ": "JWT"
}

The second object payload which contains the details of the claims related to the token:

{
 "userID": "abcsd232fjfj",
 "accessLevel": "user"
}

And finally, the third part is the signature, which is an optional element shown as follows in
the decoded state:

Tm
 <a=<kNX[d\1k$H_3w5C7NAIR1b
 Hy
1TyՊ5D]Ehuq0&B s
V_{@! 39Tl5t17@(ӿ.پF5~ H_6+&\[1m%

Every element in the JWT is base64URL encoded
(https://en.wikipedia.org/wiki/Base64#URL_applications); the signature represented
in its binary form is the sha256 of the message in the following format:

Base64URL(header).Base64URL(payload)

The format of the signature can either be symmetrical (HS256) using a shared secret or
asymmetrical (RS256), which uses public and private keys. For JWTs, the best option is the
asymmetrical option as for a service which needs to authenticate the JWT, it only requires
the public part of the key.

https://en.wikipedia.org/wiki/Base64#URL_applications

Security

[252]

We can validate our JWT only using the command line. First, we need to convert our
base64URL-encoded signature into standard base64 encoding by replacing _ with / and -
with +. We can then pipe that into the base64 command-line application and pass in the -D
flag to decode the input; we then output this into a file:

cat signature.txt | sed -e 's/_/\//g' -e 's/-/+/g' | base64 -D >
signature.sha256

The next step is to validate that the signature has been signed by the correct key by
validating it against a public key:

openssl dgst -sha256 -verify ../keys/sample_key.pub -signature
signature.sha256 data.txt

Generating JWTs with Go is very straightforward thanks to some amazing community
packages. The package we will be using in the example code is called jose and has been
created by Eric Largergren (h t t p s ://g i t h u b . c o m /S e r m o D i g i t a l /j o s e). According to the
listing on jwt.io, this package implements all the capabilities defined in the standard and
was an obvious choice at the time of writing.

If we take a look at the file chapter8/jwt/jwt.go and look at the GenerateJWT method,
we can see just how simple it is to create a JWT using jose:

30 // GenerateJWT creates a new JWT and signs it with the private key
31 func GenerateJWT() []byte {
32 claims := jws.Claims{}
33 claims.SetExpiration(time.Now().Add(2880 * time.Minute))
34 claims.Set("userID", "abcsd232jfjf")
35 claims.Set("accessLevel", "user")
36
37 jwt := jws.NewJWT(claims, crypto.SigningMethodRS256)
38
39 b, _ := jwt.Serialize(rsaPrivate)
40
41 return b
42 }

The first thing that we need to do is to generate a list of claims and to set an expiration; we
are setting the expiration to two weeks. We can then set a list of claims using the Set
function:

func (c Claims) Set(key string, val interface{})

https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose
https://github.com/SermoDigital/jose

Security

[253]

Finally, in line 39, we can create a new JWT passing the claims and the signing method to
the NewJWT function:

func NewJWT(claims Claims, method crypto.SigningMethod) jwt.JWT

We can then call the Serialize method, which has as a parameter the private key - in our
case, an instance of rsa.PrivateKey - and returns us a slice of bytes in the encoded
format:

func (j *jws) Serialize(key interface{}) ([]byte, error)

Validating a JWT with jose is as easy as it was to create the JWT:

46 func ValidateJWT(token []byte) error {
47 jwt, err := jws.ParseJWT(token)
48 if err != nil {
49 return fmt.Errorf("Unable to parse token: %v", err)
50 }
51
52 if err = jwt.Validate(rsaPublic, crypto.SigningMethodRS256); err != nil
{
54 return fmt.Errorf("Unable to validate token: %v", err)
55 }
56
57 return nil
58 }

The first thing we need to do is to parse our JWT from a byte array into the jwt struct using
the ParseJWT function:

func ParseJWT(encoded []byte) (jwt.JWT, error)

Then we can call the Validate method, passing the public key corresponding to the private
one which signed the message and the signing method. Optionally, we can provide a
customer validator function; the default validation will only check the signature and that
the token has not expired:

func (j *jws) Validate(key interface{}, m crypto.SigningMethod, v
...*jwt.Validator) error

When the validation fails, an error will be returned; if the error is nil then the token is valid
and the claims within can be trusted.

Security

[254]

Secure messages
When we need to send an encrypted message, one of the best ways to do this is with
asymmetric encryption, where we encrypt the message with publically known information
which can be easily distributed and then decrypt it with the private key which is securely
held by a single party.

The crypto packages in Go have all the features we need to secure our data. If we take a
look at the example chapter8/asymmetric/asymmetric.go, the
EncryptDataWithPublicKey method is a simple implementation of the rsa package's
public key encryption:

func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg
[]byte, label []byte) ([]byte, error)

The first parameter is a cryptographic hash which is used as the random oracle to process
the message before encryption. This function must be the same for encryption and
decryption and the documentation recommends using a sha256. The next parameter is a
random number generator; this is used as a source of entropy to ensure that if you encrypt
the same message twice, you do not return the same cyphertext. pub is the rsa.PublicKey
that we would like to use to encrypt the message; the message itself is passed as a slice of
bytes. The final parameter is optional and is not encrypted in the resultant cyphertext; it can
be used to help the receiver understand information such as which key has been used to
encrypt the message, but extreme care must be taken not to add data to the label which
could compromise the security of the encrypted message:

41 // EncryptMessageWithPublicKey encrypts the given string and retuns the
encrypted
42 // result base64 encoded
43 func EncryptMessageWithPublicKey(message string) (string, error) {
44
45 modulus := rsaPublic.N.BitLen() / 8
46 hashLength := 256 / 4
47 maxLength := modulus - (hashLength * 2) - 2
48
49 if len(message) > maxLength {
50 return "", fmt.Errorf("The maximum message size must not exceed: %d",
maxLength)
51 }
52
53 data, err := EncryptDataWithPublicKey([]byte(message))
54 return base64.StdEncoding.EncodeToString(data), err
55 }

Security

[255]

The first thing we are doing in this method is to check whether the message is shorter than
the maximum permitted length for this encryption method. The maximum length must be
no longer than public modulus minus twice the hash length minus a further two. Due to the
mathematics involved in public key cryptography, we can only allow for the encryption of
small messages. We will look at how we can work around this issue a little later on. In line
53, we are calling another internal function, which simply calls the EncryptOAEP function
in the rsa package. We then encode the data to base64 and return the result.

Decrypting the data is as straightforward:

57 // DecryptMessageWithPrivateKey decrypts the given base64 encoded
ciphertext with
58// the private key and returns plain text
59 func DecryptMessageWithPrivateKey(message string) (string, error) {
60 data, err := base64.StdEncoding.DecodeString(message)
61 if err != nil {
62 return "", err
63 }
64
65 data, err = DecryptDataWithPrivateKey(data)
66 return string(data), err
67 }

Because our implementation of the encryption method returned a base64-encoded string,
the first thing we do before decrypting the message is to decode it back into its binary form.
We then call the internal method DecryptDataWithPrivateKey; this is a wrapper for the
method rsa.DecryptOAEP:

func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey,
ciphertext []byte, label []byte) ([]byte, error)

This method has the same parameters to the encrypt method except this time we are using
the private key. If we recall how asymmetric encryption works, we can encrypt with a
public key but you cannot decrypt a message with the public key. The private key must be
used for this purpose.

Security

[256]

Shared secrets
Symmetrical encryption also has its uses: for one, it is faster and the other is that it can
handle a message of any size. Implementing symmetrical encryption in Go is, as you would
expect, quite straightforward: we have the excellent crypto/aes package which manages
all the heavy lifting for us. Let's look at how we could encrypt a message with AES. Look at
the example file symmetric/symmetric.go:

12 func EncryptData(data []byte, key []byte) ([]byte, error) {
13 if err := validateKey(key); err != nil {
14 return make([]byte, 0), err
15 }
16
17 c, err := aes.NewCipher(key)
18 if err != nil {
19 return make([]byte, 0), err
20 }
21
22 gcm, err := cipher.NewGCM(c)
23 if err != nil {
24 return make([]byte, 0), err
25 }
26
27 nonce := make([]byte, gcm.NonceSize())
28 if _, err = io.ReadFull(rand.Reader, nonce); err != nil {
29 return make([]byte, 0), err
30 }
31
32 return gcm.Seal(nil, nonce, data, nil), nil
33 }

The first thing we need to do on line 13 is to validate the length of the key. The length of the
key determines the strength of the encryption; a 16-byte key will encrypt with AES-128, 24
bytes AES-192, and 32 bytes AES-256. We then create a new GCM (Galois/Counter Mode)
cipher and pass it the reference to our AES cipher:

func NewGCM(cipher Block) (AEAD, error)

We then need to create a nonce which is used to protect against replay attacks and finally
we can call the Seal method which encrypts our data:

Seal(dst, nonce, plaintext, additionalData []byte) []byte

Security

[257]

Unlike RSA public key encryption, the size of the message that AES can handle is pretty
much unlimited; the problem, however, is that the secret must be shared by both the writer
and the reader, which introduces the problem of distributing keys to both parties.

Decryption works in the reverse of the encryption method, an example of which can be seen
in the next code block:

35 // DecryptData decrypts the given data with the given key
36 func DecryptData(data []byte, key []byte) ([]byte, error) {
37 c, err := aes.NewCipher(key)
38 if err != nil {
39 return make([]byte, 0), err
40 }
41
42 gcm, err := cipher.NewGCM(c)
43 if err != nil {
44 return make([]byte, 0), err
45 }
46
47 nonceSize := gcm.NonceSize()
48 if len(data) < nonceSize {
49 return make([]byte, 0), fmt.Errorf("ciphertext too short")
50 }
51
52 nonce, ciphertext := data[:nonceSize], data[nonceSize:]
53 return gcm.Open(nil, nonce, ciphertext, nil)
54 }

The main thing we need to note in this code block is in the gcm.Open method:

Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error)

The nonce that we are going to use to decrypt the message needs to be the same one that
was used to encrypt the message. When we called Seal, the slice of bytes returned from the
method is the encrypted message and the nonce, so to retrieve it, we only need to calculate
the size of the nonce and then split the bytes slice up into two parts.

Security

[258]

Asymmetric encryption with large messages
We have already discussed the problem with asymmetric encryption is that it can only be
used for relatively small messages; however, the benefits of not having to deal with key
distribution is hugely advantageous over symmetrical. There is a common solution to this
problem; that solution is to create a random key and symmetrically encrypt a message then
asymmetrically encrypt the key and distribute both parts to the receiver. Only the holder of
the private key will be able to decrypt the symmetrical key and only once the symmetrical
key has been decrypted can the receiver decrypt the main message:

69 // EncryptLargeMessageWithPublicKey encrypts the given message by
randomly generating
70 // a cipher.
71 // Returns the ciphertext for the given message base64 encoded and the
key
72 // used to encypt the message which is encrypted with the public key
73 func EncryptLargeMessageWithPublicKey(message string) (ciphertext
string, cipherkey string, err error) {
74 key := utils.GenerateRandomString(16) // 16, 24, 32 keysize, random
string is 2 bytes per char so 16 chars returns 32 bytes
75 cipherData, err := symetric.EncryptData([]byte(message), []byte(key))
76 if err != nil {
77 return "", "", err
78 }
79
80 cipherkey, err = EncryptMessageWithPublicKey(key)
81 if err != nil {
82 return "", "", err
83 }
84
85 return base64.StdEncoding.EncodeToString(cipherData), cipherkey, nil
86 }

Looking at the example in asymmetric/asymmetric.go, we can see that we are doing
exactly this. This function mealy wraps the two methods for symmetrical and asymmetrical
encryption that we looked at earlier in this chapter. Decryption is as simple:

 88 // DecryptLargeMessageWithPrivateKey decrypts the given base64 encoded
message by
 89 // decrypting the base64 encoded key with the rsa private key and then
using
 90 // the result to decrupt the ciphertext
 91 func DecryptLargeMessageWithPrivateKey(message, key string) (string,
error) {
 92 keystring, err := DecryptMessageWithPrivateKey(key)
 93 if err != nil {
 94 return "", fmt.Errorf("Unable to decrypt key with private key: %s",

Security

[259]

err)
 95 }
 96
 97 messageData, err := base64.StdEncoding.DecodeString(message)
 98 if err != nil {
 99 return "", err
100 }
101
102 data, err := symetric.DecryptData(messageData, []byte(keystring))
103
104 return string(data), err
105 }

Maintenance
One important element of keeping your system secure is making sure you keep it up to date
with all the latest security patches. This approach needs to be applied to your application
code and your server's operating system and applications, and if you are using Docker, you
also need to ensure that your containers are up to date to ensure you are free from
vulnerabilities.

Patching containers
One of the simplest ways to keep your containers secure is to ensure that you build and
deploy them regularly. Quite often, if a service is not under active development, then it may
not be deployed to production for months on end. Because of this problem, you may be
patching host-level application libraries such as OpenSSL but because of the application
isolation that a container gives, you may have vulnerable binaries at a container level. The
simplest way of keeping things up to date is to run a regular build and deploy even if the
application code does not change. You also need to ensure that if you are using a base
container in your Dockerfile, this is also built and updated.

Docker hub, quay.io, and a couple of other software as a service registries have the
capability to automatically rebuild a container when a linked container changes. If you are
building an image which is based on golang:latest, you can automatically trigger a
build when the upstream image is pushed to the registry. You can also run automated
security scanning, which examines the layers in your image and scans for any CVE
vulnerabilities. It will let you know in which layer the vulnerability exists and quite often
you will find that this is in the base layer, such as Ubuntu or Debian.

Security

[260]

Software updates
Patching the software on your host and in your Docker image can help keep you safe from
vulnerabilities such as Heartbleed, which was found in OpenSSL. Patching software
updates are relatively straightforward. You can configure your host to automatically update
itself; the other option, which I prefer, is to ensure that your infrastructure is automated so
that you can burn it down and rebuild it.

Patching application code
In the same way that the software on the host needs to be updated, you must also update
your application code to ensure you always have the latest updates. Quite often, an
approach of locking your application dependencies to a version is followed and with the
vendoring support which was introduced in Go 1.5, this process has been growing in the
community. One problem with this and one of the main reasons that vendoring was not
present in releases prior to go 1.5 is to encourage you to build your application code against
the latest packages and to fix any problems that occur with breaking API changes sooner
rather than later. If you do use vendoring, and I am certainly not going to suggest you do
not use it, then you should run a nightly build which updates all libraries to the latest
version. You do not necessarily have to deploy this to production; however, if the tests pass
then why not? If the tests fail then, even if it is a service which is not under active
development, this should be a trigger to you to perform a little maintenance.

Logging
If we have protected our passwords and implemented decent security, we still need to
know when we are under threat. In the previous chapter, we introduced logging and
logging can be a useful tool as part of your security policy. Consider someone attempting to
brute force your application login; tracking high levels of authentication errors along with
the source IP can be useful when you need to react to this threat. The IP address of the
attacker can be blocked by the firewall.

The content of log files needs to consider the following attributes:

Who is performing the action
What has failed or succeeded
When is the action occurring
Why this has failed or succeeded
How you can deal with the issue

Security

[261]

The following example contains nowhere near enough information to be useful and, in fact,
other than letting you know there may be a failure, you might as well not even consume the
space taken by such logs:

Aug 18 11:00:57 [AuthController] Authentication failed.

The following example is far better; it shows the problem in much greater depth and
describes in detail the events that a user is taking to access the system. Modern log
evaluation tools such as Kibana allow filtering and grouping of such log files, which allows
you to build up a dashboard or list of events:

Aug 18 11:00:57 [AuthController] Authentication failure
for nicj@example.com by 127.0.0.1 - user unknown -
/user/login /user/myaccount
Aug 18 11:01:18 [AuthController] Authentication failure
for nicj@example.com by 127.0.0.1 - invalid password -
/user/login?err=1 /user/login
Aug 18 11:02:01 [AuthController] Authentication failure
for nicj@example.com by 127.0.0.1 - incorrect 2FA code
- /user/login?err=2 /user/login

For example, you could create a dashboard which is looking at failed attempts from a single
IP address above a certain threshold, which could indicate a malicious attempt to brute
force access to a system. It is often possible to set alerts on such events, allowing you to
proactively identify a threat and block access.

Summary
In this chapter, we have learned some of the attacks your service may face from an intruder.
We, hopefully, should have an introduction on how encryption works and how we can
leverage Go's standard package to implement these to keep our service safe. There is little
you can do to completely protect yourself from a determined attacker; however, using the
simple techniques described in this chapter should form your standard working practice.
Implementing many of these techniques will not slow down your development cycle by any
significant degree; it will, however, give you an edge to keep you safe.

9
Event-Driven Architecture

In the last few chapters, we have looked at issues around stability and performance, and
some patterns you can employ in your code, which enable more stable systems. In this
chapter, we are going to take a more in-depth look at event-driven architecture.

As your system grows, these patterns become more important; they allow you to loosely
couple your microservices, and therefore you are not bound to the same dependencies of
intertwined objects common in monolithic applications. We are going to learn that with the
right amount of up-front design and effort that loosely coupling your systems with events
need not be a painful process.

Before we begin, be sure to fetch the source code from h t t p s ://g i t h u b . c o m /b u i l d i n g - m i c
r o s e r v i c e s - w i t h - g o /c h a p t e r 9

Differences between synchronous and
asynchronous processing
If there is a choice between processing a message synchronously or asynchronously, then I
would always choose synchronous as it always makes the application simpler with fewer
components parts, the code is easier to understand, tests easier to write, and the system
easier to debug.

https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9
https://github.com/building-microservices-with-go/chapter9

Event-Driven Architecture

[263]

Asynchronous processing should be a design decision that is driven by need, be that the
requirement for decoupling, scale, batch processing, or time-based processing. Event-
Driven Systems give an ability to scale at much higher things than monolithic systems and
the reason for that is that because of the loose coupling the code scales horizontally with
both greater granularity and effectiveness.

Another problem with asynchronous processing is the additional burden it adds to your
operations. We need to create infrastructure for message queuing and message delivery,
this infrastructure needs to be monitored and managed, even if you are using your cloud
provider's functionality such as SNS/SQS or PubSub.

There is even a question about whether you should be implementing microservices or
building a monolith, however, I think smaller chunks of code are invariably easier to deploy
and test at the cost of increased duplication for setup of continuous integration and
provisioning of hardware is a one-time hurdle and something that is worth learning. We
will look at that in the next chapter when we examine continuous deployment and
immutable infrastructure, but for now, let's stick with events.

Having got the warning out of the way, let's retake a look at the difference between the two
styles of message processing.

Event-Driven Architecture

[264]

Synchronous processing
With synchronous processing, all the communication to a downstream application happens
in the process. A request is sent, and you wait for a reply using the same network
connection and not using any callbacks. Synchronous processing is the simplest method of
communication; while you are waiting for an answer the downstream service is processing
the request. You have to manage the retry logic yourself, and it is typically best used only
when you need an immediate reply. Let's take a look at the following diagram that depicts
synchronous processing:

Event-Driven Architecture

[265]

Asynchronous processing
With asynchronous processing, all the communication to the downstream application
happens out of process leveraging a queue or a message broker as an intermediary. Rather
than communicating directly with the downstream service, messages dispatch to a queue
such as AWS SQS/SNS, Google Cloud Pub/Sub, or NATS.io. Because there is no
processing performed at this layer the only delay is the time it takes to deliver the message,
which is very fast, also due to the design of these systems, acceptance, or not of a message is
the only situation you must implement. Retry and connection handling logic is delegated to
either the message broker or the downstream system as it is the storage of messages for
archive or replay:

Event-Driven Architecture

[266]

Types of asynchronous messages
Asynchronous processing often comes in two different forms, such as push and pull. The
strategy that you implement is dependent upon your requirements, and often a single
system implements both patterns. Let's take a look at the two different approaches.

Pull/queue messaging
The pull pattern is an excellent design where you may have a worker process running,
which for example is resizing images. The API would receive the request and then add this
to a queue for background processing. The worker process or processes read from the
queue retrieving the messages one by one, perform the required work, and then delete the
message from the queue. Often there is also a queue commonly called a "dead letter queue"
should the worker process fail for any reason then the message would be added to the dead
letter queue. The dead letter queue allows the messages to be re-processed in the case of an
incremental failure or for debugging purposes. Let's take a look the following diagram,
which summarizes the whole process:

Event-Driven Architecture

[267]

Implementing a queue-based service in Go is a relatively straightforward task, let's walk
through the example in the source code that accompanies this book. This example uses
Redis for storing the messages. Redis is an incredibly fast data store, and, while it is nice to
be able to leverage a cloud providers queue rather than managing our infrastructure, this is
not always possible. However, even if we are using cloud providers queue the pattern we
are about to look at is easily replaceable with a different data store client. If we consider the
following listing from the example code in queue/queue.go:

 7 // Message represents messages stored on the queue
 8 type Message struct {
 9 ID string `json:"id"`
 10 Name string `json:"name"`
 11 Payload string `json:"payload"`
 12 }
 13
 14 // Queue defines the interface for a message queue
 15 type Queue interface {
 16 Add(messageName string, payload []byte) error
 17 AddMessage(message Message) error
 18 StartConsuming(size int, pollInterval time.Duration, callback
func(Message) error)
 19 }

The first thing we are doing is defining a Message object that is used by the system and
defines three simple parameters that are serializable to JSON. ID is never populated by the
publisher directly instead this is a calculated ID that is unique for every message. Should
the consumer need a simple mechanism to determine if a message has already been
received and processed, then the ID can be used. The interface for Queue defines three
simple methods as follows:

Add(messageName string, payload []byte) error: Add is a convenience
method to publish a new message, the sender only needs to provide the name of
the message and a slice of byte.

Event-Driven Architecture

[268]

AddMessage(message Message) error: AddMessage performs the same
function as Add with the difference that the caller needs to construct a Message
type and pass this to the method. The implementation of AddMessage
automatically generates the ID field on Message struct and overwrites any
initial ID value.
StartConsuming(size int, pollInterval time.Duration, callback

func(Message) error): StartConsuming allows a subscriber to retrieve
messages from the queue. The first parameter size relates to the batch size, which
is returned in any one connection. The pollInterval parameter determines
how often the client checks for messages on the queue. The callback function is
executed when messages return from the queue. It has a return parameter of
error which when not nil informs the client that processing has failed and the
message should not be removed from the queue. One thing we need to note is
that StartConsuming is not a blocking method, after it has registered the
callback to the queue it immediately returns.

The implementation at queue/redis_queue.go defines the NewRedisQueue function,
which is a convenience function to create our queue. We are using the
github.com/adjust/rmq library, which has an excellent implementation on top of Redis
queues and in line 27, we are opening a connection to our Redis data store:

 26 // NewRedisQueue creates a new RedisQueue
 27 func NewRedisQueue(connectionString string, queueName string)
(*RedisQueue, error) {
 28 connection := rmq.OpenConnection("my service", "tcp",
connectionString, 1)
 29 taskQueue := connection.OpenQueue(queueName)
 30
 31 return &RedisQueue{Queue: taskQueue, name: queueName}, nil
 32 }

Then on line 29 we need to open a connection to the queue that we are going to read and
write from:

 42 // AddMessage to the queue, generating a unique ID for the message
before dispatch
 43 func (r *RedisQueue) AddMessage(message Message) error {
 44 serialNumber, _ := rand.Int(rand.Reader, serialNumberLimit)
 45 message.ID = strconv.Itoa(time.Now().Nanosecond()) +
serialNumber.String()
 46
 47 payloadBytes, err := json.Marshal(message)
 48 if err != nil {
 49 // handle error

Event-Driven Architecture

[269]

 50 return err
 51 }
 52
 53 fmt.Println("Add event to queue:", string(payloadBytes))
 54 if !r.Queue.PublishBytes(payloadBytes) {
 55 return fmt.Errorf("unable to add message to the queue")
 56 }
 57
 58 return nil
 59 }

The Add method, which is the implementation of our interface's Add method, is merely a
convenience method that creates a message from the given parameters and then calls the
AddMessage function. The AddMessage function first generates an ID for the message, in
this simple implementation we are just generating a random number and appending it to
the current time in nanoseconds, which should give us enough uniqueness without
requiring a check to the queue. We then need to convert the message to its JSON
representation as a slice of bytes before we are finally publishing the message to the queue
on line 54.

The final part of our implementation is the method that consumes messages from the
queue:

 61 // StartConsuming consumes messages from the queue
 62 func (r *RedisQueue) StartConsuming(size int, pollInterval
time.Duration, callback func(Message) error) {
 63 r.callback = callback
 64 r.Queue.StartConsuming(size, pollInterval)
 65 r.Queue.AddConsumer("RedisQueue_"+r.name, r)
 66 }
 67
 68 // Consume is the internal callback for the message queue
 69 func (r *RedisQueue) Consume(delivery rmq.Delivery) {
 70 fmt.Println("Got event from queue:", delivery.Payload())
 71
 72 message := Message{}
 73
 74 if err := json.Unmarshal([]byte(delivery.Payload()), &message); err
!= nil {
 75 fmt.Println("Error consuming event, unable to deserialise event")
 76 // handle error
 77 delivery.Reject()
 78 return
 79 }
 80
 81 if err := r.callback(message); err != nil {
 82 delivery.Reject()

Event-Driven Architecture

[270]

 83 return
 84 }
 85
 86 delivery.Ack()
 87 }

The StartConsuming method only has the responsibility for setting the callback to the
queue instance; we then call the methods StartConsuming and AddConsumer, which are
methods on the Redis package. On line 65, we set the callback consumer to that the queue
uses to self rather than the callback passed into the method. The delegate pattern assigned
to an internal method allows us to abstract the implementation of the underlying queue
from the implementing codebase. When a new message is detected on the queue, the
Consume method is called passing an instance of rmq.Delivery, which is an interface
defined in the rmq package:

type Delivery interface {
 Payload() string
 Ack() bool
 Reject() bool
 Push() bool
}

The first thing we need to do is unmarshal the message that is passed as a slice of byte into
our Message structure. If this fails, then we call the Reject method on the Delivery
interface, which pushes the message back onto the queue. Once we have the message in the
format that our callback expects we can then execute the callback function, which is
passed to the StartConsuming method. The type of callback is as follows:

func(Message) error

It is the responsibility of the code, which implementing this method, to return an error
should the processing of the message fail. Returning an error allows our consuming code to
call delivery.Reject(), which would leave the message in the queue for later
processing. When the message processes successfully, we pass a nil error and the
consumer calls delivery.Ack(), which acknowledges that the message is successfully
processed and removes it from the queue. These operations are process safe; they should
not be available to other consumers so in the instance that we have many workers reading a
queue, we can ensure that they are all working from distinct lists.

Event-Driven Architecture

[271]

Let's take a look at the implementation of a service that would write messages to the queue,
if we take a look at the example code file at queue/writer/main.go we can see that there
is a very simple implementation. This is a too simple application for a production system
and there is no message validation or security in the handler. However, this example is
pared down to the bare minimum to highlight how messages are added to the queue:

 16 func main() {
 17 q, err := queue.NewRedisQueue("redis:6379", "test_queue")
 18 if err != nil {
 19 log.Fatal(err)
 20 }
 21
 22 http.HandleFunc("/", func(rw http.ResponseWriter, r
 *http.Request) {
 23 data, _ := ioutil.ReadAll(r.Body)
 24 err := q.Add("new.product", data)
 25 if err != nil {
 26 log.Println(err)
 27 rw.WriteHeader(http.StatusInternalServerError)
 28 return
 29 }
 30 })
 31
 32 http.ListenAndServe(":8080", http.DefaultServeMux)
 33 }

We create an instance of RedisQueue and pass it the location of our Redis server and the
name of the queue to which we would like to write messages. We then have a very simple
implementation of http.Handler; this function reads the body of the request as a slice of
bytes and calls the Add method with the name of the message and the payload. We then
check the outcome of this operation before returning and closing the connection.

The consumer implementation is even simpler as this code implements a simple worker and
does not implement any HTTP-based interface:

11 func main() {
12 log.Println("Starting worker")
13
14 q, err := queue.NewRedisQueue("redis:6379", "test_queue")
15 if err != nil {
16 log.Fatal(err)
17 }
18
19 q.StartConsuming(10, 100*time.Millisecond, func(message
queue.Message) error {
20 log.Printf("Received message: %v, %v, %v\n", message.ID,

Event-Driven Architecture

[272]

message.Name, message.Payload)
21
22 return nil // successfully processed message
23 })
24
25 runtime.Goexit()
26 }

Like in the client, we create an instance of our queue and then we call the StartConsuming
method with our requested parameters and the callback function. The callback method
executes for every message retrieved from the queue, and since we are returning batches of
10 potentially every 100 milliseconds this method could be called in quick succession, and
every execution runs in its own goroutine, so when writing the implementation, we need
to consider this detail. If for example, we were processing the messages and then writing
them to a database then the number of connections to the database are not infinite. To
determine an appropriate batch size we need to conduct initial testing and follow this up
with constant monitoring, in order to tweak the application for optimum performance.
These settings should be implemented as parameters so that they are easily changed as the
hardware scales.

Push messaging
Rather than using a queue, sometimes you want a service to act immediately on an event.
Your service subscribes to receive messages from a broker such as NATS.io or SNS. When
the broker receives a message, dispatched from another service, then the broker notifies all
the registered services by making a call to the registered endpoint sending it a copy of the
message. The receiver will generally disconnect once the message has been received and
assumes that the message processes correctly. This pattern allows the message broker
extreme throughput, in the case of NATS.io a single server instance can deliver millions of
messages per second. Should the client be unable to process the message, then it must
handle the logic to manage this failure. This logic could be to dispatch a notification to the
broker or again the message could be added to a dead letter queue for later replay.

Event-Driven Architecture

[273]

In this example, we are going to leverage the power of NATS.io to act as a message broker
for our system, NATS is an incredibly lightweight application that is written in Go and
provides such astounding performance and stability. Looking at push/writer/main.go,
we can see that there is not very much code we need to write to implement NATS.io:

 24 func main() {
 25 var err error
 26 natsClient, err = nats.Connect("nats://" + *natsServer)
 27 if err != nil {
 28 log.Fatal(err)
 29 }
 30 defer natsClient.Close()
 31
 32 http.DefaultServeMux.HandleFunc("/product", productsHandler)
 33
 34 log.Println("Starting product write service on port 8080")
 35 log.Fatal(http.ListenAndServe(":8080", http.DefaultServeMux))
 36 }

Event-Driven Architecture

[274]

The first thing we need to do when starting our application is to connect to the NATS server
by calling the Connect function on the nats package:

func Connect(url string, options ...Option) (*Conn,error)

The url parameter, which is defined as a string, requires a little clarification. While you can
pass a single URL such as nats://server:port you can also pass a comma separated list
of servers. The reason for this is because of fault tolerance, NATS implements clustering, in
our simple example we only have a single instance, however, when running in production
you will have multiple instances for redundancy. We then define our http.Handler
function and expose the /product endpoint:

 37 func productsHandler(rw http.ResponseWriter, r *http.Request) {
 38 if r.Method == "POST" {
 39 insertProduct(rw, r)
 40 }
 41 }
 42
 43 func insertProduct(rw http.ResponseWriter, r *http.Request) {
 44 log.Println("/insert handler called")
 45
 46 data, err := ioutil.ReadAll(r.Body)
 47 if err != nil {
 48 rw.WriteHeader(http.StatusBadRequest)
 49 return
 50 }
 51 defer r.Body.Close()
 52
 53 natsClient.Publish("product.inserted", data)
 54 }

The implementation of the handler is straightforward and we delegate the work to the
insertProduct function. Again, in terms of implementation this is brief to highlight the
use of publishing a message; in production there would be a higher level of implementation
to manage security and validation.

On line 53, we call the Publish method on our client; the method has an incredibly simple
signature with the subject and the payload:

func (nc *Conn) Publish(subjstring, data []byte)error

Event-Driven Architecture

[275]

Concerning the subject, we need to consider that this is the same name that the subscriber is
going to use and that it must be unique otherwise it is possible that unintended recipients
receive the messages and this is an incredibly difficult error to track down. The fully
configurable options for NATS are in the GoDoc
https://godoc.org/github.com/nats-io/go-nats, which is rather comprehensive.

Now we have seen how easy it is to publish messages to NATS, let's see how easy it is to
consume them. If we take a look at the example code at push/reader/main.go, we can see
that subscribing to messages is incredibly simple:

 25 func main() {
 26 var err error
 27 natsClient, err = nats.Connect("nats://" + *natsServer)
 28 if err != nil {
 29 log.Fatal(err)
 30 }
 31 defer natsClient.Close()
 32
 33 log.Println("Subscribing to events")
 34 natsClient.Subscribe("product.inserted", handleMessage)
 35 }
 36
 37 func handleMessage(m *nats.Msg) {
 38 p := product{}
 39 err := json.Unmarshal(m.Data, &p)
 40 if err != nil {
 41 log.Println("Unable to unmarshal event object")
 42 return
 43 }
 44
 45 log.Printf("Received message: %v, %#v", m.Subject, p)
 46 }

Again, we make our connection to the NATS server, but to start receiving events we call the
Subscribe method on the client:

func (nc *Conn) Subscribe(subjstring, cbMsgHandler) (*Subscription,error)

The Subscribe method will express interest in the given subject. The subject can have
wildcards (partial: *, full: >). Messages will be delivered to the associated MsgHandler.

If no MsgHandler is given, the subscription is a synchronous subscription, and it can be
polled via Subscription.NextMsg().

https://godoc.org/github.com/nats-io/go-nats

Event-Driven Architecture

[276]

Unlike in our queue example, we are not polling the NATS server we are exposing an
endpoint and registering that with NATS. When the NATS server receives a message, it
attempts to forward that to all the registered endpoints. Using the implementation in the
previous code sample, we obtain a copy of the message for every worker we have running
on the system, which is not ideal. Rather than managing this ourselves, we can use a
different method on the API, QueueSubscribe:

func (nc *Conn) QueueSubscribe(subj, queuestring, cbMsgHandler)
(*Subscription,error)

The QueueSubscribe function creates an asynchronous queue subscriber on the given
subject. All subscribers with the same queue name form the queue group and only one
member of the group is selected to receive any given message asynchronously.

The signature is like the Subscribe method with the exception that we pass an additional
parameter, which is the name of the queue or the unique cluster of subscribers who would
like to register interest in the given subject.

Now we have defined the two main types of asynchronous messaging and looked at the
simple implementation of each. Let's take a look at two common patterns that leverage this
technique.

Command Query Responsibility Segregation
(CQRS)
CQRS is an abbreviation for Command Query Responsibility Segregation, a term attributed
to Greg Young. The concept is that you use a different model to update information than
the model used for reading information. The two main reasons for implementing CQRS are
when the storage of a model differs dramatically from the presentation of the model, and
when the concepts behind this approach are that attempting to create a model which is
optimized for storage and a model which optimized for display might solve neither
problem. For this reason, CQRS splits these models into a Query model used by the
presentation logic and a Command model that is used for storage and validation. The other
benefit is when we would like to separate load between reads and writes in high-
performance applications. The CQRS pattern is not something that is hugely common and
certainly should not be used everywhere as it does increase complexity; however, it is a
very useful pattern to have in your arsenal.

Event-Driven Architecture

[277]

Let's take a look at the following diagram:

In our example code, we again were leveraging NATS.io to broker the messages. However,
this need not be the case. It is a legitimate setup to have a single service that has two
separate models for reading and writing. Instead of the complexity of a message broker in
process communication could be used just as effectively.

Take a look at the example code at cCQRS/product_writer/main.go:

 26 func init() {
 27 flag.Parse()
 28
 29 schema = &memdb.DBSchema{
 30 Tables: map[string]*memdb.TableSchema{
 31 "product": &memdb.TableSchema{
 32 Name: "product",
 33 Indexes: map[string]*memdb.IndexSchema{
 34 "id": &memdb.IndexSchema{
 35 Name: "id",

Event-Driven Architecture

[278]

 36 Unique: true,
 37 Indexer: &memdb.StringFieldIndex{Field: "SKU"},
 38 },
 39 },
 40 },
 41 },
 42 }
...
 66 natsClient, err = nats.Connect("nats://" + *natsServer)
 67 if err != nil {
 68 log.Fatal(err)
 69 }
 70 }

For simplicity, this example uses an in-memory database,
https://github.com/hashicorp/go-memdb, written by HashiCorp and the bulk of the
setup is configuring this data store. We will be separating our data stores for read and write
and the reader service does not implement any methods to return the products to the caller.
Instead, this responsibility is delegated to a second service that is running a separate
database and even a different data model:

 84 func insertProduct(rw http.ResponseWriter, r *http.Request) {
 85 log.Println("/insert handler called")
 86
 87 p := &product{}
 88
 89 data, err := ioutil.ReadAll(r.Body)
 90 if err != nil {
 91 rw.WriteHeader(http.StatusBadRequest)
 92 return
 93 }
 94 defer r.Body.Close()
 95
 96 err = json.Unmarshal(data, p)
 97 if err != nil {
 98 log.Println(err)
 99 rw.WriteHeader(http.StatusBadRequest)
100 return
101 }
102
103 txn := db.Txn(true)
104 if err := txn.Insert("product", p); err != nil {
105 log.Println(err)
106 rw.WriteHeader(http.StatusInternalServerError)
107 return
108 }
109 txn.Commit()

Event-Driven Architecture

[279]

110
111 natsClient.Publish("product.inserted", data)
112 }

Our handler first writes the model to the database and then like our push example we are
publishing a message to NATS containing the payload of the message.

Looking at the reader server at CQRS/product-read/main.go again we are setting up our
data store, however, the model is different from the read model:

Write model:

 type product struct {
 Name string `json:"name"`
 SKU string `json:"sku"`
 StockCount int `json:"stock_count"`
 }

Read model:

 type product struct {
 Name string `json:"name"`
 Code string `json:"code"`
 LastUpdated string `json:"last_updated"`
 }

We are also defining an event structure that contains the details for our event received from
NATS. In this instance, this structure mirrors the write model; however, this does not
always need to be the case:

type productInsertedEvent struct {
 Name string `json:"name"`
 SKU string `json:"sku"`
}

Upon receipt of a message, we first decode the payload into the expected type
productInsertedEvent and then we convert this to our product model that is stored in
the database. Finally, we store the information in the database creating our copy in a format
that our consumers wish to receive:

112 func productMessage(m *nats.Msg) {
113 pie := productInsertedEvent{}
114 err := json.Unmarshal(m.Data, &pie)
115 if err != nil {
116 log.Println("Unable to unmarshal event object")
117 return
118 }

Event-Driven Architecture

[280]

119
120 p := product{}.FromProductInsertedEvent(pie)
121
122 txn := db.Txn(true)
123 if err := txn.Insert("product", p); err != nil {
124 log.Println(err)
125 return
126 }
127 txn.Commit()
128
129 log.Println("Saved product: ", p)
130 }

When a user calls the /products endpoint the data that they get back is that of the locally
cached copy, not the master that is stored in a separate service. This process could cause
issues with consistency as the two copies of data are eventually consistent and when we
implement the CQRS pattern we need to consider this. If we were exposing the stock level,
then it may not be desirable to have eventual consistency, however, we can make a design
decision that when this information is required we sacrifice performance by making a
synchronous call to the stock endpoint.

Domain-Driven Design
When implementing Event Driven Microservices, you need to have a good grasp of the way
your system operates and the way data, and interactions flow from one service to the next.
A useful technique for modeling any complex system is Domain-Driven Design.

When it comes to Domain-Driven Design, then there is Vernon Vaughn, whose two books,
Domain-Driven Design Distilled and Implementing Domain-Driven Design, expand upon the
seminal and for some slightly difficult to read work by Eric Evans. For newcomers to DDD,
I recommend starting with DDD distilled and then moving to read Implementing Domain
Driven Design. Reading DDD distilled first gives you a grounding of the terminology
before you delve into what is a rather detailed book. DDD is most certainly an advanced
topic and not something that can be covered comprehensively in one section of this book,
nor do I profess to have the experience to write anything more detailed as DDD is a pattern
that is learned by practice. DDD is also a tool for more complex large systems with many
stakeholders and many moving parts. Even if you are not working on such a system, the
concepts of aggregation and isolation are compelling and applicable to most systems. If
nothing else, keep reading to become more proficient at buzzword bingo in your next
architecture meeting.

Event-Driven Architecture

[281]

What is DDD?
To quote the words of VaughnVernon himself:

"DDD is a set of tools that assist you in designing and implementing software that
delivers high value, both strategically and tactically. Your organization can't be the best at
everything, so it had better choose carefully at what it must excel. The DDD strategic
development tools help you and your team make the competitively best software design
choices and integration decisions for your business."

-- Vaughn Vernon

That is quite an introduction; however, I think it highlights the fact that DDD is a tool for
designing software and not a software framework. In the dark days, a couple of decades
ago software architects and project managers would make the decisions for the design of a
software system, often providing very detailed plans that were executed by the
development teams. In my experience this was rarely an enjoyable way to work and neither
did it produce good quality software and deliver on-time. The agile revolution proposed a
different way of working and thankfully has improved the situation. We also now regard
ourselves as software engineers rather than developers, I do not believe that this shift is a
fashion, but it is driven by the change in the role that we have seen. Your role as someone
who creates software is now one of a designer, negotiator of features, architect, mediator,
and you are also required to have a full understanding of the materials at your disposal
including the reactions to stress and strain. You now mirror the role of a traditional
engineer rather than the assembly line worker role that software developers performed in
the past.

Hopefully, that answers the question that may be in your head as to why you need to learn
about DDD in a book about Go. Well, this book was never written to teach you the
language, it was designed to show you how you can use it to build successful microservices.

I hear lots of noise surrounding DDD that it is a difficult technique and admittedly when I
first read DDD I felt the same way, all this stuff about aggregates, ubiquitous language,
domains, and subdomains. However, once I started to think about DDD to engineer
separation and thought about many of the problems I have faced in the past with confused
domain models then it slowly began to sink in.

Event-Driven Architecture

[282]

Technical debt
If you have ever worked on a monolithic application, you are aware of the coupling and
dependency that occurs between objects, this is predominately in the data layer, however,
you also often find code that is not implementing correctly and is tightly bound to another
object. The problems come when you want to change this system; a change in one area has
an undesired impact in another and only one if you are lucky. An enormous effort happens
in refactoring the system before changes are made. Often what happens is that the
modification is shoehorned into the existing codebase without refactoring and to be brutally
honest it would be kinder to the system to take it outside, around the back of the barn and
unload two shotgun shells in the back of its head.

Don't fool yourself that you will ever get the opportunity to do this; if you have ever
worked on a system of any real age, your job is like Lenin's embalmers. You spend an
enormous amount of effort to keep a dead body presentable when you should just dig a
hole in the ground and drop it in. DDD can help with understanding the monolith and
slowly decoupling it; it is also a tool to prevent the unruly monolith from ever occurring.
Let's take a quick look at the technical anatomy.

Anatomy of DDD
The primary part of the strategic design in DDD is to apply a concept called Bounded
Contexts. Bounded Contexts are a method of segregating your domain into models. Using a
technique called Context Mapping you can integrate multiple Bounded Contexts by
defining both the team and technical relationships that exist between them.

The tactical design is where you refine the details of your domain model. In this phase, we
learn how to aggregate entities and value objects together.

Strategic design
One of the phrases you will hear a lot when dealing with DDD is the term Bounded
Contexts. A Bounded Contexts concept is a semantic contextual boundary that is the
components inside each boundary has a specific meaning and does specific things. One of
the most important of these Bounded Contexts is the Core Domain; this is the domain that
distinguishes your organization competitively from all the others. We have already
mentioned that you cannot do everything and by concentrating on your core domain this
should be where you spend most of your time.

Event-Driven Architecture

[283]

Tactical design
From the base of strategic design is the tactical design, to quote Vaughn Vernon again:

"Tactical design is like using a thin brush to paint the finer details of your domain model."

--Vaughn Vernon

At this stage in the design, we need to start thinking about Aggregates and Domain Events.
An aggregate is composed of entities and value objects. A value object models an
immutable whole, it does not have a unique identity and equivalence is determined by
comparing the attributes encapsulated by the value types. Domain events are published by
an aggregate and subscribed to by interested parties. This subscription could be from the
same Bounded Contexts, or it may come from a different source.

Ubiquitous language
The term ubiquitous language in DDD refers to a core language that everyone on the team
understands about the software under development. It is entirely possible that a component
in a different context and developed by a different team has a different meaning for the
same terminology. In fact, they are probably talking about different components from your
model.

How you develop your ubiquitous language is an activity that the team will form. You
should not put too much emphasis onto using only nouns to describe your model, you
should start to build up simple scenarios. Consider our example from the chapter on testing
where we used BDD for our functional and integration testing. These are your scenarios; the
language of which you write them is your team's ubiquitous language. You should write
these scenarios so that they are meaningful to your team and not attempt to write
something that is meaningful for the entire department.

Event-Driven Architecture

[284]

Bounded Contexts
One of the main reasons for using a Bounded Context is that teams often do not know when
to stop piling things into their software models. As the team adds more features, the model
soon becomes difficult to manage and understand. Not only this, the language of the model
starts to become blurred. When software becomes vast and convoluted with many
unrelated interconnections, it starts to become what is known as a Big Ball of Mud. The big
ball of mud is probably far worse than your traditional monolith. Monoliths are not
inherently evil just because they are monolithic; monoliths are bad as within them exists a
place where good coding standards are long forgotten. The other problem with a Bounded
Context that is too large and owned by too many people is that it starts to be difficult to
describe it using a ubiquitous language.

Context Mapping
When two Bounded Contexts in DDD need to integrate the integration is known as Context
Mapping. The importance of defining this Context Mapping is that a well-defined contract
supports controlled changes over time. In the book Domain-Driven Design Distilled, Vaughn
Vernon describes the following different kinds of mappings:

Partnership: The partnership mapping exists when two teams are each
responsible for a Bounded Context and have a dependent set of goals.
Shared kernel: A shared kernel is defined by an intersection of two separate
Bounded Contexts and exists when two teams share a small but common model.
Customer-supplier: A customer-supplier describes a relationship between two
Bounded Contexts and their respective teams. The supplier is the upstream
context, and the downstream is the customer. The supplier must provide what
the customer needs, and the two teams must plan together to meet their
expectations. This is a very typical and practical relationship between the teams
as long as the supplier still considers the customers need.
Conformist: A conformist relationship exists when there are upstream, and
downstream teams and the upstream team has no motivation to support the
specific needs of the downstream team. Rather than translate the upstream
ubiquitous language to fit its own needs the downstream team adopts the
language of the upstream.
Anti-corruption layer: This is a standard and recommended model when you are
connecting two systems together, the downstream team builds a translation layer
between its ubiquitous language and that of the upstream thus isolating it from
the upstream.

Event-Driven Architecture

[285]

Open Host Service: An Open Host Service defines a protocol or interface that
gives access to your Bounded Contexts as a set of services. The services are
offered via a well-documented API and are simple to consume.
Published language: A published language is a well-documented information
exchange language enabling easy consumption and translation. XML Schema,
JSON Schema, and RPC based frameworks such as Protobufs are often used.
Separate ways: In this situation, there is no significant payoff through the
consumption of various ubiquitous languages and the team decides to produce
their solution inside their Bounded Contexts.
Big ball of mud: This should be pretty self-explanatory by now and not
something a team should aim for; in fact, this is the very thing that DDD attempts
to avoid.

Software
When we start working with DDD and event-oriented architectures in anger, we soon find
that we need some help brokering our messages to ensure the at-least-once and at-most-
once delivery that is required by the application. We could, of course, implement our
strategy for this. However, there are many open source projects on the internet that handle
this capability for us, and soon we find ourselves reaching out to leverage one of these.

Kafka
Kafka is a distributed streaming platform that allows you to publish and subscribe to
streams of records. It lets your store streams of documents in a fault-tolerant way and
process streams of records as they occur. It has been designed to be a fast and fault-tolerant
system commonly running as a cluster of one or more servers to enable redundancy.

NATS.io
NATS.io is an open source messaging system written in Go, and it has the capability to
perform two roles such as the at-most-once and at-least-once delivery, lets look at what this
means:

Event-Driven Architecture

[286]

at-most-once delivery: In the basic mode, NATS can act as a Pub/Sub router,
where listening clients can subscribe to message topics and have new messages
pushed to them. If a message has no subscriber, then it is sent to /dev/null and
is not stored internally in the system.
at-least-once delivery: When a higher level of service and more stringent
delivery guarantees are required NATS can operate in at-least-once delivery
mode. In this mode, NATS can no longer function as a standalone entity and
needs to be backed by a storage device, which at present support is for file and
in-memory. Now, there is no scaling and replication supported with NATS
streaming, and this is where Kafka shines. However, we are not all building
systems as big as Netflix, and the configuration and management of Kafka is a
book in its own right, NATS can be understood very quickly.

AWS SNS/SQS
Amazon's Simple Queue Service (SQS) is a queuing service that allows a publisher to add
messages to a queue, which can later be consumed by clients. A message is read and then
removed from the queue making it no longer available for other readers.

There are two different types of SQS, such as the standard mode, which allows maximum
throughput at the expense that a message may be delivered more than once and SQS FIFO,
which ensures that messages are only ever delivered once and in the order by which they
are received. However, FIFO queues are subject to vastly reduced throughput, and
therefore their use must be carefully considered.

Amazon's Simple Notification Service (SNS) is a service for coordinating and managing
the delivery of queues of messages. SNS stands for Simple Notification Service; you
configure a topic that you can publish messages to and then subscribers can register for
notifications. SNS can deliver messages to the following different protocols:

HTTP(S)
Email
Email-JSON
SMS
AWS Lambda
SQS

Event-Driven Architecture

[287]

You may wonder why you would want to add a message to a queue when you can just
push a message to the recipient? One of the problems with SNS is that it can only deliver
over HTTP to services that are publicly accessible. If your internal workers are not
connected to the public internet and from reading Chapter 8, Security, I hope that they are
not. Therefore, a pull-based approach may be your only option; reading from a queue is
also potentially a better option for managing large streams of messages. You do not need to
worry about the availability of SQS (most of the time), and you do not need to implement
an HTTP interface for a simple application worker that can poll a queue.

Google Cloud Pub/Sub
Google Cloud Pub/Sub is very like AWS SNS in that it is a messaging middleware, allowing
the creation of topics with publishers and subscribers. At the time of writing, there is no
formal product on Google Cloud such as SQS. However, it would be trivial to implement
something using one of the many data storage options you have available.

Summary
In this chapter, we have looked at some of the main patterns for decoupling microservices
using events, we have also had an introduction to a modern design methodology for
building distributed systems, DDD. With the right tools and upfront design building highly
scalable and maintainable systems should not be too challenging and you now have all the
information you need to do this with Go. In the final chapter, we are going to look at
automated building and deployment of your code, finalizing the information you need to
be a successful microservices practitioner.

10
Continuous Delivery

We have covered a lot so far, including how to build resilient systems and how to keep
them secure, but now we need to look at how to replace all the manual steps in our process
and introduce continuous delivery.

In this chapter, we will discuss the following concepts:

Continuous Delivery
Container orchestration
Immutable infrastructure
Terraform
Example Application

What is Continuous Delivery?
Continuous delivery is the process of building and deploying code well, continuously. The
aim is that we move code from development to production as efficiently and effectively as
possible.

Continuous Delivery

[289]

In a traditional or waterfall workflow, releases revolve around the completion of a major
feature or update. It is not untypical for large enterprises to release once a quarter. When we
look at the reason for this strategy, risk and effort are often cited. There is a risk to releasing
as the confidence is weak in the software; there is effort involved in releasing because there
needs to be a mostly manual process involved in quality assurance and the operational
aspects of releasing the software. One part of this is something that we have covered in
Chapter 5, Common Patterns, which is the concern with quality, and the possible absence of a
satisfactory test suite or possibly the ability to run this automatically. The second element
involves the physical deployment and post deployment testing process. We have not
covered this aspect much in this book so far; we touched on it when we looked at Docker in
Chapter 4, Testing.

If we could reduce the risk and effort involved in deploying code, would you do it more
frequently? How about every time you complete a minor feature, or every time a bug is
fixed, several times a day even? I would encourage you to do just that, and in this chapter,
we will look at all the things we need to know and building on all the things we have
previously learned to deliver continuously.

Manual deployment
Manual deployment is at best problematic; even if you have an amazing team, things can
and will go wrong. The larger the group, the more distributed the knowledge and the
greater the need for comprehensive documentation. In a small team, the resources are
constrained, and the time it takes for deployment can be a distraction from building great
code. You also end up with a weak link; so, do you suspend deployment when the person
who usually carries out the process is sick or on holiday?

The problems with manual deployment

Issues can arise with the ordering and timing of the various deployment steps
The documentation needs to be comprehensive and always up to date
There is a significant reliance on manual testing
There are application servers with different states
There are constant problems with manual deployment due to the preceding
points

Continuous Delivery

[290]

As a system grows in complexity, there are more moving parts, and the steps required to
deploy the code increase with it. Since the steps to deploy need to be carried out in a set
order, the process can fast become a burden. Consider deploying an update to an
application, the application and its dependencies install on all instances of the application
servers. Often a database schema needs to be updated, and there needs to be a clean switch
over between the old and the new application. Even if you are leveraging the power of
Docker, this process can be fraught with disaster. As the complexity of the application
grows, so does the required documentation to deploy the application, and this is often a
weak link. Documentation takes time to update and maintain, in my personal experience,
this is the first area which suffers when deadlines are approaching. Once the application
code is deployed, we need to test the function of the application. Assuming the application
is manually deployed, it is often assumed that the application is also manually tested. A
tester would need to run through a test plan (assuming there is a test plan) to check that the
system is in a functioning state. If the system is not functioning, then either the process
would need to be reversed to roll back to a previous state, or a decision would need to be
made to hotfix the application and again run through the standard build and deploy cycle.
When this process falls into a planned release, there is a little more safety as the whole team
is around for the release. However, what happens when this process takes place in the
middle of the night as a result of an incident? At best, what happens is that the fix is
deployed, however, without updating any of the documentation or processes. At worst, the
application ends up in a worse state than before the application code was attempted to be
hot fixed. Out of hours, incidents are also often carried out by first line response, which is
often the infrastructure team. I assume that if you are not running continuous deployment,
then you will also not be following the practice of Developer on call. Also, what about the
time it takes to do a deploy? What is the financial cost of the entire team taking time out to
babysit a deployment? What about the motivational and mental productivity cost of this
process? Have you ever felt the stress due to the uncertainty of deploying application code
into production?

Continuous delivery removes these risks and problems.

Continuous Delivery

[291]

The benefits of continuous delivery
The concept of continuous delivery is that you plan for these problems and spend the up-
front work to solve them. Automation of all the steps involved allows consistency of
operation and is a self-documenting process. No longer do you have the requirement for
specialized human knowledge, and the additional benefit of the removal of the human is
that the quality improves due to automation of the process. Once we have the automation,
improved the quality and speed of our deployments, we can then level this up and start to
deploy continuously. The benefits of continuous delivery are:

The releases are small and less complicated
The differences between master and feature branch are smaller
There are fewer areas to monitor post deployment
The rollbacks are potentially easier
They deliver business value sooner

We start to deploy our code in smaller chunks, no longer waiting for the completion of a
major feature but potentially after every commit. The primary benefit of this is that the
differences between the master and the feature branches are smaller and less time is spent
merging code between branches. Smaller changes also create fewer areas to monitor post
deploy and because of this, should something go wrong it is easier to roll back the changes
to a known working state. Most important of all, it gives you the capability to deliver
business value sooner; whether this is in the form of a bug or a new feature, the capability is
ready for your customers to use far earlier than would be available in a waterfall model.

Aspects of continuous delivery
There are several important aspects to continuous delivery most of which are essential to
the success of the process. In this section, we will look at what these aspects are before we
look at how we can implement them to build our own pipeline.

Important aspects of continuous delivery:

Reproducibility and easy setup
Artifact storage
Automation of tests
Automation of integration tests
Infrastructure as code
Security scanning

Continuous Delivery

[292]

Static code analysis
Smoke testing
End 2 end testing
Monitoring - track deployments in metrics

Reproducibility and consistency
I have a small doubt, at some point in your career you might have already seen this meme:

If you have not, don't worry, I am confident you are going to encounter it at some point.
Works on My Machine why is this meme so popular? Could it be because there is a heavy
element of truth in it? I certainly know that I have been there and many of you have too I
am sure. If we are to deliver continuously and by this mean as often as possible, then we
need to care about consistency and reproducibility.

Reproducibility is the ability of an entire analysis of an experiment or study to be
duplicated, either by the same researcher or by someone else working independently. Works
on my machine is not acceptable. If we are to deliver continuously, then we need to codify
our build process and make sure that our dependencies for software and other elements are
either minimized or managed.

The other thing that is important is the consistency of our builds. We cannot spend time
fixing broken builds or manually deploying software, so we must treat them with the same
regard that we treat our production code. If the build breaks, we need to stop the line and
fix it immediately, understand why the build broke, and if necessary, introduce new
safeguards or processes so that it does not occur again.

Continuous Delivery

[293]

Artifact storage
When we implement any form of continuous integration, we produce various artifacts
because of the build process. The artifacts can range from binaries to the output of tests. We
need to consider how we are going to store this data; thankfully cloud computing has many
answers to this problem. One solution is cloud storage such as AWS S3, which is available
in abundance, and at a small cost. Many of the software as a service CI providers such as
Travis and CircleCI also offer this capability built into the system; so for us to leverage it,
there is very little we need to do. We can also leverage the same storage if, for example, we
are using Jenkins. The existence of the cloud means we rarely need to worry about the
management of CI artifacts anymore.

Automation of tests
Test automation is essential, and to ensure the integrity of the built application, we must
run our unit tests on the CI platform. Test automation forces us to consider easy and
reproducible setup, dependencies need minimizing, and we should only be checking the
behavior and integrity of the code. In this step, we avoid integration tests, the tests should
run without anything but the go test command.

Automation of integration tests
Of course, we do need to verify the integration between our code and any other
dependencies such as a database or downstream service. It is easy to misconfigure
something, especially when database statements are involved. The level of integration tests
should be far less than the coverage of the unit tests, and again we need to be able to run
these in a reproducible environment. Docker is an excellent ally in this situation; we can
leverage the capability of Docker to run in multiple environments. This enables us to
configure and debug our integration tests on our local environment before executing them
on the build server. In the same way, that unit tests are a gate to a successful build, so are
integration tests; failure of these tests should never result in a deployment.

Infrastructure as code
When we automate our build and deploy the process, this step is essential; ideally, we do
not want to be deploying code to a dirty environment as this raises the risk of pollution
such as an incorrectly vendored dependency. However, we also need to be able to rebuild
the environment, if necessary, and this should be possible without enacting any of the
problems we introduced earlier.

Continuous Delivery

[294]

Security scanning
If possible, security scanning should be integrated into the pipeline; we need to be catching
bugs early and often. Regardless of whether your service is external facing or not, scanning
it can ensure that there is a limited attack vector for an attacker to misuse. We have looked
at fuzzing in a previous chapter, and the time it can take to perform this task is quite
considerable and possibly not suitable for inclusion inside of a pipeline. However, it is
possible to include various aspects of security scanning into the pipeline without slowing
down deployments.

Static code analysis
Static code analysis is an incredibly effective tool to combat bugs and vulnerabilities in your
applications, and often developers run tools such as govet and gofmt as part of their IDE.
When the source is saved, the linter runs and identifies issues in the source code. It is
important to run these applications inside of the pipeline as well as we cannot always
guarantee that the change has come from an IDE which has it configured in this way. In
addition to the save time linters, we can also run static code analysis to detect problems
with SQL statements and code quality issues. These additional tools are often not included
in the IDE's save workflow, and therefore it is imperative to run them on CI to detect any
problems, which may have slipped through the net.

Smoke tests
Smoke tests are our way of determining whether a deployment has gone successfully. We
run a test, which can range from a simple curl to a more complex codified test to check
various integration points within the running application.

Continuous Delivery

[295]

End-to-end tests
End-to-end tests are a complete check on the running system and typically follow the user
flow testing the various parts. Often these tests are global to the application not local to the
service and are automated using BDD-based tools such as cucumber. Determining whether
you run E2E tests as a gate to deployment or a parallel process which is either triggered by
a deployment or set as a continually running process is dependent upon your company's
appetite for risk. If you are confident that your unit, integration, and smoke tests have
adequate coverage to give you peace of mind or that the service in question is not essential
to the core user journey, then you may decide to run these in parallel. If, however, the
functionality in question is part of your core journey, then you may choose to run these tests
sequentially as a gateway to deployment on a staging environment. Even when E2E tests
run as a gateway, if any configuration changes are made such as the promotion of staging to
production, it is advisable to again run the E2E tests before declaring a deployment
successful.

Monitoring
Post deploy, we should not rely on our users to inform us when something has gone wrong,
which is why we need application monitoring linked to an automated notification system
such as PagerDuty. When a threshold of errors has exceeded, the monitor triggers and
alerts you to the problem; this gives you the opportunity to roll back the last deploy or to fix
the issue.

Continuous delivery process
So far, we have talked about the problem, and why this is important for us. We have also
looked at the constituent parts of a successful continuous delivery system, but how can we
implement such a process for our application, and what does Go bring as a language which
helps us with this? Now, let's look at the process:

Build
Test
Package
Integration test
Benchmark test
Security test

Continuous Delivery

[296]

Provision production
Smoke test
Monitor

Overview
The build process is mainly a focus for developers to get things up and running on their
local machine but my recommendation is that we need to be thinking about cross-platform
and cross-system builds from the beginning. What I mean by cross-system builds is that
even if we are developing on a Macintosh, we may not be building a release product on a
Mac. In fact, this behavior is quite common. We need our releases built by a third party and
preferentially in a clean room environment, which is not going to be affected by pollution
from other builds.

Every feature should have a branch and every branch should have a build. Every time your
application code is pushed to the source repository, we should trigger the build even if this
code is going nowhere near production. It is good practice never to leave a build in a broken
state, and that includes branch builds. You should deal with the issues as and when they
occur; delaying this action risks your ability to deploy, and while you may not plan to
deploy to production until the end of the sprint, you must consider unforeseen issues which
can occur such as the requirement to change the configuration or hotfix a bug. If the build
process is in a broken state, then you will not be able to deal with the immediate issues, and
you risk delaying a planned deployment.

The other important aspect other than automatically triggering a build whenever you push
to a branch is to run a nightly build. Nightly builds for branches, should be rebased with
the master branch before building and testing. The reason for this step is to give you early
warning around potential merge conflicts. We want to catch these early rather than later; a
failed nightly build should be the first task of the day.

We talked about Docker earlier on in Chapter 4, Testing, and we should bring Docker into
our build process. Docker through its immutability for a container gives us the clean room
environment to ensure reproducibility. Because we start from scratch with every build, we
cannot rely on a pre-existing state, which causes differences between the development
environment and the built environment. Environmental pollution may seem like a trivial
thing but the amount of time I have wasted over my career debugging a broken build
because one application was using a dependency installed on a machine and another used a
different version is immeasurable.

Continuous Delivery

[297]

What is container orchestration?
Simply container orchestration is the process of running one or more instances of an
application. Think of the common understanding of an orchestra, a group of musicians who
work together to produce a piece of music. The containers in your application are like the
musicians in the orchestra; you may have specialist containers, of which there are low
numbers of instances such as the percussionists, or you may have many instances such as
the strings section. In an orchestra, the conductor keeps everything in time and ensures that
the relevant musicians are playing the right music at the right time. In the world of
containers, we have a scheduler; the scheduler is responsible for ensuring that the correct
number of containers are running at any one time and that these containers are distributed
correctly across the nodes in the cluster to ensure high availability. The scheduler, like a
conductor, is also responsible for ensuring that the right instruments play at the right time.
In addition to ensuring a constant suite of applications is constantly running, the scheduler
also can start a container at a particular time or based on a particular condition to run ad
hoc jobs. This capability is similar to what would be performed by cron on a Linux-based
system.

Options for container orchestration
Thankfully, today there are many applications which provide an orchestration function,
these are broken into two categories: Managed, such as PaaS solutions like AWS ECS, and
Unmanaged, such as open source schedulers like Kubenetes, which need management of
both servers and the scheduler application. Unfortunately, there is no one-fits-all solution.
The option you choose is dependent on the scale you require and how complex your
application is. If you are a startup or just starting to break out into the world of
microservices, then the more managed end of the spectrum such as Elastic Beanstalk will
more than suffice. If you are planning a large-scale migration, then you might be better
looking at a fully fledged scheduler. One thing I am confident about is that by
containerizing your applications using Docker, you have this flexibility, even if you are
planning a large-scale migration, then start simple and work up to the complexity. We will
examine how the concepts of orchestration and infrastructure-as-code enable us to complete
this. We should never ignore the up-front-design and long term thinking, but we should not
let this stop us from moving fast. Like code infrastructure can be refactored and upgraded,
the important concepts are the patterns and the strong foundations.

Continuous Delivery

[298]

What is immutable infrastructure?
Immutability is the inability to be changed. We have already looked at Docker and how a
Docker container is an immutable instance of an image. However, what about the hardware
that the Docker server runs on? Immutable infrastructure gives us the same benefits--we
have a known state and that state is consistent across our estate. Traditionally, the software
would be upgraded on an application server, but this process was often problematic. The
software update process would sometimes not go to plan, leaving in the operator with the
arduous task of trying to roll this back. We would also experience situations where the
application servers would be in a different state requiring different processes to upgrade
each of them. The update process may be okay if you only have two application servers, but
what if you have 200 of them? The cognitive load becomes too high to bear that the
administration is distributed across a team or multiple teams, and then we need to start to
maintain documentation to upgrade each of the applications. When we were dealing with
bare metal servers, there was often no other way to deal with this; the time it would take to
provision a machine was measured in days. With the virtualization, this time improved as it
gave us the ability to create a base image, which contained a partial config and we could
then provision new instances in tens of minutes. With the cloud, the level of abstraction
became one layer greater; no longer did we even need to worry about the virtualization
layer as we had the capability to spin up compute resource in seconds. So, the cloud solved
the process of the hardware, but what about the process of provisioning the applications?
Do we still need to write the documentation and keep it up to date? As it happens, we do
not. Tooling has been created to allow us to codify our infrastructure and application
provisioning. The code becomes the documentation and because it is code we can version it
using the standard version control systems such as Git. There are many tools to choose
from, such as Chef, Puppet, Ansible, and Terraform; however, in this chapter, we will take a
look at Terraform because in my personal opinion, besides being the most modern of the
tools and the easiest to use, it embodies all of the principles of immutability.

Terraform
Terraform (https://terraform.io) is an application by HashiCorp
(https://hashicorp.com), which enables the provisioning of infrastructure for several
applications and cloud providers.

It allows you to write codified infrastructure using the HCL language format. It enables the
concepts of reproducibility and consistency that we have discussed are essential for
continuous deployment.

https://terraform.io
https://hashicorp.com

Continuous Delivery

[299]

Terraform as an application is a powerful tool and is a bigger topic than this book should
cover; however, we will look at the basics of how it works to understand our demo
application.

We will split our infrastructure into multiple chunks with the infrastructure code owned by
each microservice located in the source code repository.

In this section, we will look closely at the shared infrastructure and services to get a deeper
understanding of the Terraform concepts. Let's take a look at the example code in the
following GitHub repository:

https://github.com/building-microservices-with-go/chapter11-services-main

The shared infrastructure contains the following components:

VPC: This is the virtual cloud, it allows all of the applications connected to it to
communicate without needing to go over the public internet
S3 bucket: This is the remote storage for config and artifacts

https://github.com/building-microservices-with-go/chapter11-services-main

Continuous Delivery

[300]

Elastic Beanstalk: This is the Elastic Beanstalk application which will run the
NATS.io messaging system, we can split this over two availability zones which
are the equivalent to a data center, hosting applications in multiple zones gives us
redundancy in the instance that the zone suffers an outage
Internal ALB: To communication with our NATS.io server when we add other
applications to our VPC we need to use an internal application load balancer. An
internal ALB has the same features as an external load balancer but it is only
accessible to applications which are attached to the VPC, connections from the
public internet are not allowed
Internet Gateway: If we need our application to be able to make outbound calls
to other internet services then we need to attach an internet gateway. For
security, a VPC has no outbound connections by default

Now we can understand the components which we need to create let's take a look at the
Terraform configuration which can create them.

Providers
Terraform is broken up into providers. A provider is responsible for understanding the API
interactions and exposing the resources for the chosen platform. In the first section, we will
look at the provider configuration for AWS. In the following code, the provider block
allows you to configure Terraform with your credentials and set an AWS region:

provider "aws" {
 access_key = "XXXXXXXXXXX"
 secret_key = "XXXXXXXXXXX"
 region = "us-west-1"
}

Blocks in Terraform typically follow the previous pattern. HCL is not JSON; however, it is
interoperable with JSON. The design of HCL is to find that balance between machine and
human-readable format. In this particular provider, we can configure some different
arguments; however, as a bare minimum, we must set up your access_key, secret_key,
and region. These are explained as follows:

access_key: This is the AWS access key. This is a required argument; however,
it may also be provided by setting the AWS_ACCESS_KEY_ID environment
variable.

Continuous Delivery

[301]

secret_key: This is the AWS secret key. This is a required argument; however, it
may also be provided by setting the AWS_SECRET_ACCESS_KEY environment
variable.
region: This is the AWS region. This is a required argument; however, it may
also be provided by setting the AWS_DEFAULT_REGION environment variable.

All of the required variables can be replaced with environment variables; we do not want to
commit our AWS secrets to GitHub because if they leak we will most likely find that
someone has kindly spun up lots of expensive resource to mine Bitcoin
(http://www.securityweek.com/how-hackers-target-cloud-services-bitcoin-profit).

If we use environment variables, we can then securely inject these into our CI service where
they are available for the job. Looking at our provider block provider.tf, we can see that
it does not contain any of the settings:

provider "aws" { }

Also, in this file, you will notice that there is a block by the name of terraform. This
configuration block allows us to store the Terraform state in an S3 bucket:

terraform {
 backend "s3" {
 bucket = "nicjackson-terraform-state"
 key = "chapter11-main.tfstate"
 region = "eu-west-1"
 }
}

The state is what the terraform block uses to understand the resources, which have been
created for a module. Every time you change your configuration and run either of the
Terraform plans, Terraform will check the state files for differences to understand what it
needs to delete, update, or create. A special note on remote state is that again it should
never be checked into git. The remote state contains information about your infrastructure,
including potentially secret information, not something you would ever want to leak. For
this reason, we can use the remote state, rather than keep the state on your local disk;
Terraform saves the state files to a remote backend such as s3. We can even implement
locking with certain backends to ensure that only one run of the configuration takes place at
any one time. In our config, we are using the AWS s3 backend, which has the following
attributes:

bucket: This is the name of the S3 bucket to store the state. S3 buckets are
globally named and are not namespaced to your user account. So this value must
not only be unique to you, but specific to AWS.

http://www.securityweek.com/how-hackers-target-cloud-services-bitcoin-profit

Continuous Delivery

[302]

key: This is the key of the bucket object which holds the state. This is unique to
the bucket. You can use a bucket for multiple Terraform configs as long as this
key is unique.
region: This is the region for the S3 bucket.

Terraform config entry point
The main entry point for our application is the terraform.tf file. There is no stipulation
on this filename, Terraform is graph based. It recurses through all files which end in .tf in
our directory and build up a dependency graph. It does this to understand the order to
create resources.

If we look at this file, we see that it is made up of modules. Modules are a way for
Terraform to create reusable sections of infrastructure code or just to logically separate
things for readability. They are very similar to the concepts of packages in Go:

module "vpc" {
 source = "./vpc"

 namespace = "bog-chapter11"
}

module "s3" {
 source = "./s3"

 application_name = "chapter11"
}

module "nats" {
 source = "./nats"

 application_name = "nats"
 application_description = "Nats.io server"
 application_environment = "dev"

 deployment_bucket = "${module.s3.deployment_bucket}"
 deployment_bucket_id = "${module.s3.deployment_bucket_id}"

 application_version = "1.1"
 docker_image = "nats"
 docker_tag = "latest"

 elb_scheme = "internal"
 health_check = "/varz"

Continuous Delivery

[303]

 vpc_id = "${module.vpc.id}"
 subnets = ["${module.vpc.subnets}"]
}

Let's take a look at the VPC module in greater depth.

VPC module
The VPC module creates our private network inside AWS; we do not want to or need to
expose the NATS server to the outside world, so we can create a private network which
only allows the resources attached to that network to access it, as shown in the following
code:

module "vpc" {
 source = "./vpc"

 namespace = "bog-chapter11"
}

The source attribute is the location of the module; Terraform supports the following
sources:

Local file paths
GitHub
Bitbucket
Generic Git, Mercurial repositories
HTTP URLs
S3 buckets

Following the source attribute, we can configure custom attributes, which correspond to
the variables in the module. Variables are required placeholders for a module; when they
are not present, Terraform complains when we try to run it.

The vpc/variables.tf file contains the following content:

variable "namespace" {
 description = "The namespace for our module, will be prefixed to all
resources."
}

variable "vpc_cidr_block" {
 description = "The top-level CIDR block for the VPC."
 default = "10.1.0.0/16"

Continuous Delivery

[304]

}

variable "cidr_blocks" {
 description = "The CIDR blocks to create the workstations in."
 default = ["10.1.1.0/24", "10.1.2.0/24"]
}

The configuration for a variable is very much like that of the provider and it follows the
following syntax:

variable "[name]" {
 [config]
}

A variable has three possible configuration options:

type: This is an optional attribute which sets the type of the variable. The valid
values are string, list, and map. If no value is given, then the type is assumed
to be string.
default: This is an optional attribute to set the default value for the variable.
description: This is an optional attribute to assign a human-friendly
description for the variable. The primary purpose of this attribute is for
documentation of your Terraform configuration.

Variables can be explicitly declared inside a terraform.tfvars file like the one in the root
of our repository:

namespace = "chapter10-bog"

We can also set an environment variable by prefixing TF_VAR_ to the name of the variable:

export TF_VAR_namespace=chapter10-bog

Alternatively, we can include the variable in the command when we run the terraform
command:

terraform plan -var namespace=chapter10-bog

We are configuring the namespace of the application and the IP address block allocated to
the network. If we look at the file, which contains the VPC blocks, we can see how this is
used.

The vpc/vpc.tf file contains the following content:

Create a VPC to launch our instances into
resource "aws_vpc" "default" {

Continuous Delivery

[305]

 cidr_block = "${var.vpc_cidr_block}"
 enable_dns_hostnames = true

 tags {
 "Name" = "${var.namespace}"
 }
}

A resource block is a Terraform syntax, which defines a resource in AWS and has the
following syntax:

resource "[resource_type]" "[resource_id]" {
 [config]
}

Resources in Terraform map to the objects needed for the API calls in the AWS SDK. If you
look at the cidr_block attribute, you will see that we are referencing the variable using the
Terraform interpolation syntax:

cidr_block = "${var.vpc_cidr_block}"

Interpolation syntax is a metaprogramming language inside of Terraform. It allows you to
manipulate variables and the output from resources and is defined using the
${[interpolation]} syntax. We are using the variables collection, which is prefixed by
var and references the vpc_cidr_block variable. When Terraform runs
${var.vpc_cidr_block}, it will be replaced with the 10.1.0.0/16 value from our
variable's file.

Creating a VPC which has external internet access in AWS requires four sections:

aws_vpc: This is a private network for our instances
aws_internet_gateway: This is a gateway attached to our VPC to allow
internet access
aws_route: This is the routing table entry to map to the gateway
aws_subnet: This is a subnet which our instances launch into--we create one
subnet for each availability zone

This complexity is not Terraform but AWS. The other cloud providers have very similar
complexity, and unfortunately, it is unavoidable. It feels daunting at first, however, there
are some amazing resources out there.

Continuous Delivery

[306]

The next section of the VPC setup is to configure the internet gateway:

Create an internet gateway to give our subnet access to the outside world
resource "aws_internet_gateway" "default" {
 vpc_id = "${aws_vpc.default.id}"

 tags {
 "Name" = "${var.namespace}"
 }
}

Again, we have a similar format as the aws_vpc block; however, in this block, we need to
set the vpc_id block, which needs to reference the VPC, which we created in the previous
block. We can again use the Terraform interpolation syntax to find this reference even
though it has not yet been created. The aws_vpc.default.id reference has the following
form which is common across all resources in Terraform:

 [resource].[name].[attribute]

When we reference another block in Terraform, it also tells the dependency graph that the
referenced block needs to be created before this block. In this way, Terraform is capable of
organizing which resources can be set up in parallel and those which have an exact order.
We do not need to declare the order ourselves when the graph is created it automatically
builds this for us.

The next block sets up the routing table for the VPC, enabling the outbound access to the
public internet:

Grant the VPC Internet access on its main route table
resource "aws_route" "internet_access" {
 route_table_id = "${aws_vpc.default.main_route_table_id}"
 destination_cidr_block = "0.0.0.0/0"
 gateway_id = "${aws_internet_gateway.default.id}"
}

Let's take a look at the attributes in this block in a little more detail:

route_table_id: This is the reference to the routing table we would like to
create a new reference for. We can obtain this from the output attribute
main_route_table_id from aws_vpc.
destination_cidr_block: This is the IP range of the instances which will be
connected to the VPC who can send traffic to the gateway. We are using the block
0.0.0.0/0, which allows all the connected instances. If required, we could only
allow external access to certain IP ranges.
gateway_id: This is a reference to the gateway block we previously created.

Continuous Delivery

[307]

The next block introduces a new concept for us data sources. Data sources allow data to be
fetched or computed from information stored outside Terraform or stored in separate
Terraform configuration. A data source may look up information in AWS, for example, you
can query a list of existing EC2 instances, which may exist in your account. You can also
query other providers, for instance, you have a DNS entry in CloudFlare, which you would
like the details for or even the address of a load balancer in a different cloud provider, such
as Google or Azure.

We will use it to retrieve the lists of availability zones in AWS. When we create the VPC, we
need to create a subnet in each availability zone, because we are only configuring the
region, we have not set the availability zones for that region. We could explicitly configure
these in the variables section; however, that makes our config more brittle. The best way,
whenever possible, is to use data blocks:

Grab the list of availability zones
data "aws_availability_zones" "available" {}

The configuration is quite simple and again follows a common syntax:

data [resource] "[name]"

We will make use of this information in the final part of the VPC setup, which is to
configure the subnets; this also introduces another new Terraform feature count:

Create a subnet to launch our instances into
resource "aws_subnet" "default" {
 count = "${length(var.cidr_blocks)}"
 vpc_id = "${aws_vpc.default.id}"
 availability_zone =
"${data.aws_availability_zones.available.names[count.index]}"
 cidr_block = "${var.cidr_blocks[count.index]}"
 map_public_ip_on_launch = true

 tags {
 "Name" = "${var.namespace}"
 }
}

Let's look closely at the count attribute; a count attribute is a special attribute, which when
set creates n instances of the resource. The value of our attribute also expands on the
interpolation syntax that we examined earlier to introduce the length function:

cidr_blocks = ["10.1.1.0/24", 10.1.2.0/24"]
${length(var.cidr_blocks)}

Continuous Delivery

[308]

The cidr_blocks is a Terraform list. In Go, this would be a slice and the length will return
the number of elements inside a list. For comparison, let's look at how we would write this
in Go:

cidrBlocks := []string {"10.1.1.0/24", "10.1.2.0/24"}
elements := len(cidrBlocks)

Interpolation syntax in Terraform is an amazing feature, allowing you to manipulate
variables with many built-in functions. The documentation for the interpolation syntax can
be found at the following location:

https://www.terraform.io/docs/configuration/interpolation.html

We also have the capability of using conditional statements. One of the best features of the
count function is that if you set it to 0, Terraform omits creation of a resource; as an
example, it would allow us to write something like the following:

resource "aws_instance" "web" {
 count = "${var.env == "production" ? 1 : 0}"
}

The syntax for conditionals uses the ternary operation, which is present in many languages:

CONDITION ? TRUEVAL : FALSEVAL

When we use the count Terraform, it also provides us with an index, which we can use to
obtain the correct element from a list. Consider how we are using this in the
availability_zone attribute:

availability_zone =
"${data.aws_availability_zones.available.names[count.index]}"

The count.index will provide us with a 0 based index and because
data.aws_availability_zones.available.names returns a list, we can use to access
this like a slice. Let's take a look at the remaining attributes on our aws_subnet:

vpc_id: This is the ID of the VPC, which we created in an earlier block and we
would like to attach the subnet
availability_zone: This is the name of the availability zone for the subnet
cidr_block: This is the IP range of addresses, which will be given to an instance
when we launch it in this particular VPC and availability zone

https://www.terraform.io/docs/configuration/interpolation.html

Continuous Delivery

[309]

map_public_ip_on_launch: Whether we should attach a public IP address to
the instance when it is created, this is an optional parameter, and determines
whether your instance should also have a public IP address in addition to the
private one, which is allocated from the cidr_block attribute

Output variables
When we are building modules in Terraform, we often need to reference attributes from
other modules. There is a clean separation between modules, which means that they cannot
directly access another module resources. For example, in this module, we are creating a
VPC, and later on, we would like to create an EC2 instance, which is attached to this VPC.
We could not use the syntax as shown in the upcoming code.

The module2/terraform.tf file contains the following content:

resource "aws_instance" "web" {
...
 vpc_id = "${aws_vpc.default.id}"
}

The previous example would result in an error as we are trying to reference a variable
which does not exist in this module even though it does exist in your global Terraform
config. Consider these to be like Go packages. If we had the two following Go packages
which contained non-exported variables:

a/main.go

package a

var notExported = "Some Value"

b/main.go

package b

func doSomething() {
 // invalid reference
 if a.notExported == "Some Value {
 //...
 }
}

Continuous Delivery

[310]

In Go we could, of course, have the variable exported by capitalizing the name of the
variable notExported to NotExported. To achieve the same in Terraform, we use output
variables:

output "id" {
 value = "${aws_vpc.default.id}"
}

output "subnets" {
 value = ["${aws_subnet.default.*.id}"]
}

output "subnet_names" {
 value = ["${aws_subnet.default.*.arn}"]
}

The syntax should be starting to get familiar to you now:

output "[name]" {
 value = "..."
}

We can then use the output of one module to be the input of another--an example found in
the terraform.tf file:

module "nats" {
 source = "./nats"

 application_name = "nats"
 application_description = "Nats.io server"
 application_environment = "dev"

 deployment_bucket = "${module.s3.deployment_bucket}"
 deployment_bucket_id = "${module.s3.deployment_bucket_id}"

 application_version = "1.1"
 docker_image = "nats"
 docker_tag = "latest"

 elb_scheme = "internal"
 health_check = "/varz"

 vpc_id = "${module.vpc.id}"
 subnets = ["${module.vpc.subnets}"]
}

Continuous Delivery

[311]

The vpc_id attribute is referencing an output from the vpc module:

vpc_id = "${module.vpc.id}"

The syntax for the preceding statement is as follows:

module.[module name].[output variable]

In addition to allowing us to keep our code dry and clean, output variables and module
references allow Terraform to build its dependency graph. In this instance, Terraform
knows that because there is a reference to the vpc module from the nats module, it needs
to create the vpc module resources before the nats module. This might feel like a lot of
information and it is. I did not say infrastructure as code was easy, but by the time we get to
the end of this example, it will start to become clear. Applying these concepts to create other
resources becomes quite straightforward with the only complexity being how the resource
works, not the Terraform configuration which is needed to create it.

Creating the infrastructure
To run Terraform and to create our infrastructure, we must first set some environment
variables:

$ export AWS_SECRET_ID=[your aws secret id]
$ export AWS_SECRET_ACCESS_KEY=[your aws access key]
$ export AWS_DEFAULT_REGION=[aws region to create resource]

We then need to initialize Terraform to reference the modules and remote data store. We
normally only need to perform this step whenever we first clone the repository or if we
make changes to the modules:

$ terraform init

The next step is to run a plan; we use the plan command in Terraform to understand which
resources are created, updated, or deleted by the apply command. It will also syntax check
our config without creating any resources:

$ terraform plan -out=main.terraform

The -out argument saves the plan to main.terraform file. This is an optional step, but if
we run apply with the output from the plan, we can ensure that nothing changes from
when we inspected and approved the output of the plan command. To create the
infrastructure, we can then run the apply command:

$ terraform apply main.terraform

Continuous Delivery

[312]

The first argument to the apply command is the plan output, which we created in the
previous step. Terraform now creates your resources in AWS, this can take anything from a
few seconds to 30 minutes depending upon the type of resource you are creating. Once the
creation is complete, Terraform writes the output variables, which we defined in the
output.tf file to stdout.

We have only covered one of the modules in our main infrastructure project. I recommend
that you read through the remaining modules and familiarize yourself with both the
Terraform code and the AWS resources it is creating. Excellent documentation is available
on the Terraform website (https://terraform.io) and the AWS website.

Example application
Our sample application is a simple distributed system consisting of three services. The three
main services, product, search and authentication, have a dependency on a database which
they use to store their state. For simplicity, we are using MySQL; however, in a real
production environment, you would want to choose the most appropriate data store for
your use case. The three services are connected via the messaging system for which we are
using NATS.io, which is a provider-agnostic system, which we looked at in Chapter 9,
Event-Driven Architecture.

https://terraform.io

Continuous Delivery

[313]

To provision this system, we have broken down the infrastructure and source code into four
separate repositories:

Shared infrastructure and services (h t t p s ://g i t h u b . c o m /b u i l d i n g - m i c r o s e r v

i c e s - w i t h - g o /c h a p t e r 11- s e r v i c e s - m a i n)
Authentication service (h t t p s ://g i t h u b . c o m /b u i l d i n g - m i c r o s e r v i c e s - w i t h -

g o /c h a p t e r 11- s e r v i c e s - a u t h)
Product service (h t t p s ://g i t h u b . c o m /b u i l d i n g - m i c r o s e r v i c e s - w i t h - g o /c h a p

t e r 11- s e r v i c e s - p r o d u c t)
Search service (h t t p s ://g i t h u b . c o m /b u i l d i n g - m i c r o s e r v i c e s - w i t h - g o /c h a p

t e r 11- s e r v i c e s - s e a r c h)

The individual repositories enable us to separate our application in such a way that we only
build and deploy the components that change. The shared infrastructure repository
contains Terraform configuration to create a shared network and components to create the
NATS.io server. The authentication service creates a JWT-based authentication microservice
and contains separate Terraform configuration to deploy the service to Elastic Beanstalk.
The product service and the search service repositories also each contain a microservice and
Terraform infrastructure configuration. All the services are configured to build and deploy
using Circle CI.

Continuous delivery workflow
For the remainder of this chapter, we concentrate on the search service as the build pipeline
is the most complex. In our example application, we have the following steps which to
build a pipeline:

Compile application
Unit test
Benchmark
Static code analysis
Integration test
Build Docker image
Deploy application
Smoke test

https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-main
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-auth
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-product
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search
https://github.com/building-microservices-with-go/chapter11-services-search

Continuous Delivery

[314]

Many of these steps are independent and can run in parallel, so when we compose the
pipeline, it looks like the following diagram:

Take a look at the example code at
https://github.com/building-microservices-with-go/chapter11-services-auth. We
are building this application with Circle CI; however, the concepts apply to whatever
platform you use. If we look at the circleci/config.yml file, we see that we are first
setting up the configuration for the process, which includes choosing the version of the
Docker container within which the build executes and install some initial dependencies. We
then compose the jobs, which are performed in the workflow and the various steps for each
of the jobs:

defaults: &defaults
 docker:
 # CircleCI Go images available at:
https://hub.docker.com/r/circleci/golang/

https://github.com/building-microservices-with-go/chapter11-services-auth

Continuous Delivery

[315]

 - image: circleci/golang:1.8

 working_directory: /go/src/github.com/building-microservices-with-
go/chapter11-services-search

 environment:
 TEST_RESULTS: /tmp/test-results

version: 2
jobs:
 build:
 <<: *defaults

 steps:
 - checkout

 - run:
 name: Install dependencies
 command: |
 go get github.com/Masterminds/glide
 glide up
 - run:
 name: Build application for Linux
 command: make build_linux
 - persist_to_workspace:
 root: /go/src/github.com/building-microservices-with-go/
 paths:
 - chapter11-services-search
...
workflows:
 version: 2
 build_test_and_deploy:
 jobs:
 - build
 - unit_test:
 requires:
 - build
 - benchmark:
 requires:
 - build
 - staticcheck:
 requires:
 - build
 - integration_test:
 requires:
 - build
 - unit_test
 - benchmark

Continuous Delivery

[316]

 - staticcheck
 - deploy:
 requires:
 - integration_test

Finally, we will compose these jobs into a workflow or a pipeline. This workflow defines
the relationship between the steps as there are obvious dependencies.

To isolate dependencies in our configuration and to ensure that the commands for building
and testing are consistent across various processes, the commands have been placed into
the Makefile in the root of the repository.

start_stack:
 docker-compose up -d

circleintegration:
 docker build -t circletemp -f ./IntegrationDockerfile .
 docker-compose up -d
 docker run -network chapter11servicessearch_default -w
/go/src/github.com/building-microservices-with-go/chapter11-services-
search/features -e "MYSQL_CONNECTION=root:password@tcp(mysql:3306)/kittens"
circletemp godog ./
 docker-compose stop
 docker-compose rm -f

integration: start_stack
 cd features &&
MYSQL_CONNECTION="root:password@tcp(${DOCKER_IP}:3306)/kittens" godog ./
 docker-compose stop
 docker-compose rm -f

unit:
 go test -v -race $(shell go list ./... | grep -v /vendor/)

staticcheck:
 staticcheck $(shell go list ./... | grep -v /vendor/)

safesql:
 safesql github.com/building-microservices-with-go/chapter11-services-
search

benchmark:
 go test -bench=. github.com/building-microservices-with-go/chapter11-
services-search/handlers

build_linux:
 CGO_ENABLED=0 GOOS=linux go build -o ./search .

Continuous Delivery

[317]

build_docker:
 docker build -t buildingmicroserviceswithgo/search .

run: start_stack
 go run main.go
 docker-compose stop

test: unit benchmark integration

Build
Let's take a closer look at the build process. Inside the build job configuration, we have
three steps. The first is to check out the repository. The jobs themselves are broken up into
steps, and the first notable one of these is to install the dependencies. Glide is our package
manager for the repository, and we need this to be installed to fetch updates to our
vendored packages. We also need a go-junit-report utility package. This application
allows us to convert the Go test output into JUnit format, which Circle requires for
presenting certain dashboard information. We then execute glide up to fetch any updates.
In this example, I have checked in the vendor folder to the repository; however, I am not
pinning the packages to a version. You should set a minimum package version rather than
an exact package version, updating your packages frequently allows you to take advantage
of regular releases in the open source community. You do of course run the risk that there
will be a breaking change in a package and that change breaks the build, but as mentioned
earlier, it is better to catch this as soon as possible rather than deal with the problem when
you are under pressure to release.

Because we are building for production, we need to create a Linux binary, which is why we
are setting the GOOS=linux environment variable before running the build. Setting the
environment is redundant when we are running the build on Circle CI as we are already
running in a Linux-based Docker container; however, to enable cross-platform builds from
our developer machines, if they are not Linux-based, it is useful to have a common
command.

Continuous Delivery

[318]

Once we have built our application, we need to persist the workspace so that the other jobs
can use this. In Circle CI, we use the special step persist_to_workspace; however, this
capability is common to pipeline-based workflows:

Testing
We also mentioned the fact that we need consistency and that, if we are deploying
continuously, we need to have a good solid testing suite, which replaces almost all our
manual testing. I am not saying there is no place for manual testing as there is always a use
for exploratory testing but when we are deploying continuously, we need to automate all of
this. Even if you are adding manual testing into your process, it will be most likely running
as an asynchronous process complimentary to your build pipeline not as a gate to it.

The testing section of the configuration runs our unit tests as we saw in Chapter 4, Testing.
With the following configuration, we first need to attach the workspace that we created in
the build step. The reason for this is that we do not need to check out the repository again.

unit_test:
 <<: *defaults
 steps:
 - attach_workspace:
 at: /go/src/github.com/building-microservices-with-go
 - run: mkdir -p $TEST_RESULTS
 - run:
 name: Install dependencies
 command: go get github.com/jstemmer/go-junit-report

https://cdp.packtpub.com/b05528buildingmicroserviceswithgo/_wp_link_placeholder

Continuous Delivery

[319]

 - run:
 name: Run unit tests
 command: |
 trap "go-junit-report <${TEST_RESULTS}/go-test.out >
${TEST_RESULTS}/go-test-report.xml" EXIT
 make unit | tee ${TEST_RESULTS}/go-test.out

 - store_test_results:
 path: /tmp/test-results

The second thing we need to do is to install the dependencies, Circle CI requires the output
of the tests to be in JUnit format for presentation. To enable this, we can fetch the go-
junit-report package, which can take the output of our tests and convert them into JUnit
format.

To run the tests, we have to do something slightly different, if we just ran our unit tests and
piped them into the go-junit-report command, then we would lose the output. Reading
the command in reverse order, we run our unit tests and output, make unit | tee
${TEST_RESULTS}/go-test.out; the tee command takes the input piped to it and writes
to both the output file specified as well as to the stdout file. We can then use trap, which
executes a command when an exit code is matched from another command. In our instance,
if the unit tests exit with a status code 0 (normal condition), then we execute the go-junit-
report command. Finally, we write our test results for Circle CI to be able to interpret
them using the store_test_results step.

Benchmarking
Benchmarking is an important feature for our CI pipeline; we need to understand when the
performance of our application degrades. To do this, we are going to both run our
benchmark tests and use the handy tool benchcmp, which compares two runs of tests. The
standard version of benchcmp only outputs the difference between two test runs. While this
is fine for comparison, it does not give us the capability to fail our CI job should this
difference be within a certain threshold. To enable this capability, I have forked the
benchcmp tool and added flag-tollerance=[FLOAT]. If any of the benchmarks change
+/- the given tolerance, then benchcmp exits with status code 1, allowing us to fail the job
and investigate why this change has taken place. For this to work, we need to keep the
previous benchmark data available for comparison, so we can use the caching feature to
store the last run data.

Continuous Delivery

[320]

Static code analysis
Static code analysis is a fast and efficient way to check for any problems in our source code
automatically. In our example, we will run two different static code analysis tools, the first
is megacheck by Dominik Honnef, which examines the code for common problems such as
misuse of the standard library, concurrency issues, and many more problems.

Second is SafeSQL from the Stripe team. SafeSQL runs through our code and looks for uses
of the SQL package. It then examines the ones looking for vulnerabilities such as incorrectly
constructed queries, which may be open to SQL injection.

Lastly, we will be checking our code, including the tests for unhandled errors, for example,
you have the following function:

func DoSomething() (*Object, error)

When invoking a method like this, the error object can be thrown away and not handled:

obj, _ := DoSomething()

Unhandled errors are more often found in tests rather than the main body of code;
however, even in tests, this could introduce a bug due to unhandled behavior, errcheck
runs through the code looking for instances like this and reports an error when found and
fails the build:

staticcheck:
 <<: *defaults

 steps:
 - attach_workspace:
 at: /go/src/github.com/building-microservices-with-go

 - run:
 name: Install dependencies
 command: |
 go get honnef.co/go/tools/cmd/staticcheck
 go get github.com/stripe/safesql

 - run:
 name: Static language checks
 command: make staticcheck

 - run:
 name: Safe SQL checks
 command: make safesql

 - run:

Continuous Delivery

[321]

 name: Check for unhandled errors
 command: make errcheck

Static check invokes the megacheck linter which runs staticcheck a static code analysis
tool which helps to detect bugs, Go simple which identifies areas of the source code which
should be improved by re-writing in a simpler way and unused which identifies unused
constants, types, and functions. The first checker is designed to spot bugs; however, the
remaining three are concerned with your application life cycle management.

Clean code is essential to bug-free code; the easier and the simpler your code is the more the
reduced likelihood that you have logic bugs. Why? Because the code is easier to understand
and since you spend more of your time reading code than writing, it makes sense to
optimize for readability. Static code analysis should not be a replacement for the code
review. However, these tools allow you to focus on logic flaws rather than semantics.
Integrating this into your continuous integration pipeline acts as a gatekeeper to the sanity
of your codebase, the checks run incredibly quickly and in my humble opinion are an
essential step.

https://github.com/dominikh/go-tools/tree/master/cmd/megacheck

SafeSQL from the Stripe team is a static code analysis tool which protects against SQL
injections. It attempts to find problems with usage of the database/sql package.

https://github.com/stripe/safesql

Integration tests
Then, there are integration tests. In this example, we are again using GoDog BDD; however,
when we are running on Circle CI, we need to modify our setup a little because of the way
that Circle deals with security for Docker. The first steps are again to attach the workspace,
including the binary that we built in a previous step; then we can get the dependencies
which are only the GoDog application. The setup_remote_docker command requests a
Docker instance from Circle CI. The current build is running in a Docker container;
however, because of the security configuration, we cannot access the Docker host, which is
currently running the current build.

circleintegration:
 docker build -t circletemp -f ./IntegrationDockerfile .
 docker-compose up -d
 docker run -network chapter11servicessearch_default -w
/go/src/github.com/building-microservices-with-go/chapter11-services-
search/features -e "MYSQL_CONNECTION=root:password@tcp(mysql:3306)/kittens"
circletemp godog ./
 docker-compose stop

https://github.com/dominikh/go-tools/tree/master/cmd/megacheck
https://github.com/stripe/safesql

Continuous Delivery

[322]

 docker-compose rm -f

The section of the Makefile for running on CI is quite a bit more complex than when we run
it on our local machine. We need this modification because we need to copy the source code
and install the godog command to a container, which will be running on the same network
as the stack we start with Docker compose. When we are running locally, this is not
necessary as we have the capability to connect to the network. This access is forbidden on
Circle CI and most likely other shared continuous integration environments.

FROM golang:1.8

COPY . /go/src/github.com/building-microservices-with-go/chapter11-
services-search
RUN go get github.com/DATA-DOG/godog/cmd/godog

We build our temporary container, which contains the current directory and adds the
godog dependency. We can then start the stack as normal by running docker-compose up
and then the godog command.

Integration tests on continuous delivery are an essential gate before we deploy to
production. We also want to be able to test our Docker image to ensure that the startup
process is functioning correctly and that we have tested all our assets. When we looked at
integration tests in Chapter 4, Testing, we were only running the application, which is fine
for our development process--it gives us the happy medium of quality and speed. When it
comes to building our production images, however, this compromise is not acceptable, and
therefore, we need to make some modifications to the development process to ensure that
we include the production image in our test plan.

Deployment
Since we have all our application code build tested and packaged, it is time to think about
deploying this into production. We need to start thinking about our infrastructure as
immutable, that is, we will not make changes to the infrastructure but replace it. The level
with which this occurs can be multiple. For example, we have our container scheduler,
which only runs the containers. When we deploy an update to our application binary, we
are replacing a container on the scheduler not refreshing the application in it. Containers
give us one level of immutability, the other is the scheduler itself. To operate successful
continuous delivery, the setup of this facet also needs to be automated, we need to think of
our infrastructure as code.

Continuous Delivery

[323]

For our application, we are splitting the infrastructure up into separate parts. We have a
main infrastructure repository, which creates the VPC, S3 buckets used by deployments and
creates an Elastic Beanstalk instance for our messaging platform NATS.io. We also have
Terraform config for each of the services. We could create one massive Terraform config as
Terraform replaces or destroys infrastructure, which has changed; however, there are
several reasons why we would not want this. The first is that we want to be able to break
down our infrastructure code into small parts in the same way we break up our application
code; the second is due to the way Terraform works. To ensure the consistency of the state,
we can only run a single operation against the infrastructure code at any one time.
Terraform obtains a lock when it runs to ensure that you cannot run it multiple times at
once. If we consider a situation where there are many microservices and that these services
are being continuously deployed, then having a single deployment which is single threaded
becomes a terrible thing. When we decompose the infrastructure configuration and localize
it with each service, then this no longer becomes a problem. One problem with this
distributed configuration is that we still need a method of accessing resource information in
the master repository. In our case, we are creating the main VPC in this repository, and we
need the details to be able to connect our microservices to it. Thankfully, Terraform
manages rather pleasantly using the concept of remote state.

terraform {
 backend "s3" {
 bucket = "nicjackson-terraform-state"
 key = "chapter11-main.tfstate"
 region = "eu-west-1"
 }
}

We can configure our master Terraform config to use remote state, which we can then
access from the search Terraform config using the remote state data element:

data "terraform_remote_state" "main" {
 backend = "s3"

 config {
 bucket = "nicjackson-terraform-state"
 key = "chapter11-main.tfstate"
 region = "eu-west-1"
 }
}

When all the previous steps in the build process complete, we deploy this to AWS
automatically. This way we always deploy every time a new instance of the master branch
builds.

Continuous Delivery

[324]

Smoke tests
Smoke testing the application post deploy is an essential step in continuous delivery we
need to ensure that the application is functioning correctly and that nothing has gone
wrong in the build and deploy steps. In our example, we are simply checking that we can
reach the health endpoint. However, a smoke test can be as simple or as complex as
required. Many organizations run more detail checks, which confirm that the core
integration to the deployed system is correct and functioning. The smoke tests are
conducted as either a codified test re-using many of the steps in the GoDog integration tests
or a specialized test. In our example, we are simply checking the health endpoint for the
search service.

- run:
 name: Smoke test
 command: |
 cd terraform
 curl $(terraform output search_alb)/health

In our application, we can run this test because the endpoint is public. When an endpoint is
not public, testing becomes more complicated, and we need to check the integration by
calling through a public endpoint.

One of the considerations for end-to-end testing is that you need to be careful of polluting
the data inside the production database. A complimentary or even alternative approach is
to ensure that your system has extensive logging and monitoring. We can set up
dashboards and alerts, which actively check for user errors. When an issue occurs post
deploy, we can investigate the problem, and if necessary, rollback to a previous version of
the build with a known good state.

Monitoring/alerting
When the application is running, we need to be sure of the health and status of the
application. Monitoring is an incredibly important facet of the continuous deployment life
cycle. If we are deploying automatically, we need to understand how our application is
performing and how this differs from the previous release. We have seen how we can use
StatsD to emit data about our service to a backend such as Prometheus or a managed
application such as Datadog. Should our recent deploy exhibit anomalous behavior, we are
alerted about this and from there we can act to help identify the source of the problem,
intermittently rolling back if necessary or modifying our alerts as our server may just be
doing more work.

Create a new Datadog timeboard
resource "datadog_timeboard" "search" {

Continuous Delivery

[325]

 title = "Search service Timeboard (created via Terraform)"
 description = "created using the Datadog provider in Terraform"
 read_only = true

 graph {
 title = "Authentication"
 viz = "timeseries"

 request {
 q = "sum:chapter11.auth.jwt.badrequest{*}"
 type = "bars"

 style {
 palette = "warm"
 }
 }

 request {
 q = "sum:chapter11.auth.jwt.success{*}"
 type = "bars"
 }
 }

 graph {
 title = "Health Check"
 viz = "timeseries"

 request {
 q = "sum:chapter11.auth.health.success{*}"
 type = "bars"
 }
 }
}

Again, using the concepts of infrastructure as code, we can provision these monitors at
build time using Terraform. While errors are useful for monitoring, it is also important to
not forget timing data. An error tells you that something is going wrong; however, with the
clever use of timing information in the service, we can learn that something is about to go
wrong.

Complete workflow
Assuming all is functioning well, we should have a successful build, and the UI in our build
environment should show all steps passing. Remember our warning from the beginning of
this chapter--when your build fails, you need to make it your primary objective to fix it; you
never know when you are going to need it.

Continuous Delivery

[326]

Summary
In this chapter, we have learned that it need not be an arduous task to set up continuous
integration and deployment for your application, and in fact, this is essential to the health
and success of your application. We have built on all the concepts covered in the previous
chapters, and while the final example is somewhat simple, it has all the constituent parts for
you to build into your applications to ensure that you spend your time developing new
features and not fixing production issues or wasting time repetitively and riskily deploying
application code. Like all aspects of our development, we should practice and test this
process. Before releasing continuous delivery to your production workflow, you need to
ensure that you can deal with problems such as hot fixing and rolling back a release. This
activity should be completed across teams and depending on your process for out-of-hours
support should also involve any support staff. A well-practiced and functioning
deployment process gives you the confidence that when an issue occurs, and it most likely
will, you can comfortably and confidently deal with it.

I hope that by working through this book, you now have a greater understanding of most of
the things you need to build microservices with go successfully. The one thing I cannot
teach is the experience that you need to find out for yourself by getting out there and
performing. I wish you luck on this journey, and the one thing that I have learned from my
career is that you never regret putting in the time and effort to learn these techniques. I am
sure you will be hugely successful.

Index

2
2xx Success, RESTful API response codes
 200 OK 48
 201 Created 48
 204 No Content 48
 about 48

3
3xx Redirection, RESTful API response codes
 301 Moved Permanently 49
 304 Not Modified 49
 about 49

4
4xx Client Error, RESTful API response codes
 400 Bad Request 49
 401 Unauthorized 49
 403 Forbidden 50
 404 Not Found 50
 405 Method Not Allowed 50
 408 Request Timeout 50
 about 49

5
5xx Server Error, RESTful API response codes
 500 Internal Server Error 51
 503 Service Unavailable 51
 about 50

A
ACK flood 228
aggregates 283
anatomy, Domain-Driven Design (DDD)
 about 282
 Bounded Context 284

 Context Mapping 284
 strategic design 282
 tactical design 283
 ubiquitous language 283
Apache Thrift
 URL 63
API Blueprint 72
API Gateway
 about 224
 features 224
API versioning
 about 65, 66
 naming, for RPC 67, 68
 semantic versioning 66
 versioning formats, for REST APIs 67
 versioning formats, for RPC APIs 67
Apigee
 URL 224
application code, for Docker
 building 90
 CMD 92
 COPY 91
 ENTRYPOINT 91, 92
 EXPOSE 91
 FROM 90
 MAINTAINER 90
 practice, for creating Dockerfiles 92, 93
application security
 about 228
 asymmetric encryption, with large messages 258
 authentication 245
 authorization 245
 confused deputy 230
 data, securing at rest 242
 detection 229
 firewall, bypassing 231
 input validation 232

[328]

 JWTs 250
 OWASP 244
 password hashing 246
 prevention 229
 recovery 230
 response 230
 secure messages 254
 shared secrets 256
 TLS 234
asymmetric encryption
 with large messages 258
asynchronous messages
 pull/queue messaging 266
 push messaging 272
 types 266
asynchronous processing
 about 265
 versus synchronous processing 262
authentication 245
authorization 245
AWS s3 backend, attributes
 bucket 301
 key 302
 region 302
AWS SNS/SQS 265, 286

B
back off pattern 140, 141
Background method 25
bcrypt
 about 249
 URL 249
Behavioral Driven Development (BDD) 113
benchmarking 121
benchmarks
 about 121
 demonstrating 121
Bitcoin
 URL 301
Bounded Contexts 282

C
caching
 about 157, 158, 159
 premature optimization 159

 stale cache in times of database or downstream
service failure 160

CHARGEN (Character Generation Protocol) attack
227

circuit breaker
 constructing 144
circuit breaking
 about 142
 working 143
collection 39
Command model 276
Command Query Responsibility Segregation

(CQRS) 276
container orchestration
 about 297
 options 297
containers
 creating 77, 78, 79, 80, 81
 removing 84
 with Docker 75, 76
Context Mapping 282
context
 about 25
 Background methods 25
 using 26
 WithCancel method 25
 WithDeadline method 25
 WithTimeout method 26
 WithValue method 26
continuous delivery, aspects
 about 291
 artifact storage 293
 consistency 292
 end-to-end tests 295
 infrastructure as code 293
 integration test automation 293
 monitoring 295
 reproducibility 292
 security scanning 294
 smoke tests 294
 static code analysis 294
 test automation 293
continuous delivery, workflow
 about 313, 314, 316
 application, alerting 324

[329]

 application, monitoring 324
 benchmarking 319
 build process 317
 build, setting up 325
 deployment 322
 integration tests 321
 smoke tests 324
 static code analysis 320
 testing 318
continuous delivery
 about 288
 benefits 291
 manual deployment 289
 overview 296
 process 295
controller 40
CORS (Cross-Origin Resource Sharing) 57
cron 297
CRUD 40
custom bridge networks
 containers, connecting to 88
 creating 87
custom network drivers
 about 86
 Project Calico 87
 Weaveworks 86

D
Daemons
 running, in containers 95
data
 physical machine, accessing 243
 securing, at rest 242
DDoS attack, types
 about 225
 ACK flood 228
 CHARGEN 227
 DNS 226
 NTP 227
 SSDP 227
 SYN flood 227
 UDP flood 226
 UDP fragment attack 226
DDoS protection 225
design patterns

 failure 131, 132
dictionary attack 248
distributed system
 creating 312
DNS 226
Docker Compose
 about 95
 compose file location, specifying 98
 installing, on Linux 95, 96
 project name, specifying 98
 service startup 97
 testing with 118, 119, 120
Docker networking
 about 84
 bridge networking 84
 custom bridge networks, creating 87
 custom network drivers 86
 host networking 85
 no network 85
 overlay network 86
Docker ports 82
Docker volumes
 about 81, 83
 mounting 81, 82
 union filesystem 81
Docker
 about 75
 installing 76
Dockerfiles
 about 89
 application code, building for Docker 89
 images, building from 93
 writing 89
document 40
documenting APIs
 about 71
 REST based-based APIs 71
 RPC based-based APIs 73
domain events 283
Domain-Driven Design (DDD)
 about 280, 281
 anatomy 282
 technical debt 282
DSL (domain specific language) 60

[330]

E
Elastic Beanstalk 297
encryption
 about 217
 public-key cryptography 218
 SSL 219
 symmetric-key encryption 218
 TLS 219
 X.509 digital certificates 219
ESB (enterprise service bus) 86
event processing
 about 133, 134
 atomic transactions 138, 139
 dead letter queue 136
 errors, handling 135
 idempotent transactions 137
 message order 137
 with at least once delivery 134, 135
Event-Driven Systems 263
exceptions
 about 214
 handling 214
 panic function 214
 recover function 214, 215, 216
external security
 about 220
 API Gateway 224
 DDoS protection 225
 layer 2 firewall 221
 layer 3 firewall 221
 web application firewall (WAF) 223

F
FieldError object
 reference link 233
FileServer function 21
firewall, bypass
 about 231
 attacker 231
 scenario 231

G
GCM (Galois/Counter Mode) 256
Go documentation

 reference 62
Go standard library
 RPC 29
Go structs
 JSON, unmarshalling 15
 marshalling, to JSON 10
gob wire format
 reference link 32
Google Cloud Pub/Sub 265, 287
govalidator
 reference 175
gRPC
 about 184
 code generation 185, 186
 efficiency 189
 extensibility 191
 format 188
 language independence 188, 189
 maintainable 187
 open source 191
 patterns 188
 quality 190
 security 191
 setting up 184
 summary 191
 support 191
 tooling 187

H
handlers
 creating 23
HashiCorp
 about 298
 URL 298
HTTP headers, RESTful APIs
 about 51
 returning errors 55, 57
 standard request headers 51
 standard response headers 55
HTTP verbs
 about 41
 DELETE method 43
 GET method 41
 HEAD method 44
 OPTIONS method 44

[331]

 PATCH method 43
 POST method 42
 PUT method 42
http.Request
 reference link 16
HTTP
 JSON-RPC over 34
 RPC over 33

I
images, building from Dockerfiles
 about 93
 Docker build context 94
 Docker Ignore files 94
immutable infrastructure 298
input validation
 about 232
 fuzzing 233
 reference link 232
interactive terminal 77

J
jose
 URL 252
JSON Web Token (JWT)
 about 250
 format 250
 reference link 251
JSON-RPC
 about 64
 URL 64
JSON
 Go structs, marshalling 10
 reading 10
 reference link 18
 unmarshalling, to Go structs 15
JSONP (JSON with Padding) 57

K
Kafka 285
Kite
 about 176
 code generation 179
 efficiency 181
 extensibility 183

 features 179
 format 180
 language independence 181
 maintainable 179
 open source 182
 patterns 180
 quality 182
 security 182
 setup 177, 178
 summarizing 183
 support 183
 tooling 179
 working 177
Kong
 URL 224
kontrol 177

L
layer 2 firewall 221
layer 3 firewall 221
least privilege 243
load balancing 156, 157
logging
 about 193, 194, 206
 best practices 194, 195
 distributed tracing, with correlation IDs 206, 207
 Elasticsearch 207, 208
 ELK stack 207
 Kibana 209, 210, 211, 212

M
maintenance, of application
 about 259
 code, patching 260
 containers, patching 259
 logging 260
 software, updating 260
manual deployment 289
mappings
 anti-corruption layer 284
 conformist 284
 customer-supplier 284
 Open Host Service 285
 partnership 284
 published language 285

[332]

 shared kernel 284
Mashery
 URL 224
megacheck 320
metrics
 about 195
 data, representing 196
 Grafana, using 201, 202, 203, 204, 205
 naming conventions 196, 197, 198, 199
 querying 199
 self-hosted 200, 201
 software as a service (SaaS) 199
 storage 199
Micro
 about 167, 176
 code generation 168, 170
 efficiency 174
 extensibility 176
 format 171
 interfacing, with other frameworks 173
 language independence 172, 173
 maintainable 171
 open source 175
 patterns 172
 quality 175
 reference 167, 171
 security 175
 setup 168
 support 175
 tooling 170
microservice framework
 features 161, 162, 165, 166
monitoring 193, 194
Mulesoft
 URL 224

N
NATS.io
 about 265, 285
 at-least-once delivery 286
 at-most-once delivery 286
 configurable options, URL 275
net/http package
 convenience handlers 20
 FileServer function 21

 handlers, creating 23
 NotFoundHandler function 21
 paths 19
 RedirectHandler function 21
 routing 18
 static file handler 22
 StripPrefix function 21
 TimeoutHandler function 22
 web server, building 7
NTP 227

O
object type standardization
 about 68
 dates 69
 durations 70
 intervals 70
Open API Initiative
 URL 71
open source projects
 AWS SNS/SQS 286
 Google Cloud Pub/Sub 287
 Kafka 285
 NATS.io 285
Open Web Application Security Project (OWASP)
 about 223, 244
 cross-site request forgery (CRSF) 244
 cross-site scripting (XSS) 244
 insecure direct object references 245
 reference link 244
 session tokens storage, avoiding in URL 244
outside-in development, testing
 about 102, 103
 Behavioral Driven Development 113, 114, 117
 code coverage 111, 112
 dependency injection 108
 Docker Compose, testing with 118, 119, 120
 mocking 109, 111
 unit tests 103, 104
OWASP CRS
 URL 223

P
PagerDuty 295
password hashing

[333]

 about 246
 bcrypt 249
 benchmarks 249
 dictionary attack 248
 pepper, adding 248
 security, enhancing 246
patterns
 about 133
 back off 140
 caching 157
 circuit breaking 142
 event processing 133
 health checks 145, 146
 load balancing 156
 service discovery 152
 throttling 149, 152
 timeouts 139
Plug & Play (UPnP) 227
POODLE (Paddling Oracle On Downgraded Legacy

Encryption) 219
private keys
 URL, for example 235
profiling
 about 123, 125, 126, 128
 blocking 123
 CPU 123
 Heap 123
Project Calico
 about 87
 URL 87
Protocol Buffers
 about 63
 URL 64
providers 300
public-key cryptography
 about 218
 digital signatures 218
pull/queue messaging 266
push messaging 272

Q
Query model 276

R
Rainbow tables 246
RAML (RESTful API Modelling Language)
 about 73
 URL 73
RedirectHandler function 21
response codes, RESTful APIs
 2xx Success 48
 3xx Redirection 49
 4xx Client Error 49
 5xx Server Error 50
 about 45
REST (Representational State Transfer) 37
REST based-based APIs
 about 71
 API Blueprint 72
 RAML 73
 Swagger 71
RESTful APIs, accessing from JavaScript
 about 57
 CORS 59, 60
 JSONP 57, 58
RESTful APIs
 about 37
 HTTP headers 51
 HTTP verbs 41
 response codes 45, 46, 47, 48
 URI formatting 38, 39
 URI path design, for REST services 39
 URI query design 45
 URIs 38
routing
 in net/http package 18
RPC (Remote Procedure Call) 61
RPC API design
 filtering 65
 RPC message frameworks 62
RPC APIs
 about 60, 61
 RPC API design 61
RPC message frameworks
 about 62
 gob 62
 JSON-RPC 64

[334]

 Protocol Buffers 63
 Thrift 62
RPC
 example 29
 in Go standard library 29
 JSON-RPC, over HTTP 34
 over HTTP 33

S
SafeSQL
 about 320, 321
 URL 321
service discovery
 about 152, 153
 client-side service discovery 154, 155
 server-side service discovery 153
shared infrastructure
 Elastic Beanstalk 300
 S3 bucket 299
 VPC 299
signing 217
Simple Notification Service (SNS) 286
Simple Queue Service (SQS) 286
Simple Service Discovery Protocol (SSDP) 227
SSL 219
standard request headers, HTTP headers
 authorization 52
 content type 52
 date 52
 deflate 53, 54
 gzip 53
static file handler 22
store 40
StripPrefix function 21
Swagger 71
symmetric-key encryption 218
SYN flood 227
synchronous processing
 about 264
 versus asynchronous processing 262

T
Terraform
 about 298
 config entry point 302

 infrastructure, creating 311
 output variables 309, 310
 providers 300
 URL 298, 312
 VPC module 303, 304, 306, 308
testing pyramid 101
testing
 outside-in development 102
 techniques 100
Thrift
 aims 62
throttling 149
timeout 139
TimeoutHandler function 22
Transport Layer Security (TLS)
 about 8, 219, 234
 private keys, generating 234
 X.509 certificates, generating 237, 242
Tyk
 URL 224

U
UDP flood 226
UDP fragment attack 226
unit tests
 about 103
 httptest.NewRecorder 105, 107
 httptest.NewRequest 105
URI (Uniform Resource Identifiers) 38
URI path design, for REST services
 collections 39
 controller 40
 CRUD function names 41
 documents 40
 store 40

V
VPC module 303, 304, 308

W
Weaveworks
 about 86
 URL 86
web application firewall (WAF) 223
web server

 building, with net/http package 7
Web Service-Transactions (WS-T) 138
WithCancel method 25
WithDeadline method 25
WithTimeout method 26

WithValue method 26

X
X.509 digital certificates 219

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Microservices
	Building a simple web server with net/http
	Reading and writing JSON
	Marshalling Go structs to JSON
	Unmarshalling JSON to Go structs

	Routing in net/http
	Paths
	Convenience handlers
	FileServer
	NotFoundHandler
	RedirectHandler
	StripPrefix
	TimeoutHandler
	Static file handler
	Creating handlers

	Context
	Background
	WithCancel
	WithDeadline
	WithTimeout
	WithValue
	Using contexts

	RPC in the Go standard library
	Simple RPC example
	RPC over HTTP
	JSON-RPC over HTTP

	Summary

	Chapter 2: Designing a Great API
	RESTful APIs
	URIs
	URI format
	URI path design for REST services
	Collections
	Documents
	Controller
	Store
	CRUD function names

	HTTP verbs
	GET
	POST
	PUT
	PATCH
	DELETE
	HEAD
	OPTIONS

	URI query design
	Response codes
	2xx Success
	200 OK
	201 Created
	204 No Content

	3xx Redirection
	301 Moved Permanently
	304 Not Modified

	4xx Client Error
	400 Bad Request
	401 Unauthorized
	403 Forbidden
	404 Not Found
	405 Method Not Allowed
	408 Request Timeout

	5xx Server Error
	500 Internal Server Error
	503 Service Unavailable

	HTTP headers
	Standard request headers
	Authorization - string
	Date
	Accept - content type
	Accept-Encoding - gzip, deflate

	Standard response headers
	Returning errors

	Accessing APIs from JavaScript
	JSONP
	CORS

	RPC APIs
	RPC API design
	RPC message frameworks
	Gob
	Thrift
	Protocol Buffers
	JSON-RPC

	Filtering

	Versioning APIs
	Semantic versioning
	Versioning formats for REST APIs
	Versioning formats for RPC APIs
	Naming for RPC

	Object type standardization
	Dates
	Durations
	Intervals

	Documenting APIs
	REST based-based APIs
	Swagger
	API Blueprint
	RAML

	RPC based-based APIs

	Summary

	Chapter 3: Introducing Docker
	Introducing Containers with Docker
	Installing Docker
	Running our first container
	Docker volumes
	Union filesystem
	Mounting volumes

	Docker ports
	Removing a container starting with an explicit name
	Docker networking
	Bridge networking
	Host networking
	No network
	Overlay network
	Custom network drivers
	Weaveworks
	Project Calico

	Creating custom bridge networks
	Creating a bridge network
	Connecting containers to a custom network

	Writing Dockerfiles
	Building application code for Docker
	FROM
	MAINTAINER
	EXPOSE
	COPY
	ENTRYPOINT
	CMD
	Good practice for creating Dockerfiles

	Building images from Dockerfiles
	Docker build context
	Docker Ignore files

	Running Daemons in containers

	Docker Compose
	Installing Docker Compose on Linux
	Service startup
	Specifying the location of a compose file
	Specifying a project name

	Summary

	Chapter 4: Testing
	The testing pyramid
	Outside-in development
	Unit tests
	httptest.NewRequest
	httptest.NewRecorder

	Dependency injection and mocking
	Code coverage
	Behavioral Driven Development
	Testing with Docker Compose

	Benchmarking and profiling
	Benchmarks
	Profiling

	Summary

	Chapter 5: Common Patterns
	Design for failure
	Patterns
	Event processing
	Event processing with at least once delivery
	Handling Errors
	Dead Letter Queue

	Idempotent transactions and message order
	Atomic transactions

	Timeouts
	Back off
	Circuit breaking
	Health checks
	Throttling
	Service discovery
	Server-side service discovery
	Client-side service discovery

	Load balancing
	Caching
	Premature optimization
	Stale cache in times of database or downstream service failure

	Summary

	Chapter 6: Microservice Frameworks
	What makes a good microservice framework?
	Micro
	Setup
	Code generation
	Tooling (CI/CD, cross platform)
	Maintainable
	Format (REST/RPC)
	Patterns
	Language independence
	Ability to interface with other frameworks
	Efficiency
	Quality
	Open source
	Security
	Support
	Extensibility
	What we learned about Micro

	Kite
	Setup
	Code generation
	Tooling
	Maintainable
	Format
	Patterns
	Language independence
	Efficiency
	Quality
	Open source
	Security
	Support
	Extensibility
	Summing up Kite

	gRPC
	Setup
	Code generation
	Tooling
	Maintainable
	Format
	Patterns
	Language independence
	Efficiency
	Quality
	Open source
	Security
	Support
	Extensibility
	A few lines about gRPC

	Summary

	Chapter 7: Logging and Monitoring
	Logging best practices
	Metrics
	Types of data best represented by metrics
	Naming conventions
	Storage and querying
	Software as a service
	Self-hosted

	Grafana

	Logging
	Distributed tracing with Correlation IDs
	Elasticsearch, Logstash, and Kibana (ELK)
	Kibana

	Exceptions
	Panic and recover
	Panic
	Recover

	Summary

	Chapter 8: Security
	Encryption and signing
	Symmetric-key encryption
	Public-key cryptography
	Digital signatures

	X.509 digital certificates
	TLS/SSL

	External security
	Layer 2 or 3 firewalls
	Web application firewall
	API Gateway
	DDoS protection
	Types of DDoS attack
	UDP fragment attack
	UDP flood
	DNS
	NTP
	CHARGEN
	SYN flood
	SSDP
	ACK

	Application security
	Prevention
	Detection
	Response
	Recovery
	Confused deputy
	How an attacker could bypass the firewall
	Scenario
	Attack

	Input validation
	Fuzzing

	TLS
	Generating private keys
	Generating X.509 certificates

	Securing data at rest
	Physical machine access

	OWASP
	Never storing session tokens in a URL
	Cross-site scripting (XSS) and cross-site request forgery (CRSF)
	Insecure direct object references

	Authentication and authorization
	Password hashing
	Adding a little seasoning
	Dictionary attacks
	Adding a pepper
	bcrypt
	Benchmarks

	JWTs
	Format of a JWT

	Secure messages
	Shared secrets
	Asymmetric encryption with large messages

	Maintenance
	Patching containers
	Software updates
	Patching application code
	Logging

	Summary

	Chapter 9: Event-Driven Architecture
	Differences between synchronous and asynchronous processing
	Synchronous processing
	Asynchronous processing

	Types of asynchronous messages
	Pull/queue messaging
	Push messaging

	Command Query Responsibility Segregation (CQRS)
	Domain-Driven Design
	What is DDD?
	Technical debt
	Anatomy of DDD
	Strategic design
	Tactical design
	Ubiquitous language
	Bounded Contexts
	Context Mapping

	Software
	Kafka
	NATS.io
	AWS SNS/SQS
	Google Cloud Pub/Sub

	Summary

	Chapter 10: Continuous Delivery
	What is Continuous Delivery?
	Manual deployment
	The benefits of continuous delivery
	Aspects of continuous delivery
	Reproducibility and consistency
	Artifact storage
	Automation of tests
	Automation of integration tests
	Infrastructure as code
	Security scanning
	Static code analysis
	Smoke tests
	End-to-end tests
	Monitoring

	Continuous delivery process
	Overview

	What is container orchestration?
	Options for container orchestration

	What is immutable infrastructure?
	Terraform
	Providers
	Terraform config entry point
	VPC module
	Output variables
	Creating the infrastructure

	Example application
	Continuous delivery workflow
	Build
	Testing
	Benchmarking
	Static code analysis
	Integration tests
	Deployment
	Smoke tests
	Monitoring/alerting
	Complete workflow

	Summary

	Index

