

OpenStack Bootcamp

Build and operate a private cloud environment effectively

Vinoth Kumar Selvaraj

BIRMINGHAM - MUMBAI

OpenStack Bootcamp

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1241117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-330-3

www.packtpub.com

http://www.packtpub.com

Credits

Author
Vinoth Kumar Selvaraj

Copy Editors
Ulka Manjrekar
Vikrant Phadkay

Reviewer
Ashutosh Narayan

Project Coordinator
Shweta H Birwatkar

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Chandan Kumar

Indexer
Aishwarya Gangawane

Content Development Editor
Deepti Thore

Graphics
Tania Dutta

Technical Editor
Akash Patel

Production Coordinator
Nilesh Mohite

About the Author
Vinoth Kumar Selvaraj is an enthusiastic computer science engineer from Tamil Nadu,
India. He works as a DevOps engineer at Cloudenablers Inc. As an active moderator on Ask
OpenStack, he consistently answers and provides solutions for questions posted on the Ask
OpenStack forum. Based on karma points, he has ranked 20 out of 20,000 members in the
Ask OpenStack forum. He has also written many OpenStack-related articles for
superuser.openstack.org and hosts a dedicated website for his works on OpenStack
at http://www.hellovinoth.com/.

You can visit his LinkedIn page at
https://www.linkedin.com/in/vinothkumarselvaraj/ and tweet to him
@vinoth6664.

Vinoth has also worked as a technical reviewer on books by Packt such as Openstack Cloud
Security, Learning OpenStack High Availability, Openstack Essentials, and Learning OpenStack
[Video].

Acknowledgments
I would like to dedicate this book to my Amma, Appa, Anna and friends for their love and
support. My special thanks to all my mentors that I’ve had over the years.

Thiruvalluvar

Rathinasabapathy

Krishnakumar Narayanan

Venkatesh Perumal

Satyabrata Chowdhury

Konda Chendil

Vinu Francis

Praveen Tummalapalli

Monisha

Vishnu Prabakaran

and the entire Cloudenablers team

Without learning and support from these teachers, there was no chance of what I have done
today, and it is because of them and others that I may have missed on the list here that I feel
compelled to pass my knowledge on to those willing to learn.

About the Reviewer
Ashutosh Narayan hails from a small town called Deoghar in Jharkhand, where he grew
up. He is currently based in Bengaluru, India. His interests are multifarious and diverse. He
loves art, playing musical instruments, nature, photography, blogging, and most of all,
spending time with his family.

He holds a bachelor’s degree in information science and engineering and is an open source
technology enthusiast and contributor with 9+ years of IT experience. He is an OpenStack
Foundation Member and has contributed to the openstack-manual project. Ashutosh also
became a member as an Individual supporter of LINUX FOUNDATION for a year. He has
experience across various domains: programming, Linux system administration, cloud
computing, and DevOps. He attends conferences, events, and regular meet-ups from the
area of his interests in and around the city, where he shares experiences and lessons on
technology.

I would like to thank my beloved mother, Late Smt. Kanchan Narayan and my father, Sri Rajendra
Narayan, two of my greatest teachers who have always given me strength. Thanks to my wife,
Anjulika, who supported me in spite of all the time I spent away from her, and my two lovable sisters,
Anamika and Priyanka. Without them, I am nothing. Finally, thanks to the project coordinators for
making this book what it is now.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
https://www.packtpub.com/
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788293304.

If you'd like to join our team of regular reviewers, you can email us
at customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788293304

Table of Contents
Preface 1

Chapter 1: Day 1 - Build Your Camp 6

Design principles for OpenStack 6
OpenStack distributions 7
Vanilla OpenStack 8
DevStack installation 8

Prepare your virtual machine 9
Let's DevStack 9

OpenStack community and getting help 15
Summary 15

Chapter 2: Day 2 - Know Your Battalion 16

Core components of OpenStack 16
KeyStone (identity service) 17
Nova (computing service) 18
Glance (image service) 20
Neutron (networking service) 22
OpenStack service interaction layout 23

Optional components 24
Cinder (block storage service) 24
Swift (object storage service) 26

Summary 27

Chapter 3: Day 3 - Field Sketch 28

OpenStack - logical architecture 29
Compute service - Nova 29

nova-api service 30
nova-api-metadata service 31
nova-compute service 31
nova-scheduler service 32
nova-conductor module 32
nova-consoleauth daemon 33
nova-cert module 33
The queue (AMQP message broker) 33
Database 33

Image service - Glance 34
glance-api service 34

Table of Contents

[ii]

glance-registry service 34
Identity service - KeyStone 35

Server (keystone-all) 35
Drivers (optional) 35

Networking service - neutron 36
Neutron server 36
plugin agent (neutron-*-agent) 36
DHCP agent (neutron-dhcp-agent) 37
L3 agent (neutron-l3-agent) 37

Block storage service - Cinder 39
cinder-api service 39
cinder-scheduler daemon 39
cinder-volume Service 40
cinder-backup daemon 40

Object storage - Swift 41
Proxy servers (swift-proxy-server) 42
Account servers (swift-account-server) 42
Container servers (swift-container-server) 42
Object servers (swift-object-server) 43
Telemetry service - ceilometer 43
ceilometer-agent-compute 44
ceilometer-agent-central 44
ceilometer-agent-notification 46
ceilometer-collector 46

Orchestration service - Heat 46
heat-api component 48
heat-api-cfn component 48
heat-engine 48

OpenStack - conceptual architecture 48
Designing your deployment 49
Typical production design 52
Summary 53

Chapter 4: Day 4 - How Stuff Works 54

Idle state of OpenStack services 54
Step 1 - user login - Horizon 57
Step 2 - validating AUTH data 59
Step 3 - sending an API request to the Nova API 61
Step 4 - validating the API token 62
Step 5 - processing the API request 63
Step 6 - publishing the provisioning request 65
Step 7 - picking up the provisioning request 67
Step 8 - schedule provisioning 69
Step 9 - starting the VM provisioning 72

Table of Contents

[iii]

Step 10 - starting VM rendering via the hypervisor 73
Step 11 - requesting the base image for VM rendering 75
Step 12 - configuring the network for an instance 77
Step 13 - VM in running state 80

Summary 82

Chapter 5: Day 5 - Networking Strategy 83

Networking basics 83
OpenStack networking 86

Legacy nova-network to OpenStack neutron 87
OpenStack Neutron 87

Network types 89
Provider networks 89
Self-service networks 89
Types of network isolation and overlay technologies 90
Why VxLAN? 92

Neutron offerings 92
Network topology 93
Networks and subnets 93
Routers 94
Security groups 95
Extended services 96

VPNaaS 96
LBaaS 97
FWaaS 97

Floating IP 97
Network traffic flow 98

North-south network traffic 100
East-west network traffic 103

How does a VM get an IP? 105
Summary 106

Chapter 6: Day 6 - Field Training Exercise 107

Understanding the OpenStack lab environment 108
Exploring lab through the command line 108
Exploring lab through the Horizon dashboard 110

OpenStack Horizon - Project tab 114
The Compute tab 114
The Network tab 115

OpenStack Horizon - the Admin tab 116
The System tab 116

Compute Service - Horizon 118

Table of Contents

[iv]

Launching a new instance using Horizon 118
Mandatory fields 121

Connecting to the instance using the VNC console 124
Tracking usage for instances 127
Managing an instance 128

Compute service - CLI 132
OpenStack CLI clients (OSC) 132
Launching an instance using OpenStack CLI 134
Connecting to the instance using SSH 138
Terminating the created instance 141

Image service (Glance) 142
Adding an image using Horizon 142
Adding an image using Glance CLI 146
Launching an instance from the new image 149

Block storage (Cinder) 151
Managing Cinder volume using Horizon 152
Attaching Cinder volume to the virtual machine 156
Detaching Cinder volume from the virtual machine 159

Identity (KeyStone) 161
Adding projects and users 162

Networking service (neutron) 167
Creating a network using Horizon 167
Verifying the network connectivity 172
Configuring routing for external networks 177

Add-on exercises 183
Making existing Glance images public 183
Sharing networks between projects 186
Creating new flavors 188
Transferring Cinder volume between projects 191

Summary 195

Chapter 7: Day 7 - Collective Training 196

Administrative tasks 196
Project specific tasks 199
Extended activities 209

Activity 1 209
Activity 2 209
Activity 3 209

Summary 209

Chapter 8: Day 8 - Build Your OpenStack 210

Table of Contents

[v]

System requirements 211
Preparing your virtual machine 211
Before we begin 212

User permissions 212
Configuring network interfaces 212

Step 1 - configuring the first network interface with static IP address 212
Step 2 - configuring the second interface as the provider interface 213
Step 3 - setting the hostnames 214
Step 4 - verifing network connectivity 214

Configuring the Network Time Protocol 214
Configuring the OpenStack repository 215
Upgrading the system 215

OpenStack installation 215
Configuring the database server 215

Step 1 - creating file 216
Step 2 - finalizing the database installation 216
Step 3 - creating database for OpenStack services 216

Configuring the message queue 217
Configuring the memcached server 218
Configuring the identity service (KeyStone) 218

Step 1 - installing and configure components 218
Step 2 - configuring the Apache HTTP server 219
Step 3 - setting environment variables 219
Step 4 - defining projects in KeyStone 220
Step 5 - defining users and map role in KeyStone 222
Step 6 - verifying KeyStone operation 223
Step 7 - creating OpenRC environment file 224

Configuring the image service (Glance) 225
Step 1 - defining the Glance service and API endpoints in KeyStone 225
Step 2 - installing and configuring the Glance components 228
Step 3 - verifying the Glance operation 229

Configuring the Compute service (Nova) 231
Step 1 - defining the Nova service and API endpoints in KeyStone 231
Step 2 - installing and configuring the Nova components 235

Installing and configuring a compute node (nova-compute) 238
Configuring the networking service (neutron) 242

Step 1 - defining the neutron service and API endpoints in KeyStone 242
Step 2 - configuring the self-service networks 243
Step 3 - configuring the Modular Layer 2 (ML2) plugin 245
Step 4 - Configuring the Linux bridge agent 246
Step 5 - configuring the layer-3, DHCP agent, and metadata agent 246
Step 6 - configuring the Nova service to use the neutron service 247

Installing and configuring a compute node (neutron) 248
Installing the OpenStack dashboard 252

Adding compute node to the OpenStack cluster 254
Summary 255

Table of Contents

[vi]

Chapter 9: Day 9 - Repairing OpenStack 256

Structured troubleshooting approaches 256
Level 1 - Service status check 257
Level 2 - Authentication response 257
Level 3 - CLI debug mode 257
Level 4 - Service log check 258

The KeyStone service 259
Checking the KeyStone service 259
Checking the KeyStone client 260
The CLI debug mode 261

The Glance service 261
The Glance log files 262

The Nova service 262
The Nova log files 263

The Neutron service 263
Neutron log files 264

Database issues 264
Getting help from OpenStack community 265
Summary 266

Chapter 10: Day 10 - Side Arms of OpenStack 267

Bells and whistles of OpenStack 267
OpenStack Umbrella 268

Ironic 269
Manila 270
Designate 270
Trove 271
Sahara 271
Barbican 271
Zaqar 272
Aodh 272
Congress 272
Mistral 273
Murano 273
Magnum 273
Zun 273
Panko 274
Vitrage 274
Watcher 274

Table of Contents

[vii]

Summary 275

Index 276

Preface
OpenStack is a free and opensource software platform for cloud computing, mostly
deployed as an infrastructure-as-a-service (IaaS). The Bootcamp approach has short,
intensive, and practical content comprising of a lot of real-world examples, OpenStack
Bootcamp will provide the main architecture of OpenStack clouds, configuration of each
OpenStack component and debugging techniques. Besides in-depth coverage of OpenStack
technologies, hands-on exercises are also provided to make reader better understand and
provide analysis of real-world cloud use cases and operation scenarios, covering design,
customization and optimization.

What this book covers
Chapter 1, Day 1 - Build Your Camp, discusses the design principles of OpenStack and
Cloud in general, the types of distributions, and setting up the lab environment for the
hands-on chapters ahead.

Chapter 2, Day 2 - Know Your Battalion, focuses on an overview of each OpenStack core
(KeyStone/Glance/Nova/Neutron/Cinder/Swift) components in detail and the real-world
comparisons for the reader to understand with the ease and to learn how to use each of
them.

Chapter 3, Day 3 - Field Sketch, looks at the architecture design and how the components of
OpenStack are connected, followed by deployment use cases. The reader will understand
the high level architectural design of OpenStack and will be able to plan and design their
own deployment use cases so they can build their OpenStack cloud.

Chapter 4, Day 4 - How Stuff Works, will explain the step-by-step process of the VM
provision happens in OpenStack when the user initiate VM create from horizon and the
interrelationship between each OpenStack services.

Chapter 5, Day 5 - Networking Strategy, focuses on OpenStack networking in detail and the
extended feature available in OpenStack neutron. This chapter covers the role of floating
IPs, the available deployment types in the neutron, how the VM packets being encapsulated
t to reach the destination VM and the packet flow between VMs and the internet.

Preface

[2]

Chapter 6, Day 6 - Field Training Exercise, will deals with the hands training on how to use
the OpenStack Horizon for using all the OpenStack core components will be provided in
this chapter. The reader will gain the hands-on experience with the OpenStack horizon and
understand how each individual component worked interconnected in bringing up the
Cloud environment.

Chapter 7, Day 7 - Collective Training, will provide with the undisclosed tasks for the
readers to take this chapter as exam. The Comprehensive practice with admin and end-user
use cases will test the reader’s ability in understanding the OpenStack environment.

Chapter 8, Day 8 - Build Your OpenStack, this chapter will guide through a step-by-step
package-based installation of the Ocata OpenStack on the Ubuntu operating system.

Chapter 9, Day 9 - Repair OpenStack, discusses how to start with troubleshooting each
OpenStack components and the respective log files to look in. This chapter will also provide
the guidance to the reader on how to start with getting help from OpenStack community.

Chapter 10, Day 10 - Side Arms of OpenStack, will walk through the overview of additional
services available in the OpenStack and its scope in high level. The reader will learn the
overview of optional services in OpenStack and its interrelation with the OpenStack core
components.

What you need for this book
You can benefit greatly by having a system running VirtualBox (or any of its alternatives)
and a virtual machine running Ubuntu 16.04 LTS. The commands and resources discussed
in this book are best learned when you can execute them on the test system. Familiarity
with the Linux command-line and experience with Linux system administration is
expected.

Who this book is for
This book is perfect for administrators, cloud engineers, and operators who wants to jump
right into practical knowledge, exercises, and solving the basic problems encountered
during deployment, in order to get up to speed with the latest release of OpenStack.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"OpenStack services can be installed either as root or as a user with
sudo permissions."

Any command-line input or output is written as follows:

nano /etc/sysconfig/network-scripts/ifcfg-eth0

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Clicking the Next button
moves you to the next screen"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/OpenStack-Bootcamp. We also have other code
bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/OpenStack-Bootcamp
https://github.com/PacktPublishing/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go
to https://www.packtpub.com/books/content/support and enter the name of the book in
the search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Day 1 - Build Your Camp

OpenStack has a very complex architectural design to understand theoretically. I firmly
believe that a hands-on experience with OpenStack will help you to understand the
OpenStack design a lot better than just reading through the details.

To unleash the power of learning by doing, I purposely chose to deal with this OpenStack
setup and installation chapter first. Though this section will deal with the script-based
OpenStack installation, using DevStack to help you learn OpenStack design by having
practical hands-on experience with OpenStack, once you have a complete understanding of
the OpenStack modular design, Chapter 8, Day 8 - Build Your OpenStack, will guide the
users through an actual step-by-step customized installation of OpenStack.

As the book title implies, the bootcamp series is a new concept that is targeted at someone
who is looking for absolute knowledge of OpenStack without wasting time by learning
ABC on day 1 and XYZ on day 2. So, I focused more on hands-on exercises for the readers
instead of starting with the history and evolution of OpenStack.

Design principles for OpenStack
OpenStack has a modular design, and most of the OpenStack projects and services are
capable of being used independently. At a high level, OpenStack services are categorized as
core services and optional services. As the name states, the core services have the essential
functionality of providing IAAS features for OpenStack. The optional services are like the
bells and whistles of OpenStack, which provide the extended functionality for the IAAS
platform.

Day 1 - Build Your Camp Chapter 1

[7]

The following listed services are the core components of OpenStack:

Keystone (identity service)
Glance (image service)
Nova (compute service)
Neutron (networking service)

The following listed services are the optional components of OpenStack:

Cinder (block storage service)
Horizon (Dashboard)
Swift (object storage service)
Other 20+ projects

We will discuss all the essential components of OpenStack briefly in Chapter 2, Day 2 -
Know Your Battalion.

OpenStack distributions
Before we start building our play camp, it would be good to know about some of the
familiar OpenStack distributions available, which are as follows:

Ubuntu OpenStack
RedHat OpenStack Platform
SUSE OpenStack Cloud
Debian OpenStack
Mirantis OpenStack
VMware Integrated OpenStack
Hyper-C
HPE Helion OpenStack®
Oracle OpenStack
Stratoscale
IBM Cloud Manager with OpenStack and the list goes on

Day 1 - Build Your Camp Chapter 1

[8]

Don't get confuse the these enterprise distributions of OpenStack with the open source
release. The preceding distributions are the enterprise editions of OpenStack with a fully
integrated, optimized combination for their selected platforms.

Vanilla OpenStack
Vanilla OpenStack generally refers to an OpenStack without any special optimization, which
is free and open source, and available at https://docs.openstack.org/.

We will look at the step-by-step installation procedure of OpenStack in Chapter 8, Day 8 -
Build Your OpenStack after understanding the OpenStack design completely.

As of now, to build our play camp, we will be using the automated, opinionated script to
create an OpenStack development environment quickly. There are various options available
to build the OpenStack development environment in one go, such as:

DevStack: For Ubuntu (recommended)
PackStack: For CentOS/RHEL

There are also plenty of volunteer scripts available online to install OpenStack quickly with
one command.

In this chapter, we will be focusing on the DevStack installation to bring up our play camp
to get hands-on with the OpenStack cloud.

DevStack installation
This guide assumes that you have access to a virtual machine that has a Ubuntu 16.04 LTS
operating system installed with a minimum of 6 GB RAM and 30 GB HDD.

Downloading and installing the virtual box and creating new virtual machine is not in the
scope of this book. There are lots of free tutorials available online for creating your new
virtual machine with the aforementioned specifications.

https://docs.openstack.org/

Day 1 - Build Your Camp Chapter 1

[9]

Prepare your virtual machine
To demonstrate a simple working OpenStack cloud using DevStack, you must have the
following requirements configured in the VirtualBox environment to start the DevStack
installation:

Ubuntu 16.04 LTS operating system
6 GB RAM
40 GB disk space
2 vCPUs
2 NIC (Adapter 1 - NAT network and Adapter 2 - host-only network)

Adding the second adapter to the operating system requires manual configuration changes
in the network interface file. Make sure you have added the second interface with DHCP
settings in the /etc/network/interfaces file, and that both NICs have obtained the IP
address.

Then perform an apt-get update and a dist-upgrade and reboot the machine.

Let's DevStack
Log in to your Ubuntu virtual machine and go through the following steps to complete the
prerequisites for installing DevStack.

Verify the IP address using the following command:1.

 $ ifconfig

Day 1 - Build Your Camp Chapter 1

[10]

You will get the following output:

You can see from the output that the IP address is assigned for both enp0s3and enp0s8
adapters. If you are using the virtual box for the first time, the default IP value will be
10.0.2.x for the NAT network and 192.168.56.x for the host-only network.

Let's add a stack user. DevStack should be run as a sudo user, but not as root, so1.
create a sudo user named stack to run the DevStack installation for building
your camp:

 $ sudo useradd -s /bin/bash -d /opt/stack -m stack

Let's add the stack user to the sudoers. The following command will add the2.
stack user to the sudoers list:

 $ echo "stack ALL=(ALL) NOPASSWD: ALL" | sudo tee
 /etc/sudoers.d/stack

Day 1 - Build Your Camp Chapter 1

[11]

Now log in as a stack user and verify that you have appropriate sudo privileges:3.

 $ sudo su - stack
 $ sudo id

At this stage, if the shell is prompted for a password, which means that the sudo
privileges for the stack user are not configured correctly, ensure that you have
followed step 2 and step 3 correctly.

Let's download DevStack:4.

 $ sudo apt-get install -y git-core

At this stage, you will not be prompted for any password.

The following command will download the DevStack repository into your local machine:

 $ git clone https://git.openstack.org/openstack-dev/devstack -b
 stable/ocata

The preceding command will download the stable version of DevStack
repository to install OpenStack ocata release. Optionally, you may replace
ocata with any latest release of OpenStack code name in the preceding
command to install the latest OpenStack release.

The downloaded DevStack repository contains the automated script that installs OpenStack
and templates for configuration files. Make sure you have working internet connectivity
before executing the preceding command:

Let's configure DevStack. The downloaded DevStack repository comes with the1.
sample configuration file. By adding a few additional parameters to the sample
configuration file, we could use it as an actual configuration file for our default
DevStack installation to build our play camp with. The following commands will
create a configuration file suitable for our DevStack installation:

 $ cd devstack
 $ git checkout stable/ocata
 $ cp samples/local.conf .
 $ HOST_IP="192.168.56.101"
 $ echo "HOST_IP=${HOST_IP}" >> local.conf

Day 1 - Build Your Camp Chapter 1

[12]

In the preceding command, 192.168.56.101 is the IP address of my host-only
adapter enp0s8. If your machine has a different IP address, you should replace
the IP address with your host-only adapter's IP address.

Before proceeding further, it would be useful if you go through your local.conf
environment file. For your convenience, you could also change the hard-coded
admin and database passwords in the local.conf file.

Let's begin the installation. Make sure you are running the following command2.
inside the devstack folder:

 $./stack.sh

At this stage, the actual installation of DevStack will begin and will take
approximately 20-30 minutes to complete depending on your internet speed and
the hardware that you are using.

Eureka! On successful installation, you will see an output similar to the following3.
figure:

Day 1 - Build Your Camp Chapter 1

[13]

Kudos! Now you have a working OpenStack cloud. To get a hands-on experience4.
with it, you can access your OpenStack cloud in two ways:

Openstack web UI (Horizon): Access the Openstack Horizon via your
host machine's browser with the URL and password displayed in your
DevStack installation terminal output. In my case, I access my
OpenStack UI at http://192.168.56.101/dashboard/ and the
password for the admin user is nomoresecret:

The host-only network allows all the traffic to flow between the virtual
machine and the host machine (a laptop in my case). To access your
OpenStack services from computers other than your host computer,
you can optionally enable the third network adaptor with the bridged
adapter network type option in the VirtualBox settings.

Day 1 - Build Your Camp Chapter 1

[14]

Openstack command-line tool: Optionally, you can access the source
openrc file in your terminal and use the OpenStack command lines to
manage your OpenStack cloud. The openrc file will be created inside
the devstack folder after the DevStack installation:

You should be aware of the following useful DevStack commands that could help5.
you save your valuable time:

Reconnect to DevStack by rerunning the installation whenever you
reboot your virtual machine using the following command:

 $./stack.sh

To stop all the OpenStack services started by ./stack.sh, use the
following command:

 $./unstack.sh

To remove all the DevStack data files from your VM, use the following
command:

 $./clean.sh

Day 1 - Build Your Camp Chapter 1

[15]

OpenStack community and getting help
The essence of the open source ethos and the community-driven development approach has
established OpenStack as one of the fastest-growing and active open source communities in
the world. So, whenever you get stuck with any issues in OpenStack, you can make use of
this big, global, open-source community.

You can connect to the OpenStack community in order to get assistance in the following
ways:

Visiting the questions and answers forum (https://ask.openstack.org)
Visiting the wiki (https://wiki.openstack.org)
Participate in chats on IRC #openstack at
http://webchat.freenode.net/?channels=openstack,openstack-101

Join the general mailing list (http:/ ​/​lists. ​openstack. ​org)
Join the local user group to attend local events (https:/ ​/ ​groups. ​openstack. ​org/
groups)

I would strongly recommend that all OpenStack beginners register with the https:/ ​/​ask.
openstack.​org/​ forum to get started with OpenStack.

Summary
On day 1, we have successfully built our bootcamp using the DevStack scripted installation.
Now we have our OpenStack cloud lab up and running to get some hands-on experience in
OpenStack. Like I mentioned before, we have various options that are available for us to
build the OpenStack development environment in one go. In this book, I have chosen to go
with DevStack to build the OpenStack play camp. Alternatively, you could try some of the
different options that are available to make your OpenStack play field. Irrespective of your
choice, the final output will be the same OpenStack.

We also learned about the design principle of OpenStack and the distributions that are
available.

On day 2, we will walk through the overview of OpenStack's core components in detail and
make some real-world comparisons.

https://ask.openstack.org
https://wiki.openstack.org
http://webchat.freenode.net/?channels=openstack,openstack-101
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
http://lists.openstack.org
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://groups.openstack.org/groups
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/
https://ask.openstack.org/

2
Day 2 - Know Your Battalion

In Day 2, we will walk through the overview of core components in OpenStack. For better
understanding, I will relate the OpenStack components to the real-world examples.

OpenStack components are usually compared with the components in Amazon Web
Services (AWS), so OpenStack beginners can understand the design by comparing each
component of OpenStack with AWS projects. In this chapter, I will mainly focus on giving
the readers real-time examples. I firmly believe that the real-world examples will help the
readers to understand even better.

Core components:
KeyStone (identity service)
Glance (image service)
Nova (computing service)
Neutron (networking service)

Optional components:
Cinder (block storage service)
Swift (object storage service)

Core components of OpenStack
The core projects are necessary components in Openstack for providing the Infrastructure-
as-a-Service. In practise, without any one of the above listed core components, Openstack
cannot provision the virtual machine for the user.

Day 2 - Know Your Battalion Chapter 2

[17]

KeyStone (identity service)
Let's imagine Mr. Neo has joined a company (Say Cloudenablers). On his first day before
entering his cabin, he is advised to collect his access card from the building access control
team.

The building access control team will provide an access card to Mr. Neo. This access card
will have a unique ID for each user. The card should be used as an identity (authentication)
card and also has authorization information based on the role mapped for the user profile.
For example, Mr. Neo could access the server room if his profile is assigned with the data
center admin role, or else his access to the server room will be denied.

The building access control team will take care of mapping the selected role to each and
every employee based on his designation. For example, the role data center admin will not be
assigned to employees with a software engineer and HR designation to restrict them from
entering the server rooms. The CEO of the company is assigned the full access role, which
means he could enter any room and access any resources in the company.

Are you wondering how the building access control team is related to the KeyStone service?

Yeah! The building access control team and the KeyStone service have many similarities,
and the only difference is that we see the building access control team works in the real
world and KeyStone works as a service running in OpenStack to take care of similar actions,
such as authentication and authorization of the user in OpenStack:

Day 2 - Know Your Battalion Chapter 2

[18]

KeyStone provides Identity, Token, Catalog, and Policy services for use
specifically by projects in the OpenStack family.

Here, we can compare.

Mr. Neo, the end user of OpenStack (mapped with the _member_ role) is accessing the
OpenStack dashboard. We can liken the building access control team to a KeyStone service.
The KeyStone service will take care of providing the unique token ID for each user and also
assign the selected roles (admin or member) to the user. The provided token ID will be used
for authenticating, and the authorization of end users accessing the dashboard based on the
role mapped. Like a CEO, the user with an admin role in OpenStack will have full access to
all of the services in OpenStack. For example, the user having an admin role could access
the flavor list and see all of the VMs running across the tenants, but the user with a
member role could not access the flavor list information and the external network details
in OpenStack.

The company Cloudenablers could relate to OpenStack. The building access control team is
one among many teams in the company and selectively handles the identity system.
Similarly, the KeyStone service is one among many services in OpenStack and explicitly
takes care of the identity management system.

Keystone Recap

Cloudenablers - OpenStack
Building access control team - KeyStone Service
Access card - Token ID
CEO role - Admin role
Mr. Neo - Member, role User
KeyStone Service - AWS IAM (Identity and Access
Management) Service

Nova (computing service)
Mr. Neo, using his access card (Unique Token ID), has successfully entered into his
workplace. Now it is time for Mr. Neo to get a desktop workstation for his work. So, he
raises the request for a new desktop machine and requests the required configuration (such
as Ubuntu OS/8GB RAM/500GB HDD) from the IT hardware allocation team.

Day 2 - Know Your Battalion Chapter 2

[19]

As soon as the request is received, the IT hardware allocation team forward Mr. Neo's
unique access ID to the access management system and check whether Mr. Neo is
authorized to access the desktop workstation.

Upon successful verification, the IT hardware allocation team will approve his desktop
workstation request for the required configuration (Ubuntu OS/8GB RAM/500GB HDD)
and forward the request to the desktop assembly unit subdivision.

The desktop assembly team will assemble the new desktop machine with the requested
configuration of 8GB RAM and a 500GB hard disk.

Once the desktop machine is assembled, the IT hardware allocation team will seek the
image management team for an Ubuntu OS image. We will talk about the image
management team in detail while explaining the glance service:

Nova is an OpenStack project designed to provide massively scalable, on-
demand, self-service access to computing resources.

Now, you may have some idea of what the Nova service will do in OpenStack. Here, we
could liken the IT hardware allocation team to the Nova-API service.

In OpenStack, Nova, the computing service, will take care of creating the new Virtual
Machines with the user requested configuration. When the user requests a new VM, the
Nova-API service will contact the KeyStone service to validate the user token ID and
confirm that the user is authorized to access the Nova service. On successful verification,
the Nova-API service will ask the Nova-Compute sub-demon service to provision a new
VM with the user requested configuration.

Day 2 - Know Your Battalion Chapter 2

[20]

Like an assembly unit, Nova also has its own sub-demon services such as Nova-Scheduler,
Nova-Compute, Nova-API, and Nova-Console auth.

We will see all of these services in detail and their interconnection in Chapter 3, Day 3 -
Field Sketch .

Nova Recap

IT hardware allocation team - Nova-API Service
Desktop assembly team - Nova-Compute service
Image management team - Glance Image service
Desk allocation team - Nova-Scheduler
OpenStack Nova Service - AWS EC2 (Elastic Compute Cloud)
Service

Glance (image service)
The assembled bare metal is now waiting for a Ubuntu operating system to be installed.

In our case, Mr. Neo has requested a Ubuntu OS, but another user may request any other
OS (say, Windows 7) based on their requirements. It is hard for the IT hardware allocation
team to manage all operating system ISOs and software bundles. So, the new team, called
the image management team, has been created for managing the OS packages for the users.

The image management team will act as an ISO image repository for the IT hardware
allocation team and will provide the selected OS for the IT hardware allocation team to
install the operating system in the assembled bare metal.

The purpose of the image management team is to maintain the repository for the necessary
operating system and to keep the metadata records for each OS bundle. Metadata is the
register that maintains the minimal hardware requirements to run the selected OS. For
example, the minimum hardware requirements for the Ubuntu 14.04 LTS server OS is 1GB
RAM/8GB HDD and similarly 4GB RAM/40GB HDD for Windows 7 OS. In any case, if the
minimal resource requirement for any OS is not met, then the access to that selected OS will
be repudiated for the IT hardware allocation team, and the same will be reported to the
user.

Day 2 - Know Your Battalion Chapter 2

[21]

In our case, when the request for Ubuntu OS is received from the IT hardware allocation
team, the image management team will contact the access management system to check
whether Mr. Neo is authorized to access the Ubuntu OS on his workstation. Once the
verification is passed, the image management team will check the minimal hardware
requirements for the Ubuntu OS and provide the Ubuntu OS bundle to the IT hardware
allocation team to proceed with the OS installation:

Glance image services include discovering, registering, and retrieving
virtual machine (VM) images.

Similarly, the glance service serves as an image management team for the Nova service in
OpenStack. The job of the glance service is to manage the OS image repository for the user.
In simple words, similar to a DVD pouch in our home that contains different operating
system images in an organized way to access whenever we install a new OS on our
machine.

Whenever the Nova service requests the OS image bundle, the Glance image service will
first contact the KeyStone service with the user's token ID to check whether the user is
authorized to access the image service or not. Once all of the verification including minimal
hardware requirements are passed, the glance service will provide the requested OS image
bundle to the Nova service to begin the OS installation.

Image Recap

Image management team - Glance Image Service
IT hardware allocation team - Nova Service
Access management system - KeyStone Service
Glance Image Service - AWS AMI (Amazon Machine Images)
Service

Day 2 - Know Your Battalion Chapter 2

[22]

Neutron (networking service)
As we all know, any workstation in the office environment with no network connectivity is
useless. The network configuration and management are not simple tasks to achieve. So, the
networking team is dedicated to taking care of all networking related activities starting
from NIC allocation to DHCP IP assignment. Before beginning the OS installation process,
the IT hardware allocation team will request the Networking Team to map Mr. Neo's
desktop workstation to the network dedicated to his project.

When the request from the IT allocation team is received, the networking team will check
Mr. Neo's token ID with the access management system to verify whether Mr. Neo is
authorized to access his project network or not. Once the verification is accepted, the
networking team will allot a NIC for Mr. Neo's workstation and bond the NIC with his
project's private network:

OpenStack Neutron is an SDN networking project focused on delivering
networking-as-a-service (NaaS) in virtual compute environments.

Similarly, the neutron service will act as a networking team in OpenStack and manage all of
the network related activities. When the request for a vNIC is received, the neutron service
will check the KeyStone service to confirm that the user is authorized to access the selected
network. Then, it will allot the vNIC to the new Virtual Machine and plot the vNIC to the
selected private network.

The neutron functionaries are not limited to providing a NIC and IP pool for the
workstation. However, the neutron functionality covers everything involved in advanced
networking.

Day 2 - Know Your Battalion Chapter 2

[23]

We will walk through OpenStack Neutron and its extended features in detail in Chapter 5,
Day 5 - Networking Strategy.

Neutron Recap

Networking Team - Neutron Service
Access management system - KeyStone Service
IT hardware allocation team - Nova Service
Neutron networking - AWS VPC* (Virtual Private Cloud)
Service

OpenStack service interaction layout
The following bird's-eye outline diagram shows the core services of OpenStack interacting
with one another in bringing up the new virtual machine to the user:

Day 2 - Know Your Battalion Chapter 2

[24]

At this stage, Mr. Neo has received his Ubuntu workstation with 8GB RAM, 500GB HDD
and an effective network connectivity. From the above flow, starting from Mr. Neo entering
the office to receiving his workstation, you can understand how all four teams worked
together in bringing up the workplace. By now, it is reasonable to say that Mr. Neo would
not receive his workstation if any one of the four teams is not working.

Similarly, the services mentioned above are the necessary facilities in OpenStack for
providing the Infrastructure-as-a-Service (IAAS) platform for the end users. Moreover, for
its necessity, these four services are known as core services of OpenStack.

Optional components
The optional components are the projects that will add an extended feature to the
Infrastructure-as-a-Service platform in OpenStack. This component is categorized under
additional projects of OpenStack, mainly because the project is necessarily not required in
the OpenStack to provide a basic IAAS platform.

Cinder (block storage service)
Let's suppose it has been a year since Mr. Neo started using his workstation. His daily task
saves loads and loads of data onto his hard disk. Mr. Neo noticed that he would run out of
his 500 GB internal hard drive space in the next few days. So, he decided to demand a new
external hard drive (portable HDD) from the storage team and raised the new request for an
external hard drive of 1 TB in size.

When the storage team received the request, it will verify the token ID of Mr. Neo with the
access management team to confirm that the user is authorized to receive an additional
storage.

Once the authorization is verified, the storage team will provide him with an external 1 TB
hard disk.

Day 2 - Know Your Battalion Chapter 2

[25]

We all know the advantage of using the portable hard drive. Mr. Neo has the flexibility to
connect and mount the external HDD permanently and use it as a secondary internal hard
drive for his workstation or optionally, he could also mount the external HDD temporarily
to backup all necessary files and detach the external HDD from his workstation:

Cinder virtualizes the management of block storage devices and provides
end users with a self-service API for requesting and consuming those
resources without requiring any knowledge of where their storage is
deployed or on what type of device.

Similarly, the cinder service will do the storage team's job in OpenStack. The Cinder block
storage service will take care of providing the additional disk volume to the user. Once the
new disk volume is allocated to the user tenant (project), the user has the flexibility to map
(attach) the volume storage to any VMs between the same project. A Cinder volume is very
similar to an external HDD; you cannot attach the single cinder volume to two or more
virtual machines at the same time, however we could connect the single cinder volume to
any virtual machine, one at a time.

Cinder Recap

Storage Team - Cinder block storage service
Access management team - KeyStone service
Cinder Volume Service - AWS EBS (Elastic Block Storage)
service‎

Day 2 - Know Your Battalion Chapter 2

[26]

Swift (object storage service)
Mr. Neo still has some important files that need to be retrieved even if his workstation or
external HDD got corrupted. So, he decided to use Google Drive/Dropbox cloud storage.
He uploaded all his extensive archives to Google Drive to access them anytime, even if he
has no access to his own workstation in case of system repair:

The OpenStack Swift offers cloud storage software so that you can store
and retrieve lots of data with a simple API.

The Swift object storage service is very similar to the Google Drive kind of Cloud storage
system. For the end user, the Swift service will act as a simple object storage system that can
store any file types of any size. However, behind the screen, it has an elaborate architecture
for saving each and every file in its replica and retrieve back mechanism.

We will walk through the OpenStack Swift object storage service in detail in the
forthcoming Chapter 10, Day 10 - Side Arms of OpenStack.

Swift Recap

Google Drive or Dropbox Cloud Storage - Swift Object Storage
OpenStack Swift Object Storage Service - AWS S3 (Simple
Storage Service)

Day 2 - Know Your Battalion Chapter 2

[27]

Summary
In Day 2, we learned the overview of each OpenStack core and secondary
(KeyStone/Glance/Nova/Neutron/Cinder/Swift) component in detail and also compared the
OpenStack components with real-world scenarios.

Apart from the previous discussed core and optional projects, at present, the Ocata release
has 30+ projects officially added in OpenStack umbrella, and most of the projects are not yet
production-ready. We will discuss the most commonly known projects from the OpenStack
additional services list in the Chapter 10, Day 10 - Side Arms of OpenStack.

In the next chapter, we will walk through the architecture design of OpenStack and how the
core components of OpenStack are interconnected.

3
Day 3 - Field Sketch

In the previous chapter, I compared the OpenStack services with real-world examples to
understand the primary job of each OpenStack component. However, in the last chapter, I
covered only the high-level view of each OpenStack service. In this chapter, I will walk you
through all the sub-components of each OpenStack service and their interconnection in
detail--in short, the OpenStack architecture.

Before we begin, let's recap our real-world examples from the previous chapter to
understand the complex OpenStack architecture with ease:

Access control team: KeyStone service
IT hardware allocation team: Nova service
Desktop assembly team: nova-compute service
Desk allocation team: nova-scheduler
Image management team: Glance image service
Networking team: Neutron service
Storage team: Cinder block storage service
Google Drive or Dropbox: Swift object storage

Day 3 - Field Sketch Chapter 3

[29]

OpenStack - logical architecture
To design, deploy, and configure the OpenStack cloud, one must understand the logical
structure of OpenStack. The OpenStack logical diagram explains all the HOW questions in
the OpenStack:

How do all OpenStack services authenticate through a common identity service?
How do individual services interact with each other through APIs?
How are OpenStack services composed?
How is an Advanced Message Queuing Protocol (AMQP) message broker used
for communication between the processes of one service?
How can users access OpenStack?

The preceding diagram depicts the most common architecture for an OpenStack cloud. As
you can see from the OpenStack logical architecture diagram, each OpenStack service is
composed of several daemons and processes.

Compute service - Nova
The compute service consists of various services and daemons including the nova-api
service, which accepts the API requests and forwards them to the other components of the
service.

Day 3 - Field Sketch Chapter 3

[30]

The following diagram shows how various processes and daemons work together to form
the compute service (Nova) and interlink between them:

OpenStack compute consists of the following services and daemons.

nova-api service
All services in OpenStack have at least one API process that accepts and responds to end
user API calls, preprocesses them, and passes the request to the appropriate process within
the service.

For the OpenStack compute service, we have the nova-api service, which listens and
responds to the end user compute API calls. The nova-api service takes care of initiating
most orchestration activities, such as provisioning new virtual machines.

Day 3 - Field Sketch Chapter 3

[31]

nova-api-metadata service
The metadata service delivers the instance-specific data to the virtual machine instances.
The instance-specific data includes hostname, instance-id, ssh-keys, and so on. The
virtual machine accesses the metadata service via the special IP address at
http://169.254.169.254.

nova-compute service
Underneath, the entire lifecycle of the virtual machine is managed by the hypervisors.
Whenever the end user submits the instance creation API call to the nova-api service, the
nova-api service processes it and passes the request to the nova-compute service. The
nova-compute service processes the nova-api call for new instance creation and triggers
the appropriate API request for virtual machine creation in a way that the underlying
hypervisor can understand.

For example, if we choose to use the KVM hypervisor in the OpenStack setup, when the end
user submits the virtual machine creation request via the OpenStack dashboard, the nova-
api calls will get sent to the nova-api service. The nova-api service will pass the APIs for
instance creation to the nova-compute service. The nova-compute service knows what
API the underlying KVM hypervisor will support. Now, pointing to the underlying KVM
hypervisor, the nova-compute will trigger the libvirt-api for virtual machine creation.
Then, the KVM hypervisor processes the libvirt-api request and creates a new virtual
machine.

OpenStack has the flexibility to use multi-hypervisor environments in the same setup, that
is, we could configure different hypervisors like KVM and VMware in the same OpenStack
setup. The nova-compute service will take care of triggering the suitable APIs for the
hypervisors to manage the virtual machine lifecycle.

To know more about the multi-hypervisor OpenStack environment, visit
the following link:
http://www.hellovinoth.com/multi-hypervisor-openstack-integratin
g-vmware-vcenter-and-kvm-hypervisors-with-openstack/

http://www.hellovinoth.com/multi-hypervisor-openstack-integrating-vmware-vcenter-and-kvm-hypervisors-with-openstack/
http://www.hellovinoth.com/multi-hypervisor-openstack-integrating-vmware-vcenter-and-kvm-hypervisors-with-openstack/

Day 3 - Field Sketch Chapter 3

[32]

nova-scheduler service
When we have more than one compute node in your OpenStack environment, the nova-
scheduler service will take care of determining where the new virtual machine will
provision. Based on the various resource filters, such as RAM/CPU/Disk/Availability Zone,
the nova-scheduler will filter the suitable compute host for the new instance:

nova-conductor module
The nova-compute service running on the compute host has no direct access to the
database because if one of your compute nodes is compromised, then the attacker has
(almost) full access to the database. With the nova-conductor daemon, the compromised
node cannot access the database directly, and all the communication can only go through
the nova-conductor daemon. So, the compromised node is now limited to the extent that
the conductor APIs allow it.

The nova-conductor module should not be deployed on any compute nodes, or else the
purpose of removing direct database access for the nova-compute will become invalid.

Day 3 - Field Sketch Chapter 3

[33]

nova-consoleauth daemon
The nova-consoleauth daemon takes care of authorizing the tokens for the end users, to
access a remote console of the guest virtual machines provided by the following control
proxies:

The nova-novncproxy daemon provides a proxy for accessing running instances
through a VNC connection.
The nova-spicehtml5proxy daemon provides a proxy through a SPICE
connection

nova-cert module
Used to generate X509 certificates for euca-bundle-image, and only needed for the EC2 API.

The queue (AMQP message broker)
Usually, the AMQP message queue is implemented with RabbitMQ or ZeroMQ. In
OpenStack, an AMQP message broker is used for all communication between the processes
and daemons of one service. However, the communication between the two different
services in OpenStack uses service endpoints.

For example, the nova-api and nova-scheduler will communicate through the AMQP
message broker. However, the communication between the nova-api service and cinder-
api service will carry through the service endpoints.

Database
Most of the OpenStack services use an SQL database to store the build-time, and run-time
states for a cloud infrastructure, such as instance status, networks, projects, and the list goes
on. In short, we could say the database is the brain of OpenStack.

The most tested and preferable databases to use in OpenStack are MySQL, MariaDB, and
PostgreSQL.

Day 3 - Field Sketch Chapter 3

[34]

Image service - Glance
The following logical architecture diagram shows how various processes and daemons
work together to perform the image service (Glance) in OpenStack, and the interconnection
between them:

glance-api service
As I said before, all services in OpenStack have at least one API process, which accepts and
responds to the user API calls and passes the request to the appropriate process within the
service.

For the OpenStack image service, the glance-api service processes the image API calls for
image discovery, retrieval, and storage.

glance-registry service
As its name reads, the registry service takes care of storing, processing, and retrieving
metadata about the images. Notably, the registry service only deals with the image
metadata, not the image itself. Metadata includes image information such as size and type.

Day 3 - Field Sketch Chapter 3

[35]

Identity service - KeyStone
The following logical architecture diagram shows how the identity service in OpenStack is
designed to process the authentication and the authorization:

The exception to all other OpenStack services, the identity service has no dedicated API
service to process, and listens to the API calls. However, the actual work is done by distinct
processes.

Server (keystone-all)
A centralized server processes the authentication and authorization requests using a
RESTful interface.

Drivers (optional)
With the help of the backend drivers, the centralized Keystone server can be integrated with
the selected service backend, such as LDAP servers, Active Directory, and SQL databases.
They can be used for accessing the identity information from the common repositories
external to OpenStack.

Day 3 - Field Sketch Chapter 3

[36]

Networking service - neutron
The logical architecture diagram in Neutron server section shows how various processes and
daemons work together to perform the networking service (neutron) in OpenStack and the
interrelation between them.

Neutron server
The neutron server accepts and routes API requests to the suitable OpenStack neutron plug-
in to process the request. The neutron-server service runs on the network node (in most
cases, the network node is combined with the controller node). We will study the
OpenStack deployment topology later in this chapter to know more about
controller/network/compute nodes:

plugin agent (neutron-*-agent)
While the neutron server acts as the centralized controller running on the network node, the
neutron-*-agent runs on the compute node to manage the local virtual switch (vswitch)
configuration. Moreover, the agents receive messages and instructions from the Neutron
server (via plugins or directly) on the AMQP message bus and then the actual networking
related commands and configuration are executed by the neutron-*-agent on the
compute and network node.

Day 3 - Field Sketch Chapter 3

[37]

I have listed a few of the most commonly used neutron agents here:

neutron-lbaas-agent: LBaaS agent
neutron-linuxbridge-agent: Linuxbridge agent
neutron-macvtap-agent: Macvtap L2 Agent
neutron-metadata-agent: Metadata agent
neutron-metering-agent: Metering agent
neutron-mlnx-agent: Mellanox plugin agent
neutron-openvswitch-agent: Open vSwitch plugin agent
neutron-sriov-agent: SR-IOV agent
neutron-vpn-agent: VPN agent

We will walk through all the agents, plug-ins, and the neutron architecture details in the
upcoming Chapter 5, Day 5 - Networking Strategy.

DHCP agent (neutron-dhcp-agent)
OpenStack networking is very similar to networking in the real world. The Virtual
machines require Layer 2 (L2) network connectivity minimally. The neutron-dhcp-agent
acts as a DHCP server to the tenant network, and takes care of providing DHCP IP to the
instance.

L3 agent (neutron-l3-agent)
Like I mentioned previously, in the real world, you need internet/external network access
for your workstation. For the external network connectivity, in the real world, we use a
router (L3 functionality). Similarly, in OpenStack networking, we use the neutron-l3-
agent to provide L3/NAT forwarding functionality to the virtual machines:

Day 3 - Field Sketch Chapter 3

[38]

Key points to remember:

The server provides the API, manages the database, and so on.1.
Plug-ins manage agents.2.
Agents provide layer 2/3 connectivity to instances and handle physical-virtual3.
network transition.

Day 3 - Field Sketch Chapter 3

[39]

Block storage service - Cinder
The logical architecture diagram shows how various processes and daemons work together
to perform the block storage service (Cinder) in OpenStack, and the interconnection
between them:

cinder-api service
For the block storage service, the cinder-api service accepts API requests and routes them
to the cinder-volume for action.

cinder-scheduler daemon
Similar to the nova-scheduler for compute service, cinder-scheduler plays the same
role for the block storage service. The cinder-scheduler daemon schedules and routes
the requests to the appropriate volume service based upon your filters in the configuration
settings, such as storage capacity, availability zones, volume types, and capabilities.

Day 3 - Field Sketch Chapter 3

[40]

cinder-volume Service
After filtering and choosing the suitable volume service, the cinder-scheduler will route
the storage request to the cinder-volume services to process them. Then, the cinder-
volume service interacts directly with the block storage service to provide a required
storage space. Notably, the cinder-volume service could interact with different storage
providers at the same time through the various device drivers available.

cinder-backup daemon
Whenever a request is received for volume backup/restore operations, the cinder-backup
daemon will interact with the backup targets such as Swift object storage or NFS file store
for backing up or restoring the volumes of any type:

Day 3 - Field Sketch Chapter 3

[41]

Whenever the end user submits the API call to create a new Cinder volume through the
Horizon dashboard, the following Cinder component interaction will take place:

Client issues request to create volume.1.
The cinder-api process validates the request and puts a message onto the2.
AMQP queue for processing.
The cinder-volume takes the message off of the queue, sends a message to3.
cinder-scheduler to determine which backend to provision volume into.
cinder-scheduler generates a candidate list based on current state and4.
requested volume standard (size, availability zone, volume type).
cinder-volume iterates through the selected candidate list by invoking the5.
backend driver plugin.
The backend driver creates the requested volume through interactions with6.
actual storage.
cinder-volume process collects necessary volume information and posts a7.
response message to AMQP queue.
cinder-api responds with information including the status of creation request,8.
volume UUID, and so on, to the client.

Object storage - Swift
As I mentioned earlier, object storage is very similar to cloud storage, such as Google Drive
or Dropbox. As an end user, we can only experience the end user window of Google Drive
or Dropbox for storing and retrieving the files. However, the actions carried out by the
group of processes and daemons behind the end user screen to save and recover the file has
very complex object storage architecture.

The Swift service is quite different from other OpenStack services because we can configure
Swift services as standalone services to provide only the object storage services to the end
users, without setting IAAS features.

For OpenStack, the Swift service is rated under the additional services, not the core one
because the primary purpose of OpenStack is to provide Infrastructure-as-a-Service (IAAS)
to end users. However, Swift is not a mandatory service to bring up the IAAS feature.

As an additional service, the Swift service can be configured with other OpenStack services
like Glance and Cinder for storing/retrieving the Glance images and to back up the
cinder-volumes respectively.

Day 3 - Field Sketch Chapter 3

[42]

The following logical architecture diagram shows how various processes and daemons
work together to bring up the object storage service (Swift) in OpenStack, and the
interconnection between the services:

Proxy servers (swift-proxy-server)
For Swift-object storage, we have a proxy server service that accepts OpenStack object
storage APIs and raw HTTP requests. The API and HTTP requests include file upload,
create folder (containers), and modify the metadata.

Account servers (swift-account-server)
The account server service handles the request to process the metadata information for the
individual accounts and the list of the containers mapped for each account.

Container servers (swift-container-server)
The container server handles the requests about container metadata and the list of objects
within each container. The objects stored in the container have no information about the
actual storage location, but have information about the particular container where the
objects get stored.

Day 3 - Field Sketch Chapter 3

[43]

Object servers (swift-object-server)
The object server is responsible for managing the actual objects, such as files, on the storage
nodes.

Telemetry service - ceilometer
The OpenStack secondary service that handles the metering of all other OpenStack service
resource usage is the ceilometer service. With the help of agents, the ceilometer service will
collect loads and loads of metering data about all the OpenStack service usage. The
collected metrics can be used for billing the resource and can also used for triggering the
alarms when the obtained metrics or the event data breaks the defined threshold. For better
performance, the ceilometer service is usually configured with a dedicated NoSQL database
such as MongoDB, where as the other OpenStack services use SQL databases like MySQL:

Day 3 - Field Sketch Chapter 3

[44]

Like I mentioned previously, Ceilometer can be used for alarming and billing. Starting from
the OpenStack release Newton, the alarm functionality of the ceilometer service is
decoupled and added under a new OpenStack project called aodh (Telemetry Alarming
service).

ceilometer-agent-compute
The ceilometer agent runs on the compute node to collect the host and the virtual machines
resource utilization statistics at regular polling intervals and send the collected statistics to
the ceilometer collector to process them.

The following are a few notable meters collected by the ceilometer-agent-compute:

Meter name Description

memory.usage RAM used by the instance from the allocated memory

memory.resident RAM used by the instance on the physical machine

cpu CPU time used

cpu_util Average CPU utilization

disk.read.requests Number of read requests

disk.write.requests Number of write requests

disk.latency Average disk latency

disk.iops Average disk IOPS

disk.device.latency Average disk latency per device

disk.device.iops Average disk IOPS per device

network.incoming.bytes Number of incoming bytes

network.outgoing.bytes Number of outgoing bytes

ceilometer-agent-central
Apart from the metrics collected from the compute node, the ceilometer-agent-
central takes care of collecting the resource utilization statistics at regular polling intervals
from the other OpenStack services such as Glance, Cinder, and neutron.

Day 3 - Field Sketch Chapter 3

[45]

Here, I have listed a few important metrics collected by ceilometer-agent-central:

OpenStack image service

image.update Number of updates on the image

image.upload Number of uploads on the image

image.delete Number of deletes on the image

image.download Image is downloaded

OpenStack block storage

volume.size Size of the volume

snapshot.size Size of the snapshot

OpenStack object storage

storage.objects Number of objects

storage.objects.size Total size of stored objects

storage.objects.containers Number of containers

OpenStack identity

identity.authenticate.success User successfully authenticated

identity.authenticate.pending User pending authentication

identity.authenticate.failure User failed to authenticate

OpenStack networking

bandwidth Bytes through this l3 metering label

router.update Update requests for this router

ip.floating.create Creation requests for this IP

ip.floating.update Update requests for this IP

To learn more about the ceilometer measurements, visit:
https://docs.openstack.org/admin-guide/telemetry-measurements.html.

https://docs.openstack.org/admin-guide/telemetry-measurements.html

Day 3 - Field Sketch Chapter 3

[46]

ceilometer-agent-notification
Unlike the other two ceilometer agents, the notification agent does not work with the
polling method. However, when a new action is carried out by any OpenStack service, the
incident will be communicated through the AMQP bus. The ceilometer-notification agent
monitors the message queues for notifications and consumes the messages generated on the
notification bus, then transforms them into Ceilometer metering data or events.

ceilometer-collector
As the name states, the ceilometer collector runs on the central management server and
collects the metering data from all the ceilometer agents mentioned previously. The
collected metering data is stored in a data store, or can be configured to send to the external
monitoring service, such as the Nagios monitoring service:

Orchestration service - Heat
In OpenStack, the heat service takes care of the arranging and coordination of automated
tasks, ultimately resulting in the process workflow for managing the entire lifecycle of
infrastructure and applications within OpenStack clouds. The human readable format code
in a text file, namely hot templates, are used by the heat service to manage the lifecycle of
resource within the cloud.

In simple words, any sequence of activities carried out by the end user using OpenStack
Horizon can be coded in a template and then the same operations can be accomplished by
the heat service by processing that template in a heat engine.

Day 3 - Field Sketch Chapter 3

[47]

For example, the end user activities in Horizon are as follows:

Click the Create VM button.1.
Select the Ubuntu image.2.
Choose the m1.small flavor.3.
Choose the my_key keypair.4.
Hit the Launch button.5.

The same action can be accomplished using the following template:

heat_template_version: 2015-04-30

description: Simple template to deploy a single compute instance
resources:
 my_instance:
 type: OS::Nova::Server
 properties:
 key_name: my_key
 image: ubuntu-trusty-x86_64
 flavor: m1.small

Day 3 - Field Sketch Chapter 3

[48]

heat-api component
The heat-api service accepts and responds to the OpenStack-native REST API and passes
the request to the heat engine over Remote Procedure Call.

heat-api-cfn component
The heat engine is also compatible with AWS Cloud Formation templates. The heat-api-
cfn accepts the API request and sends them to the heat engine over RPC to process them.

heat-engine
The heat engine handles the templates orchestration and reports back to the API consumer.

OpenStack - conceptual architecture
The following conceptual architecture diagram summarizes the offerings and the
relationship between all services in OpenStack:

Day 3 - Field Sketch Chapter 3

[49]

To sum up:

KeyStone handles authentication and authorization
Nova handles the entire lifecycle of virtual machines by managing the hypervisor
Glance provides plug and play OS images to the Nova service for virtual machine
creation
Neutron handles the networking connectivity for the virtual machines
Cinder provides secondary (in some cases, primary) hard disk, to the virtual
machines
Swift offers storage space to store Glance images and Cinder volume backup

Designing your deployment
After swimming across the complex OpenStack architecture, now you have a good
understanding of how individual processes and daemons in each OpenStack service work
together in building the Infrastructure-as-a-Service platform (OpenStack).

OpenStack is modular in nature and capable of running each OpenStack service on an
independent server. At the same time, it is not a good practice to deploy each OpenStack
service in individual nodes as it only adds to the server maintenance cost and not the
performance.

Due to its modular design, OpenStack components have the flexibility to get deployed on a
single server to bring up the IAAS platform. I used to call such setups all-in-one node
OpenStack setups similar to the one we built using DevStack as part of Chapter 1, Day 1 -
Build Your Camp.

When planning your OpenStack design, you have full freedom to mix and match any
OpenStack services on any server. However, it is always good to know the recommended
design before we start putting our combination in it. In this section, I will walk you through
some of the choices one should consider when designing and building the OpenStack cloud.

Day 3 - Field Sketch Chapter 3

[50]

The following service layout diagram shows the best combination to run the OpenStack
services across the nodes:

Day 3 - Field Sketch Chapter 3

[51]

From the preceding diagram, you could see the KeyStone, Glance, Nova (excluding nova-
compute), neutron, and database running on the controller node. The nova-compute
service and the necessary networking agents are running on the compute node. The Cinder
service and the Swift services are configured to run on the storage node. Usually, the server
with heavy CPU and RAM is allocated to run as the compute node. The servers with a large
disk and I/O are assigned to run the storage services such as Swift and Cinder:

As we know, all the virtual machines will be created and running on the compute node, and
each virtual machine holds an isolated CPU and RAM resource from the compute node. So,
when designing the compute cluster, you must consider the number of processors and the
RAM that the servers have before allocating the server to compute cluster. In the world of
virtualization, we also have the flexibility to overcommit the resources available.
Overcommitting the resources is the practice of assuming the extra virtual memory with no
guarantee that physical storage for it exists.

Day 3 - Field Sketch Chapter 3

[52]

For example, if we have a server with 16GB RAM, and overcommit the memory in 2:1 ratio,
then the operating system would tell the hypervisor that we have 16 x 2 = 32 GB RAM in
our system, which allows the hypervisor to create 8 VMs with 4GB RAM each.

The Linux system allows resources to overcommit for CPU, RAM, and disk. In OpenStack,
the default overcommit ratio for CPU resource is 16:1, and for RAM is 1.5:1.

The compute nodes can be scaled horizontally, which means we could add new compute
nodes to the cloud setup on the go without changing the configuration settings in any other
nodes in the OpenStack cloud. When a new compute node is added to the cloud
environment, then it will start sharing the messages with the controller node, which will
result in putting more processes and network weight on the controller. So, we must balance
the controller resources by choosing the right servers to run the controller services.

Typical production design
The following diagram shows the typical production-ready OpenStack cloud environment
with load balancers and high availabilities in services:

Day 3 - Field Sketch Chapter 3

[53]

For the production-ready OpenStack environment, we must configure at least three
controller nodes to run all of the services in high availability mode. Like I mentioned earlier,
the load and resources usage of a controller node is directly proportional to the number of
compute nodes in the cloud setup. So, an increase in the number of compute nodes should
be balanced with the horizontal scaling of the controller node. In large scale environments,
the number of controllers for high availability may vary depending on the size of the cloud.
The load balancer servers will help balance the API request load across the three highly
available controller nodes. You will have noticed the storage clusters in the preceding
diagram; the servers with high IOPS are preferred for Cinder services. The volumes created
in the Cinder backend devices are linked directly to the virtual machines for read and write
operations, which required high IOPS devices for the virtual machine to perform faster.
Likewise, the servers preferred for Swift should have huge storage space, not necessarily
the high IOPS disk, as most of the data stored through the Swift service are Cinder volume
backups and Glance images, which are not getting used frequently.

Summary
We have decoupled each OpenStack service from the complex architecture diagram and
analyzed individual daemons and processes of each OpenStack service in detail. Now, you
can understand how various services work together to bring up the Infrastructure-as-a-
Service platform. Furthermore, you also learnt the work of an individual daemon and
process in OpenStack. We also learnt the design principle of OpenStack cloud and the
typical deployment topology.

In the next chapter, Chapter 4, Day 4 - How Stuff Works, we will walk through the step by
step process of how VM provision happens in OpenStack when the user initiates VM
creation from the Horizon.

4
Day 4 - How Stuff Works

After the previous chapter, we are now thorough with the architectural design of
OpenStack. We have gone through the work of each service and demons of all the core
OpenStack components in detail. Now, it is time to see how these OpenStack components
work together in bringing up the virtual machine (VM) when the user initiates VM creation
from Horizon.

I firmly believe in the idiom A picture is worth a thousand words. It refers to the notion that a
complex idea can be conveyed with just a single still image more efficiently than with a
description.

So, in this chapter, I will try my best to illustrate the step-by-step process of the VM
provision life cycle in OpenStack and the interrelationship between the OpenStack services.

Idle state of OpenStack services
Let's assume we have an OpenStack cloud installed and running in our lab. As part of the
installation, we have created a new user and a new project, say, for example, a user called
Neo and a project called Matrix. Then, the Neo user is mapped in the matrix project/tenant
and assigned the member role. As we have already learned about the different roles and
their privileges in Chapter 2, Day 2 - Know Your Battalion, you have some idea of what
freedoms a user with the member role and a user with the admin role can have in accessing
the OpenStack services.

Day 4 - How Stuff Works Chapter 4

[55]

It is possible to associate users with multiple projects/tenants, and the same user could also
have been granted different roles in various projects. It is also important to be aware that
the admin role is global, not per project, so mapping a user to the admin role in any project
gives the user administrative rights across the whole OpenStack cloud.

To find out more about roles and project mapping, visit:
https://docs.openstack.org/ops-guide/ops-users.html.

Now, coming back to our assumption, the Neo user is mapped in the project called Matrix
and granted the member role in our OpenStack cloud. We know users with the member role
have standard user access to all of the core OpenStack projects. Neo has access to create a
new VM, upload a new image, create a volume, create a new tenant network, and the list
goes on. Here, Neo's access permission is limited only within the particular tenant called
Matrix.

Now, let's walk through all of the stages of the VM creation process in detail, whenever the
user Neo hits the create VM button in the OpenStack Horizon dashboard.

For the sake of easy understanding, I have illustrated the flow with legacy nova-network
and nova-volume, which was part of the Nova project and was used for providing the
networking service and the volumes service respectively. Now, the nova-network and the
nova-volume services were deprecated and replaced with the dedicated projects in
OpenStack for providing networking and volume services, called the neutron and cinder
projects respectively.

https://docs.openstack.org/ops-guide/ops-users.html

Day 4 - How Stuff Works Chapter 4

[56]

The following diagram shows the idle state of OpenStack services:

Day 4 - How Stuff Works Chapter 4

[57]

When I say the idle state of OpenStack, I mean that all of the OpenStack services are
running and has active, established a connection with databases, and are performing the
default works.

For example, all of the compute nodes periodically publish their status, resources available,
and hardware capabilities to the nova-scheduler through the queue.

Before we look in-depth at the instance provisioning process, let's list the end user's steps
for creating a new VM in OpenStack via Horizon:

Log in to Horizon with the provided user credentials.1.
Click the Create Instance button.2.
Fill in the prompted Launch Instance form with the VM info.3.
Submit the form by hitting the Launch button.4.
Wait for the VM status to turn into the running state.5.

Step 1 - user login - Horizon
When you open the OpenStack Horizon URL in the browser, the OpenStack login page
asking for username and password credentials will appear. The end user will enter the user
credentials and submit the details. Based on the validation status, a successful attempt will
take the end user to the OpenStack service access page. However, a failed attempt will
cause an error message asking the end user to verify their user credentials to appear on the
login page. This is a process every end user could experience during OpenStack dashboard
login. However, as OpenStack administrators/operators, we should know what really
happens behind the scenes when users try to log in to Horizon:

Day 4 - How Stuff Works Chapter 4

[58]

On user login, the following process will take place:

Get user credentials from the end user.1.
Submit the user credentials to KeyStone as an HTTP request.2.

Day 4 - How Stuff Works Chapter 4

[59]

Step 2 - validating AUTH data
The following figure depicts the flow between the OpenStack services for validating the
AUTH data:

Day 4 - How Stuff Works Chapter 4

[60]

On submitting the user credentials to KeyStone, the following process will take place:

KeyStone will verify the authentication data. Upon successful authentication,1.
KeyStone will check the authorization of the authenticated user.
Don't get confused between the terms authentication and authorization.2.
Authentication is the process of confirming whether the user exists in the system
or not and then validating the password submitted for the user account. On the
other hand, authorization is the process of verifying that you have access to
something; in our case, verifying the validated (authenticated) user access to the
different projects and services in OpenStack.
Upon successful response, KeyStone will provide a unique token to the user.3.
The token is a text block with a unique code and roles encapsulated. The token4.
contains information about the user roles and the access limitations to the
projects.
The unique token provided by KeyStone will get stored in a browser cookie on5.
the client side. Moreover, from now on, the browser will send the token as part of
all the API requests to the OpenStack services.
The token expiration time is, by default, 1 hour. Upon token expiration, the user6.
will be logged off automatically.

Day 4 - How Stuff Works Chapter 4

[61]

Step 3 - sending an API request to the Nova API
The following figure depicts the interaction of an API request with Nova components:

On successful authentication validation, the following process will take place:

When the user logs in to OpenStack Horizon and clicks the Create Instance1.
button, the Instance Parameter form will get prompted. Then, the user will select
the VM settings, such as VM name, the number of the VMs, flavor, base image,
security group, key pair, and network selection. Optionally, the launch instance
form also includes an option to create a new cinder volume and has options to
inject the user data on the part of the VM creation process.

Day 4 - How Stuff Works Chapter 4

[62]

The parameters gathered from the new instance create form will be converted2.
into a REST API request and submitted to the nova-api service endpoint.
As I mentioned earlier, as part of all API requests to any OpenStack service, the3.
client-side browser will embed the TOKEN saved in the browser cookie with the
REST API request and send it to the nova-api service.

Step 4 - validating the API token
The following figure depicts the flow of validating the API token:

Day 4 - How Stuff Works Chapter 4

[63]

On submitting the API request to Nova, the following process will take place:

nova-api accepts the request pointed to its endpoint. Before processing the1.
request, nova-api will contact KeyStone to validate the AUTH TOKEN and
confirm the user has access to the Nova service and ensure the permission to
create a new VM.
Before verifying the AUTH TOKEN with the KeyStone service, the Nova service2.
must prove its own identity to KeyStone by submitting the Nova user credentials
from the Nova configuration file.

As a part of the OpenStack installation, a username and password
will be created for all of the OpenStack services. Then, all of the
service users will be mapped to the dedicated project/tenant called
Service and will assigned the admin role.

We will walk through all of these procedures during the OpenStack
installation steps in Chapter 8, Day 8 - Build Your OpenStack.

The process for verifying the AUTH TOKEN and its own identity is not limited3.
only to the Nova service. All of the OpenStack services will go through the same
procedure before processing the actual API request submitted to them.

Step 5 - processing the API request
The following figure depicts the interaction between Nova and KeyStone to process the API
request:

Day 4 - How Stuff Works Chapter 4

[64]

After validating the AUTH token, the following process will take place:

On successful validation of the token, KeyStone will send the permission1.
approved response to the nova-api service.

Day 4 - How Stuff Works Chapter 4

[65]

Then, the nova-api service will start to process the launch instance request2.
submitted by the end user.
From the converted launch instance form, the nova-api has the following3.
information with the REST-API request:

Name of the VM
Image as instance source
Image name
Flavor of the VM, which has RAM/vCPUs/HDD details
Name of the security group
Name of the key pair that needs to be injected into the VM
Name of the tenant network

Step 6 - publishing the provisioning request
The following figure depicts the interaction between nova-api and the database service to
process the VM provisioning request:

Day 4 - How Stuff Works Chapter 4

[66]

After processing the API request, the following process will take place:

The nova-api service will interact with the Nova database and create an initial1.
DB entry for new instance creation.

Day 4 - How Stuff Works Chapter 4

[67]

As a part of the OpenStack installation, we will create a dedicated
database for each OpenStack service. Each database has its own
username and password with full access privileges for the respective
OpenStack services. The same information will be configured in the
corresponding service configuration files as well.

We will walk through all of these procedures during the OpenStack
installation steps in Chapter 8, Day 8 - Build Your OpenStack.

The nova-api service will also validate the parameters that were submitted2.
along with the request. The validation process will check whether the chosen
flavor passes the minimum requirements of the selected image for the VM.

Step 7 - picking up the provisioning request
The following figure depicts the interaction between the Nova and Queue services to
process the VM provisioning:

Day 4 - How Stuff Works Chapter 4

[68]

After publishing the provisioning request, the following process will take place:

After creating the initial DB entries for the new VM creation, nova-api will send1.
the rpc.call request to the nova-scheduler daemon excepting to get an
updated instance entry with host ID specified.

Day 4 - How Stuff Works Chapter 4

[69]

In OpenStack, all the OpenStack components communicate internally (for
example, nova-api to nova-scheduler) via Advanced Message Queue
Protocol (AMQP) using Remote Procedure Calls (RPCs) to communicate
with one another.
OpenStack messaging has two modes:

rpc.cast: Don't wait for result

rpc.call: Wait for result (when there is something to return)

However, all the communication between two different services (say, for
example, between nova-apiandglance-api) will be carried out using
REST API calls.

The nova-scheduler daemon picks the request from the message queue.2.

Step 8 - schedule provisioning
The following figure depicts the interaction between the Nova and database services in
processing the instance host schedule:

Day 4 - How Stuff Works Chapter 4

[70]

Nova scheduler is a daemon for determining on which compute host the
request should run.

As we can see from the preceding figure, nova-scheduler interacts with other
components through the messaging queue and the central database.

For the scheduling process, the messaging queue is an essential communications hub. All
the compute nodes periodically publish the compute host status, resources available, and
hardware capabilities to nova-scheduler through the messaging queue. Whenever the
API request for new VM provisioning comes in, nova-scheduler picks up the request
from the messaging queue.

Day 4 - How Stuff Works Chapter 4

[71]

Then the nova-scheduler daemon brings together all of the collected data and uses it to
make decisions about on which compute host the new VM should get provisioned:

The preceding diagram gives us an overview of how nova-scheduler does its job. The
whole decision-making process divides into two stages:

Filtering phase
Weighting phase

The filtering stage will make a list of suitable hosts by applying filters. Then, the weighting
phase will sort the hosts according to their weighted cost scores, which are given by
applying some cost functions. As a final step, the top-ranking host based on the weighting
process will be selected to provision the user's instance creation request:

The nova-scheduler daemon interacts with the Nova database to find a1.
suitable host via filtering and weighing.
After selecting the appropriate compute host for a new VM provisioning, the2.
nova-scheduler daemon will return an updated instance entry in the database
with a chosen host ID.
Notably, during the initial Nova database entries for the new VM, nova-api will3.
set the host ID value to null. Later, the nova-scheduler will update the same
with the chosen host ID.

Day 4 - How Stuff Works Chapter 4

[72]

To find out more about the filters available, visit:
https://docs.openstack.org/ocata/config-reference/compute/schedu

lers.html.

Step 9 - starting the VM provisioning
The following figure depicts the interaction between Nova services in processing the
instance provision:

https://docs.openstack.org/ocata/config-reference/compute/schedulers.html
https://docs.openstack.org/ocata/config-reference/compute/schedulers.html

Day 4 - How Stuff Works Chapter 4

[73]

After the scheduling process, the following process will take place:

The nova-scheduler daemon publishes the rpc.cast message to the compute1.
queue (based on host ID) to trigger the VM provisioning.
The nova-compute service picks the request from the messaging queue.2.
Then, the nova-compute service sends the rpc.call request to the nova-3.
conductor to fetch the instance information such as host ID and flavor info.

For the sake of easy understanding, I have shown only the core nova
components in the preceding figure. The nova-conductor daemon has
been ignored.

The nova-compute service running on the compute host has no direct
access to the database. This is because, when one of your compute nodes is
compromised, then the attacker has (almost) full access to the database.
With the nova-conductor daemon, the compromised node could not
access the database directly, and all the communication can only go
through the nova-conductor daemon.

Step 10 - starting VM rendering via the hypervisor
The following figure depicts the interaction between the Nova and database services in
rendering the instance in a compute node:

Day 4 - How Stuff Works Chapter 4

[74]

Day 4 - How Stuff Works Chapter 4

[75]

Nova compute is a worker daemon which mainly creates and terminates
the VMs using the appropriate hypervisor API.

On processing the VM rendering, the following process will take place:

The nova-conductor daemon picks the rpc.call request from the messaging1.
queue.
The nova-conductor daemon starts interacting with nova-database for the2.
VM information.
nova-conductor returns the instance information to nova-compute via the3.
messaging queue.
nova-compute picks the instance information from the messaging queue.4.
Now, the nova-compute daemon generates the data for the hypervisor driver5.
based on the information collected from the database via nova-conductor and
then executes the instance create request on the hypervisor using the
appropriate hypervisor API.

Step 11 - requesting the base image for VM
rendering
The following figure shows the interaction between the Nova and Glance image services in
rendering the VM:

Day 4 - How Stuff Works Chapter 4

[76]

Day 4 - How Stuff Works Chapter 4

[77]

The Glance (image service) project in OpenStack provides the services for
discovering, registering, and retrieving the golden images for VM
provisioning.

As part of processing the VM rendering, the following process will take place:

In a meanwhile, the nova-compute daemon sends the REST API call along with1.
the AUTH TOKEN to the glance-api service.
The REST API request will get the image URI from the Glance service by2.
referring to the image ID submitted with the instance create form, and then
upload the image to the chosen compute host from the image storage.
The glance-api service validates the AUTH TOKEN with KeyStone.3.
On successful validation of the AUTH TOKEN, the Glance service will allow the4.
nova-compute daemon to download the image using the URI from the Glance
store (optionally, the Swift storage service).

Step 12 - configuring the network for an instance
The following figure depicts the interaction between the Nova and networking services in
processing the network configuration for an instance:

Day 4 - How Stuff Works Chapter 4

[78]

As part of configuring the network for an instance, the following process will take place:

Now, the nova-compute daemon sends the REST API call along with the AUTH1.
TOKEN to the Neutron API service to allocate and configure the network (IP
address) for an instance.

In the preceding figure, I have depicted the legacy nova-networking
service by replacing the neutron service, for beginners to follow the
VM provisioning workflow easily. Moreover, we will discuss the
neutron service and its extended functionality in detail in Chapter 5,
Day 5 - Networking Strategy.

Day 4 - How Stuff Works Chapter 4

[79]

The neutron-server validates the AUTH TOKEN with KeyStone:2.

Unlike neutron (the dedicated project for OpenStack networking), the
nova-network service is the part of the Nova project itself. So, the AUTH
TOKEN validation is negated in the legacy Nova network.

Day 4 - How Stuff Works Chapter 4

[80]

On successful validation of the AUTH TOKEN, the neutron networking service3.
will create a virtual network interface card (vNIC) for the new VM on the
compute host using the networking driver.
Then neutron configures the IP, gateway, DNS name, and L2 connectivity for the4.
new VM.

Why are there two different networking methods in OpenStack?

The first is called legacy networking (nova-network). Like nova-
scheduler and nova-conductor, nova-network is also a
subprocess implanted in the nova-compute project. The legacy nova-
networking model has many limitations, such as creating complex
network topologies, extending its backend operation to vendor-specific
technologies, and providing project-specific networking configurations
to each project.

To overcome the limitations in the legacy nova-network, the
dedicated networking model called neutron was added to OpenStack
to provide networking-as-a-service functionality.

Step 13 - VM in running state
The following figure depicts the interaction between the Nova and database services in
providing the VM status to the end user:

Day 4 - How Stuff Works Chapter 4

[81]

On successful completion of all the above stages, the following process will take place:

nova-compute has all of the information, including image, network, and other1.
VM info, to generate the request for the hypervisor driver, and then nova-
compute will pass all the information about the VM (in a single message) to the
hypervisor for creating an instance.
Meanwhile, the nova-api service endlessly polls the request for the instance2.
status to the database.

Day 4 - How Stuff Works Chapter 4

[82]

The following table shows the instance status in the Horizon dashboard at the various
stages of polling requests during the provisioning process:

Status Task Power state Steps

Build scheduling None 3-10

Build networking None 11

Build block_device_mapping None -

Build spawning None 12

Active none Running

As I mentioned earlier, the database is the brain of OpenStack as all the information is saved
in it. All of the services in OpenStack rely on the database information. nova-api will poll
the request for the status of all of the services to the database for presenting in the Horizon
dashboard.

Sometimes, as a part of the troubleshooting process and for fixing the error state of the
instance, we could do a few hacks on the database (strongly not recommended in the
production environment) by changing the instance status manually. Since all of the
OpenStack service relies on the database information, Horizon will present the value as it is
in the database without cross-checking the DB entry.

Summary
In this chapter, we have gone through each step of the request workflow for provisioning
an instance in detail. I firmly believe readers will have gained a clear picture of the VM
creation life cycle in OpenStack and knowledge of how each component of OpenStack are
interconnected and work in bringing up a new VM.

In Chapter 5, Day 5 - Networking Strategy, we will focus on OpenStack networking in detail
and the extended features available in OpenStack neutron.

5
Day 5 - Networking Strategy

In this chapter, you will be introduced to the most interesting, as well as the most complex
component in OpenStack, code named neutron. To understand the neutron better and
easier, it is a must to have some basic understanding of the networking world. So, let me
precisely recap some basic and essential networking concepts followed by:

Networking basics
OpenStack networking
Network types
Neutron offerings
Network traffic flow

Networking basics
Ethernet is the most widely installed Local Area Network (LAN) technology. Ethernet is a
networking protocol that describes how networked devices can format data for
transmission to other network devices on the same network and how to put this data out on
the network connection. Every NIC connected to an ethernet network has its unique
hardware address, commonly known as a Media Access Control (MAC) address, which is
represented as a hexadecimal string, such as 08:00:37:c9:58:56.

The Internet Protocol (IP) is a set of rules by which data is sent from one computer to
another on the internet or another network. Each computer (known as a host) on the
internet/intranet has at least one IP address that uniquely identifies it from all other
computers on it. A typical IP address (IPv4) looks like 192.168.1.23.

Day 5 - Networking Strategy Chapter 5

[84]

Switches are layer-2 network devices that connect various network devices together
through the ethernet to allow communication between these devices. Switches forward the
packet received on one port to another port based on the destination MAC address in the
packet header, so that the formatted data will reach the desired destination node.

Routers are layer-3 network devices that enable data packets to communicate between two
hosts (computer/device) on different networks.

As shown in the following figure, typically, a network layout goes like, a router connects
physically via a network cable to a switch and then physically, again via a network cable to
the Network Interface Cards (NIC) in any network devices you may have, such as
computer and printers:

VLAN is a network isolation technology in the managed switch that helps a switch to
perform as multiple independent switches. By configuring VLAN in the switch settings, we
can isolate the data traffic of the two computers that are linked to the same switch.

Day 5 - Networking Strategy Chapter 5

[85]

Dynamic Host Configuration Protocol (DHCP) is a client/server protocol that acts as a
central management server for the distribution of IP addresses within a network. DHCP is
also used to configure the subnet mask, default gateway, and DNS server information on
the device.

An Overlay network is a logical network that is built on top of a physical network. The
nodes that are connected to the overlay network will act like it has a direct link between the
two separated nodes. However, the two nodes in the overlay network have many virtual or
logical links through many physical links in the underlying network.

Data encapsulation is a process of formatting the data, where the data is enlarged with
successive layers of control information before transmission on a network. The inverse of
data encapsulation is decapsulation, which is a process of unpacking the successive layers
at the receiving end of a network to process the original data.

Network address translation (NAT) is a process of remapping the source or destination IP
address in the packet headers while they are in transit across a traffic routing device.
Typically, the sender and receiver applications are not aware that the IP packets are being
modified.

Network namespaces provide an isolated network stack for all the processes within the
namespace. This includes network interfaces, routing tables, and IP tables rules. Using a
namespace, you can use the same identifier multiple times in different namespaces.

Software-Defined Networking (SDN) is a network architecture approach and not a
specific product that enables the network to be intelligently and centrally controlled using
software applications. The goal of SDN is to allow network administrators to manage the
entire network with ease by programming the network traffic from a centralized controller
instead of configuring individual switches and can deliver services to wherever they are
needed in the network, irrespective of the underlying network technology.

Day 5 - Networking Strategy Chapter 5

[86]

Linux bridge is a software program that typically performs the layer-2 switch functionality.
The Linux bridge is a virtual switch that allows one Virtual Machine (VM) to interconnect
with another. This virtual switch cannot receive or transmit data packets on its own unless
you bind one or more real devices to it:

OpenStack networking
Before we dive deep into OpenStack networking, let's recap the overview of OpenStack
networking from Chapter 2, Day 2 - Know Your Battalion.

OpenStack neutron is an SDN networking project in OpenStack, focused on delivering
Networking-as-a-Service (NAAS) in virtual computing environments. Characteristically,
the neutron service will act as a networking team in the company that manages all the
network-related activities. Moreover, the neutron functionality in OpenStack extends across
nadir to the zenith of advanced networking.

Day 5 - Networking Strategy Chapter 5

[87]

Legacy nova-network to OpenStack neutron
During the earlier release of OpenStack, there was no dedicated project in OpenStack to
handle the networking functionality. Instead, the subproject was embedded in the compute
project called nova-network (legacy networking) that takes care of managing the basic
networking in the virtual compute environment. However, the features of legacy
networking are limited, which has no extended functionality to support creating complex
network topologies and project-specific networking elements in OpenStack. To address
these limitations, a new, dedicated networking project that provides advanced networking
functionality to a virtual computing environment was added in OpenStack and code named
as OpenStack neutron.

Notably, the legacy nova-network has been said to be depreciated for a while now.
However, there are still environments out there that use legacy nova-network in a
production environment. It is mainly due to certain use cases that match legacy nova-
network better than neutron.

To be precise, using legacy nova-network would be like using Internet Explorer, just
because you happen to access the website that only supports IE browser. On the other hand,
using neutron would be like using the Chrome browser that supports long listing add-ons
to have extended functionality.

OpenStack Neutron
From the Folsom OpenStack release,the dedicated project focused on delivering the
networking-as-a-service in a virtual computing environment is added in an OpenStack,
code named as a neutron. The OpenStack neutron project provides an API that lets the user
define network configuration in the OpenStack cloud environment. The neutron service
allows the OpenStack administrator to integrate different networking technologies to power
the OpenStack cloud networking. The neutron service also offers extended networking
functionality that includes virtual routers, Network Address Translation (NAT), load
balancing, firewall-as-a-service, and virtual private networks:

Day 5 - Networking Strategy Chapter 5

[88]

In Chapter 3, Day 3 -Field Sketch, you have learned the sub-components of neutron services
and the interconnections in detail. Here, I have focused on explaining the most commonly
used neutron functionalities, plugins, and the network traffic flows.

Day 5 - Networking Strategy Chapter 5

[89]

Network types
The network types in OpenStack neutron is broadly classified into two types:

Provider networks
Self-service networks

Provider networks
Provider networks connect to the existing layer-2 physical networks or VLANs in the
datacenter. The OpenStack user with a member role cannot create or configure the network
topologies in the provider network. The provider network can only be set up by an
OpenStack admin who has access to manage the actual physical networks in the datacenter.
This is because configuring the provider network requires configuration changes in the
physical network infrastructure level.

Self-service networks
Self-service networks enable the users with member role to create their own network
topology within the user's tenant/project without involving OpenStack administrator's help.
The users can create as many virtual networks as they like (not exceeding the project quota
limit), interconnected with virtual routers and connected to an external network. Also, self-
service networks offer VxLAN/GRE encapsulation protocols; in that way, the user can
create a private tunnel within your OpenStack nodes. This will allow the user to set up their
own subnets and can be linked to the external or provider networks using an OpenStack
router.

By default, the self-service networks created in any specific tenant/project is entirely
isolated and are not shared with other tenants in OpenStack. With the help of network
isolation and overlay technologies, the user can create multiple private(self-service)
networks in the same tenant and can also define their own subnets, even if that subnet
ranges overlap with the subnet of another tenant network topology.

Day 5 - Networking Strategy Chapter 5

[90]

Types of network isolation and overlay
technologies
A local network is a network type in OpenStack that can only be used on a single (all-in-
one) host OpenStack setup. This local network type is appropriate for the proof-of-concept
or development environments.

A flat network is a network type in OpenStack that offers every VMs in the entire
OpenStack setup to shares the same network segment. To be precise, a typical L2 ethernet
network is a flat network that allows servers attached to this network to see the same
broadcast traffic, and they can contact each other without requiring a router.

For example, let's take, two tenants (tenant A and B) from the OpenStack setup configured
in flat network type with the subnet range 192.168.1.0/24. In this network type, VM1
from tenant 1 may get assigned to IP 192.168.1.5, VM1 from tenant 2 may get
192.168.1.6, and so on. This means that the flat network type allows the tenant A to see
the traffic from tenant B and has no isolation between projects.

In most cases, the flat networks are preferred when configuring the provider network.

A VLAN network type in OpenStack neutron uses VLANs for segmentation. Whenever a
user creates a new network, the neutron will assign a unique VLAN ID to each new
network from the segmentation range we have configured in the neutron configuration file.
To allow the traffic flow outside the host, the network administrator needs to manually
configure the physical switches in the data centre with the same VLAN ID tag. Thus, using
VLAN network type would require a lot of manual inputs in managing the underlying
physical network environment.

However, unlike flat network type, the VLAN network will provide the traffic isolation
between the tenants. With the help of the VLAN isolation techniques, the tenant can specify
the same subnet range across different tenants.

For example, VM 01 from tenant A can get IP 192.168.1.5 and VM 01 from tenant B can
also get IP 192.168.1.5 without any conflicts. Thus, network administrators need not
worry about the users who create the existing subnet range, as the VLANs keep them
separate.

Day 5 - Networking Strategy Chapter 5

[91]

GRE and VxLAN networks are the most commonly used network type in the OpenStack
neutron.They both work by encapsulating the network traffic to create overlay networks.
Like VLAN networks, whenever the user creates a new network, the neutron assigns a
unique tunnel ID. However, an overlay network does not require any configuration
changes to the underlying physical switch environment that will eliminate the manual
interaction.

With the help of the overlay technologies, GRE and VxLAN segmentation provides
complete isolation between the tenants and offers overlapping subnets and IP ranges. It
does this by encapsulating the VM traffic in tunnels.

For example, let's assume that a tenant (A) has three VMs (VM01, VM02, and VM03)
running on the compute node n1, n2, and n3 respectively. Using VxLAN / GRE network
type in neutron will create a fully connected mesh of tunnels among all of the three
compute nodes for communication between the VMs. If a VM 01 on compute node n1 wants
to send packets to the VM 02 on compute node n2, then node n1 will encapsulate the IP
packets coming out of the VM 01 using a segmentation ID that was generated during the
network creation and transmitting on the network pointing the compute node n2 as the
destination address. At the receiving end, the compute node n2 receives the encapsulated
packet and will decapsulate the packets and then route them to the target VM 02:

Day 5 - Networking Strategy Chapter 5

[92]

Why VxLAN?
There are two reasons why to use VxLAN:

It increases scalability in virtualized cloud environments as VxLAN ID enables
you to create up to 16 million isolated networks. This overcomes the limitation of
VLANs having VLAN ID that allows you to create a maximum of 4094 private
networks.
No configuration changes are required in the physical network devices.

Neutron offerings
As I mentioned earlier, OpenStack neutron covers the nadir to the zenith of advanced
networking techniques. The OpenStack neutron, a dedicated project for networking in
OpenStack to serve the Networking-as-a-Service feature in the virtual compute
environment, has many extended features over the legacy nova-network. Here, I have listed
the most commonly available features of the vanilla OpenStack neutron:

Day 5 - Networking Strategy Chapter 5

[93]

Network topology
From the preceding figure, you can see that the very first option under the Network panel
(left side) is network topology. Neutron has this topology feature to illustrate the overlay
network for the end users to visualize the networking layout for their virtual computing
environment.

The network topology diagram in the preceding figure was depreciated in the latest
OpenStack release, replacing with a new attractive UX model. However, personally, I feel
this depreciated UX for network topology helps the beginner to understand the network
layout a lot better than the latest one.

Networks and subnets
Using a VxLAN/GRE network type in the OpenStack neutron will enable the user to create
their own subnets that can be connected to the external/provider networks using an
OpenStack router. The following figure shows the network administration options available
in the Network panel:

Day 5 - Networking Strategy Chapter 5

[94]

The Networks tab will provide the user with an option to create new networks. Typically,
creating a new network in an OpenStack neutron is very similar to creating a new switch in
a virtual environment. The user can create any number of networks without exceeding the
network quota limit for the specific project. The following figure shows the options
available for creating a subnet for the network:

Routers
Routers enable the virtual layer-3 functionality, such as routing and Network Address
Translation (NAT) between self-service (tenant network) and provider networks, or even
between two different self-service networks belonging to the same project. The following
figure provides the information about the router's interface mappings and the router's
gateway:

Day 5 - Networking Strategy Chapter 5

[95]

Like network creation, the OpenStack user can create his own router within the project
without exceeding the router quota limit. As you can see from the following figure, the
router creation process does not require many inputs. Beneath, the OpenStack networking
service uses a layer-3 agent to manage all routers via namespaces:

Security groups
Security groups provide virtual firewall rules that control inbound and outbound network
traffic at the port level. Underneath, creating and managing the security group will write a
proper IP tables rule in the compute node.

Day 5 - Networking Strategy Chapter 5

[96]

By default, each tenant has a default security group that allows all egress (outbound) traffic
and denies all ingress (inbound) traffic. The default security group will be added to all
virtual machines as a default setting. So, we need to change the rules in the default security
group to allow inbound traffic to the virtual machines. Optionally, we could also create and
manage a dedicated security group for each virtual machine based on our use cases:

Extended services
Adding to the above listed functionalities, OpenStack neutron also offers the extended
features.

VPNaaS
The Virtual Private Network-as-a-Service (VPNaaS) is a neutron extension that introduces
the VPN functionality to the OpenStack networking.

Day 5 - Networking Strategy Chapter 5

[97]

LBaaS
The Load-Balancer-as-a-Service (LBaaS) is a neutron extended feature to enable load
balancing in the virtual computing environment. Beneath, the neutron uses the HA Proxy
software for implementing load balancer functionality.

FWaaS
The Firewall-as-a-Service (FWaaS) functionality in a neutron is in an experimental state
that enables users to configure the firewall rules and a firewall policy that contains match
conditions and a reactive action to take (allow or deny) on matched traffic.

Floating IP
Floating IP in OpenStack networking is nothing but the IP range from the OpenStack
external network to NAT with the virtual machines private IP. When we create a new
virtual machine in the private network, the VM will receive the private IP from the DHCP
agent of the private network. To access the virtual machine from the external network, we
need to SNAT the external network IP with the VM's private IP. The Floating IPs tab under
the Network panel provides the options for NAT mapping:

Day 5 - Networking Strategy Chapter 5

[98]

The following figure shows the available options for NAT mapping in the OpenStack
neutron. The router enables the functionality to connect the instances directly from an
external network using the floating IP addresses. Thus, the floating IP association with
private IP is functional only if the external network and the private network are linked with
the common router:

Network traffic flow
To understand the neutron clearly, one must know the clear picture of how neutron
manages the packets flow in OpenStack. The following figure shows the components and
connectivity of self-service network, using the Open vSwitch plugin:

Day 5 - Networking Strategy Chapter 5

[99]

By referring to the preceding figure, we will see the flow of network traffic in the following
scenarios:

North-south network traffic: Travels between an instance and external network
East-west network traffic: Travels between instances

Day 5 - Networking Strategy Chapter 5

[100]

Before that, take a note of the following keywords:

TAP device, such as vnet0 is a virtual device used by the hypervisors to
implement a virtual network interface card, most commonly known as VIF
or vNIC. The virtual machine will process an ethernet frame received by a
TAP device attached.

A veth pair is a virtual cable that directly connects the virtual network
interfaces. It is more like a LAN cable we use in real life to connect a PC
and switch. An ethernet frame which goes in one end will come out on the
other end of a veth pair.

A Linux bridge is more like a simple, unmanaged L2 switch. We can
connect multiple (physical or virtual) network interfaces devices to a
Linux bridge.

An Open vSwitch bridge is more like a manageable multi-layer switch.
We can attach the network interface devices to an Open vSwitch bridge's
ports and the ports can be configured with VLAN. Notably, despite being
an open source software, OVS supports most advanced networking
technologies such as NetFlow, sFlow, and OpenFlow that can be seen in
the latest proprietary switches.

North-south network traffic
Let's assume the following scenario:

The instance is in compute node 01 and uses the self-service network
The instance sends a packet to the internet (say, ping www.hellovinoth.com)

Day 5 - Networking Strategy Chapter 5

[101]

On compute node:

The following packet flow will take place on the compute node:

The virtual machine's virtual network interface (vNIC) (1) forwards the packet to1.
the security group bridge (qbr) port (2) through the veth pair.
The security group rules applied (3) to the Linux Bridge (qbr) that handles the2.
packet filtering using IP tables rules applied to it using the security group
mapped to the instance.
The security group bridge's port (4) forwards the packet to the OVS Integration3.
Bridge (br-int) on security group port (5) via veth pair.
The OVS Integration Bridge (br-int) adds an internal VLAN tag to the packet.4.
The OVS integration bridge patch port (6) forwards the packet to the OVS5.
Tunnel Bridge (br-tun) patch port (7).

Day 5 - Networking Strategy Chapter 5

[102]

The OVS Tunnel Bridge (br-tun) then modifies the assigned internal VLAN tag6.
with a segmentation tunnel ID and stores the table record for VLAN and the
corresponding tunnel ID is mapped.
The OVS Tunnel Bridge (br-tun) port (8) encapsulates the packet with the7.
compute node's ethernet frame, that is, the source MAC address as a compute
node MAC and destination MAC as a network node.
The underlying physical interface (9) for the overlay networks forwards the8.
packet to the network node through the overlay network (10).

On network node:

The following packet flow will take place on the network node:

The physical interface (11) for the overlay networks sends the packet to the tunnel1.
bridge (br-tun) port (12).
The OVS Tunnel Bridge (br-tun) decapsulates the packet.2.
The OVS Tunnel Bridge (br-tun) modifies the segmentation tunnel ID with an3.
internal VLAN tag by fetching the table record for VLAN ID and the respective
tunnel ID mapped.
The OVS Tunnel Bridge (br-tun) patch port (13) forwards the packet to the OVS4.
Tunnel Bridge (br-tun) patch port (14).
The OVS Integration Bridge (br-int) port for the self-service (tenant) network5.
(15) removes the internal VLAN tag and forwards the packet to the tenant
network interface (16) in the router namespace.
Then, the router performs NAT on the packet, which changes the source IP6.
address of the packet to the router IP address and sends it to the gateway of the
provider network through the router's gateway (17) port.
The router redirects the packet to the OVS Integration Bridge (br-tun) port for7.
the provider network (18).
The OVS integration bridge's patch port (int-br-provider) (19) forwards the8.
packet to the OVS provider bridge's patch port (phy-br-provider) (20).
The OVS provider bridge (br-provider) encapsulates the packet with network9.
node's ethernet frame.
The OVS provider bridge (br-provider) port (21) forwards the packet to the10.
physical network interface (22) as an ordinary packet (Jumbo frame).
The physical network interface redirects the packet to the internet through the11.
physical network infrastructure (23).

Day 5 - Networking Strategy Chapter 5

[103]

East-west network traffic
Now, let's see, the traffic flow between two virtual machines on two different networks.

Scenario:

Instance 01 is in compute node 01 and uses self-service network 01
Instance 02 is located in compute node 01 and uses self-service network 02
VM 1 on compute node 01 sends a packet to VM 2, which resides on the same
compute node, 01

On compute node:

The following packet flow will take place on the compute node:

The virtual machine's virtual network interface (vNIC) (1) forwards the packet to1.
the security group Linux Bridge (qbr) port (2) through the veth pair.
The security group rules applied (3) to the Linux Bridge (qbr) that handles the2.
packet filtering using IP tables rules applied using the security group mapped to
the instance.
The security group bridge's port (4) forwards the packet to the OVS Integration3.
Bridge (br-int) on security group port (5) via veth pair.
The OVS Integration Bridge (br-int) adds an internal VLAN tag to the packet.4.
The OVS Integration Bridge (br-int) patch port (6) forwards the packet to the5.
OVS Tunnel Bridge (br-tun) patch port (7):

Day 5 - Networking Strategy Chapter 5

[104]

The OVS Tunnel Bridge (br-tun) then modifies the assigned internal VLAN tag6.
with a segmentation tunnel ID and stores the table record for VLAN and the
corresponding tunnel ID is mapped.
The OVS Tunnel Bridge (br-tun) port (8) encapsulates the packet with the7.
compute node's ethernet frame, that is, the source MAC address as compute node
MAC and the destination MAC as a network node.
The underlying physical interface (9) for overlay networks directs the packet to8.
the network node through the overlay network link (10).

On network node:

The following packet flow will take place on the network node:

The physical interface (11) of a network node for overlay networks forwards the1.
packet to the OVS Tunnel Bridge (br-tun) port (12).
The OVS Tunnel Bridge (br-tun) decapsulates the packet.2.
The OVS Tunnel Bridge (br-tun) modifies the VxLAN segmentation tunnel ID3.
with an internal VLAN tag by fetching the table record for VLAN ID and the
respective tunnel ID is mapped.
The OVS Tunnel Bridge (br-tun) patch-int patch port (13) forwards the packet to4.
the OVS Tunnel Bridge (br-tun) patch-tun patch port (14).
The OVS integration bridge port for tenant network 1 (15) removes the internal5.
VLAN tag and redirects the packet to the tenant network 01 interfaces (16) in the
router namespace.
The router sends the packet to the next-hop IP address, typically the gateway IP6.
address of tenant network 2, through the tenant network 2 interfaces (17).
The router forwards the packet to the OVS Integration Bridge (br-int) port for7.
tenant network 2 (18).
The OVS Integration Bridge (br-int) adds the internal VLAN tag to the packet.8.
The OVS Integration Bridge interchanges the inner VLAN tag for a VxLAN9.
segmentation tunnel ID.
The OVS Integration Bridge (br-int) patch-tun patch port (19) forwards the10.
packet to the OVS Tunnel Bridge (br-tun) patch-int patch port (20).
The OVS Tunnel Bridge (br-tun) port (21) encapsulates the packet with network11.
node's ethernet frame.
The underlying physical interface (22) for overlay networks forwards the packet12.
to the compute node through the overlay network (23).

Day 5 - Networking Strategy Chapter 5

[105]

On computing node:

The following packet flow will take place on the compute node:

The packet forwarded from network node will receive at the compute node.1.
Then, the original physical interface card (24) for overlay networks redirects the
packet to the OVS Tunnel Bridge (br-tun) (25).
The OVS Tunnel Bridge (br-tun) decapsulatesthe packet.2.
The OVS tunnel bridge interchanges the VxLAN segmentation tunnel ID for an3.
internal VLAN tag.
The OVS Tunnel Bridge (br-tun) patch-int patch port (26) forwards the packet to4.
the OVS Integration Bridge (br-int) patch-tun patch port (27).
The OVS Integration Bridge (br-int) removes the internal VLAN tag from the5.
packet.
The OVS Integration Bridge (br-int) security group port (28) forwards the packet6.
to the security group bridge (qbr) OVS port (29) through the veth pair.
Security group rules (30) on the Linux Bridge (qbr) that handles the packet7.
filtering using IP tables rules applied to it using the security group mapped to the
instance.
The security group bridge (qbr) instance port (31) forwards the packet to the8.
virtual machine's interface (32) through the veth pair.

How does a VM get an IP?
The DHCP agent interconnects with the neutron-server over RPC. Every single network in
OpenStack has its own DHCP namespace. With the help of namespaces, the DHCP agent
ensures the complete network isolation between other networks. Each DHCP namespace
has the dnsmasq process running and it takes cares of serving the DHCP parameters, such
as IP address and netmask:

Day 5 - Networking Strategy Chapter 5

[106]

The preceding figure is self-explanatory, which will explain - how does a virtual machine
receive the network information from the DHCP agent? It is important to understand such
traffic flows in OpenStack that could greatly help us during the troubleshooting process.

Summary
In this chapter, we have seen the OpenStack networking in detail. I believe that the reader
will have gained in-depth knowledge of OpenStack neutron and its interesting
functionality. The step-by-step walkthrough on How the networking traffic flow works will
help the readers to understand the neutron better and will contribute to troubleshooting in
OpenStack.

In the next chapter, we will have the hands-on training exercise on how to use the
OpenStack horizon for using all of the OpenStack core components.

6
Day 6 - Field Training Exercise

The wait is over! So far, we have come across more of the theoretical content. Now, it is time
to unleash the power of learning by doing. In this chapter, we will have the hands-on lab
exercises on OpenStack, which covers all of the critical skills needed to administrate the
OpenStack cloud.

In the upcoming training session, you will be executing a series of hands-on labs exercises
for each component of OpenStack that will help you in understanding the OpenStack
architecture by doing them.

Before getting our hands dirty in OpenStack, let's ensure the prerequisites for the field
training exercise:

The all-in-one Openstack cluster, which we built in Chapter 1, Day 1 - Build Your
Camp
To access the OpenStack dashboard (Horizon), you need to have Google Chrome
installed
To access the OpenStack via CLI, you need to have the SSH client software
installed:

For Windows OS use the PuTTy SSH client
For Linux/OS X use the command-line Terminal

Day 6 - Field Training Exercise Chapter 6

[108]

Understanding the OpenStack lab
environment
As a first step, let's explore and understand how the lab environment is configured, which
will help you with the upcoming hands-on exercise:

Goal Getting ready for the lab environment both command-line and UI

Activities • Explore Lab through CLI
• Explore Lab through Web UI

Exploring lab through the command line
In this section, we will walk through how to navigate and explore our lab environment:

From your workstation using PuTTy or Terminal, SSH to the virtual machine or1.
server where we have installed all-in-one OpenStack setup using DevStack on
Day 1. Please go back to Chapter 1, Day 1 - Build Your Camp and recap the lab
environment setup.
Log in using the stack/stack username and password:2.

 ssh stack@192.168.56.101
 #Command will prompt for password

Day 6 - Field Training Exercise Chapter 6

[109]

Let's execute the following commands to verify your OpenStack server's basic3.
info:

 hostname
 #The output will display your hostname. In my case, the hostname of
 my server is "openstackbootcamp".
 pwd
 #The output will write the full pathname of the current working
 directory.
 ls
 #This command writes the list of files and directories in your
 working directory.
 uname -a
 #This command writes the Linux build we are currently running on
 our system.
 cd /opt/stack/devstack
 #This command will take you to the devstack directory from your
 current home directory.
 source userrc_early
 #This step will Source the environment file to set environment
 variables for your current shell to execute Openstack commands.
 grep -nr "OS_USERNAME=admin" | grep rc
 # Note that the environment file name may vary sometime. The above
 command would help you in finding the right one.
 export | grep OS_
 #You can verify if the environment variables are set by executing
 the above command.

Whenever you open the new command-line window in your
workstation, you need to reconnect the SSH session and source the
environment file again.

 openstack --version
 #Returns the version number for Openstack command-line client.
 openstack service list
 # Will return the list of servers configured as part of the
 Openstack cluster.
 openstack --help
 #The above command will output the long listing available Openstack
 CLI.

Day 6 - Field Training Exercise Chapter 6

[110]

You may also refer to the following screenshot for the output of the commands mentioned
previously:

If you could execute all of the preceding commands in your Terminal successfully,
congratulate yourself. Now, you are all set to take off.

If you got stuck with any error messages while executing the preceding commands, don't
panic. Just jump to Chapter 9, Day 9 - Repair OpenStack, where I have listed the most
common errors and the solutions to fix it.

Exploring lab through the Horizon dashboard
In this section, we will study how to log in to the OpenStack dashboard (Horizon) and how
to navigate through the OpenStack services available:

Access the OpenStack Horizon via your host machine's browser with the URL1.
and password, which was displayed during your DevStack installation
completion output:

Day 6 - Field Training Exercise Chapter 6

[111]

In my case, I access my Openstack UI at
http://192.168.56.101/dashboard/, and the password for the
admin user is nomoresecret.

Log in to the OpenStack dashboard, using your user credentials:2.

Day 6 - Field Training Exercise Chapter 6

[112]

The top-level row shows the username. You could also navigate to the
settings menu to find available options on the dashboard:

The visible view, tabs, and functions on the OpenStack Horizon depends on the3.
roles of the logged in user. In our case, we have logged as an admin user with
admin role privileges so that you can see all of the available tabs and functions
for both the admin and the member role access:

Day 6 - Field Training Exercise Chapter 6

[113]

If you logged in with the demo user account, you would have logged in with end4.
user privileges, so the screen shows only the Project and Identity tab. It has no
role mapped to access the admin functionality:

Click each menu link on the left side of the Project tab navigation panel to see the5.
different tabs displayed. In the following screenshot, I have compared the
difference between the admin role and end-user role functionality:

Day 6 - Field Training Exercise Chapter 6

[114]

The left panel of the preceding figure displays the available options under the Project panel,
which is accessible to all the end users. Typically, the non-privileged users will only have
member role mapping. Well, on the other side, the Admin panel will have an available
option for admin functionality.

I have also highlighted the difference in the options available under the Compute tab of
both of the Project and Admin panels.

OpenStack Horizon - Project tab
From the Project tab, we could view and manage the OpenStack resources in a selected
project. Each user should be mapped with at least one project. We can select the project
from the drop-down menu at the top left:

The Compute tab
The Compute tab has the following options associated with it:

Overview: To view project report that includes resource quota usage and
summary.
Instances: To view, launch, create a snapshot, stop, pause, or reboot instances, or
connect to them through VNC.
Volumes: To view, create, edit, and delete volumes.

Day 6 - Field Training Exercise Chapter 6

[115]

Images: To view images, instance snapshots, and volume snapshots created by
project users, images that are publicly available. Also, it can create, edit, and
delete images, and launch instances from images and snapshots.
Key Pairs: To view, create, edit, and import SSH key-pairs, and delete keypairs.
API Access: To view and download service API endpoint information.

The Network tab
The Network tab consists of the following options:

Network Topology : To view the network topology of the project
Networks: To create and manage the private/tenant networks

Day 6 - Field Training Exercise Chapter 6

[116]

Routers: To create and manage routers for your tenant/project
Security Groups: View and manage the security groups and security group rules
Floating IPs: Allocate an IP address to the virtual machine port or release it from
a project

OpenStack Horizon - the Admin tab
The user with the admin role mapped could view the Admin tab on their Horizon
dashboard. Administrative users can use the Admin tab to view the usage of entire
OpenStack resources and to manage instances, volumes, flavors, images, public networks,
and so on.

As I mentioned earlier, from the Admin tab, the user could view and manage the resources
like virtual machines, volumes, images, and network details of any project/tenant.

The System tab
The System tab consists of the following options:

Overview: To view basic reports.
Hypervisors: To view the hypervisor summary.
Host Aggregates: To view, create, and edit host aggregates. View the list of
availability zones.
Instances: To view, pause, resume, suspend, migrate, soft or hard reboots, and
delete running instances that belong to users of any project. Also, view the log or
access any instance through VNC.
Volumes: To view, create, manage, and delete volumes and snapshots that
belong to users of any projects.
Flavors: To view, create, edit, view other specifications for, and delete flavors. A
flavor defines the size template of an instance.
Images: To view, create, edit properties for, and delete custom images and
manage public images.

Day 6 - Field Training Exercise Chapter 6

[117]

The following screenshot shows the System tab with an available panel under it:

Networks: To view, create, edit properties for, and delete private and public
networks. Notably, only the admin user can manage the public network.
Routers: To view, edit properties for, and delete routers that belong to any
project.
Floating IPs: To allocate an IP address to port or release it from a project.
Defaults: To view default quota values. Also, manage the default quotas for each
project in OpenStack by defining the maximum allowable size and number of
resources.
Metadata Definitions: To import namespace and view the metadata information.

Well done! Now, you have a better understanding of our lab environment. Let's start
exploring the OpenStack.

Checkpoint

Connect to the lab environment using CLI and Horizon
Understand the lab environment setup

Day 6 - Field Training Exercise Chapter 6

[118]

Compute Service - Horizon
In this session, we will use the Horizon dashboard to execute some basic Nova compute
operations:

Goal Use the Horizon dashboard to perform basic Nova compute operations

Activities • Create an instance in Horizon
• Connect to the instance console
• Terminate newly created instance

Launching a new instance using Horizon
We refer to virtual machines as instances that run inside the cloud. You could provision a
new instance from a pre-bundled OS image that is stored in an OpenStack image service. As
I said, an image is a copy of the entire contents of a storage device, which includes all the
hard drive partition information, the file allocation table, boot sectors, and the operating
system installation.

The OpenStack Image (Glance) service provides a pool of images that are available to
members of the different projects. Let's look at what images are available for the project
demo:

Log in to the Horizon Dashboard as a demo user. You could find the password1.
details of the demo user in the DevStack installation completion output. In most
DevStack setup cases, the password for admin and demo users remains the same.
Click the Images panel in the Project tab on the Horizon dashboard:2.

Day 6 - Field Training Exercise Chapter 6

[119]

In response, the Horizon will show the images that have been uploaded to the Glance
repository and are available for this project:

Day 6 - Field Training Exercise Chapter 6

[120]

Images visibility in Glance can be:

Private: Available only for the selected project in which they were created
Shared: Available for the project in which they were created and to other projects
the image has been explicitly shared with
Public: Available for all of the projects within the OpenStack cluster

We could launch a new instance from the Glance panel by clicking on the Launch button
displayed next to the image list. However, let me walk through the straightforward method
for creating a new virtual machine using the instance panel.

Click the Instances menu in the Project tab on the Horizon dashboard:1.

As you can see, there are no running VMs for now.

Click the Launch Instance button in the top right corner on the Horizon.2.

In response, the Launch Instance window will get a pop-up. We need to fill the inputs
corresponding to the new virtual machine:

Day 6 - Field Training Exercise Chapter 6

[121]

To begin with, you may fill only the mandatory fields on the Launch Instance pop-up tab.

Mandatory fields
The following listed fields are the mandatory items when submitting the Launch Instance
request:

Instance Name*: It's a name of the virtual machine. Also, it will be reflected as
the hostname.
Count*: It counts the number of virtual machines that need to be provisioned
with the same configuration.

Day 6 - Field Training Exercise Chapter 6

[122]

Allocated Image: We need to click (choose) any one image from the available
image list to provision a new instance.
Allocated Flavor: A flavor is an available hardware configuration for a server.
OpenStack comes with a list of default flavors to be used by all users. Notably,
only an administrator can modify the existing flavors and create new ones. In my
case, due to the lack of hardware resource, I have chosen a minimal flavor,
m1.nano.
Allocated Network: Choose any one Private network from the available network
list to provision a new virtual machine in that subnet.

In the Launch Instance window, specify the following values:

Details tab

Instance Name* hellovinoth

Availability Zone nova

Count* 1

Source tab

Select Boot Source Image

Create New Volume Yes

Volume Size (GB)* 1

Delete Volume on Instance Delete No

Image Name cirros-0.3.4-x86_64-uec

Day 6 - Field Training Exercise Chapter 6

[123]

Flavor tab

Allocated Flavor Name m1.nano

Networks tab

Allocated Network Name private

Security Groups tab

Allocated Security Group Name Default

Day 6 - Field Training Exercise Chapter 6

[124]

After filling all of the mandatory fields, click the Launch button to submit the instance
parameter to the Nova services to process:

Then, pay close attention on how Status, Task, and Power State fields on the dashboard
changes during our new instance creation. Wait until the status and Power State of the
instance changes to Active and Running status, respectively.

Congratulate yourself! You have successfully created a new instance in OpenStack via the
Horizon dashboard.

Connecting to the instance using the VNC
console
In computing, Virtual Network Computing (VNC) is a graphical remote desktop sharing
system that uses the Remote Frame Buffer (RFB) protocol to control another end computer
remotely. In an IaaS system like OpenStack, VNC is a very convenient tool for the end user
to connect to the VMs through web UI:

On the Instance screen, click the Instance Name: hellovinoth:1.

Day 6 - Field Training Exercise Chapter 6

[125]

In response, the Instance Detail window will get displayed with the Overview2.
tab opened by default. In there, you can see the more detailed information on
VM:

Day 6 - Field Training Exercise Chapter 6

[126]

Now, click the Console tab next to the Overview tab on the Instances details3.
window. The Console tab will navigate to the Instance Console screen. From
there, you can see the VNC console to access the remote virtual machine:

Log in to the VM using the default credential, Username: cirros and Password:4.
cubswin:

If the VNC console is not responding to keyboard input: click on the grey
area and then try typing at the prompt. If you see a Command Prompt,
you have successfully connected to the VM using the VNC console.

Day 6 - Field Training Exercise Chapter 6

[127]

Tracking usage for instances
OpenStack Horizon enables the user to track the resource utilization for each project via UI-
based metrics. Using the UI data under the Overview tab, users of the selected project could
track the resource usage such as Instances count, vCPUs, disk, RAM, Floating IPs, Security
Group count, Volumes count and Volumes Storage:

Click the Overview tab in the left navigation panel on the Project tab in Horizon.1.
The Overview screen displays the summary of resource utilization related to the2.
selected project and its quotas.
The Overview screen has two sub-divisions in it to serve its purpose:3.

Limit Summary
* Usage Summary

The following screenshot shows the Overview screen displaying the resource quota
summary:

Limit Summary: It is the usage summary of the currently running instances,
more like a live report
Usage Summary: It enables the user to fetch the summary report between the
selected days

Day 6 - Field Training Exercise Chapter 6

[128]

The following screenshot shows the latter half of the Overview screen displaying the Usage
Summary:

Optionally, users could also download the summary report in CSV file format. Add to that;
the Active Instance provides detailed information on the usage for each VM in the Usage
Summary section. As of now, we have only one virtual machine hellovinoth running in
our lab environment. So, the report on the preceding figure listed only one virtual machine
and its corresponding resource summary.

Managing an instance
Click the Instances menu in the left navigation panel on the Project tab in1.
Horizon.
Click the down arrow button (highlighted in the following screenshot) next to the2.
Create Snapshot button to expand the list of actions available for the instance:

Day 6 - Field Training Exercise Chapter 6

[129]

There are numerous actions available for an instance in the Active state; let's learn about the
purpose of the actions available for an active instance:

Associate Floating IP: Map (NAT) dedicated public IP from the external
network. We use this so that we can access this VM from the external network
Attach Interface: To add more NIC to the VM. By default, you could provision a
VM with one NIC attached
Detach Interface: To remove the added interface from the VM
Edit Instance: To rename the VM display name in the Horizon for your easy
reference
Attach Volume: To map the secondary disk to the VM from the Cinder service
Detach Volume: To remove the mapped disk from the VM
Update Metadata: To edit the instance metadata information
Edit Security Groups: To add/change the security groups mapping to the VM
Console: An alternative way to navigate to the page with VNC console for the
VM
View Log: Navigate to the Instance Console Log screen and display the instance
live dmesg logs
Pause Instance: To store the state of the VM in RAM. Just like putting the PC in
sleep mode
Suspend Instance: To store the VM state on disk. All RAM will be written to the
hard disk, and the VM will set to stopped state. Just like putting the PC in
hibernate mode
Shelve Instance: This will create a snapshot (backup) for the VM and delete all
the underlying resource of VM. Just like deleting the actual content from the book
without removing the index entry
Unshelve Instance: This will restore the shelved VM by restoring the latest
snapshot
Resize Instance: To resize the virtual machines flavor. This process will also
reboot the virtual machine
Lock Instance: To lock actions for the VM, so that a non-admin user will not be
able to execute actions
Unlock Instance: To unlock the actions for the VM
Soft Reboot Instance: Soft reboot attempts a graceful shutdown and restarts the
virtual machine
Hard Reboot Instance: Power cycles the instance

Day 6 - Field Training Exercise Chapter 6

[130]

The following screenshot shows the list of available options under the action drop-down
list:

Shut Off Instance: To put the VM in shut off state
Rebuild Instance: To restore the VM with the same configuration using the
image/snapshot available
Delete Instance: To delete an instance when you no longer need it

Day 6 - Field Training Exercise Chapter 6

[131]

Choose the Delete Instance option from the action list to delete the instance. In response,
you will get the pop-up asking for the confirmation to delete the virtual machine:

After confirmation, in a few seconds, the VM will be deleted, and the instances window
becomes empty:

Congratulate yourself! You have completed the compute service exploration via Horizon in
the lab exercise.

Checkpoint

Get familiar with OpenStack Horizon
Provision a new instance via the OpenStack Dashboard
Connect to the newly provisioned VM using VNC web console
Understand the project usage summary
Look at actions available for the VM in an active state
Terminate the newly provisioned VM

Day 6 - Field Training Exercise Chapter 6

[132]

Compute service - CLI
In this session, we will use the OpenStack command-line interface (CLI) to perform some
basic Nova compute operations:

Goal Use the OpenStack CLI to perform basic Nova compute operations

Activities • Launch an Instance Using OpenStack CLI
• Connect to the Instance Using SSH
• Terminate the created instance

OpenStack CLI clients (OSC)
OpenStack offers the flexibility to manage its resources through web UI as well as using
CLI. In fact, OpenStack command-line clients support more operations and command
parameters than the Horizon UI.

During earlier OpenStack release, each OpenStack service had its own command-line client
such as nova-CLI, neutron-CLI, Cinder-CLI, and so on. However, in the recent OpenStack
releases, all those distinct commands set for compute, identity, image, object storage, and
block storage APIs are packed in a single shell with a uniform CLI structure called
OpenStack Client (OSC).

All of those distinct CLI are now deprecated in the latest OpenStack release and will be
removed in the upcoming release cycle. The command mapping for old CLI to new OSC is
available at:
https://docs.openstack.org/python-openstackclient/latest/cli/decoder.html.

Before we start using the OpenStack command tool, we need to provide OSC with
information on your OpenStack username, password, and project, as well as an endpoint
URL for KeyStone to contact for authentication and getting the list of endpoint URLs for the
other OpenStack service. We could either specify that information directly in each
command or alternatively, we could set an environment file and use it for the whole
command-line session.

https://docs.openstack.org/python-openstackclient/latest/cli/decoder.html

Day 6 - Field Training Exercise Chapter 6

[133]

We could create that environment file on our own, or alternatively, we could even
download it directly from the OpenStack dashboard under the API Access tab:

To create an environment file, follow these given instructions:

From your workstation using PuTTy or Terminal, SSH to the virtual machine or1.
server where we have installed all-in-one OpenStack setup using DevStack on
Day 1. Please go back to Chapter 1, Day 1 - Build Your Camp and recap the lab
environment setup.
Log in using the stack/stack username and password:2.

 ssh stack@192.168.56.101
 #Command will prompt for password

Create a new environment file for your lab environment with the following3.
details:

 #!/usr/bin/env bash
 export OS_AUTH_URL=http://192.168.1.6/identity/v3
 export OS_PROJECT_NAME="demo"
 export OS_USER_DOMAIN_NAME="Default"
 export OS_USERNAME="demo"
 export OS_PASSWORD="password" --- ##your PASSWORD HERE.
 export OS_REGION_NAME="RegionOne"
 export OS_IDENTITY_API_VERSION=3

Alternatively, you could download the OpenStack RC file v3 from the Horizon4.
dashboard and move the file to the OpenStack cluster.
Source the environment file to set environment variables for your current shell5.
using the following command:

 source /opt/stack/devstack/demorc

Day 6 - Field Training Exercise Chapter 6

[134]

The preceding command has no output in response. To verify if the environment6.
variables are set correctly, execute the following command:

 export | grep OS_

In response, you should get an output similar to the one shown here:7.

 declare -x OS_AUTH_URL="http://192.168.1.6/identity/v3"
 declare -x OS_IDENTITY_API_VERSION="3"
 declare -x OS_PASSWORD="password"
 declare -x OS_PROJECT_NAME="demo"
 declare -x OS_REGION_NAME="RegionOne"
 declare -x OS_USERNAME="demo"
 declare -x OS_USER_DOMAIN_NAME="Default"

Whenever you open the new command-line window in your
workstation, you need to reconnect to the SSH session and source the
environment file again.

To start with, let's try some simple commands in OSC:8.

 openstack --version
 #Returns the version number for Openstack command-line client.
 openstack service list
 # Will return the ERROR response, as the demo user (non-admin) is
 not authorised to perform the admin action
 openstack network list
 #Displays the list of networks in the project Demo.

Launching an instance using OpenStack CLI
Before launching an instance, we need to gather some additional information that needs to
be passed as an input parameter to the OpenStack CLI, such as image ID, flavor name,
network ID, and so on:

List the available images for the project demo:1.

Day 6 - Field Training Exercise Chapter 6

[135]

List the available flavors for the project demo:2.

Generate a new key pair:3.

Day 6 - Field Training Exercise Chapter 6

[136]

By default, the security group named default applies to all instances that have4.
firewall rules that deny remote access to the instances. So, we need to append the
new rule to the security group to allow SSH connection to the VM:

List available networks for the project demo:5.

Now, we have all of the required information to launch an instance from the6.
OSC:

Parameter Value

Image cirros-0.3.4-x86_64-uec

Flavor m1.nano

Keypair KP_hellovinoth

Security Group default

Network ID 65ba9c58-b64a-47bd-bf2c-fe2c54512354

Instance Name VM_hellovinoth_OSC

Day 6 - Field Training Exercise Chapter 6

[137]

Launch an instance using the following OpenStack CLI:7.

 openstack server create --flavor m1.nano \
 --image cirros-0.3.4-x86_64-uec \
 --nic net-id=65ba9c58-b64a-47bd-bf2c-fe2c54512354 \
 --security-group default \
 --key-name KP_hellovinoth VM_hellovinoth_OSC

Replace net-id with the ID of your private network from the
command output openstack network list.

You may refer to the following screenshot for the preceding command and its8.
output:

Day 6 - Field Training Exercise Chapter 6

[138]

Wait for the VM to transition to Active status:9.

Connecting to the instance using SSH
We could also see the newly provisioned instance and its details from the Horizon
dashboard:

To connect the instance from the external network, we need to associate the floating IP from
the external network:

Create a floating IP address on the virtual provider network using the following1.
command:

Day 6 - Field Training Exercise Chapter 6

[139]

Then, associate the newly allocated floating IP address to the instance you want2.
to access remotely:

Check the status of the associated floating IP address:3.

Day 6 - Field Training Exercise Chapter 6

[140]

We could also see the same changes reflecting in the Horizon dashboard under4.
the Instance tab:

Now, try to access your instance using SSH from the controller node:5.

Day 6 - Field Training Exercise Chapter 6

[141]

Usually, we should be able to access the instance via SSH through the floating IP address
from any host on the physical provider network. However, the DevStack installation has
some limitations that allows the users to connect the virtual machines only from the
controller node.

Once you get into the instance via SSH, you could verify the hostname of the instance and
the private IP address. As you can notice from the preceding screenshot, the floating IP
address will not reflect anywhere inside the instance. This is because the floating IP is
associated with the router (NAT).

To exit the cirros instance shell and get back to the controller node, execute the following
command:

exit

If your virtual machine does not launch or is unable to access as you expect, then jump to
Chapter 9, Day 9 - Repair OpenStack to find the fix.

Terminating the created instance
Like most cases, destroying something is an easy process on comparing the creating
process. The same theory applies here, too. We could delete the instance using the following
command:

openstack server delete VM_hellovinoth_OSC

The following screenshot shows the reference output for the preceding server deletion
command:

Day 6 - Field Training Exercise Chapter 6

[142]

Note that the preceding command to delete the instance provides no output. So, we could
verify the server status using the OpenStack server list command or check the Instance tab
in the Horizon dashboard.

Congratulate yourself! You have completed the next level in managing the compute service
through OpenStack CLI.

Checkpoint

Get familiar with OpenStack CLI
Provision a new instance via OpenStack CLI
Access the newly provisioned VM using SSH login
Terminate the newly provisioned VM

Image service (Glance)
In this session, we are going to accomplish operations around OpenStack Image Service
(Glance) using both the Horizon dashboard and OpenStack Client (OSC):

Goal Use the OpenStack Glance image service to add images

Activities • Use Horizon dashboard to add a CentOS image
• Use the command-line to add an Ubuntu image
• Launch an instance from the new image

Adding an image using Horizon
Like I mentioned in the previous chapter, the images stored in the Glance service have a
pre-installed operating system and the necessary software to support, cloud environment
such as a cloud-init tool. The creation of an image from scratch is not in the scope of this
chapter. Alternatively, we could download any operating system in OpenStack supported
image format as all the major OS distributions maintain their own public repository for
their cloud images.

Day 6 - Field Training Exercise Chapter 6

[143]

More information on manually building the cloud image and downloading the cloud image
is available at: https://docs.openstack.org/image-guide/create-images-manually.html.

Before we begin, use the following link to download the CentOS-7 cloud image from the
CentOS repository:
https://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2.

When adding an image to Glance, you must specify some mandatory information about the
image. The provided information about the Glance image, such as disk format and
architecture type, helps the Nova scheduler to choose the appropriate hypervisor to
provision the virtual machines.

Follow these instructions to upload an image into the Glance repository using OpenStack
Horizon UI:

Log in to Horizon using demo or any user with _member_ role credentials.1.
Click the Images menu in the left navigation panel on the Project tab, which will2.
list the available images for the demo project:

https://docs.openstack.org/image-guide/create-images-manually.html
https://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2

Day 6 - Field Training Exercise Chapter 6

[144]

Click the Create Image button from the top-right corner of the images window.3.
In response, you will get the pop-up window for submitting the image details:

Day 6 - Field Training Exercise Chapter 6

[145]

Mandatory fields are given here:4.
Image Name*: Name of the image.
File*: Location of the image file from your local host operating system.
By default, you could find the CentOS 7 file from the Downloads folder
of the host machine.
Format*: The disk format of the image. In general, virtual appliance
vendors have different formats for laying out the information
contained in a virtual machine disk image. The two most popular for
KVM hypervisor is qcow2 and raw disk format.

In the Create Image window, specify the following values and click the Create5.
Image button at the bottom of the form:

Parameter Value

Image Name* CentOS 7

File* Browse and choose the downloaded CentOS image.

Format* QCOW2 - QEMU Emulator

Leave the rest empty

The image uploading and saving process may take some time depending on the6.
image size and your system performance:

Day 6 - Field Training Exercise Chapter 6

[146]

Wait until the status of the image turns from the Queued state to the Active7.
status. Then, click the Launch button from the options panel of the image to
launch a CentOS 7 instance to test the image:

Adding an image using Glance CLI
In this section, we will use OpenStack Client CLI (OSC) to add the Ubuntu image from a
file on the local filesystem:

Start an SSH session to your lab environment using SSH shell login credentials.1.
Source the environment file to set environment variables for your current shell.2.
You may go back to the OpenStack CLI Clients (OSC) section to get more details on
how to perform the particular steps.
Execute the following command in lab SSH shell to download the3.
Ubuntu14_04LTS cloud image from the Ubuntu repository:

 wget https://cloud-images.ubuntu.com/releases/14.04.4/release-
 20170831/ubuntu-14.04-server-cloudimg-amd64-disk1.img

Day 6 - Field Training Exercise Chapter 6

[147]

Take a close look at the downloaded Ubuntu disk image file for the file4.
permission and disk size using standard Linux commands:

Now, look deep into the file properties using the QEMU disk image utility:5.

The attributes you could find in the file properties are:

file format: Is the disk image format
virtual_size: The minimum drive size the VM should have when provisioning
the VM using this image
disk_size: The actual file size of the image
cluster_size: With qcow, the contents of the image are stored in clusters
(blocks)

You should have noticed that the actual file size of an image is smaller than the virtual size
of an image, as the copy-on-write is one of the properties of the qcow2 format.

Check the available OSC commands related to the Glance image service to see1.
what the available options are that will create an image using the following
commands:

 openstack image --help

Upload the downloaded image to the image service using the following2.
command:

 openstack image create "Ubuntu14_04" \
 --file ubuntu-14.04-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

Day 6 - Field Training Exercise Chapter 6

[148]

You may refer to the following screenshot for the reference output of the3.
preceding command:

In the preceding command, we have passed the parameter value to set the image4.
name as Ubuntu14_04, the file location as the downloaded Ubuntu cloud image
location, and followed by the disk format as qcow2 and the container format as
bare.
Verify that the uploaded image was successfully saved in the Glance service by5.
executing the following command:

 openstack image list

Refer to the following screenshot for the output reference:

Day 6 - Field Training Exercise Chapter 6

[149]

You should see Ubuntu14_04 in a list of images available with an active status.

More information about the OpenStack image create parameters are available at:
https://docs.openstack.org/user-guide/common/cli-manage-images.html.

Detailed information about disk and container formats for images are available at:
https://docs.openstack.org/image-guide/image-formats.html.

Launching an instance from the new image
Let's use the OSC CLI to provision a new Ubuntu virtual machine from the recently
uploaded Ubuntu14_04 cloud image. As we already discussed the OSC CLI to create a new
virtual machine in the previous session, let us quickly create a new instance to test the
recently uploaded Ubuntu cloud image:

https://docs.openstack.org/user-guide/common/cli-manage-images.html
https://docs.openstack.org/image-guide/image-formats.html

Day 6 - Field Training Exercise Chapter 6

[150]

You can see that from the preceding screenshot that I have submitted a new instance
creation request with the following parameters:

flavor: ds512M
image: Ubuntu14_04
NIC [Network ID]: Private network's ID
security_group: name='default'
key_name: KP_hellovinoth
Instance name: VM_Ubuntu_OSC

You can see the new instance is created with the parameter mentioned previously from the
OpenStack Horizon dashboard:

Alternatively, you could also use the following CLI to see the detailed information about
the new virtual machine:

Day 6 - Field Training Exercise Chapter 6

[151]

Checkpoint

Use Horizon dashboard to add a CentOS image
Use the command line to add an Ubuntu image
Launch an instance from the new image

Block storage (Cinder)
By default, OpenStack creates virtual machines with local storage for the root partition,
which means that all of the data will get stored in the local storage of the host machine.
When the user deletes the virtual machine, all of the data that resides on the / partition will
also get deleted. In specific cases, the user may need to store all of the vital data in
persistent storage, which will be available even after virtual deletion. For that, Cinder
provides a reliable way to store vital data, such as database file, and application data in
persistent storage by mounting Cinder volume under a selected directory such as /var or
/mnt, or by creating a virtual machine from Cinder volume.

Day 6 - Field Training Exercise Chapter 6

[152]

In this session, we are going to perform operations around OpenStack block storage service
(Cinder) using both the Horizon dashboard and command-line client:

Goal Create volumes using the Cinder (block storage) service

Activities • Create a volume using Horizon
• Attach the volume to the existing virtual machine
• Verify the attached volume from the instance
• Detach the volume from the instance

Managing Cinder volume using Horizon
Follow these instructions to create a new volume in Cinder:

Click the Volumes menu in the left navigation panel on the Project tab in1.
Horizon to see what volumes are available for the project demo:

Day 6 - Field Training Exercise Chapter 6

[153]

Click the +Create Volume button in the top right corner of the Volumes panel:2.

In response, the Create Volume window will be displayed with the Volume3.
Source option set to No source, empty volume by default:

Day 6 - Field Training Exercise Chapter 6

[154]

The field area for the create volume pop-up has the following options:

Volume Name and Description: Name of the volume for your
reference.
Volume Source: No source, empty volume: It will create a new non-
partitioned volume on the back-end storage. The first time when you
use/mount the volume to the operating system, you need to format and
partition it.
Volume: With Cinder, you can take snapshots (complete copies of the
existing volumes) and then create the new volumes from it.
Image: Cinder can create a volume from the image available through
Glance. That is an easy way to create a bootable volume.
Type: The Type field allows you to choose a specific storage backend
for multi-backend Cinder configuration. Our DevStack environment
only supports LVM backend, so you can see that the field has only one
option available as lvmdriver-1.
Size (GiB)*: Based on the quota limit for the selected project, you could
create a volume of any size.
Availability Zone: You could select between different availability zones
to create new volumes. However, our DevStack has only one default
availability zone configured called nova.

In the Create Volume window, specify the following values:4.

Parameter Value

Volume_Name VL_hellovinoth_1GB

Volume_Source No source, empty volume

Type lvmdriver-1

Size 1

Availability Zone nova

Click the +Create Volume button and pay attention to how the Status field5.
changes for the new volume creation:

Day 6 - Field Training Exercise Chapter 6

[155]

Let's test the volume by attaching it to an instance that, we have created during6.
the previous session. Before that let's explore the available options for managing
the Cinder volumes.
Click the drop-down button next to the Edit Volume button on the right side of7.
the volume list:

The drop-down field has the following listed options available:

Extend Volume: Allows the user to increase the size of the existing volume.
Notably, we cannot reduce the size of the volumes.
Manage Attachments: Allows the user to attach/detach the volume from the
virtual machines.
Create Snapshot: Enables the user to create a complete copy of the existing
volume called snapshot. This snapshot can be later used to as a volume source
while creating a new volume.

Day 6 - Field Training Exercise Chapter 6

[156]

Change Volume Type: Permits the user to change the volume backend driver.
Our Devstack setup has only one backend Cinder driver configured by default.
So, this option will not be available for now.
Upload to Image: Enables the user to upload the volume to the image service as
an image.
Create Transfer: Ownership of a volume can be transferred from one project to
another. Once a volume transfer is created in a donor project, it then can be
accepted by a recipient project. The Transfer ID and the authorization key are
required by the receiver to accept the transfer.
Delete Volume: Will delete the volume permanently.
Update Metadata: Allows the user to specify the resource metadata.

Attaching Cinder volume to the virtual machine
Follow the steps to attach the volume to the existing Ubuntu instance that we have created
during the Launch an instance from the new image session:

Click the Manage Attachments option to attach the volume to the instance.1.
Please note that this is a continuation of step 6, mentioned in the previous session,
Manage Cinder volume using Horizon:

In response, you will get the Manage volume Attachments pop-up window.2.
From the Attach to Instance* field drop-down button, you need to select the
virtual machine to attach the volume. Then, hit the Attach Volume button to
submit the volume attachment request to the Cinder service.
Shortly, you could see the Volumes window changes the volume status to In-use3.
and has attached to the selected instance:

Day 6 - Field Training Exercise Chapter 6

[157]

Now, let's verify the volume attachment from the virtual machine.4.
To do this, first, we need to log in into the Ubuntu virtual machine, which will5.
include mapping the floating IP for SSH login. If you find any difficulties in
connecting the Ubuntu instance via SSH shell, please refer to the preceding
session, Connect to the Instance Using SSH.

The Ubuntu cloud image we are using in our lab environment allows
only the key-pair based authentication, and the default username for
login is ubuntu.

Use the following command to connect the Ubuntu instance from the controller6.
node:

 ssh ubuntu@<your_floating_IP_here>

Once you are inside the Ubuntu instance, you need to switch to the root user to7.
access the privileged operating system functionality. Use the following command
to switch to the root user:

 sudo su

Remember that we have created this attached volume with the volume
source as No source, empty volume, which would have created a new
non-partitioned volume on the back-end storage. So, the first time
when we attach the volume to any operating system, we need to
format and partition it manually.

Day 6 - Field Training Exercise Chapter 6

[158]

Run the following command as the root user to see the attached Cinder volume8.
from the Ubuntu instance:

 fdisk -l

In response to the previous command, you will see the output like the one in the9.
following screenshot:

I have highlighted the critical information in the preceding screenshot for your convenience:

Disk /dev/vda: 5368 MB, 5368709120 bytes: This disk represents the 5
GB primary disk for the / partition of the Ubuntu OS, which was created with the
flavor ds512M while creating the virtual machine
Disk /dev/vdb: 1073 MB, 1073747824 bytes: This disk represents the 1
GB secondary disk, which is attached to the Cinder volume
Disk /dev/vdb does not contain a valid partition table: This
represents that the disk is not yet formatted

Day 6 - Field Training Exercise Chapter 6

[159]

Formatting the disk is not in the scope of our exercise; you may refer any Linux forum to do
the disk format and mount.

Since the volume is created from the empty non-partitioned source, we need to do these
formatting steps only for the first time when using this volume. In this case, detaching the
volume and attaching it again to the same virtual machine or the different virtual machine
does not require the disk formatting steps to mount the volume.

Detaching Cinder volume from the virtual
machine
Follow these instructions to detach the volume from the virtual machine:

Click the Volumes menu in the left navigation panel on the Project tab in1.
Horizon to see what volumes are available for the project demo.
Click the drop-down button next to the Edit Volume button on the right side of2.
the volume list:

Choose the Manage Attachments button from the drop-down list.3.

Day 6 - Field Training Exercise Chapter 6

[160]

In response, you will get the Manage Volume Attachments pop-up window, like4.
the one shown in the following screenshot:

Click the Detach Volume button in the pop-up window to detach the volume5.
from the virtual machine. In response, Horizon will pop-up a Confirm Detach
Volume window, asking the user to confirm the volume detaching the process:

Now, let's check the virtual machine's shell to confirm the volume detachment6.
process.

Day 6 - Field Training Exercise Chapter 6

[161]

We need to run the following command in the instance's SSH shell. If you find7.
any difficulties in connecting an instance via SSH, please refer to step 8.
Run the following command as a root user to see the disk information:8.

 fdisk -l

In response to the previous command, you will see the output like the one in the9.
following screenshot:

From the preceding output, you can see only the /dev/vda partition of the Ubuntu OS.
However, the Disk /dev/vdb is missing, as the Cinder service detached the disk vdb from
the instance.

Checkpoint

Create a new volume using Horizon
Attach the volume to the existing virtual machine and verify the
attached volume from the instance
Detach the volume from the instance

Identity (KeyStone)
KeyStone is an OpenStack component that provides identity, catalogue, and policy services.
You can compare it to the Active Directory Services for Windows.

Day 6 - Field Training Exercise Chapter 6

[162]

In this session, we are going to use the Horizon dashboard to create new projects and users
in KeyStone:

Goal Use Horizon to add projects/users to the KeyStone identity service

Activities Adding projects and users

Adding projects and users
So far, we are using the demo user account, which has only the member role mapped, and it
has no authorization to do the admin activities. In this session, we are about to add new
projects and users, which will require admin role access. So, you must log in to the Horizon
dashboard as an admin user to continue with the upcoming exercises.

By default, in DevStack setup, the user credentials for admin login is admin /
nomoresecret. You could also refer to the With Horizon dashboard section for your
reference:

Log in to Horizon as the admin user. Since you logged in as the user with1.
administrative privileges, the main screen shows both Project and Admin tabs,
with the Identity tab being displayed by default:

Day 6 - Field Training Exercise Chapter 6

[163]

The tabs available on the main screen are:

Project: This tab enables the admin user to have a dedicated project
with non-privileged access
Admin: This tab allows you to perform administrative configuration
tasks for the whole OpenStack environment
Identity: This tab allows you to add and modify the users and projects
to the OpenStack

Click the Projects menu in the left navigation panel on the Identity tab in2.
Horizon to check the list of all available projects in the lab environment,
including the demo project we used before:

Day 6 - Field Training Exercise Chapter 6

[164]

Click the +Create Project button in the top right corner:3.

In response, you will get the Create Project pop-up window. In that, specify the
name for your new project and leave the rest unchanged. Then click the Create
Project button.

By now, you should see that your new project is added to the project list. In my
case, I could see my new project hellovinoth.com in the project list:

Click the Users menu under the Identity tab in Horizon.4.
In response, you should see the list of all of the users in the lab environment,5.
including the demo user we used before:

Day 6 - Field Training Exercise Chapter 6

[165]

Click the Create User button in the top right corner.6.
In response, you will get the Create User pop-up window. In that, specify the7.
following values and click the Create User button:

Parameter Value

User Name* bootcamp

Password* nomoresecret

Primary Project hellovinoth.com

Role member

Day 6 - Field Training Exercise Chapter 6

[166]

The following screenshot shows the sample Create User pop-up window:

Day 6 - Field Training Exercise Chapter 6

[167]

By now, you should see that your new user has been added to the user's list. In my case, I
could see my new user bootcamp in the user list:

Let's test our new project and user. Click the Sign Out link in the top right corner1.
of the window to sign out as the admin user.
Now, sign in to the Horizon dashboard using the bootcamp / nomoresecret2.
credentials.

Checkpoint

Adding Projects and Users using the Horizon dashboard.

Networking service (neutron)
In this session, we are going to look at the neutron network, router, and routing to the
external world:

Goal Create and configure networking with neutron

Activities • Create a new private network using Horizon
• Launch an instance using the newly created network
• Create a new router for the project
• Configure external network connectivity

Creating a network using Horizon
In this section, we will create the new private/tenant network for the project we have
created in the previous Adding projects and users section using the Horizon dashboard:

Sign-in to the Horizon dashboard using the bootcamp / nomoresecret1.
credentials to log in to the project hellovinoth.com.

You may use the user credentials of the user you have created in the
previous session to log in to the project.

Day 6 - Field Training Exercise Chapter 6

[168]

Click the Networks menu in the left navigation panel on the Project tab in2.
Horizon to see the available Networks list. By now, you should see only the
public network listed:

Day 6 - Field Training Exercise Chapter 6

[169]

Click the Create Network button in the top right corner:3.

In response, the Create Network screen will get displayed with three tabs:
Network/Subnet/Subnet Details:

Network: This tab specifies the name of the new network and whether
it should be automatically up or leave it in a down state after creation
(Admin state unchecked means that the network will be in down state
and does not forward packets):

Day 6 - Field Training Exercise Chapter 6

[170]

Subnet: Allows creating a new subnet and mapping it the network. It
allows you to specify the subnet name, IP address range to use in CIDR
format, IP version, and the optional Gateway IP.
Subnet Detail: Allows enabling of the DHCP server for the network
and configure some specific DHCP parameters such as allocation pool
and DNS name servers.

Day 6 - Field Training Exercise Chapter 6

[171]

In the Create Network window, specify the following values and click the Create4.
button:

Network

Network Name NW_bootcamp_01

Subnet

Subnet Name SN_bootcamp_01

Network Address Source Enter Network Address Manually

Network Address 192.168.23.0/24

IP Version IPv4

Gateway IP 192.168.23.1

Subnet Details

DNS Name Server 8.8.8.8

Leave the rest default or empty

By now, you should see that the NW_bootcamp_01 private network appears in the networks
list:

Day 6 - Field Training Exercise Chapter 6

[172]

Verifying the network connectivity
Let's test our new network by launching two new VMs in it and verifying if those VMs have
network connectivity between each other. To verify the network connectivity, follow these
instructions:

Click the Network Topology menu in the left navigation panel on the Project tab1.
in Horizon.
On the Network Topology screen click the Launch Instance button on the right2.
top edge of the screen:

In response, you will get a Launch Instance pop-up window. In the Launch3.
Instance window, specify the following values and click the Launch button. You
could refer to the Launching a new instance using Horizon section to launch a
virtual machine using the Horizon dashboard:

Details

Instance Name* bootcampVM

Availability Zone nova

Count* 2

Source

Select Boot Source Image

Create New Volume No

Image Name cirros-0.3.4-x86_64-uec

Flavor

Allocated Flavor name m1.nano

Day 6 - Field Training Exercise Chapter 6

[173]

Networks

Allocated Network Name NW_bootcamp_01

Security Groups

Allocated Security Group Name Default

Set the instance count as two to launch two new instances at the same time
with the same configuration.

After submitting the launch instance request by clicking the Launch Instance button, on the
Network Topology screen, you will see how VMs are started and connected to the
NW_bootcamp_01 network:

Day 6 - Field Training Exercise Chapter 6

[174]

Note the private IP addresses for the VMs in the NW_bootcamp_01
network. In my case, from the preceding screenshot, I could identify the IP
address of my new instances as 192.168.23.3 and 192.168.23.13. For
instance, bootcampVM-1 and bootcampVM-2, respectively.

Before we log in to the instance and verify the network connectivity, we need to1.
add the security group rule to the default Security Group to allow ICMP and
SSH traffic. To add a security group rule via Horizon, click the Security Groups
menu in the left navigation panel on the Network tab in Horizon:

By now, you should see the available security groups for the selected project.2.
Click on the Manage Rules button on the right side of the default Security
Groups list.
In response, you will get a Manage Security Group Rules window with the list3.
of all of the security rules for the selected security group:

Day 6 - Field Training Exercise Chapter 6

[175]

Click the + Add Rule button on the top right corner of the window to add a new4.
rule to the selected security group:

Day 6 - Field Training Exercise Chapter 6

[176]

I have added ALL ICMP and SSH rules to the Default Security Group
to allow ping/SSH connectivity between the instance.

Now, jump to the Instance menu in the left navigation panel on the Horizon5.
dashboard, which will display the available instance list:

Connect to any instance using the VNC Console and log in to the operating6.
system. You may refer to the Connecting to the instance using VNC console section
in case of any difficulties in connecting the instance via the VNC console.
Once you are logged in to the virtual machine, try to ping the other virtual7.
machine IP address:

Day 6 - Field Training Exercise Chapter 6

[177]

If everything is configured correctly, you should be able to ping another instance
successfully and unable to ping 8.8.8.8 (Google Public DNS).

Configuring routing for external networks
While verifying the network connectivity, we were unable to ping the external IP address
(8.8.8.8). That was because the VM is not connected to any router that will route the
packets from the VM to an external network:

Day 6 - Field Training Exercise Chapter 6

[178]

To configure the router for the external connectivity, follow these steps:

Click the Routers menu in the left navigation panel on the Network tab in1.
Horizon:

By now, you can see the list of available routers for the selected project. Click the2.
Create Router button in the top right corner of the Routers window.
In response, you will get a Create Router pop-up window. In that specify the3.
router name, and then select the external network from the dropdown. By
default, the DevStack setup has the public network configured for external
connectivity:

Day 6 - Field Training Exercise Chapter 6

[179]

After filling the Create Router pop-up window, click the Create Router button. In4.
response, a new router will be created and listed in the routers window:

From the router list, click on the name of the new router R_bootcamp_01, which5.
will open the router overview window with three tabs, namely Overview,
Interfaces, and Static Routes.

Day 6 - Field Training Exercise Chapter 6

[180]

Select the Interfaces tab on the router overview window, which will display the6.
available interfaces for the selected router. By now, the new router should have
no interface added yet:

Click the +Add Interface button on the right top corner of the router interfaces7.
window.
In response, you will get +Add Interfaces pop-up window displayed. In that,8.
select the subnet from the drop-down option and click the Submit button:

Day 6 - Field Training Exercise Chapter 6

[181]

By now, you should see the newly added interface listed in the router
interfaces window:

Jump to the Network Topology menu in the left navigation panel on the9.
Network tab in Horizon. Now, you can see the network topology diagram with
the router R_bootcamp_01 connecting the external network public and the
private network NW_bootcamp_01:

Switch the window focuses back to the VNC console window. Please refer to step10.
9.

Day 6 - Field Training Exercise Chapter 6

[182]

Now, try to ping the external IP address from the virtual machine:

If you can ping the external IP address like 8.8.8.8 successfully, congratulate yourself.
You have configured a neutron networking with external network connectivity for your
new project.

Checkpoint

Create a new private network using Horizon
Launch an instance using the newly created network
Verify the network connectivity between the newly created
instance
Create a new router for the project
Configure external network connectivity

Day 6 - Field Training Exercise Chapter 6

[183]

Add-on exercises
So far, we have seen lab exercises based on OpenStack component categories. In this
session, we will be walking through some cherry-picked activities via horizon.

Making existing Glance images public
Only the admin privileged user could make any images public in the OpenStack. The public
Glance image will get shared between all of the projects in the OpenStack cluster.

To make the existing image as public, do follow the instruction given here:

Log in to the Horizon dashboard with the admin user credentials. You could also1.
refer to the With Horizon dashboard section for your reference.
Change the project to demo, as we have already uploaded the ubuntu14 cloud2.
image to the project demo during the previous exercises. We can make that
private Ubuntu image public:

Click the Images menu in the left navigation panel under the Admin tab on the3.
Horizon dashboard.

Day 6 - Field Training Exercise Chapter 6

[184]

By now, you should see the list of all of the available images in the OpenStack4.
cluster, irrespective of the project the images belong to:

Click the drop-down button next to the Launch button on the Ubuntu14_045.
private image list:

Click the Edit Image button. In response, you will get an Edit Image pop-up6.
window:

Day 6 - Field Training Exercise Chapter 6

[185]

Click the Public button under the image sharing option at the bottom left of the7.
Edit Image pop-up window and then click the Update Image button to make the
image as Public.
Then, log out from the admin account and log in as any other non-privileged user8.
to check the image list:

Day 6 - Field Training Exercise Chapter 6

[186]

Sharing networks between projects
To share the networks between the projects, follow these instructions:

Log in to the Horizon dashboard with the admin user credentials.1.

You can also refer to the With Horizon dashboard section for your
reference.

Click the Networks menu in the left navigation panel under the Admin tab on2.
the Horizon dashboard.
By now, you can see the list of networks across all the projects. Let's share the3.
private network of the demo project with other projects:

Day 6 - Field Training Exercise Chapter 6

[187]

Click the Edit Network button next to the private network. In response, you will4.
get an Update Network pop-up window:

In the Update Network window, check the Shared checkbox and click the Save5.
Changes button.
By now, in the networks list, you should see the value of the Shared column get6.
changed to Yes for the private network.

Day 6 - Field Training Exercise Chapter 6

[188]

Sign out as the admin user and sign back in using the bootcamp user credentials7.
to verify the network share:

Creating new flavors
In OpenStack, a flavor describes the compute, memory, and storage capacity of an instance.
Only admin privileged users can create, edit, and delete the flavor.

Log in to the Horizon dashboard with the admin user credentials.1.

You could also refer to the With Horizon dashboard section for your
reference.

Click the Flavors menu in the left navigation panel under the Admin tab on the2.
Horizon dashboard.

Day 6 - Field Training Exercise Chapter 6

[189]

By now, you should see the list of all of the available flavors in the OpenStack3.
cluster:

Click the Create Flavor button in the right top corner of the Flavors window. In4.
response, you will get a Create Flavor pop-up window. In the Create Flavor
window, specify the following values and click the Create Flavor button:

Flavor Information*

Name* FR_bootcamp_01

ID auto

vCPU* 1

RAM (MB)* 256

Root Disk (GB)* 1

Ephemeral Disk (GB) 0

Swap Disk (MB) 0

RX / TX Factor 1

Day 6 - Field Training Exercise Chapter 6

[190]

The following screenshot shows the sample Create Flavor pop-up screen for your
reference:

By now, in the flavors list, you should see the newly created flavor
FR_bootcamp_01 and its value.

Now, launch a new instance using the newly created flavor FR_bootcamp_01.5.
You can refer to the Launching a new instance using Horizon section to launch a
virtual machine using Horizon dashboard.

Day 6 - Field Training Exercise Chapter 6

[191]

Transferring Cinder volume between projects
Ownership of a volume can be transferred from one project to another. Once a volume
transfer is created in a donor project, it then can be accepted by a recipient project.

To transfer Cinder volume from one project to another, follow these instructions:

Log in to the Horizon dashboard with the bootcamp user credentials.1.
Click the Volume menu in the left navigation panel under the Project tab on the2.
Horizon dashboard.

By now, you should see the list of all available volumes in the selected project. In my case, I
can see the list of volumes in the hellovinoth.com project.

In case you have no volumes listed in the selected project, then you can create the one to
initiate the volume transfer. You may refer to the Managing Cinder volume using Horizon
section to create a new volume:

Day 6 - Field Training Exercise Chapter 6

[192]

Click the drop-down button next to the Edit Volume button in the selected1.
volume list. In response, you will see the list of available actions to manage the
selected volume:

Click the Create Transfer button from the drop-down menu to initiate the2.
volume transfer.
In response, you will get the Create Volume Transfer pop-up window. In that3.
specify any name for the volume transfer for your reference and then click the
Create Volume Transfer button:

Day 6 - Field Training Exercise Chapter 6

[193]

In response, you will get the Volume Transfer Details pop-up window4.
displaying the Transfer ID and the Authorization Key for the volume transfer.
Please take note of both the Transfer ID and the Authorization Key. Then click
the Close button:

By now, you can see from the volume list that the selected volume is waiting for5.
the transfer confirmation.
Sign out as the bootcamp user and sign back in using demo user credentials to6.
accept the volume transfer to the project demo.
Navigate to the Volumes menu under the Project tab to see the list of available7.
volumes.
Click the Accept Transfer button in the right top corner of the Volumes window.8.

Day 6 - Field Training Exercise Chapter 6

[194]

In response, you will get the Accept Volume Transfer pop-up window. In that9.
paste the Transfer ID and the Authorization Key, which we copied in step 5.
Then click the Accept Volume Transfer button:

By now, you can see the volume being transferred from the project hellovinoth.com to
the current demo project:

Day 6 - Field Training Exercise Chapter 6

[195]

Summary
From this chapter, the reader will gain the hands-on experience with OpenStack Horizon
and OSC CLI. The hands-on experience with OpenStack will have helped the reader in
understanding how each component of OpenStack worked in bringing up the Cloud
environment. Also, the method of learning OpenStack by doing so helps the reader to gain
confidence in operating and administrating OpenStack.

In the next chapter, the reader will be provided with undisclosed tasks to take the chapter
as exam.

7
Day 7 - Collective Training

After the brief field training session, it is time to cross-check our aptitude in administrating
the OpenStack cloud environment. To do that, let's have a comprehensive evaluation by
solving undisclosed tasks in OpenStack.

This chapter will include undisclosed tasks for readers to take this chapter as an exam.
Comprehensive practice with admin and end-user use cases will test the reader's ability to
manage the OpenStack cloud. The comprehensive practice session is categorized as follows:

Administrative tasks
Project specific tasks
Extended activities

Administrative tasks
To complete the following listed administrative task, you need to use admin user account.

Task 1: Create a new project with the following details:

Parameter Value

Name openstack_bootcamp

Description Project for Collective training

Day 7 - Collective Training Chapter 7

[197]

Task 2: Create an OpenStack user account neo with the the following data sheet:

Parameter Value

Username neo

Description User for Collective training

Email neo@hellovinoth.com

Password nomoresecret

Primary Project openstack_bootcamp

Role Member

On successful completion of the above task, you should be able to login to Horizon using
the username neo and password nomoresecret. Moreover, you should see the project
window like the one shown here:

Task 3: Create a new flavor named FR_openstackbootcamp_01 with the following data
sheet:

Parameter Value

Name FR_openstackbootcamp_01

ID auto

VCPUs 1

RAM 256

Root Disk 5

Ephemeral Disk 0

Day 7 - Collective Training Chapter 7

[198]

Swap Disk 0

RX/TX Factor 1

On successful completion, you should see the new flavor in the flavors list similar to the one
shown here:

Task 4: Create a public image in Glance using the the following data:

Parameter Value

Image Name Ubuntu_16

Source Type File

File Downloaded image from local storage

Format QCOW2 - QEMU Emulator

Visibility Public

Minimum Disk (GB) 1

Minimum RAM (MB) 128

Protected Yes

Download Ubuntu cloud image file from the following link at: https:/ ​/
cloud- ​images. ​ubuntu. ​com/ ​releases/ ​16. ​04/​release- ​20170919/ ​ubuntu-
16.​04- ​server- ​cloudimg- ​amd64- ​disk1. ​img.

https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/releases/16.04/release-20170919/ubuntu-16.04-server-cloudimg-amd64-disk1.img

Day 7 - Collective Training Chapter 7

[199]

You should see the new image Ubuntu_16 in the images list:

Project specific tasks
Complete the below tasks as the user neo in the project openstack_bootcamp.

Task 5: Create a private network named NW_openstackbootcamp_01 under the project
openstack_bootcamp with the following parameters:

Parameter Value

Network Name NW_openstackbootcamp_01

Subnet Name SN_openstackbootcamp_01

Network Address Source Enter Network Address Manually

Network Address 192.12.10.0/24

IP Version IPv4

Gateway IP 192.12.10.1

DNS Name Servers 8.8.8.8

On successful completion, you should see the new private network in the network list:

Day 7 - Collective Training Chapter 7

[200]

Task 6: Add new rules to the existing security group named default under the project
openstack_bootcamp to allow access through SSH, and ICMP.

You should get the rule list similar to the one shown here:

Day 7 - Collective Training Chapter 7

[201]

Task 7: Generate a new public keypair named KP_openstackbootcamp_01 to use with
instance SSH authentication.

You should see the keypair list like the one shown here:

To use this keypair for SSH login, you need to copy the downloaded
keypair file from your local PC to the OpenStack controller. This is
because the DevStack setup has limitations in connecting and accessing
the floating IP outside the OpenStack cluster.

Task 8: Create the new router named R_openstackbootcamp_01 under the project
openstack_bootcamp to connect the NW_openstackbootcamp_01 private network to the
public network.

On successful completion of the preceding task, you should see the Network Topology
diagram similar to the one shown here:

Day 7 - Collective Training Chapter 7

[202]

Task 9: Create a new instance name VM_openstackbootcamp_01 under the project
openstack_bootcamp using the following data sheet:

Details Tab

Instance Name* VM_openstackbootcamp_01

Availability Zone nova

Day 7 - Collective Training Chapter 7

[203]

Count* 1

Source Tab

Select Boot Source Image

Create New Volume No

Image Name Ubuntu_16

Flavor Tab

Allocated Flavor name FR_openstackbootcamp_01

Networks Tab

Allocated Network Name NW_openstackbootcamp_01

Security Groups Tab

Allocated Security Group Name Default

Key Pair Tab

Key Pair Name KP_openstackbootcamp_01

You should see the newly provisioned instance in the instance list like the one shown here:

Day 7 - Collective Training Chapter 7

[204]

Task 10: Create a new empty volume named VL_openstackbootcamp_01 under the
project openstack_bootcamp with the following parameters:

Parameter Value

Volume Name VL_openstackbootcamp_01

Description Volume for Collective training

Volume Source No Source, Empty Volume

Type lvmdriver-1

Size 1

Availability Zone nova

On successful creation of Cinder volume with the parameters mentioned previously, you
should see the new volume in the volume list similar to the one in the following figure:

Task 11: Attach the created volume VL_openstackbootcamp_01 to the new instance
VM_openstackbootcamp_01.

Day 7 - Collective Training Chapter 7

[205]

After attaching the volume to the virtual machine, you should see the volume status like the
one in the figure:

Task 12: Associate floating IP to the virtual machine VM_openstackbootcamp_01.

To associate floating IP through the Horizon, you should use the Floating
IPs menu from the left navigation panel under the Network panel on the
Project tab.

Alternatively, you could use the Associate Floating IP option from the
Actions drop-down menu on the Instance window to allocate and
associate floating IP from the public network to the instance.

You could verify the floating IP association from the Floating IPs menu. You will get the
window displayed like the one shown in the figure:

Day 7 - Collective Training Chapter 7

[206]

Task 13: Without accessing Horizon dashboard, build a user credential file using the below
information to get access to CLI OpenStack client:

Parameter Value

IDENTITY_API_VERSION 3

AUTH_URL http://192.168.1.6/identity_admin

USERNAME neo

USER_DOMAIN default

PASSWORD nomoresecret

PROJECT_NAME openstack_bootcamp

PROJECT_DOMAIN default

REGION_NAME RegionOne

You could verify the environment file build by using the CLI to list the instance under
openstack_bootcamp project. You should see the output like the one shown here:

Task 14: Delete the existing virtual machine named VM_openstackbootcamp_01 using the
OSC CLI.

Day 7 - Collective Training Chapter 7

[207]

Task 15: Through OpenStack Client, launch a new instance named VM_OSC_01 under the
project openstack_bootcamp using the following details:

Parameter Value

VM Name VM_OSC_01

Flavor FR_openstackbootcamp_01

Image cirros-0.3.4-x86_64-uec

Network NW_openstackbootcamp_01

Security Group default

Key Pair Name KP_openstackbootcamp_01

On successful provision of a new virtual machine using OSC CLI, you should get the output
similar to the one with the instance details satisfying the above-tabulated parameters:

Task 16: Using OSC CLI, attach floating IP to the instance VM_OSC_01.

Day 7 - Collective Training Chapter 7

[208]

On successful completion of the floating IP association, you should be able to ping the
floating IP of the instance VM_OSC_01.

Task 17: Access the instance VM_OSC_01 through SSH connection using the floating IP
recently attached. You may use username cirros and password cubswin:) to access the
cirros instance.

Alternatively, you could also use the key pair KP_openstackbootcamp_01 for SSH
authentication instead of using the password.

Task 18: Verify the external network connectivity on the instance VM_OSC_01.

You could refer to the following figure to verify the completion of the task mentioned
previously:

Day 7 - Collective Training Chapter 7

[209]

Extended activities
Complete the task using the data points provided here. You are free to do any changes in
the OpenStack environment to satisfy the following requisite.

Activity 1
Under the project openstack_bootcamp. Create a new instance named VM_activity_01
of size 256MB RAM / 3GB Root Disk / 1vCPU using the image cirros-0.3.4-x86_64-
uec in the network named private.

Activity 2
Provision new cirros instance named VM_activity_02 under the project demo using the
flavor FR_bootcamp_01 on the shared network NW_openstackbootcamp_01.

Activity 3
Create a new empty Cinder volume named VL_activity_03 of a 1GB size under the
project openstack_bootcamp. Then attach the volume VL_activity_03 to the instance
VM_activity_02 under the project demo.

Summary
By now, the reader will have gained the confidence to perform administrative and project-
oriented task in OpenStack. All of the above collective training and challenging tasks will
help the reader to unleash the power of hands-on experience in understanding the role of
each component in OpenStack.

In the next chapter, I will guide you through a step-by-step procedure for building an
OpenStack private cloud from scratch.

8
Day 8 - Build Your OpenStack

The DevStack setup we are using so far in the previous chapter was built using an
automated script to create an OpenStack development environment quickly. The DevStack
setup cannot be used for the production-ready setup. Moreover, the DevStack build is not
and has never been intended to be a general OpenStack Installer.

Notably, many third-party vendors offer production-ready cloud software based on
OpenStack that provide deployment and management strategies using third-party tools like
Chef, Puppet, Fuel, Ansible, and other tools.

Optionally, you may also recall the available OpenStack distributions from Chapter 1, Day
1 - Build Your Camp.

In this chapter, I will walk through the step-by-step process of installing the OpenStack
cloud manually. The installation procedure documented in this chapter is based on the
OpenStack Installation Guide for the Ubuntu 16.04 LTS operating system, which is found at:
http://docs.openstack.org/.

The step-by-step procedure for building an OpenStack private cloud from scratch covers
these topics:

Preparing your Virtual machine
Setup prerequisites
Configuring the database server
Configuring the message queue
Configuring the memcached server
Configuring the identity service (Keystone)
Configuring the image service (Glance)
Configuring the compute service (Nova)
Installing and configuring a compute node (nova-compute)

http://docs.openstack.org/

Day 8 - Build Your OpenStack Chapter 8

[211]

Configuring the networking service (neutron)
Installing and configuring a compute node (neutron)
Installing the OpenStack dashboard
Adding the compute node to the OpenStack cluster

This guide will walk through the OpenStack installation by using the packages available
through the Canonical Ubuntu Cloud archive repository for Ubuntu 16.04 (LTS).

System requirements
The OpenStack components are intended to run on any standard hardware that ranges from
desktop machines to enterprise-grade servers, with the only limitations being that the
processors of the compute nodes need to support virtualization technologies, such as Intel's
VT-x or AMD's AMD-v technologies.

However, for learning purposes, we could even build our OpenStack cloud on the virtual
machine like the one we did for DevStack setup. Moreover, all of the instructions for
building the OpenStack in the enterprise-grade servers and in the virtual machine are the
same.

To build our OpenStack setup on the virtual machine, we need to meet the following
minimum hardware requirements:

This chapter assumes that you have access to the virtual machine which has the Ubuntu
16.04 LTS operating system installed with a minimum of 6 GB RAM and 30 GB HDD.

Downloading and installing the VirtualBox and creating new virtual machine is not in the
scope of this book. There are lots of free tutorials available online for bringing up your new
virtual machine with the specification mentioned previously.

Preparing your virtual machine
To build a simple working OpenStack cloud, you must have the following requirements
configured in the virtual box environment before we start the step-by-step manual
installation process:

Ubuntu 16.04 LTS Operating System
6GB RAM
10GB Disk Space

Day 8 - Build Your OpenStack Chapter 8

[212]

2 vCPUs
2 NIC (Adapter 1 - Bridged Adapter and Adapter 2 - Bridged Adapter)

Adding the second adapter to the virtual machine may require manual configuration
changes in the OS network interface file. Make sure you have added the second interface
with DHCP settings in the /etc/network/interfaces file and ensure both the NIC
obtained the IP address.

Then, perform apt-get update & dist-upgrade and reboot the machine.

Before we begin
Before we start installing the OpenStack, some work must be done as part of environment
preparation for a successful installation.

User permissions
OpenStack services can be installed and configured either as the root user or as a user with
sudo privileges. I personally recommend going with root user access.

Configuring network interfaces
As we have 2 NICs added to the virtual machines, let's have the first NIC dedicated to the
management and the VM tunnel network traffic. The later NIC is dedicated to the provider
network (external) traffic.

Step 1 - configuring the first network interface with static IP address
By now, we have two NICs added in the virtual machine, assigned with the DHCP IP
address. Choose any one NIC of your choice and configure the IP address statically.
Therefore, the IP will stay fixed for our virtual machine, even after the reboot.

In my case, the virtual machine has two NICs, namely enp0s3 and enp0s8. I have chosen
the first NIC enp0s3 for management traffic and the next NIC enp0s8 for provider
network configuration. Initially, my virtual machine with two bridged adapter networks
was assigned with the DHCP IP address 192.168.1.7, and 192.168.1.8 for enp0s3 and
enp0s8 respectively. I have modified my first NIC with the static IP address with the same
network configuration as the one I received with DHCP by editing the
/etc/network/interfaces file.

Day 8 - Build Your OpenStack Chapter 8

[213]

Step 2 - configuring the second interface as the provider interface
To configure the NIC as a provider interface, we need to use a unique network
configuration in a network interface file which will enable the NIC without an IP address
assigned to it.

Modify the /etc/network/interfaces file to contain the following configurations for the
chosen provider NIC:

The provider network interface
auto INTERFACE_NAME
iface INTERFACE_NAME inet manual
up ip link set dev $IFACE up
down ip link set dev $IFACE down

Replace INTERFACE_NAME with the actual interface name (in my case, enp0s8) and reboot
the server.

Here is the sample network interface file (/etc/network/interfaces) from my setup for
your reference:

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*
The loopback network interface
auto lo
iface lo inet loopback
The primary network interface
auto enp0s3
iface enp0s3 inet static
 address 192.168.1.7
 network 192.168.1.0
 netmask 255.255.255.0
 gateway 192.168.1.1
 dns-nameservers 8.8.8.8
 broadcast 192.168.1.255
The provider network interface
auto enp0s8
iface enp0s8 inet manual
up ip link set dev $IFACE up
down ip link set dev $IFACE down

After rebooting the server, you should see the two NIC is in active status. The first NIC with
the static IP assigned and the later with no IP address assigned to it.

Day 8 - Build Your OpenStack Chapter 8

[214]

Step 3 - setting the hostnames
Before installing OpenStack, be sure that the server has been configured with the proper
hostname and the local DNS name resolution.

Using a text editor, change the value as controller.hellovinoth.com in the
/etc/hostname file on the server. Then, update the /etc/hosts file on the server to
include the management IP address and the hostname like the one here:

Step 4 - verifing network connectivity
To verify that the NIC is configured correctly, try to access the internet (ping
www.google.com) from the virtual machine after the reboot.

Configuring the Network Time Protocol
A time synchronization package, such as NTP, is a prerequisite, as OpenStack services
depend on consistent and synchronized time between the controller, network and compute
nodes. For example, the Nova service should synchronize the time across the hosts to avoid
time conflicts when scheduling VM provisions on the compute nodes. Also, other services
will experience similar issues when the time is not synchronized.

To install NTP, issue the following commands on all of the nodes in the environment:

apt install chrony
service chrony restart

Day 8 - Build Your OpenStack Chapter 8

[215]

Configuring the OpenStack repository
Installation of OpenStack on Ubuntu uses packages from the cloud-archive apt repository.
To enable the cloud-archive repository, download and install the OpenStack Ocata release
packages, and execute the following commands on all hosts:

apt install software-properties-common
add-apt-repository cloud-archive:ocata

Upgrading the system
Before we begin the OpenStack installation, it is recommended that the kernel and other
system packages on each node be upgraded to the latest version supported by Ubuntu 16.04
LTS.

To do that, issue the following command on each node, followed by a reboot to allow the
changes to take effect:

apt update && apt dist-upgrade -y
reboot
apt install python-openstackclient crudini -y

OpenStack installation
The steps in the later part of the chapter, document the building your own OpenStack
which includes installation, and configuration of KeyStone, Glance, Nova compute,
neutron, and Horizon, on a single node (all-in-one step-up). As we are building an all-in-
one single node OpenStack setup, the node representation as controller/network/compute
node represent the same all-in-one node throughout the OpenStack installation section.

Configuring the database server
On the controller node, run the following command to install the MySQL database server:

apt install mariadb-server python-pymysql

Once the mariadb package installation is completed, do the following-mentioned
configuration steps to set the IP address that the MariaDB service will bind to, and allow the
connectivity to the MariaDB server from other hosts in the environment.

Day 8 - Build Your OpenStack Chapter 8

[216]

Step 1 - creating file
Create the /etc/mysql/mariadb.conf.d/90-openstack.cnf file and paste the
following mentioned configuration lines in it:

[mysqld]
bind-address = 192.168.1.7
default-storage-engine = innodb
innodb_file_per_table = on
max_connections = 4096
collation-server = utf8_general_ci
character-set-server = utf8

The bind-address value should be the management IP of the controller node. In my case,
my management IP address is 192.168.1.7. You may refer the Configuring network
interfaces section to find your management IP address.

Step 2 - finalizing the database installation
The MySQL secure installation utility is used to build the default MySQL database and set a
password for the MySQL root user. The following command will secure the database server
by running the MySQL secure installation script:

service mysql restart
mysql_secure_installation

While running the MySQL secure installation script, you will be prompted to enter a
password and change various settings. For this installation, the chosen root password is
bootcamp. Alternatively, you may choose a more secure password of your choice.

Answer [Y] to the remaining questions to exit the configuration process. At this point,
MySQL server has been successfully installed on the controller node.

Step 3 - creating database for OpenStack services
Before we install and configure the OpenStack service, we must create a dedicated database
for each service in the MariaDB server. Copy and paste the following commands to create
and grant proper access to each service database:

echo "CREATE DATABASE keystone;"|mysql
echo "GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost'
IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' IDENTIFIED
BY 'bootcamp';"|mysql
echo "CREATE DATABASE glance;"|mysql

Day 8 - Build Your OpenStack Chapter 8

[217]

echo "GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost'
 IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' IDENTIFIED
BY 'bootcamp';"|mysql
echo "CREATE DATABASE nova_api;"|mysql
echo "GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@'localhost'
IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@'%' IDENTIFIED
BY 'bootcamp';"|mysql
echo "CREATE DATABASE nova;"|mysql
echo "GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost'
IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' IDENTIFIED
BY 'bootcamp';"|mysql
echo "CREATE DATABASE nova_cell0;"|mysql
echo "GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@'localhost'
 IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@'%' IDENTIFIED
BY 'bootcamp';"|mysql
echo "CREATE DATABASE neutron;"|mysql
echo "GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost'
 IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' IDENTIFIED
 BY 'bootcamp';"|mysql
echo "CREATE DATABASE cinder;"|mysql
echo "GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost'
IDENTIFIED BY 'bootcamp';"|mysql
echo "GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' IDENTIFIED
BY 'bootcamp';"|mysql

In all of the preceding commands, I have given the same DB passwords as bootcamp for all
of the DB users. Notably, throughout this chapter, I will be using bootcamp as the
password for all of the authentication configuration. Optionally, you may replace it with
any password of your choice. However, don't forget to have a note of all of the passwords.

Using the preceding command, we have created the database KeyStone, Glance, nova_api,
nova, nova_cell0, neutron, Cinder, and then we grant proper permission to allow the
connectivity to the selected database from other hosts in the environment.

Configuring the message queue
Advanced Message Queue Protocol (AMQP) is the messaging technology chosen to use
with OpenStack-based cloud components such as Nova, Glance, Cinder, and neutron to
communicate internally via AMQP and to each other using API calls.

Day 8 - Build Your OpenStack Chapter 8

[218]

The following are instructions to install RabbitMQ, an AMQP broker. Popular alternatives
include Qpid and ZeroMQ. On the controller node, follow the steps to install and configure
the messaging server:

apt install rabbitmq-server
rabbitmqctl add_user openstack bootcamp
rabbitmqctl set_permissions openstack ".*" ".*" ".*"

You may notice that in the preceding command, I have chosen the RabbitMQ password as
bootcamp for the user openstack.

Configuring the memcached server
On the controller node, follow the steps to install and configure the memcached server:

apt install memcached python-memcache

Once the package installation is completed, edit the /etc/memcached.conf file and
replace your management IP address in the existing line that had -l 127.0.0.1 and
restarts the memcached service:

service memcached restart

Configuring the identity service (KeyStone)
KeyStone is the identity service for OpenStack and is used to authenticate and authorize
users and services in the OpenStack cloud.

Step 1 - installing and configure components
On the controller node, copy and paste the following commands one by one to install and
configure the OpenStack KeyStone service:

apt install keystone
crudini --set /etc/keystone/keystone.conf database connection
mysql+pymysql://keystone:bootcamp@controller/keystone
crudini --set /etc/keystone/keystone.conf token provider fernet
su -s /bin/sh -c "keystone-manage db_sync" keystone
keystone-manage fernet_setup --keystone-user keystone --keystone-group
keystone
keystone-manage credential_setup --keystone-user keystone --keystone-group
keystone
keystone-manage bootstrap --bootstrap-password bootcamp \
--bootstrap-admin-url http://controller.hellovinoth.com:35357/v3/ \

Day 8 - Build Your OpenStack Chapter 8

[219]

--bootstrap-internal-url http://controller.hellovinoth.com:5000/v3/ \
--bootstrap-public-url http://controller.hellovinoth.com:5000/v3/ \
--bootstrap-region-id RegionOne

Replace bootcamp with the password you chose for the database and admin user. Also, the
hostname controller.hellovinoth.com with the hostname of your server.

Step 2 - configuring the Apache HTTP server
Add the ServerName parameter to reference the controller node in the
/etc/apache2/apache2.conf file and remove the default SQLite database. To do that,
execute the following commands:

sed -i -e '1iServerName controller.hellovinoth.com\'
/etc/apache2/apache2.conf
service apache2 restart
rm -f /var/lib/keystone/keystone.db

Step 3 - setting environment variables
To avoid providing credentials every time when you run an OpenStack command, create a
file containing the environment variables that can be loaded at any time. To do that, execute
the following command:

cat >> ~/admin-rc <<EOF
export OS_USERNAME=admin
export OS_PASSWORD=bootcamp
export OS_PROJECT_NAME=admin
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_DOMAIN_NAME=Default
export OS_AUTH_URL=http://controller.hellovinoth.com:35357/v3
export OS_IDENTITY_API_VERSION=3
EOF

Replace bootcamp with the password used in the keystone-manage bootstrap command in
the Step 1 - Installing and configure components section.

Day 8 - Build Your OpenStack Chapter 8

[220]

Use the following source command to load the environment variables from the file. Then
verify the configuration by executing the following commands:

source ~/admin-rc
openstack token issue
openstack user list

In response to the preceding command, you will see the output similar to the one here:

Step 4 - defining projects in KeyStone
Once the installation of KeyStone is complete, it is necessary to set up the domain, project,
users, roles, and endpoints that will be used by various OpenStack services.

In KeyStone, a project represents a logical group of users to which resources are assigned.
Resources are assigned to projects and not directly to users. An admin project for the
administrative user is already created as part of the keystone-manage bootstrap process.
Now, let us create a Service Project that contains a unique user for each OpenStack
service and a project for an unprivileged user, namely Demo Project, to manage the
regular task by following the instructions:

$ openstack project create --domain default \
 --description "Service Project" service
$ openstack project create --domain default \
 --description "Demo Project" demo

Day 8 - Build Your OpenStack Chapter 8

[221]

In response to the preceding commands, you will see the output similar to the one here:

Day 8 - Build Your OpenStack Chapter 8

[222]

Step 5 - defining users and map role in KeyStone
Additional projects can be created later for other users of the cloud. Next, we need to create
both an admin and non-admin user to access the cloud. As admin user is already created as
part of the keystone-manage bootstrap process; now, we need to create a non-admin user
called demo user and map the non-privileged role called user role for the demo user, as
follows:

openstack user create --domain default \
 --password-prompt demo
openstack role create user
openstack role add --project demo --user demo user

In response to the preceding command, you will see the output like the one here:

Note that the preceding command for assigning the role user to the user demo has no
output in response.

Day 8 - Build Your OpenStack Chapter 8

[223]

Any roles that are created should be predefined in the policy.json files of the
corresponding OpenStack services. By default, the policy files use the admin role to allow
access to the services. For more information on role management in KeyStone, please refer
to the following URL:
https://docs.openstack.org/oslo.policy/latest/admin/policy-json-file.html.

Step 6 - verifying KeyStone operation
To verify that the identity service was installed and configured correctly, use the unset
command to unset the OS_AUTH_URL and OS_PASSWORD environment variables. Then, use
username-based authentication to request an authentication token using the admin user and
the respective password, as follows:

unset OS_AUTH_URL OS_PASSWORD
openstack --os-auth-url http://controller:35357/v3 \
--os-project-domain-name default --os-user-domain-name default \
--os-project-name admin --os-username admin token issue
openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name default --os-user-domain-name default \
--os-project-name demo --os-username demo token issue

In response to the previous command, you will see the output like the one here:

https://docs.openstack.org/oslo.policy/latest/admin/policy-json-file.html

Day 8 - Build Your OpenStack Chapter 8

[224]

While executing the token issue command, you will be prompted to enter the password for
the admin and demo users. You should enter the password of the respective users that we
created earlier.

Step 7 - creating OpenRC environment file
To increase the efficiency of client operations, OpenStack provides client environment
scripts, also known as OpenRC files. With the help of OpenRC environment file, we can
avoid providing the credentials every time you run an OpenStack command.

You may refer to the above session Step 3 - setting environment variables, in which we have
created an OpenRC file for the admin user. Now, we should create another OpernRC file for
the demo account by following the following command:

cat >> ~/demo-openrc <<EOF
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=demo
export OS_USERNAME=demo
export OS_PASSWORD=bootcamp
export OS_AUTH_URL=http://controller.hellovinoth.com:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2
EOF

Now, verify the environment file for the admin and demo account by loading the respective
OpenRC file to populate the environment variables and execute the token issue command
one by one as follows:

For demo account:

 source ~/demo-openrc
 openstack token issue

For admin account:

 source ~/admin-rc
 openstack token issue

Day 8 - Build Your OpenStack Chapter 8

[225]

In response to the preceding command, you will see the output like the one here:

Configuring the image service (Glance)
Glance is the image service for OpenStack. It is responsible for storing images and
snapshots of instances and for providing images for computing nodes when instances are
created.

Before we start the actual installation of the image service, load the admin OpenRC file to
gain access to admin-only CLI commands:

source ~/admin-rc

Step 1 - defining the Glance service and API endpoints in KeyStone
Each OpenStack service should have the dedicated user account, service, and endpoints
defined in the identity service.

Day 8 - Build Your OpenStack Chapter 8

[226]

Follow the instructions to create a dedicated user for the Glance service called glance user
followed by mapping the admin role to the glance user on the service project:

openstack user create --domain default --password-prompt glance
openstack role add --project service --user glance admin

Then, we need to create a service entity for the Glance service, followed by API endpoints
for the image service using the following commands:

openstack service create --name glance \
 --description "OpenStack Image" image
openstack endpoint create --region RegionOne \
 image public http://controller.hellovinoth.com:9292
openstack endpoint create --region RegionOne \
 image internal http://controller.hellovinoth.com:9292
openstack endpoint create --region RegionOne \
 image admin http://controller.hellovinoth.com:9292

From the preceding command, you will have noticed that we have created three different
endpoints for the same image service. The purpose of the three different endpoints are to
server public, internal, and admin API requests.

Here:

Public URL handles the API communication for the non-privileged task
Internal URL handles the API communication between the OpenStack
components
Admin URL handles the API communication for the admin only functionality. So,
APIs available in admin URL are not available in public/internal URLs

Day 8 - Build Your OpenStack Chapter 8

[227]

In response to the preceding command, you will see the output similar to the one in the
following figure:

Day 8 - Build Your OpenStack Chapter 8

[228]

Step 2 - installing and configuring the Glance components
To install Glance binaries, run the following command on the controller node:

apt install glance wget -y

At this point, you have Glance packages installed in your controller. Now, follow the below
instructions to configure the Glance components.

Use the crudini command to set the SQL connection string in the Glance configuration
files:

crudini --set /etc/glance/glance-api.conf database connection
mysql+pymysql://glance:bootcamp@controller/glance
crudini --set /etc/glance/glance-registry.conf database connection
mysql+pymysql://glance:bootcamp@controller/glance

Let's set the attributes in the /etc/glance/glance-api.conf configuration files by copy
and paste the following commands in the terminal:

crudini --set /etc/glance/glance-api.conf keystone_authtoken auth_uri
http://controller:5000
crudini --set /etc/glance/glance-api.conf keystone_authtoken auth_url
http://controller:35357
crudini --set /etc/glance/glance-api.conf keystone_authtoken
memcached_servers controller:11211
crudini --set /etc/glance/glance-api.conf keystone_authtoken
auth_type password
crudini --set /etc/glance/glance-api.conf keystone_authtoken
project_domain_name default
crudini --set /etc/glance/glance-api.conf keystone_authtoken
user_domain_name default
crudini --set /etc/glance/glance-api.conf keystone_authtoken
project_name service
crudini --set /etc/glance/glance-api.conf keystone_authtoken
username glance
crudini --set /etc/glance/glance-api.conf keystone_authtoken
password bootcamp
crudini --set /etc/glance/glance-api.conf paste_deploy flavor
keystone
crudini --set /etc/glance/glance-api.conf glance_store stores
file,http
crudini --set /etc/glance/glance-api.conf glance_store default_store
file
crudini --set /etc/glance/glance-api.conf glance_store
filesystem_store_datadir /var/lib/glance/images/

Day 8 - Build Your OpenStack Chapter 8

[229]

The crudini command-line tool in the preceding command will take care
of replacing the attribute at the appropriate place in the specified
configuration file.

Now, set the attributes in the /etc/glance/glance-registry.conf configuration files
by copy and pasting the following commands in to the terminal:

crudini --set /etc/glance/glance-registry.conf keystone_authtoken auth_uri
http://controller:5000
crudini --set /etc/glance/glance-registry.conf keystone_authtoken auth_url
http://controller:35357
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
memcached_servers controller:11211
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
auth_type password
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
project_domain_name default
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
user_domain_name default
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
project_name service
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
username glance
crudini --set /etc/glance/glance-registry.conf keystone_authtoken
password bootcamp
crudini --set /etc/glance/glance-registry.conf paste_deploy flavor
keystone

Now, populate the image service database and then finalize the installation:

su -s /bin/sh -c "glance-manage db_sync" glance
service glance-registry restart
service glance-api restart

Step 3 - verifying the Glance operation
To verify that Glance was installed and configured correctly, download a test image from
the internet, and verify that it can be uploaded to the image server.

Day 8 - Build Your OpenStack Chapter 8

[230]

Follow the instructions to download the minimal cirros image from the internet and upload
the image to the Glance service:

source ~/admin-rc
wget http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
openstack image create "cirros" \
 --file cirros-0.3.5-x86_64-disk.img \
 --disk-format qcow2 --container-format bare \
 --public

Now, confirm the successful upload of the cirros image and validate the attributes using the
following command:

openstack image list

You may refer to the following figure as the reference for the output of preceding
commands:

Day 8 - Build Your OpenStack Chapter 8

[231]

Configuring the Compute service (Nova)
OpenStack compute is a collection of services that enable cloud operators to launch virtual
machine instances. Most services run on the controller node, except for the OpenStack
nova-compute service, which runs on the compute nodes and is responsible for launching
the virtual machine instances. As I mentioned earlier, in our case, for all-in-one node setup,
we will be running the nova-compute service on the same node.

Before we start the actual installation of Nova service, load the admin OpenRC file to gain
access to admin-only CLI commands:

source ~/admin-rc

Step 1 - defining the Nova service and API endpoints in KeyStone
Follow the instructions to create a dedicated user for Nova service called nova user,
followed by mapping the admin role to the nova user on the service project:

openstack user create --domain default --password-prompt nova
openstack role add --project service --user nova admin

Then, we need to create a service entity for the Nova service, followed by API endpoints for
the Nova service, using the following commands:

openstack service create --name nova --description "OpenStack
Compute" compute
openstack endpoint create --region RegionOne compute public
http://controller.hellovinoth.com:8774/v2.1
openstack endpoint create --region RegionOne compute internal
http://controller.hellovinoth.com:8774/v2.1
openstack endpoint create --region RegionOne compute admin
http://controller.hellovinoth.com:8774/v2.1

Starting from the Newton release of OpenStack, the Nova service has introduced a new
subcomponent called Nova placement service with a separate REST API stack and data
model used to track the resource provider such as compute node, an IP allocation pool, or a
shared storage pool.

Day 8 - Build Your OpenStack Chapter 8

[232]

For example, a virtual machine provisioned on the compute node will be recorded as a
consumer of RAM and CPU resources on a compute node resource provider. Similarly, IP
addresses created from an external IP pool is a consumer of the IP pool resource provider
and the disk created from an externally shared storage pool will be the consumer of the
storage resource provider.

As the placement service has separate REST API stack, we need to create a dedicated user
for the placement service called placement user and followed by assigning the admin role
to the placement user for the project service.

Execute the following commands to do the same:

openstack user create --domain default --password-prompt placement
openstack role add --project service --user placement admin

We should also create a service entity for the placement service, followed by API endpoints
for the placement service, using the following commands:

openstack service create --name placement --description "Placement API"
placement
openstack endpoint create --region RegionOne placement public
http://controller.hellovinoth.com:8778
openstack endpoint create --region RegionOne placement internal
http://controller.hellovinoth.com:8778
openstack endpoint create --region RegionOne placement admin
http://controller.hellovinoth.com:8778

Day 8 - Build Your OpenStack Chapter 8

[233]

You may refer to the following figure as the reference for the output of previous commands:

Day 8 - Build Your OpenStack Chapter 8

[234]

The following output reference is with respect to the placement service stack:

Day 8 - Build Your OpenStack Chapter 8

[235]

The IDs in the preceding figures are randomly generated. So, the IDs
display in your output may differ from the ones shown here.

Step 2 - installing and configuring the Nova components
To install Nova binaries, run the following command on the controller node:

apt install nova-api nova-conductor nova-consoleauth \
 nova-novncproxy nova-scheduler nova-placement-api -y

At this point, you have Nova packages installed in your controller. Now, simply copy and
paste the below crudini commands into the terminal to configure the Nova components:

crudini --set /etc/nova/nova.conf api_database connection
mysql+pymysql://nova:bootcamp@controller/nova_api

crudini --set /etc/nova/nova.conf database connection
mysql+pymysql://nova:bootcamp@controller/nova

crudini --set /etc/nova/nova.conf DEFAULT transport_url
rabbit://openstack:bootcamp@controller

crudini --set /etc/nova/nova.conf api auth_strategy keystone

crudini --set /etc/nova/nova.conf keystone_authtoken
auth_uri http://controller:5000

crudini --set /etc/nova/nova.conf keystone_authtoken
auth_url http://controller:35357

crudini --set /etc/nova/nova.conf keystone_authtoken
memcached_servers controller:11211

crudini --set /etc/nova/nova.conf keystone_authtoken
auth_type password

crudini --set /etc/nova/nova.conf keystone_authtoken
project_domain_name default

crudini --set /etc/nova/nova.conf keystone_authtoken
user_domain_name default

crudini --set /etc/nova/nova.conf keystone_authtoken project_name
service

Day 8 - Build Your OpenStack Chapter 8

[236]

crudini --set /etc/nova/nova.conf keystone_authtoken username
nova

crudini --set /etc/nova/nova.conf keystone_authtoken password
bootcamp

crudini --set /etc/nova/nova.conf DEFAULT use_neutron True

crudini --set /etc/nova/nova.conf DEFAULT firewall_driver
nova.virt.firewall.NoopFirewallDriver

crudini --set /etc/nova/nova.conf glance api_servers
http://controller:9292

crudini --set /etc/nova/nova.conf oslo_concurrency
lock_path /var/lib/nova/tmp

crudini --set /etc/nova/nova.conf placement os_region_name
RegionOne

crudini --set /etc/nova/nova.conf placement project_domain_name
Default

crudini --set /etc/nova/nova.conf placement project_name
service

crudini --set /etc/nova/nova.conf placement auth_type
password

crudini --set /etc/nova/nova.conf placement user_domain_name
Default

crudini --set /etc/nova/nova.conf placement auth_url
http://controller:35357/v3

crudini --set /etc/nova/nova.conf placement username
placement

crudini --set /etc/nova/nova.conf placement password
bootcamp

crudini --set /etc/nova/nova.conf scheduler
discover_hosts_in_cells_interval 300

Day 8 - Build Your OpenStack Chapter 8

[237]

Note that I have given bootcamp as the password for all of the authentication parameters.
Please replace bootcamp with the password you chose for the respective authentication in
the identity service.

We are yet to finalize the Nova configuration; copy and paste the following commands to
configure the VNC settings in Nova service.

CAUTION! Please replace the given IP address with the management IP
address of your environment.

crudini --set /etc/nova/nova.conf DEFAULT my_ip
192.168.1.7
crudini --set /etc/nova/nova.conf vnc enabled true
crudini --set /etc/nova/nova.conf vnc vncserver_listen
192.168.1.7
crudini --set /etc/nova/nova.conf vnc vncserver_proxyclient_address
192.168.1.7

Now, populate the Nova service database and then finalize the installation:

su -s /bin/sh -c "nova-manage api_db sync" nova
su -s /bin/sh -c "nova-manage cell_v2 map_cell0"
nova
su -s /bin/sh -c "nova-manage cell_v2 create_cell --name=cell1
--verbose" nova
su -s /bin/sh -c "nova-manage db sync"
nova

At this point, you may ignore any deprecation messages in this output.

To verify the successful registration of Nova cell0 and cell1, run the following
commands:

nova-manage cell_v2 list_cells

Day 8 - Build Your OpenStack Chapter 8

[238]

In response, you will receive an output similar to the one here:

Now, let's finalize the Nova installation by restarting all of the Nova components:

service nova-api restart
service nova-consoleauth restart
service nova-scheduler restart
service nova-conductor restart
service nova-novncproxy restart

Installing and configuring a compute node (nova-
compute)
Once the Nova services have been configured on the controller node, another host must be
configured as a compute node to receive requests from the controller node to host virtual
machines. Separating the services by running dedicated compute nodes means that Nova
(compute) can be scaled horizontally by adding additional compute nodes once all available
resources have been utilized.

In case you would like to add an additional compute node to this existing OpenStack setup,
you should repeat the steps from this section on the other compute node with the
appropriate IP address modification in the configuration file.

As I mentioned earlier, for all-in-one node setup, we can merge the controller and compute
node components in a single node. So, do follow the below instructions on the same node to
install and configure the compute node components:

apt install nova-compute -y

At this point, you have nova-compute packages installed in your node. Now, simply copy
and paste the following crudini commands in the terminal to configure the nova-
compute components:

crudini --set /etc/nova/nova.conf DEFAULT transport_url
rabbit://openstack:bootcamp@controller
crudini --set /etc/nova/nova.conf api auth_strategy

Day 8 - Build Your OpenStack Chapter 8

[239]

keystone
crudini --set /etc/nova/nova.conf keystone_authtoken auth_uri
http://controller:5000
crudini --set /etc/nova/nova.conf keystone_authtoken auth_url
http://controller:35357
crudini --set /etc/nova/nova.conf keystone_authtoken memcached_servers
controller:11211
crudini --set /etc/nova/nova.conf keystone_authtoken auth_type
password
crudini --set /etc/nova/nova.conf keystone_authtoken
project_domain_name default
crudini --set /etc/nova/nova.conf keystone_authtoken user_domain_name
default
crudini --set /etc/nova/nova.conf keystone_authtoken project_name
service
crudini --set /etc/nova/nova.conf keystone_authtoken username
nova
crudini --set /etc/nova/nova.conf keystone_authtoken password
bootcamp
crudini --set /etc/nova/nova.conf DEFAULT use_neutron True
crudini --set /etc/nova/nova.conf DEFAULT firewall_driver
nova.virt.firewall.NoopFirewallDriver
crudini --set /etc/nova/nova.conf glance api_servers
http://controller:9292
crudini --set /etc/nova/nova.conf oslo_concurrency lock_path
/var/lib/nova/tmp
crudini --set /etc/nova/nova.conf placement os_region_name
RegionOne
crudini --set /etc/nova/nova.conf placement project_domain_name
Default

crudini --set /etc/nova/nova.conf placement project_name
service
crudini --set /etc/nova/nova.conf placement auth_type password
crudini --set /etc/nova/nova.conf placement user_domain_name
Default
crudini --set /etc/nova/nova.conf placement auth_url
http://controller:35357/v3
crudini --set /etc/nova/nova.conf placement username
placement
crudini --set /etc/nova/nova.conf placement password
bootcamp

crudini --set /etc/nova/nova.conf scheduler
discover_hosts_in_cells_interval 300

Day 8 - Build Your OpenStack Chapter 8

[240]

In the preceding commands, I have given bootcamp as the password for all of the
authentication parameter. Please replace the password bootcamp with the password you
chose for your respective user in the identity service.

To configure the VNC settings in nova-compute service, do copy and paste the following
commands into the terminal.

CAUTION! Please replace the given IP address with the management IP
address of your node.

crudini --set /etc/nova/nova.conf DEFAULT my_ip 192.168.1.7
crudini --set /etc/nova/nova.conf vnc enabled true
crudini --set /etc/nova/nova.conf vnc vncserver_listen 0.0.0.0
crudini --set /etc/nova/nova.conf vnc vncserver_proxyclient_address
192.168.1.7
crudini --set /etc/nova/nova.conf vnc novncproxy_base_url
http://192.168.1.7:6080/vnc_auto.html
crudini --set /etc/nova/nova-compute.conf libvirt virt_type qemu

Let's finalize the installation by restarting the nova-compute service:

service nova-compute restart

Now, verify the operation of the compute service by following the following instructions
from the controller node. Well! In our case, from the all-in-one node:

source ~/admin-rc
openstack compute service list
openstack catalog list
openstack image list
nova-status upgrade check

Day 8 - Build Your OpenStack Chapter 8

[241]

In response to the preceding verification commands, you will receive an output similar to
the one here:

Day 8 - Build Your OpenStack Chapter 8

[242]

Configuring the networking service (neutron)
In this installation, the various services that power the OpenStack networking will be
installed on the controller node. However, some necessary neutron agent configuration files
must exist on the compute node as well. In our case, we will be installing and configuring
the controller and compute node changes in the single node.

Before we start the actual installation of neutron service, load the admin OpenRC file to
gain access to admin-only CLI commands:

source ~/admin-rc

Step 1 - defining the neutron service and API endpoints in KeyStone
Follow the instructions to create a dedicated user for neutron service called the neutron
user, followed by mapping the admin role to the neutron user on the service project:

openstack user create --domain default --password-prompt neutron
openstack role add --project service --user neutron admin

In response to the preceding commands, you will get an output like the one shown here:

Then, we need to create a service entity for the Nova service, followed by API endpoints for
the Nova service using the following commands:

openstack service create --name neutron \
 --description "OpenStack Networking" network
openstack endpoint create --region RegionOne \
 network public http://controller.hellovinoth.com:9696
openstack endpoint create --region RegionOne \
 network internal http://controller.hellovinoth.com:9696
openstack endpoint create --region RegionOne \
 network admin http://controller.hellovinoth.com:9696

Day 8 - Build Your OpenStack Chapter 8

[243]

In the response output, you will get the information similar to the one in the following
figure:

Step 2 - configuring the self-service networks
To install neutron binaries, run the following command on the controller node:

apt install neutron-server neutron-plugin-ml2 \
 neutron-linuxbridge-agent neutron-l3-agent neutron-dhcp-agent \
 neutron-metadata-agent -y

Day 8 - Build Your OpenStack Chapter 8

[244]

The neutron configuration file /etc/neutron/neutron.conf has loads of settings that
should be altered to meet the needs of the OpenStack cloud administrator.

By now, you should have neutron packages installed in your controller. Now, simply copy
and paste the following crudini commands in the terminal to configure the neutron
components:

crudini --set /etc/neutron/neutron.conf database connection
mysql+pymysql://neutron:bootcamp@controller/neutron
crudini --set /etc/neutron/neutron.conf DEFAULT core_plugin ml2
crudini --set /etc/neutron/neutron.conf DEFAULT service_plugins
router
crudini --set /etc/neutron/neutron.conf DEFAULT allow_overlapping_ips
true
crudini --set /etc/neutron/neutron.conf DEFAULT transport_url
rabbit://openstack:bootcamp@controller
crudini --set /etc/neutron/neutron.conf DEFAULT auth_strategy
keystone
crudini --set /etc/neutron/neutron.conf keystone_authtoken auth_uri
http://controller:5000
crudini --set /etc/neutron/neutron.conf keystone_authtoken auth_url
http://controller:35357
crudini --set /etc/neutron/neutron.conf keystone_authtoken
memcached_servers
controller:11211

crudini --set /etc/neutron/neutron.conf keystone_authtoken auth_type
password
crudini --set /etc/neutron/neutron.conf keystone_authtoken
project_domain_name
default
crudini --set /etc/neutron/neutron.conf keystone_authtoken user_domain_name
default
crudini --set /etc/neutron/neutron.conf keystone_authtoken project_name
service
crudini --set /etc/neutron/neutron.conf keystone_authtoken username
neutron
crudini --set /etc/neutron/neutron.conf keystone_authtoken password
bootcamp
crudini --set /etc/neutron/neutron.conf DEFAULT
notify_nova_on_port_status_changes
true
crudini --set /etc/neutron/neutron.conf DEFAULT
notify_nova_on_port_data_changes
true
crudini --set /etc/neutron/neutron.conf nova auth_url
http://controller:35357

Day 8 - Build Your OpenStack Chapter 8

[245]

crudini --set /etc/neutron/neutron.conf nova auth_type
password
crudini --set /etc/neutron/neutron.conf nova project_domain_name
default
crudini --set /etc/neutron/neutron.conf nova user_domain_name
default
crudini --set /etc/neutron/neutron.conf nova region_name
RegionOne
crudini --set /etc/neutron/neutron.conf nova project_name
service
crudini --set /etc/neutron/neutron.conf nova username
nova
crudini --set /etc/neutron/neutron.conf nova password
bootcamp

Note that I have given bootcamp as the password for KeyStone authentication. You should
replace the password that you chose for the respective user in the identity service.

Step 3 - configuring the Modular Layer 2 (ML2) plugin
The ML2 plug-in uses the Linux bridge mechanism to build layer-2 virtual networking
infrastructure for instances.

Copy and paste the following crudini commands to configure the ML2 plug-in to work
with neutron components:

crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 type_drivers
flat,vlan,vxlan

crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2
tenant_network_types vxlan
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2
mechanism_drivers linuxbridge,l2population
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2
extension_drivers port_security
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini
ml2_type_flat flat_networks provider
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini
ml2_type_vxlan vni_ranges 1:1000
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini
securitygroup enable_ipset true

Day 8 - Build Your OpenStack Chapter 8

[246]

Step 4 - Configuring the Linux bridge agent
Copy and paste the following crudini commands to configure the Linux bridge agent to
work with ML2 components:

crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini
linux_bridge physical_interface_mappings provider:enp0s8

CAUTION! Replace enp0s8 with the name of the provider network
interface for your environment. Please refer to the Configuring network
interfaces section to know your provider network interface name.

crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini vxlan
local_ip 192.168.1.7

In the preceding command, replace 192.168.1.7 with the IP address of your management
IP address to handle the VM tunnel traffic:

crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini vxlan
enable_vxlan true
crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini vxlan
l2_population true
crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini
securitygroup enable_security_group true
crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini \
 securitygroup firewall_driver \
 neutron.agent.linux.iptables_firewall.IptablesFirewallDriver

Step 5 - configuring the layer-3, DHCP agent, and metadata agent
The Layer-3 (L3) agent provides routing and NAT services for self-service virtual networks.

The DHCP agent provides DHCP services for the virtual networks.

The metadata agent provides configuration information, such as credentials to instances.

Day 8 - Build Your OpenStack Chapter 8

[247]

Copy and paste the following crudini commands to configure the L3 agent, DHCP agent,
and metadata agent to work with neutron components:

crudini --set /etc/neutron/l3_agent.ini DEFAULT interface_driver
linuxbridge
crudini --set /etc/neutron/dhcp_agent.ini DEFAULT interface_driver
linuxbridge
crudini --set /etc/neutron/dhcp_agent.ini DEFAULT dhcp_driver
neutron.agent.linux.dhcp.Dnsmasq
crudini --set /etc/neutron/dhcp_agent.ini DEFAULT enable_isolated_metadata
true
crudini --set /etc/neutron/metadata_agent.ini DEFAULT nova_metadata_ip
controller
crudini --set /etc/neutron/metadata_agent.ini DEFAULT
metadata_proxy_shared_secret METADATA_SECRET

Step 6 - configuring the Nova service to use the neutron service
Copy and paste the following crudini commands to configure the nova-service to work
with neutron components:

crudini --set /etc/nova/nova.conf neutron url
http://controller:9696
crudini --set /etc/nova/nova.conf neutron auth_url
http://controller:35357
crudini --set /etc/nova/nova.conf neutron auth_type
password
crudini --set /etc/nova/nova.conf neutron project_domain_name
default
crudini --set /etc/nova/nova.conf neutron user_domain_name
default
crudini --set /etc/nova/nova.conf neutron region_name
RegionOne
crudini --set /etc/nova/nova.conf neutron project_name
service
crudini --set /etc/nova/nova.conf neutron username neutron
crudini --set /etc/nova/nova.conf neutron password bootcamp
crudini --set /etc/nova/nova.conf neutron service_metadata_proxy true
crudini --set /etc/nova/nova.conf neutron
metadata_proxy_shared_secret METADATA_SECRET

Day 8 - Build Your OpenStack Chapter 8

[248]

Note that I have given bootcamp as the password for KeyStone authentication. You should
replace the password that you chose for the neutron user in the identity service.

Now, populate the neutron service database and then finalize the installations:

su -s /bin/sh -c "neutron-db-manage \
 --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini \
 upgrade head" neutron

Let's finalize the installation by restarting the neutron and Nova service:

service nova-api restart
service neutron-server restart
service neutron-linuxbridge-agent restart
service neutron-dhcp-agent restart
service neutron-metadata-agent restart
service neutron-l3-agent restart

Installing and configuring a compute node (neutron)
In case of multi-node setup, we should configure the networking agent in the compute node
to work with the neutron server on the controller. You should repeat the steps in this
session when you decide to add an additional compute node to the existing OpenStack
environment.

As I mentioned earlier, for all-in-one node setup, we can merge the controller and compute
node components in a single node. So, do follow the instructions on the same node to install
and configure the neutron compute node components:

apt install neutron-linuxbridge-agent -y

Day 8 - Build Your OpenStack Chapter 8

[249]

By now, you should have neutron agent packages installed in your compute node. Now,
simply copy and paste the crudini commands in the terminal to configure the neutron
agent:

crudini --set /etc/neutron/neutron.conf DEFAULT transport_url
rabbit://openstack:bootcamp@controller
crudini --set /etc/neutron/neutron.conf DEFAULT auth_strategy
keystone
crudini --set /etc/neutron/neutron.conf keystone_authtoken
auth_uri http://controller:5000
crudini --set /etc/neutron/neutron.conf keystone_authtoken
auth_url http://controller:35357
crudini --set /etc/neutron/neutron.conf keystone_authtoken
memcached_servers controller:11211
crudini --set /etc/neutron/neutron.conf keystone_authtoken
auth_type password
crudini --set /etc/neutron/neutron.conf keystone_authtoken
project_domain_name default
crudini --set /etc/neutron/neutron.conf keystone_authtoken
user_domain_name default
crudini --set /etc/neutron/neutron.conf keystone_authtoken
project_name service
crudini --set /etc/neutron/neutron.conf keystone_authtoken
username neutron
crudini --set /etc/neutron/neutron.conf keystone_authtoken
password bootcamp

Note that I have given bootcamp as the password for KeyStone authentication. You should
replace the password that you chose for the respective user.

Now, copy and paste the crudini commands to configure the compute node's Linux
bridge agent to work with ML2 components:

crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini
linux_bridge physical_interface_mappings provider:enp0s8

CAUTION! Replace enp0s8 with the name of the provider network
interface for your compute node environment. Please refer to the
Configuring network interfaces section to know your provider network
interface name.

crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini vxlan local_ip
192.168.1.7

Day 8 - Build Your OpenStack Chapter 8

[250]

In the preceding command, replace 192.168.1.7 with the IP address of your management
network of compute node to handle the VM tunnel traffic. In the all-in-one node setup, the
IP address of the management network is going to remain same for the controller and
compute nodes:

crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini vxlan
enable_vxlan true
crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini vxlan
l2_population true
crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini
securitygroup enable_security_group true
crudini --set /etc/neutron/plugins/ml2/linuxbridge_agent.ini \
 securitygroup firewall_driver \
 neutron.agent.linux.iptables_firewall.IptablesFirewallDriver

Then, copy and paste the crudini commands to configure the nova-compute service to
work with neutron components:

crudini --set /etc/nova/nova.conf neutron url http://controller:9696
crudini --set /etc/nova/nova.conf neutron auth_url http://controller:35357
crudini --set /etc/nova/nova.conf neutron auth_type password
crudini --set /etc/nova/nova.conf neutron project_domain_name default
crudini --set /etc/nova/nova.conf neutron user_domain_name default
crudini --set /etc/nova/nova.conf neutron region_name RegionOne
crudini --set /etc/nova/nova.conf neutron project_name service
crudini --set /etc/nova/nova.conf neutron username neutron
crudini --set /etc/nova/nova.conf neutron password bootcamp

Note that I have given bootcamp as the password for KeyStone authentication. You should
replace the password that you chose for the neutron user in the identity service.

Let's finalize the installation by restarting the neutron and Nova services:

service nova-compute restart
service neutron-linuxbridge-agent restart

Now, verify the operation of the neutron service by following the instructions from the
controller node. Well! In our case, from the all-in-one node:

source ~/admin-rc
openstack extension list -network
openstack network agent list

Day 8 - Build Your OpenStack Chapter 8

[251]

You may refer to the following figure as the reference for the output of the preceding
commands:

Note that the actual output may differ slightly from the preceding figure.

Day 8 - Build Your OpenStack Chapter 8

[252]

Installing the OpenStack dashboard
By now, your OpenStack environment has all of the core components that are necessary to
provision a basic virtual machine. You may use the OpenStack CLI to launch the one by
referring to Chapter 6, Day 6 - Field Training Exercise.

The OpenStack dashboard, also known as Horizon, provides a web-based user interface to
OpenStack services, including compute, networking, storage, and identity, among others.

Follow the steps to install and configure the OpenStack Horizon on the controller node:

apt install openstack-dashboard -y

Copy and paste the snippet on the controller terminal to configure the OpenStack
dashboard:

sed -i 's/ubuntu/default/' /etc/openstack-dashboard/local_settings.py
sed -i 's/v2.0/v3/' /etc/openstack-dashboard/local_settings.py
sed -i 's/_member_/user/' /etc/openstack-dashboard/local_settings.py
sed -i 's/127.0.0.1/controller/' /etc/openstack-
dashboard/local_settings.py
cat >> /etc/openstack-dashboard/local_settings.py <<EOF
SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"
OPENSTACK_API_VERSIONS = {
 "identity": 3,
 "image": 2,
}
EOF
service apache2 restart

You need to restart the apache service for the new configuration changes to take effect in the
web UI. Alternatively, you could also refer to:
https://docs.openstack.org/ocata/install-guide-ubuntu/horizon-install.html to
know more about an available horizon configuration.

Now, verify the Horizon operation by accessing the Horizon dashboard using a web
browser at: http://<Management_IP_address>/horizon.

https://docs.openstack.org/ocata/install-guide-ubuntu/horizon-install.html

Day 8 - Build Your OpenStack Chapter 8

[253]

In my case, I could access my OpenStack web UI at: http://192.168.1.7/horizon from
my laptop web browser. In response, you will see the dashboard login page like the one
shown here:

Authenticate the dashboard using admin or demo user credentials to log in and manage the
OpenStack resources.

Day 8 - Build Your OpenStack Chapter 8

[254]

Adding compute node to the OpenStack cluster
By now, the OpenStack identity, image, networking, dashboard, and compute services have
been installed and configured in the single node to build an all-in-one node OpenStack
setup.

If you wish to add an additional compute node to the existing OpenStack setup, do repeat
the steps from the following-mentioned sessions on the newly chosen compute node:

Before we begin
Installing and configuring a compute node (nova-compute)
Installing and configuring a compute node (neutron)

Note that, while repeating the steps from the preceding sections, you should replace the
management IP address of the new compute node and hostname appropriately in the
configuration files and crudini commands.

Also, you need to update the /etc/hosts file with a newly added compute hostname, and
sync the entries across all of the nodes in the OpenStack cluster.

For example, after adding two compute nodes to my OpenStack cluster, my /etc/hosts
file across all of the nodes in my OpenStack cluster would look like the one here:

Day 8 - Build Your OpenStack Chapter 8

[255]

Summary
We have gone through a step-by-step package-based installation of the Ocata release of
OpenStack on the Ubuntu operating system. At this point, you have the OpenStack setup
built on your own from scratch. Now, you could start playing with your own private cloud
by redoing the exercise from the previous chapter, Chapter 6, Day 6 - Field Training Exercise.

In the next chapter, we will walk through the most commonly faced issues in OpenStack
and the steps to troubleshoot it.

9
Day 9 - Repairing OpenStack

Troubleshooting OpenStack is not always upfront because OpenStack is distributed across
several different projects, all working together in providing public/private cloud
functionalities. Adding to this, with OpenStack's flexibility to support external open source
technology, comes the challenge of identifying the root cause of errors and problems.

In this chapter, we will walk through OpenStack troubleshooting methodologies that will
help you learn the tips, and the right approach to handle OpenStack issues that may come
your way while installing and managing the cloud.

Structured troubleshooting approaches
You must thoroughly understand each OpenStack component's functionality and its
interrelation between the services to nail down issues and fix them. The more you
understand the OpenStack architecture, the more successful you will be at troubleshooting
it.

In my experience, I have found that the below-structured troubleshooting order works well
when troubleshooting OpenStack issues to identify their root cause and resolve them:

Service status: Check that the required services are up and running
Authentication response: Confirm that the authentication is configured correctly
CLI debug mode: Run the CLI commands in the debug mode while looking for
error messages
Check service logs: Check log files for errors messages

Day 9 - Repairing OpenStack Chapter 9

[257]

If you find any error messages pop up in the Horizon dashboard or in response to the OSC
CLI, you must have some idea about the service that the error message is related to.

For example, if you see an error message stating Unable to retrieve image list. By
now, you will have guessed that the error message is something related to the Glance
service. Yes, there could be other reasons behind the error messages. However, as the first
step, we need to focus on the Glance services to ensure that everything is working fine from
the image service end, before digging deeper into other services logs.

To start with, let's quickly walk through, how to follow the previous discussed
troubleshooting approach to analyze the root cause for the previous error message Unable
to retrieve image list.

Level 1 - Service status check
By now, we know that the error message is something related to the Glance services. So, as
an initial step, we need to confirm that all the components in the Glance services are up and
running, namely the glance-api service and the glance-registry service. You can use
the following service status commands to do this:

service glance-api status
service glance-registry status

Level 2 - Authentication response
In most cases, when working with the OpenStack client CLI, you will receive an error
response asking to provide proper authentication information or to set an environment
variable in the CLI parameter.

This error typically occurs when you haven't provided all the necessary attributes to the
OSC CLI. Usually, sourcing an OpenRC file that contains the attributes required for the
command-line client solves this problem.

Level 3 - CLI debug mode
Executing the command may have an organized workflow behind the screen that will end
up in displaying the expected output in response. However, in case of issues, we will
receive an error message that will have only minimal information about the issue. To trace
the workflow and know more about the error, we can use the --debug parameter added to
the actual command.

Day 9 - Repairing OpenStack Chapter 9

[258]

For example, execute the following two commands and see the difference in the output:

glance image-list
glance --debug image-list

Level 4 - Service log check
In most cases, we will end up searching for an Error and Trace keyword in the respective
log files to nail down the root cause. For examining the log files, you should be aware of the
path of every log file that each OpenStack services write to.

I have tabulated the OpenStack service name and the respective log location in the
following table:

Service name Log files location

Horizon Controller node:
/var/log/apache2/horizon_access.log
/var/log/apache2/horizon_error.log

KeyStone Controller node:
/var/log/apache2/error.log
/var/log/apache2/access.log
/var/log/apache2/keystone_wsgi_admin_access.log
/var/log/apache2/keystone_wsgi_admin_error.log
/var/log/apache2/keystone_wsgi_main_access.log
/var/log/apache2/keystone_wsgi_main_error.log

MySQL Controller node:
/var/log/syslog
/var/log/mysql/error.log

RabbitMQ Controller node:
/var/log/rabbitmq/

Nova Controller and compute node:
/var/log/nova/

Glance Controller node:
/var/log/glance/

Neutron Controller and compute node:
/var/log/neutron/

Day 9 - Repairing OpenStack Chapter 9

[259]

Service name Log files location

Cinder Storage node:
/var/log/cinder/

In the preceding table, I have mentioned the home path for the log files of the OpenStack
services. In the latter part of this chapter, we will cover the log files location of each
OpenStack component in detail.

The KeyStone service
Though the KeyStone project does not depend on any other OpenStack projects in
OpenStack, all other OpenStack services depend on KeyStone for identity, token
management, a service catalog, and policy functionality. This dependency on the KeyStone
service means that problems with your KeyStone services may cause problems for many of
the other OpenStack services as well. So, it is always a good practice to ensure that
KeyStone is operating as expected before we start focusing on other projects logs.

Checking the KeyStone service
Unlike other services in OpenStack, the KeyStone service is available through the Apache
server. To check the status of the KeyStone service, we need to check if the Apache server is
running. Notably, the eventlet-based KeyStone service will be set in stopped state by
default.

Use the following command to verify if the KeyStone service is running:

ps -aux | grep keystone
service apache2 status

Day 9 - Repairing OpenStack Chapter 9

[260]

The output should look similar to the one here:

You will have noticed from the preceding output that the eventlet-based KeyStone process
should be in the stopped status, as the KeyStone service is available through the Apache
server.

Checking the KeyStone client
Before you use any OSC CLI, make sure that you have sourced the credentials from your
OpenRC file or alternatively, you need to pass the required AUTH attributes in all the
commands. If you have forgotten to take one of these steps, you might see an error as
follows:

For more information on how to create and source OpenRC files, refer to Configuring the
identity service (KeyStone) section in Chapter 8, Day 8 - Build Your OpenStack.

Day 9 - Repairing OpenStack Chapter 9

[261]

The CLI debug mode
You can run an OSC CLI in the debug mode by merely adding the --debug parameter to
the command. Take the following command as an example:

openstack --debug user list
openstack --debug project list

Like I mentioned earlier, running any commands in the --debug mode will enable the
debug lines to be printed to the output console. The debug mode enabled output may
contain the details of the API request sent by the command-line tool and the response body
sent back from the API.

The Glance service
When troubleshooting the Glance service, the first thing is to ensure that the Glance service
is up and running. You can confirm this by running any simple Glance commands from the
command line as follows:

service glance-api status
service glance-registry status
glance image-list

When Glance functions correctly, the preceding command should return a list of images in
your Glance repository, like the following output:

Day 9 - Repairing OpenStack Chapter 9

[262]

The Glance log files
The corresponding log file of each Glance service is stored in the /var/log/glance/ folder
on the node in which the respective service runs:

Service name Log file name

glance-api /var/log/glance/glance-api.log

glance-registry /var/log/glance/glance-registry.log

The Nova service
Nova is one of the core projects in OpenStack. Notably, it is one of the largest in terms of
lines of code and also the oldest OpenStack projects. When troubleshooting the Nova
service, the first thing is to ensure that the Nova service is up and running. You can confirm
this by running any Nova command from the controller node as follows:

service nova-api status
service nova-consoleauth status
service nova-scheduler status
service nova-conductor status
service nova-novncproxy status
nova service-list

If the Nova service operates correctly, the preceding command should return the status of
Nova sub-services, similar to the following output:

In the compute node, you can use the following command to ensure that the nova-
compute service is up and running:

service nova-compute status

Day 9 - Repairing OpenStack Chapter 9

[263]

The Nova log files
The corresponding log file of each Nova service is located in the /var/log/nova/ folder
on the node in which the respective service is running:

Service name Log file name

nova-api /var/log/nova/nova-api.log

nova-consoleauth /var/log/nova/nova-consoleauth.log

nova-scheduler /var/log/nova/nova-scheduler.log

nova-conductor /var/log/nova/nova-conductor.log

nova-novncproxy /var/log/nova/nova-novncproxy.log

nova-compute /var/log/nova/nova-compute.log

nova-placement-api /var/log/nova/nova-placement-api.log

The Neutron service
The Neutron service is one of the most complex OpenStack projects to troubleshoot. Due to
its flexible nature of allowing various configurations and plugins to support different
networking vendors, it is more complicated to pinpoint the root cause of the issue.
However, in-depth understanding of the OpenStack architecture and the fundamental
knowledge of networking will help identify and isolate the problems as they arise.

When you are about to troubleshoot the networking service for issues, the first thing is to
ensure that all the Neutron services are up and running. You can confirm this by running
any Nova command from the controller node, as follows:

service neutron-server status
service neutron-linuxbridge-agent status
service neutron-dhcp-agent status
service neutron-metadata-agent status
service neutron-l3-agent status
neutron agent-list

Day 9 - Repairing OpenStack Chapter 9

[264]

If the Neutron service operates correctly, the preceding command should return the status
of neutron agents, like the one in the following output:

Neutron log files
The corresponding log files for each neutron service is in the /var/log/neutron/
directory of the host on which each service runs:

Service name Log file name

neutron-server /var/log/neutron/neutron-server.log

neutron-linuxbridge-agent /var/log/neutron/neutron-linuxbridge-agent.log

neutron-dhcp-agent /var/log/neutron/neutron-dhcp-agent.log

neutron-metadata-agent /var/log/neutron/neutron-metadata-agent.log

neutron-l3-agent /var/log/neutron/neutron-l3-agent.log

Database issues
In many cases, one will spend more time on troubleshooting the specific OpenStack
services. But after a long effort, they would discover that the database is indeed the culprit.
So, it is better to cross-check and verify that the database is configured and is operating
correctly soon after you have confirmed that the OpenStack service is up and running.

You can verify whether MySQL is running by executing the following command:

service mysql status

If the preceding command does not return a message indicating that the MySQL process is
running, you will need to troubleshoot your database server to get it back to the running
state.

Day 9 - Repairing OpenStack Chapter 9

[265]

If the preceding command shows that the MySQL server is running, then as a next step, you
should check that you can connect to the database server. Do follow the following
instructions to connect to the MySQL server:

mysql -u <db_user > -p

Replace db_user with the appropriate service username for your database. In my case, I
used glance as the user and bootcamp as the Glance DB password.

If you are successfully connected to MySQL, you will see an output similar to the one
shown here:

If you are unsuccessful when trying to connect to the database manually, verify the
username and password of the database user you are operating. You should also check
whether the user has appropriate privileges to access this database.

Once the credentials and privileges are verified, you should cross-check the configuration
file of the appropriate OpenStack service to ensure that the same credentials have been
configured under the database session.

How to troubleshoot your database server is outside the scope of this book. However, there
are a lot of resources available online that could help.

Getting help from OpenStack community
The spirit of open source and a community-driven development approach has spawned
OpenStack as one of the fastest-growing and active open source communities in the world.
So, whenever you get stuck with any issues in the OpenStack, you can make use of this
significant global open source community.

Day 9 - Repairing OpenStack Chapter 9

[266]

To connect with the OpenStack community for getting assistance, you may get used to the
following ways.

Questions and answers forum
(https://ask.openstack.org/en/questions/)

Wiki (https://wiki.openstack.org/wiki/Main_Page)

Participate in chats on IRC #openstack

Join the general mailing list
(http://lists.openstack.org/cgi-bin/mailman/listinfo)

I would strongly recommend every OpenStack beginner to register at
https://ask.openstack.org/en/questions/ to get started with OpenStack.

Summary
The essence of open source and a community-driven development approach results in a lot
of new features getting added to the OpenStack project with each release. When working
with such a complex project, it is certain that you will face problems, bugs, errors, issues,
and plain old trouble. By now, you will have learned about how to approach these issues,
along with knowledge of OpenStack troubleshooting techniques and being able to trace the
issues in the respective log files.

In the next chapter, we will walk through an overview of the optional services available in
OpenStack.

https://ask.openstack.org/en/questions/
https://wiki.openstack.org/wiki/Main_Page
http://lists.openstack.org/cgi-bin/mailman/listinfo
https://ask.openstack.org/en/questions/

10
Day 10 - Side Arms of

OpenStack
In this chapter, we will explore non-core but special OpenStack services such as how Trove
provides Database-as-a-Service, Magnum Container Service, and Murano. We will end the
chapter by giving you enough momentum to explore all the other exciting OpenStack
services that are being added so frequently.

Bells and whistles of OpenStack
The reason for the success of OpenStack are the 32 components available that are easily
pluggable and configurable. Let's quickly explore the most used ones to give you an idea of
what each one of them can do with OpenStack:

Day 10 - Side Arms of OpenStack Chapter 10

[268]

OpenStack Umbrella
As on OpenStack - Ocata release, the following mentioned 32 projects are officially added
under the OpenStack Umbrella:

Application Catalog Service (Murano)1.
Bare Metal Service (Ironic)2.
Block Storage Service (Cinder)3.
Clustering Service (Senlin)4.
Compute Service (Nova)5.

Day 10 - Side Arms of OpenStack Chapter 10

[269]

Container Infrastructure Management Service (Magnum)6.
Containers Service (Zun)7.
Dashboard (Horizon)8.
Data Processing Service (Sahara)9.
Data Protection Orchestration Service (Karbor)10.
Database Service (Trove)11.
DNS Service (Designate)12.
Governance Service (Congress)13.
Identity Service (Keystone)14.
Image Service (Glance)15.
Infrastructure Optimization Service (Watcher)16.
Key Manager Service (Barbican)17.
Load-balancer Service (Octavia)18.
Messaging Service (Zaqar)19.
Networking Automation Across Neutron Service (Tricircle)20.
Networking Service (Neutron)21.
Object Storage Service (Swift)22.
Orchestration Service (Heat)23.
Rating Service (Cloudkitty)24.
Root Cause Analysis (RCA) Service (Vitrage)25.
Search Service (Searchlight)26.
Shared Filesystems service (Manila)27.
Software Development Lifecycle Automation Service (Solum)28.
Telemetry Alarming Services (Aodh)29.
Telemetry Data Collection Service (Ceilometer)30.
Telemetry Event Service (Panko)31.
Workflow Service (Mistral)32.

Ironic
Ironic is a code name for the bare metal as a service in OpenStack. The bare metal service
enables OpenStack to provide direct access to the physical machines to the end user. As we
know, the Nova service will take care of provisioning and manage the virtual machines to
the end user. However, in some cases the user may require a bare physical server to run
their cloud application. The Ironic project enables the support for OpenStack to provide a
bare metal.

Day 10 - Side Arms of OpenStack Chapter 10

[270]

The Nova compute service includes a virtualization driver that makes calls to the Ironic
service to provide a bare metal node. With the help of Ironic virt driver, the end users can
launch a bare metal server instance in the same way that they usually launch a virtual
machine instance.

Manila
Manila is a code name for the shared filesystems service in OpenStack. The OpenStack
Manila service provides shared file storage to a virtual machine using NFS and CIFS
protocols. The shared filesystems service offers an abstraction for managing and
provisioning of file shares.

Manila (shared filesystems) - Amazon Elastic File System (EFS)

Remember that we cannot mount the same Cinder volume on two virtual machines at the
same time. However, using manila shared filesystems service, we can mount the same NFS
files storage on multiple virtual machines at the same time.

Designate
Designate is a code name for DNS as a service in OpenStack. Designate enables OpenStack
with multi-tenant Domain Name Server (DNS) as a service that provides a REST API with
a KeyStone authentication.

Designate (DNS as a service) - AWS Route 53

It is designed to enable end users to configure a route for cloud applications within a
specific tenant by translating names such as http://www.bootcamp.com/ to numeric IP
addresses such as 192.168.2.3 that computers use to connect to each other.

Designate supports a variety of DNS servers, including Bind9 and PowerDNS.

http://www.bootcamp.com/

Day 10 - Side Arms of OpenStack Chapter 10

[271]

Trove
Trove is a code name for Database-as-a-Service in OpenStack. The Trove service provides
scalable and reliable cloud provisioning functionality for both relational and non-relational
database engines. Users can feasibly use database features without the burden of handling
complex administrative tasks. Cloud users and database administrators can provide and
manage multiple database instances as needed.

For example, to configure a database to work with the application, typically, the end user
would launch a new virtual machine and install the database engine, such as MySQL or
MongoDB based on their application requirement. Then, the database engine's endpoint
and credentials should be configured in the application configuration files. But the Trove
service enables the end user to obtain the endpoint for the database directly without
handling the complex administrative task of installing and configuring the database in the
virtual machine. From the endpoint obtained using the Trove service, the end user will
configure their application to work with the database.

Trove (Database-as-a-Service) - Amazon Relational Database Service
(RDS)

The Trove service also offers the resource isolation at high-performance levels and
automates complex administrative tasks, such as deployment, configuration, backups,
restores, and monitoring.

Sahara
Sahara is a code name for data processing service in OpenStack. Previously known as the
Savanna project, then renamed as Sahara, the Sahara project enables the user to provide a
data-intensive application cluster, such as Hadoop, Storm, or Spark, on top of the
OpenStack cloud.

Barbican
Barbican is a code name for Key Manager Service that allows users to create and control
the encryption keys used for encrypting your data and also provides secure storage,
provisioning, and management of secret data, such as passwords and encryption keys.

Day 10 - Side Arms of OpenStack Chapter 10

[272]

Barbican (Key Manager Service) - AWS Key Management Service (KMS)

Zaqar
Zaqar is a code name for Messaging Queue as a Service in OpenStack. Zaqar is a fully
managed message queuing service that allows users to decouple and scale microservices,
distributed applications, and serverless applications with ease.

Zaqar (Messaging Queue as a service) - AWS Simple Queue Service
(SQS)

Zaqar enables developers to share data between distributed applications performing
different tasks, without losing messages or requiring each component to be always
available.

Aodh
Aodh is a code name for Telemetry Alarming Services in OpenStack. The Telemetry
Alarming Services enable the ability to trigger actions based on defined rules against metric
or event data collected by the ceilometer service in OpenStack.

Congress
Congress is a code name for the Governance service in OpenStack. Using Congress, a cloud
operator can declare, monitor, enforce, and audit policy in a cloud environment. The
Congress service collects information about VMs from Nova and network state from
Neutron. Congress then pushes this collected input data into its policy engine. Now,
Congress verifies that the cloud's actual state abides by the cloud operator's policies.

For example, if the cloud operator defines a new policy that restricts any instance to have a
security group rule that allows port 22 access to any public IP address, then the Congress
service will collect all the instance information from the Nova service at a regular time
interval, and feed the collected data to the policy engine to verify if the cloud state abides by
the policy. Congress will trigger the notification if the cloud state does not satisfy the policy.

Day 10 - Side Arms of OpenStack Chapter 10

[273]

Mistral
Mistral is a code name for workflow service in OpenStack. Most processes consist of
multiple distinct interconnected steps that need to be executed in a specific order in a
distributed environment. With Mistral, the user can describe such process as a set of tasks
and its task relation, then; upload such description to Mistral so that it takes care of the
correct execution order. Mistral also provides flexible task scheduling so that we can run a
process according to a specified schedule instead of running it immediately.

For example, a user can use the Mistral service to schedule a task to execute a bash script on
specified virtual machines, and then post the output response of the first task as the input
for the next task in the workflow through the REST API call, to execute another bash script
in other virtual machines. It is essential that several tasks can be combined in a single
workflow and run in an on-schedule time. Mistral will take care of their workflow
execution.

Murano
Murano is a code name for Application Catalog Service in OpenStack. The Murano project
enables the cloud operator to publish various cloud-ready applications in a catalog that can
be browsed. With Murano, even an inexperienced cloud user can deploy a reliable cloud
application in the OpenStack environment with ease.

Magnum
Magnum is the code name for Container Infrastructure Management Service in
OpenStack. The magnum service is a collection of components that provides support in
OpenStack to manage different Container Orchestration Engines (COE), such as
Kubernetes, Apache Mesos, and Docker Swarm.

Magnum uses heat orchestration service to provide a new instance either as a virtual
machine or bare metal based on the cluster configuration using the OS image that contains
Docker and Kubernetes.

Zun
Zun is a code name for the container service in OpenStack. Zun project provides an
OpenStack API for launching and managing containers backed by different container
technologies such as Docker.

Day 10 - Side Arms of OpenStack Chapter 10

[274]

Don't confuse between container service and container infrastructure management service
in OpenStack. Here, the container service (Zun) allows OpenStack to launch and manage
the containers directly, where the magnum project enables support for the container
orchestration engine in OpenStack.

Panko
Panko is the code name for Telemetry Event Service in OpenStack. The Panko project
provides the ability to store and query the event data generated by ceilometer. Thus, the
Panko service enables users to capture the state information of OpenStack resources at a
given time.

Vitrage
Vitrage is a code name for the Root Cause Analysis (RCA) service in OpenStack. The
Vitrage service is used for analyzing, organizing, and expanding the OpenStack alarms and
events, yielding insights regarding the root cause of problems and deducing their existence
before they are directly detected.

Watcher
Watcher is a code name for the Infrastructure Optimization Service in OpenStack.Watcher
provides complete optimization solutions, including metrics receiver, optimization
processor, and an action plan applier. The infrastructure optimization service framework
enables a way for a wide range of cloud optimization goals, including the decrease of data
center operating costs, improved system performance via intelligent virtual machine
migration, and increased energy efficiency.

To know more about all the optional projects available and the maturity
age, visit https://www.openstack.org/software/project-navigator.

https://www.openstack.org/software/project-navigator

Day 10 - Side Arms of OpenStack Chapter 10

[275]

Summary
In this chapter, we have seen an overview of commonly adopted optional OpenStack
services. New projects may get added to the OpenStack Umbrella during every six-month
release cycle. The OpenStack project is at a size now where no one can truly know the
details of each service. By now, you will have gained an idea of what each optional service
can do with OpenStack.

Having looked at the bells and whistles of OpenStack, we have come to the end of this
book. The course outline covered in this book is the core concept of OpenStack, which
includes all the fundamental methodologies that are baked into the OpenStack project. New
projects and features may get added to OpenStack quickly in the upcoming release cycle,
but because the information here is central to a base installation of OpenStack, you should
be able to reference this book for many releases to come from the OpenStack project.

Index

A
administrative tasks 196
Advanced Message Queue Protocol (AMQP) 68,

217

Amazon Elastic File System (EFS) 270
Amazon Relational Database Service (RDS) 271
Aodh (Telemetry Alarming Services) 272
AWS IAM (Identity and Access Management) 18
AWS Key Management Service (KMS) 271
AWS Simple Queue Service (SQS) 272

B
Barbican (Key Manager Service) 271
Bind9 270
block storage (Cinder)
 about 24, 151
 cinder-api service 39
 cinder-backup daemon 40
 cinder-scheduler daemon 39
 cinder-volume Service 40
 service 39
 volume, attaching to virtual machine 156, 159
 volume, detaching from virtual machine 159, 161
 volume, managing with Horizon 152, 156
 volume, transferring between projects 191

C
ceilometer measurements
 URL 45
CentOS-7 cloud
 URL 143
cloud image
 URL 143
Cloudenablers 17
command-line interface (CLI)
 about 132

 connecting, to instance with SSH 138
 created instances, terminating 141
 OpenStack CLI clients (OSC) 132
 used, for instance launching 134
components, OpenStack
 Glance (image service) 20
 KeyStone (identity service) 17
 Neutron 22
 Nova (computing service) 18
 service interaction layout 23
Congress 272
Container Orchestration Engines (COE) 273

D
data encapsulation 85
database issues 264
design principles, OpenStack 6
Designate 270
DevStack
 about 8
 commands 14
 configuring 11
 downloading 11
 installation, preparing 8
 installing 12
 prerequisites, for installing 9
 virtual machine, preparing 9
Domain Name Server (DNS) 270
Dynamic Host Configuration Protocol (DHCP) 85

E
east-west network traffic
 about 103
 network information, obtaining from DHCP agent

105

EBS (Elastic Block Storage) 25
EC2 (Elastic Compute Cloud) 20

[277]

F
filters
 reference 71
Firewall-as-a-Service (FWaaS) 97
flat network 90
flavors
 creating 188

G
Glance (image service)
 about 20, 142, 261
 API endpoints, defining in KeyStone 225
 components, configuring 228
 components, installing 228
 glance-api service 34
 glance-registry service 34
 image service 34
 image, adding with Horizon 142, 145
 images, making as public 183
 instance, launching from new image 149
 log files 262
 operation, verifying 229
 references 149
 service, defining in KeyStone 225
 used, for adding image 146
GRE 91

H
horizon configuration
 URL 252
Horizon dashboard
 Admin tab 116
 Compute tab 114
 mandatory fields 121
 Network tab 115
 OpenStack lab environment, exploring 110, 114
 Project tab 114
 used, for launching instance 118, 121
 using, to execute Nova compute operations 118

I
idle state, OpenStack services
 about 54, 56
 API request, processing 63, 65

 API request, sending to Nova API 61
 API token validation 62, 63
 AUTH data validation 59, 60
 base image, requesting for VM rendering 75, 77
 network configuration, in instance 77, 79, 80
 provisioning request, picking up 67, 68
 provisioning request, publishing 65, 66
 schedule provisioning 69, 71
 user login 57
 VM provisioning, starting 72, 73
 VM rendering, starting via hypervisor 73, 75
 VM, in running state 80, 82
Infrastructure-as-a-Service (IAAS) 24, 41
Internet Protocol (IP) 83
Ironic (bare metal) 269

K
KeyStone (identity service)
 about 17, 35, 162, 259
 Apache HTTP server, configuring 219
 API endpoints, defining 226, 231
 checking 259
 CLI debug mode 261
 components, configuring 218
 components, installing 218
 configuring 218
 drivers 35
 environment variables, setting 219
 glance service, defining 226
 KeyStone client, checking 260
 map role, defining 222
 neutron API endpoints, defining 242
 neutron service, defining 242
 Nova service, defining 231
 OpenRC environment file, creating 224
 operation, verifying 223
 projects, adding 162, 167
 projects, defining 220
 server 35
 URL, for role management 223
 users, adding 162, 167
 users, defining 222

[278]

L
Linux Bridge (qbr) 86, 100, 101
Load-Balancer-as-a-Service (LBaaS) 97
Local Area Network (LAN) 83
local network 90

M
Magnum (Container Infrastructure Management

Service) 273
Manila (shared filesystems service) 270
Media Access Control (MAC) 83
Mistral 273
multi-hypervisor OpenStack environment
 URL 31
Murano (Application Catalog Service) 273

N
network address translation (NAT) 85, 87, 94
Network Interface Cards (NIC) 84
network interfaces
 configuring 212
 configuring, as provider interface 213
 configuring, with static IP address 212
 hostnames, setting 214
network namespaces 85
network traffic flow
 about 98
 east-west network traffic 99, 103
 north-south network traffic 99, 100, 102
Networking-as-a-Service (NAAS) 22, 86
networks
 sharing, between projects 186
Neutron (networking service)
 about 22, 87, 167, 263
 API endpoints, defining in KeyStone 242
 configuring 242, 248
 defining, in KeyStone 242
 DHCP agent 37
 DHCP agent, configuring 246
 installing 248
 L3 agent 37
 layer-3, configuring 246
 Linux bridge agent, configuring 246
 log files 264

 metadata agent, configuring 246
 Modular Layer 2 (ML2) plugin, configuring 245
 network connectivity, verifying 172, 177
 network, creating with Horizon 167, 171
 Nova service, configuring to use services 247
 OpenStack dashboard, installing 252
 plugin agent 36
 routing, configuration for external networks 177,

182

 self-service networks, configuring 243
neutron, features
 about 92
 extended services 96
 floating IP 97
 FWaaS 97
 LBaaS 97
 network topology 93
 networks 93
 routers 94
 security groups 95
 subnets 93
 VPNaaS 96
neutron, network types
 isolation types 90
 overlay technologies 90
 provider networks 89
 self-service networks 89
north-south network traffic 100, 102
Nova (computing service)
 about 18, 262
 API endpoints, defining in KeyStone 231
 components, configuring 235
 components, installing 235
 configuring 231
 database 33
 log files 263
 nova-api service 30
 nova-api-metadata service 31
 nova-cert module 33
 nova-compute service 31
 nova-conductor module 32
 nova-consoleauth daemon 33
 nova-scheduler service 32
 queue 33
 service, defining in KeyStone 231

[279]

nova-compute
 configuring 238
 installing 238

O
object storage
 account servers 42
 ceilometer-agent-central 44, 45
 ceilometer-agent-compute 44
 ceilometer-agent-notification 46
 ceilometer-collector 46
 container servers 42
 object servers 43
 proxy servers 42
 Swift 41
 telemetry service 43
Open vSwitch bridge 100
OpenStack Client (OSC)
 about 132, 142, 146
 URL 132
OpenStack community
 about 15
 references 15, 266
 using 265
OpenStack distributions 7
OpenStack installation
 database installation, finalizing 216
 database server, configuring 215
 database, creating for OpenStack services 216
 file, creating 216
 Glance, configuring 225
 KeyStone, configuring 218
 memcached server, configuring 218
 message queue, configuring 217
 Neutron, configuring 242, 248
 Neutron, installing 248
 Nova, configuring 231
 nova-compute, configuring 238
 nova-compute, installing 238
 URL 210
OpenStack lab environment
 about 108
 exploring, through command line 108
 exploring, through Horizon dashboard 110, 114
 instance, managing 128

 usage, tracking for instances 127
 VNC console, using to connect to instance 124
OpenStack networking
 about 86
 nova-network, using 87
 OpenStack neutron 87
 OpenStack neutron, using 87
OpenStack services
 idle state 54, 56
Openstack Umbrella
 about 268
 aodh 272
 congress 272
 designate 270
 ironic 269
 magnum 273
 manila 270
 mistral 273
 murano 273
 panko 274
 sahara 271
 trove 271
 vitrage 274
 watcher 274
 zaqar 272
 zun 273
Openstack web UI (Horizon) 13
OpenStack
 about 6, 267
 block storage (Cinder) 24
 block storage service 39
 command-line tool 14
 components 24
 conceptual architecture 48
 core components 7, 16
 deployment, designing 49, 50, 52
 design principles 6
 KeyStone (identity service) 35
 logical architecture 29
 Neutron (networking service) 36
 Nova (computing service) 29
 object storage 41
 optional components 7
 orchestration service 46
 production design 52, 53

 reference 8
 Swift 26
orchestration service
 Heat 46
 heat-api component 48
 heat-api-cfn component 48
 heat-engine 48
Overlay network 85
OVS Integration Bridge (br-int) 101, 105
OVS Tunnel Bridge (br-tun) 101, 102, 105

P
PackStack 8
Panko (Telemetry Event Service) 274
PowerDNS 270
project mapping
 reference 55
project specific tasks 199, 201, 203, 205, 208

R
Remote Frame Buffer (RFB) 124
Remote Procedure Calls (RPCs) 68
roles
 reference 55

S
Sahara 271
Software-Defined Networking (SDN) 85
SSH
 used, for connecting to instance 138
structured troubleshooting approaches
 about 256
 authentication response 257
 CLI debug mode 257
 service log check 258
 service status check 257
Swift 26
system requisites
 about 211
 compute node, adding to OpenStack cluster 254
 network interfaces, configuring 212

 Network Time Protocol, configuring 214
 OpenStack installation 215
 OpenStack repository, configuring 215
 system, upgrading 215
 user permissions 212
 virtual machine, preparing 211

T
TAP device 100
Trove (Database-as-a-Service) 271

U
Ubuntu cloud image
 URL 199

V
Vanilla OpenStack 8
veth pair 100
Virtual Machine (VM)
 about 86
 Cinder volume, attaching 156, 159
 Cinder volume, detaching 159, 161
 preparing 211
Virtual Network Computing (VNC)
 about 124
 console, used for connecting to instance 124
Virtual Private Network-as-a-Service (VPNaaS) 96
Vitrage (Root Cause Analysis (RCA)) 274
VLAN network 84, 90
VPC (Virtual Private Cloud) 23
VxLAN networks
 about 91
 using 92

W
Watcher (Infrastructure Optimization Service) 274

Z
Zaqar (Messaging Queue as a Service) 272
Zun 273

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Day 1 - Build Your Camp
	Design principles for OpenStack
	OpenStack distributions
	Vanilla OpenStack
	DevStack installation
	Prepare your virtual machine
	Let's DevStack

	OpenStack community and getting help
	Summary

	Chapter 2: Day 2 - Know Your Battalion
	Core components of OpenStack
	KeyStone (identity service)
	Nova (computing service)
	Glance (image service)
	Neutron (networking service)
	OpenStack service interaction layout

	Optional components
	Cinder (block storage service)
	Swift (object storage service)

	Summary

	Chapter 3: Day 3 - Field Sketch
	OpenStack - logical architecture
	Compute service - Nova
	nova-api service
	nova-api-metadata service
	nova-compute service
	nova-scheduler service
	nova-conductor module
	nova-consoleauth daemon
	nova-cert module
	The queue (AMQP message broker)
	Database

	Image service - Glance
	glance-api service
	glance-registry service

	Identity service - KeyStone
	Server (keystone-all)
	Drivers (optional)

	Networking service - neutron
	Neutron server
	plugin agent (neutron-*-agent)
	DHCP agent (neutron-dhcp-agent)
	L3 agent (neutron-l3-agent)

	Block storage service - Cinder
	cinder-api service
	cinder-scheduler daemon
	cinder-volume Service
	cinder-backup daemon

	Object storage - Swift
	Proxy servers (swift-proxy-server)
	Account servers (swift-account-server)
	Container servers (swift-container-server)
	Object servers (swift-object-server)
	Telemetry service - ceilometer
	ceilometer-agent-compute
	ceilometer-agent-central
	ceilometer-agent-notification
	ceilometer-collector

	Orchestration service - Heat
	heat-api component
	heat-api-cfn component
	heat-engine

	OpenStack - conceptual architecture

	Designing your deployment
	Typical production design
	Summary

	Chapter 4: Day 4 - How Stuff Works
	Idle state of OpenStack services
	Step 1 - user login - Horizon
	Step 2 - validating AUTH data
	Step 3 - sending an API request to the Nova API
	Step 4 - validating the API token
	Step 5 - processing the API request
	Step 6 - publishing the provisioning request
	Step 7 - picking up the provisioning request
	Step 8 - schedule provisioning
	Step 9 - starting the VM provisioning
	Step 10 - starting VM rendering via the hypervisor
	Step 11 - requesting the base image for VM rendering
	Step 12 - configuring the network for an instance
	Step 13 - VM in running state

	Summary

	Chapter 5: Day 5 - Networking Strategy
	Networking basics
	OpenStack networking
	Legacy nova-network to OpenStack neutron
	OpenStack Neutron

	Network types
	Provider networks
	Self-service networks
	Types of network isolation and overlay technologies
	Why VxLAN?

	Neutron offerings
	Network topology
	Networks and subnets
	Routers
	Security groups
	Extended services
	VPNaaS
	LBaaS
	FWaaS

	Floating IP

	Network traffic flow
	North-south network traffic
	East-west network traffic
	How does a VM get an IP?

	Summary

	Chapter 6: Day 6 - Field Training Exercise
	Understanding the OpenStack lab environment
	Exploring lab through the command line
	Exploring lab through the Horizon dashboard
	OpenStack Horizon - Project tab
	The Compute tab
	The Network tab

	OpenStack Horizon - the Admin tab
	The System tab

	Compute Service - Horizon
	Launching a new instance using Horizon
	Mandatory fields

	Connecting to the instance using the VNC console
	Tracking usage for instances
	Managing an instance

	Compute service - CLI
	OpenStack CLI clients (OSC)
	Launching an instance using OpenStack CLI
	Connecting to the instance using SSH
	Terminating the created instance

	Image service (Glance)
	Adding an image using Horizon
	Adding an image using Glance CLI
	Launching an instance from the new image

	Block storage (Cinder)
	Managing Cinder volume using Horizon
	Attaching Cinder volume to the virtual machine
	Detaching Cinder volume from the virtual machine

	Identity (KeyStone)
	Adding projects and users

	Networking service (neutron)
	Creating a network using Horizon
	Verifying the network connectivity
	Configuring routing for external networks

	Add-on exercises
	Making existing Glance images public
	Sharing networks between projects
	Creating new flavors
	Transferring Cinder volume between projects

	Summary

	Chapter 7: Day 7 - Collective Training
	Administrative tasks
	Project specific tasks
	Extended activities
	Activity 1
	Activity 2
	Activity 3

	Summary

	Chapter 8: Day 8 - Build Your OpenStack
	System requirements
	Preparing your virtual machine
	Before we begin
	User permissions
	Configuring network interfaces
	Step 1 - configuring the first network interface with static IP address
	Step 2 - configuring the second interface as the provider interface
	Step 3 - setting the hostnames
	Step 4 - verifing network connectivity

	Configuring the Network Time Protocol
	Configuring the OpenStack repository
	Upgrading the system

	OpenStack installation
	Configuring the database server
	Step 1 - creating file
	Step 2 - finalizing the database installation
	Step 3 - creating database for OpenStack services

	Configuring the message queue
	Configuring the memcached server
	Configuring the identity service (KeyStone)
	Step 1 - installing and configure components
	Step 2 - configuring the Apache HTTP server
	Step 3 - setting environment variables
	Step 4 - defining projects in KeyStone
	Step 5 - defining users and map role in KeyStone
	Step 6 - verifying KeyStone operation
	Step 7 - creating OpenRC environment file

	Configuring the image service (Glance)
	Step 1 - defining the Glance service and API endpoints in KeyStone
	Step 2 - installing and configuring the Glance components
	Step 3 - verifying the Glance operation

	Configuring the Compute service (Nova)
	Step 1 - defining the Nova service and API endpoints in KeyStone
	Step 2 - installing and configuring the Nova components

	Installing and configuring a compute node (nova-compute)
	Configuring the networking service (neutron)
	Step 1 - defining the neutron service and API endpoints in KeyStone
	Step 2 - configuring the self-service networks
	Step 3 - configuring the Modular Layer 2 (ML2) plugin
	Step 4 - Configuring the Linux bridge agent
	Step 5 - configuring the layer-3, DHCP agent, and metadata agent
	Step 6 - configuring the Nova service to use the neutron service

	Installing and configuring a compute node (neutron)
	Installing the OpenStack dashboard

	Adding compute node to the OpenStack cluster

	Summary

	Chapter 9: Day 9 - Repairing OpenStack
	Structured troubleshooting approaches
	Level 1 - Service status check
	Level 2 - Authentication response
	Level 3 - CLI debug mode
	Level 4 - Service log check

	The KeyStone service
	Checking the KeyStone service
	Checking the KeyStone client
	The CLI debug mode

	The Glance service
	The Glance log files

	The Nova service
	The Nova log files

	The Neutron service
	Neutron log files

	Database issues
	Getting help from OpenStack community
	Summary

	Chapter 10: Day 10 - Side Arms of OpenStack
	Bells and whistles of OpenStack
	OpenStack Umbrella
	Ironic
	Manila
	Designate
	Trove
	Sahara
	Barbican
	Zaqar
	Aodh
	Congress
	Mistral
	Murano
	Magnum
	Zun
	Panko
	Vitrage
	Watcher

	Summary

	Index

